
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
ANDROID/APKファイル上の異環境にわたる動的記号実

行およびそのマルウェア解析への応用

Author(s) Nguyen, Thi Van Anh

Citation

Issue Date 2024-09

Type Thesis or Dissertation

Text version ETD

URL http://hdl.handle.net/10119/19390

Rights

Description Supervisor: 小川 瑞史, 先端科学技術研究科, 博士



NGUYEN THI VAN ANH

Doctoral Dissertation

CROSS-ENVIRONMENT DYNAMIC SYMBOLIC
EXECUTION ON ANDROID/APK FILES AND ITS

APPLICATION FOR MALWARE ANALYSIS

NGUYEN THI VAN ANH

Supervisor : MIZUHITO OGAWA

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

Information Science
September 2024



Abstract

Modern applications often run across multiple environments. A high-level
language can invoke native extensions, typically written in C/C++ code, re-
sulting in more efficient applications and increased productivity since legacy
code can be reused. However, the use of native code introduces safety con-
cerns that can lead to security breaches, potentially violating security proto-
cols. In this work, we introduce a novel tool, HybridSE, to analyze Android
applications with native code.

HybridSE distinguishes itself by integrating the strengths of established
Dynamic Symbolic Execution (DSE) tools—SPF (Symbolic Pathfinder) and
CORANA/API, which were originally designed for Java and ARM archi-
tectures, respectively. Enhanced with a specialized taint analysis module,
HybridSE effectively addresses data leaks in real-world applications and
malware, demonstrating a notably low false positive rate in our evaluations.

We assess the performance of HybridSE in two key aspects: control
flow and data flow analysis. Regarding control flow, we utilize the generated
graphs and apply graph similarity to two tasks: malware family classification
and Android packer classification. The graphs generated by HybridSE,
when used as features in classification tasks, yield results comparable to
those of state-of-the-art classifiers.

In terms of data tracking and detecting data leakage, HybridSE demon-
strates higher precision compared to other tools, effectively reducing false
positives caused by over-approximation. Unlike static taint analysis tools,
HybridSE avoids issues related to array handling and Java reflection. By
generating accurate cross-environment control flow graphs for both Java byte-
code (.dex) and native code (.so), our taint analysis method has successfully
detected 139 data leaks in real-world Android malware. Through our anal-
ysis with HybridSE, we have made several observations on how data leaks
occur, including a detailed examination of the Lotoor family, which remained
active until 2022.

Keywords: Android mobile security, Symbolic execution, Taint
analysis, Packer identification, Malware classification
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Chapter 1

Introduction

1.1 Problem statement

Android OS is now extensively used not only on smartphones but also on
tablets and various other smart devices. These devices function as portable
computing platforms, granting access to sensitive system resources such as
device numbers and personal data, including emails and contact lists. As a
result, data compromise is a significant concern in Android security [2]. A
substantial amount of research has focused on detecting Android data leaks
and malicious behavior using both dynamic [3] and static [4, 5] analysis
techniques.

While Java, a high-level language, can leverage native code, typically
written in C/C++, to improve application efficiency, this practice has also
raised considerable security concerns in the context of Android security [6].
Native code can introduce safety and security issues that may be missed by
higher-level language analyses [7]. We examine the unique characteristics of
the Android environment and explain why native code poses a significant
security challenge.

1.1.1 Cross-environment nature of Android/APK files

Google supplies Android Native Development Kit (Android NDK) from 2009,
which allows developers to write C/C++ code for Android and cross-compile
it to multiple architectures, e.g., ARM, x86, and MIPS. Malware developers
began to obfuscate bytecodes compiling into native code to bypass bytecode
level analyses.

Although Android APKs are developed in Java, there are several differ-
ences. An Android application (Android APK) starts with a Java variant
called Dalvik bytecode (classes.dex) and may include native code, such
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as Android library functions and user-defined functions in .so shared li-
braries. This feature is convenient for reusing legacy code, boosting perfor-
mance, and accessing devices directly.

Note that an Android application allows multiple entry points activated
by facilities such as Activities and Services due to user actions, mes-
sages, or system events.

While Dalvik bytecode can be easily decompiled into Java bytecode, na-
tive library code requires reverse engineering of binary code (for each archi-
tecture: ARM, x86, etc.). Another difficulty lies in the calling conventions
between bytecode and native code. It is important to account for the differ-
ences between Java conventions and ARM/C/C++ conventions.

1.1.2 Security risks posed by native code

Figure 1.1: Simplified Towelroot callgraph with blue node in bytecode and
red node in native code.

Towelroot is a textbook illustration of how to ”root” an Android device.
This example will enable us to explain how a cross-environment applica-
tion works and to see how information can escape. The majority of static
analysis tools for Android tend to neglect native code. Many spyware have
taken advantage of the lack of native code analysis to bypass data protec-
tion. Callgraph (Fig. 1.1) of Towelroot shows no suspicious calls in the Java
component, but numerous external calls to the Linux kernel from the native
code (red node).

Towelroot gains root access by exploiting a vulnerability in an old Linux
kernel. The exploit leverages a vulnerability in the Fast Userspace Mutex
(Futex), accessed through the pthread library.

That said, users trying to take control of their smartphones with Towel-
root run the risk of confidential data being leaked. Let’s take a closer look
at Towelroot ’s code. Listing 1.1 shows a key snippet.

2



1 %%% JAVA CODE in towelroot.apk
2 pub l i c c l a s s MainActivity extends Act i v i ty {
3 s t a t i c { System . loadLibrary ( ” l i b e x p l o i t . so ” ) ;}
4 pub l i c nat ive St r ing rootThePhone();

5 pub l i c void buttonCl icked (View view ) {
6 TextView tv=(TextView ) findViewById (R. id . t ex t ove rwr i t e ) ;
7 i f ( queryServer ( f a l s e ) ) {
8 tv.setText(rootThePhone()); // CALL to nat ive

9 queryServer ( t rue ) ;
10 t h i s . didrun = true ;}
11 }}
12

13 %%% NATIVE ARM CODE of rootThePhone()
14 j s t r i n g Java libexploit rootThePhone() {
15 0x10d44 add r5 , r0 , r7
16 0x10d48 bl getpid //SOURCE: getpId ( )Taint r0
17 0x10d4c cpy r3 ,r0 Taint r3
18 0x10d50 mov r0 ,#0x4 = 4 Clear r0
19 0x10d54 cpy r1 , r4 = ” towe l root ”
20 0x10d58 cpy r2 , r5 = ” nat ive running with”
21 0x10d5c bl android log print params: r0, r1, r2, r3
22 //SINK : a nd r o i d l o g p r i n t
23 0x119b8 l d r r0 , [ sp ,#114c ]
24 0x119c0 bl pthread create
25 0x119c4 l d r r1 , [ sp ,#114c ]
26 0x119ec bl pthread mutex lock
27 }

Listing 1.1: The cross-environment application towelroot.apk with an ARM
native code

Towelroot (Line 8) calls rootThePhone() with id (Line 6) as an ar-
gument. The native function rootThePhone() is declared using the
native keyword (Listing 1.1, Line 4, and is registered statically by Sys-
tem.loadLibrary()). The native method in the bytecode and the native
code are tied by the naming convention of JNI (Java Native Interface). The
JNI establishes a one-to-one mapping between the name of a native method
declared in Java and the name of its counterpart residing in a native library.
In this case, rootThePhone() is mapped to Java libexploit root-
ThePhone.

rootThePhone() accesses the physical components and gains root ac-
cess. But, we can also observe a potential data leak of the process id, which
is possibly not harmful. The native function android log print is used
to send the information obtained from the getId() call in the native part.

3



Figure 1.2: Control flow graph for Towelroot in Listing1.1

1.1.3 Why DSE is needed?

We emphasized the necessity of cross-environment Dynamic Symbolic Exe-
cution for Android applications.

The need to analyze native code has led to a surge in the development of
taint analysis tools for Android Native code, encompassing both dynamic
and approaches, such as Argus-SAF [8], JuCify [9], TaintArt [10] and
OATs’inside [11]. Dynamic taint analysis tools such as TaintArt [10] and
ViaLin [12] can detect some malicious behaviors. However, they are unable
to analyze behavior that is not activated at runtime, such as trigger-based
behaviors and VM-aware actions, potentially causing them to miss hidden
triggers within the code.

On the other hand, static analysis tools such as Argus-SAF [13] and
JuCify [9] adopt an over-approximation to cover all execution paths. A
significant advantage of static analysis lies in its ability to be automated and
scaled quite well. However, it is prone to produce false positives, struggles
against code obfuscation, and runtime-related components like Java reflection
and dynamic class loading [14, 15].

To balance both techniques, we proposed a cross-environment Dynamic
Symbolic Execution framework (DSE) for Android Native code. On Win-
dows, symbolic execution on binary code has attracted attention for de-
obfuscation to obtain precise control/data flow. Additionally, it has proven
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effective in identifying vulnerabilities, such as integer overflow. However,
within the Android domain, existing DSE tools [16, 17, 13] focus solely on
Dalvik bytecode. They either ignore or treat native code as a black box, lead-
ing to a shortfall in assessing the behaviors embedded within native code.

Constructing a DSE tool for Android presents a challenging task due
to the Android framework’s heterogeneous nature. An Android APK file
includes various components, such as Dalvik bytecode (.dex), native code
(.so), and the AndroidManifest.xml, which specifies data access permissions.
Hence, the execution of an Android application frequently traverses diverse
environments, moving back and forth.

Symbolic execution tools for Android APK files are mostly Java-based
and handle native code as black boxes, i.e., they simply get results of native
code by concrete execution, instead of symbolic execution.

Some tools, such as angr [18], perform symbolic execution across both
.dex (bytecode) and .so (native code) files. However for this, angr translates
both file types into a single entity using the Jimple intermediate language.
Consequently, its effectiveness is constrained by the translation from native
code (such as ARM) to Jimple. This transition is challenging to extend,
as Jimple maintains a class hierarchy similar to Java, which can complicate
direct device access.

Our primary goal is to develop a DSE tool capable of analyzing cross-
language Android applications while being resilient against obfuscation tech-
niques. To this end, we introduce HybridSE, which integrates two estab-
lished DSE tools, SPF [17] and corana/api [19]. Furthermore, we have
enhanced its functionality by adding a taint analysis module.

1.1.4 Proposing a DSE tool - HybridSE

When targeting malware, there are PC malware, IoT malware, and mobile
malware. PC malware mostly focuses on x86 with typical OSs, e.g., Windows,
and Linux. It often uses heavy obfuscations to bypass anti-virus software,
which is typically introduced by a packer. IoT malware is often naive because
of the absence of anti-virus protection in IoT devices. However, the target
platforms of IoT malware vary a lot whereas the target OS is often Linux-
based. For mobile malware, Android, with its more open ecosystem, tends
to have a higher prevalence of malware compared to iOS. Mobile malware
on Android often leverages multiple components of the operating system
to exploit permissions, access the file system, intercept SMS messages, use
root exploits for elevated privileges, and manipulate app components like
activities, services, and broadcast receivers.

5



In this work, we propose a DSE tool for Android applications with native
code, called HybridSE, as shown in Figure 1.3.

Figure 1.3: Overview of the DSE Systems described in this dissertation, with
the contributions of this work indicated in Blue

The process of implementing and utilizing a DSE tool involves three
stages:

1. Instructional semantics definition: This defines the execution and in-
terpretation of instructions within the symbolic execution engine.

Symbolic PathFinder (SPF) [17], which was developed by NASA, in-
tegrates formal semantics of Java bytecode within the JPF VM frame-
work, enabling SPF to conduct DSE on Java programs. CORANA [20]
has successfully automated the extraction of formal semantics from
specifications for ARM.

Execution on Android involves navigating Dalvik bytecode instructions
and binary code within native libraries. We utilize the well-defined
semantics from existing tools, SPF for Java and CORANA for ARM
binary code, although some modification is needed to adapt SPF for
Android (Figure 1.3 - 1).

2. Handling external calls : This manages interactions with external li-
braries, system calls, or other software components.s Based on the
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visibility of an application’s components to the user process, we can
categorize them as either black-box or white-box. HybridSE adds the
handling of black-box components, including OS syscalls in native code,
and white-box components, including calls to native libraries.

3. Analysis implementation: This involves developing analysis modules
within the DSE tool and applying them to malware analysis tasks.
We implemented two analysis modules in HybridSE: taint analysis
and CFG generation. Accordingly, we performed two tasks on a set
of current Android malware: detecting data leaks and classifying mal-
ware families and used packers using CFG similarity generated by Hy-
bridSE.

1.2 Contribution

This thesis’s contributions are:

• This thesis presents a novel symbolic execution framework tailored for
cross-environment platforms, encapsulated within a DSE tool named
HybridSE.

• HybridSE1 is a pioneering tool for DSE, designed for analyzing cross-
language Android applications. Notably, HybridSE leverages its abil-
ity to perform DSE across both Java code and native code.

HybridSE combines 2 DSEs, SPF, and corana, by integrating both
bytecode-level semantics and low-level semantics, taking into consider-
ation interactions with system calls. The binding layer between byte-
codes and native extensions poses another significant challenge. To
address this, we’ve defined a conversion process for the calling con-
vention between Java and native ARM. This process automatically
extracts the interface during native calls. This interface is essential
for cross-platform calls, detailing arguments passing, data type conver-
sion, and memory allocation. Extracting type information is crucial
for constructing these interfaces. HybridSE automates this process
by extracting data type information from the Linux Manual Page [19].

• We assess HybridSE by constructing cross-environment control flow
graphs of more than 10,000 applications that contain native code in-
vocations. We also extensively discuss the limitations of HybridSE,
stemming from the analysis of the datasets considered.

1figshare.com/s/45b91d138c44e2e55ddd
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• We assess the performance of HybridSE in two key aspects: control
flow and data flow analysis.

– Regarding control flow, we evaluate the efficacy of the generated
CFG by comparing it with the call graph produced by the static
analysis tool Flowdroid.

– Subsequently, we utilize the generated graphs and apply graph
similarity to two tasks: malware family classification and Android
packer classification. In both tasks, the graphs generated by Hy-
bridSE, when used as features in classification tasks, yield results
comparable to those of state-of-the-art classifiers.

– In terms of data tracking and detecting data leakage, we show-
case that HybridSE exhibits greater precision compared to other
tools, thereby minimizing false positive alarms resulting from over-
approximation. Unlike static taint analysis tools, HybridSE does
not suffer from weaknesses related to array handling and Java
reflection. Consequently, HybridSE yields accurate results on
tasks involving these aspects.

– By generating precise cross-environment control flow graphs for
both Java bytecode (.dex) and native code (.so), our taint analysis
method identifies data leaks through experiments conducted on
real-world Android malware.

– HybridSE successfully detected 139 malware data leaks. From
our analysis with HybridSE, we have drawn several observations
about how data leakages occur. In particular, we carefully exam-
ined the Lotoor family, which was active until 2022.

1.3 Outline

This thesis is structured as follows.
Chapter 1 explains the motivation behind our work on Dynamic Sym-

bolic Execution (DSE) for cross-environment Android applications. After
presenting the features of the Android framework, we show the challenges
that Android analyses are facing and our motivation for building a precise
and complete analysis of native Android applications.

Chapter 2 outlines the structure of an Android/APK file and obfuscation
techniques that frequently occur in Android. While native code provides
developers an incredibly effective tools, it also introduces serious security
issues to the Android framework.
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Chapter 3 explains dynamic symbolic execution (DSE) across heteroge-
neous environments, targeting a combination of SPF and corana/api.

In this chapter, we first discuss symbolic execution and the choices when
handling heterogeneous platforms. Then, we present the components of a
multi-language environment DSE, named HybridSE, for an Android applica-
tion running on an ARM-based device.

We divide platforms into two types, the black box, and the white box, de-
pending on their visibility. A black-box platform prohibits tracking the data
and control flows. In contrast, distinct components written in multiple pro-
gramming languages are white-box platforms. Different from existing DSE
tools, we combine platform-specific DSE tools for each white-box component
(native code) to keep execution across different platforms. For the black
box component (system call), we concretize symbolic values in the required
arguments and execute the call in the operating system kernel.

The specific handling of each type of call in an Android application is
described in this chapter.

Chapter 4 and 5 presents the design and implementation of our DSE
tool, HybridSE, specifically tailored for APK files.

HybridSE combines SPF and corana/api to perform DSE for Android
applications that contain native code and further external calls in the operat-
ing system. The underlying mechanism is implementing connection interfaces
that obey calling conventions between different platforms for maintaining the
environment and path constraint update.

The chapter also elaborates on taint analyses, including the implementa-
tion of our taint analysis module within HybridSE.

Chapter 6 discusses the performance of HybridSE in tracing Android
applications through control flow graph construction. Subsequently, we eval-
uate the control flow graph generated by HybridSE in two classification
tasks utilizing graph similarity.

Chapter 7 presents the results and effectiveness of taint detection on
Android apps and malware. The result shows that HybridSE can identify
the correct data leaks in a well-defined benchmark and real-world spyware.

Chapter 8 discusses related works, whileChapter 8 provides concluding
remarks for the thesis.
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Figure 1.4: Thesis construction
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Chapter 2

Android framework and
Android obfuscation

This section provides an overview of the cross-environment framework in
Android, highlighting the need for a cross-environment Dynamic Symbolic
Execution (DSE) tool. Android applications often operate across diverse
environments, this requires an analysis tool that can handle multiple in-
teractions between different components and a high resilience level against
obfuscation techniques. These challenges underscore the rationale behind the
development of a cross-environment DSE tool tailored for Android.

2.1 Android framework

The Android architecture consists of multiple layers, such as the Linux ker-
nel, native libraries, runtime, application framework, and applications, which
together enable the functioning and interaction of Android devices and ap-
plications.

An APK (Android Package) file encapsulates various components. The
AndroidManifest.xml file contains essential information such as the package
name, version, required permissions, and possible entry points through com-
ponents like activities and services. The classes.dex file holds the compiled
Java bytecode, which contains the payload of the application. The Resources
and assets directories store app resources, while the META-INF directory
contains metadata and package signature files. Optional native libraries (.so
files) are stored in the /lib directory.

Among these components, the application code resides in the classes.dex
file and the .so files in the /lib directory (and occasionally in the /assets
directory). The link between bytecode in classes.dex and native code in .so
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Figure 2.1: Structure of an APK file

files are facilitated by the Java Native Interface (JNI).
Native methods can be registered by JNI either statically or dynamically.

Static registration explicitly declares native methods within Java classes us-
ing the ‘native‘ keyword. At runtime, the native method in the .so file and
Java classes is mapped by the JNI naming convention. In dynamic registra-
tion, developers utilize JNI’s RegisterNatives() function to link Java methods
with their corresponding native implementations. In both static and dynamic
registration, the JNI OnLoad() function is invoked at the start of native code
execution.

Figure 2.2: Java Native Interface
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2.2 Obfuscation techniques

Obfuscation is the act of complicating code or data to deliberately make code
or data more difficult to understand or reverse-engineer. Android packers
employ various obfuscation techniques to hinder the analysis and monitor-
ing of Android application behavior. Measures like anti-debugging, Virtual
machine(VM)-awareness checks, or behavior-triggering mechanisms are of-
ten utilized to detect tracking on emulators and respond by either altering
behavior or crashing the application. While these methods primarily target
dynamic analysis, static analysis is also deterred through the application of
multiple obfuscation techniques.

Common obfuscation techniques used by Android apps include identifier
renaming, string encryption, multi-dex, and reflection. Some of these tech-
niques, such as control flow obfuscation using opaque predicates, identifier
renaming, and string encryption, are employed across various platforms (for
both bytecode and binary code). However, certain methods are specific to
the Android and Java frameworks, such as multi-dex and Java reflection.

This section explores common obfuscation techniques detected on An-
droid, aiming to justify the adoption of DSE as the most resilient approach
to combatting obfuscation.

Identifier Renaming. For readability, developers typically use mean-
ingful names for code identifiers, following different naming conventions.
However, these meaningful names help reverse engineers understand the code
logic and quickly locate target functions. To minimize information leakage,
identifiers can be replaced with meaningless strings.

1 p u b l i c S t r i n g m3a163f7d( TelephonyManager te l ephonyManager ) {
2 r e t u r n te lephonyManager . g e tDe v i c e I d ( ) ;
3 }
4 p u b l i c C0010p4a8a08f0 [ ] m363b122c ( ) {
5 i f ( (11 + 19) % 19 > 0) {
6 }
7 r e t u r n ( C0010p4a8a08f0 [ ] ) mc09695e2( f110M , new

C0010p4a8a08f0 [ 0 ] ) ;
8 }

Listing 2.1: Identifier renaming in an Android malware

String Encryption. String encryption is used widely to hide original
plaintexts by cryptographic functions. To effectively retrieve the original
strings, a correct decryption function must be applied during reverse engi-
neering. This process often relies on the experience of the security specialist.
Alternatively, the strings can be retrieved at runtime after the decryption
function has been executed.
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Java Reflection. Reflection is a Java feature that allows the creation of
new object instances and invoking methods at runtime. As an obfuscation
technique, reflection can call specific functions implicitly, which allows pro-
grams to hide their behaviors from state-of-the-art static analysis tools. Con-
sequently, malware developers often use reflection extensively to conceal ma-
licious actions. Listing 2.2 shows an example of such cases. In the example,
sensitive APIs such as getLastKnowLocation and getBestProvider
are not directly declared but are obfuscated by reflection calls and put into
a list. Only at runtime can the corresponding method be invoked via ob-
fuscatedMethods.get(i).invoke() at Line 14. Reflection can also
be combined with string encryption to hide sensitive function names, which
are only revealed at runtime. SPF Virtual Machine can resolve reflection at
runtime dynamically, allowing the correct invocation of API calls in Android
applications.

1 p u b l i c c l a s s AdvancedAp iRe f l e c t i on {
2 p r i v a t e s t a t i c f i n a l L i s t<Method> obfuscatedMethods = new

A r r a y L i s t ( ) ;
3 s t a t i c {
4 obfuscatedMethods . add ( Locat ionManager . c l a s s .

getDec la redMethod ( ” g e tBe s tP r o v i d e r ” , C r i t e r i a . c l a s s ,
Boolean .TYPE) ) ;

5 obfuscatedMethods . add ( Locat ionManager . c l a s s .
getDec la redMethod ( ” getLastKnownLocat ion ” , S t r i n g . c l a s s )
) ;

6 obfuscatedMethods . add ( Connec t i v i t yManage r . c l a s s .
getDec la redMethod ( ” g e tAc t i v eNe two r k I n f o ” , n u l l ) ) ;

7 obfuscatedMethods . add ( Locat ionManager . c l a s s .
getDec la redMethod ( ” getLastKnownLocat ion ” , S t r i n g . c l a s s )
) ;

8 obfuscatedMethods . add ( TelephonyManager . c l a s s .
getDec la redMethod ( ” getS imSer ia lNumber ” , n u l l ) ) ;

9 obfuscatedMethods . add ( TelephonyManager . c l a s s .
getDec la redMethod ( ” g e t S u b s c r i b e r I d ” , n u l l ) ) ;

10 obfuscatedMethods . add ( TelephonyManager . c l a s s .
getDec la redMethod ( ” getVoiceMai lNumber ” , n u l l ) ) ;

11 }
12

13 p u b l i c s t a t i c Object ob f u s c a t e ( i n t i , Ob jec t obj , Object [ ]
ob jA r r ) {

14 r e t u r n obfuscatedMethods . ge t ( i ) . i n voke ( obj , ob jA r r ) ;
15 }}

Listing 2.2: Reflection is used to hide sentitive API in an Android malware
APK

Multi-dex. Before the Android platform version 5.0 (API level 21), apps
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were restricted to a single classes.dex bytecode file per APK. In later ver-
sions, Multi-dex allows Android application authors to split an application’s
bytecode across multiple DEX (Dalvik Executable) files. This is typically
necessary for applications that exceed the 65,536 method limit and also adds
an additional layer of protection. Static Android analysis tools such as apk-
tool and dex2jar can face difficulties when dealing with Multi-dex.

Packing. To thwart static analysis, Android packers employ various
measures to shield both DEX files and so files (Figure 2.3).

Figure 2.3: DEX encryption mechanism on APKProtect [1]
1 - Packing, 2 - Executing at runtime, 3 - Decrypting, 4 - Unpacking

DEX files are typically safeguarded through encryption, dynamic load-
ing (i.e., dynamically releasing protected data into memory for execution at
runtime), dynamic modification (i.e., altering DEX files in memory while the
app is operational), obfuscation, and re-implementing with native code. Ad-
ditionally, some packers utilize virtual machine-based protection methods,
translating Dalvik bytecode into a customized bytecode format and integrat-
ing a tailored virtual machine to interpret them during app execution on
a device. For .so files, Android packers utilize techniques such as ELF file
packing or obfuscation tools like Obfuscator-LLVM.

2.3 Disscussion

Regarding obfuscation techniques, there is no one-size-fits-all solution. Anti-
debugging methods like VM awareness and behavior-triggering frequently
hinder dynamic analysis. Static cross-environment tools face challenges with
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obfuscation techniques such as control flow obfuscation, opaque predicates,
dead-code insertion, and self-modification. Techniques specific to Android
and Java environments, such as Java reflection, multi-dex, and dynamic load-
ing, further complicate static analysis.

The rationale behind combining 2 DSE tools - SPF and corana, is their
effectiveness in handling various obfuscation techniques, though they may
still struggle with platform-specific methods such as multi-dex and dynamic
loading. To our knowledge, existing Android taint analysis tools like Argus-
SAF and JuCify have not yet addressed challenges posed by multi-dex and
dynamic loading in packed applications.
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Chapter 3

DSE over heterogeneous
environments

A conventional DSE framework targets the sequential execution of a pro-
gram on a single platform. However, real-world programs are often neither
self-contained nor in uniform environments. They mostly operate in het-
erogeneous platforms that differ in the environment structure, the language
descriptions, and the privilege hierarchy.

We focus on Android APK files. An Android apk file consists of Dalvik
bytecode (.dex), native code (.so), and Manifest.xml, which includes permis-
sion for data access. Hence, its concrete execution goes across the environ-
ments of Dalvik bytecode, native code, and Android library functions.

This chapter discusses the dynamic execution of a cross-environment and
the calling conventions necessary for transferring between environments. We
categorize system calls as either black box or white box, discussing the dif-
ferent approaches for handling each type. Finally, we validate our chosen
methods.

3.1 Symbolic Execution for instruction sets

Symbolic execution (SE) [21] associates formulas to each execution step,
obeying the Hoare triple inference rules

{Pre-condition}Command{Post-condition}.

In the original form of Hoare logic, at each step of the execution, a fresh
variable name is introduced. In an actual implementation of dynamic sym-
bolic execution (DSE) tools, instead of the variable name conversion, the
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environment model and the path condition are separated such that the path
condition contains only symbolic values as variables.

To build a DSE tool for binary code, the formal semantics of each in-
struction is required. Our motivation is malware analysis, which is mostly a
user-level process and contains only serializable [22] multi-threads, e.g., fork
the independent scanning processes. We limit the target of DSE for instruc-
tion sets on the sequential execution only (forgetting the multi-stage cache
and the out-of-order execution), and the operational semantics is simplified
as a transition system over symbolic states.

Definition 3.1.1. A symbolic state at a location i with an instruction inst
is the tuple ⟨αi, (CFlow,Env)⟩ where

• Sym is the set of symbolic values s,

• αi is a path condition (the pre-condition of inst) at i with V ar(αi) ⊆
Sym, V ar(αi) returns the set of variables within the path condition αi.

• Env = {V arEnv} is a set of environment variables,
where an environment variable is V arEnv : Name→ V al with V al =
{0, 1}k ∪ Expr.
Expr denotes the set of expressions that operate on constant values
and symbolic values.

• CFlow ∈ (Inst× Loc)∗ is a path to the predecessor of inst.

k is typically either 32 or 64.

The Hoare logic inference rule for an instruction inst (from the pre-
condition to the post-condition) is directly deduced from its operational se-
mantics. Let i be the program counter.

Env
Env′

[inst] if ψ ⇒
⟨αi, (CFlow,Env)⟩

⟨αi ∧ ψ, (CFlow.(inst, i), Env′⟩
[inst] if ψ

Operational semantics Hoare logic inference

Note that the choice of logic for the base of Hoare logic decides the rea-
soning ability. For instance, a bit sequence stored at a memory address can
be interpreted as a value or an address point to another location. For precise
description, Hoare logic must be able to describe the points-to relation, which
is not easy. In practice, a common backend reasoning engine of SE tools is
an SMT solver, in which no suitable backend theory seems to be prepared.
We consider an environment model as described in Fig. 3.1. Although model
components may differ, platforms mostly share similar environment models,
which often include
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Figure 3.1: Environment model

• the stack (e.g., JVM Stack in Java and Stack in x86, ARM) to store
local variables and temporary data.

• a memory (e.g., Heap in Java, Data Area in x86, and Memory in ARM)
contains the program data and uses it for dynamic allocation.

• a method area that stores the code segment and in some cases, the
instruction code.

• environment variables such as registers, flags, and the program counter
(PC) (though there are no flags in Java).

For instance, a DSE of ARM instruction can be defined with the environment
model Env includes:

• R : Reg → V al is a set of registers

Reg = {r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, sp, lr, pc, apsr}

• F : Flag → Bool is the set of flags Flag = {N,Z,C, V,Q,GE}.
• M :Mem→ V al is a set of memory locationsMem = {m0,m1,m2, ...}.
• S : Stack → V al is the stack Stack ⊆Mem (and S ⊆M).

At the beginning of execution, all environment variables above are initialized
as symbolic values. The operations on Bit-vector theory in the DSE of ARM
instructions follow the SMT-LIB (Satisfiability Modulo Theories Library)
standard.

Example 3.1.1. Figure 3.2 illustrates an example of an ARM assembly
code snippet and the corresponding path condition generated during dynamic
symbolic execution (DSE). Initially, at start, the environment is initialized
with symbolic values, such as r0 = r0 SYM, r1 = r1 SYM, and so on. After
executing the instruction mov r0, #2, the environment updates to r0 =
#2. At state n1, the instruction cmp r0, #4 followed by bleq causes
the execution to split into two branches: one where r0 equals 4 and another
where r0 does not equal 4. These branches produce two path conditions,
which in SMT-LIB are represented as (= r0 4) and (not(= r0 4)). Solving
with an SMT solver, (= r0 4) is satisfiable.
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Continuing the DSE, at states n4 and n5, the satisfiable path conditions
are reported as bvand ((= r0 4) (bvslt (bvsub r0 #5) #0)).

Figure 3.2: Example of path condition generated throughout ARM execution

3.2 DSE implementations in binary code

There are lots of tools for high-level programming languages, such as C/C++
and Java are developed (e.g., KLEE [23], CUTE [24], and SPF [17]). For
binary code, McVeto [25] is an early static symbolic execution example, and
from around 2015, several dynamic symbolic execution tools have become
available, such as MAYHEM [26], KLEE-MC [27], CoDisasm [28], S2E [29],
angr [18], BINSEC [30] and BE-PUM [31].

Different from high-level programming languages, binary code has no
syntax, i.e., no grammar constraints on the order of instructions, no dis-
tinction on data and code. Further, the control flow graph is implicit,
whereas a high-level programming language obtains it for free during the
parsing.1 The control flow graph construction, equivalently the disassembly,
becomes a challenge when malware adopts the obfuscation techniques. The

1For object-oriented languages, an inter-procedural control flow like a call graph re-
quires a points-to analysis [32, 33].
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syntactic disassembler, e.g., CAPSTONE2 and IDApro3, are easily cheated
by the obfuscation techniques, especially combined with indirect jumps and
self-modification to confuse the next control point. Dynamic analyses are
also cheated by VM awareness, anti-debugging, and/or trigger-based behav-
ior [34]. Dynamic symbolic execution (DSE) on binary code is considered
the most powerful (though heavy) [35, 36].

When targeting malware, there are PC malware and IoT malware. PC
malware mostly focuses on x86 with typical OSs, e.g., Windows, Linux, and
macOS. It often uses heavy obfuscations to bypass anti-virus software, which
is typically introduced by a packer. On the other hand, IoT malware is often
naive because of the absence of anti-virus protection in IoT devices. However,
the target platforms of IoT malware vary a lot whereas the target OS is often
Linux-based. For developing DSE tools for binary code, the instruction level
covers a single context, and the definition of the formal semantics is the
target task. A popular approach is to translate into an intermediate language
(IL), e.g., VEX, LLVM, and BAP (used in angr, KLEE-MC, and MAYHEM,
respectively), by using a common disassembler like CAPSTONE. This makes
different platforms share the same DSE implementation, but the drawback
is the difficulty to handle obfuscations, which will cheat disassemblers.

An alternative approach is a platform-wise DSE implementation. The
drawback is the heavy implementation effort for various platforms, which will
be assisted by automatic extraction of the formal semantics from (possibly
not formal) specifications. We have successfully tried this approach in the
past, e.g., BE-PUM [37] for x86, CORANA [20] for ARM, and SyMIPS [38]
for MIPS.

As in Chapter 2, an Android APK file consists of Dalvik bytecode, na-
tive code, and Android library (OS) function calls. There are several for-
mal method tools for Android APK files, such as JPF-Android [39], jpf-
mobile [40], SynthesisSE [13], and angr [18]. The former three are based on
JPF and mostly work as model checkers. They treat native code as a black
box component, i.e., either out of support or handling by concrete execution
(testing) in the Android environment.

The last angr is the only working symbolic execution tool that supports
Android with user-defined native code as a white box callee. It converts
ARM native code into Python description, and further into the intermediate
representation (IR) SootIR. Dalvik bytecode is also converted into SootIR
via Java. Then both of them are uniformly analyzed on SE on SootIR.

All existing tools depend on Java-based tools, and often dex2jar is used

2http://capstone-engine.org
3https://hex-rays.com/products/ida
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to adapt Dalvik bytecode. dex2jar statically translates .dex to .class files.
The translation is lightweight and practical since both Dalvik and Java byte-
codes are originally compiled from Java. Our aim is to connect SPF and
corana/api seamlessly as white boxes to each other for Android apk files.

3.3 DSE for cross-environments

3.3.1 Calling convention between different environments

The memory allocation convention and the datatype convention specify how
a platform stores its data types in the memory of each platform. They may
share a set of equivalent data types with different terminology. For example,
the boolean types in Java and C are Boolean and bool, respectively. String
is a specific type in Java, while C defines a string by an array of chars,
terminated by ”\0”. When a call between different platforms occurs, the
interface is required for passing the arguments and the return values across
environment models. They are specified as the calling convention, e.g.,
how to pass the arguments, and how to convert the datatypes and the memory
allocations of values. For instance, while the x86 calling convention uses the
stack to pass arguments, the ARM calling convention uses the registers for
the first three arguments and pushes the remaining onto the stack.

The memory allocation convention and the datatype convention specify
how a platform stores its data types in the memory of each platform. They
may share a set of equivalent data types with different terminology. For
example, the boolean type in Java and C are Boolean and bool, respectively.
String is a specific type in Java, while C defines a string by an array of chars,
terminated by ”\0”.

When the caller passes the environment to the callee, there are two
choices, copy or share the environment. A typical choice is the former, espe-
cially when platforms have different memory allocation and datatype conven-
tions. When copying primitive type arguments, they are directly converted
to the corresponding types in the other. For pointer types (e.g., string, list,
and array), the whole data structure that is pointed to needs to be copied,
which is traced from the pointer value. Since the datatype specifies how to
trace the data structure in the memory, either the caller or the callee needs
to know the arguments’ data types and the return values. For instance, when
Java calls ARM native code in an APK file via JNI (Java Native Interface),
the caller side knows. When ARM native calls a system function, the user
mode process is interrupted and OS handles the interface. Thus, the callee
side also knows.
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3.3.2 Handling black box callees

We cannot observe the data and control flow of a blackbox callee, e.g., tasks
running on the operating system, closed-source components, or no SE tools
are available. Thus, a black box callee during DSE is approximated in some
ways. One possibility is their manual modelling, which may be too expensive
or even impossible. Instead, we have two reasonable choices: (1) return
new symbolic values (over-approximation), or (2) execute with a satisfiable
concrete instance (under-approximation). We call the latter ”concretization”.

The former is useful to detect VM awareness and trigger-based behav-
ior [41], such as April fool attack (which occurs only at specific time) and
STUXNET (which works only at specific IP addresses). However, its un-
bounded usage will quickly make DSE intractable. The latter reduces the
symbolic execution to the concrete execution with a satisfiable instance of the
path condition. This is reasonable when the result of the external call will
not affect later conditional branches, e.g., scan the ports and try to connect
with them. Only the possibility is an error, e.g., not found, which is detected
as an inconsistent datatype of the return value. Minesweeper [41] is an early
example of manually switching such options depending on callees.

Figure 3.3: Call to a black-box platform

There are several methods for concretization in the existing implementa-
tion.

1. Copy the whole execution
The symbolic execution engine parallelly maintains both the symbol-
ical represented environment model and the corresponding concrete
environment. For instance, SPF runs on JPF and uses jpf-nhandler
plugin [16] to transfer the whole execution from the JPF to the host
JVM when a native call occurs. At the return from the native call,
SPF continues with the identical path condition, but with instantiated
variables that have a dependency on the native call.
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2. Copy the environment and concretize symbolic values

(a) Eager concretization on all symbolic values
The call to the black box callee is executed in the actual system
and the return result updates the environment of SE. This reduces
the current branch in SE to a single concrete execution. Thus, at
the return, the path condition becomes true.

(b) Lazy concretization on required symbolic values
The arguments of the call are instantiated to execute in the actual
system. Same to (a), the return results update the environment.
However, only the arguments required at the call are concretized,
and other symbolic values and expressions out of the context are
left unchanged. The path condition is set identical, i.e., the same
pre- and post- conditions, except for instantiating with the lazy
concretization.

Our approach for black-box callee [19] follows (2).(b) to keep values symbolic
as much as possible. To concretize symbolic values, we use an SMT solver
to randomly find a satisfying value that meets the current path condition.

Either case obeys the same calling convention 3.3.1, in which the extrac-
tion of type information is crucial for tracing the points-to relation of values.
Data type information of each platform is needed and often it can be au-
tomatically retrieved from the developers’ documentation. We have some
examples.

• For x86-32 on windows, BE-PUM handles Windows-API calls [42], in
which the data type information is extracted from Microsoft Developer
Network (MSDN).

• For ARM-32 on Android, corana/api [19] (which is an extension of
corana) handles Android system function calls, in which the data
type information is extracted from Linux Manual Page.

First, they are based on the argument name convention of the pseudo code
descriptions in manuals. Second, sentence similarity analysis can often fur-
ther classify the data types [42].

After the argument types are detected, the type conversion relation and
the theory correspondence needs to be prepared. Table 3.1 describes the
difference between the Java, ARM, and C/C++ platforms. From ARM to
C, system calls are wrapped by C standard library functions in the GNU C
Library (GlibC)4. Hence, the argument types of Linux API can be automati-
cally retrieved from GlibC documentation by applying name conventions [19].

4www.gnu.org/software/libc/
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From Java to ARM, argument types are directly shown in the JNI declaration
in the Java class.

Java ARM C
Calling

convention
Stack-based5 AAPCS6 C calling

convention3

Data types Java types 32 Bit-Vector C types

Table 3.1: Java and ARM data type comparison

3.3.3 Handling whitebox callees

Modern applications (e.g., Java, Android, and .NET programs) combine the
main block with the native code, in which its data and control flow are visible
in the user-level process. They are whitebox callees. We have two choices.

• Convert the program into a single context
The code in the different platforms is translated into a single platform,
e.g., native code into bytecode and C/C++ code into Java [43]. How-
ever, this semantics conversion proves to be difficult.

angr [18] translates both Java/DEX bytecode and native code, e.g.,
C/C++, ARM, x86, MIPS, into an intermediate representation of
SootIR. This approach limits the deobfuscation ability, i.e., it may be
cheated by the combination of self-modification and indirect jumps.

• Combine DSE tools of individual platforms
Interfaces between different DSE tools follow the calling conventions to
keep track of the execution.

Figure 3.4: Call to a white-box platform
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Our choice is the latter, e.g., in an APK file, the Java bytecode is analyzed
by SPF, and ARM native code is by corana/api [19].

The symbolic execution in the white box callee starts with the clean
environment, i.e.,

• If the arguments contain symbolic values, their values are set to fresh
symbolic values (with the constraints between existing symbolic val-
ues).

• The initial path condition is set to true.

After the SE in the white-box callee is over, the conjunction of path condi-
tions of the caller and the callee is taken.

Note that, as Table 3.1 shows, the data type conversion occurs when
crossing the environments. Such conversion also leads to the backend theory
conversion. For instance, the symbolic execution on high-level programming
languages often uses LIA (Linear Integer Arithmetic), whereas on binary
codes use BitVector.

3.4 Discussion

In this section, we introduce a framework for implementing a DSE tool for
cross-environment platforms. Most existing DSE tools for Android, such as
jpf-mobile, JPF-Android, and SynthesisSE, treat native library code as a
black box and execute it concretely. A black-box approach restricts track-
ing data and control flows. However, Android APK files are typically de-
ployed with native code libraries, which are white boxes. To achieve the
most comprehensive program flow, we propose a DSE framework that ac-
commodates environments with components of varying visibility levels. The
transition between DSE between black-box and white-box components needs
to be handled carefully by interfaces that abide by the calling conventions.
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Chapter 4

Description of HybridSE

We present the components for cross-environment DSE, named HybridSE,
for an Android application running on an ARM-based device. Different from
existing DSE tools, we use platform-specific DSE tools for each white-box
component and keep track of the environment and the path condition update
throughout the execution across different platforms. For Android APK, we
combine two DSE tools Symbolic Pathfinder SPF and corana/api, which
are for Java and ARM code, respectively, to analyze white-box native code.

After discussing the components, we provide an overview of the system of
HybridSE. This includes the strategy for generating the control flow graph
and, atop the DSE engine, an added taint analysis module.

4.1 DSE components

4.1.1 DSE for Java Bytecode: Symbolic PathFinder

Java bytecode is the instruction set of Java Virtual Machine (JVM) and can
run regardless of the underlying processor architecture. JVM uses Stack to
hold its local variables and temporary data, and also to manage method
invocations and their returns. Besides JVM Stack, Native Method Stack is
prepared for native methods.

JPF [44] is an extensible Java analysis tool and its core is a customized
JVM that supports multiple analysis strategies. Symbolic PathFinder (SPF) [17]
is a symbolic execution extension built on top of Java PathFinder (JPF).
Instead of the standard JVM, SPF defines the operational semantic descrip-
tions of Java bytecode instructions by adding new symbolic classes to deal
with symbolic operands (Fig 4.1). SPF keeps both symbolic and concrete
executions in parallel. At library function calls, SPF passes only the con-
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crete execution from the JPF custom VM to the host JVM. The result of the
symbolic expression is suspended and later used to generate path conditions.

Figure 4.1: Symbolic PathFinder

4.1.2 DSE for ARM instruction: corana

Nowadays, the use of native code for mobile applications steadily increases
and 95% of the mobile devices run on ARM CPUs. ARM is a RISC in-
struction set with 4 Cortex series A (Android), M (Micro Controller), R
(Real-time), and recently X (high-level CPU). Although each variation of a
Cortex has around 200 instructions only, each cortex has 10-20 variations,
which are either 32-bit or 64-bit instructions. An Android APK file specifies
the native code in either ARM 32 bits, ARM 64 bits, or x86, ignoring the
differences among Cortexs of ARM.

corana (Cortex Analyser) [20] is a preliminarily DSE tool focusing on 32
bits instruction set of ARM Cortex-M, which is implemented based on the
semi-automatically extracted formal semantics from ARM Cortex-M man-
ual1. The semantics of each ARM instruction is represented as a Java method
built on top of a customized BitVec class, which is a pair ⟨bs, s⟩ of a BitSet
32-bit vector bs and a string s. Corresponding to the BitVector theory of
SMT solvers, 35 basic methods are prepared for the binary symbolic execu-
tion engine.

Note that corana adopts the Bit-Vector theory of SMT solvers as the
base of Hoare logic. Thus, the points-to relation cannot be described by
formulae. Therefore, the points-to relation on concrete addresses can be
traced, but the points-to relation on a symbolic value simply requires a fresh
symbolic value.

1https://developer.arm.com/documentation
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4.1.3 ARM-Linux Kernel call: corana/api

For black-box calls from ARM native code to the operating system kernel,
we follow the API stub of corana/api, i.e., concretize symbolic values in
the required arguments and execute in the kernel.

An external call to a different environment requires (1) passing the ar-
guments and the environment when the call occurs, and (2) receiving the
output and the environment update when the call is over, which follows the
calling convention.

Note that the arguments, the output, and the environments may contain
pointer values, for which tracing pointers are required. Thus, the detection
of types of each value is needed [19]. The environment transfer is partial in
the sense that the transfer is only in their reachable and visible areas.

A Linux system call (or Linux external library call) in corana is a black-
box component since the system process is invisible from the user process.
There are 3 choices (a) model the black-box component, (b) introduce a new
symbolic value as the output, or (c) concretize symbolic values for concrete
execution in the OS. (a) is often expensive, and (b) fits the trigger-based
behavior. Our current choice is (c) to cover typical scanning loops, e.g., the
port scan. Note that we keep the concretization as minimal as possible,
i.e., only for needed values. After the execution in the OS, it updates the
environment of corana.

The path condition is kept unchanged since the constraints of conditional
branches in the black box are inaccessible and cannot be observed from the
user process.

4.1.4 Java-ARM communication

For combining DSEs, the arguments, the output, and the environments may
include symbolic values, and it also requires (3) the path condition update.
Fig. 4.2-right describes the white-box call from SPF to corana. The sym-
bolic execution in SPF is presented by Java environment variables α, β and
the path constraints Φjava on these symbolic values. At the point of the
native method F invocation, the arguments α, β for the native method are
passed to corana. It starts with the initial environment α, β and the initial
path condition Φnative = true. At the end of the native code, the return
value ret of corana, which can either be a symbolic or concrete value, and
the path condition Φ′

native are passed to the environment of SPF. Then, the
postcondition of the white box call is updated as Φ′

java = Φjava ∧ Φ′
native.

29



Figure 4.2: Call handling for Android on ARM compared to Windows x86

4.2 HybridSE Overview

4.2.1 Preprocessing

SPF requires Java bytecode and a configuration file (.jpf) as prerequisites,
instead of Dalvik bytecode, and corana/api requires an ARM binary (.so)
file. As preprocessing, we use apktool to decompile the APK file, extracting
resources including the AndroidManifest.xml file, Dalvik bytecode, and other
assets. Then, dex2jar converts Dalvik bytecode (.dex) to Java bytecode (.jar)
(Fig. 4.3).

Figure 4.3: Preprocessing in HybridSE
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• From AndroidManifest.xml: Identify potential entry points such as Ac-
tivities, Services, AsyncTask, and Application, we generate a dummy
Main Java class to initiate the entry points. Subsequently, SPF config-
uration files are created based on them, specifying analysis parameters.

• From Dalvik bytecode: The Dalvik bytecode (classes.dex) is converted
into Java bytecode (classes.jar) using dex2jar.

• From Native code: After extracting the APK file, we search for .so files
in the /lib and /asset directories. Ghidra2 is employed to extract the
symbol table, which helps us to locate registered native functions and
their respective positions in the binary. Each function in the native
code act as an entry point when called from Java.

• Mapping a native function registered in Bytecode to its corresponding
region in Native code. Native functions can be resolved either statically
through JNI naming conventions or dynamically via the JNI OnLoad()
function.3

4.2.2 Construction of Cross-environment Control Flow
Graph

Definition 4.2.1. An instruction is a fundamental unit of executable code
in a binary representation. An instruction I can be defined as:

I = (Address,Opcode,Operands)

where:

• Address is the location in memory where the instruction is stored.

• Opcode is a code that identifies the operation to be executed.

• Operands are data or addresses that the operation acts upon.

Instructions are sequentially executed by a processor or interpreter, form-
ing the basis for program execution and control flow.

Definition 4.2.2. A Control Flow Graph (CFG) of a binary code P is a
directed graph CFGG = (E, V ) that depicts the execution process of P. In
this graph, each node represents a pair 〈Address, Instruction〉, corresponding
to an address and its associated instruction.

2github.comNationalSecurityAgency/ghidra/releases/tag/Ghidra 10.3.1
3docs.oracle.com/en/java/javase/17/docs/specs/jni/design.html
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Unlike most static analysis tools [9, 13, 6] that construct CFGs by pre-
constructing native CFGs and then mapping the calls of bytecode CFGs with
native CFGs, HybridSE adopts a different strategy. It constructs a cross-
environment CFG in an on-the-fly depth-first-search manner. It converts
between two DSE engines, SPF and corana/api, depending on the current
instruction being executed.

Algorithm 1 Constructing cross-environment CFG
Input: entry point jentry of Java classes, and native code C
Output: A cross-environment CFG G for jentry
G← ∅
for insn in SPF.runDFS(jentry) do

G← G ∪ {insn}
if isJNICall(insn) then

N ← ∅ ▷ Native CFG N
jni args← Java2Native.call(SPF.getStack())
N ← CORANA.runDFS(C, jni args)
n result←CORANA.getReturn()
Native2Java.return(n result)
G← G ∪N

else
SPF.execute(insn)

end if
end for
return G

For each Java entry point, a CFG is individually constructed with Algo-
rithm 1. Each Java bytecode instruction is executed and added to the CFG.
When encountering a JNI call to native code, the execution is transferred
to HybridSE through an interface communication between Java and native
code.

Similarly, the native code in .so files is incrementally traced by Hy-
bridSE’s engine. External function calls are handled by Syscall stubs, which
directly execute in the OS. In cases of indirect jumps, an SMT solver resolves
the path condition and testing determines the next location. After native
code execution, the control returns to Java, integrating the new CFG of the
native code into the CFG of the bytecode.

4.3 Taint analysis module

Taint analysis is a program analysis method that examines the flow of infor-
mation between specific source and destination points within a program. In
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Figure 4.4: An overview of HybridSE system

security, especially in the mobile software domain, taint analysis is an effec-
tive tool to uncover potential malicious behaviors within mobile applications.
It helps determine whether these apps inadvertently expose user-sensitive in-
formation to unauthorized parties.

We’ve integrated a taint module atop the DSE engine to capitalize on the
cross-environment analysis capabilities offered by HybridSE.

4.3.1 How HybridSE detects data leakage?

Example 4.3.1. The native leak array.apk sample below is modified from
the NativeDroidBench benchmark to illustrate a data leak originating from
Android code, and its destination located within ARM native code.

1 p u b l i c s t a t i c n a t i v e vo i d send( S t r i n g ime i ) ;
2 p r i v a t e vo i d leakImei() {
3 S t r i n g [ ] s t r A r r = new S t r i n g [ 1 0 ] ;
4 TelephonyManager t e l = ge tSy s t emSe r v i c e ( ”phone” ) ;
5 s t r A r r [ 1 ] = t e l . getDeviceId() ; //strArr[1] is tainted
6 //SOURCE: TelephonyManager . g e tDe v i c e I d ( )
7 send(strArr);
8 }

Listing 4.1: Source in Android code
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1 vo i d Java native leak MainActivity send
2 (JNIEnv ∗ j n iEnv , jobject t h i s , jobjectArray s t r A r r ) {
3

4 j o b j e c t da t a c l e an , d a t a ime i ;
5 d a t a c l e a n = jniEnv.GetObjectArrayElement( jn iEnv , s t rA r r , 0 ) ;
6 // d a t a c l e a n = s t r A r r [ 0 ]
7 da t a ime i = jniEnv.GetObjectArrayElement( jn iEnv , s t rA r r , 1 ) ;
8 // da t a ime i = s t r A r r [ 1 ]
9 android log print(4 ,&10648 ,&10650 , d a t a ime i ) ;

10 //SINK: android log print()
11 r e t u r n ; }

Listing 4.2: Sink in native code

After the Activity starts, it eventually invokes the leak imei()method,
which retrieves the IMEI device number through the API call getDevi-
ceId() and stores it in an array of Strings. The taint source is recognized
as getDeviceId:()Ljava/lang/String;. The array that contains the
IMEI string is then passed through the native function send(), which in
this case, is mapped to Java native leak MainActivity send() in
native leak.so.

Therefore, it is desirable for a taint analysis tool capable of traversing
both bytecode and native code. Presently, existing taint analysis tools for
Android that address both bytecode and native code such as JN-SAF[8] and
JuCify[9] employ static methods, utilizing Class Hierarchy Analysis (CHA)
for Java bytecode and Symbolic execution for native code. Despite the speed
and efficiency of static approaches, they are susceptible to over-tainting and
lack resilience against obfuscation techniques that may be present in either
bytecode or native code. In example 4.3.1, if instead of data imei, data -
clean is published through the sink function at Line 9, static taint tools
will suffer from over-tainting and report false positive data leak.

To produce precise and complete control and data flow of Android native
code, we propose a DSE framework called HybridSE that combines existing
DSE tools of bytecode and native code. In a concrete execution, Java Native
Interface (JNI) bridges the gap between Java byte code and the native code
(often compiled from C/C++). Following the JNI mechanism, HybridSE
implements the interface to establish connections between SPF for Dalvik/-
Java bytecode and corana/api for ARM 32-bit binary code with external
call handling.

We demonstrate how HybridSE will apply taint analysis on Example
4.3.1 where the strArr is passed from bytecode to native code.

At the point of JNI call invocation, the initial default parameter is the
JNIEnv structure containing all the JNI function pointers, with the second
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Figure 4.5: How environment is transfer in Example 4.3.1

parameter being the this pointer indicating the current method. The func-
tion arguments are sequentially placed into the later slots in JVMNativeS-
tackFrame. For send() method invocation (Listing 4.2), the parameters
are put into JVMNativeStackFrame as Figure 4.5, then the execution
code is transited from Java bytecode to 32-bit ARM code.

Figure 4.3.1-right shows the data leak detected by HybridSE. For each
instruction, the ARM taint rule is applied step-by-step. We discuss the
details of the propagation and sanitizing rule in Section 4.3.3. We identify the
API call android log print as a sink in the native code. At 0x10652,
the 4th parameter is tainted, thus, concluding there is a data leak from source
to sink. In this case, the source is located in Android code and the sink is in
native library code.

4.3.2 Taint analysis scenarios

A scenario of a taint analysis is a pair of a source method and a sink method,
where the former retrieves data considered private (e.g., getDeviceId())
and the latter transmits data out of the application. A taint analysis detects
possible dataflow paths of data leakage, i.e., from a source to a sink.

Table 4.1 shows an example list of scenarios, which is inspired by the
list in Argus-SAF and expanded for native code. For instance, the API
call fopen("/proc/version", "rb") is often used to read Linux ker-
nel version) as a source method, which was missing in Argus-SAF. On the
contrary, Handler.obtainMessage isn’t included in the list of sources
because it generates a new empty message instance, rather than retrieving a
message from the Android handler’s message queue [45]. Sources and sinks
in Java are API invocation statements, e.g., invokevirtual getDe-
viceID(), invokevirtual httpPost.getEntity(). Sources and
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sinks in native code have two possibilities:

• Library function of OS system (e.g., open ’proc’, getpid(), an-
droid log print())

• JNI callback, which enables invoking Java methods from native code.
Listing 4.3) and Fig. 4.6 illustrates a potential data leak scenario in-
volving JNI callback.

1 0 x106cc adr r2 , [s getDeviceId 00010754]
2 0 x106ce adr r3 , [s ()Ljava/lang/String 00010760]
3 0x6d0 l d r r6 , [ env ,#0x84 ]
4 0x6d4 mov r0 , r4
5 0x6d6 b l x r6 <JNIEnv getMethodID ( )>
6 0x6d8 mov r2 , r0
7 0x6da mov r0 , r4

8 0 x6e6 b.w 0x115b0 JNIEnv callObjectMethod()

9 ;SOURCE: C a l l g e tDe v i c e I d ( ) j a v a / l ang / S t r i n g

Listing 4.3: Java method is invoked from native code in native source.apk of
Dataset 1 - Chapter 7

Figure 4.6: Data leakage scenario of Listing 4.3

In either case, we observe an Android malware dataset (Dataset 2 in Chap-
ter 7), that the most frequently utilized source APIs detect device informa-
tion, e.g., BUILD.model, getDeviceId(), getLine1Number(). The
predominant sinks are httpPost-related APIs or print statements.

4.3.3 Cross-environment taint propagation

A taint analysis module in HybridSE has three steps.

1. Identify a source and give a taint tag on it. (inject())

2. Propagate taint. (propagate())
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Sources Details

BUILD. Model and version
getDeviceId() IMEI
getLine1Number() Phone number
getLocation() Location, country
getOutputStream() HTTP connection
open ’/proc’ Kernel version

Sinks

Log output to console
HttpPost.setEntity() send to server
write() write to file
SharedPreferences save to object
Messenger send text message
android log printf, sprintf printing syscall

Table 4.1: Captured sources and sinks from detected data leaks

3. Recognize a sink and check it for data leaks. (sink())

The propagation for Java assignments, method calls, and returns are
DEF-USE chain manners of classical dataflow analyses. The propagation
propagate() assigns a new taint tag for a variable when one of the param-
eters is tainted, and the taint tag is propagated until the value is redefined.

The concern is on the data type structures and the object structures.
Each primitive type variable, string object, and class object are consid-
ered as a single taintable object. The compound data, e.g., field assign-
ments and arrays, keep the taint tag of each element individually.

In 32-bit ARM native code, memory is structured in sets of 32-length
words. For native code, instead of monitoring a taint tag for each bit, Hy-
bridSE assesses the taint tag for every 32-bit vector, referred to as a word.

When across environments, taint tags are seamlessly propagated during
environment transitions. That is, if a value is copied between two envi-
ronments, its associated taint tag is also copied according to the data type
conversion.

Bytecode call to native code: a white box transfer

We explore Java calls to native code located in the .so library. HybridSE
adheres to the calling convention from stack-based Java to register-based
ARM. At the native code invocation, the JVMNativeStackFrame objects
are transferred to ARM registers as 32-bit vectors. In the case of arrays,
following the concrete execution, both the Java and native sides are aware
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of the array size. Therefore, the taint tag can be mapped and accessed using
an index. On the other hand, a nested data structure, e.g., field, is difficult
to determine the size, and the entire object is regarded as tainted.

Native code call to bytecode: a black box transfer

JNI provides a standard interface to Java functions (≈ 230 interfaces)4. JNI
allows ”callback” operations that enable Java method invocation from the
native code by the method name and the signature (Listing 4.4). HybridSE
treats a JNI call to Java as a black-box call such that if any of the arguments
of the call is tainted, the return is treated as tainted. In the Listing 4.4, the
methodID at Line 1 are gotten from the source API getDeviceID, and
methodID is tainted. Hence, the return value of CallObjectMethod is
tainted.

1 jstring Java getImei(JNIEnv* env,jobject this,jobject* context) {
2 . . .
3 methodID1=env.GetMethodID( env , p Var1 , ” g e tSy s t emSe r v i c e ” , ” ( L j ava

/ l ang / S t r i n g ; ) L j ava / l ang /Object ; ” ) ;
4

5 cls=env.FindClass(env,” and ro i d / t e l e phony /TelephonyManager ” ) ;
6 methodID=env.GetMethodID( env , c l s , ” g e tDe v i c e I d ” , ” ( ) L j ava / l ang /

S t r i n g ; ” ) ;
7

8 return JNIEnv::CallObjectMethod(env, serviceObj, methodID);

Listing 4.4: JNI callback code in C

Not all JNI callbacks are over-approximated. For JNI callbacks that
manipulate Java objects, strings, and arrays, we manually prepare stubs
instead of using over-approximation. For instance, consider the following
call:

1 jobject GetObjectArrayElement(JNIEnv *env, jobject array,int
index); // Retu rns a r r a y [ i nd ex ]

This call returns the element of the array at index.

4.4 Discussion

Currently, we set several assumptions to combine SPF and corana/api.
First, we capture the effect of the native function call via its return values
without tracking the side effect. This is quite reasonable since different plat-
forms are not easy to pass the side effects. Second, we handle a subset of

4docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/functions.html
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types (e.g., primitive types and the string, arrays) and operations (e.g., bv-
sub, bvadd, bvslt, and bvuge) for Bit-Vector operations for the target
of the LIA to Bit-Vector conversion).
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Chapter 5

Design and Implementation of
HybridSE

This chapter details the implementation of HybridSE, which consists of an
extended corana with a taint module for ARM binaries, an adapted SPF
with a taint module for Java bytecode, and a communication connector.

5.1 HybridSE architecture

We implement a cross-environment analysis tool HybridSE1 for APK files
(Fig. 5.1). Its preliminary goal is to generate control flow graphs (CFGs)
and trace data across Java bytecode and native library calls.

Figure 5.1: HybridSE architecture

1https://github.com/vananhnt/HybridSE.git
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HybridSE only requires the APK file as input. The outputs include
detected data leaks, the generated control flow graph (CFG), and a detailed
execution trace. The system is designed for comprehensive analysis of both
Java bytecode and ARM native code. On the bytecode side, the Symbolic
PathFinder (SPF) Virtual Machine executes Java bytecode.

The VM Listener in SPF listens for events. For HybridSE, we have
implemented a specific SPF listener, consisting of 1200 lines of code, to
detect native call invocations and transfer execution to the native side.

On the native side, the corana/api environment, featuring a Dynamic
Symbolic Execution (DSE) Engine and API stubs, handles the symbolic exe-
cution of native code. Taint analysis modules on both sides track the flow of
sensitive information. The Java-Native Communicator serves as the bridge
between the bytecode side and the native side. When the VM Listener en-
counters a native call, it uses this communicator to relay the information to
corana/api to start the native analysis.

Example 5.1.1. We illustrate an example featuring the native leak.apk sam-
ple from the NativeDroidBench benchmark. The source code of this program,
shown in Figure 5.2, is spread across two environments: Java code and native
code.

Figure 5.2: Source code of the native leak.apk example

IMEI (International Mobile Equipment Identity) is a unique identifier
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assigned to a specific mobile device. Since the IMEI can be used for tracking
devices through networks, targeting by scammers and thieves, or adding
devices to blacklists, its leakage poses significant security and privacy risks.

The application starts with the Java function leakImei(). After obtaining
the IMEI number, it sends the IMEI at Line 6 in the Java code. The send()
function, a native function, is mapped to Java native leak MainActivity send
in the native code via a JNI call. HybridSE captures this execution flow
with a cross-environment CFG. The results are shown in Figure 5.3 and the
taint report in Listing 5.1.

1 ENTRY POINT : Ma i nAc t i v i t y onC r e a t e
2 Leaks : 0
3 ENTRY POINT : Ma i nAc t i v i t y o nRequ e s tP e rm i s s i o n sR e s u l t
4 LOC 42 SOURCE and ro i d . t e l e phony . TelephonyManager
5 LOC 42 SOURCE ge tDe v i c e I d ( ) L j ava / l ang / S t r i n g ;
6 LOC 64e SINK : a n d r o i d l o g p r i n t
7 Leaks : 1

Listing 5.1: Taint report generated by HybridSE

5.2 CORANA extension

The core components of corana [20] include a step-wise Binary Parser that
parses binaries using Capstone, and an Emulator module that implements
the semantics of ARM instructions. The original input for corana is a
standalone ARM binary file. To adapt corana for analyzing shared object
libraries (.so files), we need to use Ghidra to retrieve the symbol table, which
provides the list of native functions and their locations within the code.
The corana/api extension builds on these core components and includes
a specialized module for handling API calls, along with a taint engine that
enables granular tracking of data flows (Figure 5.4).

corana/api receives a .so file, and Ghidra is used to find information on
functions, identifying the start of the JNI method in the binary code. The
binary code of the JNI function is then parsed by Capstone into disassembled
code.

The dynamic symbolic execution begins with an initial environment and
path configuration, specifying the starting state for the analysis. Each dis-
assembled instruction is executed by the Emulator, which uses API Stubs to
handle external calls and the Taint Engine to track data flow. Finally, the
output reflects the environment and path after the analysis, including the
results from the taint analysis.
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Figure 5.3: Cross-environment CFG snippet generated by HybridSE for
native leak.apk (blue = bytecode, red = ARM code)
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Figure 5.4: corana/api extension with a taint engine

In the next sections, we will explain how we added system call handling
through the integration of API Stubs and introduced taint-related variables
for data tracking.

5.2.1 API Stubs of system calls

The API Stub is an under-approximation of a system function call that con-
cretizes call parameters and executes them in the operating system. Java
Native Access (JNA) enables Java programs to call native functions if the
function declarations are provided. Thus, creating an API Stub requires
accurate library function information. In [19], API elements like function
names, parameter fields, and return types were extracted from Linux func-
tion declarations. Based on the template in Listing 5.2, a total of 1,129 API
Stubs have been generated to manage external calls in ARM binary code.

1 p u b l i c s t a t i c vo i d $ funct ionName ( Envi ronment env ) {
2 // 1 : Get o r i g i n a l pa ramete r s from r e g i s t e r s
3 BitVec t0 = env . r e g i s t e r . ge t ( ’ 0 ’ ) ;
4 BitVec t1 = env . r e g i s t e r . ge t ( ’ 1 ’ ) ;
5 // 2 : i n i t i a l i z e i n pu t pa ramete r s
6 $ type0 param0 = new $ type0 ( ) ;
7 $ type1 param1 = new $ type1 ( ) ;
8 // 3 : r ead paramete r v a l u e s from memory
9 param0 = env . memory . $getMemoryValue ( t0 ) ;

10 param1 = env . memory . $getMemoryValue ( t1 ) ;
11 // 4 : spawn the API c a l l
12 $ r e t u r n t y p e r e t = CL ib r a r y . $ funct ionName ( param0 , param1 , . . . ) ;
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13 // 5 : update r e g i s t e r s and memory
14 env . r e g i s t e r . s e t ( ’ 0 ’ , new BitVec ( r e t ) ) ;
15 env . memory . $setMemoryValue ( t0 , param0 ) ;
16 env . memory . $setMemoryValue ( t1 , param1 ) ;
17 }

Listing 5.2: Template for API Stubs

Example 5.2.1. Fig. 5.5 illustrates the concretization of the gettimeofday
call and the environment update according to the ARM calling convention.
First, the information on the C library function

int gettimeofday(struct timeval *tv, struct timezone *tz);

is extracted from Linux specifications as

Function name ($functionName) gettimeofday
Parameter type ($type0, $type1) struct timeval struct timezone)
Return type ($return type) int

Then the call is executed, updating the environment as shown in Figure
5.5.

Figure 5.5: Example of a concretized external call in the ARM environment

5.2.2 Native taint engine

Figure 5.6 shows the core components that define the ARM architect in the
original corana implement, which are the Environment, BitVec, and Emu-
lator. In corana, an environment is defined to mirror the ARM instruction
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Figure 5.6: Core classes regarding environment definition in CORANA.
Each BitVec object represents a 32-bit memory word during execution.

set architecture, encompassing four components: Registers, Memory, Stack,
and Flags. Each 32-bit memory unit in concrete ARM execution is repre-
sented by a BitVec class in corana. This class features a symbolic string
that represents data, which can be concrete hexadecimal, a symbolic vari-
able, or an expression of symbolic variables. Additionally, a BitVec object
includes a 32-length array composed of 0-1 bits when it represents concrete
data. Built upon these foundational elements—Environment and BitVec—is
the Emulator class, which implements the operational semantics of ARM
instructions.

All data within the DSE engine of corana is represented by BitVec ob-
jects. We leverage the well-defined operational semantics of DSE for ARM,
which operates on BitVec objects. Adding a taint tracking variable to each
BitVec object, each representing a 32-bit memory unit in the execution, al-
lows us to track data flow throughout the execution effortlessly.

In the Emulator, each instruction’s semantics operate on BitVec objects.
We have integrated taint rules into the Emulator to modify the taint flag of
the operated BitVec objects. After each instruction execution, the environ-
ment, path condition, and taint tags are concurrently updated.

Example 5.2.2. Continuing Example 5.1.1. Figure 5.7 shows how data is
tracked in ARM native. Figure 5.7 - a is the dissembler code of the native
part in native leak.apk in Figure 5.2. At the start of the native function,
a java.lang.String representing device ID is passed into the native function.
Consequently, the register R2 is translated into the hexadecimal value of 189,
which is #x00000389, and the string is stored in memory at #x00000389

46



(Figure 5.7 - b).
The memory slot and registers are tainted and sanitized at lines a-7, a-9,

and a-10, depending on the operation. At line a-7, R1 is assigned the value
in R2, carrying the taint tag from R2 into R1, and similarly at line a-10. At
line a-13, R2 is assigned a fresh value #0xc, thus clearing the taint tag in
R2.

Figure 5.7: Dissamble code of native leak.apk and tracked tainted data
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5.3 SPF extension

5.3.1 Bytecode taint engine

Both the native taint engine and the bytecode side need to implement three
operations: inject(), propagate(), and sink(). The inject() and sink() func-
tions are implemented based on how to recognize source and sink APIs as
discussed in 4.3.2.

In SPF, ElementInfo is the most crucial class for representing the state
of an object or a class. It holds comprehensive information about the object
throughout execution, including fields, references, and other attributes.

Figure 5.8: ElementInfo object of IMEI String(@189) in Example 5.1.1

By adding taint tracking as an attribute in the ElementInfo class, taint
tags are updated with each operation performed on the ElementInfo object.
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5.3.2 Cross-environment communicator

In SPF, listeners provide access to information about the Virtual Machine
(VM) and current thread when specific events occur, such as executeInstruc-
tion (before instruction execution) and instructionExecuted (after instruction
execution). We utilize this feature to create the cross-environment commu-
nicator as an SPF Listener. Our custom listener intercepts and retrieves
current SPF information during native call invocations. The native call is
processed by corana/api, and once the analysis is complete, the results are
sent back to the listener, allowing SPF to continue its analysis. As discussed
in Chapter 3, connecting different DSE tools requires establishing interfaces
for communication between environments, specifically between ARM and
Java.

Transfer environment

To facilitate environment transfers, the calling conventions of both environ-
ments must be adhered to.

• ARM calling convention: Register R0-R3 are used to pass the first 4
parameters, while the rest are put on the stack. Return value or pointer
of return memory are placed in R0.

• Java calling convention: In Java, objects reside in the Heap, while
method parameters use the Stack. Stack variables can hold either
primitive values or references to Heap objects. A stack frame with
method parameters is allocated on the Stack when a method is called.
The NativeStackFrame is a special case for JNI method calls, where
the first parameter is a JNIEnv pointer and the second is this pointer.

Based on this convention, Algorithm 2 outlines the process of transferring
Java parameters to the ARM environment during a native method invoca-
tion. The translation is divided into three types of Java parameters: Arrays,
References, and Primitives. For Array and Reference parameters, each item
or field is translated, a pointer is placed into ARM registers, and corre-
sponding memory in the ARM environment is created. For Primitives, Java
primitive values from the Stack are directly translated and placed into ARM
registers.

The reverse direction is simpler. After completing the native execution
(i.e., executing corana/api) and retrieving the return value or memory
from register R0 in ARM execution, we apply the BitVec2LIA operation
to obtain the return value in Java.
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Figure 5.9 provides an example of translating from the Native Method
Stack in SPF to the Registers in the ARM environment in corana/api,
demonstrating the cases of Integer and String.

Figure 5.9: Example of a inter-environment translation between SPF and
corana/api, back and forth

Combining path condition

The communicator initializes the path condition as ωBV = true at the call.
At the return to SPF, the difference ω′

BV computed by corana/api is con-
verted to ω′

LIA = fBV 2LIA(ω
′
BV ) from Bit-Vector to LIA. Then, the postcon-

dition α′
LIA is the conjunction of the precondition αLIA and ω′

LIA.
The LIA from/to Bit-Vector conversion is based on Java.util.BitSet

library. For the conversion of linear expressions, common operations (e.g.,
bvsub, bvadd, bvslt, and bvuge) are supported.

5.4 Discussion

One important consideration when implementing DSE for Android with the
target of malware applications is ensuring the safety of the DSE implemen-
tation.

HybridSE operates in a Linux environment that is unable to perform
concrete execution of Android applications. This setup helps to prevent an
unauthorized automatic start of the Android application.

The DSE has three levels of operation:
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• Symbolic Execution Level: At this level, symbolic operations are con-
ducted on the emulator with semantics prepared for safe execution.
This level is considered safe because it operates within a controlled
environment.

• Java Virtual Machine (JVM) Level: Here, Java library calls are handled
by SPF, which operates within a separate virtual machine compared to
the system JVM. This separation ensures that Java system calls cannot
directly access the system JVM, adding an extra layer of safety.

• System Call Level: At the lowest level, system calls from native code
are concretized and executed as API stubs in the Linux OS system.
While API stubs allow DSE to directly invoke system calls and retrieve
return values, they can introduce potential security risks. Improper
management of interactions with the underlying system might expose
vulnerabilities. For example, malware could exploit this by injecting
malicious payloads or commands through command string injection,
or by repeatedly executing attack commands, potentially leading to a
denial of service.

To address this problem, HybridSE prohibits API stubs from allo-
cating new memory regions in the OS system. The DSE process runs
as a user-level process without administrative privileges. Additionally,
HybridSE is executed through a network-isolated virtual machine to
add an extra layer of protection.
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Algorithm 2 Pass arguments from JNI call in Java to ARM native

Input: a JVMInstruction SPF.jniMethod, and the current environment of
Java thread SPF.currentThread

Output: an ARM Environment CORANA.nativeEnv
1: Initialize reg counter = 2 ▷ Starting from register R2 in ARM
2: jargs = jniMethod.getArguments()
3: for i in range(jargs.length()) do
4: if jargs[i] is T ARRAY then ▷ Convert Java array to ARM array
5: Initialize nArr
6: for each jitem in jargs[i].getFields() do
7: n item = LIA2BitVec(jitem)
8: nArr.append(n item)
9: end for

10: Compute offset
11: Put offset in nativeEnv.register [reg counter]
12: Allocate nArr in nativeEnv.memory.at(offset)
13: else if jargs[i] is T REFERENCE then ▷ Convert Java Reference

to ARM memory
14: Compute offset
15: Put offset in nativeEnv.register [reg counter]
16: Allocate LIA2BitVec(jargs[i]) in nativeEnv.memory.at(offset)
17: else ▷ Convert Java primitive to ARM BitVec
18: native value = LIA2BitVec(jargs[i])
19: if reg counter < 4 then
20: Set native value in nativeEnv.register
21: else
22: Push native value onto nativeEnv.stacks
23: end if
24: end if
25: end for
26: return nativeEnv
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Chapter 6

Evaluation on CFG generation
of HybridSE

In this section, we evaluate HybridSE’s ability to generate unified CFGs
for both Java and native code parts. This allows us to demonstrate trends
in native code utilization and obfuscation within Android malware over the
years. We compared HybridSE with FlowDroid but encountered difficulties
running JuCify properly. Additionally, these tools generate call graphs rather
than control flow graphs, limiting the scope of comparison.

To evaluate the quality of the graphs generated by HybridSE and com-
pare them with those from FlowDroid, we conducted graph similarity analysis
for two malware analysis tasks: classifying malware families and identifying
Android packers. Our findings indicate that the HybridSE’s CFGs pro-
vide more structure, enabling a more accurate representation of application
behavior.

The experiment in Chapter 6 and Chapter 7 are performed in the same
testbed. The testbed consists of an AMD EPYC 87, 2.6 GHz, 512 GB of
RAM, running on a Linux Ubuntu SMP 5.4.0-66-generic computer. Our
preprocessing tools are apktool 2.4 and dex2jar 0.9.5. HybridSE utilizes a
customized version of SPF running on JPF for Java 8.

6.1 Datasets

We conduct experiments on two sets below.
Dataset 1. Android malware datasets: DREBIN1, AMD2, and An-

1sec.tu-bs.de/danarp/drebin/download.html
2unb.ca/cic/datasets/maldroid-2020.html
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droZoo3. DREBIN and AMD are malware datasets released in 2014 and
2017, respectively. The former consists of 5,560 malware samples (collected
between August 2010 and October 2012) in 179 malware families. The lat-
ter consists of 24,553 malware samples (collected from 2010 to 2016) in 71
malware families.

AndroZoo, launched in 2016, is a repository of Android applications with
continuously updated samples. Initially hosting over 3 million apps, it has
expanded to over 15 million by mid-2021. AndroZoo draws its content from
Google Play, third-party platforms such as the Chinese app markets, and
VirusShare. For analyzing native code usage in Android malware, 15,000
malicious apps were selected based on the criteria of being flagged by at
least ten antivirus tools.

Dataset 2. Sample packed by Android packers (has ground
truth). In 2018, PackerGrind [1] assembled open-source apps sourced from
F-Droid and subsequently submitted them to six online commercial packing
services (namely, Qihoo, Ali, Bangcle, Tencent, Baidu, and Ijiami). As a
result, the dataset contains the ground truth regarding the utilized packer.
We retrieve 298 samples from this dataset.

6.2 Survey on malware CFGs

6.2.1 Native code and obfuscation usage in Android/APK

We investigate how widely is the native code utilized in Android malware and
examine the generation of CFGs by HybridSE on Dataset 2. Native code
usage is checked by two steps: (1) At least one .so file in /lib or /assets folder
and (2) Java native methods are declared. The number of samples meeting
both criteria is reported in Table 6.1 under the category ”#w/Native”. In
the remainder of this study, we concentrate on the samples #w/Native to
generate CFGs using HybridSE.

Table 6.1: Native code usage over the years
Year # down-loaded # w/Native*

DREBIN 2010-2012 5560 960 (17.26%)

AMD 2010-2016 24553 850 (3.61%)
AndroZoo 2017 5000 2856 (57.12%)

2018 5000 3651 (73%)
2019 5000 4259 (85.18%)
2020-2022 5000 3774 (75.48%)

3androzoo.uni.lu
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As shown in Table 6.1, the usage of native libraries is notably high across
the malware datasets, with a noticeable increase observed from the period
spanning 2019 to 2022. .

Figure 6.1: Distribution on Android native code usages

We also observe a significant amount of failures and incomplete CFG
generation. summerized in Fig. 6.2 and Table 6.2.

We list the main reasons that limit HybridSE (Table 6.2) :

• Preprocessing failure (apktool, dex2jar or AndroidManifest.xml
parsing emits error).

In preprocessing, apktool decodes apk files into AnddroidManifest.xml,
classes.dex, and others. dex2jar (v0.9.5) converts classes.dex
into JVM bytecode. We observed a high level of translation failure that
was collected before 2018.

• Multi-dex. Multi-dex (multiple dex files) is supported for applica-
tions with more than 64,000 methods. This leads to missing application
content in subsequence classes2.dex, classes3.dex,... class-
esN.dex by dex2jar. Consequently, missing certain parts of entries
leads to incomplete CFG construction by HybridSE.

• Packing (Stub application). Certain numbers of Android APK files
are missing the original payload at the entry points specified in the An-
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Figure 6.2: Distribution of failures and obfuscation

droidManifest.xml in their classes.dex. This absence suggests that the
original payload has been concealed, which is typically done by pack-
ers [46]. We observe a notable increase in the presence of Android
malware exhibiting packing techniques, particularly starting in 2018,
and rising exponentially to more than 60% in the 2019 to 2022 pe-
riod. When executed, these packed malware instances often initiate
the process at a wrapper Stub application, and from Java, the ap-
plication proceeds by calling AttachBaseContext() before loading
into native code. The native library is concealed within the /assets
directory rather than the default /lib. Native files may either be fully
encrypted or encrypted partially. To generate full CFG of the payload
for a packed application (i.e., unpacking packed Android application),
dynamic loading is required, which is currently not supported by Hy-
bridSE.

Limitation. Our current approach utilizes the same preprocessing tools
as several other static analysis tools, including apktool and dex2jar. This
makes our analysis inherit the weaknesses associated with these tools. In the
presence of obfuscation techniques like multi-dex and packed apps, additional
capabilities are required to generate the full payload of Android applications.
This includes parsing multiple dex files and enabling dynamic loading.
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Table 6.2: Result on CFG types generated by HybridSE
# APK
w/Native

# dex2jar
failure

# generated
CFG

Among generated CFG

Un-
protected

Stub
Application

Multi
-dex

DREBIN 960 285 (29.68%) 675 (70.32%) 675 0 0
AMD 850 179 (21.05%) 671 (78.96%) 661 0 10
2017 2856 1450 (50.77%) 1406 (49.23%) 644 326 436
2018 3651 1478 (40.48%) 2137 (59.52%) 852 745 540
2019 4259 1120 (26.29%) 3193 (73.71%) 230 2643 321
2020
-2022

3774 633 (16.77%) 3141 (83.23%) 204 2668 269

Conclusion : Native code is widely utilized both for application func-
tionalities and for packing Android applications. HybridSE showcases
the ability to generate CFGs (Control Flow Graphs) from these two uses
of Android native code, provided that there is successful and complete
translation by dex2jar.

6.2.2 HybridSE performance when analyzing cross-environment
Android applications

The runtime performance of HybridSE with respect to the CFG sizes on
Dataset 2 are summarized in Table 6.3 and 6.4. The average running time is
602.27 seconds; the minimum is 81.64 seconds, whereas the maximum is 96
minutes.

Table 6.3: Relation between graph size and generation time
CFG size Bytecode Native Time (s)

# Nodes # Edges # Nodes # Edges

Average 3065 4428 268 283 602.27

Median
(±SD)

783
(±6504)

1148
(±9258)

172
(±276)

173
(±294)

244.89
(±816.65)

Largest 37166 48997 978 1054 5794.73

Smallest 618 913 124 132 81.64

We observe the average number of nodes and edges for CFGs in two sce-
narios: the whole CFG of an unprotected apk file, and the stub applications
in which HybridSE generates CFGs of only the unpacking stub of a packed
APK file.
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Table 6.4: Average node and edge counts from HybridSE analyzing AndroZoo
malware with native code

Median Bytecode Native Time (s)
(± SD) # Nodes # Edges # Nodes # Edges

Un-
protected

4654
(±9777)

6588
(±13873)

26
(±238)

25
(±250)

1040.12
(±1171.58)

Stub
application

783
(±34)

1148
(±51)

292
(±267)

324
(±286)

214.90
(±253.24)

Conclusion : HybridSE could be a good candidate for cross-environment
application analyses, even DSE is still time-costly.

6.2.3 What can be shown by HybridSE’s CFG?

We manually observed how the unified CFG can reveal malware behavior
intentionally concealed within the native code part. The CFG generated from

Figure 6.3: Deadcode detected in the native function of towelroot.apk

the Towelroot4 shows sequences of pthread library calls manipulating

4gist.github.com/vananhnt/9c9fe78d7a74612d3b5e5363cb76c536
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the mutex queue. This detected sequence is matched with the CVE-2014-
315311 vulnerability5 reported in old Linux kernels to root Android devices,
which confuses the waiter structure to give the privilege of control to the
user. We also can confirm that Towelroot uses an obfuscator such as O-
LLVM in the native binary code to add opaque predicates to insert dead
code as additional conditional branches. The CFG shows native function
java ∗ ∗ ∗ KernelVersion() introduces multiple opaque predicates at 0x240c,
0x2440, and 0x2464. HybridSE successfully solves the opaque predicates and
identifies 12.27% of instructions in the native functions are dead code.

The Android malware Lotoor (RootKing) hides the IP address of the ex-
ternal server in the native code. The malware encapsulates its URL within
native code, and upon execution, it reads the URL data by invoking the na-
tive function RootUtil.uu(). HybridSE can retrieve the server address
loaded from the data at position #x000018d0 and passed to the function
iks base64 decode().

Conclusion : HybridSE can efficiently generate CFGs that represent
program behavior, even in the presence of control flow obfuscation. In
the realm of Android applications, HybridSE’s CFG can offer valu-
able insights into the inter-language data flow and behavior exhibited
by Android malware within native code, aiding in the identification of
potential security threats.

6.3 Classification using Graph kernel for CFGs

6.3.1 Feature extraction from HybridSE’s CFGs

Definition 6.3.1. Given a graph G = (V,E), the process of graph ab-
straction using node simplification involves transforming G into a new graph
G′ = (V ′, E ′). The transformation can be described by a mapping function
ϕ such that:

ϕ : V → V ′

E ′ = {(ϕ(u), ϕ(v)) | (u, v) ∈ E, ϕ(u) ̸= ϕ(v)}

Definition 6.3.2. Abstracted Control Flow Graph ACFG.
Given a CFG of HybridSEG = (V,E), where V = {< Address, Instruction >},
with

Instruction = (Opcode,Operands,Address)

5https://nvd.nist.gov/vuln/detail/CVE-2014-3153
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We define the ACFG as G′ = (V ′, E ′), where two transformation function
ϕ1 : V → V ′ and ϕ2 : V

′ → V ′′ are applied.

• ϕ1 (Abstraction) simplifies a node label from the tuple (Address, In-
struction) into the Address Opcode format.

• ϕ2 (Relabeling) relabels the nodes to integers starting from 0.

Figure 6.4: Classification workflow

HybridSE’s output includes all cross-environment CFGs generated for
each entry point of an APK file. To analyze the effects of different APK
components, we categorize CFGs into three types: Bytecode graph, Native
graph, and Union graph. The Bytecode graph comprises all nodes with Java
bytecode instructions from the Android component. Native graphs include
nodes with ARM assembly instructions from the Native component. The
Union graph is a cross-environment CFG that incorporates both types of
instructions.

Graph kernels are methods that measure graph similarity and compute
graph embedding vectors for machine learning algorithms. The Weisfeiler-
Lehman subgraph kernel [47], for instance, iteratively refines node labels
based on the neighborhood of each node to produce a graph feature vector. To
represent graph structures as feature vectors for classification and clustering
tasks, we use Graph2Vec.
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In graph analysis, we extract two key pieces of information from graphs:
the graph structure itself and textual labels associated with nodes. Graph
kernels effectively capture the structural aspects of graphs, yet they often
do not account for the textual node information. Specifically within CFGs,
node labels represent sequences of operation codes executed, providing crucial
insights into the execution flow. These labels offer additional context about
how the program unfolds during execution.

6.3.2 Evaluation setup

To evaluate the quality of the graphs generated by HybridSE, we performed
graph similarity analysis for two classification tasks: malware family classi-
fication and Android packer classification. For each task, we proceed by
comparing two criteria: firstly, we assess the structural differences between
the CFG of HybridSE and the call graph produced by FlowDroid. This
evaluation focuses on their classification capabilities solely based on their
respective graph structures (Figure 6.5).

Figure 6.5: Workflow for comparing HybridSE and FlowDroid graphs for
classification

Secondly, we analyze how effectively application characteristics are rep-
resented using graph components. This includes embedding both the graph
structure and node text information. We then benchmark these representa-
tions against feature extraction techniques utilized in state-of-the-art mal-
ware classifiers (Figure 6.4). The summary of the comparison setup and the
dataset used is in Table 6.6, and the evaluation metrics are described in Table
6.5.

We employ the SVM classification provided by scikit-learn with default
settings. We randomly split the training and testing data for each year
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in an 80:20 ratio. For graph embedding, we utilize the Weisfeiler-Lehman
graph kernel implementation available in Graph2Vec6. For node label text
embedding, we use TF-IDF in scikit-learn.

Table 6.5: Metric definition
Metrics Abbreviation Definition

True Positive TP The Positive label samples are predicted as Positive.

True Negative TN The Negative label samples are predicted as Negative.

False Positive FP The Negative label samples are predicted as Positive.
False Negative FN The Positive label samples are predicted as Negative.

Accuracy Acc Acc = TP+TN
TP+FP+TN+FN

Precision P P = TP
TP+FP

Recall R R = TP
TP+FN

F1-score F1 F1 = 2× P×R
P+R

Table 6.6 shows the malware used for evaluation. HybridSE CFGs were
generated from Dataset 1 in Section 6.1, and the AndroZoo dataset includes
a subset of 4,000 samples, with 1,000 CFGs randomly selected from each year
between 2017 and 2020.

Table 6.6: Summary of comparison experiments

Task Tool compared Used features From dataset
Number

of samples

Malware family
classification

FlowDroid Graph embedding
DREBIN 675
AMD 671

Malscan, Drebin
Graph embedding,

Label text
embedding

AndroZoo 4000
DREBIN 675
AMD 671

Packer
identification

FlowDroid Graph embedding PackerGrind 298

Malscan, Drebin
Graph embedding,

Label text embedding
AndroZoo 4000

PackerGrind 298

We conduct the experiment in two phases: First, we evaluate which
graph structure is better suited for graph embedding by comparing the gen-
erated graphs from HybridSE and FlowDroid. Second, we compare Hy-
bridSE feature extraction from CFG with state-of-the-art malware classi-
fiers Malscan and Drebin.

• FlowDroid [4]: A static taint analysis tool that performs taint tracking
through call graph traversal.

6https://karateclub.readthedocs.io/en/latest/
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• Malscan [48]: An Android malware detection tool that extracts call
graphs and presents malware behaviors by sensitive API calls in the
source code. It uses Androguard7 to extract the call graph and identify
sensitive APIs.

• Drebin [49]: An Android malware detection tool that extracts numer-
ous features from an APK (e.g., API calls, native library names, entry
points, ...) and combines them into a unified vector. Drebin also uses
Androguard for static feature extraction. Drebin extracts varying num-
bers of features across different datasets; for example, 49,022 features
for Dataset 2019 and 55,856 features for Dataset 2020.

6.3.3 Classification of Android malware family

Amalware family refers to a group of malware samples or instances that share
common characteristics, such as code structure, behavior, or functionality.
Malware families are often classified based on similarities in their source code,
propagation methods, or the objectives they aim to achieve. We anticipate
that CFGs can reveal the distinctive traits of Android malware.

Labeling dataset

In the malware dataset, DREBIN and AMD already include labels indicating
the malware family each sample belongs to, while the AndroZoo labels are
obtained from VirusTotal reports. We retrieve all family names reported
by different antivirus vendors in AndroZoo and then use majority voting to
determine the final label from all the vendors’ decisions. Listing 6.1 shows
a report from VirusTotal indicating that the family label for the sample is
Artemis.

1 {” i d ” : ”022
cc5061d2ef8805959085739baa991ec7d148baf8532d104ddb894ce3a6787
” ,

2 ” t yp e ” : ” f i l e ” ,
3 ” l a s t a n a l y s i s r e s u l t s ” : {
4 ” F o r t i n e t ” : {
5 ” r e s u l t ” : ” R i skware /PackedTencent ! Andro id ”
6 } ,
7 ”K7GW” : {
8 ” r e s u l t ” : ”Tro jan ( 0054 f14b1 ) ”
9 } ,

10 ”MAX” : {
11 ” r e s u l t ” : ”malware ( a i s c o r e =91)”

7https://androguard.readthedocs.io/

63



12 } ,
13 ”McAfee” : {
14 ” r e s u l t ” : ” Ar temis ! ABB7534326D3”
15 } ,
16 ”McAfee−GW−Ed i t i o n ” : {
17 ” r e s u l t ” : ” Ar temis ”
18 } ,
19 ” Tru s t l o ok ” : {
20 ” r e s u l t ” : ”Andro id .PUA. Gene ra l ”
21 }
22 }}

Listing 6.1: A Virus Total report

With the rapid evolution of Android malware, the distribution of popular
malware families has changed significantly within two years, with Jiagu8—
a tracking and packing service in China—emerging prominently. Figure 6.6
shows the distribution of labels retrieved from VirusTotal on AndroZoo sam-
ples from 2018 and 2020, within 2-year span.

Figure 6.6: Malware label distribution difference between 2018 and 2020

Using identical settings, we assess the classification performance by com-
paring the classification ability based on graph similarity derived from Hy-
bridSE’s CFGs and FlowDroid’s call graphs.

Comparision with FlowDroid

We employ HybridSE and FlowDroid on the DEBIN and AMD. Note that
HybridSE generates CFGs across both bytecode and native code, whereas
FlowDroid’s call graphs contain only bytecode.

Figure 6.7 and Figure 6.8 illustrate the call graph of FlowDroid and the
CFG of HybridSE, respectively, for the same APK file, native leak.apk.

8http://dev.360.cn
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Figure 6.7: Structure of native leak.apk ’s call graph generated by FlowDroid

Figure 6.8: Structure of native leak.apk ’s CFGs generated by HybridSE
(a) Union CFG, (b) Bytecode CFG, (c) Native CFG

From the graphs generated from HybridSE and FlowDroid, we applied graph
kernels to obtain feature vector embeddings and then classified them into
malware families using SVM. The result is reported in Table 6.7. The classi-
fication by HybridSE’s CFG is carried out in three types. The Union CFG
involves a cross-environment Control Flow Graph that traverses both byte-
code and native code. The Native CFG stage focuses solely on generating a
CFG that includes only native code. Finally, the Bytecode CFG is a CFG
that encompasses only bytecode. On the other hand, FlowDroid provides a
callgraph of Java bytecode instead of CFG.

Table 6.7: Comparision with FlowDroid on malware family classification in
DREBIN + AMD dataset

HybridSE+W-L+SVM FlowDroid+W-L+SVM

Union CFG
(Bytecode+Native)

Native
CFG

Bytecode
CFG

Bytecode
CLG

Accuracy 0.907 0.458 0.907 0.5163

Precision 0.873 0.209 0.846 0.2666
Recall 0.907 0.458 0.907 0.5163

F1-score 0.884 0.287 0.871 0.3517
W-L: Weisfeiler-Lehman graph kernel, CFG: Control Flow Graph, CLG: Call Graph

We recorded an accuracy of 90.7% for classifying the DREBIN malware
family using native CFG embedding, compared to 51.65% with FlowDroid
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graph embedding. This result indicates that CFG structures provide a better
representation for graph embedding than call graphs.

Comparision with Malscan and Drebin

We evaluate how features extracted from HybridSE’s CFG (Figure 6.4) com-
pare with those extracted by other methods from APK files in the task of
malware family classification.

In this task, we also report results for three types of graphs inHybridSE:
Union, Bytecode, and Native. For each graph type, we extract three levels
of information for feature vectors:

• -G: Extract only graph kernel embeddings as the feature vector.

• -O: Retain node labels, which contain opcodes of instructions as text,
and create text embeddings from node label information. The feature
vector is the concatenation of graph kernel and node label text embed-
dings.

• -C: Retain class names, which are the entry points of CFG graphs,
and encode class name information as text. The feature vector includes
information from the graph kernel, node labels, and class names.

Table 6.8: Malware family classification compared with state-of-the-art
malware classifier

Dataset 2018 2019 2020 2021 Drebin+AMD
Metric Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Native
-G 0.533 0.511 0.8333 0.7933 0.7351 0.6825 0.7969 0.7306 0.458 0.287
-O 0.6635 0.5832 0.8654 0.8589 0.8344 0.8026 0.8750 0.8438 0.458 0.287
-C 1.000 1.000 1.000 1.000 0.997 0.997 0.893 0.922 0.831 0.773

Byte
-G 0.7404 0.6578 0.8846 0.8361 0.8377 0.7764 0.9219 0.9067 0.907 0.884
-O 0.8077 0.7412 0.8846 0.8361 0.8609 0.8059 0.9375 0.9235 0.907 0.884
-C 1.000 1.000 1.000 1.000 0.997 0.997 0.938 0.924 0.958 0.952

Union
-G 0.7404 0.6606 0.8910 0.8836 0.8411 0.7846 0.9219 0.9077 0.907 0.871
-O 0.8077 0.7412 0.8910 0.8836 0.8576 0.8027 0.9375 0.9235 0.907 0.871
-C 1.000 1.000 1.000 1.000 0.997 0.997 0.914 0.922 0.958 0.942

Malscan 0.9619 0.9607 0.9158 0.9114 0.9339 0.9076 0.9231 0.9080 0.978 0.973
Drebin 1.000 1.000 1.000 1.000 1.000 1.000 0.908 0.922 0.903 0.886

-G: graph kernel, -O: graph kernel + opcode, -C: graph kernel + opcode + class name

1 Accuracy: 0.8974358974358975
2 Precision: 0.8881562881562882
3 Recall: 0.8974358974358975
4 F1-score: 0.8854466611819553
5 precision recall f1-score support
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6

7 artemis 0.13 1.00 0.24 2
8 asmalwad 1.00 1.00 1.00 2
9 custom 1.00 0.60 0.75 5

10 dnotua 0.57 1.00 0.73 12
11 ewind 1.00 1.00 1.00 12
12 generickdz 0.00 0.00 0.00 5
13 hypay 1.00 1.00 1.00 1
14 jiagu 1.00 1.00 1.00 141
15 mobby 1.00 1.00 1.00 2
16 smspay 1.00 1.00 1.00 2
17 tencentprotect 0.00 0.00 0.00 10
18 triada 0.00 0.00 0.00 2
19 wapron 1.00 1.00 1.00 1
20 wroba 0.00 0.00 0.00 3
21

22 accuracy 0.90 200
23 macro avg 0.58 0.64 0.58 200
24 weighted avg 0.89 0.90 0.89 200

Listing 6.2: Detail report of Union-O for 2019

Table 6.3.3 presents the results of HybridSE with different extracted
graph features compared to Malscan and Drebin. Compared to Native and
Bytecode graphs, the Union graph representation yields the best results.
However, using only graph representations, many cases fail to predict the
correct label. For instance, in the classification report of Dataset 2019 for
Union-O, ’generickdz’, ’tencent protect’, and ’wroba’ are not predicted cor-
rectly, likely because HybridSE is unable to produce complete CFGs for
these samples. Both Drebin and Union-C extract class names as a feature,
indicating that typical malware uses specific naming conventions for func-
tions, which provides a clear indicator for malware classifiers, especially in
the period of 2018-2019.

6.3.4 Android packer identification

Labeling dataset

Due to the prevalent issue of plagiarism and repackaging within the Android
ecosystem, developers widely embraced Android app packing techniques as
an effective safeguard for their applications. Generally, Android packers serve
to enhance resilience against static analysis, and dynamic analysis, and deter
reverse engineering.

Identifying the used packer is crucial for understanding obfuscation tech-
niques and gaining insights into malware behavior and unpacking methods.
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Most importantly, knowing the correct packer enables reverse engineers to
apply the appropriate unpacking methods to retrieve the original code for
analysis.

A popular tool for packer identification is APKID9, which utilizes static
analysis methods and signature-based methods to identify packers, obfusca-
tors, and anti-analysis measures present within Android application package
(APK) files, to retrieve the packer names.

1 [+] APKiD 2 . 1 . 5 : : from RedNaga : : rednaga . i o
2 [ ∗ ] 0E996D263 ∗ . apk
3 [ ∗ ] 0E996D263 ∗ . apk ! a s s e t s / g d t p l u g i n / gdtadv2 . j a r ! c l a s s e s . dex
4 |−> ant i vm : Bu i l d . FINGERPRINT check , Bu i l d .MANUFACTURER

check , Bu i l d .MODEL check , Bu i l d .PRODUCT check , p o s s i b l e
Bu i l d . SERIAL check , s u b s c r i b e r ID check

5 |−> ob f u s c a t o r : Obfuscator−LLVM v e r s i o n 9 . x , Obfuscator−LLVM
v e r s i o n unknown ( s t r i n g e n c r y p t i o n )

6 [ ∗ ] 0E996D263 ∗ . apk ! a s s e t s / l i b j i a g u . so
7 — packer : Jiagu

Listing 6.3: Example output of APKID

We use APKID to identify the packer name of packed samples. Samples
with a ”NONE” label, indicating no packer was used, are not considered to
be classified and removed from the dataset.

Comparision with FlowDroid

Table 6.9 presents the number of samples for each packer successfully ana-
lyzed by HybridSE and FlowDroid. Among them, HybridSE encounters
difficulties in generating the CFG for Bangcle and Tencent due to the lack
of support for multidex and limited entry point realization.

Table 6.9: Graph generated from PackerGrind dataset

#Sample
# Partial CFG
by HybridSE

# Callgraph
by FlowDroid

Baidu 63 63 67

ijiami 71 31 71

Bangcle 47 0 47

qihoo (Jiagu) 39 39 39

alibaba 40 40 40

tencent 34 0 34

Total 298 173 298

9https://mas.owasp.org/MASTG/tools/android/MASTG-TOOL-0009/
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While the number of analyzed samples by HybridSE is lower compared
to FlowDroid, the packer identification results using HybridSE’s CFGs are
significantly higher (Table 6.10). Current tools like APKID, which utilize
database-stored signature matching or rule-based detection, often achieve
complete accuracy. However, APKID only offers detection for known packers
with predefined rules, necessitating constant updates to its database and
detection rules. While APKID can correctly identify Android packers with
100 % accuracy on Dataset 2, currently, the rules for APKID are manually
updated with each tool update, making the expansion of rule-based packer
detection tools a labor-intensive task. By leveraging HybridSE and graph
kernel similarity, we can automate the process for detecting packers.

Classify Android packer on 173 samples that HybridSE’s successfully
generated, union graph of HybridSE’s CFG yields the highest accuracy
score at 97.14 % and F1-score at 97.10 %, compared to only 48.89% and
42.21 % achieved by the call graph on FlowDroid.

Table 6.10: Android packer classification on PackerGrind
HybridSE
+W-L+SVM

FlowDroid
+W-L+SVM

Union CFG
Native
CFG

Bytecode
CFG

Bytecode
CLG

Accuracy 96.67 % 50.00 % 86.67 % 48.89 %

Precision 97.11 % 39.36 % 78.41 % 45.34 %
Recall 96.67 % 50.00 % 86.67 % 48.89 %

F1-score 96.55 % 41.77 % 81.57 % 42.21 %
W-L: Weisfeiler-Lehman graph kernel, CFG: Control Flow Graph, CLG: Call Graph

Figure 6.9: Graph similarity of Bytecode CFG by each packer

We observe that Bytecode CFG is better suited for identifying packers
than either native code or cross-environment CFG. This is reasonable con-
sidering the techniques employed by current packers, which typically begin
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the application with stub application bytecode. Referring back to Figure 2.3
in Chapter 2, the stub application DEX contains the packer program, which
is characteristic for each packer. This observation is supported by Figure
6.9. On the other hand, the native .so library contains both the decrypted
stub and the encrypted dex, whose content can vary more across different
applications.

Comparision with Malscan and Drebin

We compare the results of Android packer identification across yearly Andro-
Zoo datasets with Malscan and Drebin in Table 6.11. The results suggest that
packer identification is relatively straightforward for classifiers, especially
when class name information is included, due to the distinct naming conven-
tions used by packers—such as Qihoo’s use of libjiagu.so for native libraries.
Even without class name information, Union-O of HybridSE achieves com-
parable results to Malscan and Drebin, with Union-O in 2019 and Pack-
erGrind outperforming both Malscan and Drebin. This demonstrates that
HybridSE’s CFGs effectively capture the characteristics of packer behavior.

Table 6.11: Android packer identification on yearly AndroZoo dataset
compared with state-of-the-art malware classifier

Dataset 2018 2019 2020 2021 PackerGrind
Metric Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Native
-G 0.421 0.250 0.980 0.972 0.923 0.887 0.980 0.981 0.500 0.418
-O 0.667 0.570 0.987 0.981 0.923 0.887 0.980 0.970 0.517 0.431
-C 1.000 1.000 0.987 0.981 0.923 0.887 0.980 0.970 1.000 1.000

Byte
-G 0.702 0.606 0.953 0.930 0.926 0.890 0.980 0.970 0.867 0.816
-O 0.702 0.612 0.953 0.930 0.926 0.890 0.980 0.970 0.867 0.816
-C 1.000 1.000 0.953 0.930 0.926 0.890 0.980 0.970 1.000 1.000

Union
-G 0.702 0.606 0.987 0.981 0.926 0.890 0.980 0.970 0.967 0.965
-O 0.702 0.612 0.987 0.981 0.926 0.890 0.980 0.970 0.967 0.965
-C 1.000 1.000 0.987 0.981 0.926 0.890 0.980 0.970 1.000 1.000

Malscan 0.961 0.966 0.892 0.901 0.926 0.937 0.989 0.978 0.815 0.867
Drebin 0.922 0.932 0.919 0.930 0.930 0.950 0.934 0.956 0.833 0.834

-G: graph kernel, -O: graph kernel + opcode, -C: graph kernel + opcode + class name

The precision of Android malware classification is subject to decline due
to evolving malware and packing techniques. While model improvement
strategies such as retraining or active learning have been proposed to tackle
these challenges, they require substantial human effort for labeling. To ex-
amine how model performance deteriorates over time, Table 6.3.4 shows pre-
dictions for 2021 samples using models trained on datasets from 2020 and
2019, since the list of the packer labels in AndroZoo datasets for these three
years are similar. We aim to track whether changes in the packing strategies
of the same packer affect the classification model.
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In the 1-year-old and 2-year-old strategies shown in Table 6.3.4, we retain
the entire 2021 dataset as the test data and use models trained on data from
previous years to make predictions. This simulates a scenario where a new
batch of unknown applications needs to be analyzed by the system.

For Drebin, the strategy involves extracting a varying number of features,
which prohibit the detection of new malware when using an older model. If
new samples are added, retraining the model on the entire dataset is nec-
essary. Malscan achieves the highest accuracy and F1 score when training
a model on data from the same year. However, when using a 1-year-old
or 2-year-old model, HybridSE’s graph structures exhibit a slower rate of
decline in accuracy.

Table 6.12: Testing on next year packed sample using the previous dataset

Methods
2021 (same year) 1 year-old model 2 year-old model
F1 Acc F1 Acc F1 Acc

HybridSE-Union-O 0.980 0.970 0.923 0.941 0.911 0.928
HybridSE-Union-C 0.980 0.970 0.983 0.975 0.983 0.975

Malscan 0.989 0.978 0.925 0.931 0.882 0.898
Drebin 0.934 0.956 - - - -

Conclusion : CFGs generated by HybridSE and analyzed using graph
kernels yield comparable results in classification tasks. We conclude that
the CFGs produced by HybridSE can effectively characterize Android
applications.

6.3.5 Discussion

As packers continuously evolve with new or custom packers emerging, de-
tecting these unknown packers is often challenging using rule-based methods
or classification systems based on previous data labels. To address the case
where no labels are provided, we investigate whether graph structures can
provide insights into the Android application dataset.

We compute the pair-wise cosine similarity of cross-environment CFGs
using only graph kernels within the AndroZoo subset described in Table 6.6.
The results, shown in Figure 6.10, clearly indicate that some graphs are
grouped based on their structural similarity.

Using the k-means clustering algorithm with values of k ranging from 2 to
10, we found that k = 9 resulted in the lowest Davies-Bouldin Index (DBI)
score10, indicating better clustering performance. After dividing the dataset

10https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.davies_bouldin_score.html
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Figure 6.10: Heatmap shown the pair-wise similarity calculated from all
packed samples of AndroZoo

into 9 clusters, the average similarity of graphs within each cluster is 0.9868.

Cluster Packer categorized

1

’jiagu qihoo’: 1965, ’tencent’: 276,
’dexprotector’: 35, ’bangcle’: 35,

’upx’: 17, ’joker’: 13,
’baidu’: 8, ’apkencryptor’: 7,
’yidun’: 4, ’multidex’: 3,

’apkprotect’: 2, ’secneo’: 2, ’crazydog’: 1

2 ’jiagu qihoo’: 457

3 ’joker’: 29

4 ’jiagu qihoo’: 237

5 ’unicom’: 4

6 ’upx’: 15

7
’jiagu qihoo’: 155, ’Baidu’: 14,

’upx’: 14, ’multidex’: 2,
’dexprotector’: 2, ’unicom’: 1

8 ’jiagu qihoo’: 224

9 ’unicom’: 4

Table 6.13: Packer samples that are categorized into each cluster
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Chapter 7

Evaluation on Taint analysis of
HybridSE

To take advantage of the capabilities of cross-environment analysis offered
by HybridSE, we’ve integrated a taint module atop the DSE engine. This
section evaluates the advantages of employing DSE for taint analysis over
static tools. We subsequently applied our taint module to detect data leakage
observed in Android malware, focusing on information leakage that occurs
through both bytecode and native code.

7.1 Experiment datasets

Dataset1: DroidBench1. DroidBench is a popular Android taint analysis
benchmark, and NativeFlowBench is its subset that contains native code.
We currently focus on part (A) inter-language dataflow in NativeFlowBench
and Array and Lists, Reflection in DroidBench. For this benchmark, we use
the list of sources and sinks given by Argus-SAF.
Dataset2: Android malware dataset from Chapter 6. From datasets
like DREBIN, AMD, and AndroZoo, we successfully generated unprotected
CFGs (without multidex and packing) for a total of 3,266 samples. We
anticipate that these CFGs accurately represent the payload of the Android
malware, and we employ HybridSE to identify potential information leakage
vulnerabilities.

1github.com/arguslab/NativeFlowBench
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7.2 Comparision with static analysis tools

7.2.1 Detecting cross-environment data leak

Table 7.1 demonstrates that HybridSE accurately detects the correct re-
sult for 16 out of 18 benchmark items. Most results align with those of
Argus-SAF, except for the cases of native noleak array and native multi-
ple interactions. Both HybridSE and Argus-SAF produce false positives
for native complexdata stringop.

native noleak array. HybridSE produced a correct result for this test
case, which was specifically designed to address the issue of false positive
in taint analysis tools. HybridSE manages taint tags for array elements
individually, instead of over-tainting like Argus-SAF or FlowDroid, which
improves precision when handling array elements individually.

native multiple interactions. HybridSE fails to provide accurate re-
sults for this test, since currently corana checks each process sequentially.
As a result, we do not consider cases where processes are concurrently run-
ning and interacting with each other.

native complexdata stringop. In this scenario, HybridSE experi-
enced a false positive, similar to Argus-SAF. Unlike arrays, whichHybridSE
can manage element-wise, deciding on how complex data is transferred from
one environment to another poses challenges due to the varied nature of com-
plex data structures. In such cases, we track the whole complex data as a
taint object, rather than on an element-wise basis as with arrays.

7.2.2 Detecting data leaks involving arrays and Java
reflection

In tasks involving array manipulation and Java reflection, the DSE engine
facilitates the handling of data that requires runtime resolution, such as
dynamically invoked classes via Java reflection, with ease. Both FlowDroid
and Argus-SAF face challenges due to their static nature.

An example of Java reflection used to hide source API is shown in List-
ing 7.1. In this example, the IMEI is saved in the foo() method of the
ConcreteClass on line 9. When the onCreate() function of Main-
Activity starts on line 3, it registers the ConcreteClass using reflec-
tion instead of directly invoking ConcreteClass.foo(). Later, on line
6, bc.foo() is called, which, during real execution, invokes Concrete-
Class.foo() and returns the IMEI. This, in turn, leads to the IMEI being
leaked through sendTextMessage.
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Table 7.1: NativeDroidBench benchmark result
NativeFlowBench - Inter-language dataflow

APK file
Ground
truth

Hybrid
-SE

Flow
-Droid

Argus
-SAF

1 n source O O X O
2 n nosource X X X X
3 n source clean X X O X
4 n leak O O X O
5 n leak dynamic reg O O X O
6 n dynamic reg multiple O O X O
7 n noleak X X X X
8 n noleak array X X X O
9 n leak array O O X O
10 n method overloading X X X X
11 n multiple interactions O X X O
12 n multiple libraries O O X O
13 n complexdata O O X O
14 n complexdata stringop X O X O
15 n leak heap modify O O X O
16 n set field fm native OO OO XX OO
17 n set field fm arg OO OO XX OO
18 n set field fm arg field OO OO XX OO

Arrays and Lists

19 ArrayAccess1 X X O O
20 ArrayAccess2 X X O O
21 ArrayCopy1 O O O X
22 ArrayToString1 O O X X
23 HashMapAccess1 X X O O
24 ListAccess1 X X O O
25 MultidimensionalArray1 O O X X

Java reflection

26 Reflection1 O O X X
27 Reflection2 O O X X
28 Reflection3 O O X X
29 Reflection4 O O X X

Accuracy 93.10 % 20.68 % 55.17 %
On = Contain n data leaks, Xn = No n data leak, prefix native in APK file

name is shortened as n due to space limitation
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Static analysis tools face difficulties in resolving bc.foo() to Con-
creteClass.foo() since the reflection information is only available at
runtime. This causes static taint analysis tools like FlowDroid and Argus-
SAF to miss the data leak at line 6.

1 pub l i c c l a s s MainActivity extends Act i v i ty {
2 protec ted void onCreate ( ) {
3 BaseClass bc = (BaseClass)

Class.forName(”de.ecspride.ConcreteClass”).newInstance();
4 // Reg i s t e r i ng ’ ConcreteClass ’ us ing Java r e f l e c t i o n
5 SmsManager sms = SmsManager . ge tDe fau l t ( ) ;
6 sms . sendTextMessage ( ”+49 1234” , nu l l , bc.foo()) ;
7 }
8 pub l i c c l a s s ConcreteClass extends BaseClass {
9 pub l i c S t r ing foo ( ) {

10 TelephonyManager tM = getSystemServ ice ( ”phone” ) ;
11 imei = tM. getDev ice Id ( ) ;
12 re turn imei ;
13 }}

Listing 7.1: Reflection is used to hide source API in JavaRelection1.apk in
Dataset 1

Java reflection is handled naturally in SPF [17], and arrays are managed
element-wise. This allows HybridSE to accurately resolve reflected calls
and track taint tags within array elements, resulting in more precise leak
detection.

7.3 Data leakage observed from malware dataset

From 3,266 CFGs from Dataset 2, HybridSE identified 139 apps containing
leaks. Specifically, these comprised 24 from DREBIN, 47 from AMD, and 68
from AndroZoo.

To verify the validity of HybridSE, we manually checked the results
obtained. Below, we summarize the typical observations we made.

First, we noticed that the most frequently utilized sources include APIs
that gather device information, such as BUILD.model, getDeviceId(),
and getLine1Number(). Meanwhile, the predominant sinks observed are
HttpPost-related APIs or print statements used to publish sensitive informa-
tion (see TABLE 4.1)

On the DREBIN and AMD datasets, HybridSE detects several common
data leak scenarios within multiple malware families, e.g., DroidKungFu,
Lotoor, Dowgin, and Towelroot.

76



Figure 7.1 illustrates the four main data leakage scenarios identified using
HybridSE.

Figure 7.1: Data leakage methods
(I) in DroidKungFu and SimpleLocker, Dowgin, (II) in Lotoor, (III) in a

DroidKungFu variant and (IV) in Towelroot

1. Dataleaks contain only in Java layer (Fig. 7.1-I).

(a) Data is published via HTTP connections.
The DroidKungFu and SimpleLocker families record device infor-
mation via getDeviceID(), getLine1Number(), or BUILD.-
VERSION in the Java layer. Then the information is added to a
HTTPPost.setEntity() to send the information via HttpPost.-
openConnection().

(b) Leakage of device information through logging and writing.
Dowgin collects IMEI, network operator, and Build.MODEL, and
displays in the log. Other data-flow recorded from a different
Dowgin variation passes the IMEI to a JSONObject, which is
later written to a file using fileOutputStream.write().

2. Dataleak that traverses through native code (Fig. 7.1-II).
HybridSE found in Lotoor family the data leakage runs through the
native code. Lotoor retrieves multiple pieces of information from the
Java layer and then concatenates all this information into a single
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string. It is passed to the native function cs(), which includes MD5
hash operations, and later published using HttpPost like Simple-
Locker.

Furthermore, we noticed that Lotoor integrates its C&C server URL
within native code. When executed, it fetches the URL data using a
native function named uu().

3. Information is transferred from Java to native and published via kernel
syscall, i.e. across Java and native code layers (Fig. 7.1-III).
A variant of DroidKungFu obtains the package name and device’s IMEI
in the Java layer and passes them to the native method DataInit. IMEI
is translated to Characters via the JNI function getCharFromUTF-
String(), and is shown to the console using the sprintf() syscall.

4. Only in native layer (See Fig. 7.1-IV).
Towelroot retrieves the process ID using the getpid() function and
accesses the kernel version by calling fopen("/proc/version",
"rb"). After obtaining the information, the kernel number is exposed
by android log print().

7.4 Discussion

HybridSE performs well compared to other static analysis tools on samples
specifically designed for taint analysis. In particular, HybridSE is more
precise, and as a result, it avoids false alarms, as exemplified in the ’native -
noleak array’ case mentioned above.

As mentioned in Section 4.3.3, for the native to Java bytecode direction,
HybridSE currently employs an over-approximation method to taint the
outcomes of JNI callbacks. In the future, we hope to support more features
of Android such as inter-component communication and native activity by
additional implementation, particularly in mapping specific Java functions
invoked within native code.
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Chapter 8

Related works

8.1 Symbolic execution for binary code and

bytecode

Symbolic execution (SE) [21] is a classical method in software engineering,
aiming for the test data generation for the control flow coverage. There
are lots of tools for high-level programming languages, such as C/C++ and
Java are developed (e.g., KLEE [23] and SPF [17]). Recently, the tools
for the symbolic execution of binary code have gradually increased, such as
MAYHEM [26], KLEE-MC [27], S2E [29], angr [18], BINSEC [30] and
BE-PUM [31].

SE tools for binary code

Most SE tools for binary use existing disassemblers or binary lifters to trans-
late binary code to an intermediate assembly language (IAL), such as LLVM
in KLEE-MC, VEX in angr, and BAP in MAYHEM. This approach ensures
the symbolic execution tools can analyze binaries of multiple architectures
(e.g., x86-64, x86, ARM, MIPS) without preparing execution engines for in-
dividual architectures. However, this method does not perform well in the
presence of obfuscated code, such as indirect jumps, self-modifying code, and
overlapping instructions.

To overcome this limitation, some works have directly interpreted binary
as a step-wise disassembler. This method requires a huge effort to implement
the binary emulator, which requires defining the formal semantics of each
instruction set. Therefore, a method to automatically extract the formal
semantics of binary instructions is desired. We have tried for x86 as an
extension of BE-PUM[37], ARM as CORANA[20], and MIPS as SyMIPS[38],
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respectively.
Binary code, including malware, often uses API functions (and/or system

functions prepared in OS). Based on the instruction-level DSE tools (which
work only in the uniform context), we need to extend DSE to handle external
function calls, which are executed in different contexts. There are three
approaches.

• KLEE-MC abstracts the environment as a model [23]. However, this
is quite a rough approximation and rarely achieves enough accuracy.

• MAYHEM [26] and angr [18] fuse the concrete and the symbolic exe-
cutions by interleaving the GDB debugger and their symbolic engine.

• BE-PUM [31] prepare the API Stub to execute a system call in real
Windows OS to obtain an exact snapshot of the environment update.

We use the last approach for corana/api [19].

SE for Android/Java bytecode

For Java and Android applications, there are several extensions of Java
PathFinder (JPF) [44] that target Android apps. For instance, jpf-mobile [40]
uses jpf-nhandler [16] to concretize and run the native code in Host JVM.

SPF [17] and SynthesisSE [13] are SE tools built on JPF and JDART,
respectively, which reduce all calls (including the native code) as concrete
execution. SPF requires manual modeling of native components, the latter
resolves all callees by the concrete execution.

Currently, the only DSE tool that supports analysis of native code in
Android applications is an experiment version of angr1. They leverage both
Java/DEX bytecode and native code to SootIR. However, the intermediate
code translation shares the weakness for the obfuscation.

8.2 Android taint tools and cross-language

analysis

Static analysis has been used widely to assess Android application’s security
such as detecting sensitive data leaks or checking malicious behavior. There
is a large body of work on Android taint analysis, both dynamic and static
[4, 50, 51, 10, 52, 5, 53, 12]. Static taint analysis techniques [4, 51, 52, 5]
consider all possible paths that data can flow through without running the

1https://docs.angr.io/advanced-topics/java\_support
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apps. FlowDroid [4] employs CHA (class hierarchy analysis) and a flow and
context-sensitive IFDS algorithm to perform taint detection. It avoids the
handling of native method invocation and implements a thorough model for
native method calls. IccTA [52] extend Flowdroid to handle inter-connection
components. Amandroid [5] is another flow and context-sensitive dataflow
analysis framework. It creates an environment model for every Android com-
ponent and employs a component-based analysis algorithm. Like FlowDroid,
Amandroid also does not take into account native code. The only exception
is JN-SAF, which is extended based on Amandroid and includes extensive
methods for managing native method calls and inter-language data flows. All
mentioned tools encounter the challenges of the statical approach including
Java reflection and dynamic class loading in the Java environment.

Dynamic taint analysis is a practical approach that allows access to run-
time information. TaintDroid [50] is arguably the pioneering dynamic taint
analysis that traces information flows on the Dalvik Virtual Machine. Taint-
ART [10] adapts dynamic taint analysis for new ART (Ahead of time) run-
time. Vialin [12] also proposed an optimized dynamic approach for runtime
performance and efficiency to track taint flows on Dalvik bytecode. These
tools suffer from the drawbacks of dynamic tools, including the inability to
reason about behaviors not activated at runtime (by anti-debugging or VM
awareness) and execution runtime overhead.

To evade the disadvantages of current static and dynamic approaches, dy-
namic taint analysis based on forward symbolic execution has been proposed
[54]. The two analyses are used in conjunction to guarantee that tainted data
is in actual feasible paths.

Cross-language analysis for Android APK file. Most Android static
analysis tools (FlowDroid, Amadroid, DroidSafe, IccTA) avoid handling na-
tive methods and focus only on bytecode. Native methods are often modeled
or treated as black boxes when performing taint analysis, i.e., call arguments
and return values become tainted if a parameter is tainted. However, there
has been more and more attention on native code analysis due to the in-
troduction of new vulnerabilities and security issues previously overlooked
by Android-only analysis tools. NDroid [55], NativeGuard [56], and Tain-
tArt [10] use dynamic analysis to track information flowing on the bytecode
and native sides. NDroid uses TaintDroit to track information at the point
of transferring to a native call, without actually tracking data within na-
tive code. NativeGuard uses a sandbox to isolate native libraries from other
components in Android applications. TaintArt compiles the whole Android
application to ART and then performs taint analysis on binary code.

JN-SAF [5] and JuCify [9] enhance the capabilities of static Android
analysis tools (Amandroid and FlowDroid, respectively) by integrating them
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with a binary symbolic execution tool (angr) to conduct cross-language
analysis. Both tools translate native code into Jimple and apply taint analysis
on the Jimple representation of both bytecode and native code. JN-SAF
conducts separate analyses on bytecode and native code, later merging the
outputs. In contrast, JuCity merges the call graph of bytecode and native
code into a unified model before performing taint analysis.

Both tools follow static analysis and inherit path explosion issues from
angr.
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Chapter 9

Conclusions

Malware and spyware on Android devices are major concerns. For instance,
despite Android 13’s security policies, some malware has circumvented these
protections to exfiltrate user interactions, capture audio with the device’s
microphone, and track the device’s location.

As system architectures become more complex, it is essential to develop
tools for reverse engineering applications and analyze them in this ongoing
arms race against threat actors.

This thesis presents HybridSE, a cross-environment dynamic symbolic
execution tool equipped with a taint analysis module, for analyzing An-
droid/apk files on ARM. HybridSE seamlessly combines symbolic execu-
tion combining SPF on Java bytecode and corana/api on ARM 32bits
instruction set and generates only CFGs consisting of feasible paths.

However, HybridSE encounters difficulties with highly obfuscated appli-
cations, like multi-dex and packed samples. Currently, HybridSE is unable
to handle several features, including inter-component communication. Ad-
dressing these issues will be crucial for improving HybridSE in the future.

Several updates are necessary to address the current limitations. First,
multi-dex handling should be improved by upgrading dex2jar from version
0.9.5 to 2.x. For dynamic loading in SPF, execution can either be initiated
via a virtual machine until the loading process is complete, or manual stubs
can be implemented for the loading functions. Additionally, the realization
of entry points for inter-component communication should be refined. By
leveraging Control Flow Graph structures, malware analysis tasks such as
classification, vulnerability detection, and clone detection can be more effec-
tively supported.

Nevertheless, we successfully appliedHybridSE to approximately 10,000
applications and demonstrated its ability to detect data leakages with fewer
false positive alarms than other tools. A final note on false alarms: Given
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the vast number of samples analyzed, false alarms significantly slow down
the work of security experts. Thus, addressing the false alarm rate impacting
system correction is a crucial research question.
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