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Abstract

Clear and intelligible speech is vital for effective human communication, par-

ticularly in critical systems like airport communication, where low speech in-

telligibility can lead to severe consequences. Speech enhancement techniques

are crucial for improving speech quality and intelligibility in various real-

world applications such as telecommunication, hearing aids, and voice recog-

nition systems, as well as in military and aviation communications where

clarity is essential. Despite having a long history of studies, recent speech

enhancement techniques still suffer speech over suppression and noise under

suppression, distorting the enhanced speech signals, which sometimes have

lower quality and intelligibility than the noisy speech itself.

Believing that the gap between mathematical/computational techniques

and the nature of speech is the cause of this distortion, this study utilizes the

concept of modulation for speech enhancement to build a bridge to connect

this gap. The main objective of this research is to investigate the effectiveness

of utilizing speech modulation characteristics for enhancement. This main

objective contains three sub-objectives: to model the amplitude modulation

characteristics for speech enhancement, derive the relationship between am-

plitude and instantaneous frequency modulation, and enhance speech using

the derived relationship.

To achieve the first objective, a method to model the spectral modula-

tion characteristics of speech in amplitude is proposed and applied for speech

enhancement. In voiced speech, the speech power spectrum is amplitude-

modulated, where the spectral fine structure is periodic with a period equal

to the fundamental frequency. Thus, the proposed method constructs the cat-

egorical distribution of fundamental frequency to characterize spectral fine-

structure characteristics of speech. Evaluating the Valentini et al. dataset,

the results show that improving amplitude modulation characteristics im-
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proves speech enhancement performance.

The analytical derivative method is proposed to extract instantaneous

frequency deviation (IFD) to achieve the second objective. By deriving the

principal value of the logarithm of the complex time-frequency representa-

tion, an equation connecting the amplitude to the IFD is established. Via

single-tone frequency-modulated signals, the proposed method is verified to

work correctly, which confirms the proposed equation’s validity. As the es-

tablished equation indicates, this result confirms a connection between am-

plitude and IFD.

The findings in the second objective provide two critical perspectives on

IFD. First, although defined from the phase, IFD has a multiplicative con-

nection with the amplitude, which allows real-valued processing. Second,

computationally, the IFD can be derived instantaneously without a time dif-

ference. From these findings, a method to enhance speech via IFD is proposed

to modify IFD by a learnable affine transform at the frame-wise level. Evalu-

ating the Valentini et al. dataset, the results show that the proposed method

improves speech enhancement performance, especially quality. Specifically,

the proposed method achieves the Perceptual Evaluation of Speech Quality

of about 2.87 and Short-Time Objective Intelligibility of 0.94, outperforming

many state-of-the-art techniques in speech enhancement. Significantly, the

proposed method improves up to 15% in a 2.5 dB signal-to-noise ratio. These

results confirm the effectiveness of using IFD in speech enhancement based

on its relationship with amplitude.

All the results confirm that utilizing speech’s modulation characteristics

can improve speech enhancement performance, satisfying the research ob-

jective. This research has established a solid base by showing how effective

modulation characteristics can improve speech quality in noisy conditions.

This research has practical applications in improving user experience in mo-

bile calls, VoIP services, and video conferencing, as well as benefiting assis-

tive technologies such as hearing aids and cochlear implants. Additionally,

it contributes to advancements in audio signal processing, machine learning,

artificial intelligence, and neuroscience.

Keywords: speech enhancement, amplitude modulation, spectral mod-

ulation, frequency modulation, instantaneous frequency deviation
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Chapter 1

Introduction

1.1 Speech enhancement

Speech is essential for conveying thoughts, emotions, and information, serv-

ing as a fundamental means of human communication. It allows people to

express themselves, share ideas, and connect with others personally and pro-

fessionally. In an era where digital communication is paramount, ensuring

clear and intelligible speech transmission has become increasingly crucial. In

critical systems, digital speech communication is vital in ensuring a precise

and reliable transmission of crucial information. For example, airport com-

munication requires a high-intelligibility communication system, including air

traffic control instructions, pilot communications, and emergency announce-

ments, where low intelligibility of speech causes serious consequences.

Good 
morning!

Food for 
King???

Figure 1.1: Illustration of speech enhancement problem.
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Speech enhancement techniques, which aim to improve the quality and in-

telligibility of speech signals, are crucial to achieving such a high-intelligibility

communication system. It involves using various algorithms and methods to

reduce background noise, minimize distortion, and enhance the overall clar-

ity of speech. Speech enhancement is vital in numerous real-world applica-

tions, such as telecommunications, hearing aids, voice recognition systems,

and audio forensics. By effectively removing unwanted noise and improving

essential speech components, speech enhancement techniques improve com-

munication and user experience in various audio-related technologies. The

applications of speech enhancement are extensive and varied, reflecting the

ubiquity of speech communication in modern life. In telecommunications, en-

hanced speech quality can significantly improve user experience, particularly

in noisy environments like public transportation or crowded areas. Voice-

activated systems, such as virtual assistants (e.g., Siri, Alexa), rely on clear

speech input to function accurately, making noise suppression essential for

their reliability. In healthcare, hearing aids benefit from advanced speech en-

hancement techniques to provide users with higher-quality auditory signals,

improving their quality of life. In addition, in military and aviation commu-

nications, where clarity is critical, speech enhancement can ensure effective

and accurate information exchange.

1.2 Challenges

Although speech enhancement techniques have a long history of studies, re-

cent speech enhancement techniques still suffer speech over suppression and

noise under suppression, distorting the enhanced speech signals, which some-

times have lower quality and intelligibility than the noisy speech itself [1].

After reviewing several speech enhancement techniques to analyze the cause

of why this happens, speech enhancement techniques can be divided into

three approaches:

• Mathematical approach: The techniques in this category introduce the

mathematical grounds on how to separate a signal from another sig-

nal, such as spectral subtraction techniques which try to subtract noise

from the mixture [2–7], statistical techniques which try to formulate a

conditional statistical estimation problem to estimate the speech given
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the mixture [8–14], or subspace techniques which try to decompose the

mixture into speech and noise components using different bases [15–19].

The foundation of these techniques comes from two mathematical as-

sumptions: additivity, where the noise is additive, and speech-noise

independence, where the noise and speech have zero correlation. How-

ever, these techniques are usually limited by some assumptions, such

as stationary noise, and can hardly handle arbitrary or unknown noise.

• Computational approach: The techniques in this category are only de-

veloped recently and are based on two main factors: powerful numerical

estimator (deep neural network) and large-scale dataset. These tech-

niques extend previous techniques in the mathematical approach to

improve their generalization [20–28].

• Nature-of-speech approach: These studies investigate the different char-

acteristics of speech along time and frequency based on speech pro-

duction and perception mechanism [29–36]. While these features are

essential for speech, enhancing them from noisy speech is challenging

due to the lack of mathematical framework.

In summary, the categorization above shows a gap between mathemati-

cal/computational techniques and the nature of speech. In other words,

there needs to be a unified framework for enhancing essential features of

speech using powerful computational and mathematical tools.

1.3 Motivation and research goals

Speech contains structural information such as linguistic information, emo-

tion, and speaker identity. The variance of such information is much less

than acoustic variability in speech signals. In other words, some simple fea-

tures inside the enormous variance of the speech signal affect the quality and

intelligibility of speech, and enhancing such features is enough to enhance

speech quality.

As the signal in the waveform does not offer a clear picture of the vari-

ances of the signal components, this study focuses on the speech signal in

a complex time-frequency representation, which provides a detailed view of
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how the signal’s spectral content, including amplitude and phase, evolves.

Although the amplitude exhibits clear patterns that reflect the energy distri-

bution of different frequency components at each moment, the phase appears

more chaotic and less visually interpretable. However, both amplitude and

phase are required to construct a high-quality speech waveform. Therefore,

a research question is raised: ‘Does enhancing the speech features in the

time-frequency representation lead to improving speech enhancement perfor-

mance?’ This question can be decomposed into three sub-questions:

1. Can enhance the speech characteristics in amplitude improve speech

enhancement performance?

2. Is there a relationship between the amplitude and phase?

3. Can the relationship between amplitude and phase help improve speech

enhancement performance?

This study employs the concept of modulation to seek the answer to the

research questions mentioned above. Modulation, including amplitude mod-

ulation and frequency modulation, refers to a technique in communication

theory that allows the transmission of a low-frequency message signal over

a long distance using a high-frequency carrier signal. Thus, the transmit-

ted signal is high-frequency and complex for transmission, while the message

is simple. From this analogy, speech can be considered as a sound wave

modulated by the speech features, where the sound wave is the carrier with

a large variability. Not only in analogy, speech signals are mathematically

amplitude- and frequency-modulated in the time-frequency representation.

The modulation characteristics of the amplitude appear in both the time

and frequency axes, while the modulation characteristics of the frequency

(or instantaneous frequency deviation) allow us to analyze the phase more

effectively (see Chapter 3). These properties show the potential of the mod-

ulation concept to connect the gap between mathematical/computational

speech enhancement techniques and the nature of speech.

Therefore, the main objective of this research is to investigate the effec-

tiveness of utilizing modulation characteristics of speech for enhancement.

This main objective contains three sub-objectives, each of which seeks the

answer to the research questions above:
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1. Model the amplitude modulation characteristics for speech enhance-

ment

2. Derive the relationship between amplitude and the instantaneous fre-

quency modulation

3. Enhance speech using the derived relationship

1.4 Novelty and significance

This study utilizes the concept of modulation for speech enhancement, build-

ing a bridge to connect the gap between mathematical/computational speech

enhancement techniques and the nature of speech. In technical detail, this

study proposes a method to quantify the spectral modulation characteris-

tics of speech amplitude, serving as a loss function for deep learning-based

speech enhancement. Also, this study establishes an equation connecting the

amplitude and instantaneous frequency deviation, introducing a new view-

point of instantaneous frequency deviation beyond the phase. Based on these

findings, this study proposes a speech enhancement method to enhance the

instantaneous frequency deviation of speech without circular data processing

on the phase.

The findings of this study and the proposed techniques offer valuable

insights and methodological advancements for signal processing research.

They allow for modifying and analyzing the phase information of signals

in complex-valued domains without wrapping issues. These findings can be

applied to several types of signals beyond speech.

Furthermore, this study proposes a speech enhancement method that

effectively removes noise from speech. The proposed method could be used to

build a practical speech enhancement application, impacting various aspects

of daily life, technology, and communication.

1.5 Organization of dissertation

This dissertation contains seven chapters, the rest of which are organized as

follows:
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• Chapter 2 introduces related work in speech enhancement, including

speech enhancement techniques and the methods to evaluate the per-

formance of these techniques.

• Chapter 3 explains the modulation theory, including the concept of

modulation, and evidence of modulation in speech, including amplitude

and frequency modulation.

• Chapter 4 proposes a method to enhance the spectral modulation char-

acteristics in speech amplitude and applies the proposed method in

speech enhancement using Valentini et al. dataset [37]. The chap-

ter seeks to answer the first research question: ‘Can enhancing the

speech characteristics in amplitude improve speech enhancement per-

formance?’

• Chapter 5 investigates the relationship between the amplitude and the

instantaneous frequency deviation to reveal the relationship between

the amplitude and the phase in the complex time-frequency repre-

sentation and evaluate the relationship using single-tone frequency-

modulated signals. The chapter seeks to answer the second research

question, ‘Is there a relationship between amplitude and phase?’

• Chapter 6 proposes a speech enhancement method by enhancing the

instantaneous frequency deviation of speech. The method is evaluated

using Valentini et al. dataset [37]. The chapter seeks to answer the

third research question: ‘Can the relationship between amplitude and

phase help improve speech enhancement performance?’

• Chapter 7 summarizes the dissertation, including the insights and con-

tributions revealed in the study.
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Chapter 2

Literature review

This chapter provides the fundamental principles for speech enhancement.

The first section reviews the development of speech enhancement techniques

in different aspects. In the second section, the chapter briefly introduces how

to evaluate the performance of a speech enhancement method.

2.1 Techniques in speech enhancements

Speech quality and intelligibility deteriorate due to additive background

noise. Researchers have proposed various methods for improving speech

quality and intelligibility under such conditions. From traditional techniques,

speech enhancement methods have evolved to handle multiple types of noise

by incorporating deep neural networks. In addition, several studies investi-

gate the nature of speech and its features. This section first introduces the

traditional techniques in speech enhancement, then describes some feature

enhancement techniques, and finally briefly reviews state-of-the-art speech

enhancement methods incorporating deep learning techniques.

2.1.1 Traditional techniques: mathematical grounds

The additive assumption of the background noise gives the following stochas-

tic process

y(t) = s(t) + n(t) , (2.1)
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Figure 2.1: Tradition techniques in speech enhancement.

where s(t), n(t), and y(t) are the clean, additive noise, and noisy observed

signals in the time domain, respectively. Based on this assumption, several

researchers have proposed several speech enhancement techniques to improve

speech quality and intelligibility from the noisy observed signal. These tech-

niques provide the mathematical ground and principles to construct speech

enhancement methods, hence ’traditional.’ According to Loizou [38], these

techniques can be classified into three main classes (see Figure 2.1) as follows:

• Spectral-subtraction techniques are simple techniques that directly sub-

tract the noise spectra from the noisy spectra as the noise is additive,

such as Weiss et al.’s [2] or Boll’s [3] spectral subtraction.

• Statistical techniques consider speech enhancement a statistical estima-

tion problem to estimate the speech parameters given the noisy signal.

Two representative techniques are minimum-mean-squared-error short-

time spectral amplitude (MMSE-STSA) by Ephraim and Malah [10]
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and Wiener filtering developed by Lim and Oppenheim [8,9].

• Subspace techniques consider speech enhancement a linear decompo-

sition problem. Specifically, the assumption is that the speech signals

come from a subspace of an Euclidean space, which is orthogonal to the

subspace forming the noise signals in the same Euclidean space. Some

example techniques are the singular-value decomposition [15] or eigen-

value decomposition [18] in the time domain, or non-negative matrix

factorization [19] in the time-frequency domain of power spectrogram.

Spectral-subtraction techniques

The spectral subtraction technique is one of the first and simplest noise

reduction techniques. This technique comes from the intuition that the noise

is additive, so the denoising process should be subtractive. This technique

utilizes two important assumptions, which are

• The noise is assumed to be stationary; in other words, the noise spec-

trum does not significantly change as time evolves.

• The speech and noise signals are zero mean and stochastically indepen-

dent, i.e., E [s(t)n(t+ τ)] = 0 for all τ .

From the stationary-noise assumption, the spectral subtraction techniques

involve two stages:

1. Noise estimation: estimating the noise power spectrum during the pe-

riods where the speech signal is absent,

2. Spectral subtraction: subtracting the noise power spectrum from the

noisy power spectrum.

The foundation of spectral subtraction is as follows. Let S(ω), N(ω), and

Y (ω) be the complex spectra of speech signal s(t), noise signal n(t), and

noisy signal y(t), respectively, obtained by the Fourier transform, i.e.,

S(ω) = F {s(t)} , (2.2)

N(ω) = F {n(t)} , (2.3)

Y (ω) = F {y(t)} . (2.4)
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where F {f(t)} denotes the Fourier transform of a continuous-time signal

f(t) as

F {f(t)} =

∫ ∞

−∞
f(t)e−iωtdt . (2.5)

As Fourier transform conserver additivity, the Eq. (2.1) becomes

Y (ω) = S(ω) +N(ω) , (2.6)

which allows to express the noisy power spectrum as follows

|Y (ω)|2 = |S(ω) +N(ω)|2

= |S(ω)|2 + |N(ω)|2 + S(ω)N∗(ω) + S∗(ω)N(ω) , (2.7)

where the notation u∗ denotes the complex conjugate of u ∈ C. Then, the

clean speech power spectra can be estimated as follows∣∣∣Ŝ(ω)∣∣∣2 = |Y (ω)|2 − E
[
|N(ω)|2 + S(ω)N∗(ω) + S∗(ω)N(ω)

]
. (2.8)

Under the stochastical independence assumption, E [S(ω)N∗(ω)] = 0 and

E [S∗(ω)N(ω)] = 0, which reduces Eq. (2.8) to become∣∣∣Ŝ(ω)∣∣∣2 = |Y (ω)|2 −
∣∣∣N̂(ω)

∣∣∣2 , (2.9)

where
∣∣∣N̂(ω)

∣∣∣2 is the estimated noise during the noise estimation stage. The

time-domain signal can be reconstructed using inverse Fourier transform.

It is possible to generalize the spectral subtraction to a p-power as∣∣∣Ŝ(ω)∣∣∣p = |Y (ω)|p −
∣∣∣N̂(ω)

∣∣∣p , (2.10)

where p = 1 returns the Boll’s spectral subtraction [3] in which the mag-

nitude spectrum is subtracted. Besides, there are several extended versions

of spectral subtraction to improve the enhancement performance, such as

selective spectral subtraction [4, 5] or multi-band spectral subtraction [6, 7].

Although spectral subtraction techniques are simple and computationally

efficient, the enhancement results may yield distortion, namely musical noise

and reduced speech quality. In addition, spectral subtraction techniques have
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two restrictions: the ’subtraction’ operator in the ’spectral’ domain, neither

of which is necessary to be optimal for enhancement. Hence, later traditional

techniques aim to provide better performance by changing the view on the

enhancement problem.

Statistical techniques

Statistical techniques refer to the speech enhancement techniques that esti-

mate the speech signal or its representation, such as the time-domain signal

in the Wiener filtering [8] or magnitude spectrum in the MMSE-STSA [10].

In principle, if the estimation target is a random variable S given the noisy

observation Y = y, then a point estimation of S can be obtained using the

conditional expectation as follows

ŝoptimal = E [S | Y = y]

=

∫
s fS|Y (s | y ; θ) ds , (2.11)

where fS|Y (s | y ; θ) is the conditional probability density function for the

conditional distribution with some optional parameter θ as follows

S | Y ∼ PS|Y (θ) . (2.12)

Thus, the estimation problem becomes determining the optimal parameter θ.

One of the most commonly used solutions for this problem is the Maximum

Likelihood Estimation (MLE), which yields

θoptimal = argmax
θ

fS|Y (s | y ; θ) . (2.13)

In speech enhancement, the result of deriving the optimal parameter θoptimal

determines the essential characteristics to enhance the speech signals. Dif-

ferent assumptions of PS|Y (θ) lead to different optimization criteria.

In Wiener filtering [8], the estimation target is the time-domain speech

signal s(t), the observed noisy signal for conditioning is y(t), and the param-

eter is a time-domain linear filter h(t); in other words, the assumption is that
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filtering noisy signal y(t) by h(t) can obtain the clean speech signal, i.e.,

ŝ(t) = y(t) ∗ h(t)

=

∫ ∞

−∞
h(η)y(t− η)dη . (2.14)

Finally, in Wiener filtering, the conditional probability distribution is Gaus-

sian distribution with the mean of ŝ(t) and unit variance, i.e.,

s(t) | y(t) ∼ N (ŝ(t), 1) . (2.15)

Using MLE, the optimal hoptimal(t) follows the Wiener-Hopf equation, of

which spectrum (also called spectral gain function) has the following for-

mula

Hoptimal(ω) =
E
[
|S(ω)|2

]
E
[
|S(ω)|2

]
+ E

[
|N(ω)|2

] , (2.16)

when speech and noise signals are stochastically independent. This result

introduces a different operation on the noisy spectrum, which is

Ŝ(ω) = Y (ω)Hoptimal(ω) , (2.17)

instead of literal subtraction using the spectral subtraction method. The

Wiener filter has a vast range of applications in speech enhancement and

source separation, which is one of the most common computational targets

even in the modern deep learning techniques [26].

In MMSE-STSA [10], Ephraim and Malah believe that the magnitude

spectrum contains more significant perception information than the time-

domain signal. Therefore, MMSE-STSA keeps the noisy phase, uses the

amplitude spectrum |S(ω)| as the estimation target, and utilizes the Rayleigh

distribution for the conditional distribution. Similar to Wiener filtering, the

result of this derivation is also a spectral gain function to apply on |Y (ω)|.
Under the same principle, there have been several statistical techniques

to produce the spectral gain function to modify the magnitude of the speech

signal and improve the performance [11–14], which substantially reduce the

residual noise and distortion. In summary, statistical techniques investigate

the spectral gain function under different optimization conditions; however,
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implementing such a function from the noisy observation is still ad-hoc.

Subspace techniques

Subspace techniques change the viewpoint of speech enhancement. Instead

of trying to design some optimal enhancement characteristics, i.e., spectral

gain function, like in statistical techniques, the subspace techniques provide

the solution for decomposing the noisy signal into speech and noise signals.

The noise is additive, hence linear. Therefore, the speech-noise independent

assumption changes into a linear algebra assumption: an Euclidean space

exists such that speech and noise stay separately in two mutually orthog-

onal subsets. Then, the speech can be obtained by simply zeroing out all

components in the noise subspace. Consequently, with this approach, the

dimension of the speech subspace should be smaller than the original di-

mension of the input, and therefore, dimensional reduction techniques are

essential for subspace techniques.

Subspace techniques require representing the signal in some vector form

and performing a dimensional reduction to obtain the approximated speech

vector/matrix. For instance, Dendrinos et al. [15] and Jensen et al. [16] utilizes

the windowed representation of the speech signal s(t) as

swindow(τ, t) = s(t+ τ)w(t) , (2.18)

where w(t) is some window function, such as a rectangular window. Then,

the low-rank approximation of swindow(τ, t) is used for dimensional reduction

and can be defined as

ŝwindow(τ, t) =

p∑
k=1

uS, k(τ)σS, kvS, k(t) , (2.19)

where p is the number of singular values, σS, k are the singular values, and

uS, k(τ) and vS, k(t) are the left and right singular vectors, respectively. This

low-rank approximation projects the speech matrix into a subspace with a

lower rank p. Then, the speech enhancement process is merely projecting the

noisy matrix ywindow(τ, t) into this speech subspace. When the noise is white

noise, singular-value decomposition (SVD) can straightforwardly compute

uS, k(τ), σS, k, and vS, k(t) from ywindow(τ, t). For colored noise, some modifi-
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cations are necessary to adjust the method [17, 39–41]. Besides SVD, eigen-

value decomposition (EVD) is also a candidate dimensional reduction, which

utilizes the additivity in covariance matrix under the assumption of speech-

noise independent, or more correctly, uncorrelation [18,42,43]. Non-negative

matrix decomposition is another technique of which the speech vector is

power spectrum [19] thanks to the additivity shown in Eq. (2.9) restricted by

non-negative constraint.

Subspace techniques provide a new perspective on the speech enhance-

ment problem, providing techniques for constructing the subspace of speech

that preserves its most essential characteristics.

Summary

In summary, three classes of traditional speech enhancement techniques are

spectral subtraction, statistical, and subspace techniques, which provide dif-

ferent points of view to the speech enhancement problem. According to

Loizou [38], among the techniques, statistical techniques, especially Wiener

filtering, consistently perform well, including speech quality and intelligi-

bility, in many different noise conditions. Subspace techniques may give a

low overall quality, yet they outperform in terms of intelligibility, revealing

the physical meaning behind the obtained subspace. However, traditional

techniques backlog some issues, one of which is dealing with various types of

noise and various speaker characteristics in a single model. The deep learning

techniques aim to resolve this problem in the next section.

2.1.2 Feature enhancement techniques: speech knowl-

edge

Traditional techniques focus on the mathematical framework for speech en-

hancement or, more accurately, extracting the speech signal from the noisy

signal. Their principles are the same for all kinds of signal enhancement, not

only for speech. In contrast to traditional techniques, feature enhancement

techniques focus on the target of enhancement: the speech signal. Specifi-

cally, these techniques try to investigate the meaningful features of speech

strongly related to speech quality and intelligibility and how to modify them

for enhancement.
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Along spectral axis

The most common feature domain for speech enhancement is the complex

time-frequency domain obtained from the Short-Time Fourier Transform

(STFT) of a signal, of which the equation is as follows

x̃ (ω, τ) = F {xwindow(t, τ)}

=

∫ ∞

−∞
x(t+ τ)w(t)e−iωtdt , (2.20)

where x(t) is the signal in the time domain and w(t) is some window function

[44]. A window function of length Tw is a symmetric, non-negative function

that is zero-valued outside the interval
[
−Tw

2
, Tw

2

]
. STFT allows capturing

the spectrum of several equal-length segments of the time-domain signal x(t)

at different positions τ . Most traditional techniques processing [3–14, 19] in

the spectral domain use this technique in practical implementation.

In narrow-band STFT where the window length Tw is relatively long,

around 20ms to 40ms. With this setting, when an audio segment contains

a voiced sound, i.e., the sound caused by the vibration of the vocal cords, its

amplitude spectral information |x̃(ω, τ)| contains a spectral envelope - the

broad shape of the spectrum, and spectral fine structure - the detailed, rapid

variations in the spectrum [29–33]. The spectral envelope is closely related

to the perceived characteristics of vowels and consonants. In contrast, the

spectral fine structure contains information about subtle nuances such as

pitch variations, timbral characteristics, and transient events like consonant

sounds or percussive elements. Hu and Loizou [45] apply this knowledge to

advance the Wiener filtering to enhance the spectral envelope and perceptu-

ally improve speech intelligibility. On the other hand, Malah and Cox [46]

introduce comb filtering to enhance the spectral fine structure. Not only

stop at the amplitude, Wakabayashi et al. [47,48] considers the enhancement

of phase spectrum to improve the harmonic characteristics in spectral fine

structure.

Along temporal axis

The use of STFT described above is ’spectral analysis of a segment’, which

focuses on the features along the spectral domain. However, several previ-
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ous studies [34–36] show that the temporal domain also contains important

perceptual features for speech recognition. The mechanism of the human au-

ditory system forms the basis for these characteristics. The cochlea performs

frequency decomposition in the inner ear by converting sound vibrations into

neural signals.The cochlea achieves this through a process known as tono-

topic organization, where different frequencies of sound stimulate different

regions along the length of the cochlea [49–51]. A model to approximate

the frequency decomposition in the cochlea is the auditory filterbank, which

decomposes the audio stimuli into several sub-band signals. Together with

the Hilbert transform, a filterbank can return a complex time-frequency rep-

resentation as follows:

x̃ (ω, τ) = (x ∗ ψω) (τ) + iH{(x ∗ ψω) (τ)}
= (x ∗ (ψω + iH{ψω})) (τ)

=
(
x ∗ ψ̃ω

)
(τ) , (2.21)

Several auditory filter models, such as Gammatone [52] and Gammachirp

[53] filter, have been proposed to mimic the shape and bandwidth of the

cochlea filter. In addition, STFT is also a filterbank that maintains a constant

bandwidth (and thus, not an auditory filterbank) where the filter ψ̃ω(t) =

w(t)eiωt is a band-pass filter of which center frequency is ω (rad/s).

Along the temporal axis, the amplitude envelopes of the sub-band sig-

nals [34–36, 54, 55] play an essential role in speech recognition. Many re-

searchers analyzed the frequency components of the temporal amplitude en-

velopes, also known as the modulation spectrum, and found that different

modulation frequency bands corresponded to different information of speech,

for example, 0.2Hz to 0.5Hz for sentence units, 1Hz to 2Hz for stressed syl-

lables, 2Hz to 3Hz for words, 3Hz to 6Hz for syllables, and 10Hz to 20Hz for

phonemes [35]. Moreover, the modulation spectrum is mainly independent

of the center frequency of the sub-band. From these findings, several stud-

ies attempt to enhance the modulation spectrum characteristics of speech

using techniques such as temporal modulation transfer function [34, 56–59].

For additive noise, some studies develop speech enhancement methods for

filtering on the amplitude envelopes [60–62].
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Summary

In summary, several studies reveal the nature of speech to clarify the enhance-

ment target. These studies develop beyond speech enhancement in additive

noise, as the knowledge they bring can help enhance speech signals in several

different scenarios, for example, enhancing the speech signal so that it still

has high quality and intelligibility when emitted to an adverse environment

such as the train station.

2.1.3 Deep learning techniques: computational actu-

alization

Deep learning techniques model a data distribution from several data sam-

ples using artificial neural networks, which are non-linear functions with mil-

lions of learnable parameters to estimate some arbitrary function. Some

well-known architectures of artificial neural networks are convolution neural

networks, recurrent neural networks, and transformers. The parameters of

these artificial neural networks are estimated by minimizing some loss func-

tion between the ground-truth data and the networks’ output via several

iterations of adjustment based on the gradient of the loss function, which is

called model training. Thus, deep learning techniques require training the

model on some known data before applying it in the estimation tasks.

In speech enhancement, deep learning techniques play a robust role as

estimators. They can be applied to estimate the speech signal, some en-

hancement characteristics such as the spectral gain function from statistical

techniques, or the lower-dimension subspace using the principles from sub-

space techniques, given the clean-noisy pair stimuli data samples. There-

fore, deep learning techniques result from actualizing the traditional tech-

niques by non-linear estimation from data to handle the complex variation

in speaker, pronunciation, and noise. With the current development of deep

learning techniques, applying deep learning techniques to traditional tech-

niques greatly improves enhancement performance.

There are two main processing domains with speech enhancement meth-

ods: time and time-frequency. Most speech enhancement methods in the time

domain are based on powerful generative models, such as generative adver-

sarial networks or diffusion probabilistic models, which attempt to generate a
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clean waveform directly, given the noisy speech waveform or features [20–23].

Methods in the time-frequency domain operate on the time-frequency rep-

resentation of the signal obtained by short-time Fourier transform (STFT)

or wavelet transform. A time-frequency representation is complex-valued,

which contains amplitude and phase features. Most initial methods can only

enhance the amplitude features while leaving the phase unprocessed [24] be-

cause the phase features have a complicated pattern and are challenging to

model. The estimation targets are either the amplitude features or masks to

modify the spectra, such as the ideal binary mask [25] or ideal ratio mask [26].

By incorporating deep neural networks, several speech enhancement methods

with this approach perform excellently [27,28,63].

Speech signals follow a speech-production process and include linguis-

tic, paralinguistic, and nonlinguistic information [64], while noise signals

can be arbitrary. Thus, several studies have utilized the distribution of

speech [65–67]. These studies modeled the speech and noise variances sepa-

rately and then constructed the ideal ratio mask based on Wiener filtering to

enhance speech, in which a variational autoencoder (VAE) [68] modeled the

distribution of speech and the non-negative matrix factorization [19] mod-

eled the distribution of noise. With this approach, the generative speech

model must satisfy noise-robustness and high-fidelity requirements to obtain

high-quality enhanced speech.

In the time-frequency processing domain, besides the amplitude features,

the importance of the phase features, with which speech quality improves

significantly when the phase features are accurately estimated, has been

clarified [69]. Therefore, several studies developed phase-aware enhancement

methods [70–76], of which the most successful utilizes the concept of the com-

plex ideal ratio mask (cIRM) [77]. With the development of complex-valued

deep neural networks [78], estimating the cIRM from the complex-valued

noisy time-frequency representation [73–76] becomes possible. However, the

unbounded property of the cIRM makes it difficult for optimization due to

the infinite search space [79]. The imaginary part of the cIRM also lacks

learnable patterns for the neural network to explore [80].
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2.2 Speech enhancement evaluations

Section 2.1 introduces several speech enhancement techniques, from tradi-

tional to modern ones. Before applying these techniques in practice, it is

necessary to evaluate their performance. The target of speech enhancement

is to improve speech quality and intelligibility, which are qualitative measures

such as ’high quality’ or ’low intelligibility.’ Therefore, the performance eval-

uation methods of speech enhancement involve quantifying these qualitative

measures.

Speech enhancement has two primary evaluation targets: quality and

intelligibility. Both are distinct attributes of speech signals and should not

be confused. Quality measures evaluate a speaker’s utterance production,

including factors like naturalness or hoarseness. In contrast, intelligibility

measures assess how understandable the speech content is. For instance,

speech signals synthesized from a few modulated noise bands using noise

vocoding can have high intelligibility but low quality, making them sound

mechanical [36].

Regarding evaluation conduction methods, there are two types: subjec-

tive and objective. Subjective evaluation methods refer to evaluations based

on human perception and judgment, such as rating overall quality, natural-

ness, or background noise reduction by a group of listeners. Objective evalua-

tion assesses the quality of speech enhancement systems based on measurable

and quantifiable metrics designed to correlate well with subjective listening

tests.

2.2.1 Subjective evaluations

Subjective evaluation methods provide valuable insights into how effective a

speech enhancement system is from the perspective of the end user, which can

sometimes differ from objective metrics. They are crucial parts of evaluating

the performance of speech enhancement systems.

• ITU-T P.800 [81]: This standard describes methods and procedures for

subjective evaluations of telephone connections’ perceived transmission

quality. It is typically applied in the telecommunications industry to

evaluate analog and digital systems. ITU-T P.800 follows an Abso-

lute Category Rating (ACR) methodology. ACR provides a simple
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test paradigm for assessing stimulus on a single quality scale - or Mean

Opinion Score (MOS), where each value from 1 to 5 is associated with

a specific categorical description. However, typically, the scale is inter-

preted as in Table 2.1

Table 2.1: Score description in ITU-T P.800.

Score Description

5 excellent (perfect quality, effortless conversation)
4 good (high quality, comfortable conversation)
3 fair (acceptable quality, possible conversation without much effort)
2 poor (low quality, possible conversation with effort)
1 bad (unacceptable quality, impossible conversation)

• ITU-T P. 807 [82]: This standard describes a subjective testing method-

ology for assessing speech intelligibility in communications settings,

systems, and devices. The method provides a percent correct intelli-

gibility score based on a two-alternative, forced-choice task where the

stimulus is one of the two words from a pair of words, i.e., a test item.

Half of the test items are rhyming word pairs (i.e., they differ only in

the initial consonant), and half are alliterative word pairs (i.e., they

differ only in the final consonant). The two critical consonants in each

test item vary only in a distinctive feature. In addition to a score for

overall intelligibility, the method provides scores for each of six char-

acteristic features: voicing, nasality, sustention, sibilation, graveness,

and compactness.

• ITU-T P. 835 [83]: This standard describes a subjective evaluation

framework for evaluating speech communication systems incorporat-

ing speech enhancement algorithms. It is particularly appropriate for

evaluating speech enhancement methods. The methodology uses sep-

arate MOS scales to estimate three dimensions of speech quality sep-

arately: signal distortion (SIG), noise distortion (BAK), and overall

quality (OVRL).

In ITU-T P. 835, each trial fed to the listeners contains three subsam-

ples. Each subsample has the following sequential structure: a period

of background noise alone, a period of speech with background noise,
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Table 2.2: Score description (SIG and BAK) in ITU-T P.835.

Score SIG description BAK description

5 not distorted not noticable
4 slightly distorted slightly noticable
3 somewhat distorted noticable but not intrusive
2 fairly distorted somewhat intrusive
1 very distorted very intrusive

a period of noise only, and an appropriate silent voting interval. For

the first two subsamples, listeners rate either the SIG or the BAK, de-

pending on the rating scale order specified for that trial. For the SIG,

listeners are instructed to attend only to the speech signal and rate the

speech on the MOS distortion scale, while for the BAK, subjects are

instructed to attend only to the background and rate the background

on the MOS intrusiveness scale. The score description of both scales

are in Table 2.2. For the third subsample, subjects are instructed to

listen to the speech signal, including background, and rate it the same

way as ITU-T P.800 [81].

2.2.2 Objective evaluations

Objective evaluation methods for speech enhancement primarily involve quan-

tifying the improvement in speech quality and intelligibility using measurable

and quantifiable metrics. Most objective evaluation methods are intrusive,

requiring measuring the distance or similarity from the target stimuli to a

reference stimuli of perfect quality. Some common perceptual evaluations of

speech quality and intelligibility are:

• Signal-to-noise ratio (SNR): SNR measures the ratio of the speech sig-

nal power to the noise power. Higher values of SNR indicate less noise

distortion. In practical use, the SNR is in 10based logarithm scale using

the following equation

SNR (dB) = 10 log10
E [s2(t)]

E [n2(t)]
. (2.22)
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• Mel cepstral distortion (MCD) [84]: MCD quantifies the difference be-

tween two speech signals based on the Mel scale, a perceptual scale of

pitches approximating the human ear’s response more closely than the

linearly-spaced frequency bands. In speech synthesis or recognition,

MCD provides a way to compare a synthesized speech signal with a

reference signal and determine how closely they match. Lower MCD

values indicate a closer match and, thus, better performance of the

speech synthesis or recognition system.

• Perceptual Evaluation of Speech Quality (PESQ) [85]: PESQ is a

widely used objective metric that measures the similarity between the

enhanced speech signal and the reference signal based on the percep-

tual quality of the speech signal. The scores given by PESQ are on

the MOS scale, i.e., from 1 (bad) to 5 (excellent). PESQ is one of the

standards recognized by ITU [86].

• Perceptual Objective Listening Quality Analysis (POLQA) [87]: POLQA

is another speech perceptual evaluation varying from 1 to 5, similar to

PESQ. POLQA advances PESQ and provides more accurate and reli-

able results, especially for modern wide-band speech codecs. POLQA

is also standardized by ITU [88].

• Short-Time Objective Intelligibility (STOI) [89]: STOI computes the

correlation between the clean and degraded speech signals based on

short-time spectral features. The scores given by STOI are between 0

- low intelligibility and 1 - high intelligibility.

• Blind Source Separation Evaluation (BSSEval) [90]: BSSEval is a set

of metrics used to evaluate the performance of blind source separation

algorithms. With additive noise, speech enhancement can be consid-

ered blind source separation. In blind source separation, the estimated

target (speech) signal is decomposed as a sum of four signals

ŝ(t) = starget(t) + einterf(t) + enoise(t) + eartif(t) , (2.23)

where starget(t), einterf(t), and enoise(t) are allowed deformations of the

clean speech signal s(t), point-source noise signal, and isotropic noise
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signal, respectively; while eartif(t) is the artifact yielded by the separa-

tion algorithm [91]. The output values of the BSSEval include Signal-

to-Distortion Ratio (SDR), Source-to-Inferences Ratio (SIR), Source-

to-Noise Ratio (SNR), and Source-to-Artifacts Ratio (SAR).

• Perceptual Evaluation methods for Audio Source Separation (PEASS)

[92]: PEASS is another set of metrics designed to predict the perceived

quality of estimated source signals in the context of audio source separa-

tion1. PEASS aims to provide a more perceptually relevant evaluation

of the performance of audio source separation algorithms with four

metrics: Target-related Perceptual Score (TPS), Interference-related

Perceptual Score (IPS), Artifact-related Perceptual Score (APS), and

Overall Perceptual Score (OPS).

• Virtual Speech Quality Objective Listener (ViSQOL) [93]: ViSQOL is

an objective, full-reference metric for perceived audio quality using the

spectro-temporal measure of similarity between a reference and a test

speech signal to produce a Mean Opinion Score - Listening Quality

Objective (MOS-LQO) score from 1 (the worst quality) to 5 (the best

quality). ViSQOL has been designed to be robust for quality issues

associated with Voice over IP (VoIP) transmission. ViSQOL competes

well with other standard metrics like PESQ and POLQA, offering an

alternative to POLQA in predicting speech quality in VoIP scenarios.

Overall, objective evaluation metrics provide a reliable and quantita-

tive means of evaluating the performance of speech enhancement algorithms.

However, it is essential to note that these metrics may only sometimes cor-

relate well with subjective listening tests, which are the ultimate measure of

speech enhancement performance.
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Chapter 3

Modulation theory of speech

communication

The waveform of speech signals has a complex structure that fluctuates over

time, which seems completely random. However, the language spoken only

contains a finite set of phonemes, which restrains the linguistic information to

be finite. Also, listeners can understand the content even when two different

people pronounce the same sentence. Therefore, the speech signals must

contain some structure essential for perceiving and recognizing speech, while

the other information is just variation. The organs for speech production

construct sound waves from those essential features, and the auditory system

receives and decodes those features for speech perception. Then, how should

the speech signals be dissected?

The structure described above is similar to a communication system that

uses the modulation technique, such as a radio communication system. In

communication theory, modulation is a technique for transmitting a low-

frequency message signal over a longer distance by manipulating a high-

frequency carrier signal so the carrier signal can ’carry the message’ over a

longer distance. The construction process of speech signals is similar to the

modulation process, where the sound wave is the carrier that carries essential

speech information to the listeners.

This chapter provides the background to support the idea that speech

communication processes are modulation-based. The first section briefly in-

troduces the modulation concept. The second section introduces the mod-
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Figure 3.1: Diagram of modulation process in radio transmission.

ulation assumption of speech, which provides the view of speech signals as

modulated signals along different axes and in different attributes.

3.1 Concept of modulation

Modulation is an essential process employed in communication theory. It

involves manipulating a carrier signal’s characteristics, such as amplitude,

frequency, and phase, with a modulating wave. This technique converts data

as a message signal into electrical or digital signals that transmit over a com-

munication medium. The primary function of modulation is to enhance the

strength of signals for maximum reach, which is critical in modern commu-

nication systems. Radio transmission to transmit sound signals is a typical

example of modulation, of which the process diagram is in Figure 3.1. The

sound wave can only travel in the air for a short distance, so the radio system

applies modulation to transmit it at a longer distance, enabling communica-

tion across a village, a city, or even a country.

Modulation is a complex process involving mathematical operations to

modulate the carrier signal. The modulating signal is superimposed onto
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the carrier signal, resulting in the production of a modulated signal. The

modulated signal transmits to the intended receiver over a communication

channel, such as a cable, fiber-optic line, or wireless network.

Two main types of modulation techniques used in practice communication

systems are amplitude modulation and frequency modulation:

• Amplitude Modulation (AM): Only the amplitude of the carrier sig-

nal is varied to represent the message to the signals. In contrast, the

signal’s phase and frequency are kept unchanged. The mathematical

description of an AM signal is as follows

xAM(t) = A

(
m(t) + 1

2

)
cos (2πfct) , (3.1)

where

– A is the peak amplitude of the carrier signal,

– m(t) is the message signal of which range is between −1 and 1,

– fc is the frequency (in Hertz) of the carrier signal.

The instantaneous amplitude of the sinusoidal carrier is modified by a

multiplicative term m(t)+1
2

, which is non-negative, to construct the AM

signal xAM(t). Figure 3.2 (c) illustrates an AM signal with a carrier

frequency fc = 80Hz carrying a 8 hz sinusoidal message.

• Frequency Modulation (FM): Only the carrier signal frequency is varied

to represent the message, while the signal’s phase and amplitude are

kept unchanged. The formula of an FM signal is as follows

xFM(t) = A cos

(
2πfct+ 2πf∆

∫ t

0

m(τ)dτ

)
, (3.2)

where

– A is the amplitude of the carrier signal,

– m(t) is the message signal of which range is between −1 and 1,

– fc is the frequency (in Hertz) of the carrier signal,
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– f∆ is the peak frequency deviation (in Hertz), controlling the max-

imum modification to the instantaneous frequency of the carrier

signal away from its frequency fc in the modulation process.

This definition modifies the instantaneous of the sinusoidal carrier by an

additive term f∆m(t) away from the carrier frequency fc. Figure 3.2 (d)

illustrates an FM signal with a carrier frequency fc = 80Hz carrying a

8Hz sinusoidal message.

After the transmission, the receiver must extract the message signal from

the transmitted signal, called demodulation. In practice, the communication

system is a broadcasting system; in other words, several senders are sending

messages simultaneously. Each sender uses a unique carrier frequency, which

helps distinguish the senders from one another. The receiver first ’listens’ to a

target sender by filtering at the specific carrier frequency, keeping the signals

of which frequency stays within a band around the carrier frequency. Then,

depending on the modulation type, i.e., AM or FM, the receiver extracts the

message signal using AM or FM demodulation techniques.

Modulation is a crucial technique in communication theory that enables

data transmission over a communication medium. However, within the con-

text of this dissertation, modulation is considered a general principle and a

mathematical framework to describe the human speech communication pro-

cess. The following section will discuss this viewpoint.

3.2 Modulation assumption of speech

Modulation is the technique that helps transmit a low-frequency message

signal using a high-frequency carrier signal. The analogy of the modulation-

demodulation process can be applied to human speech communication to

discuss the perceptual invariance against a large amount of acoustic variance

[94]. As a consequence, the mathematical framework in modulation can

help extract the characteristics of speech. The earlier section describes how

human speech communication is similar to a modulation process and the

related works that share a similar point of view. Then, the latter of this

section provides evidence of modulation in amplitude and frequency by the

extracted features using the modulation framework.
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Figure 3.3: Speech communication process as a modulation-demodulation
process.

3.2.1 Speech communication as a modulation process

Speech is a natural yet powerful way to convey human thoughts, ideas, and

emotions to one another. It is the bridge that connects the realm of our minds

to the external world. Through speech, we can share our unique perspectives,

inspire others with our ideas, and express our emotions in a way that words

on a page cannot capture. It is a fundamental aspect of human interaction,

fostering understanding and empathy among individuals. Indeed, speech is

not just a means of communication but a testament to the complexity and

depth of human thought and emotion.

There are two aspects of speech communication: speech production and

speech perception. The physiological mechanism of speech production is a

complex process that involves several stages and parts of the human body

[95], including:

1. Thought formation and word choice: The process of forming thoughts

and choosing words begins in the mind.

2. Respiration: The air from the lungs is directed to the larynx.

3. Phonation: The larynx has vocal folds that remain open or vibrate
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to produce sound. When the vocal folds vibrate, they convert the air

breathed out into intermittent airflow pulses. This process results in a

buzzing sound.

4. Articulation: The air from our lungs is shaped by different parts of

our mouth and nose, called articulators. These include the tongue,

lower jaw, lips, and velum, and they work together to create specific

movements that change the resonance properties of the airway above

our vocal cords.

5. Resonance: Resonators in the upper respiratory tract include pharyn-

geal, oral, and nasal cavities. These chambers transform laryngeal

sounds into sounds with special linguistic functions.

This process is similar to the modulation process, where the first stage acts

like a message synthesizer, while other stages construct a sound wave car-

rying the synthesized messages. On the other hand, in speech perception,

the auditory system first transfers the sound wave as air vibration into the

cochlea and vibrates the basilar membrane, causing the organ of Corti to

move against the tectorial membrane, stimulating the generation of nerve

impulses to the brain [96]. Within the cochlea, each membrane region is

most affected by a specific frequency of vibrations, which helps the basilar

membrane analyze the different frequencies of complex sounds [96]. This

auditory system function is similar to demodulation, where there are several

receivers, each of which keeps listening to a specific frequency.

The physiological process of speech production and speech perception be-

haves similarly to a modulation-demodulation system, which makes speech

signals the result of modulating sound waves with speech information to

travel in the air. Figure 3.3 visualizes such an analogy. Under this anal-

ogy, the later parts of this section review the messages hidden inside speech

signals.

3.2.2 Amplitude modulation: temporal and spectral

modulation

The speech signal is amplitude-modulated in both temporal and spectral axes

(see Figure 3.4).
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Temporal modulation

As aforementioned in Chapter 2.1.2, when using a filterbank to decompose

a speech signal, each sub-band signal is amplitude-modulated [34–36]. In

the temporal domain, AM manifests as fluctuations in the amplitude of the

speech waveform over short time intervals, capturing dynamic changes in

loudness and intensity. These temporal variations provide essential cues for

segmenting speech into phonetic units, delineating syllables, and conveying

prosodic features such as stress, emphasis, and intonation. Comprehend-

ing spoken language seems to hinge on a diverse range of syllable durations,

spanning from 50 to 400ms for American English, as evidenced by the modu-

lation spectrum of the acoustic signal. The upper segment of the modulation

spectrum, falling within the range of 6–20Hz, primarily corresponds to un-

stressed syllables. In contrast, below 5 Hz, the lower segment predominantly

denotes heavily stressed syllables [97].

Spectral modulation

AM also appears in the spectral domain. Specifically, the power spectrum of

a voiced segment is amplitude-modulated. The source-filter model of speech

production can explain this phenomenon. In this model, the vocal tract

acts as a filter, shaping the excitation source into specific speech sounds

by modifying spectral characteristics. The vocal tract’s transfer function

represents how the vocal tract shapes the excitation source to produce speech

sounds. The excitation source, often called the glottal flow, is generated by

the vibration of the vocal folds in the larynx. This vibration creates a periodic

signal with a fundamental frequency corresponding to the pitch of the voice.

The glottal flow serves as the input to the vocal tract filter, and its spectral

characteristics determine the fundamental pitch and timbre of the speech

sounds. The spectral envelope reflects the frequency response of the vocal

tract filter, while the spectral fine structure captures the harmonic structure

in the periodic glottal flow.
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3.2.3 Frequency modulation: instantaneous frequency

deviation (IFD)

While several studies investigate the amplitude modulation characteristics of

speech, frequency modulation receives less attention. Maragos et al. intro-

duces the concept of FM to model the non-linearities of speech resonances

[98]. Several studies also show that FM appears in speech signal [99, 100],

characterizing formant transitions [101] and strongly contributing to speech

perception [102].

In speech processing, the message demodulated from the FM signal is

called instantaneous frequency deviation (IFD) [103], which refers to the

amount of deviation of the instantaneous frequency around the center fre-

quency of each sub-band signal. Given a complex time-frequency represen-

tation x̃(ω, τ) of a signal x(t), from the construction of the FM signal in

Eq. (3.2), the following equation can conventionally compute the IFD:

Q(ω, τ) =
∂∠x̃(ω, τ)

∂τ
− ω (3.3)

As shown in Figure 3.5, when analyzing a speech signal, while the phase of

the complex time-frequency representation has a complex structure without

specific patterns, the instantaneous frequency of each sub-band signal devi-

ates around the center frequency with a similar pattern to the amplitude. In

detail, when the instantaneous amplitude is locally high, the IFD tends to be

zero. Although one can intuitively explain this relation between the tempo-

ral amplitude and frequency modulation, the detailed quantitative relation

is still unclarified [103].
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Figure 3.4: Amplitude modulation of speech in time and frequency axes.
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Figure 3.5: Time-frequency representation of speech: (a) phase spectrogram,
(b) IFD spectrogram, and (c) log power spectrogram (amplitude). While
phase spectrogram has a complex structure, IFD spectrogram has similar
patterns to log power spectrogram.
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Chapter 4

Spectral modulation

characteristics enhancement in

amplitude

In an attempt to answer the first research question, ‘Does enhancing the

speech characteristics in amplitude improve speech enhancement performance,’

based on modulation theory, this chapter proposes a method to model the

spectral modulation characteristics of speech and applies it to speech en-

hancement. The results show that (1) the proposed method effectively mod-

els the spectral modulation characteristics of speech and (2) applying the

proposed method to speech enhancement improves the quality and intelligi-

bility of enhanced speech, answering the first research question.

4.1 Problem formulation

As Chapter 3 mentions, the power spectra of voiced segments are amplitude-

modulated along the spectral axis under the source-filter assumption. In the

source-filter assumption, a voiced segment is the result of filtering the ex-

citation source from the glottal by a linear acoustic filter - the vocal tract

(see Figure 3.4). The glottal source, resulting from the vibration of the vocal

cords, is not a pure tone but contains a fundamental tone with a fundamental

frequency (F0) of f0Hz and a series of higher frequencies called upper har-

monics, usually corresponding to a simple mathematical ratio of harmonics,
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i.e., 2f0, 3f0, 4f0, 5f0, . . . . The vocal tract amplifies or attenuates this glottal

source to determine the spoken phoneme and produces the sound wave of a

voiced segment carrying that phoneme as a message. As convolution in time

is multiplication in frequency, the spectrum of a voiced segment contains

two multiplicative components: the spectral envelope, a smooth curve rep-

resenting the vocal tract filter, and the spectral fine structure, a fluctuated

structure with peaks appearing at a period of f0 (in Hz).

Although it is easy to estimate the spectral envelope using subspace mod-

eling such as linear prediction or even high-complexity methods such as deep

learning, modeling spectral fine structure is a challenging problem for para-

metric estimation of speech spectra. The frequency bins are large in the

narrow-band configurations where the harmonic appears. The spectrum es-

timation model estimates the spectral envelope and treats the spectral fine

structure as unwanted noise when f0 is low [104]. Unlike modulation in the

time domain or defined in Eq. 3.1, the periodic peaks in the spectral fine

structure are not sinusoidal; therefore, it is difficult to completely separate

the spectral envelope and fine structure using Fourier analysis.

This chapter develops a method to solve the problem of spectral-fine-

structure modeling. Section 4.2 introduces a novel loss function to encourage

the model to learn the spectral fine structure using the discrete F0 distribu-

tion of F0 candidates. Applying this loss function, Section 4.3 proposes a

spectral-fine-structure-aware speech enhancement method. Section 4.4 pro-

vides the evaluation results to verify whether modeling spectral fine structure

is helpful for speech enhancement. Finally, section 4.5 concludes this chapter.

4.2 Modeling spectral fine-structure via dis-

crete F0 distribution

4.2.1 Discrete F0 distribution

Given a log power spectrum ρ
∆
= {ρ(f)}f , the significance [104] of an F0

candidate ξ can be defined as

qξ =
∑
k≥1

ρ (kξ)− ρ (kξ − ξ/2)√
k

. (4.1)
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Figure 4.1: Subharmonic-to-harmonic algorithm to compute significance of
an F0 candidate.

which refers to the distance between the peaks and the valleys right before it.

Figure 4.1 visualizes the idea of the significance. The higher the significance

qξ, the higher the chance that ξ is the F0 of ρ(f). Therefore, given a set of C

candidates {ξ1, . . . , ξC} for F0, the F0 can be estimated as the candidate with

the highest significance. In other words, the F0 distribution is the Dirac delta

distribution at the candidate ξk∗ where k∗ = argmaxk qξk . As the argmax

is not differentiable, this section proposes an F0 distribution approximation

using the Softmax function with temperature as follows

pξk =
exp (qξk/ι)∑C

k′=1 exp
(
qξk′/ι

) , (4.2)

where ι > 0 is the temperature parameter. The lower the temperature, the

closer the approximated distribution to the Dirac delta distribution, while

the higher the temperature, the more uniform the approximated distribution

[105].

Using the approximated categorical distribution of F0 as above, the dif-

ference in F0 between two spectra can be quantified via the Kullback-Leibler

(KL) divergence between their F0 distributions.
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Figure 4.2: Block diagram of LF0’s computation process.

4.2.2 Voiced and unvoiced cases via entropy threshold-

ing

However, unvoiced or silent segments do not contain F0. Since there is no

best F0 candidate, the approximated F0 distribution of an unvoiced segment

is likely uniform, which means its entropy is high. Thus, this section pro-

poses a loss function that quantifies the difference between a ground-truth

spectrum ρ and an estimated spectrum ρ̂ based on their F0 distributions

p =
[
pξ1 · · · pξC

]⊤
and p̂ =

[
p̂ξ1 · · · p̂ξC

]⊤
as follows

LF0(ρ ∥ ρ̂) =

{
DKL(p ∥ p̂) , if H(p) ≤ θh ,

0 , otherwise ,
(4.3)
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Figure 4.3: Visualization of outputs of each step in computing the discrete
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where θh ∈ [0, logC) is a fixed threshold. The KL divergence DKL(p ∥ p̂)

from p̂ to p and the entropy H(p) of p are respectively defined as

DKL(p ∥ p̂) =
C∑

k=1

pξk log
pξk
p̂ξk

, (4.4)

H(p) = −
C∑

k=1

pξk log pξk . (4.5)

Figure 4.2 illustrates the computation process in Eq. (4.3). Figure 4.3 il-

lustrates the significance matrix and the log probabilities and entropy of the

approximated distributions of a speech spectrogram to visualize the quanti-

ties in the equations (4.1), (4.2), and (4.5) for each frame.

4.3 Spectral-fine-structure-aware Wiener fil-

ter for speech enhancement

4.3.1 Mathematical assumptions

For additive noise, in the STFT domain, the noisy complex spectrogram

Y ∈ CK×M is the sum of the clean-speech complex spectrogram S ∈ CK×M

and the noise complex spectrogram N ∈ CK×M , where K is the number of

frequency bins and M is the number of time frames. Let ỹkm, s̃km, and ñkm

represent the coefficients of Y, S, and N, respectively, at a frequency bin

index 0 ≤ k < K and a frame index 0 ≤ m < M . The relation between ỹkm,

s̃km, and ñkm are described by the following equation

ỹkm = s̃km + ñkm . (4.6)

Also, the complex coefficients of S and N are assumed to follow the circularly

symmetric complex normal distribution; in other words,

s̃km ∼ NC
(
0, σ2

S, km

)
, (4.7)

ñkm ∼ NC
(
0, σ2

N, km

)
, (4.8)
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where σ2
S, km and σ2

N, km represent the variances of speech and noise, respec-

tively. Assuming that speech and noise are uncorrelated, the spectrogram

coefficients of the noisy signal then also follow the complex normal distribu-

tion of which variance is the sum of the speech and noise variances:

ỹkm ∼ NC
(
0, σ2

S, km + σ2
N, km

)
. (4.9)
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Under such constraints, the power spectrograms of speech, noise, and mixture

signals follow the exponential distribution as follows

|s̃km|2 ∼ Exp
(
σ2
S, km

)
, (4.10)

|ñkm|2 ∼ Exp
(
σ2
N, km

)
, (4.11)

|ỹkm|2 ∼ Exp
(
σ2
S, km + σ2

N, km

)
, (4.12)

where Exp (λ) indicates the exponential distribution with the mean param-

eter λ > 0. The log-likelihood function for a sample v to belong to an

exponential distribution Exp(λ) is

L (λ|v) = −v
λ
− log λ , (4.13)

= −dIS(v ∥ λ) + const , (4.14)

where dIS is the Itakura-Saito (IS) divergence defined as

dIS(v ∥ λ) =
v

λ
− log

v

λ
− 1 . (4.15)

If the speech and noise variances are known, the spectrogram of clean speech

can be estimated by applying the ideal ratio mask, of which equation is

defined via the Wiener filter as

ˆ̃skm =

(
σ2
S, km

σ2
S, km + σ2

N, km

)
ỹkm . (4.16)

For the rest of the chapter, since v and λ are used as the power spectrogram

coefficient and its variance parameter for a time-frequency bin, the following

notation is conveniently defined

DIS(X ∥ λ) =
∑
k,m

dIS(|x̃km|2 ∥ λkm) , (4.17)

where X ∈ CK×M is a complex spectrogram of which element-wise variances

are defined in λ ∈ RK×M
+ .
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4.3.2 Spectral-fine-structure-aware speech variance es-

timation using vector-quantized variational au-

toencoder

Vector-quantized variational autoencoder

Vector-quantized variational autoencoder (VQVAE) is a framework for learn-

ing the probability distribution of a dataset. The VQVAE assumes that each

observation x in a dataset X is stochastically generated from a latent variable

z ∈ RD following the discrete uniform distribution on a set of pseudovectors

in a codebook C =
{
e1, · · · , e|C|

}
via a conditional distribution (decoder)

pθ (x|z). The VQVAE approximates the intractable posterior pθ (z|x) as

follows

z|x ∼ qϕ,C (z|x) = δ (e∗) , (4.18)

where δ(·) denotes the Dirac delta distribution and e∗ is determined by an

encoding-quantization process as follows

µ
∆
= µϕ (x) (encoding) , (4.19)

e∗ = argmin
e∈C

∥µ− e∥22 (quantization) . (4.20)

The settings of VQVAE resemble a communication system in which the en-

coder compacts the input vector x into a code µ, the quantization process

maps µ to the nearest code e∗ in the codebook, and the decoder reconstructs

the input. The parameters θ, ϕ, and C can be obtained by minimizing

LVQVAE (θ,ϕ, C) = −Eẑ∼qϕ,C [log pθ (x|ẑ)]
+ ∥sg (µ)− e∗∥22 + β ∥µ− sg (e∗)∥22 , (4.21)

where sg (·) is the stop-gradient operator. As the sampling process of ẑ is

not differentiable, the VQVAE uses the reparameterization trick as follows

ẑ = µ+ sg (e∗ − µ) . (4.22)
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Method for achieving noise-robustness speech variance estimation

The VQVAE utilizes a codebook to capture the data distribution, reducing

the latent variable domain to a codebook C instead of RD. As a result,

the VQVAE, when trained on clean speech, will only produce clean speech

samples regardless of input. Applying this property, the VQVAE is initially

pre-trained on clean speech. Then, a noisy encoder is trained to denoise

speech in the latent space and refine the decoder for noise-robustness using

the pre-trained codebook. Figure 4.4 illustrates this training process.

For pre-training, VQVAE is applied to model the distribution of the

speech complex spectrogram S as

s̃km|ẑ ∼ NC
(
0, σ̂2

θ,S, km (ẑ)
)
, (4.23)

which leads to the following loss function

LS (θ,ϕS, C) = DIS(S∥ σ̂2
S) + ∥sg (µ)− e∗∥22 + β ∥µ− sg (e∗)∥22 . (4.24)

where

µ
∆
= µϕS

(S) (encoding) , (4.25)

e∗ = argmin
e∈C

∥µ− e∥22 (quantization) , (4.26)

ẑ = µ+ sg (e∗ − µ) (reparameterization) , (4.27)

σ̂2
S

∆
= σ̂2

θ, S (ẑ) (decoding) . (4.28)

In the main training stage, the loss function for speech variance estimation

is

LY (θ,ϕY) = DIS(S ∥ σ̂2
S′) + β ∥µ′ − sg (e∗)∥22 , (4.29)

where

µ′ ∆
= µϕY

(S) (noisy encoding) , (4.30)

e∗′ = argmin
e∈C

∥µ′ − e∥22 (quantization) , (4.31)

ẑ′ = µ′ + sg
(
e∗′ − µ′) (reparameterization) , (4.32)

σ̂2
S′

∆
= σ̂2

θ, S (ẑ
′) (decoding) . (4.33)
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Spectral-fine-structure-aware speech variance estimation

The speech variance estimation framework introduced above is based on IS

divergence, which rather focuses on the spectral envelope and tends to ignore

the spectral fine structure [106]. To solve this problem, the proposed method

simply adds the LF0 to the speech variance estimation loss in both states, in

other words,

LS (with SFS-aware) (θ,ϕS, C) = LS (θ,ϕS, C) + LF0(S ∥ σ̂2
S) , (4.34)

LY (with SFS-aware) (θ,ϕS, C) = LY (θ,ϕY, C) + LF0(S ∥ σ̂2
S′) , (4.35)

where

LF0(S ∥ σ̂2) =
∑
m

LF0(sm ∥ σ̂2
m) . (4.36)

4.3.3 Noise Variance Estimation

The noise variance estimator is trained to reduce the IS divergence between

the noise spectrogram and the predicted noise variance as follows

LN (θN) = DIS(N ∥ σ̂2
N,θN

) . (4.37)

The noisy speech log-power spectrogram is empirically subtracted from the

estimated speech variance to condition the noise variance estimator on the

estimated speech variance. Although it is not entirely accurate, this results in

a representation that resembles the noise log-power spectrogram better than

the noisy log-power spectrogram, where speech information is suppressed.

4.4 Experiments

4.4.1 Dataset

The proposed method is evaluated using the open dataset from Valentini

et al. [37]. This dataset has been used in several recent speech enhance-

ment studies, included here as baselines. The clean training set comprises 28

speakers (14 males and 14 females) and the test set of two speakers (one male

and one female) from the Voice Bank corpus [107]. The noisy training set
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Figure 4.5: Architecture of WaveNet.

is constructed by mixing the clean training set with ten types of noise data

at four signal-to-noise ratios (SNRs): 15 dB, 10 dB, 5 dB, and 0 dB. Eight

of ten noise types are real recorded noise from the DEMAND dataset [108],

while the other two (speech-shaped and babble) are artificially generated.

The noisy test set is constructed by mixing the clean test set with five other

types of noises from DEMAND dataset [108] at four SNRs: 17.5 dB, 12.5 dB,

7.5 dB, and 2.5 dB. The training and test sets have no speakers or noise types

in common. All speech waveforms are resampled from 48 kHz to a 16 kHz

sampling rate. To improve the data variance, the input speech is randomly

scaled between −35 dB and −20dB.

4.4.2 Configurations for LF0

For LF0 computation, the F0 distribution over a set of C = 241 F0 candidates

linearly located from 60Hz to 300Hz is used; in other words, the resolution

is 1Hz. To avoid numerical problems, mean-and-variance normalization is

applied to the significance matrix before applying the Softmax function.
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The LF0 contains two hyperparameters: the Softmax temperature ι and

the entropy threshold θh. The principle of selecting these hyperparameters

is that these parameters should be optimal for F0 detection using entropy

(Eq. (4.5)) on the training dataset. Therefore, first, the Softmax temperature

is selected so that the frames containing F0 should have a lower entropy. As

the entropy H(p) is bounded between 0 and logC, the Softmax temperature

ι is selected to minimize the loss of binary classification as follows:

LBCE(ι) = −
∑

frame ρ

z(ρ) log

(
1− H(p)

logC

)
+ (1− z(ρ)) log

H(p)

logC
, (4.38)

where

z(ρ) =

{
1 , if the frame ρ contains F0 ,

0 , otherwise .
(4.39)

The ground truth for F0 detection is obtained using PYIN algorithm on the

data.

Different LBCE(ι) under different ι are visualized in Figure 4.6(a), indicat-

ing the optimal ι ≈ 0.45. Then, the entropy threshold is selected to optimize

the F0 detection results based on H(p)

ẑ(ρ) =

{
1 , if H(p) < θh ,

0 , otherwise .
(4.40)

In this scenario of binary classification where 1 is positive label and 0 is

negative label, false positives, i.e., detecting F0 in a frame which does not

containing F0, are more dangerous as it makes the model optimize a mean-

ingless property. Therefore, precision, accuracy, and balance accuracy are

used to analyze the detection rate at different θh. The results are visualized

in Figure 4.6(b). While the optimal θh is around 0.65 logC, the metrics drop

very fast as the threshold increases farther from this value, which makes

this optimal value sensitive. Therefore, the implementation of the LF0 uses

θh = 2 ≈ 0.36 logC to keep the stable precision while does not reduce too

much the accuracy and balance accuracy.
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4.4.3 Implementation

In the implementation, the STFT uses the hanning window function with

a window length of 25ms (400 samples) and a hop length of 6.25ms (100

samples). The number of points for the fast Fourier transform is 512, which

results in 257 frequency bins.

The WaveNet-based module shown in Figure 4.5 is the basic block to

construct our models. The VQVAE is implemented with a U-Net hierarchi-

cal structure of two layers (bottom and top) similar to [109] for the speech

variance estimator. The bottom VQVAE aims to capture information in a

higher temporal resolution, followed by the top, which tries to model the fea-

tures in a lower temporal resolution. The noise variance estimator and all the

encoders and decoders in the speech variance estimator have the architecture

of the WaveNet-based module without the long short-term memory (LSTM)

layer. The inputs and outputs of the neural network are log-compressed to

improve estimation performance [110].

The training procedure consists of two stages, shown in Figure 4.4, which

are the pre-training and main-training stages. In the pre-training stage,

the VQVAE is trained to estimate speech variance using the clean training

set of 1000 epochs. The data-dependent codebook re-estimation [111] and

EMA algorithm [112] are employed for codebook updating to obtain higher

codebook perplexity. The noisy encoders, decoders, noise variance estimator,

and phase correction network are trained for 1000 epochs in the main training

stage. An Adam optimizer and a One-cycle Learning Rate scheduler with an

initial learning rate of 5× 10−4 and a maximum learning rate of 2× 10−4 are

used for all training stages.

4.4.4 Evaluation Metrics

TheWide-band Perceptual Evaluation of Speech Quality (PESQ-WB) [85,86]

and Short-Time Objective Intelligibility (STOI) [89] metrics are used to eval-

uate the overall performance of the proposed method. The PESQ scores,

which range from −0.5 (bad) to 4.5 (excellent), measure the speech quality

by comparing the enhanced signal to the clean reference speech signal. The

STOI metric is highly correlated to perceptual speech intelligibility. The

STOI scores range between 0 (lowest intelligibility) and 1 (highest intelligi-

49



Table 4.1: Performance of the proposed method with different speech vari-
ance estimation model configurations on Valentini et al. dataset. All the
results in this table are obtained without phase correction.

Speech variance models PESQ-WB STOI

Without LF0 2.815 0.941
With LF0 2.817 0.942

Table 4.2: Improvement of PESQ-WB and STOI for each speaker in the test
set of Valentini et al. dataset when applying LF0. All the results in this table
are obtained without phase correction.

Speaker PESQ-WB Impr. (%) STOI Impr. (%)

p232 (male) 0.434 0.006
p257 (female) 0.340 0.144

Overall 0.385 0.078

bility). For both metrics, a higher score indicates a better result.

4.4.5 Results and discussion

The effectiveness of the proposed spectral-fine-structure enhancement method

is analyzed by comparing the model’s performance with and without LF0.

The results reported in Table 4.1 show that using LF0 can slightly improve

speech enhancement performance. For further analysis, the improvement

percentage of PESQ-WB and STOI for each speaker is evaluated on the test

set when applying LF0, where the improvement percentage of a metric after

an operation is defined as

Impr.(%) =
Final− Initial

Initial
× 100% , (4.41)

where Final and Initial are metric values of the model before and after ap-

plying that operation.

The results in Table 4.2 show that the PESQ-WB and STOI improve over-

all, which means the proposed fine-structure enhancement technique helps

model speech variance better. The improvement percentage of PESQ-WB
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is higher for the male speaker, which aligns with our original purpose when

proposing LF0 to improve spectral fine structure when F0 is low. On the other

hand, the improvement percentage of STOI is lower for the male speaker. The

hypothesis for the cause of this result is the limited capacity of the speech

variance estimation model. There is a trade-off when modeling the spectral

envelope and spectral fine structure of highly fluctuated spectra from the

male speaker. The spectral envelope is more associated with linguistic infor-

mation and speech intelligibility than the spectral fine structure. Therefore,

the fine structure enhancement does not improve STOI much for the male

speaker. This trade-off is less severe for the female speaker with a higher F0

and less fluctuated spectral fine structure. Before using the proposed spec-

tral enhancement, the estimated spectral fine structure was already better

for higher F0 spectra, which resulted in a lower improvement in PESQ-WB.

However, with the higher improvement of STOI for the female speaker, the

LF0 forces the model to utilize its capacity in modeling speech variance.

Figure 4.7 illustrates the estimated speech variances and Wiener filters

with and without using spectral-fine-structure enhancement for some samples

in the Valentini et al. test dataset [37]. The figure visualizes the phenomena

described above and confirms our hypothesis for the effectiveness of the pro-

posed LF0. For the frames with low F0 in the first three samples, the use of

LF0 improves the spectral fine structure of predicted speech variance signif-

icantly in the pre-training stage, which results in a Wiener filter estimation

with closer detailed patterns to the clean speech spectrogram. Nevertheless,

the formants and formant transitions are more apparent when not using LF0,

especially with the weak-harmonic frames. For the frames with high F0, the

effect of LF0 is not visually significant.

Ablation study: The Role of IS Divergence

This section analyzes the use of IS divergence in the model. While the IS

divergence is essential for the proposed speech enhancement method based

on certain assumptions, it overlooks the spectral fine structure [30]. As a

result, we explore the impact of substituting the IS divergence with the log

spectral distortion (LSD), a commonly used metric in the spectral domain,

described by the equation:
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dLSD(x ∥ y) =
1

2

(
log

x

y

)2

. (4.42)

The first and third rows of Table 4.1 indicate that using LSD leads to

a decrease in model performance compared to using IS divergence, despite

the speech variance estimated by optimizing LSD displaying more similar

detailed patterns. Using LSD alters the statistical assumption of speech and

noise power spectrograms from the exponential distribution to the log-normal

distribution. Under this new assumption, the distribution of the noisy speech

also changes, and its parameter no longer possesses the additive property as

in (4.12). Consequently, the Wiener filter is no longer applicable. There-

fore, despite capturing more detailed patterns, LSD does not address the

improvement of spectral fine structure due to the violation of assumptions,

necessitating the incorporation of LF0.

4.5 Summary

In summary, the chapter proposes a method for modeling the spectral mod-

ulation characteristics of speech and applying them to speech enhancement.

Specifically, it introduces a method that uses the discrete F0 distribution

to model the spectral structure characteristics of voiced speech, enabling us

to measure the difference in spectral speech characteristics quantitatively,

namely LF0. Then, a speech enhancement method is proposed based on

Wiener filtering, which applies the proposed LF0 as a loss function for spectral-

fine-structure-aware speech variance estimation. The results demonstrate

that (1) the method effectively models the spectral modulation characteris-

tics of speech and (2) applying the proposed method to speech enhancement

improves the quality and intelligibility of the enhanced speech. These results

satisfy the first objective of this research, supporting the answer to the first

research question: Enhancing the speech characteristics in amplitude can

improve speech enhancement performance.

In summary, the chapter proposed a method for modeling the spectral

modulation characteristics of speech and applying them to speech enhance-

ment. Specifically, it introduced a method that used the discrete F0 dis-

tribution to model the spectral structure characteristics of voiced speech,
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enabling us to measure the difference in spectral speech characteristics quan-

titatively, namely LF0. Then, a speech enhancement method was proposed

based on Wiener filtering, which applied the proposed LF0 as a loss func-

tion for spectral-fine-structure-aware speech variance estimation. The results

demonstrated that (1) the method effectively modeled the spectral modu-

lation characteristics of speech and (2) applying the proposed method to

speech enhancement improved the quality and intelligibility of the enhanced

speech. These results satisfied the first objective of this research, supporting

the answer to the first research question, which is: Enhancing the speech

characteristics in amplitude can improve speech enhancement performance
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Figure 4.7: Samples of the effect of LF0 in the estimated variance of speech
power spectrogram in pre-training and main training (denoising) stages on
four different samples (four columns) from the Valentini test set. The top
figures are the clean and noisy speech power spectrograms as references. The
differences between the outputs of the proposed model with and without
using LF0 are highlighted in the first three samples.
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Chapter 5

Relationship between

amplitude and IFD in the

time-frequency representation

In the complex time-frequency representation, while the amplitude contains

clear patterns to analyze, the phase is much more complicated. Using the

approach of “explaining the unknown from the known,” this chapter seeks

to answer the second research question in this dissertation: ‘Is there a con-

nection between the phase and the amplitude.’ Specifically, this chapter

proposes the analytical derivative method, establishing an equation connect-

ing the amplitude and the instantaneous frequency deviation (IFD), a phase

feature based on modulation theory. Using single-tone frequency-modulated

(FM) signals (ground-truth sinusoidal IFD) for evaluation, the results show

that the IFD extracted by the proposed method is close to the ground-truth

IFD (with small root-mean-squared error). Therefore, the equation connect-

ing amplitude and IFD is correct, answering the second research question.

5.1 Problem formulation

The complex time-frequency representation x̃(ω, τ) of a signal contains two

components: amplitude A(ω, τ) = |x̃(ω, τ)| and phase ϕ(ω, τ) = ∠x̃(ω, τ). If

x̃(ω, τ) is not only amplitude-modulated but also frequency-modulated along
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Figure 5.1: Block diagram of IFD extraction methods: (a) phase difference
method (conventional) and (b) analytical derivative method (proposed).

the temporal axis with carrier frequency ω, then x̃(ω, τ) must satisfy

x̃(ω, τ) = A(ω, τ) exp iϕ (ω, τ)

= A(ω, τ) exp

{
i

∫ τ

0

[ω +Q(ω, η)] dη

}
= A(ω, τ) exp

[
iωτ + i

∫ τ

0

Q(ω, η)dη

]
,

(5.1)

where Q(ω, τ) is the instantaneous frequency deviation (IFD), which is the

deviation of the instantaneous frequency from the carrier frequency ω. As a

results, Q(ω, τ) can be derived straightforwardly by the following formula

Q(ω, τ) =
∂ϕ(ω, τ)

∂τ
− ω . (5.2)

In discrete system, Eq. (5.2) allows to approximate the IFD as shown in

Figure 5.1 (a), namely phase difference method. While this method is simple,

it cannot quantitatively explain the relationship between A(ω, τ) andQ(ω, τ).

In addition, as the phase is circular-valued, the phase difference also suffers
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the phase-wrapping issue. To solve this issue, the next section establishes

another Q(ω, τ) equation that connects with A(ω, τ).

5.2 Analytical derivative method for IFD ex-

traction

The analytical derivative method applies the technique in instantaneous fre-

quency extraction by Murty and Yegnanarayana [113], which takes the log-

arithm (principal value) in both sides of Eq. (5.1), resulting in

log x̃(ω, τ) = logA(ω, τ) + iωτ + i

∫ τ

0

Q(ω, η)dη . (5.3)

Then, taking the time derivative on both sides of Eq. (5.3) results in

1

x̃(ω, τ)
· ∂x̃(ω, τ)

∂τ
=

1

A(ω, τ)
· ∂A(ω, τ)

∂τ
+ iω + iQ(ω, τ) . (5.4)

Assuming that A(ω, τ) is continuous and differentiable with respect to τ ,

Q(ω, τ) can be computed as

Q(ω, τ) = I
{

1

x̃(ω, τ)
· ∂x̃(ω, τ)

∂τ
− iω

}
= I

{
1

x̃(ω, τ)
·
(
∂x̃(ω, τ)

∂τ
− iωx̃(ω, τ)

)}
= I

{
x̆(ω, τ)

x̃(ω, τ)

}
, (5.5)

where I {·} indicates the imaginary part of a complex number and

x̆(ω, τ) =
∂x̃(ω, τ)

∂τ
− iωx̃(ω, τ) . (5.6)

The term x̃(ω, τ) is a complex time-frequency representation of x(t); in

other words, x̃(ω, τ) is the result of filtering x(t) by an analytical band-pass
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filter ψ̃ω of which center frequency is ω (rad/s) (see Section 2.1.2). Therefore,

x̃(ω, τ) =
(
x ∗ ψ̃

)
(τ)

=

∫ ∞

−∞
x(τ − t) ψ̃ω(t) dt . (5.7)

As a result,

x̆(ω, τ) =

∫ ∞

−∞
x(τ − t)

(
dψ̃ω(t)

dt
− iωψ̃ω(t)

)
dt

=
(
x ∗ ψ̆ω

)
(τ) , (5.8)

where

ψ̆ω(t) =
dψ̃ω(t)

dt
− iωψ̃ω(t) . (5.9)

As ψ̃ω(t) is an analytical band-pass filter, ψ̃ω(t) typically has the form of

ψ̃ω(t) = hω(t)e
iωt , (5.10)

where hω(t) is the low-pass filter and eiωt is the oscillation term that shifts

the spectrum of hω(t) to the center frequency ω [114]. The form in Eq. (5.10)

is commonly seen in several filterbanks, for examples,

• Gabor wavelet where hω(t) is a Gaussian distribution,

• Gammatone wavelet where hω(t) is a gamma distribution, and

• STFT where hω(t) is the window function, i.e., hω(t) does not depend

on ω.

When ψ̃ω(t) has the form above, Eq. (5.9) beceomes

ψ̆ω(t) =
dhω(t)

dt
eiωt , (5.11)

which can be derived analytically when hω(t) is given.

Eq. (5.5), Eq. (5.8), and Eq. (5.11) constructs an alternative method to

extract the IFD Q(ω, τ) without phase calculation, namely analytical deriva-

tive method, of which process diagram is illustrated in Figure 5.1 (b).
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5.3 Validation simulation

This section describes a validation simulation to verify the correctness of the

proposed analytical derivative method for IFD extraction in the previous sec-

tion. As aforementioned, extracting IFD means extracting the modulating

signal of an FM signal. Therefore, this evaluation requires an FM signal

with known IFD (i.e., modulating signal) to compare the extracted IFD and

the ground-truth IFD. In communication theory, the maximum modulating

frequency and peak frequency deviation of the modulating signal are two pa-

rameters that characterize the properties of FM signals. Therefore, this sec-

tion uses a single-tone FM signal to validate the proposed analytical method

because (1) single-tone FM signal only varieties by the two parameters above

and (2) the modulating signal is known.

5.3.1 Single-tone FM signal

A single-tone FM signal is a type of FM signal with constant modulating

frequency; in other words, the modulating signal is sinusoidal. The mathe-

matical representation of a single-tone FM signal can be expressed as

x(t) = cos

(
2πfct+

∫ t

0

Q(τ)dτ

)
, (5.12)

where Q(t) is the sinusoidal modulating signal, i.e.,

Q(t) = 2πf∆ cos (2πfmt) . (5.13)

The parameters defining Q(t) includes

• f∆ is the peak frequency deviation (in Hz), and

• fm is the modulating frequency (in Hz).

Derived from f∆ and fm, two other parameters characterize an FM signal are

• Modulation index β measures how much the frequency of the carrier

signal is allowed to vary due to the modulating signal, which has the

following formula

β =
f∆
fm

. (5.14)
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Figure 5.2: Example of a single-tone FM signal with fc = 400Hz, fm = 10Hz,
and f∆ = 50Hz: (a) the signal in the time domain, (b) the instantaneous
frequency deviation of the signal, and (c) the power spectrum of the signal.
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• Carson’s bandwidth (in Hz) is an estimation of the bandwidth of a

frequency-modulated (FM) signal defined by Carson’s rule [115] as

B = 2 (f∆ + fm) = 2fm (β + 1) . (5.15)

Figure 5.2 illustrates a single-tone FM signal, its IFD (modulating signal),

and its power spectrum. Most of the signal’s power stays within Carson’s

bandwidth.

5.3.2 Simulation procedure and configurations

Procedure

Using the single-tone FM signal, the simulation procedure is as follows:

1. Input the following parameters: fc, fm and f∆,

2. Construct a single-tone FM signal x(t) with modulating signal Q(t)

shown in Eq. (5.12) and Eq. (5.13),

3. Construct the analytical band-pass filter ψ̃ω(t) with the center fre-

quency equal to the carrier frequency, i.e., ω = 2πfc,

4. Use phase difference and analytical derivative methods (Figure 5.1) to

estimate Q(t), and

5. Use root-mean-squared error (RMSE) to measure the estimation error.

Configurations

As Hanning-window STFT was used in the previous chapter for speech en-

hancement, this simulation also uses the Hanning window for band-pass fil-

tering. In this case, the analytical band-pass filter becomes

ψ̃ω(t) = w(t)eiωt , (5.16)

where w(t) indicates the Hanning window of length T

w(t) =

{
1
2
+ 1

2
cos
(
2πt
T

)
, −T

2
≤ t ≤ T

2

0 , otherwise
. (5.17)
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The window length is used with the same configurations as the previous chap-

ter, i.e., T = 25ms. In addition, the analytical derivative method requires

the first derivative of the window function, i.e.,

d

dt
w(t) =

{
− π

T
sin
(
2πt
T

)
, −T

2
≤ t ≤ T

2

0 , otherwise
. (5.18)

The simulation examines differnt scenarios of fm and f∆ as follows:

• Modulating frequency fm in the range of (0Hz, 50Hz] with a resolution

of 1Hz, and

• Peak frequency deviation f∆ in the range of [0Hz, 70Hz] with a reso-

lution of 1Hz.

As carrier frequency fc does not contribute much, fc is set to a safe value

based on Carson’s rule [115], which is ten times greater than Carson’s band-

width, i.e., fc = 2400Hz. All the FM signals are sampled at 16 kHz sampling

rate with a duration of around two seconds (32, 768 samples).

5.3.3 Results

Figure 5.3 illustrates the validation results by pairwisely comparing the RMSE

of the IFD extracted by the proposed analytical derivative method, the con-

ventional phase difference method, and the ground-truth IFD provided by the

modulating signal. The results show that the proposed analytical derivative

method provides a nearly equivalent IFD estimation with the conventional

phase difference method, where the error is less than 1Hz. In other words,

the two methods are nearly equivalent, indicating that the formula used in

the proposed analytical method is correct.

In addition, the estimation errors of both methods increase in the direc-

tion of the increase in Carson’s bandwidth. When either fm or f∆ increases

while the other is constant, the estimation errors of both methods when

compared to the ground-truth IFD increase (see Figure 5.4 and Figure 5.5).

However, with the same Carson’s bandwidth, the FM signals with higher fm
have larger estimation error. The reason for this phenomenon is that despite

having the same bandwidth, the signal with higher fm contains peaks that
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Figure 5.3: Root mean squared error of comparing the ground truth IFD,
IFD extracted from the phase difference method, and IFD extracted from the
analytical derivative method (proposed): (a) phase difference vs analytical
derivative, (b) ground truth vs analytical derivative, and (c) ground truth vs
phase difference.
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Figure 5.4: Examples of the estimated IFD using phase difference and an-
alytical derivative methods concerning the change of modulating frequency
fm: (a) fm = 5Hz, (b) fm = 10Hz, (c) fm = 15Hz, (d) fm = 20Hz, (e)
fm = 30Hz, and (f) fm = 50Hz.
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are farther away from the center/carrier frequency, causing more leaks to

occur (see Figure 5.6).

5.4 Discussion

The proposed analytical derivative method and the conventional phase differ-

ence method show equivalent results from the validation experiment results.

What are the benefits of using the analytical derivative method?

First, compared to the conventional method, the proposed analytical

derivative method does not involve phase calculation and does not require

circular wrapping. When computing the complex time-frequency represen-

tation phase, only the principal value is calculated, for example, an angle

from −π to π locating a point in the unit circle on a complex plane. How-

ever, when it comes to time-domain signal processing, the principal value and
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the trajectory of the signal should be considered. The analytical derivative

method overcomes the phase wrapping and provides a rational solution to

phase analysis in the complex time-frequency domain.

Second, the Eq. (5.5) can be expanded as

Q(ω, τ) =
|x̆(ω, τ)|
A(ω, τ)

sin (∠x̆ (ω, τ)− ∠x̃ (ω, τ)) , (5.19)

introducing the inverse multiplicative relationship betweenA(ω, τ) andQ(ω, τ),

which is the main purpose of this chapter. The second research objective is

satisfied with this relationship, answering the second research question. Us-

ing this connection, Chapter 6 delves into enhancing the IFD of speech in

the complex time-frequency representation.

5.5 Summary

In summary, that chapter proposed a novel method to extract instantaneous

frequency deviation (IFD), namely the analytical derivative, and established

an equation that connected the amplitude to the IFD. Using single-tone

frequency-modulated (FM) signals, the proposed method was verified to

work correctly. These findings confirmed the proposed equation’s validity,

satisfying the second research objective and answering the second research

question.

68



Chapter 6

Speech enhancement by

enhancing IFD

This chapter investigates the answer to the third research question in this dis-

sertation: ‘Is it possible to enhance the speech from the relationship between

amplitude and phase.’ In complex time-frequency representation, phase pro-

cessing has always been challenging due to the lack of techniques to process

circular data. Previously, Chapter 5 establishes a connection between the

amplitude and instantaneous frequency deviation (IFD) - a representation

of the phase based on modulation theory, revealing that perhaps employing

circular data processing techniques is unnecessary. From such an idea, this

chapter proposes a speech enhancement method by enhancing the IFD of

each frame in a short-time Fourier transform (STFT) domain via a learnable

affine transformation. The evaluation results of Valentini et al. [37] show

that the proposed method significantly improves speech quality, answering

the third research question.

6.1 Problem formulation

The IFD serves as a representation of phase within the complex time-frequency

representation, exhibiting analogous patterns to amplitude (see Figure 3.5)

and thus holding promise for speech enhancement [70]. Nevertheless, the orig-

inal definition of IFD in Eq. (5.2) relies entirely on phase, which is susceptible

to the wrapping issue. Consequently, IFD encounters the same challenge as
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Figure 6.1: Process diagram of frame-wise IFD enhancement.

phase: the lack of a modification technique due to circular data restriction.

Another complication arises when modifying IFD, namely the integration

problem during the reconstruction of the complex time-frequency represen-

tation, which necessitates the phase as per the definition in Eq. (5.1). In

summary, speech enhancement using IFD is hindered by two primary issues:

modification and integration. The subsequent section outlines a proposed

method aimed at addressing these challenges individually.
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6.2 Framewise IFD enhancement with learn-

able affine transform

6.2.1 Frame-wise IFD enhancement: beyond integra-

tion

IFD, defined as the deviation of the instantaneous frequency from the center

frequency, offers several benefits over analyzing phase variations directly.

IFD is less affected by rapid frequency changes than the phase, providing a

more intuitive understanding of signal changes over time. However, in speech

enhancement, the output is the waveform, which requires reconstructing the

complex time-frequency representation where the phase is crucial. From

the definition in Eq. (5.1), the phase can be computed from IFD via time

integration as follows

ϕ(ω, τ) = ωτ +

∫ τ

0

Q(ω, η)dη , (6.1)

This integration process contains several issues in practical computation,

such as:

• Error accumulation: Any small errors in the estimation or measurement

of instantaneous frequency deviation accumulate over time during in-

tegration, potentially leading to significant phase errors. The error

accumulation is particularly problematic in long-duration signals.

• Computational complexity: Continuous integration requires efficient

and precise computational methods, especially in real-time signal pro-

cessing applications. The need for high-resolution and high-sampling-

rate data to minimize errors adds to computational complexity.

• Initial phase uncertainty: Phase integration can sometimes start at

some other point τ0 instead of 0, i.e.,

ϕ(ω, τ) = ϕ(ω, τ0) + ωτ +

∫ τ

τ0

Q(ω, η)dη . (6.2)

While the solution is potential, the initial phase ϕ(ω, τ0) at τ0 must be

known beforehand. Error in estimating the initial phase can propagate
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through the integration process, affecting the accuracy of the resultant

phase.

As a result, integration problems when reconstructing the phase from IFD

can yield even more distortion than the noisy phase itself. Therefore, it is

necessary to have a better phase reconstruction method to obtain the phase

from the IFD so that the distortion is as small as possible.

This section introduces one effective solution for enhancing IFD when the

time-frequency representation is obtained by short-time Fourier transform

(STFT). In STFT, the resolution is uniform; in other words, the spectral

information, including amplitude, phase, and IFD, at a specific time τ be-

longs to one specific frame in the time domain, and the conversion between

time and frequency domain can be obtained using Fourier transform and in-

verse Fourier transform easily. Therefore, instead of integrating from another

frame at τ0 as in [70] to obtain ϕ(ω, τ), the proposed method uses the ϕ(ω, τ)

itself as the initial phase and applies the estimated (enhanced) IFD to that

frame. The detailed process diagram of this enhancement can be shown in

Figure 6.1.

6.2.2 Learnable affine transform for IFD enhancement

Previously, Chapter 5 establishes Eq. (5.5), which describes IFD as a real-

valued rational function that involves an inverse multiplicative relationship

with the amplitude. On the other hand, most amplitude enhancement can

be described using spectral gain functions such as Wiener filter [9], which

applies a multiplication operator on the amplitude. Therefore, it is rational

to think that the enhanced IFD can be obtained by applying a multiplication

operator, i.e., a scaling factor, on the noisy IFD. The following equation can

express this operator

Q̂enhanced(ω, τ) = Qnoisy(ω, τ)α(ω, τ) , (6.3)

where α(ω, τ) is the scaling factor.

However, as shown in Eq. (5.19), the IFD contains other factors besides

the amplitude, which makes the scaling too ideal. Therefore, this section

proposes a simple solution, that is to introduce a shifting factor which makes
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the modification a learnable affine transform

Q̂enhanced(ω, τ) = Qnoisy(ω, τ)α(ω, τ) + γ(ω, τ) , (6.4)

where γ(ω, τ) is the shifting factor.

To obtain the optimal α(ω, τ) and γ(ω, τ) that leads to best speech

quality, this proposed method uses scale-invariance signal-to-distortion ra-

tio (SISDR) as the optimization criteria, which offers the benefit of being

invariant to signal scaling, making it a robust and perceptually relevant met-

ric for audio quality that aligns closely with human auditory perception [116].

The SISDR measures the difference between a ground-truth waveform s and

an estimated waveform ŝ as follows

SISDR (s, ŝ) = 10 log10
∥starget∥22
∥enoise∥22

, (6.5)

starget =
ŝ⊤s

∥s∥22
· s , (6.6)

enoise = ŝ− starget . (6.7)

6.3 Experiments

6.3.1 Dataset

The dataset used in this experiment is the same as the one in Section 4.4,

which is Valentini et al. [37] dataset - a benchmark in recent speech enhance-

ment studies. The clean training set includes 28 speakers (14 males and 14

females), and the test set features two speakers (one male and one female)

from the Voice Bank corpus [107]. The noisy test set is formed by com-

bining the clean test set with five different noise types from the DEMAND

dataset [108], including bus, cafe, living, office, and psquare, at four

SNRs: 17.5 dB, 12.5 dB, 7.5 dB, and 2.5 dB. No common speakers or noise

types exist between the training and test sets. All speech waveforms are re-

sampled to a 16 kHz sampling rate, and the input speech is randomly scaled

between −35 dB and −20 dB to enhance data variance.
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6.3.2 Implementation

In the implementation, the STFT uses the hanning window function with

a window length of 25ms (400 samples) and a hop length of 6.25ms (100

samples). The number of points for the fast Fourier transform is 512, which

results in 257 frequency bins.

The speech is first amplitude enhanced using the proposed method in

Chapter 4. Then, the amplitude enhancement is inputted into the IFD en-

hancement module. The deep neural network to estimate scaling and shifting

factors to enhance IFD follows the WaveNet-based module with the LSTM

layer (see Figure 4.5), of which all the convolutional layers are complex-

valued [78]. The network’s input is complex, and the spectrogram and the

output are the scaling and shifting factors, which are real-valued. The values

of scaling factors are clamped between 0 and 2, while the values of shifting

factors are clamped between −π
2
and π

2
. The network is trained for 1000

epochs with an Adam optimizer and a One-cycle Learning Rate scheduler

with an initial learning rate of 5 × 10−4 and a maximum learning rate of

2× 10−4.

6.3.3 Evaluation Metrics

Similar to Section 4.4, the intrusive metrics Wide-band Perceptual Evalua-

tion of Speech Quality (PESQ-WB) [85,86] and Short-Time Objective Intel-

ligibility (STOI) [89] metrics are used to evaluate the overall performance of

the proposed method. The PESQ-WB scores, which range from −0.5 (bad)

to 4.5 (excellent), measure the speech quality by comparing the enhanced

signal to the clean reference speech signal. The STOI metric is highly corre-

lated to perceptual speech intelligibility. The STOI scores range between 0

(lowest intelligibility) and 1 (highest intelligibility).

Besides the intrusive metrics, this evaluation also employs DNSMOS

P.835 [117] - a non-intrusive objective metric designed to evaluate the per-

ceptual quality of denoised speech, specifically developed for the Deep Noise

Suppression (DNS) Challenge [118]. The metric follows ITU-T Recommen-

dation P.835 [83, text], which provides a standardized approach for separately

assessing three aspects of speech quality via three scores in the MOS scale:

signal distortion (SIG), background intrusiveness (BAK), and overall quality
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Table 6.1: Results of proposed and state-of-the-art methods trained on Valen-
tini et al. dataset.

Method PESQ-WB STOI DNSMOS P.835
SIG BAK OVRL

Noisy 1.97 0.91 3.33 3.12 2.69

SEGAN [20] 2.16 0.93 – – –
MMSE-GAN [119] 2.53 0.93 – – –
Wave U-Net [120] 2.40 – – – –
MetricGAN [22] 2.86 0.92 – – –
DCT-UNet [121] 2.70 – – – –
µ-law SGAN [122] 2.86 0.94 – – –

DCCRN [73] 2.68 – – – –
DCCRN+ [76] 2.84 – – – –

Proposed method (noisy IFD) 2.82 0.94 3.41 3.97 3.09
Proposed method (enhanced IFD) 2.87 0.94 3.44 3.99 3.13

(OVRL). DNSMOS P.835 employs a neural network-based model to predict

these scores from denoised audio samples, offering an efficient and scalable

alternative to subjective listening tests. By providing reliable and consistent

evaluations, DNSMOS P.835 facilitates developing and benchmarking noise

suppression algorithms, ensuring that improvements are aligned with human

auditory perception.

6.3.4 Results

To ensure a fair comparison, only the performance of our proposed model

against other baseline models was trained using the same Valentini et al.

dataset [37]. From the results reported in Table 6.1, the proposed method

outperforms many baselines and produces comparative results against other

strong baselines, notably the state-of-the-art Deep Complex Convolution Re-

current Network (DCCRN) method [73] from the 2020 Deep Noise Suppres-

sion Challenge (DNS2020). Also, the proposed method improves the DC-

CRN+ model in Interspeech 2021 [76].
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Figure 6.2: Effect of in IFD enhancement module in model performance on
Valentini et al.’s test set under different metrics including (a) PESQ-WB,
(b) STOI, and (c) DNSMOS (a composite of three values: SIG, BAK, and
OVRL). SNRs and noise types aggregate the scores.

6.3.5 The effectiveness of IFD enhancement

To elucidate the effectiveness of IFD enhancement, the evaluation metrics

are measured with and without applying the IFD enhancement module, and

the improvement percentage is computed for each metric using Eq. (4.41).

This evaluation is grouped by noise types and SNRs in the Valentini et al.

test dataset [37]. The evaluation results are visualized in Figure 6.2. The re-

sults show that, on average, incorporating phase correction always improves

PESQ-WB and STOI, and the effectiveness is more significant in low SNR

conditions, improving the PESQ-WB to 15% and STOI to 1.5%. Also, the

SIG, BAK, and OVRL improve in most cases and sometimes reduce in high

SNR conditions. In low SNR conditions, the performance improves the most

in living and cafe noise types. Most noise signals in the living type

contain music or singing voices, while noise signals in the cafe types are
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Figure 6.3: Samples of the effect of the IFD enhancement module on five
different samples (five rows) from the Valentini test set. The columns from
left to right are the clean-speech power spectrogram, noisy-speech power
spectrogram, IFD before enhancement, and IFD after enhancement. In the
enhanced IFD, the areas between harmonics are emphasized, resulting in the
suppression of speech power in these areas.

77



babble noise recorded in the crowded environment [37]. Such types of noise

have formants in their spectra, where the power is concentrated at some fre-

quencies. In contrast, the spectra of bus and office noises spread broader

along the frequency axis, distributing the SNR uniformly in all frequency

bins. In other words, the IFD enhancement effectively suppresses noises in

which power spectral density is concentrated. To support this hypothesis,

Figure 6.3 illustrates the effect of IFD enhancement on some samples, show-

ing that in the enhanced IFD, the areas between harmonics are emphasized,

resulting in suppression of speech power in these areas.

6.4 Summary

In summary, using the relation found in Chapter 5, the chapter proposed a

speech enhancement method by enhancing the instantaneous frequency de-

viation (IFD) that introduced the solution for the two problems when using

IFD for speech enhancement: how to modify and how to integrate. Specifi-

cally, a learnable affine transform was proposed for modification, and frame-

wise IFD enhancement was proposed for integration. Using different speech

quality and intelligibility metrics, including PESQ-WB, STOI, and DNSMOS

P.835, the results showed that enhancing IFD using the proposed method sig-

nificantly improved the speech quality of noisy-phase speech. These results

satisfied the third objective of this research, supporting the answer to the

third research question: utilizing the relationship between amplitude and

phase via IFD could significantly enhance speech quality.
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Chapter 7

Conclusion

7.1 Summary

The main objective of this research is to investigate the effectiveness of uti-

lizing modulation characteristics of speech for enhancement, which contains

three sub-objectives:

1. Model the amplitude modulation characteristics for speech enhancement

In Chapter 4, a method to model the spectral modulation charac-

teristics of speech in amplitude using the categorical distribution of

fundamental frequency is proposed and applied for speech enhance-

ment. The results show that the improvement in amplitude modulation

characteristics leads to an improvement in speech enhancement perfor-

mance. These results answer the first research question: enhancing

the speech characteristics in amplitude improves speech enhancement

performance.

2. Derive the relationship between amplitude and the instantaneous fre-

quency modulation

In Chapter 5, a method to extract instantaneous frequency deviation

(IFD) is proposed, namely analytical derivative, and an equation con-

necting the amplitude to the IFD is established. Using single-tone

frequency-modulated signals, the proposed method is verified to work

correctly, which confirms the proposed equation’s validity. These re-

sults answer the second research question: there is a relationship be-

79



tween the amplitude and phase via the IFD, where the IFD is related to

the time differentiation of the phase and has an inverse multiplicative

relationship with the amplitude.

3. Enhance speech using the derived relationship

In Chapter 6, based on the relationship found in Chapter 5, a method

to enhance speech via IFD is proposed to modify IFD by a learnable

affine transform at frame-wise level. The results show that the pro-

posed method improves speech enhancement, especially quality. These

results support the answer to the third research question: the relation-

ship between amplitude and phase helps improve speech enhancement

performance.

All the results confirm that utilizing speech’s modulation characteristics can

improve speech enhancement performance, satisfying the research objective.

7.2 Contributions

The research on utilizing modulation characteristics for speech enhancement

has significant practical applications. The improved speech quality resulting

from this research can enhance user experience in mobile calls, VoIP services,

and video conferencing by clarifying conversations and reducing misunder-

standings caused by background noise. In assistive technologies, hearing

aids and cochlear implants can benefit from these advanced enhancement

techniques, providing users with a better auditory experience in noisy envi-

ronments. Additionally, voice-activated systems, such as virtual assistants

and automated customer service, can achieve higher accuracy and reliability

by integrating these speech enhancement methods, leading to more effective

and user-friendly interactions.

This research also contributes to advancements in various other fields.

In audio signal processing, insights into modulation characteristics and the

relationship between amplitude and instantaneous frequency modulation can

inspire new noise reduction and audio signal manipulation methods. In ma-

chine learning and artificial intelligence, the proposed techniques and models

can be adapted to improve speech recognition systems, making them more

robust against noisy inputs. Furthermore, in neuroscience, understanding
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how modulation characteristics affect speech perception can aid in develop-

ing better auditory models, contributing to the study of human hearing and

cognitive processing of sounds. This research thus provides a foundational

framework that can be built upon in multiple scientific and engineering do-

mains.

7.3 Remaining works

This study only focuses on enhancing speech under additive noise by uti-

lizing the modulation concept to incorporate the knowledge of speech into

the speech enhancement model. However, several remaining areas of work

can further expand and deepen the impact of this research. One significant

area for future research is the exploration of speech enhancement techniques

in non-additive noise environments, such as reverberant or highly dynamic

acoustic settings. While additive noise is common, real-world scenarios of-

ten involve more complex noise types that interact with speech non-linearly.

Extending the modulation-based approach to handle these complex noise

conditions would enhance the robustness and applicability of the proposed

methods.

Another critical step is developing real-time processing capabilities and

implementing the proposed methods in practical devices. Achieving low-

latency, high-efficiency speech enhancement suitable for real-time applica-

tions such as live communications, hearing aids, and smart devices presents

technical and engineering challenges. Future research could optimize the

computational aspects of the proposed methods to ensure they are feasible

for real-time use on embedded systems and mobile platforms.

Further research is needed to ensure the proposed speech enhancement

techniques are robust across different languages and speaker variations. Speech

characteristics can vary widely among different languages and individual

speakers, affecting the effectiveness of enhancement methods. Extensive test-

ing and adaptation of the modulation-based approaches to accommodate di-

verse linguistic and phonetic contexts would be essential for broadening the

applicability of these techniques.

While objective metrics are crucial, subjective listening tests are equally

important to validate the perceived improvements in speech quality. Future
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work should include comprehensive subjective evaluations involving diverse

listener groups to assess the practical benefits of the enhancement methods.

Such evaluations can provide insights into user preferences and highlight

areas for further refinement.

In conclusion, while this study has laid a strong foundation by demon-

strating the effectiveness of utilizing modulation characteristics for speech en-

hancement under additive noise conditions, there are numerous opportunities

for expanding this work. Future research should explore complex noise envi-

ronments, optimize for real-time applications, ensure cross-linguistic robust-

ness, and validate with subjective tests. These directions hold the potential

to advance the field of speech enhancement further, making the techniques

more versatile and impactful across various real-world applications.
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