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Abstract

Recent advancements in renewable energy (RE) technologies, along with reduced in-

stallation costs, have led to their widespread adoption. However, challenges arise due to

the intermittent nature of RE influenced by variable weather conditions, impacting its

reliability. Irregular human behavior and the widespread adoption of high-demand loads,

like electric vehicles (EVs), lead to significant energy demand fluctuations. To address

these challenges, the integration of energy storage systems (ESS) emerges as a crucial

solution. ESS provides fast response times, managing surplus energy during off-peak pe-

riods and discharging stored energy during peaks. Strategic deployment of ESS, combined

with energy sharing and demand-side management, enables smart grid communities to

balance supply and demand, mitigating fluctuations, and reduce reliance on costly and

environmentally harmful peak power plants.

This dissertation aims to explore the integration of various forms of ESS into the hier-

archical multiple levels of the electrical grid by proposing a framework called “hierarchical

multi-communities energy-sharing management framework (hMESH) to provide efficient

energy sharing management through three schemes: energy-sharing management for non-

moving energy storage (eNMES), critical hour energy sharing management for partially

moving energy storage (ePMES), and inter-community energy sharing management for

fully moving energy storage (eFMES).

The first scheme, energy-sharing management for non-moving energy storage (eNMES),

focuses on a smart home environment, comprising multiple REs, home appliances, and

multiple ESS units. This chapter proposes a novel scheme to address the challenge of

minimizing energy loss in ESSs and optimal ESS capacity design. It utilizes distributed

power-flow assignment with a load-shifting algorithm, and the optimal energy storage

capacity is determined using linear programming techniques.

i



The second scheme, critical hour energy sharing management for partially moving en-

ergy storage (ePMES), focuses on EVs with predictable usage patterns, specifically electric

school buses (ESBs), often deployed at specific times and remaining idle for extended pe-

riods, making them practical for delivering vehicle-to-grid (V2G) ancillary services. It

introduces a V2G model centered on ESBs in various schools within a single commu-

nity, formulating the problem as a noncooperative game where the utility company (UC)

determines the optimal incentive price for schools to discharge energy, minimizing addi-

tional costs during the peak demand period. Schools negotiate for the optimal discharged

energy to maximize benefits during the peak period. The optimal energy-price (OEP)

algorithm is also introduced to achieve equilibrium, which is proven to be unique and

always existent.

The third scheme, inter-community energy sharing management for fully moving en-

ergy storage (eFMES), proposes a three-level energy-sharing model: utility company

(UC) level, community energy aggregators (CEAs) level, and electric vehicles (EVs) level.

In the smart grid, multiple communities exist, each with EVs inside. EVs possess the

unique capability to travel between communities and engage in energy sharing through

charge/discharge activities. The model is a three-level game, where UC at the upper

level, supplies/buys electricity to/from the multi-community system and sets the multi-

communities energy sharing price. CEAs, in the middle level, set optimal community

energy sharing prices within their community. At the bottom level, each EV determines

optimal charging and discharging energy, responding to energy sharing prices. All players

aim to maximize their utility functions by choosing their best strategies. The scheme

presents the optimal three-level energy-price (3OEP) algorithm to obtain an equilibrium

that is proven to be unique and always existent.

The evaluation studies for the proposed three schemes of the hMESH framework were

performed through simulations using MATLAB. The simulation results demonstrate the

effectiveness of the proposed framework. The simulation on eNMES shows a reduction

in energy loss and a significant decrease in energy storage capacity. Furthermore, the

simulation on ePMES shows a reduction in the peak-to-average ratio and the bills for
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schools possessing ESBs, which help discharge energy to the grid during peak periods.

Finally, the results for the eFMES scheme indicate a reduction in the peak caused by

charging EVs, with a significant decrease in the peak-to-average ratio and the electricity

bills of EV owners. This also leads to a much flatter load profile compared to the original

charging profile, where there is no multi-communities energy sharing management system.

Keywords: Renewable Energy, Energy Storage System, Electric Vehicle, Energy Shar-

ing Management, Smart Grid.
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Chapter 1

Introduction

1.1 Today and Future Electrical Grid

1.1.1 Today Electrical Grid

In our traditional society, electricity is predominantly generated by large power plants and

transmitted through extensive networks to various end-users, constituting what we com-

monly refer to as the electrical grid. This grid has historically operated on a unidirectional

model, with power flowing from centralized generation facilities to passive consumers.

Comprising four primary components: generation, transmission, distribution, and end-

users. The grid has long functioned as a centralized, top-down system. Generation

involves the production of electricity at large-scale power plants, followed by transmission

across long distances via high-voltage lines. Distribution networks then deliver electricity

to homes, businesses, and institutions, where it is consumed by end-users. The traditional

power system is shown in Figure1.1.

However, a notable transformation is underway. The proliferation of distributed energy

resources (DERs) and renewable energy (RE) technologies has shifted away from central-

ized generation towards a more decentralized model. Advancements in RE technologies,

coupled with declining installation costs, have drived their widespread adoption globally.

The increase of RE in the world energy supply is shown in Figure 1.2.
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Figure 1.1: Traditional electrical power system [1].

Figure 1.2: World energy supply by source [2].

This transition towards decentralization signifies a departure from the traditional one-

way power flow, empowering end-users to become prosumers who actively engage in energy

generation and consumption. By leveraging technologies such as solar panels and wind

turbines, individuals and communities can generate electricity, thereby contributing to a

more dynamic, cooperative, collaborative energy ecosystem.

Consequently, the modern electrical grid finds itself needs to embrace these changes

and adapt accordingly. As we strive towards a more sustainable and resilient energy

system, the grid must evolve to accommodate decentralized energy generation, fostering

inclusivity and innovation along the way. Ultimately, this transition holds the promise of

a greener, more sustainable future for generations to come.
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One of the significant challenges facing the electrical grid is the necessity to match

demand in real-time. As electricity consumption fluctuates throughout the day, grid

operators must continuously adjust the supply to meet the peak demand periods. To

accomplish this, they often rely on peak power plants, which are designed to quickly

ramp up production to meet surges in electricity usage. However, these peak plants come

with their own set of drawbacks. Not only are they technically and economically inefficient

compared to base-load power plants, but they also contribute to harmful emissions, posing

risks to both environmental and public health. The reliance on such plants not only

intensify pollution levels but also adds strain to the grid infrastructure. As the global

push for sustainability intensifies, finding viable alternatives to these peak power plants

becomes necessary for the long-term health and resilience of the electrical grid.

1.1.2 Green and Sustainable Future Electrical Grid

In recent years, a transformative shift has occurred in the landscape of the electrical grid,

giving rise to what is now known as "The smart grid." This new paradigm represents

a significant departure from the traditional, centralized model of grid operation, instead

embracing a digitally enabled framework facilitated by advancements in information and

communication technology (ICT), smart metering, and home energy management systems

(HEMS). The smart grid fundamentally reimagines how energy is produced, distributed,

and consumed, introducing a dynamic and interactive platform that facilitates two-way

communication between grid operators and end-users. A conceptual illustration of the

smart grid is shown in Figure1.3

At the heart of the smart grid concept lies on the notion of bidirectional energy flow

changing from the conventional top-down, one-way energy transmission model. Rather

than passively receiving electricity from centralized power plants, consumers become ac-

tive participants in the energy ecosystem, capable of both consuming and generating

power. This bottom-up approach not only decentralizes energy production but also en-

hances grid resilience and efficiency by optimizing resource allocation and reducing reliance
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Figure 1.3: conceptual illustration of the smart grid [3].

on traditional fossil fuel-based generation.

Central to the functionality of the smart grid are smart meters, which enable real-time

monitoring and communication between consumers and grid operators. These devices

provide insights into energy usage patterns, allowing for more precise demand forecasting

and load management strategies. Coupled with home energy management systems, which

empower consumers to monitor and control their energy consumption, smart meters form

the foundation of a more responsive and adaptive grid infrastructure.

Moreover, the integration of renewable energy (RE) sources such as solar and wind

power into the smart grid further supports its capabilities. With their intermittent nature,

RE resources pose unique challenges to grid stability and reliability. However, advance-

ments in energy storage systems (ESS) offer promising solutions by providing a means

to store excess renewable energy for use during periods of high demand or low genera-

tion. By coupling RE generation with ESS deployment and smart grid technologies, the

grid becomes more flexible, resilient, and sustainable, reducing reliance on fossil fuels and

mitigating greenhouse gas emissions.

In essence, the emergence of the smart grid represents a paradigm shift in the way
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we conceptualize and manage our energy infrastructure. By leveraging advancements in

ICT, RE integration, electric vehicles (EVs), and energy storage, the smart grid promises

to revolutionize the energy sector, leading to an era of greater efficiency, reliability, and

sustainability. As we continue to embrace the opportunities presented by this transfor-

mative technology, the smart grid holds the potential to reshape our energy future for

the better, paving the way towards a more resilient, decentralized, and environmentally

conscious grid ecosystem.

1.2 Energy Sharing in Electrical Grid

The recent advancements in smart grid technology have lead to a new era where consumers

are empowered to take on more active roles within the power system. These new active

users, often referred to as prosumers, have the capability to not only consume electricity

but also generate and share it within their communities. Through distributed energy

resources (DERs), electric vehicles (EVs), and energy storage systems (ESS), prosumers

can contribute to the energy generation process, adjusting their supply based on factors

like cheap pricing periods and storing excess energy for later discharge or sale.

One notable development in this realm is the emergence of energy sharing platforms,

allowing prosumers to share their excess generation with others in the community. En-

ergy sharing can be categorized into two main approaches: fully peer-to-peer (P2P) and

mediated sharing. In P2P sharing, participating users directly engage with one another

to negotiate energy prices and quantities, eliminating the need for intermediaries. Con-

versely, mediated sharing involves the presence of a third-party entity that serves as an

intermediary interface between energy buyers and sellers, facilitating the energy sharing

process. Figure 1.4 shows both types of energy sharing.

While P2P sharing offers a direct and potentially more cost-effective approach, the com-

plexity involved in negotiating energy transactions among multiple peers may necessitate

the use of a mediator or a platform. These intermediary entities streamline the negotiation

process, ensure fair pricing, and provide a centralized platform for energy transactions.
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As community energy sharing continues to evolve, it is expected that mediated sharing

mechanisms will play an increasingly essential role in facilitating efficient and fair energy

exchanges among prosumers within smart grid communities.

(a) (b)

Figure 1.4: Two types of energy sharing [4]: (a) P2P and (b) Community-based.

1.3 Problem Statement

The traditional energy landscape has long been characterized by centralized power gener-

ation, with large-scale power plants supplying electricity to passive consumers. However,

recent advancements in renewable energy (RE) technologies, along with the decrease in

installation costs, have led to their widespread adoption. This shift is transforming the

energy sector into a new era, moving away from centralized power generation and em-

powering consumers to become prosumers who can both generate and consume electric-

ity. However, despite the positive benefits that prosumers can derive from producing

and utilizing their own electricity from RE, its intermittent nature influenced by vari-

able weather conditions, poses challenges to their reliability as energy sources. Moreover,

irregular human behavior and the widespread adoption of high-demand loads lead to sig-

nificant fluctuations in energy demand and generation. This results in immediate peak
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periods during which electricity must be sourced from conventional peak power plants.

These plants are not only technically and economically inefficient but also release harmful

emissions, posing risks to health.

To address these challenges and promote a more resilient and sustainable energy in-

frastructure, the integration of energy storage systems (ESS), for example, stationary

ESS and movable energy storage like electric vehicles (EVs) in the smart home layer, a

single community layer, and a macro multi-community layer, emerges as a crucial solu-

tion. ESS exhibits the distinctive capability of providing fast response times, allowing for

the efficient management of surplus energy during off-peak demand periods and the dis-

charge of stored energy during peak-demand periods. By strategically deploying ESS in

conjunction with energy sharing and demand-side management, smart grid communities

can harness the benefits of energy storage to balance supply and demand, mitigate the

effects of fluctuations in energy demand and generation, and reduce reliance on costly and

environmentally harmful peak power plants.

Typically, the electricity market is a hierarchical structure with multiple layers. The

first and lowest layer consists of end-users and prosumers, such as smart homes equipped

with various appliances, and other prosumers, like electric vehicle owners utilizing public

charging facilities. Since small prosumers have limited demand and supply capacity,

they need to belong to aggregators in order to provide energy sharing to the system.

The higher layer, or middle layer, comprises community aggregators that consolidate all

demand and supply within the community or region and facilitate exchanges with other

communities in different regions and utility companies for energy and information. In

some cases, they may be called ancillary service providers or demand response service

providers. Additionally, this layer could include significant prosumers who do not need

to go through the aggregators, such as commercial and industrial buildings, as well as

public places with high demand, like schools. The highest layer is occupied by the market

operator or the utility company, which centrally manages electricity production to meet

the demands of a multi-community power system. In each layer, there are challenges that

should be investigated.

7



1.3.1 Basic Community Energy Sharing for Storage Loss Problem

Energy storage systems (ESS) play a crucial role in smart homes powered by RE resources.

However, ESSs face several challenges that need to be addressed for effective integration.

Energy loss is an important consideration, and minimizing energy loss should be priori-

tized to preserve system efficiency. Without proper management, energy loss can adversely

impact the overall efficiency of the system. Determining the appropriate capacity for the

ESS is crucial when designing an energy system integrated with RE resources. The ca-

pacity directly influences the system’s ability to handle surplus and shortage energy. An

improperly sized ESS can lead to system instability, reducing the capability of the ESS

to manage fluctuating generation and demand. An effective method to reduce energy

loss and decrease the size of the energy storage capacity is to implement load shifting.

Load shifting involves adjusting the demand of home appliances and devices (HADs) to

align with the generated energy from RE sources, thereby enhancing the overall system

efficiency.

1.3.2 Single Community Energy Sharing for Peak Shaving Prob-

lem

Typically, generated electricity needed to be matched all the time with the electric de-

mand. When multiple high-consumption electric appliances are simultaneously activated,

it can result in a surge in overall energy demand, leading to peak periods. During these

peak periods, UC are required to operate peak-generation power plants, incurring sig-

nificant expenses to meet the additional demand. To tackle this challenge, a potential

solution involves offering peak shaving services to various groups of EVs or battery packs.

The UC can leverage the fast response capabilities of energy storage units on the demand

side to discharge stored energy into the grid. This approach assists the UC in mitigat-

ing peak demand and reducing additional costs. Electric vehicles, for instance, can be

charged at lower prices during non-peak demand periods and discharge energy back to

the grid during peak-demand periods, such as early evening, offering benefits for their
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participation in this program. However, the majority of G2V and V2G research primarily

concentrates on personal passenger EVs. These vehicles, designed for individual trans-

portation with diverse schedules and purposes, typically have smaller battery capacities,

resulting in lower willingness and interest to participate in ancillary services. Real-world

implementation of V2G programs with this type of EV may prove challenging. In con-

trast, ESBs follow specific schedules and routes, often remaining parked in idle mode.

Schools that own ESBs would find participation in V2G programs beneficial, so it ensures

high willingness to engage in ancillary services. Due to their predictability and substantial

battery storage capacities, ESBs are well-suited for providing V2G services. This makes

them a compelling choice for contributing to grid stability and benefiting both schools

and the UC. However, a single ESB may not be capable of discharging a sufficient amount

of energy to participate in such a program. Therefore, it is essential for a school, which

can aggregate the discharged energy from multiple ESBs within its location, to act as the

participant in the peak shaving program.

1.3.3 Muti-Communities Energy Sharing for Energy-Pricing Prob-

lem

In a multi-community smart grid, the demand profile for each community is different.

Normally, the unit price of electricity depends on the net energy demand consumed.

To promote fairness between each community, different pricing is used, depending on

the net energy of that region. In order to achieve a better energy profile and reduced

unit electricity price in each community in a multi-communities system, mobile energy

storage such as electric vehicles could be interesting to use for charging and discharging

energy while traveling to/from different places in different communities. It could help

in cases where there is a difference in energy profiles between communities; for example,

Community 1 may have a very sunny day and can produce a lot of surplus energy from

PV, while Community 2 may be facing heavily cloudy or rainy days where energy from PV

is almost impossible to generate. In this case, electric vehicles that are already planned
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to travel from Community 1 to Community 2 may be able to charge surplus electricity

at a low price and discharge it at Community 2, where the selling price per unit will

be very high. This will result in the EV owner gaining economic benefits, while other

prosumers in Community 2 will benefit from the reduced price due to the reduced amount

of energy within their community. In a case like this, the game theoretical approach is

highly suitable to implement, where there are many stakeholders, including electric vehicle

owners, community energy aggregators, and utility companies. The utility of every entity

will be maximized, resulting in a win-win-win situation.

1.4 Research Purpose and Objectives

The purpose of this dissertation is to introduce a “hierarchical Multi-communities Energy

SHaring management (hMESH)” framework with integrated energy storage for multi-

layer multi-communities, determining optimal strategies of various entities, along with

minimizing the energy loss and optimal storage capacity in a smart grid. The main

objectives are as follows:

• To study the energy sharing management in a smart home in order to design op-

timal storage capacity with minimum energy loss through distributed power flow

assignment.

• To study the critical hour energy management in a single community in order to

determine the optimal critical hour strategies of electric school buses.

• To propose and study novel inter-communities energy sharing management model

for movable energy storage, i.e., electric vehicles, and determine the optimal energy-

price strategies.

1.5 Structure of Dissertation

The rest of the dissertation is organized as follows:
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• Chapter 2: Hierarchical Multi-Communities Energy Sharing Management Frame-

work (hMESH)

Chapter 2 explains the key components associated with the proposed hMESH frame-

work, including renewable energy resources, energy storage systems, electric vehicles,

and smart homes. It further presents and describes the proposed hMESH framework

for future smart grid communities, which integrates various kinds of energy storage.

• Chapter 3: Energy Sharing Management for Non-Noving Energy Storage (eNMES)

Scheme

In Chapter 3, an energy sharing management for non-moving energy storage in smart

home environments comprising multiple renewable energy sources, home appliances,

and multiple energy storage system units is introduced. It utilizes distributed power

flow assignment coordinated with a load-shifting algorithm to minimize energy loss

and determine the optimal energy storage capacity.

• Chapter 4: Critical Hour Energy Sharing Management for Partially Moving Energy

Storage (ePMES) Scheme

In Chapter 4, a critical hour energy sharing management model for partially moving

energy storage, specifically electric school buses (ESBs), is proposed. The ESB is

highly suitable for performing vehicle-to-grid (V2G) ancillary services as it is de-

ployed at specific times and remains idle for extended periods. The single community

V2G model is introduced, where a non-cooperative game is formulated between a

utility company (UC) trying to minimize additional costs from generating peak de-

mand during critical hours and schools that possess a number of ESBs. These buses

can help the UC by discharging stored energy from their batteries to mitigate peak

demand. Schools try to negotiate with the UC to maximize their benefits, resulting

in the optimal interval and month for discharging energy.

• Chapter 5: Inter-Community Energy Sharing Management for Fully Moving Energy

Storage (eFMES) Scheme

11



Figure 1.5: Proposed conceptual framework for multi-communities energy sharing man-
agement system.

In Chapter 5, a novel multi-communities energy sharing management model is pro-

posed and studied. The model consists of three types of players across three hi-

erarchical levels: the utility company (UC) at the upper level, community energy

aggregators (CEAs) at the middle level, and electric vehicles (EVs) at the bottom

level. In smart grid communities, EVs can move between multiple communities

with different load profiles and energy prices, performing charging and discharging

in different areas. At each level, players try to maximize their benefits by selecting

strategies in response to other players. The UC will set the optimal multi-community

energy-saving price, CEAs will set the optimal community energy sharing prices, and

EVs will set the optimal charging/discharging strategies.

• Chapter 6: Conclusions and Future Works

In Chapter 6, conclusions and future research directions are provided.

The proposed conceptual framework for multi-communities energy sharing management

system can be illustrated in Figures 2.2.
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Chapter 2

Hierarchical Multi-Communities

Energy Sharing Management

Framework (hMESH)

2.1 Components of the Framework

2.1.1 Renewable Energy Resources

Renewable Energy Resources (RE) such as solar Photovoltaic cells (PV), Fuel cells (FC),

and wind turbines (WT) play a crucial role in the integration of smart home environ-

ments and smart grid and are widely installed in residential households and smart grid

communities to supply electricity [5]. Several factors contribute to this trend, including

the significantly reduced installation costs of solar PVs due to advancements in solar cell

technology [6]. Moreover, the environmentally friendly nature of these renewable sources,

compared with conventional power plants that rely on fossil fuels, releasing harmful emis-

sions, has driven the adoption of RE [7]. Despite the benefits, the intermittent, uncertain,

and fluctuating nature of RE, primarily dependent on weather conditions, poses challenges

to the reliability of RE as an energy source [8]. This variability can reduce the stability of

electricity and presents a significant obstacle to seamlessly integrating RE into electrical
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systems. In addition to the fluctuating nature of RE, the various types of power loads

with unplanned human activities and user preferences can also contribute to the dynamic

behavior of load demand in electrical systems [9].

2.1.2 Energy Storage Systems

In today’s power system landscape, renewable energy (RE) resources play a pivotal role,

particularly within the residential sector. Despite the significance of these resources, the

intermittent nature of RE resources, influenced by variable weather conditions, poses chal-

lenges to their reliability as energy resources. Addressing this challenge, the integration

of an energy storage system (ESS) emerges as a viable solution, enabling the storage of

surplus energy during peak-generation periods and subsequent release during shortages.

In order to fully utilize RE together with ESS, an efficient system design for integrating

REs with ESSs is highly needed. Today, the design of energy systems in a distributed way

that incorporates RE resources and human activities is essential. As people’s activities

in a house are becoming more complicated, it is necessary to ensure a balanced, reliable,

and safe energy supply to all electrical loads from RE resources. The ESS becomes an

indispensable component to address the intermittent nature of RE and the dynamic fluc-

tuations in loads’ demand. In smart home environments and smart grids, ESS integration

is necessary to provide uninterrupted electricity availability to satisfy demand in real-time.

2.1.3 Electric Vehicles

Today, the number of internal combustion engine vehicles (ICEVs) on the road is steadily

being replaced by electric vehicles (EVs) . This shift is facilitated by the decreasing

prices of EVs, making them more affordable. EVs offer numerous advantages over ICEVs,

such as their environmentally friendly nature, energy efficiency, high performance, and low

maintenance costs. In the U.S.A., approximately 58% of harmful greenhouse gas emissions

come from the power and transportation sectors [10]. ICEVs contribute to emissions that

are not only detrimental to the environment, causing climate change issues, but also pose
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health risks to humans, leading to various diseases [11].

The development of information and communication technology (ICT) has led to the

transformation of the traditional grid into a smart grid [12], enabling various entities to

communicate and be controlled efficiently. An important aspect of this transformation is

the integration of EVs, which possess the capability of charging and discharging from/to

their battery storage. As the number of EVs on the road continues to rise, coupled with

advancements in modern 2-way communication and control systems, the charging and

discharging of EVs can be effectively controlled and managed.

2.1.4 Smart Homes

Nowadays, smart homes represent a promising and increasingly prevalent trend in the

residential sector. The phrase “smart home” was first introduced in 1984 by the American

Association of House Builders, as F. K. Aldrich remarked [13]. These smart homes typi-

cally integrate renewable energy (RE) resources, like solar photovoltaics (PVs), fuel cells

(FCs), and more [14], to power various home appliances and devices (HADs). The concept

of smart homes has evolved significantly in recent decades, driven by advanced technolo-

gies, such as the internet of things (IoT). This technological integration allows HADs to

be fully interconnected for both energy and information communication through a central

controller. The introduction of the IoT, power-line communication (PLC), and power

over ethernet (PoE) has transformed the traditional way of managing energy usage in

HADs. These technologies enable the controller to communicate with diverse home appli-

ances, collecting and monitoring the energy generated by RE sources and the consumption

profiles of HADs. Employing PoE is an excellent choice for quickly and directly controlling

home equipment, encompassing the capability to both supply energy and send/receive in-

formation via Ethernet cables. Single-pair ethernet (SPE) is an evolved version of PoE

that emerges as a promising option for future IoT applications. Compared with tra-

ditional PoE, SPE utilizes only two twisted wires, making this technology suitable for

small-scale deployment and reducing installation costs [15]. SPE still serves the dual
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purpose of carrying information and electrical energy within the system. In addition to

wired communication technologies like PoE, wireless communication technologies are also

extensively employed for IoT purposes. Examples include Bluetooth low energy (BLE),

ZigBee, WiFi, LoRaWAN, WiSUN, and others. These wireless technologies contribute

to the seamless connectivity and communication of smart home devices, enhancing the

overall efficiency and control of these systems.

2.2 Related Work on Energy Sharing in Smart Grids

For community-based energy sharing management, the literature explores two main cat-

egories: energy sharing within a single community with and without EV integration, and

energy sharing across multiple communities.

Several studies have made efforts toward energy sharing within single communities with-

out considering EVs [16–19]. In [16], a novel energy sharing model is proposed by utilizing

the supply-to-demand ratio (SDR) to determine internal buying and selling prices, facil-

itating energy sharing among PV prosumers within a single community. The simulation

reveals the model’s effectiveness in reducing prosumers’ costs and improving the sharing

economy. A game-theoretic approach for energy sharing management is proposed in [17],

where it is used to find the optimal energy price and consumption of prosumers. A novel

profit model of the microgrid operator, utility model of prosumers, and billing mecha-

nism are introduced. The results show increased benefits for all players. A. Paudel et

al. [18] introduced a novel peer-to-peer energy trading model among prosumers in a single

community. The Stackelberg game is formulated for the interaction between sellers and

buyers, where the sellers are the leaders and the buyers are the followers of the game.

The results confirm the effectiveness of the model in improving both technical and fi-

nancial benefits for the community. In [19], a community-based energy trading model is

proposed, where a coordinator helps facilitate the trading process between market par-

ticipants. Demand-side management is also implemented using a non-cooperative game.

The findings show that the model can increase prosumers’ profits and greatly reduce peak
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energy demand.

On the Other hand, Some work has focused on a single community energy sharing

integrating EV [20–24]. In [20], a peer-to-peer energy trading model among plug-in hy-

brid electric vehicles (PHEVs) is proposed. The model provides incentives for PHEVs to

discharge energy to balance the energy profile of the system. Agreed-upon energy and

electricity prices are determined using a double auction. Simulation results reveal that the

model can achieve maximum social welfare. J. Kim et al. [21] presented an energy trading

and demand response system for electric vehicles in a single isolated microgrid system.

In the model, sellers and buyers submit transaction prices, and buyers determine optimal

results. Revenue and energy are allocated according to payments and sales. Results show

that participants can maximize their profit while stabilizing energy supply and demand.

A framework for peer-to-peer energy trading among electric vehicles, charging stations,

and office buildings is introduced in [22]. Electricity price depends on the price of stored

energy in the battery. Analysis shows that the model can help reduce prosumers’ costs

by 23%, improve PV self-consumption by 10%, and guarantee willingness to participate.

In [23], an energy dispatching model for a microgrid and EVs is introduced, where the

microgrid aims to balance supply and demand while EVs aim to lower energy costs. Re-

sults show an increase in microgrid profit and a reduction in EV costs In [24], a novel

power scheduling scheme for electric vehicle (EV) charging facilities is proposed, utilizing

a two-level Stackelberg game between charging facilities and EVs within a single commu-

nity. The results demonstrate improved financial profits for both EV users and charging

facilities.

There is limited research on energy sharing in multi-community smart grid [25–29].

With the increasing installation of distributed energy resources, F. Moret et al. [25] present

the concept of a community-based energy market structure called ’energy collectives,’

where prosumers can share energy at a community level. Additionally, the community

manager can further facilitate energy sharing with other communities under the market

or system operator. A peer-to-peer energy-sharing system with multiple regions is studied

in [26], where the large scale of PV prosumers is considered. The distributed network can
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be divided into multiple energy-sharing regions where the electricity price varies. Pro-

sumers can choose the region they want to join and can provide demand response to

the system, with profit maximization formulated, taking into account electricity prices

and fees. The results show an increase in prosumer profit compared to scenarios without

divided regions. A novel charging scheme for EVs inside smart communities integrated

with RE is proposed in [27]. The authors consider three parties in the model: the grid,

aggregators (AGGs), and EVs, where a trust model is introduced to enable EVs to select

an AGG for charging, as information needs to be shared between each entity involved.

The analysis results show that the proposed scheme is effective compared with traditional

schemes. In [28], the authors proposed a planning strategy framework to optimize and

manage optimal EV charging and discharging operations in multiple charging stations at

different locations, aiming to enhance the flexibility and efficiency of the microgrid. The

problem was formulated as a non-cooperative game involving the distribution company,

charging stations, and EVs. The findings reveal that the proposed framework can increase

the flexibility and efficiency of a microgrid by 0.3% and 67.4%, respectively, compared to

a case study. In [29], an optimal vehicle-to-grid pricing strategy is introduced, employ-

ing a two-level Stackelberg game between multiple aggregators and EVs. However, the

work considers only V2G operations and excludes G2V interactions. The results show

an improvement in EV users’ benefits while taking into account user satisfaction and

inconvenience.

However, to the best of our knowledge, there is no research that introduces hierarchical

multi-community energy sharing management systems integrating movable energy stor-

age, such as electric vehicles, while considering the interests of multiple entities involved

in the multi-community systems. The properties of movable energy storage in EVs are

particularly interesting to study due to their high potential impact on the grid in multi-

community systems in the future. Moreover, considering the benefits for each and every

entity is highly important in order to implement these systems in the real world as well.

The summaries and comparisons of the above main related works are shown in Fig-

ure 2.1.
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Figure 2.1: Comparisons of the main related works in the energy sharing field.
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2.3 Proposed hMESH Framework

In this dissertation, a novel framework called the Hierarchical Multi-Communities Energy

Sharing Management Framework (hMESH) is introduced, which considers various energy

storage integrations into the smart grid for the future electrical grid. The overview struc-

ture of the framework, which aligns with the electrical grid, is shown in Figure 2.2. This

dissertation aims to address three problems at different levels of the structure.

Figure 2.2: Illustration of hMESH framework with research problems in smart grid.

Renewable energy resources are expected to be widely installed. As previously men-

tioned, one solution to address the intermittent nature of renewable energy (RE) is inte-

grating energy storage systems with RE installations. Additionally, the number of elec-

tric vehicles (EVs) on the road has significantly increased due to their lower prices and

numerous advantages over internal combustion engine cars. These advantages include en-

vironmental friendliness, energy efficiency, high performance, and low maintenance costs.

Energy storage systems are capable of functioning as a load when charging and as a source

when discharging. Because of the reasons mentioned above, various types of energy stor-
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age will be widely deployed and used in future smart grids, significantly transforming

the current grid structure. Existing studies on energy sharing mainly consider a single

community and do not account for movable energy storage, such as EVs, which can travel

to multiple places across smart grid communities. This framework focuses on integrating

various kinds of energy storage, including non-moving energy storage, partially moving

energy storage, and fully moving energy storage, into smart grid multi-communities. The

energy storage is integrated into three levels of smart grid communities. The proposed

framework can help understand and project the future of energy sharing management in

the electrical grid. Three schemes are proposed and studied in this framework to address

various problems at different levels and structures: energy sharing management for non-

moving energy storage in smart home environments, critical hour energy management

for partially moving energy storage in a single community, and inter-community energy

sharing management for fully moving energy storage in hierarchical multi-communities.

The distribution network of the proposed framework is illustrated in Fig 2.3. The low

voltage network consists of end-users and prosumers, such as electric vehicles and smart

homes, which comprise various appliances. Meanwhile, the medium voltage network may

include users with larger energy demands, such as buildings, factories, and schools.
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Figure 2.3: Topology of distribution networks of the proposed framework.

A proposed energy-sharing management model is structured with three hierarchical

levels: utility company (UC) level, community energy aggregator (CEAs) level, and pro-

sumers and electric vehicle (EVs) level. Within the smart grid, multiple communities

exist, and each community comprises a number of EVs and prosumers. The EVs possess

the unique capability to travel across the multi-community system and engage in energy

sharing through charge/discharge activities. Each entity in each level of the framework is

explained as follows:

• 3rd level:

– Electric Vehicles (EVs) : Each electric vehicle is capable of charging and dis-

charging energy through CEA. We assume that all EVs are equipped with a

smart energy management system, through which they can communicate with

CEA via charging facilities. The SEMS sends consumption data and receives

shared price information. It is able to perform necessary computational tasks

and control charging and discharging. The EV is located within the low voltage

network inside a community.

22



– Smart Home : Smart homes are situated within the low voltage network and

may have their own renewable energy resources, such as PV solar panels. They

consume energy primarily through various home appliances.

• 2nd level:

– Community Energy Aggregator (CEA) : Each CEA facilitates energy sharing

within the community by engaging in two-way communication with EVs within

its community. It also communicates with UC for the purpose of energy shar-

ing between communities and determines the energy sharing prices within the

community. The CEA ensures payment and energy balance for the community

in which it sells or buys energy to or from EVs within the community and the

utility company. If the generated energy within the community is insufficient,

the CEA is responsible for purchasing the energy from the utility company.

– High-demand Consumers : High-demand consumers, such as factories, build-

ings, and schools that possess a number of electric school buses, consume a

significant amount of energy and are typically located within the medium volt-

age network. These consumers purchase substantial amounts of energy from

the utility company.

• 1st level:

– Utility Company (UC) : The UC generates and sells energy to CEAs or high-

demand consumers at the price according to the net aggregated energy from

the communities.

The increase of RE sources along with EVs enables consumers to both consume and

generate electricity independently, adding complexity to the electrical grid. This complex-

ity requires advanced technology and protocols for efficient management and successful

implementation of the system. This framework can be implemented by utilizing the fol-

lowing advanced technologies:
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• Advanced metering infrastructure (AMI): Smart meters are crucial components in

the smart grid, playing an essential role not only in accurately measuring electrical

parameters but also in facilitating communication and control. They might even be

capable of providing timely forecasts of energy demand, either day-ahead or dur-

ing the day. Smart meters for users and prosumers will be installed at sites where

the demand and generation occur, such as homes, charging stations, and buildings.

The communication capabilities of smart meters can be enhanced through various

technologies. Wireless options like WiMAX or wired solutions through power line

communication (PLC) enable efficient two-way communication between different

entities in the system. This connectivity is essential for real-time data exchange

and grid management. Effective operation of the smart grid requires specific func-

tionalities from AMI, such as bidirectional energy measurement and communication,

seamless connectivity, and adequate memory storage. These capabilities ensure that

all parts of the grid are integrated and that data flows smoothly to support grid

management and optimization.

• Communication protocol: In the future complex smart grid network, there will be

a high frequency of communication, including numerous requests and acknowledg-

ments between entities. The communication between sensors and smart meters can

be achieved using wireless communication technologies or PLC. These methods en-

able efficient data exchange and monitoring within the smart grid infrastructure.

The communication between smart meters and aggregators or operators can utilize

wireless networks such as WiMAX, 3G, and 4G. These technologies provide reliable

and rapid data transmission, essential for effective grid management and operations.

The selected communication technologies should be capable of covering wide areas,

offer connectivity at any time, and incur low operational costs. The standard for

EV charging station communication is ISO/IEC 15118, which outlines the protocol

for communication between electric vehicles and charging stations. Meanwhile, the

standard for communication between charging stations and the grid is IEC 61850,
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which is used for substation automation and enables interoperability and commu-

nication between various grid components.

2.3.1 Energy Sharing Management for Non-Moving Energy Stor-

age Scheme

The energy sharing management for non-moving energy storage scheme (eNMES) is pro-

posed to address the optimal energy storage capacity design with minimal energy loss in

a smart home environment by utilizing a newly introduced distributed power flow assign-

ment (DPFA). DPFA assigns power flow paths from energy sources, such as renewable

energy (RE), to household loads. Additionally, in eNMES, DPFA is integrated with a load

shifting algorithm to further reduce energy loss and the required battery storage capacity.

2.3.2 Critical Hour Energy Management for Partially Moving

Energy Storage Scheme

The critical hour energy management for partially moving energy storage scheme (ePMES)is

proposed to address the problem of optimal critical hour energy using partially moving

energy storagee, such as electric school buses (ESBs). In this scheme, a vehicle-to-grid

model is introduced between the utility company (UC) and schools that possess ESBs.

Typically, ESBs are used at specific times and often remain parked and idle, making them

highly suitable and practical for providing peak shaving services. During critical hours,

such as peak periods, the UC sends an incentive price signal to schools within a commu-

nity. Each school can discharge the stored energy in its ESBs to perform peak shaving and

receive monetary benefits. The UC also benefits from reduced additional generation costs

due to the lowered peak demand. The model utilizes a non-cooperative game between

the players to determine the optimal incentive price and the optimal amount of discharge

energy. Moreover, during periods of low demand or "valleys," ESBs can help the UC by

charging and flattening the energy profile curve. Ultimately, the peak-to-average ratio of

the system can be reduced.
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2.3.3 Inter-Community Energy Sharing Management for Fully

Moving Energy Storage Scheme

Inter-community energy sharing management scheme for fully moving energy storage

is proposed to address the problem of optimal energy-price when hierarchical multi-

communities integrated with electric vehicles. In the future, the number of EVs on the

road will be very high. EVs can act as significant loads consuming high power and energy,

and as sources capable of discharging energy back to the grid. They can also move across

different communities within a smart grid, each community has its own energy profile and

electricity pricing. Therefore, EVs can be managed using energy sharing prices from the

utility company to help with charging or discharging, ultimately flattening the grid pro-

file. Without proper management, from typical human behavior, typical human behavior

tends to involve charging EVs upon returning from work in the evening, causing a very

high demand. In this scheme, the problem is formulated as a three-level Stackelberg game

involving three entities: the utility company, community energy aggregators, and EVs.

All players aim to maximize their benefits. Consequently, they receive monetary benefits

and can also reduce the peak-to-average ratio.

2.4 Summary

This chapter details key components associated with the proposed hMESH framework,

including renewable energy resources, energy storage systems, electric vehicles, and smart

homes. The hMESH framework for future smart grid communities, which integrates vari-

ous kinds of energy storage, is presented and described. Additionally, the three proposed

schemes within the framework are introduced and explained.

26



Chapter 3

Energy Sharing Management for

Non-Moving Energy Storage Scheme

3.1 Introduction

World energy demand is continuously increasing [30]. Since it is not environmentally

friendly, constructing more fossil fuel power plants is not an excellent answer to deal with

such a problem. On the other hand, renewable energy resources such as solar panels, wind

turbines, and fuel cells do not produce harmful CO2 emissions [7]. The development of

advanced technologies and the decrease in renewable energy (RE) costs make RE very

interesting for many involved parties. However, the intermittent nature of RE makes it

an unstable energy resource that cannot be utilized fully. Thus, energy storage systems

(ESSs) are a viable solution for mitigating this issue. Especially in the residential sector,

people are becoming more interested in producing their energy by using RE integrated

with an ESS. These days, not only has the cost of RE decreased, but the installation cost

of ESSs has also decreased by 60% from 2014 to 2017. Moreover, it is predicted to further

decrease up to 61% by 2030 compared to 2017 [6].

Energy storage systems (ESSs) play a crucial role in smart homes powered by RE

resources. However, ESSs face several challenges that need to be addressed for effective

integration. Energy loss is an important consideration, and minimizing energy loss should

27



be prioritized to preserve system efficiency [31]. Without proper management, energy loss

can adversely impact the overall efficiency of the system. Determining the appropriate

capacity for the ESS is crucial when designing an energy system integrated with RE

resources. The capacity directly influences the system’s ability to handle surplus and

shortage energy. An improperly sized ESS can lead to system instability, reducing the

capability of the ESS to manage fluctuating generation and demand [32]. An effective

method to reduce energy loss and decrease the size of the energy storage capacity is to im-

plement load shifting. Load shifting involves adjusting the demand of HADs to align with

the generated energy from RE sources, thereby enhancing the overall system efficiency.

In a distributed power-flow system (DPFS), ensuring balanced, reliable, stable, and safe

energy supply from all power generators or RE sources to all power loads (PLs) or HADs

is crucial. The ESS becomes an indispensable component to address the intermittent na-

ture of RE and the dynamic fluctuations in HADs’ demand. Therefore, ensuring a steady,

dependable, and secure energy flow in the DPFS is crucial, in addition to achieving a bal-

ance between power generation and consumption in home energy management systems

and control [33]. In smart home environments, ESS integration is necessary to provide

uninterrupted electricity availability to satisfy demand in real time.

In this chapter, our objective is to study the energy loss of ESSs for single and multiple

power load fluctuating DPFAs in a smart home. Further, the investigation is extended

by applying two types of MPFA and incorporating a load-shifting algorithm to minimize

energy loss and reduce energy storage capacity. Additionally, the aim is to determine

the optimal energy storage capacity by formulating the problem as a linear optimization

problem. In particular, a novel approach is proposed which combines multiple-load power-

flow assignment with a load-shifting algorithm to minimize energy loss and determine the

optimal energy storage capacity.

The main contributions of this chapter can be summarized as follows:

• Introduce a system model of fluctuating DPFA to study balancing RE resources and

power loads with the presence of ESSs in a smart home.
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• Propose power-flow assignment algorithms for the energy system to efficiently assign

the required power for single and multiple power loads, i.e., single-load power-flow

assignment (SPFA) and multiple-load power-flow assignment (MPFA) algorithms,

respectively.

• Reveal through simulation results that the proposed PFA algorithms ensure that

the total energy from PGs from RE resources are completely supplied to all the PLs

in order to reduce energy loss due to ESSs.

• Introducing a scheme consists of a load-shifting algorithm incorporated with the

MPFA algorithm. This scheme aims to minimize energy loss and optimize energy

storage capacity in the DPFS within smart homes.

• Examining the MPFA algorithm in the DPFS coupled with a load-shifting algorithm

by using a real experimental dataset of a smart home environment, iHouse, and

confirming the design and performance of the proposed scheme, which can efficiently

and directly assign the required power to multiple PLs with the lowest energy loss.

3.2 Related Works

The literature review explores various aspects related to ESSs: integration of RE re-

sources, optimal energy storage capacity design, energy efficiency and energy loss during

charging/discharging, and integrated load-shifting algorithms.

There are many works on energy loss when integrating RE resources with ESSs [34–36].

In [34], P. Fortenbacher et al. use multi-period optimal power flow to schedule optimal

battery storage operations. Their findings show that the proposed method can reduce

battery losses by 30%. Additionally, a novel algorithm for optimal control and placement

of ESSs for minimizing energy losses using a genetic algorithm is proposed in [35]. J.

Sardi et al. [36] manage to obtain the optimal ESS capacity and analyze the energy loss

reduction of an RE system integrated with an ESS through load leveling.
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Several studies have focused on determining the optimal capacity of energy storage [37–

41]. In [37], a method was introduced for the optimally sizing, placing, and daily charging

and discharging of storage systems. The cost function considered energy loss, and the

results indicated a decrease in energy loss. J. Xiao et al. [38] proposed an optimization

model to find the optimal size and installation location of an ESS with the goal of minimiz-

ing the total net present value of the system, while also considering battery lifetime. The

proposed method was proven to be effective. The optimal siting and sizing of distributed

storage systems were addressed in [39], and the paper considered factors such as voltage

support, energy loss, and the cost of energy flow in the model. A heuristic technique was

employed to solve the problem, resulting in improvements in all considered terms. In [40],

A.V. Sackin et al. presented control strategies for charging and discharging a large-scale

ESS integrated into a wind farm. The aim was to determine the optimal capacity of all

energy storage units, considering operating constraints, system capital, and operational

cost while also prolonging battery life. The study used real data from an actual wind

farm, and simulation results demonstrated the effectiveness of the proposed method. Ad-

ditionally, an observation was made that with an increase in the number of storage units,

the optimal capacity of the battery decreased. The authors in [41] proposed a method to

determine the capacity of distributed energy sources, including generators and storage, to

meet energy demand. The approach considers optimization for both annual and hourly

operations of distributed energy systems. The results demonstrate reductions in energy

consumption, operation costs, and losses.

In the research studies [42–44], the specific focus is on investigating energy losses during

the charging and discharging processes of ESSs. In [42], an optimal lithium-ion battery

charging strategy is introduced to minimize charging losses, employing a dynamic pro-

gramming algorithm. Experimental results demonstrate the efficiency of the proposed

approach, achieving minimum energy loss throughout the charging process. Research

in [43] proposes a novel charging algorithm designed to reduce energy loss during the

charging process. Experiments reveal a significant reduction in the energy loss of the

ESS with the application of the proposed method. In [44], the authors present a novel
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multi-objective optimization framework for achieving economical charging management

of ESSs. The framework considers factors such as charging time; electrical energy loss;

and the overall cost of charging, including battery degradation. The results conclude that

the cost associated with battery degradation is considerably higher than the cost incurred

from energy loss.

On the other hand, certain research studies [45–49] concentrate on optimal power as-

signment, aiming to enhance the overall efficiency of electrical systems incorporating ESSs.

In [45], a power-flow distribution strategy is proposed for a utility-scale second-life ESS,

with the goal of increasing energy system efficiency by minimizing the operational time

and energy loss of the ESS. Experimental results demonstrate that the PFDS effectively

improves the efficiency of multiple-battery energy systems, reducing energy loss by 24%.

It achieves a 4.4% cost saving over the system’s lifetime. A novel hierarchical structure

for power sharing in multiple-battery ESSs is proposed in [46], aiming to increase overall

system efficiency by employing an algorithm for proper control selection. Results indicate

an improvement in the overall efficiency of the system. The authors in [47] introduce an

operational algorithm to enhance the efficiency of multiple-unit ESSs. Efficient operation

is achieved through a combination of operating points in a lookup table incorporated with

a genetic algorithm to perform frequency regulation. The model is explored in different

power assignment scenarios for an ESS, revealing that optimal assignment demonstrates

improved system efficiency and reduced energy loss. In [48], a multi-objective optimiza-

tion algorithm for power assignment and resource allocation in multiuser and multiserver

edge computing is proposed to minimize costs and energy consumption. The results verify

the effectiveness of the algorithm compared with the baseline method. The authors in [49]

presented control strategies for power-flow control between fluctuating PVs and ESSs to

ensure stable energy delivery to loads considering battery degradation and system relia-

bility. The results demonstrate the efficiency of the proposed control scheme in managing

battery operation.

Some research efforts are directed towards load shifting integrated into ESSs to minimize

energy loss and determine optimal storage capacity [50–55]. In [50], the study indicates
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that shifting domestic loads to off-peak time periods has the potential to reduce electrical

losses and carbon emissions. The problem of the optimal scheduling of 24 h electric

loads is explored in [51] to minimize electricity generation costs while considering system

losses. Results demonstrate a reduction in average generation costs by more than 34%

compared with traditional systems. However, the decrease becomes less significant as the

number of loads increases. The authors in [52] consider the effects of peak load shifting

on storage capacity in hybrid power systems while also considering energy losses during

power conversion, transfer, and storage, developing shifting heuristics to achieve optimal

storage size. The results show effective reduction in storage size, minimizing the cost of

energy storage. A load-shifting allocative method for hybrid energy storage is proposed

in [53] to determine the capacity of energy storage in district energy planning based on

peak values for different electrical load seasons. In [54], an innovative electricity demand

forecasting framework is developed to calculate the optimal battery capacity. The goal

is to maximize the profit of an electricity retailer by using battery storage in electrical

load scheduling. Results indicate significant annual cost savings with real electricity price

market conditions and reasonable battery costs, with the optimal capacity size depending

on the battery cost. A scheduling approach for the optimal charging/discharging time

of battery energy storage integrated with renewable generators to reduce energy loss and

dependence on the grid is proposed in [55]. The coordination operation of battery storage

and renewable energy sources is considered. The results demonstrate a reduction in power

loss and energy supply from the grid of up to 40%.

However, to the best of our knowledge, no research has been observed attempting

to study the MPFA algorithm along with the load-shifting algorithm to reduce energy

loss and energy storage capacity in a smart home environment. This combination holds

high potential for decreasing energy loss and optimizing the size of battery storage in

smart homes.
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3.3 System Model

In Figure 3.1, the system model illustrates a simple architecture for distributed power-flow

assignment (DPFA) in a smart home environment. Two power storage units (PS units),

two power generators (PGs), and two power loads (PLs) are incorporated in this model.

Each PG possesses the capability to provide power to both PLs and PS units.

Within the framework of basic research analysis, intentional selection of an FC and a PV

system as the PGs was made. The PLs, represented by an air conditioning (AC) unit and

a ventilation fan (VF), are configured to receive power from both PGs and PS units. The

goal is to investigate the energy loss and determine the optimal energy storage capacity

of the ESS within the power-flow system (PFS) while following the state-of-charge (SoC)

boundary constraints of the PS system.

The word “fluctuating” in this work particularly relates to the unpredictability of PGs

and PLs. Additionally, the term “PS system” is used interchangeably with the term

“energy storage system”.

The charging of an ESS is facilitated by the energy supplied by PGs, and conversely, the

device can discharge energy to PLs. To logically illustrate power-flow connections among

PGs, PS units, and PLs, a tripartite graph model is employed, as depicted in Figure 3.2.

This graphical representation involves denoting connections between two devices through

pairs of power devices. For instance, (PGm, PLn) indicates the connection between the

m-th power generator (PGm) and the n-th power load (PLn).
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Figure 3.1: System architecture of DPFS in a smart home environment.

Figure 3.2: All the possible logical connections in the DPFS.

Let M represent the set of PGs, N represent the set of PLs, and H represent the set

of PS units. Define EGf
m(t) as the set of time-varying energy generation levels at time t

served by the fluctuating PGs in set M = 1, 2, . . . ,M , where m ∈ M. Denote ELf
n(t)

as the set of time-varying energy load levels at time t associated with the fluctuating

PLs in N = 1, 2, . . . , N , where n ∈ N . In addition, the parameters SoCh(0), SoCmin
h ,

SoCmax
h , SEh(t), EC loss

h (t), and EDC loss
h (t) define a set of active PS units. Here, h varies
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within H = 1, 2, . . . , H, representing the initial SoC, minimum SoC, maximum SoC, stored

energy in the PS system at time t, and energy loss resulting from charging efficiency and

discharging efficiency at time t, respectively.

Consider φ = 1, 2, . . . , ϕ ∈ ϕ to be a set representing logical power-flow connections,

where the active connections at time t between the set of PL, Y , and the set of PGs, X,

are indicated by the symbol φ(X, Y, t).

After the PS system is integrated, φ(PG,PL, t) can be reformed as a flow path that

depends on connections between PGs and PS units and between PS units and PLs [56,57],

i.e.,

φ(PG,PL, t) ⊆ φ(PG,PS, t) ∪ φ(PS, PL, t) (3.1)

There is a corresponding energy level for every power-flow assignment, which can be

expressed as

φ(EGf
m, EL

f
n, t) ⊆ φ(EGf

m, ESh, t) ∪ φ(ESh, EL
f
n, t) (3.2)

In simpler terms, φ(EGf
m, EL

f
n, t) denotes the energy transferred from a PG to a PL at

time t. These energy flows within the power-flow assignment of the energy system align

with the following conditions:

(i) The total energy of PGs from RE sources is completely supplied.

(ii) The total energy of PLs from HADs is absolutely consumed.

(iii) The SoC limitations of PS units are securely constrained by the total energy of

both PGs and PLs.

3.3.1 Power Generators and Loads

The instantaneous power of power generators and power loads is represented by pgfm(t) and

plfn(t), respectively. By integrating the instantaneous power, the total energy produced

by each m-th power generator and the total energy consumed by each n-th power load
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during time t can be represented as [56,58]

EGf
m(t) =

∫ t

0

pgfm(t)dt (3.3)

ELf
n(t) =

∫ t

0

plfn(t)dt (3.4)

Each PG and each PL have power limitations, as indicated below.

pgf,min
m ≤ pgfm(t) ≤ pgf,max

m (3.5)

plf,min
n ≤ plfn(t) ≤ plf,max

n (3.6)

where pgf,min
m and pgf,max

m represent the minimum and maximum power level limitations

of the m-th power generator, while plf,min
n and plf,max

n denote the minimum and maximum

power level limitations of the n-th power load, respectively.

3.3.2 Power Storage Systems

The input power and output power of a power storage system are denoted by the variables

psinh (t) and psouth (t), respectively. The SoC of the PS system is calculated using the integral

of energy in the following equations [56,59,60].

SoCh(t) = SoCh(0) +
ηc

ESSh

∫ t

0

psinh (t)dt− 1

ηdESSh

∫ t

0

psouth (t)dt (3.7)

The PS capacity is denoted by ESSh, while the charging efficiency and discharging

efficiency are denoted by ηc and ηd, respectively. The SoC of the PS system must stay

within a specific operating range to avoid overcharging and overdischarging [56,61]:

SoCmin
h ≤ SoCh(t) ≤ SoCmax

h (3.8)
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Therefore, the stored energy in PS system h at any given moment t is

SEh(t) = SoCh(t)× ESSh (3.9)

where psinh (t) and psouth (t) have minimum and maximum power levels as follows:

psin,min
h ≤ psinh (t) ≤ psin,max

h (3.10)

psout,min
h ≤ psouth (t) ≤ psout,max

h (3.11)

3.3.3 Energy Loss of Power Storage System

In a distributed power-flow system (DPFS), energy losses occur during the charging and

discharging of power storage units. Energy loss is investigated in this study using the

following equations, where the energy loss resulting from charging efficiency (ηc) and

discharging efficiency (ηd) may be written as follows:

Energy loss while the PS system is being charged:

EC loss
h (t) = (1− ηc)

(∑
m∈M

EGf
m(t)−

∑
n∈N

ELf
n(t)

)
(3.12)

Energy loss while the PS system is being discharged:

EDC loss
h (t) = (

1

ηd
− 1)

(∑
n∈N

ELf
n(t)−

∑
m∈M

EGf
m(t)

)
(3.13)

3.3.4 Operating Hours of HADs

The energy load (EL) parameter for HADs can be utilized to calculate the number of op-

erating hours in a whole day. For instance, the energy demand of HADs can be computed

by using the total number of operating hours of the energy loads, denoted by HDE. The

parameter SDi(t) is defined to indicate the state of demand, where SDi(t) = 1 means

that the HADs demand energy, while SDi(t) = 0 means that the HADs do not require
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energy.

HDE(i) =
T∑
t=0

SDi(t) (3.14)

where

SDi(t) =


1 , ELi(t) > 0

0 , ELi(t) = 0

(3.15)

On the other hand, the parameter of energy supply (ES) for a renewable energy source

can be used to determine the number of operating hours in a whole day. For example, the

energy supply of a solar panel can be computed by using the total number of operating

hours of the energy deliverables, denoted by HED. The parameter SSi(t) is defined to

indicate the state of supply, where SSi(t) = 1 means that the PG has supplied energy,

while SSi(t) = 0 means that the PG has no supplied energy.

HED(i) =
T∑
t=0

SSi(t) (3.16)

where

SSi(t) =


1 , ESi(t) > 0

0 , ESi(t) = 0

(3.17)

3.4 eNMES Scheme

This section provides a detailed description of the energy sharing management for non-

moving energy storage in a smart home (eNMES) scheme. The scheme consists of three

main parts. The first part is admission control. The second part involves logical power

assignment algorithms using MPFA and a load-shifting algorithm. The third part focuses

on optimal energy storage capacity design using linear programming.

The flowchart of the overall scheme is illustrated in Figure 3.3. First, the proposed

scheme gathers data from a real experimental dataset of a smart home named iHouse,

along with resident activities, and initializes all necessary parameters. Subsequently, the

multiple-load power-flow assignment algorithm is applied to establish power-flow connec-
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Figure 3.3: Flowchart of the overall proposed scheme.

tions between PGs and PLs. After that, the load-shifting algorithm to reduce energy

loss is applied. Finally, the reduced optimal ESS capacity is determined using linear

programming.

3.4.1 Admission Control

In a DPFS within a smart home environment, a controller engages in message exchange

with all PGs and HADs. The controller may calculate the overall energy supply from

power generators and the total energy requests from PLs after receiving these communi-

cations. Figure 3.4 shows the state change of the admission control scheme.

The figure illustrates three main entities: the controller, HADs, and RE sources, which

communicate through a communication channel, interacting with each other. The first
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Figure 3.4: State transition of admission control scheme for a controller.

operation, in F1, when HADs require energy to operate, involves sending a signal to the

controller. Subsequently, the controller registers the HADs’ information and requests.

Then, in F2, the controller performs calculations and scheduling based on the demand of

HADs. If the demand cannot be met (F3), the controller initiates negotiations with HADs

using the proposed scheme to shift their operating time to a new time slot. In the F3 stage

of admission control, algorithms are proposed to negotiate the lowest energy loss for the

entire distributed power-flow system. If the new schedule can be settled, the controller

performs rescheduling in F4. Moreover, tailoring the admission control mechanism to

the demand and preferences of users is possible by indicating the priority energy class

of any of the HADs. For instance, HADs with a shiftable mode can be programmed to

operate during times when energy supply exceeds energy needs. In this chapter, further

examination will be conducted on this criterion for a DPFS in a smart home environment.
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3.4.2 Fluctuating Distributed Power-flow Assignment

This subsection introduces the details on how fluctuating distributed power-flow assign-

ment (DPFA) works with its algorithms when a single power load and multiple power

loads are considered.

Single-Load and Multiple-Load Power-flow Assignment

In Figure 3.5, fluctuating DPFA can be divided into two types. One is single-load power-

flow assignment (SPFA), which indicates the logical connection that a single PL can obtain

its power from a PS only or both a single PG directly and a PS. Another is multiple-load

power-flow assignment (MPFA), which represents the logical connection of each PL that

can obtain its power both from multiple PGs directly and from a PS or multiple PSs.

The amount of charging energy of a PS depends on the remaining power after the PGs

supply multiple loads.

In SPFA, when a single PL obtains its power from the basic logical power-flow con-

nection, e.g., φ(PS, PL, t), we define SPFA/S as a single PL that only receives its power

from a PS. Likewise, when a single PL obtains its power from two basic logical power-flow

connections, e.g., φ(PG,PL, t) and φ(PS, PL, t), we define SPFA/GS as a single PL that

receives its power from both a single PG directly and from a PS.

In MPFA, multiple PLs obtain their power both from multiple PGs and from a single

or multiple PSs. When the PS receives the remaining power from a single PG (SG) only

through the basic logical power-flow connection, e.g., φ(PG,PS, t), we define MPFA/SG

as multiple PLs receiving their power under the condition that the PS receives the power

remaining from a single PG. Likewise, when multiple PLs obtain their power both from

multiple PGs and multiple PSs, and the PS receives the power remaining from multiple

PGs (MG) through the basic logical power-flow connection, e.g., φ(PGm, PSh, t), we

define MPFA/MG to mean multiple PLs receive their power under the condition that the

PS receives the power remaining from multiple PGs.
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Single-load Power-flow Assignment

Since SPFA/S involves simple and very straightforward assignment, there is no algorithm

for SPFA/S power-flow. However, an algorithm is needed for SPFA/GS. The objective of

the SPFA/GS algorithm is to ensure that the total energy of the PG is directly supplied

first to the corresponding PL. Then, the remaining energy from the PG will charge the

single PS.

(a) (b)

Figure 3.5: Logical power connections of two different SPFA types: (a) SPFA/S and (b)
SPFA/SG.

Multiple-load Power-flow Assignment

This subsection provides details on how MPFA works. In MPFA, each PL draws power

from multiple PGs and, additionally, from either a single or multiple PS units. The

surplus energy is stored either in a single PS unit or multiple PS units, depending on

whether the system is MPFA/SG or MPFA/MG. The logical connections of these MPFA

types are illustrated in Figure 3.6.

In the MPFA/SG configuration, several PLs receive energy based on the circumstance

under which each PS unit acquires the remaining energy from a single corresponding PG

(SG). Subsequently, each PS unit further supplies only a single corresponding PL. To

illustrate, both the FC and PV sources can simultaneously provide energy to the HADs,

namely, the AC unit and the VF. However, the FC can only store generated power in
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(a) (b)

Figure 3.6: Logical power connections of two different MPFA types: (a) MPFA/SG and
(b) MPFA/MG.

PS1, and similarly, the PV system can only store power in PS2. In scenarios where the

FC generates insufficient energy for the AC unit, PS1 can discharge the stored energy to

turn on the AC unit. Similarly, in the case of the PV system supplying energy to the

VF, PS2 helps provide the required energy, as shown in Figure 3.6a. The goal of the

MPFA/SG algorithm is to guarantee the direct supply of the total energy from the PG

to all PLs. The remaining energy of the PG is then utilized to charge the single PS unit.

Figure 3.7 illustrates the flow chart of MPFA/SG.

Conversely, in MPFA/MG, multiple PLs draw energy from both multiple PGs and

multiple PS units. Each PS unit obtains the remaining energy from multiple PGs (MGs)

and further supplies multiple PLs. For example, energy can be supplied to the AC unit

and the VF by both the PV system and the FC simultaneously. Then, both PS1 and PS2

can equally store the excess energy from both the FC and the PV system. Additionally,

energy can be concurrently obtained by the AC unit and the VF from both PS1 and PS2,

as shown in Figure 3.6b. The aim of the MPFA/MG algorithm is to prioritize the direct

supply of the total energy from the PG to all PLs. The residual energy of the PG is evenly

distributed to charge multiple PS units. Figure 3.8 depicts the flow chart of MPFA/MG.
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Figure 3.7: Flowchart of the MPFA/SG algorithm.

Figure 3.8: Flowchart of the MPFA/MG algorithm.
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3.4.3 Load-Shifting Algorithm

The load-shifting algorithm’s flowchart is shown in Figure 3.9. The algorithm first estab-

lishes for how many hours shifting HADs may operate. The operating time of shifting

HADs is thus moved into different time slots while minimizing energy loss in the PS

system. Lastly, the controller notifies all shifting HADs with the new time slots.

We further define additional parameters used in executing the proposed scheme, as

these parameters will be used in the upcoming flowcharts: Psupply(t) is the total supplied

energy at time t; Pdemand(t) is the total demanded energy at time t; Pbattery(t) is the total

battery energy at time t; DE is the demanded energy of shifting HADs; ED is the energy

deliverable to shifting HADs; R(t) is the total remaining energy at time t; and L(t) is the

total lacking energy at time t.

Figure 3.9: Flowchart of the load-shifting algorithm.
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3.4.4 Optimal Energy Storage Capacity Computation

The optimal energy storage capacity is determined by formulating a linear programming

minimization problem constrained by two assignment conditions [32, 33]. These condi-

tions ensure the normal operation of PS systems by maintaining energy generation and

consumption within SoC bounds.

minimize
∑
h∈H

ESSh(t) (3.18)

Condition 1:

∑
m∈M

EGf
m(t) ≤

∑
n∈N

ELf
n(t) +

∑
h∈H

(SoCmax
h − SoCh(0)) ·

ESSh(t)

η
(3.19)

Condition 2:

∑
m∈M

EGf
m(t) ≥

∑
n∈N

ELf
n(t) +

∑
h∈H

(SoCmin
h − SoCh(0)) ·

ESSh(t)

η
(3.20)

3.5 Evaluation Studies

3.5.1 Simulation Setup

In this section, we investigate the performance of single- and multiple-load power-flow

assignment algorithms for fluctuating DPFA in a smart home. We also further evaluate

the effectiveness of MPFA with and without the load-shifting algorithm in a smart home

environment is performed, aiming to minimize energy loss and identify the optimal energy

storage capacity. The study involves two power generators, namely, a PV system and an

FC; two power loads, namely, an AC unit and a VF; and two PS units. Simulations

are conducted for two different seasons, summer and winter, chosen due to high demand,

especially for heating, ventilation, and air conditioning.

For the PV system and the FC, real experimental datasets obtained from a smart home

named iHouse in Ishikawa, Japan [62], are utilized, where the rated voltage is 110 V and
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(a) (b)

Figure 3.10: Energy generation of PV system and FC in two different seasons: (a) summer
and (b) winter.

the frequency is 50 Hz. The data for the two seasons correspond to 14 June 2016 (summer)

and 11 January 2017 (winter). The FC model is based on ECOFARM [63], with specified

operation times from 00:00 to 06:00 and from 14:00 to 24:00 for both seasons. The energy

generation of the PV system and the FC in summer and winter are shown in Figure 3.10a

and Figure 3.10b, respectively. The AC unit and VF work together to regulate the

temperature in the smart home, ensuring thermal comfort mode. These PLs follow a 24

h schedule based on the daily activities of a four-member household (father, mother, and

two children) [64]. The members in the household intend to use the AC unit during the

intervals 00:00–04:00 and 05:00–24:00 in summer and during the intervals 00:00–04:00 and

08:00–24:00 in winter. The VF operates three times a day, i.e., 05:00–06:00, 12:00–13:00,

and 17:00–18:00 in both seasons. Regarding the PS parameters, the initial SoC, minimum

SoC, and maximum SoC are set to 21%, 20%, and 94% of the capacity, respectively.

For optimal energy storage capacity design, the optimization problem is solved using

the linear programming solver linprog in MATLAB.

3.5.2 Four Different Logical Power Connections

The different logical power connections shown in Figure 3.11 require different power-flow

assignment algorithms. These four different logical power-connection scenarios can be
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Table 3.1: Simulation parameters and settings

Parameter Value (unit)

Simulation time 24 hours
PV peak power 1500 W
FC rated power 700 W

AC demand power 790 W (Summer), 890 W (Winter),
VF demand power 27.8 W (Summer), 16.5 W (Winter)

AC operation time (Summer) 00:00-04:00 and 05:00-24:00
AC operation time (Winter) 00:00-04:00 and 08:00-24:00

VF operation time for both seasons 05:00-06:00, 12:00-13:00, and 17:00-18:00
Initial SoC of PS 21%

Minimum SoC of PS 20%
Maximum SoC of PS 94%

Charging and discharging efficiency of PS 92%

divided into two categories based on power-flow assignment (PFA). The first category is

single-load power-flow assignment (SPFA), which consists of SPFA/S and SPFA/GS to

handle a single PG and supply its power to a single PL. The second category is multiple-

load power-flow assignment (MPFA), which are MPFA/SG and MPFA/MG to handle

multiple PGs and supply their power to multiple PLs via a single PS or multiple PSs,

respectively.

In Figure 3.11a, a single PG always stores its power in a single PS first; then, a single

PL obtains its power directly from the corresponding PS. For example, FC stores energy

directly to PS1, and PV also directly stores energy to PS2. Then, PS1 can only supply

its power to AC, and PS2 can only supply to VF. In Figure 3.11b for the SPFA/GS

algorithm, a single PG always supplies its power directly to a single PL first; then, the

remaining energy is stored in a single PS. A single PL can also obtain its power directly

from the corresponding PS. In particular, FC can directly supply power to the AC, and

if there is energy left, it is stored in PS1. PV supplies energy to the VF first and stores

the remaining energy in PS2. PS1 and PS2 can still only supply a single load: AC and

VF, respectively.

In Figure 3.11c for MPFA/SG, multiple PGs supply their power directly to all PLs

first; then, the remaining energy is stored in a single PS. A single PL can only obtain its
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(a) (b)

(c) (d)

Figure 3.11: Logical power connections of four different PFAs: (a) SPFA/S, (b) SPFA/GS,
(c) MPFA/SG, and (d) MPFA/MG.
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power directly from the corresponding PS. For example, FC and PV can supply power

to both loads, AC and VF, at the same time. However, FC can only store its power in

PS1, similar to PV, which can only store its power in PS2. When FC or PV generate

insufficient power for AC or VF, PS1 and PS2 can discharge the stored energy to a single

load: AC and VF, respectively. Finally, in Figure 3.11d for MPFA/MG, multiple PGs

supply their power directly to all PLs first; then, the remaining energy is stored in multiple

PSs equally. Any PL can obtain its power from multiple PSs. For instance, both FC and

PV can provide their power to both AC and VF at the same time. The energy remaining

from both FC and PV can be stored in both PS1 and PS2 equally. Further, both AC and

VF can retrieve their energy from both PS1 and PS2 simultaneously.

3.5.3 Results and Discussions on Energy Profile Applying DPFA

Figures 3.12 and Figures 3.13 show the energy profiles of four different PFAs in winter

and summer, respectively. The different PFAs may have different energy profiles because

AC and VF loads need to consume the full amount of energy in order to turn themselves

on, which is the result of the amount of energy generated and the condition of the ESSs;

otherwise, the load is not turned on, and the remaining energy is stored in an ESS instead.

Note that t = 1 on the horizontal axis means time 0:00–1:00.

The energy profiles of winter and summer show similar demand patterns. Around 08:00–

14:00, there are no PFAs that can satisfy the required demand because AC consumes

such a high amount of energy that both FC and PV cannot supply enough for the entire

operation time. Even MPFA/MG, with the help of both PSs, cannot satisfy all PLs during

the day. However, during the operation time, the PLs in MPFA/SG and MPFA/MG are

met for more hours than in SPFA/S and SPFA/GS since both PGs help supply the PLs.

On the other hand, in SPFA/S and SPFA/GS, each PG can only supply one load; thus,

the AC load cannot be fulfilled when FC is not generating energy even when PV generates

energy sufficient for both PLs.
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(a) (b)

(c) (d)

Figure 3.12: Energy profiles of four different PFAs in winter: (a) SPFA/S, (b) SPFA/GS,
(c) MPFA/SG, and (d) MPFA/MG.
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(a) (b)

(c) (d)

Figure 3.13: Energy profiles of four different PFAs in summer: (a) SPFA/S, (b) SPFA/GS,
(c) MPFA/SG, and (d) MPFA/MG.
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3.5.4 Results and Discussions on Energy Storage Applying DPFA

Figures 3.14 and Figures 3.15 show the energy loss of winter and summer, respectively. In

SPFA/S, the PGs always store energy in PSs first; then, PSs supply energy to PLs. Thus,

there are always charging and discharging losses, which results in the highest total storage

energy loss for all the seasons. The energy loss results for all seasons further show that

SPFA/GS comes in second place with the highest energy loss, in which the energy loss is

higher than that of MPFA/SG and MPFA/MG. This is because in SPFA/GS, the PGs

can only supply a single load rather than multiple loads, which results in high remaining

energy charged to the PS. Hence, higher charging loss occurs. However, in MPFA/SG and

MPFA/MG, the loads can receive energy from both PGs, which results in less charging

loss from less surplus energy.

Table 3.2 shows that SPFA/S has the highest total 24-h storage energy loss from charg-

ing and discharging, as we mentioned before. In winter, the loss from MPFA/SG is the

lowest and is 67% lower than that of SPFA/S. For MPFA/MG, the energy loss is very

close to that of MPFA/SG and is 66.5% less than that of SPFA/S for winter. Lastly,

when comparing SPFA/GS with SPFA/S, the loss in SPFA/GS is 53.7% less than that

of SPFA/S for winter. Similar descriptions are applied to summer season. The results

further show that summer possesses higher energy loss in ESSs compared to winter. This

is because AC load in the summer consumes less energy compared to winter and there is

high PV generation, so the energy remaining to be stored in ESSs and discharged from

ESSs is higher than in winter. Hence, the energy loss in the summer is higher.
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Figure 3.14: Energy loss of PS systems in winter.

Figure 3.15: Energy loss of PS systems in summer.

When comparing energy loss between SPFAs and MPFAs, the latter demonstrates

greater efficiency, with MPFAs achieving energy loss that is 55.2% lower than that of

SPFAs.

Table 3.2: Total energy storage loss (kWh)

Season SPFA/S SPFA/GS MPFA/SG MPFA/MG
Winter 2.035 0.941 0.668 0.682
Summer 2.199 0.925 0.700 0.712

Figures 3.16 and Figures 3.17 show the stored energy in ESS of winter and summer,

respectively. The stored energy in both seasons have a similar pattern. The graphs

illustrate that when stored energy increases over time, we can clearly see the difference
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between stored energy in single-load PFAs (SPFA/S and SPFA/GS) and multiple-load

PFAs (MPFA/SG and MPFA/MG). The reason is that each PG in SPFA can only supply

a single load, unlike in MPFA, where each PG supplies multiple loads. Hence, there

is higher surplus energy to be charged and stored in a PS for SPFA. Therefore, the

stored energy of SPFA is higher than that of MPFA. Furthermore, the stored energy of

MPFA/SG and MPFA/MG in winter and summer are different since PG in MPFA/SG

can only charge a single PS and discharge to a single load, while PG in MPFA/MG can

charge to multiple PSs, and all PSs can discharge to multiple PLs. Therefore, the stored

energy in PS of MPFA/SG is higher than that of MPFA/MG. In winter and summer, the

demands satisfied are different for each PFA, so the stored energy results are very different

between each PFA over time, especially between SPFA and MPFA. The results further

show that summer possesses higher stored energy in ESS compared to winter since in the

summer, the AC load consumes less energy and PV produces higher generated energy

compared to winter.

Ultimately, we can conclude that energy loss decreases when the number of connections

is higher. Especially, all the generated energy should not be stored in battery storage

first and supplied to loads later. Loads should be met directly first; then, the remaining

energy can be stored to be supplied later. Another thing that should be pointed out is

that for SPFA, if a PG is assigned to supply a PL, conversely, the situation could be the

worst, since PV alone cannot fulfill the AC load for the entire operation time.
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Figure 3.16: Accumulated stored energy of PS systems in winter.

Figure 3.17: Accumulated stored energy of PS systems in summer.

3.5.5 Results and Discussions on Energy Profile Incorporating

Load Shifting Algorithm

Figures 3.18–3.21 illustrate the energy profiles over 24 h for MPFA/SG and MPFA/MG

during both winter and summer. The white bars represent the total generated energy

from power generators, while the gray bars represent the total consumed energy of PLs

without the load-shifting algorithm. The black bars depict energy demand when the load-

shifting algorithm is applied. The results vary between the seasons due to fluctuations in

energy generation and demand.
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Figure 3.18: Energy profile for MPFA/SG with and without load shifting in winter.

Figure 3.19: Energy profile for MPFA/MG with and without load shifting in winter.

Figure 3.20: Energy profile for MPFA/SG with and without load shifting in summer.
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Figure 3.21: Energy profile for MPFA/MG with and without load shifting in summer.

In Figures 3.18 and 3.19, the energy profiles for winter are displayed for both MPFA/SG

and MPFA/MG, with and without the load-shifting algorithm. Both profiles exhibit a

similar demand pattern, where no power-flow assignment (PFA) can satisfy all the energy

demand throughout the day. This is primarily due to the high energy demand of the AC

unit, for which the PV system and the FC do not generate enough energy to cover the

entire day. Even MPFA/MG with multiple PS units cannot meet all PL demand during

that day.

Figures 3.20 and 3.21 display the energy profiles in summer for MPFA/SG and MP-

FA/MG, respectively. These results reflect similar patterns as in the winter season, with

both MPFA/SG and MPFA/MG struggling to meet all energy demand throughout the

entire day.

When comparing the results between the cases of applying and not applying the load-

shifting algorithm in winter, the results show that the load-shifting algorithm adjusts the

operating hours of the AC unit to reduce energy loss. This shift enables the AC unit to

operate continuously in the early evening, as the demand is shifted from the morning. On

the other hand, when the load-shifting algorithm is applied in summer, it can be observed

that the demand tends to shift from early morning to mid-morning.
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3.5.6 Results and Discussions on Energy Storage Incorporating

Load Shifting Algorithm

Figures 3.22 and 3.23 display the energy loss comparison in both winter and summer

seasons with and without the load-shifting algorithm for MPFA/SG and MPFA/MG,

respectively. Figures 3.24 and 3.25 illustrate the optimal energy storage capacity compar-

ison in both winter and summer seasons with and without the load-shifting algorithm for

MPFA/SG and MPFA/MG, respectively.

Figure 3.22: Energy loss for MPFA/SG with and without load shifting.

Figure 3.23: Energy loss for MPFA/MG with and without load shifting.
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Figure 3.24: Optimal storage capacity for MPFA/SG with and without load shifting.

Figure 3.25: Optimal storage capacity for MPFA/MG with and without load shifting.

When comparing the cases of applying and not applying the load-shifting algorithm,

the results demonstrate that the shifted profiles for both seasons have lower energy loss,

reduced by approximately 1.4% and 11.4% for summer and winter, respectively. Reduc-

tions also occur for the optimal energy storage capacity when applying load shifting, with

reductions of 6.7% in summer and 62.1% in winter.

Comparing the results between the two seasons, in terms of the difference in energy

loss when not applying the load-shifting algorithm, there is not a significant distinction.

However, in cases where the load-shifting algorithm is applied, the winter season experi-

ences a substantial reduction in energy loss, with approximately 9.9% lower energy loss
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compared with summer.

When selecting an ESS for a smart home, it is essential to consider its performance

throughout the entire year. Specifically, one should take into account the worst-case

scenario or, in other words, the maximum value of energy loss from both seasons. The

results indicate that the energy loss is reduced by 1.9% and 2.1% for MPFA/SG and

MPFA/MG, respectively, when comparing applying the load-shifting algorithm to not

applying it. Similarly for energy storage capacity, the worst-case scenario is defined as

the maximum value of optimal energy storage capacity from both seasons. The results

indicate that the optimal energy storage is reduced by 21.9% and 29.6% for MPFA/SG

and MPFA/MG, respectively, when comparing applying the load-shifting algorithm to

not applying it.

In summary, MPFA/MG in winter demonstrates the highest reduction in both energy

loss and optimal energy storage capacity. This is credited to the effective load-shifting

algorithm, supported by multiple PS units, which appropriately shifts the AC demand.

Additionally, higher energy demand in the winter season leads to lower energy loss and a

smaller optimal energy storage capacity due to a lower amount of surplus energy available

for charging in the PS system, while in the summer season, reductions in both energy

loss and energy storage capacity also occur, although not to the same extent as in the

winter season.

3.5.7 Comparison of the proposed scheme with existing work

In this section, the proposed multiple power flow assignment (MPFA) and the proposed

eNMES scheme, which incorporates a load-shifting algorithm into MPFA, are compared

to an existing work [57]. This work is the first to introduce the term "distributed power

flow assignment" in 2022.

From table 3.3, the results show that when comparing MPFA with SPFA/S, the pro-

posed MPFA effectively reduces energy loss by 66.8% in winter and by 67.9% in summer.

When MPFA is incorporated with the load-shifting algorithm, the energy loss is further
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Table 3.3: The energy loss comparison for each type of DPFA in two seasons (kWh)

DPFA type Winter Summer
SPFA/S 2.035 2.199

MPFA/SG 0.668 0.700
MPFA/MG 0.682 0.712

MPFA/SG + LS 0.551 0.610
MPFA/MG + LS 0.551 0.613

Table 3.4: The optimal energy storage capacity comparison for each type of DPFA in two
seasons (kWh)

DPFA type Winter Summer
SPFA/S 84.9 147.6

MPFA/SG 80.0 121.2
MPFA/MG 79.1 122.1

MPFA/SG + LS 36.5 67.2
MPFA/MG + LS 36.5 74.8

reduced, achieving a reduction of 72.9% in winter and 72.2% in summer.

Table 3.4 shows the optimal energy storage capacity for different DPFA types. The

results illustrate that the MPFA introduced in this work can reduce energy storage ca-

pacity by 5.8% in winter and by 16.9% in summer compared to the existing work that uses

SPFA/S. The optimal energy storage capacity is further decreased when the load-shifting

algorithm is applied together with MPFA, resulting in a reduction of 57% in winter and

51.9% in summer compared to SPFA/S.

3.6 Summary

In this chapter, we studied the effects of energy loss and stored energy in ESS related

to the frequency of charging and discharging for all seasons for designing logical power

connections for distributed power-flow assignment in a smart home. We further investi-

gates the minimization of energy loss in an ESS within a smart home environment. This

study employs a load-shifting algorithm incorporated with two types of DPFA, namely,

MPFA/SG and MPFA/MG. This study also explores the optimal energy storage capacity

when applying the load-shifting algorithm, formulated as a linear programming prob-
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lem. Real experimental data from a smart home environment called iHouse in winter

and summer are utilized for design, performance, and investigation. Through numerical

studies, we can conclude that both MPFA/SG and MPFA/MG algorithms ensure the

power generated by PGs is supplied directly to be consumed by PLs, and the remaining

power from the PGs is stored in PS systems for PLs to operate at other times. As a

result, both MPFA/SG and MPFA/MG achieved low energy loss with efficient energy

storage during the day. The proposed DPFA algorithms can reduce energy loss up to

67% compared to power-flow assignment for which all the generated power is stored in

the ESS directly (SFPA/S) in the winter. The design of a power-flow assignment that

links high PG to high PL, e.g., FC to AC, is essential to ensure low energy loss for the

entire energy system. We can observe that both SPFA/S and SPFA/GS cannot perform

more efficiently when the logical power connections of FC to AC and PV to VF become

FC to VF and PV to AC, respectively. To address this complicated design for distributed

power-flow assignment, both MPFA/SG and MPFA/MG are highly recommended. The

results further show that summer possesses the higher energy loss and stored energy in

ESSs compared to winter. When applying the load-shifting algorithm with MPFA during

winter, it results in a significant reduction in energy loss, approximately 11.4%. Addi-

tionally, the optimal energy storage capacity experiences a substantial reduction, 62.1%,

benefiting from the support provided by multiple PS units to meet energy demand. On

the other hand, in the summer season, reductions in both energy loss and optimal energy

storage capacity also occur, although not as much as in the winter season. In summer,

energy loss is reduced by approximately 1.4%, and there is a 6.7% decrement in optimal

battery storage capacity. The analysis and findings suggest that higher energy demand,

as observed in the winter season, leads to lower energy loss and smaller optimal energy

storage capacity due to a lower amount of surplus energy available for charging in the PS

system. Recommendations include shifting the operation of the loads to the time when

the amount of energy supply closely matches energy demand in order to reduce energy

loss and optimize the energy storage capacity of smart homes.
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Chapter 4

Critical Hour Energy Sharing

Management for Partially Moving

Energy Storage Scheme

4.1 Introduction

Currently, research in Electric Vehicle (EV) technology is gaining widespread attention,

with a particular focus on Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) systems, both

of which can be considered part of energy sharing management schemes that incorporate

EVs into the smart grid. In G2V research, the emphasis is on understanding the behavior

of EVs and developing methods to manage and control the charging operations of EV

batteries. This involves utilizing energy from sources such as the utility grid and renewable

energy resources (RE). On the other hand, V2G research explores the potential of EVs

to provide ancillary services to the grid by discharging energy from their batteries back

into the grid. The battery storage in EVs serves as an excellent supply source capable of

responding almost in real-time and can address the problem of the intermittent nature

of RE [57]. V2G has the potential to support the grid with various ancillary services,

including peak shaving, frequency regulation, voltage regulation, and spinning reserve [65].

EV owners can derive benefits by charging their batteries during non-peak periods when
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electricity prices and generation costs are low. Subsequently, they can provide V2G

services to assist the grid during peak periods when electricity prices and generation costs

are high.

However, the majority of G2V and V2G research primarily concentrates on personal

passenger EVs. These vehicles, designed for individual transportation with diverse sched-

ules and purposes, typically have smaller battery capacities, resulting in lower willingness

and interest to participate in ancillary services [66]. Real-world implementation of V2G

programs with this type of EV may prove challenging. In contrast, electric school buses

(ESBs) follow specific schedules and routes [67,68], often remaining parked in idle mode.

Schools that own ESBs would find participation in V2G programs beneficial, so it ensures

high willingness to engage in ancillary services. Traditionally, school buses have been pow-

ered by diesel engines, emitting harmful pollutants that can negatively impact the health

of students [69] , particularly young children in primary schools. However, there is a

positive shift in the transportation sector. The price of electric buses (EBs) has decreased

significantly compared to several years ago, particularly in the early 2000s [10]. This

reduction in cost, coupled with growing environmental awareness, has led to initiatives in

the USA aimed at transforming 500,000 diesel buses into electric ones [70].This transfor-

mative effort aligns with the broader goal of fostering cleaner and more sustainable school

transportation. Due to their predictability and substantial battery storage capacities,

ESBs are well-suited for providing V2G services. This makes them a compelling choice

for contributing to grid stability and benefiting both schools and the UC.

Typically, generated electricity needed to be matched all the time with the electric de-

mand. When multiple high-consumption electric appliances are simultaneously activated,

it can result in a surge in overall energy demand, leading to peak periods. During these

peak periods, UC are required to operate peak-generation power plants, incurring signif-

icant expenses to meet the additional demand. These peak power plants are not only

inefficient economically but also environmentally harmful [56].

To tackle this challenge, a potential solution involves offering peak shaving services to

various groups of EVs or battery packs. The UC can leverage the fast response capabilities
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of energy storage units on the demand side to discharge stored energy into the grid.

This approach assists the UC in mitigating peak demand and reducing additional costs.

Electric vehicles, for instance, can be charged at lower prices during non-peak demand

periods and discharge energy back to the grid during peak-demand periods, such as early

evening, offering benefits for their participation in this program. Given the suitability of

ESBs for providing peak shaving services, they should play an important role in the peak

shaving program. However, a single ESB may not be capable of discharging a sufficient

amount of energy to participate in such a program. Therefore, it is essential for a school,

which can aggregate the discharged energy from multiple ESBs within its location, to act

as the participant in the peak shaving program.

In this chapter, we introduce a novel V2G model for peak shaving problem that in-

corporates ESBs inside schools within a community. The problem is formulated as a

Stackelberg game, where the UC assumes the role of a leader. The UC issues information

about the peak shaving program, particularly the incentive unit price offered to schools

for providing the service. The UC aims to minimize the additional cost associated with

meeting peak demand. Simultaneously, schools in the community act as followers, ne-

gotiating the optimal discharged energy from their ESBs and determining the discharge

hours during peak periods to maximize their utility.

The main contributions of this chapter can be summarized as follows:

• A peak shaving model incorporating ESBs in a community is proposed which in-

cludes the additional cost model of UC and the utility model of schools that possess

a number of ESBs. The UC tries to minimize the additional cost to cover peak

demand periods, while schools in a community try to maximize their utility using

the stored energy inside their ESBs.

• Two-level Stackelberg game model is introduced to capture the interaction between

two types of players, that is UC and schools who possess a number of ESBs both

of the players trying to negotiate to establish the optimal incentive price and dis-

charged energy for peak shaving program. Also, the existence and uniqueness of the
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Stackelberg equilibrium is proven and guaranteed

• The optimal battery storage capacity of ESB and the best time to discharge during

peak-demand periods are also determined.

4.2 Related Works

This section provides a review of the literature related to G2V and V2G research for

various types of EVs, including personal passenger EVs, Electric Taxis (ETs), Electric

Buses (EBs), and Electric School Buses (ESBs).

Research in the field has predominantly concentrated on personal passenger cars for

both G2V and V2G operations. Several studies have explored into G2V research, par-

ticularly incorporating personal EVs [24, 27, 71–74]. In [71], the authors proposed a G2V

model between the grid and groups of personal EVs using a noncooperative game between

the personal EVs and the energy supplier. In this model, the grid aims to maximize its rev-

enue with limited supplied energy, while the personal EVs aim to minimize their charging

cost. The proposed algorithm was introduced and assessed through simulations, demon-

strating that the EVs in the proposed model can obtain higher utility compared to PSO

and equally distributed methods. A power scheduling scheme for an EV charging station

(CS) is proposed in [24]. The paper analyzes the benefits for multiple parties by formal-

izing the problem as a game theory interaction between CS and EV users. The results

reveal that the proposed power management scheme is feasible for an actual environment,

reducing the electricity cost by up to 8.6%. The authors in [72] proposed a charging

scheme focused on public EV CS, aiming to determine the charging time, pairing between

CS-EVs, and pricing using game theory along with a matching algorithm. The findings

indicate that the proposed scheme can enhance the performance of the charging system.

In [73], the study on the EV charging problem in intelligent transportation systems is

conducted, consisting of CS and EGVs, where CS aims to maximize its revenue, and EVs

aim to find the proper CS with the lowest charging cost, considering the willingness of

the EVs. This work proposed the LOBACH algorithm to find the optimal solution, and
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it is then compared to existing works, where it has outperformed other approaches. A

novel charging scheme for EVs inside smart communities integrated with RE is proposed

in [27]. The authors consider three parties in the model: the grid, aggregators (AGGs),

and EVs, where a trust model is introduced to enable EVs to select an AGG for charging,

as information needs to be shared between each entity involved. The analysis results show

that the proposed scheme is effective compared with traditional schemes. The authors

in [74] presented a charging strategy for EV CS equipped with Photovoltaic (PV) panels,

considering day-ahead pricing. They introduce a profit model for CS operators and a

cost model for EVs. This work studies the model using a game-theoretic approach. The

proposed model is verified through results that show an increase in CS operator profit

and reduced charging cost for EVs.

On the other hand, there is literature work on V2G research [28,29,75–77]. The work in

[75] presents a utility maximization algorithm for the V2G scheme. The system comprises

EVs and an AGG, both aiming to maximize their own utility. The results demonstrate

that the proposed algorithm can increase utility by up to 50% compared to conventional

methods. In [28], the authors proposed a planning strategy framework to optimize and

manage optimal EV charging and discharging operations, aiming to enhance the flexibility

and efficiency of a microgrid. The problem was formulated as a non-cooperative game

involving the distribution company, CS, and EVs. The findings reveal that the proposed

framework can increase the flexibility and efficiency of a microgrid by 0.3% and 67.4%,

respectively, compared to a case study. A V2G model is proposed in [76], where the study

is conducted between multiple AGGs and a number of EVs to determine the optimal

V2G pricing. The game theory model is formulated with the objective of maximizing the

utility of both AGGs and EVs. The simulation is verified with 3 AGGs and 2000 EVs,

demonstrating the effectiveness of the proposed model. Authors in [29] proposed a V2G

pricing model with demand response based on game theory, where the players involved

are AGGs and EVs trying to maximize their objectives by setting optimal strategies. The

results confirm the feasibility of the proposed model, ensuring the maximum benefit of all

parties. In [77], an approach is presented for scheduling household EV usage for V2G and
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vehicle-to-home services, using UK data and dynamic electricity pricing. The simulation

results show that the proposed approach effectively reduces electricity bills. It was found

that the main factors influencing this reduction are the energy price and the number of

EVs.

Some work has focused on G2V and V2G applications involving ETs in their system

[78–81]. The optimization of dispatch for ETs and CS is studied in [78]. ETs aim to choose

a suitable CS for charging while minimizing their cost, and CS sets the charging price. The

model is formulated using game theory, and a practical situation is simulated for analysis.

Ma et al. [79] studied a charging problem involving CSs and ETs. ETs aim to select a

CS with the lowest electricity charging cost, while CS adjusts the charging price based on

regional hotspot information of ETs to maximize its revenue. The results confirm that the

proposed model effectively reduces the charging cost of ETs and guarantees CS’s revenue.

In [80], a multi-objective optimization problem is formulated for the coordinated charging

strategy of ETs. The goal is to maximize the utilization of charging facilities, minimize

load imbalance, and minimize electricity charging costs. The particle swarm algorithm is

employed for optimization. The results confirm the improvement in efficiency, better load

balance, and electricity cost benefits. In [81], a charging coordination problem for ETs is

studied to decrease the charging cost. The goal is to decide when and where to charge ETs

by utilizing real-time information with a two-stage decision process. The analysis reveals

that the proposed approach can effectively decrease the charging cost of ETs, increase the

utilization of CSs, and flatten the charging demand profile for the power grid.

In recent years, there has been research studying G2V and V2G for EBs [82–86] and

ESBs [10, 67, 68, 87]. In [82], a novel bus-to-grid concept is introduced, allowing the bus

operator to generate revenue from both fare collection and providing ancillary services to

the grid. Non-linear optimization problems are formulated to maximize the bus operator’s

profit and determine the optimal bus charging plan. The simulation employs bus line

data and time-of-day pricing to verify the proposed concept. The work proposed by

Yang et al. [83] introduced an optimization model for dispatching EBs to participate in

carbon trading and the peak shaving market. The goal is to minimize the bus company’s
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daily cost and also reduce load fluctuations. The results reveal that the daily cost, load

fluctuations, and carbon emissions are reduced compared to the disorderly dispatch of

EBs. The operation of EBs integrated with dynamic market prices for load congestion

management is studied in [84]. Bi-level optimization is employed to determine electricity

market clearing and bus planning. The experimental results show that the engagement

of EBs can alleviate network congestion and reduce energy loss by 7.2%. Manzolli et

al. [85] focus on the charging scheduling problem of EBs. An optimization model is

designed to minimize charging costs while also participating in a V2G scheme. This

study demonstrates that it is economically viable for EBs to sell electricity back to the

grid. Work [86] developed an optimization model for scheduling battery swapping stations

for EBs, aimed at minimizing running costs while considering operational requirements.

A savings cost index is proposed, which confirms the economic viability of the concept.

There is limited literature on V2G research specifically focused on ESBs. Ercan et

al. [10] focus on the environmental benefits of using V2G technology with ESBs instead

of producing more electricity through traditional power plants, which release harmful

emissions. The results reveal that ESBs can reduce greenhouse gas emissions by 1420 tons

of carbon dioxide. In [67], the paper develops an ESBs V2G model to study the effect

of integrating the ESBs with V2G capability into the grid. The aim is to minimize peak

load periods and reduce carbon dioxide emissions using DC fast chargers in a centralized

fashion. The simulation results show that using ESBs with V2G capability can decrease

dependency on peak power plants and avoid carbon emissions up to 1,130 tons per day. An

analysis to evaluate the cost and benefit of using V2G-capable ESBs is performed in [68].

Many factors are considered, including electricity cost, fuel cost, battery cost, health

benefits, and the ancillary service market. The findings reveal that V2G-capable ESBs

can save the school expenses by $6,070 per set in net present value. Work [87] explored the

integration of ESBs for V2Gpurposes into the US electrical system, which is powered by

solar energy, utilizing Geographic Information Systems (GIS) data. The results indicate

that the integration of ESBs for V2G purposes can benefit both communities and schools.

For various reasons, it becomes evident that ESBs are the most suitable EVs for per-
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forming V2G service to the grid, given their characteristics of predictability, consistent

availability, and large storage capacity, as stated above. However, the existing literature

primarily focuses on minimizing overall electricity costs through a centralized entity, such

as a bus operator or grid operator. To the best of our knowledge, no research study has

addressed the V2G problem for ESBs while considering the interests of multiple entities

involved in the system. This consideration is crucial for the practical implementation of

V2G solutions in the real world, where the interests of various stakeholders must be taken

into account to realize the maximum benefits for each entity. Consequently, this work

employs a game-theoretic approach to investigate the problem, aiming for a more realistic

exploration of the dynamics involving multiple entities.

4.3 System Model

4.3.1 Preliminaries

Figure 4.1 depicts the conceptual illustration of the vehicle-to-grid model in a community.

This model comprises a utility company and multiple schools, each possessing several

electric school buses. The involved parties can be explained as follows:

• Utility company (UC): It is assumed that the Utility Company (UC) can accurately

forecast the upcoming peak demand and predict the additional energy required for

generation. However, power plants generating peak energy during peak durations

typically incur very high running costs, posing a considerable financial burden for

UC if it were to generate all the required energy during peak times independently.

In a community comprising several schools, each with multiple ESBs equipped with

battery storage, these ESBs can play a crucial role in supplying the needed energy.

Consequently, UC initiates communication by sending incentive price signals and

peak duration information to schools before the peak period, engaging in negotia-

tions for the provision of discharged energy from their ESBs. The incentive price

offered by UC is set lower than the unit cost it would incur to generate all elec-
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tricity independently. While UC still needs to generate the remaining energy that

ESBs do not cover, the quantity is reduced, resulting in a substantial decrease in

unit costs compared to when UC generates all the energy. Therefore, UC can effec-

tively minimize the cost of generating additional energy during peak periods with

the assistance of ESBs in schools within the community.

• Schools: Within a community, there exists a collection of schools, each consisting

of a number of ESBs. These ESBs possess the capability to offer V2G services

to the UC, specifically engaging in peak shaving activities by receiving incentive

prices for providing discharged energy to the UC. The unit incentive price that UC

sends to schools will be higher than the unit price at which the schools charge their

ESBs during non-peak periods, meaning the school will benefit from providing this

service to the UC. Upon receiving the incentive signal from UC, each school responds

by determining the optimal quantity of discharged energy to submit back to UC.

Additionally, the school strategically identifies the most favorable time-duration to

provide the V2G service, aiming to maximize their overall benefit from participating

in the program.

The proposed V2G model consists of two levels: the UC level and the schools’ level.

Initially, at the upper level, the UC anticipates the forthcoming peak period and demand.

It initiates negotiations for the V2G program by issuing an incentive signal (ptuc) to schools

within the community. This incentive price is related to the projected amount of peak

demand. Subsequently, at the lower level, each school in the community responds to

the provided incentive prices by determining and submitting the optimal quantity of

discharged energy from their ESBs’ batteries to maximize their individual benefits through

participation in the V2G program.

The set of schools is denoted as N = 1, 2, . . . , N , where n ∈ N and N is the total

number of schools in the system. Every school has the ability to offer V2G service by

using the energy that is stored in its ESB battery. Prior to the peak period, the UC has

the ability to initiate the peak shaving program by sending an incentive pricing signal.
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Figure 4.1: Conceptual illustration of vehicle-to-grid model in a community

4.3.2 Utility Company

Energy Cost function

The generation cost, Ct
gen(D

t), denotes the cost required to generate the energy to serve

all demand loads Dt during time t. The widely used and accepted assumptions for the

cost function are as follows:

1) The cost function is an increasing function with the generated energy [88,89].

Ct
gen(D

t
1) ≤ Ct

gen(D
t
2), ∀Dt

1 ≤ Dt
2, t ∈ T (4.1)

2) The cost function is strictly convex [90].

Ct
gen(θD

t
1 + (1− θ)Dt

2) < θCt
gen(D

t
1) + (1− θ)Ct

gen(D
t
2) (4.2)

where 0 < θ < 1, Dt
1, D

t
2 > 0, and Dt

1 < Dt
2.

In this work, the quadratic cost function that satisfied the above assumption is utilized

as follows [88,89,91,92]:

Ct
gen(D

t) = a(Dt)2 + bDt (4.3)

where a and b are coefficients of the generation cost function at t, and Dt represents the

amount of generated energy.
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The unit dynamic electricity price for each t can be calculated by pt = Ct
gen(D

t)

Dt , Hence,

the unit price is:

pt = aDt + b (4.4)

This price can be employed to calculate the cost of charging ESBs during typically non-

peak hours as well.

Utility of UC

The UC aims to fulfill the required demand Dt
req by generating energy from its generators,

along with procuring discharged energy from ESBs. This is achieved through V2G ser-

vices, where the UC sends incentive price signals to schools, prompting them to discharge

the stored energy in ESBs’ batteries.

We define Dt
peak, Dt

base, and Dt
req as the peak demand, base demand, and the required

demand resulting from the difference between peak and base demand at time t. This can

be written as follows:

Dt
req = Dt

peak −Dt
base (4.5)

When the peak shaving program is executed, the total amount of discharged energy

from ESBs from all the schools for performing peak shaving is:

Et
V 2G =

∑
n∈N

xtn (4.6)

where xtn is the discharged energy from school n at time t.

The new reduced peak demand after ESBs help shave the original peak demand Dt
peak

can be wrtten as follows.

Dt
peak,new = Dt

peak − Et
V 2G (4.7)
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Hence, the total additional cost incurred by UC from energy generation and the V2G

program to meet the total demand in the community Dt
peak with a base demand of Dt

base

is as follows:

U t
uc(p

t
uc) = ptucE

t
V 2G + Ct

gen(Dpeak,new)− Ct
gen(D

t
base) (4.8)

Here, ptuc represents the incentive price for providing peak shaving service, paid by UC to

schools.

Equation (4.8) comprises three terms. The first term represents the cost of paying

incentives to schools for providing the V2G service. The second and third terms denote

the generation costs for the new reduced peak demand and base demand, respectively.

The subtraction between these two generation cost terms is employed to determine the

additional generation cost incurred for producing the extra energy necessary to meet the

energy level after subtracting the energy supplied from the V2G program.

Upon substituting (4.3) into (4.8), the total additional cost of UC is reformulated as:

U t
uc(p

t
uc) = ptucE

t
V 2G + [a(Dt

peak,new)
2 + b(Dt

peak,new)− a(Dt
base)

2 − bDt
base] (4.9)

Therefore, the total additional cost of UC consists of two parts: 1) The cost of paying

incentives to schools to provide discharged energy from their ESBs. 2) The cost of gener-

ating the new reduced peak demand minus the cost that is already incurred at the base

demand.

The objective of UC is to minimize this additional cost during peak periods by select-

ing the proper incentive price ptuc while ensuring the delivered energy matches the peak

demand within the community.

min
pmin
uc ≤ptuc≤pmax

uc

U t
uc(p

t
uc) (4.10)
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4.3.3 Schools

Battery Dynamics

The State-of-Charge (SoC) of a school’s ESBs can increase over time during the day by

charging the batteries. It can decrease by discharging the stored energy to provide V2G

service to the UC and during traveling in the typical schedule of ESBs in the morning

and afternoon. The battery dynamics of school n’s ESBs can be represented as follows:

SoCt+1
n = SoCt

n + st1
Dt

ch

ESSn

− st2
xtn

ESSn

− st3
ωdn

hd · ESSn

(4.11)

where SoCt
n and SoCt+1

n represent the SoC at the beginning of time t and the SoC at the

beginning of the next time slot for school n’s ESBs, respectively. Dt
ch denotes the charging

energy into the school’s ESBs in timeslot t, ESSn represents the battery capacity of ESBs

in school n, ω is the energy consumption rate per distance of ESBs during traveling, dn

is the distance needed to travel of ESBs in school n, hd is the number of hours used in

the driving service each round. st1 is the state indicating whether the school’s ESB is in

charging operation during the timeslot t. st2 is the state showing whether the school’s

ESB is in discharging operation during the timeslot t, and st3 is the state representing

whether the ESBs is currently in use for travel or not.

The state st1, st2, and st3 can be expressed as follows:

st1 =


1 , charging

0 , otherwise

(4.12)

st2 =


1 , discharging

0 , otherwise

(4.13)

st3 =


1 , traveling

0 , otherwise

(4.14)
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The SoC of school n at the beginning of the next timeslot SoCt+1
n as in (4.11) can be

computed using the following four terms:

1) SoC at the beginning of time slot, SoCt
n

2) The amount of charged SoC in time slot t

3) The amount of discharged SoC in time slot t

4) The amount of SoC usage for the travel of ESBs in school n in time slot t

Furthermore, it is typically imperative for the SoC to remain within the capacity limi-

tations to extend the battery’s lifespan as follows:

SoCmin
n ≤ SoCt

n ≤ SoCmax
n (4.15)

where SoCmin
n and SoCmax

n representing minimum SoC and maximum SoC at time t of

school n’s ESBs.

Each school possesses a number of ESBs that can be utilized to provide the peak

shaving program by discharging the stored energy inside their ESBs’ battery. Therefore,

the maximum available stored energy to be discharged is calculated as the difference

between the State-of-Charge (SoC) at that time t and the minimum SoC, which can be

converted to kWh by multiplying the battery capacity, ESSn.

Et
n = (SoCt

n − SoCmin
n )ESSn (4.16)

Here, Et
n is the maximum energy in kWh that can be discharged by school n’s ESBs.

Utility of Schools

The utility function of each school n at time t comprises two terms: satisfaction derived

from retaining stored energy inside ESBs’ batteries and monetary profit from participating

in the peak shaving program.

U t
n = ψt

n(e
t
n) + (ptuc − ptavg)xn (4.17)
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where etn is the remaining energy in the school’s ESBs that can be further utilized after

discharging energy for xtn, and the ptavg is the average charging price per unit of energy

constituting the current amount of stored capacity.

etn = Et
n − xtn (4.18)

ptavg =
1∑t−1

t=1D
t
ch

t−1∑
t=1

ptDt
ch (4.19)

where pt denotes the dynamic price calculated by (4.4).

We define the satisfaction function ψt
n(e

t
n), representing the level of satisfaction obtained

from having a certain amount of stored energy in ESBs.

The satisfaction function must satisfy the following properties:

1) The satisfaction function is a non-decreasing function. Each school is always more

satisfied with more energy stored inside their ESBs’ battery until it reaches the maximum

level of stored energy.

∂ψt
n

∂xtn
≥ 0 (4.20)

2) The marginal benefit is a non-increasing function, meaning that the satisfaction

level increases less per unit of stored energy as the level of energy in storage increases,

eventually reaching a saturated level.

∂2ψt
n

∂xtn
2 ≤ 0 (4.21)

Therefore, in this work, we employ the quadratic satisfaction function, a widely accepted

and utilized form in the literature [18,88,92].

ψ(etn) = λne
t
n −

θn
2
(etn)

2 (4.22)

where λn is the preference parameter of school n, distinguishing it from other schools,
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and θn stands for the quadratic function’s predefined constant.

Therefore, from (4.16),(4.17),(4.18), and (4.22) we can reformulate the utility function

of a school n Un as:

U t
n = λn(E

t
n − xtn)−

θn
2
(Et

n − xtn)
2 + (ptuc − ptavg)xn (4.23)

This utility function represents the trade-off between providing discharged energy to

UC for monetary profit and retaining stored energy in the ESBs’ battery for satisfaction.

In other words, if school n provides more energy to UC, their satisfaction level decreases

due to the low remaining energy in the ESBs’ battery, but they will earn higher monetary

profit. Conversely, if they preserve more stored energy in the ESBs’ battery and discharge

less, they will make less profit from V2G service, but their satisfaction level stays high.

Therefore, each school aims to maximize its utility by determining the optimal value of

xtn as:

max
xt,min
n ≤xt

n≤xt,max
n

U t
n(x

t
n) (4.24)

4.4 ePMES Scheme

4.4.1 Game Formulation

The Stackelberg game is a non-cooperative game that examines situations where a hi-

erarchy exists among players. It was first introduced by Heinrich von Stackelberg [93].

In this game, the leader selects the action (strategy) first, and then followers observe

the leader’s strategy and decide on their own strategies by choosing the "best response

strategy" that maximizes their utility function. The leader is also aware of this, so he

selects a strategy that maximizes his own utility. The solution to the game is known as

the "Stackelberg equilibrium," where no player can increase their utility by unilaterally

deviating from their best response strategy. The hierarchical nature of the Stackelberg

game makes it highly suitable for modeling the interaction between multiple parties in
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smart grid problem.

In this work, a Stackelberg game is formulated, where UC is the leader aiming to

minimize its cost function by determining the optimal incentive price (ptuc). In contrast,

schools that own ESBs are the followers trying to maximize their utility function by

finding the optimal amount of discharged energy from their ESBs’ battery (xtn) for V2G

service in response to the incentive price issued by UC. The game can be formally defined

as:

S = {(N ∪ {UC}), {X t
n}n, ptuc, {U t

n}n∈N , U t
uc} (4.25)

which consists of the following components:

1) Players: The set of schools owing ESBs N as followers determine their optimal

discharged energy for the peak shaving program, and UC as the leader decides on the

incentive price paid to schools for providing peak shaving service.

2) Strategies: Each shool n decides on the amount of discharged energy, xtn ∈ X t
n, to

maximize its payoff. The UC decides on the optimal incentive price, ptuc, to minimize its

additional cost in meeting the demand within a community.

3) Payoffs: The utility of school n owning ESBs, U t
n(x

t
n), as described in (4.23), and the

additional cost to cover additional peak demand in the community of the UC, U t
uc(p

t
uc),

as show in (4.9), where the payoffs for both types of players depend on the strategies of

the other players.

Definition 1. For the proposed two-level Stackelberg game in (4.25), a set of strategies

(xt∗
n , p

t∗
uc) constitutes a Stackelberg equilibrium if and only if the following set of conditions

is satisfied:

U t
n(x

t∗, pt∗uc) ≥ U t
n(x

t
n,x

t∗
−n, p

t∗
uc) (4.26)

U t
uc(x

t∗, pt∗uc) ≤ U t
uc(x

t∗, ptuc) (4.27)

where xt∗
−n = {xt∗1 , xt∗2 , ..., xt∗n−1, x

t∗
n+1, ..., x

t∗
N} is the optimal strategies of all the schools
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in time slot t except for the school n. Hence, the optimal strategies of all the schools in

the community in time slot t can be expressed as xt∗ = {xt∗n ,xt∗
−n}.

The equation (4.26)-(4.27) implies that when all players are at the Stackelberg equilib-

rium, no schools can increase its utility by deviating from xt∗n , and the UC cannot reduce

more cost by selecting a different incentive price other than pt∗uc.

4.4.2 Existence and Uniqueness of the Equilibrium

It is possible that the equilibrium in the game does not always exist. Therefore, investi-

gating whether the equilibrium exists or not is needed for the proposed game model. To

examine this, we apply the backward induction technique to determine the game’s equi-

librium. The first step is to find the optimal strategies of each follower. Then, given the

optimal strategies from the followers, the existence of the optimal strategy of the leader

can be proved. Thus, the existence of the equilibrium will be established.

Theorem 1. There exists a unique Stackelberg equilibrium in the proposed two-level Stack-

elberg game among UC and schools that satisfies (4.26)-(4.27)

Proof. The first step of the proof initiates at the lower level by identifying the best re-

sponse of each school, which is the optimal discharged energy of the school’s ESBs (xt∗n ),

responding to the UC’s strategy (ptuc) in the upper level. From the best response informa-

tion of the schools, we can then trace back to determine whether the UC has an existing

optimal strategy or not. The mathematical proof is presented as follows:

(1) Lower level: optimal discharged energy of schools

Given the strategy from the leader ptuc sent from UC in the upper level, the best response

strategy for each school n in the lower level can be obtained by taking the first-order

derivative of U t
n in (4.23) with respect to xtn:

∂U t
n

∂xtn
= −λn + ptuc − ptavg + θnx

t
n + θnE

t
n (4.28)

Let (4.28) equal to zero, the optimal discharged energy of school n that maximizes its
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utility function can be obtained as follows:

xt∗n =
−λn + ptuc − ptavg

θn
+ Et

n (4.29)

Then, the second-order derivative of U t
n is:

∂2U t
n

∂xtn
2 = −θm,n < 0 (4.30)

Since the second-order derivative of U t
n is always negative as in (4.30) due to θn > 0,

it means that U t
n is strictly concave with respect to xtn. Therefore, the best response

strategy of the school n as in (4.29) is guaranteed to be unique and optimal.

(2) Upper level: optimal incentive price of UC

Given the best-response strategy of followers from the lower level in (4.29), we can

calculate the summation of all the discharged energy from the school’s ESBs for peak

shaving service Et
V 2G as:

Et
V 2G =

∑
n∈N

(
−λn + ptuc − ptavg

θn
+ Et

n)

=
∑
n∈N

(
−λn − ptavg

θn
+ Et

n) +
∑
n∈N

1

θn
ptuc (4.31)

To simplify the expression, we can define new parameters α and βt as follows:

α =
∑
n∈N

1

θn
(4.32)

βt =
∑
n∈N

(
−λn − ptavg

θn
+ Et

n) (4.33)

Therefore, (4.31) can be rewritten as:

Et
V 2G = αptuc + βt (4.34)

The utility function of the UC can be reformulated by substituting the summation
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of the optimal strategy of the schools from (4.34) into the UC cost function in (4.9).

Therefore, U t
uc can be reformulated as:

U t
uc(x

t
n, p

t
uc) = ptuc(αp

t
uc + βt) + [a(Dt

peak − (αptuc + βt))2 + b(Dt
peak − (αptuc + βt))]

− [a(Dt
base)

2 + bDt
base]

(4.35)

We can determine the first and second-order derivatives of (4.35) with respect to puc as

follows:

∂U t
uc

∂ptuc
= 2αptuc + βt − 2aα(Dt

peak − αptuc − βt)− βt (4.36)

∂2U t
uc

∂ptuc
2 = 2(aα2 + α) > 0 (4.37)

Since the value of a and α is positive, the second-order derivative of U t
uc is always

positive, as shown in (4.37). This means that U t
uc is strictly convex with respect to ptuc.

Thus, the optimal solution of the UC is guaranteed to be unique and optimal.

From the above proof, we can see that once the unique and optimal strategy of UC (pt∗uc)

is found, the unique and optimal strategy of each and every school n can be calculated.

Hence, the unique Stackelberg equilibrium in the form of (xt∗, pt∗uc) exists for the proposed

two-level Stackelberg game model, and it will be found as soon as the optimal UC’s

incentive price is determined.

4.4.3 Optimal Energy-Price (OEP) Equilibrium Algorithm

In this section, we introduce and describe the proposed optimal energy-price (OEP) equi-

librium algorithm, designed to achieve game equilibrium in a distributed manner. In this

approach, schools are required only to disclose the discharged energy to the UC and noth-

ing else, thereby preserving their privacy. We can see from the previous subsection that

the objective function of UC is strictly convex with respect to ptuc. Hence, enumerating
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the incentive price ptuc will lead to the minimum of the UC cost, meaning it is always

guaranteed to reach the unique and optimal solution. In the nature of the leader-follower

game, to find the Stackelberg equilibrium, we have to find the optimal solution of the

leader. To do that, we can enumerate the leader strategy ptuc from ptuc,min to ptuc,max, and

the optimal solution is the one that minimizes the cost of UC. When the UC’s optimal

incentive price pt∗uc is found, the optimal discharged energy of every n-th school xt∗n will also

be found by (4.29). Hence, the strategy profile (xt∗, pt∗uc) for the Stackelberg equilibrium

is found.

In Algorithm 1, the UC iteratively updates ptuc from ptuc,min to ptuc,max. The UC first

issues the incentive price ptuc to all schools. Upon receiving the announced incentive

price, each school n calculates the optimal discharged energy it will provide to UC for

peak shaving service (xtn) that maximizes its utility given ptuc by (4.29) and sends this

response information back to the UC. The UC gathers all the responses from the schools,

then calculates the total discharged energy from schools in the community (4.6). The

UC further calculates the total additional cost it needs to pay to cover the community’s

demand by (4.9). It then compares the results with the previously recorded utility of the

previous recorded incentive price that makes the utility lowest so far. If the new one is

lower, indicating an improvement, UC updates the recorded utility value U t∗
uc. However, if

the new one is not less than the recorded utility, UC ignores the newly calculated utility

value and price. The algorithm runs iteratively until the conditions in (4.26)-(4.27) are

satisfied, indicating that the Stackelberg equilibrium is reached.
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Algorithm 1 Optimal Energy-Price (OEP) Equilibrium Algorithm

1: UC initialize pt
uc = pmin

uc , U t∗
uc = Ct

gen(D
t
peak)− Ct

gen(D
t
base)

2: for ptuc from pmin
uc to pmax

uc do
3: Broadcast ptuc to all schools in the community
4: for school n ∈ N in community do
5: Calculate optimal discharge energy from its ESBs (xtn) using (4.29)
6: Send xtn back to the UC
7: end for
8: UC summarizes all the discharged energy from all the schools using (4.6)
9: UC calculates the value of its utility function using (4.9)

10: if U t
uc ≤ U t∗

uc then
11: UC record new incentive price and cost value
12: pt∗uc = ptuc, U t∗

uc = U t
uc

13: end if
14: end for
15: The equilibrium (xt∗, pt∗uc) is reached where the cost of UC is minimized

4.4.4 Implementation Process

The process can be divided into two stages: G2V is used for filling valleys and typically

occurs on a day-ahead basis. Then, V2G for peak shaving takes place during the day

when requests for peak shaving are made.

G2V for valley filling

The UC attempts to fill up the valley periods by managing and allocating the demand

charge energy from schools that need to charge their ESBs.

1) First, assume that the UC has accurate forecasting capabilities for the energy profile

of a community on a day-ahead basis and announces the valley period that need to be

filled by charging at the school.

2) Each school then requests the amount of energy needed to charge its ESBs from the

UC.

3) The UC allocates the demand to flatten the valley period and sends the relevant

information back to the schools for implementation.
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V2G for peak shaving

During the day, the UC will request V2G services from schools that possess a number of

ESBs capable of discharging the energy stored in their batteries.

1) The Utility Company (UC) announces the peak periods and sends an incentive signal

to schools before the peak period begins.

2) Each school submits the amount of energy they plan to discharge from their Electric

School Buses (ESBs) during the peak period.

3) UC calculates its own utility and announces a new price to the schools based on this

calculation.

4) The process returns to steps 2 and 3 and repeats until an equilibrium is reached.

4.5 Evaluation Studies

4.5.1 Simulation Setup

In this section, we evaluate the performance of the proposed V2G model, where both

entities, UC and schools, seek to find optimal strategies in response to each other’s actions.

Given that the USA has the world’s largest usage of ESBs, we focus on and utilize data

from the USA. The electrical load profile is obtained from the U.S. Energy Information

Administration [94]. The daily school schedule is from Rochester Community Schools in

Michigan, USA, where the ESBs operate by picking up students in the morning from 6

a.m. to 8 a.m. and dropping them back home in the afternoon from 3 p.m. to 5 p.m. [95].

This means hd is 2 hrs. Hence, during these intervals, the ESBs cannot be used for

V2G service. At other times, schools that possess ESBs can participate in the V2G peak

shaving program, effectively acting as stationary batteries. In this Rochester community,

there are approximately 21,000 people of student age [96], and typically in the US, about

38% of students take school buses [97]. Hence, the number of students taking the school

bus is around 8,000, with each bus accommodating 40-60 students comfortably and up to

80 students at maximum capacity [95]. Hence, the number of ESBs in real-world scenarios
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in this community should range between 100 and 200 buses The number of schools (N) in

a community is 20, including elementary schools, middle schools, and high schools. Each

school possesses 10 buses. Therefore, the total number of ESBs used in the simulation is

200 buses. The preference parameter of schools is randomly selected from the range of

[1, 1.2]. The parameter θ is set to 0.001 The ESB with a capacity of 200 kWh is used.

The minimum SoC is 20%, and the maximum SoC is 90% [?, 98], as this range would

prolong the battery life. The ESB travel distance each round is 70 km [67, 99]. The

energy consumption rate for traveling is 1 kWh/km [100, 101]. The maximum charging

and discharging power is 60 kW [67, 101]. We utilize MATLAB to implement Algorithm

(??) in order to find the equilibrium solution.

4.5.2 Energy Profile Results and Discussion

In this subsection, the energy profile results are compared among three scenarios: charge-

after-use (CAU) charging, grid-to-vehicle (G2V) charging, and the proposed optimal

energy-price (OEP) V2G model.

• Charge-after-use (CAU) [102]: The ESBs are charged immediately until full after

their pick-up and delivery service in the morning and afternoon, following typical

human behavior.

• Grid-to-Vehicle (G2V) [103]: This charging involves the ESBs being charged only

during the valley period, where the electricity price is the lowest, until full. This

typically occurs after midnight until early morning before the service starts, and no

discharging energy is provided to the grid.

• Centralized approach (CEN) [77]: This scenario employs centralized control from

the UC to maximize the reduction of generation costs by fully utilizing all ESBs

to discharge energy during peak periods. This approach does not consider the

schools’ efforts to maximize their own benefits, but the schools still receive monetary

compensation for providing the discharged energy.
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• The proposed optimal energy-price (OEP): This scenario utilizes both charging dur-

ing the lowest price period and discharging energy during peak periods to receive

monetary benefits from the utility company.

The profiles are studied across three seasons: winter, spring, and fall, when the school

is normally open.

The energy profile in winter in Figure 4.2 shows that CAU charging will cause high

peaks during the morning and evening due to the ESBs charging aligning with the peak

energy demand profile. In contrast, G2V only charges during the valley period in the

early morning and can be used for travel services in both the morning and afternoon.

On the other hand, the proposed OEP algorithm not only fills the valley period during

0-6 am but also helps shave the peak demand during 8-11 am, where the original peak

demand is reduced by 11.15 MWh.

Figure 4.3 and 4.4 show the energy profiles for the spring and fall seasons, where both

seasons typically have very similar energy profiles. The results indicate that CAU charging

will cause two peak demands after the travel service. G2V charging helps fill the valley

in the early morning by charging at the lowest price. On the other hand, the proposed

OEP charging and discharging algorithm can help fill the valley during 1-6 am and also

reduce the original peak during the evening (6 pm-10 pm) by 9.3 MWh and 9.7 MWh in

spring and fall, respectively.

Table 4.1 illustrates the percentage reduction results comparing the G2V, CEN, and

proposed OEP algorithms with CAU charging across three seasons. The results indicate

that the cost for the utility company is reduced the most with the proposed OEP algorithm

compared to both G2V and CAU charging. On the other hand, the cost for the UC is

reduced the most with the CEN approach, as this centralized strategy primarily focuses

on reducing the UC’s costs, rather than the bills of the schools. Conversely, the bills of

the schools decrease the most with the proposed OEP algorithm, which considers both

the cost to the UC and the bills of the schools. As a result, the combined reductions

in the cost to the UC and the bills of the schools for CEN and the proposed OEP are
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Figure 4.2: Energy profile in winter

Figure 4.3: Energy profile in spring

Figure 4.4: Energy profile in fall
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Table 4.1: Percentage reduction comparing the G2V, CEN, and proposed OEP algorithm
with CAU charging over 24 hours

% Reduction Winter Spring Fall
G2V CEN OEP G2V CEN OEP G2V CEN OEP

Cost of UC 0.11 0.71 0.59 0.15 0.79 0.58 0.17 0.85 0.63
Bill of schools 7.75 19.56 22.57 9.10 20.05 22.10 9.80 20.03 22.61

peak-to-average ratio 6.76 11.11 9.48 5.01 8.34 7.12 4.53 8.51 7.24

20.27% and 23.16% for winter, 20.84% and 22.68% for spring, and 20.89% and 23.24% for

fall, respectively. This shows that, although CEN provides the greatest reduction in the

cost to the UC and also significantly lowers the bills of the schools, the total reduction is

consistently better with the proposed OEP approach across all seasons. This is because

the OEP approach accounts for the benefits to both the UC and the schools. Although

the percentage reduction in the total 24-hour cost of UC is small due to the typically very

high demand compared to the amount the peak can be shaved out, the effective impact of

the proposed OEP algorithm is evident in the significantly reduced additional cost during

peak periods, which will be shown and discussed later on. This effectiveness extends to

the total bills for all the schools, which can be reduced by up to 22.6%. Additionally, the

peak-to-average ratio is also reduced in the proposed OEP algorithm compared to both

G2V and CAU charging by up to 9.5%.

4.5.3 Sensitivity Analysis Results and Discussion

We study the characteristics of the proposed OEP V2G model by varying important input

parameters, such as the number of schools, battery capacity, and travel distance, while

fixing Dbase at 150 MW and changing Dreq to 1, 2, 3, and 4 and MW. Hence, four different

line colors: black, red, blue, and magenta are used to show different results.

Number of schools

Figure 4.5, 4.6, and 4.7 show the normalized incentive price of UC, the total discharged

energy from schools in the community, and the percentage reduction in cost of UC when

the number of schools varies from 0 to 20.
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Figure 4.5: Incentive price of UC vs. number of schools.

Figure 4.6: Total discharge energy from ESBs vs. number of schools.

Figure 4.7: Percentage reduction in cost of UC vs. number of schools.
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Figure 4.8: Incentive price of UC vs. daily travel distance of each ESB.

The result reveals in figure 4.5 that the greater number of schools in the community,

the incentive price paid by UC decreases. This is because there is more energy inside the

ESBs to be discharged into the system, hence the competition between schools is higher.

Each school is willing to accept the lower incentive price while still discharging the same

amount of energy. As we expected, as the number of schools increases, the discharged

energy and the percentage reduction in cost of UC will also increase, as shown in figure 4.6

and 4.7.

When the Dreq is changed by different line colors, figure 4.5 show that when the Dreq

is increased, the incentive price of UC is also increases as we expected. Since the higher

the Dreq will cause higher unit prices for generation cost. So, UC is willing to pay higher

incentive prices for the schools to discharge energy from their ESBs to fulfill the Dreq.

Similar to figure 4.6, when the Dreq increase, total discharge energy also increase. On the

other hand, the percentage reduction in the cost of UC decreases when Dreq is higher,

since at higher peak demand, the cost of generating energy is significantly higher and

harder to reduce.

Travel distance

Figure 4.8, 4.9, and 4.10 depict the normalized incentive price of UC, the total discharged

energy from schools in the community, and the percentage reduction in the cost of UC
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Figure 4.9: Total discharge energy from ESBs vs. daily travel distance of each ESB.

Figure 4.10: Percentage reduction in cost of UC vs. daily travel distance of each ESB.
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Figure 4.11: Incentive price of UC vs. battery capacity of each ESB.

when the traveling distance varies from 50 km to 120 km.

This shows that when the traveling distance is longer, the incentive price will increase.

The reason is that when the traveling distance is longer, there is less energy remaining

inside the battery of ESBs to discharge after completing traveling tasks. Therefore, UC

is willing to pay a higher incentive for ESBs to discharge to the grid.

And as expected, when daily travel distance is very high the total discharged energy

are lower as shown in figure 4.9. For the percentage reduction in the cost of UC, it also

decreases with increasing distance, as shown in figure 4.10.

Battery capacity of each ESB

In this subsection, we study the effect of the battery capacity of each ESB by varying

the value from 120 kWh to 240 kWh. Figures 4.11, 4.12, and 4.13 illustrate the incentive

price from UC, total discharged energy from ESBs, and the percentage reduction in UC

costs, respectively.

In Figure 4.11, it is observed that when the battery capacity of each ESB is higher,

the incentive price from UC is lower. This is because there will be more energy available

to assist UC during peak demand, prompting UC to offer a lower price. Figure 4.12

demonstrates that increasing battery capacity leads to higher total discharged energy,

especially when the battery capacity is very low. However, in higher capacity values, the
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Figure 4.12: Total discharge energy from ESBs vs. battery capacity of each ESB

Figure 4.13: Percentage reduction in cost of UC vs. battery capacity of each ESB
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Figure 4.14: Average utility of each school vs. battery capacity of each ESB

total discharged energy remains unchanged as it already covers the Dreq.

Regarding the percentage reduction in the cost of UC shown in Figure 4.13, it is observed

that when the battery capacity increases, the percentage reduction also increases, as

expected. This is because there is more stored energy available to assist UC, leading to a

greater reduction in cost.

Optimal Battery capacity of ESB

Figures 4.14 illustrate that when the battery capacity for each ESB varies from 120 kWh

to 240 kWh, there is an optimal value at which the average utility of each school is

maximized, which is 200 kWh, as we have used this value in our simulation. Examples of

real ESBs that use this amount of battery capacity include the GreenPower: BEAST [104],

Blue Bird: All American Electric [105], and Lion Electric: LionD [106].

When utilizing the optimal battery capacity of 200 kWh, with 20 schools as indicated

in the community data, a distance of 70 km, and a mean Dreq of 1 MWh, the effectiveness

of the proposed OEP model is demonstrated by significantly reducing the additional

generation cost for UC by around 36% during peak periods.
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4.6 Summary

This chapter presents a V2G energy sharing management model for UCs and schools

that possess ESBs. Since the ESBs have a predictable usage in terms of time and energy

consumption, they are highly suitable for use in peak shaving services, in contrast to

personal EVs. The problem is formulated as a Stackelberg game, where a UC is the

leader in setting the incentive price for providing the peak shaving service. On the other

hand, the followers are the schools, which try to find the optimal discharge energy to help

the UC shave the peak. The evaluation is performed in four different scenarios across

three different seasons. The sensitivity analysis of the V2G model is also conducted by

varying the number of schools, daily travel distance, and battery capacity of each ESB.

The effectiveness of the proposed OEP algorithm is demonstrated by a 36% reduction in

the additional generation cost for the UC during peak periods and a decrease in electricity

bills for schools by up to 22.6%. Furthermore, the peak-to-average ratio is reduced by up

to 9.5%.
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Chapter 5

Inter-Community Energy Sharing

Management for Fully Moving Energy

Storage Scheme

5.1 Introduction

The widespread adoption of Electric Vehicles (EVs) in the smart grid is transforming the

traditional grid into a more complex system. EVs have the ability to both charge and

discharge, acting as loads that draw high power and sources that inject energy back into

the grid. Consequently, energy sharing and management within smart grid communities

integrated with EVs have become interesting aspects to study in order to efficiently utilize

this energy. However, most existing research focuses solely on energy sharing within

single communities, utilizing homogeneous energy profiles and neglecting the potential

of heterogeneous energy across multiple communities. EVs also possess the capability

to travel to different places and communities where they can engage in energy sharing

with areas that have varying load profiles and prices. In this chapter, we propose a novel

three-level energy sharing management approach for multiple communities integrating

with movable energy storage such as EVs. This model involves three main entities: the

Utility Company (UC), Community Energy Aggregator (CEA), and EVs, each aiming to
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Figure 5.1: Hierarchical multi-communities energy sharing management model

maximize its benefit through optimal strategies, including pricing, energy demand, and

supply.

5.2 System Model

5.2.1 Overview Structure

Fig. 5.1 shows the system model of the multi-communities’ energy sharing, consisting of

one utility company (UC), multiple community energy aggregators (CEA), and multiple

EVs within multiple communities. We will briefly explain each entity as follows:

• Electric Vehicles (EVs) : Each electric vehicle is capable of charging and discharging

energy through CEA. We assume that all EVs are equipped with a smart energy

management system (SEMS), through which they can communicate with CEA via

charging facilities. The SEMS sends consumption data and receives shared price in-

formation. It is able to perform necessary computational tasks and control charging
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and discharging.

• Community Energy Aggregator (CEA) : Each CEA facilitates energy sharing within

the community by engaging in two-way communication with EVs within its com-

munity. It also communicates with UC for the purpose of energy sharing between

communities and determines the energy sharing prices within the community. The

CEA ensures payment and energy balance for the community in which it sells or

buys energy to or from EVs within the community and the utility company. If there

is a net surplus of energy within the community, the CEA is responsible for selling

the excess energy to the utility company. Similarly, if the generated energy within

the community is insufficient, the CEA is responsible for purchasing the energy from

the utility company.

• Utility Company (UC) : The UC sells or buys energy to or from CEAs at real-time

pricing according to the net aggregated energy from the multi-communities.

The proposed energy sharing management model consists of three hierarchical levels:

UC level, CEA level, and electric vehicle level. Firstly, at the upper level, the UC sup-

plies/buys electricity to/from the multi-communities system. The price between the UC

and multiple CEAs is called the "multi-communities sharing price". The UC tries to

maximize profit by setting the optimal multi-communities sharing price (ptuc), which is

related to the amount of net energy in the multi-communities system at a given time

slot. Secondly, at the middle level, CEAs act as intermediaries who buy/sell energy

from/to the UC and also buy/sell energy from/to EVs within their community. The

CEAs try to maximize their profit by setting the optimal sharing price within their own

community (ptCEA,m), considering the amount of net energy of the community and the

multi-communities sharing price from the upper level. Finally, at the bottom level, each

EV within the community determines its optimal charging/discharging energy in response

to the energy sharing prices from its CEA to maximize its own utility.

Let M = 1, 2, . . . ,M denote the set of communities and CEAs, where each community

m ∈ M has only one CEA, and let N t
m = 1, 2, . . . , N denote the set of EVs in a single
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community, with n ∈ N t
m. Let K be the set of EVs in the system, where K is the total

number of EVs in the system, given by K = M · N . The time operation in one day is

divided into T time slots, where t ∈ T = 1, 2, . . . , T . For simplicity, we consider each t to

represent 1 hour, and thus T = 24.

5.2.2 Electric Vehicle (EV) Model

Let xtm,n denote the charging/discharging energy of the m,n-th EV. When xtm,n ≥ 0, the

m,n-th EV is charging. However, the EV will discharge when xtm,n < 0. Let ptCEA,m

be the energy sharing price inside community m, which is sent from CEA m ∈ M. In

this model, the utility function of an EV consists of increase of satisfaction function and

cost/revenue from energy sharing. The goal of each m,n-th EV is to maximize its own

utility as follows:

max
xt
m,n

U t
m,n = ψ(Et

m,n + xtm,n)− ψ(Et
m,n)− ptCEA,mx

t
m,n (5.1)

s.t. xmin,t
m,n ≤ xtm,n ≤ xmax,t

m,n (5.2)

where Et
m,n is the remaining energy in the EV that can be further utilized at time

t before deciding to charge or discharge, defined as Et
m,n = ESt

m,n − ESt
min. The first

term, ψ(Et
m,n), represents the satisfaction value of having Et

m,n+xtm,n stored energy after

charging for xtm,n. The second term also represents a satisfaction value, but it original

satisfaction before deciding on the amount of energy. The satisfaction cost should be an

increasing function with decreasing marginal profit. In this work, we utilize a quadratic

satisfaction cost function, which is widely used in the literature.

ψ(Et
m,n) = λm,nE

t
m,n −

θm,n

2
(Et

m,n)
2 (5.3)

where λm,n > 0 is the preference parameter of the m,n-th EV, which distinguishes the

EV from other EVs, and θm,n > 0 is a predetermined constant. The EV with a higher
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value of λm,n will obtain more satisfaction compared to the EV with a lower value of λm,n

for the same amount of Et
m,n.

The third term, −ptCEA,mx
t
m,n, represents the energy sharing term, which denotes the

cost/revenue from buying/selling energy from/to CEA m. If the EV is charging, this

term will be negative, indicating the cost of charging. If the EV is discharging, this

term will be positive, indicating the revenue from discharging. From Equation (5.1),

if xtm,n is positive and increases, the satisfaction function will increase. However, the

cost of charging will also increase. Hence, there is a trade-off between the satisfaction

function and the cost/revenue from energy sharing, and thus the EV needs to adjust the

charging/discharging energy to maximize utility. When CEA m sends the sharing price

ptCEA,m to EVs, the EVs will adjust their charging/discharging energy xtm,n in response

to ptCEA,m from CEA m to maximize utility, which results in a change in the net energy

of the system. If ptCEA,m is high, the discharging EVs tend to increase their discharge

energy to maximize their utility by selling more energy. In contrast, if ptCEA,m decreases,

the discharging EVs will discharge less or instead charge some energy to increase utility

instead of selling the energy at a low price.

Constraint (5.2) provides the lower and upper limits of the m,n-th EV’s charging/dis-

charging at time slot t

5.2.3 Community Energy Aggregator (CEA) Model

The CEAs at the middle level of the multi-communities system facilitate energy sharing

by connecting with both EVs at the lower level for inside-community energy sharing and

the UC at the upper level for multi-communities energy sharing. If there is a net surplus

of energy inside community m, CEA m is responsible for selling the surplus energy to

the UC. Likewise, if the generated energy inside community m is not sufficient, CEA m

is responsible for buying the deficit energy from the UC. The objective of CEA m ∈ M

is to maximize its utility by determining the optimal energy sharing price ptCEA,m inside

community m, considering the multi-communities energy sharing price ptuc from the UC
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and the aggregated net energy inside community Dt
CEA,m, which can be written as follows:

max
ptCEA,m

U t
CEA,m = (ptCEA,m − ptuc)D

t
CEA,m (5.4)

s.t. pmin
CEA,m ≤ ptCEA,m ≤ pmax

CEA,m (5.5)

Constraint (5.5) provides the lower and upper limits of the sharing price within commu-

nity m at time slot t. The aggregated net energy within a community can be computed

as

Dt
CEA,m = Et

CEA,m + Lt
m (5.6)

where Lt
m is the fixed demand of community m at time t, and Et

CEA,m is the net energy

from EV charging and discharging in community m at time t, given by:

Et
CEA,m =

∑
n∈N t

m

xtm,n (5.7)

Note that, in the model, both charging and discharging EVs receive the same unit price

ptCEA,m for selling and buying energy.

5.2.4 Utility Company (UC) Model

The UC, located at the upper level, buys and sells energy with multiple CEAs in the

middle level. The objective of the UC is to maximize the profit of selling energy to

the multi-communities system by setting the optimal multi-communities sharing price

ptuc. The objective function is composed of two parts: the revenue from selling the net

aggregated energy Dt
uc and the cost of generating that amount of energy (Ct

gen(D
t
uc)).

max
ptuc

U t
uc = ptucD

t
uc − Ct

gen(D
t
uc) (5.8)
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s.t. pmin
uc ≤ ptuc ≤ pmax

uc (5.9)

The generation cost Ct
gen(D

t
uc) is generally assumed to be a monotonically increasing

function of the amount of generated energy Dt
uc and is strictly convex. Therefore, the

generation cost can be formulated as

Ct
gen(D

t
uc) = a(Dt

uc)
2 + bDt

uc + c (5.10)

where a, b, and c are the coefficients of the generation cost function.

Constraint (5.9) provides the lower and upper limits of the multi-communities sharing

price ptuc at time slot t. The aggregated net energy of the multi-communities system is

the summation of the aggregated net energy of each community m ∈ M.

Dt
uc =

∑
m∈M

Dt
CEA,m =

∑
m∈M

(Et
CEA,m + Lt

m) (5.11)

5.3 eFMES Scheme

The Stackelberg game is a non-cooperative game that models scenarios involving a hier-

archical structure among players. In this game, players are rational, self-interested, and

seek to maximize their own utility. Typically, this type of game is applied in a two-level

framework with one leader and multiple followers. The leader makes the first move, after

which the followers choose their strategies based on the leader’s action. Followers em-

ploy the best response strategy to maximize their own payoff. Anticipating the followers’

responses, the leader aims to select a strategy that maximizes their own utility. The

solution to this game is known as the Stackelberg equilibrium. The hierarchical structure

of the Stackelberg game is analogous to the structure of electrical systems, particularly

the distribution networks we are focusing on. This similarity makes the game particularly

suitable for modeling interactions related to energy sharing and trading.
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5.3.1 Game Formulation

In this work, we employ a two-loop Stackelberg game to model the three-level multi-

community energy sharing management. This model includes three types of players: UC,

CEAs, and EVs. The first loop represents the game between UC and CEAs, while the

second loop represents the game between each CEA and its associated EVs within that

community.

In the first loop, UC acts as the leader, aiming to maximize its utility (5.8) by setting

the optimal multi-communities sharing price for the multi-communities system. This

involves a trade-off between revenue from selling the generated energy and the cost of

producing the generated energy in the utility model. The followers in this loop are the

CEAs of communities m ∈ M. The CEAs respond to the multi-communities sharing

price sent from UC by participating in the second loop game with EVs to determine

the amount of net aggregated community energy for each community. Consequently, the

multi-communities sharing price set by UC will affect the total aggregated energy in the

system that UC needs to accommodate.

In the second loop, after each CEA receives the multi-communities sharing price from

UC, each CEA m plays the leader role and determines the optimal sharing price for its

community m to maximize its utility (5.4). In the CEA’s utility model, there is a trade-off

between revenue/cost from selling/buying energy with EVs inside the community and the

payment/revenue of buying/selling the net aggregated community energy with UC. The

EVs m,n inside community m, who are the followers, respond to the sharing price sent

by CEA m by adjusting their energy strategy to maximize their utility (5.1). Once again,

there is a trade-off between the satisfaction function and the revenue/cost of selling/buying

the energy with CEA m.

Note that, CEAs play two roles in the 3-level Stackelberg game, acting as followers in

the upper loop and leaders in the lower loop.

For this hierarchical Stackelberg game, the solution for the game that is the Stackelberg

equilibrium is defined as follows:
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Definition 2. For the proposed 3-level Stackelberg game, a set of strategies (xt∗,pt∗
CEA, p

t∗
uc)

constitutes a Stackelberg equilibrium, if and only if the following set of conditions is sat-

isfied:

U t
m,n(x

t∗
m, p

t∗
CEA,m) ≥ U t

m,n(x
t
m,n,x

t∗
−m,n, p

t∗
CEA,m) (5.12)

U t
CEA,m(x

t∗
m, p

t∗
CEA,m, p

t∗
uc) ≥ U t

CEA,m(x
t∗
m, p

t
CEA,m, p

t∗
uc) (5.13)

U t
uc(x

t∗,pt∗
CEA, p

t∗
uc) ≥ U t

uc(x
t∗,pt∗

CEA, p
t
uc) (5.14)

where xt∗
−m,n = {xt∗m,1, x

t∗
m,2, ..., x

t∗
m,n−1, x

t∗
m,n+1, ..., x

t∗
m,N} is the optimal strategies of all the

EVs in community m in time slot t except the EV m,n. Hence, the optimal strate-

gies of all EVs in community m in time slot t is expressed as xt∗
m = {xt∗m,n,x

t∗
−m,n}.

xt∗ = {xt∗
1 ,x

t∗
2 , ...,x

t∗
M} denotes the set of the optimal strategies of all EVs in the multi-

communities system. Lastly, pt∗
CEA = {pt∗CEA,1, p

t∗
CEA,2, ..., p

t∗
CEA,M} is the set of optimal

strategies of all CEAs.

The equation (5.12)-(5.14) mean that when all players are at the Stackelberg equi-

librium, no EV can increase his utility by deviating from xt∗m,n, no CEA can improve

his utility by choosing different strategy other than pt∗CEA,m, and UC cannot increase his

utility by selecting different strategy other than pt∗uc.

5.3.2 Existence and Uniqueness of the Equilibrium

In the Stackelberg game, an equilibrium in pure strategies is not always guaranteed to

exist. Hence, we need to validate whether there exists a Stackelberg equilibrium in the

proposed Stackelberg game in which we propose a theorem and related proof for clarifi-

cation in this section.

Theorem 2. There exists a unique Stackelberg equilibrium in the proposed 3-level Stack-

elberg game among UC, CEAs, and EVs that satisfies (5.12)-(5.14)
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Proof. Considering that the proposed game model has a hierarchical structure, backward

induction is an effective approach to derive the equilibrium of the game. The first step

of the proof starts at the first level by identifying the best response of each EV which

is the optimal energy consumption (xt∗m,n) responding to the CEA’s strategy (ptCEA,m) in

the second level. From the best response information of each EV, then we can trace back

to find each CEA’s best strategy which is the optimal sharing price inside community m

(pt∗CEA,m). Lastly, at the final step, given the information from all CEAs, the best strategy

of UC that is the multi-communities sharing price (pt∗uc) will be found. The mathematical

proof is shown as follows:

(1) First level: optimal energy consumption of EVs

Given the community sharing price ptCEA,m sent by CEA m in the second level, the

best response strategy for each EV m,n in the first level can be obtained by taking the

first-order derivative of U t
m,n in (5.1) with respect to xtm,n:

∂U t
m,n

∂xtm,n

= λm,n − θm,n(E
t
m,n + xtm,n)− ptCEA,m (5.15)

Let (5.15) equal to zero, the optimal energy consumption of EV m,n that maximize

his utility function can be obtained as follows:

xtm,n =
λm,n − ptCEA,m

θm,n

− Et
m,n (5.16)

From (5.16), we can see that the optimal energy consumption of m,n-th EV depends

on the strategy of CEA m that is the community sharing price ptCEA,m. Then, the second-

order derivative of U t
m,n is:

∂2U t
m,n

∂xtm,n
2 = −θm,n < 0 (5.17)

Since the second-order derivative of U t
m,n is always negative as in (5.17) due to θm,n > 0,

it means that U t
m,n is strictly concave with respect to xtm,n. Therefore, the best response

strategy of EV m,n as in (5.16) is guaranteed to be unique and optimal.
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(2) Second level: optimal community sharing price of CEA

Given the best-response strategy of EVs from the first level in (5.16), we can reformulate

the utility function of CEA m by substituting optimal energy consumption in (5.16) into

(5.4). Therefore, U t
CEA,m can be reformulated as

U t
CEA,m = (ptCEA,m − ptuc)(

∑
n∈N t

m

λm,n − ptCEA,m

θm,n

−
∑
n∈N t

m

Et
m,n + Lt

m)

= −(ptCEA,m)
2
∑
n∈N t

m

1

θm,n

+ ptCEA,m(
∑
n∈N t

m

λm,n

θm,n

−
∑
n∈N t

m

Et
m,n + ptuc

∑
n∈N t

m

1

θm,n

+ Lt
m)

+ ptuc(
∑
n∈N t

m

Et
m,n −

∑
n∈N t

m

λm,n

θm,n

− Lt
m)

(5.18)

The best response strategy for each CEA m in the second level can be obtained by

taking the first-order derivative of U t
CEA,m in (5.18) with respect to ptCEA,m:

∂U t
CEA,m

∂ptCEA,m

= −2ptCEA,m

∑
n∈N t

m

1

θm,n

+
∑
n∈N t

m

λm,n

θm,n

−
∑
n∈N t

m

Et
m,n + ptuc

∑
n∈N t

m

1

θm,n

+ Lt
m (5.19)

Let (5.19) equal to zero, the optimal community sharing price of CEA m that maximize

its utility function can be obtained as follows:

pt∗CEA,m =
1

2
ptuc +

1

2

∑
n∈N t

m

λm,n

θm,n∑
n∈N t

m

1
θm,n

− 1

2

∑
n∈N t

m
Et

m,n∑
n∈N t

m

1
θm,n

+
1

2

Lt
m∑

n∈N t
m

1
θm,n

(5.20)

From (5.20), we can make some observations that the optimal community price (pt∗CEA,m)

consists of 4 terms. The first term tells that the community sharing price depends on the

multi-communities sharing price from UC (ptuc). The second term says that the parameter

of each EV also affects the community sharing price. And the third term reveal that, if the

community has high stored energy in EVs, the community sharing price will be low. And

finally, the fourth term indicates that if the fixed load demand is high, the pt∗CEA,m will also

be high, aligning with reality. Hence, this shows that each CEA m acts as a representative
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of community m for participating in the multi-communities energy sharing.

By taking the second-order derivative of U t
CEA,m with respect to pt∗CEA,m, we obtain

∂2U t
CEA,m

∂ptCEA,m
2 = −2

∑
n∈N t

m

1

θm,n

< 0 (5.21)

Since the value of θm,n > 0, the second-order derivative of U t
m,n is always negative as

in (5.21). This means that U t
CEA,m is strictly concave with respect to ptCEA,m. Hence, the

best response strategy of CEA m as in (5.20) is guaranteed to be unique and optimal.

(3) Third level: optimal multi-communities sharing price of UC

Now, we have obtained the best response function of EVs and CEAs in (5.16) and (5.20)

which can be used to find the best response strategy of UC. First, From the best-response

strategy of CEA m that we derived in the second level, we can substitute (5.20) into EV’s

best-response function (5.16) in order to find optimal energy consumption xt∗m,n of each

m,n-th EV given the optimal sharing price of CEA m as

xt∗m,n =
λm,n − 1

2
ptuc − 1

2

∑
n∈N t

m

λm,n
θm,n∑

n∈N t
m

1
θm,n

+ 1
2

∑
n∈N t

m
Et

m,n∑
n∈N t

m

1
θm,n

+ 1
2

Lt
m∑

n∈N t
m

1
θm,n

θm,n

− Et
m,n

= −1

2

ptuc
θm,n

− 1

2

∑
n∈N t

m

λm,n

θm,n∑
n∈N t

m

1
θm,n

1

θm,n

+
1

2

∑
n∈N t

m
Et

m,n∑
n∈N t

m

1
θm,n

1

θm,n

− 1

2

Lt
m∑

n∈N t
m

1
θm,n

1

θm,n

+
λm,n

θm,n

+ Et
m,n

(5.22)

Then, the aggregated net energy of EVs in community m can be obtained by substitut-

ing (5.22) into (5.7) as
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Et∗
CEA,m =

∑
n∈N t

m

xt∗m,n

= −1

2
ptuc

∑
n∈N t

m

1

θm,n

− 1

2
[
∑
n∈N t

m

(
∑
n∈N t

m

λm,n

θm,n

1∑
n∈N t

m

1
θm,n

1

θm,n

)]

+
1

2
[
∑
n∈N t

m

(
∑
n∈N t

m

Et
m,n

1∑
n∈N t

m

1
θm,n

1

θm,n

)]− 1

2
[
∑
n∈N t

m

Lt
m∑

n∈N t
m

1
θm,n

1

θm,n

] +
∑
n∈N t

m

λm,n

θm,n

−
∑
n∈N t

m

Et
m,n

= −1

2
ptuc

∑
n∈N t

m

1

θm,n

+
1

2

∑
n∈N t

m

λm,n

θm,n

− 1

2

∑
n∈N t

m

Et
m,n −

1

2
Lt
m

(5.23)

After that, the total aggregated net energy of the entire multi-communities system can

be calculated by summarizing all net energy of community m ∈ M as

Dt
uc =

∑
m∈M

Dt∗
CEA,m

=
∑
m∈M

(Et∗
CEA,m + Lt

m)

= −1

2
ptuc

∑
m∈M

∑
n∈N t

m

1

θm,n

+
1

2

∑
m∈M

∑
n∈N t

m

λm,n

θm,n

− 1

2

∑
m∈M

∑
n∈N t

m

Et
m,n +

1

2

∑
m∈M

Lt
m

(5.24)

where we define new parameters at time slot t for the summation parts in (5.24) as α, βt,

and γt

αt =
∑
m∈M

∑
n∈N t

m

1

θm,n

(5.25)

βt =
∑
m∈M

∑
n∈N t

m

λm,n

θm,n

(5.26)

γt =
∑
m∈M

∑
n∈N t

m

Et
m,n (5.27)
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δt =
∑
m∈M

Lt
m (5.28)

Hence, (5.24) can be rewritten as

Dt
uc = −1

2
ptucα

t +
1

2
βt − 1

2
γt +

1

2
δt (5.29)

By substituting (5.29) and (5.10) into (5.8), the original utility function of UC can be

reformulated as

U t
uc = ptuc(−

ptuc
2
α +

1

2
βt − 1

2
γt +

1

2
δt)− a(−p

t
uc

2
α +

1

2
βt − 1

2
γt +

1

2
δt)2

− b(−p
t
uc

2
α +

1

2
βt − 1

2
γt +

1

2
δt)− c

= −a(−p
t
uc

2
α +

1

2
βt − 1

2
γt +

1

2
δt)2 − b(−p

t
uc

2
α +

1

2
βt − 1

2
γt +

1

2
δt)

− (ptuc)
2

2
α +

ptuc
2
βt − ptuc

2
γt +

ptuc
2
δt − c (5.30)

The best-response strategy for UC in the third level can be obtained by taking the

first-order derivative of U t
uc in (5.30) with respect to ptuc as:

∂U t
uc

∂ptuc
= −2a(−αp

t
uc

2
+
βt

2
− γt

2
+

1

2
δt)(−α

2
) +

bα

2
− αptuc +

βt

2
− γt

2
+

1

2
δt

= aα(
βt

2
− γt

2
+

1

2
δt)− aα2

2
ptuc − αptuc +

bα

2
+
βt

2
− γt

2
+

1

2
δt

= ptuc(−
aα2

2
− α) + aα(

βt

2
− γt

2
+

1

2
δt) +

bα

2
+
βt

2
− γt

2
+

1

2
δt (5.31)

Let (5.31) equal to zero, the optimal multi-communities sharing price of UC that max-

imize its utility function can be obtained as follows:

pt∗uc =
aα(βt − γt + δt) + bα + βt − γt + δt

α(aα + 2)
(5.32)

By taking the second-order derivative of U t
uc with respect to pt∗uc, we obtain
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∂2U t
uc

∂ptuc
2 = −aα

2

2
− α < 0 (5.33)

Since the value of a and α is positive, the second-order derivative of U t
uc is always

negative as in (5.33). This means that U t
uc is strictly concave with respect to ptuc. Thus,

the best-response strategy of UC as in (5.32) is guaranteed to be unique and optimal.

From the above proof, we can see that once the unique and optimal strategy of UC

(pt∗uc) is determined, the unique and optimal strategy of all CEA m ∈ M will also be

determined, and then the unique and optimal strategy of each and every EV m,n can

be calculated and adjusted. Hence, the unique Stackelberg equilibrium in the form of

(xt∗,pt∗
CEA, p

t∗
uc) exists for the proposed 3-level Stackelberg energy sharing management

game.

5.3.3 Three-Level Optimal Energy-Price (3OEP) Equilibrium Al-

gorithm

In the previous subsection, the analytical solution is obtained in a centralized way in order

to prove that the proposed 3-level Stackelberg game always has a unique and optimal

solution in which we assume that the UC has the private parameters of all the EVs.

However, such an approach is not desirable in which all EVs have to reveal their private

preferences to UC. Therefore, we design an algorithm in a distributed manner to obtain

the approximate solution.

We can see from the previous subsection that the objective function of UC is strictly

convex with respect to ptuc. From the nature of the leader-follower game, therefore, in

order to find the Stackelberg equilibrium, we have to find the optimal solution for the

leader. To do that, we can enumerate the leader strategy ptuc from ptuc,min to ptuc,max and

the optimal solution is the one that maximizes the utility of UC. When the optimal multi-

communities sharing price pt∗uc is found, the optimal sharing price pt∗CEA,m for m ∈ M are

found, and the optimal energy consumption of m,n-th EV xt∗m,n are found also. Hence,

the strategy profile (xt∗,pt∗
CEA, p

t∗
uc) for stackelberg equilibrium is found.

112



In the Algorithm 2, we try to find the Stackelberg equilibrium at each time slot t. First,

the algorithm is iteratively update ptuc from ptuc,min to ptuc,max. At each ptuc, after CEA m

recieved broadcasted ptuc from UC, the CEA m will calculate the optimal sharing price

(ptCEA,m) responding to ptuc by (5.20) and then announce it to EVs inside its community m.

Each EV m,n further calculates the optimal energy consumption (xtm,n) that maximizes

his utility given the ptCEA,m by (5.16) and send this information back to CEA m. Then,

CEA will gather the optimal energy consumption from EVs inside its community m and

fix load demand Lt
m of its community m and calculate the aggregated net energy in the

community (Dt
CEA,m) using (5.6) then further send it back to UC. UC summarizes all

aggregated net energy from all communities m ∈ M using (5.11) and use it to calculate

the value of UC’s utility function using (5.8). Finally, the UC compare the value of

newly calculated utility with the recorded utility, if the new one is higher, UC update

recorded utility value U t∗
uc and pt∗uc of that utility value. If not, UC just ignore that new

calculated utility value and price. The algorithm will run iteratively until the conditions

in (5.12)-(5.14) are satisfied, which means the Stackelberg equilibrium is reached.
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Algorithm 2 Optimal 3-Level Energy-Price (3OEP) Equilibrium Algorithm
1: UC initialize U∗

uc = 0,p∗
uc = 0

2: for t = 1 to T do
3: for ptuc from pmin,t

uc to pmax,t
uc do

4: Broadcast ptuc to all CEAs in multi-communities system
5: for each CEA m ∈ M do
6: Calculates the optimal community sharing price (ptCEA,m) using (5.20)
7: Announce ptCEA,m to EVs in community m
8: for each EV n ∈ N t

m in community m do
9: Calculate optimal energy consumption (xtm,n) using (5.16)

10: Send xtm,n back to CEA m
11: end for
12: Calculates aggregated net energy in community m (Dt

CEA,m) using (5.6)
13: Then send Dt

CEA,m back to UC
14: end for
15: UC summarizes all aggregated net energy from all communities using (5.11)
16: UC calculates the value of utility function using (5.8)
17: if U t

uc ≥ U t∗
uc then

18: UC record new multi-communities sharing price and utility value
19: pt∗uc = ptuc, U t∗

uc = U t
uc

20: end if
21: end for
22: The equilibrium (Dt∗,pt∗

CEA,m, p
t∗
uc) is reached where utlity of UC is maximized

23: end for

5.4 Evaluation Studies

5.4.1 Simulation Setup

In this section, the performance of the proposed model is studied, where all players aim

to maximize their utility functions. The data from three communities is utilized, where

Community 1 is a residential community consisting of 1000 households, Community 2

comprises two shopping malls, and Community 3 is an office area with three office build-

ings. The load profile data is obtained from IEEE open data [107]. A total of 2000 EVs are

assumed to move around these three communities. For simulation purposes, we employ

the Nissan Leaf with a 40 kWh battery capacity and an energy consumption rate of 0.16

kWh/km [108]. The EV trip data is obtained from a source [109, 110] that synthesizes

this data from the actual US National Household Travel Survey [111]. The preference
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parameter is randomly selected from the range of [50-70], and θ is set to 2. The State of

Charge (SoC) at the beginning of the day is 50%. The minimum and maximum SoC are

set to 20% and 90% [98], respectively, to prolong battery life. The maximum charging and

discharging rate is 7 kW, as this is the typical wall charging rate widely used in residential

areas and office buildings. The simulation is implemented in MATLAB.

Table 5.1 shows the trips of 10 EVs, where individuals typically depart from their

households between 7-9 am and reach their workplace to start working between 8-10 am.

Those working in shopping malls depart later than those working in offices. About half

of the office workers will have lunch near their office and won’t use their cars during

lunchtime. However, the other half of the office workers choose to go to the shopping

mall to have lunch with their colleagues during lunchtime. People working in the office

area usually leave work between 4-6 pm. On the other hand, people working in the mall

will return home between 7-8 pm. If the cell is blank, it means the EV stays in the same

community. However, if there is information in the cell, it means the EV moves from

one community to another. For example, "30 C1,C3" in slot 7 for EV1 means that EV1

moves from community 1 to community 3 by driving for 30 km during 7 am - 8 am. So,

during that time, EVs will not be able to charge or discharge energy.

Table 5.1: EV trip data

Period EV1 EV2 EV3 EV4 EV5 EV6 EV7 EV8 EV9 EV10
1
2
3
4
5
6
7 30 C1,3 40 C1,3 50 C1,3
8 30 C1,3 40 C1,3 20 C1,3 30 C1,2 60 C1,2
9 40 C1,2 60 C1,2
10
11
12 10 C3,2,3 10 C3,2,3 5 C3,2
13 10 C3,2,3 10 C3,2,3 5 C2,3
14
15
16 30 C3,1
17 40 C3,1
18 50 C3,1 30 C3,1 40 C3,1 5 C3,2
19 30 C2,1 60 C2,1
20 20 C2,1 40 C2,1 50 C2,1
21
22
23
24
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Figure 5.2: Original energy profile without EVs

Figures 5.2 show the original energy profile, which includes the energy profiles of com-

munities 1, 2, and 3, as well as the total energy profile of the entire system.

5.4.2 Results and Discussion

In this subsection, the results are compared between two scenarios: typical charging and

the proposed three-level optimal energy-price (3OEP).

• Typical charging [102]: Individuals charge their EVs upon returning home in the

evening, following typical human behavior.

• The two-level Stackelberg game (2LV) [24]: The two-level Stackelberg game is widely

utilized in the literature, as discussed in Chapter 2, where it typically considers the

interaction between an aggregator or a coordinator and end-users such as prosumers

and EVs. However, the literature often overlooks the benefit model of the UC and

frequently assumes pricing based on time-of-use (ToU), where the on-peak period is

from 9 am to 10 pm, and the rest of the time is considered off-peak.

• Proposed three-level optimal energy-price (3OEP): EVs will charge and discharge

continuously across different communities, such as residential areas, offices, and
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Figure 5.3: Total energy profile with EVs

shopping malls. The electricity price varies across these locations, and the amount

of charging and discharging is determined by the proposed algorithm.

Figures 5.3 show the total energy profile, including the energy used by EVs during

charging and discharging. The typical charging scenario results in a significant peak

in the evening as all EV owners plug in their vehicles after returning from work. On

the other hand, the two-level approach utilizing ToU pricing shows that during off-peak

periods, there is very low demand, with some charging occurring during on-peak times.

However, there is a high demand during the night after the on-peak period has passed.

The proposed scheme appears to be the most effective at maintaining a flatter total load

profile compared to both approaches. It even results in a flatter profile than the original

energy profile without EVs by utilizing charging energy during low-demand periods in the

early morning and evening.

Figures 5.4 show the total energy profile of each CEA and the total hourly charging and

discharging power, respectively. The proposed scheme indicates that EVs primarily charge

at home from the evening until early morning (blue line). However, the demand is more

evenly distributed over time, preventing the high peaks seen in typical charging scenarios.

During the daytime, the demand for EV charging in the residential community (C1) is
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Figure 5.4: Charging and discharging power

very low, as most EVs are at work or shopping malls. During this period, EVs engage

in charging and discharging activities within communities 2 and 3, based on the energy

sharing prices and the participation of stakeholders in the community energy management

system. In contrast, with the two-level approach, EV owners often charge their cars in

the evening after the on-peak period has passed, which results in a peak in the evening.

Figures 5.5 shows that the retail price for typical charging scenarios is significantly

higher than the energy sharing price of the proposed scheme during the evening, reflecting

the higher demand during that time when people typically charge their personal EVs. It

also shows the community energy sharing price pCEA,m and the multi-community energy

sharing price puc. The results indicate that the prices in all communities will be similar

due to the sharing mechanism between multiple communities. However, the price for

community 1 is generally the lowest since its original energy demand is the lowest among

all communities. For the two-level approach, the pricing aligns with ToU rates, so the

price during off-peak periods is very low and increases during on-peak periods.

From Figure 5.6, the bar graph shows that the proposed charge/discharge scheme is

effective in reducing the peak-to-average ratio by 40.7% compared to the scenario where
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Figure 5.5: Energy sharing price comparison

Figure 5.6: Peak-to-average ratio comparison
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Figure 5.7: Total bill of EVs comparison

humans use typical charging habits and by 31.3% compared to the two-level approach.

It also demonstrates that the two-level approach is more effective than typical charging

behavior, with a PAR reduction of 13.6%.

The total bill for all EVs is depicted in Figure 5.7. The figure illustrates that the

proposed three-level scheme can reduce the total bill by 8.3% compared to typical charging

methods and by 6.1% compared to the two-level approach. It also further shows that the

two-level approach has reduced the total bills by 21.5% compared to typical charging.

5.5 Summary

This chapter presents a novel multi-communities energy sharing management scheme

integrated with electric vehicles capable of traversing multiple areas across diverse com-

munities characterized by different energy profiles and prices. The model is formulated

as a three-level Stackelberg game to capture the interaction among three entities at three

levels: the Utility Company (UC), Community Energy Aggregators (CEAs), and Electric

Vehicles (EVs). The UC and CEAs aim to find optimal energy sharing prices to maxi-

mize their respective benefits, while EVs seek to determine optimal charging/discharging
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strategies to maximize their utility. The scheme presents the optimal three-level energy-

price (3OEP) equilibrium algorithm to obtain an equilibrium that is proven to be unique

and always existent. The results demonstrate that the proposed scheme outperforms typ-

ical human charging behavior, significantly reducing the peak-to-average ratio by 40.7%

compared to typical charging and by 31.3% compared to the two-level approach, while

also flattening the total energy profile.
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Chapter 6

Conclusions and Future Works

6.1 Conclusion

This dissertation introduces the hierarchical multi-communities energy sharing manage-

ment Framework (hMESH), which integrates various energy storage solutions into the fu-

ture smart grid. The proposed framework addresses three key problems at different levels:

managing non-moving energy storage in smart homes, critical hour energy management for

partially moving energy storage within a single community, and inter-community energy

sharing for fully moving energy storage across multiple communities. By incorporating

renewable energy resources and the increasing prevalence of electric vehicles, hMESH aims

to transform the current grid structure and enhance energy sharing management within

the electrical grid.

The energy sharing management for non-moving energy storage (eNMES) scheme is

proposed to optimize energy storage capacity and minimize energy loss in smart home

environments. This is achieved through a newly introduced distributed power flow as-

signment (DPFA), which assigns power flow paths from energy sources, such as renewable

energy (RE), to household loads. Furthermore, eNMES integrates DPFA with a load-

shifting algorithm to further reduce energy loss and the required battery storage capacity.

The critical hour energy management for partially moving energy storage (ePMES)

scheme is proposed to optimize energy use during peak periods using partially moving
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energy storage, such as electric school buses (ESBs). This scheme introduces a vehicle-to-

grid model between utility companies (UC) and schools with ESBs, leveraging their idle

periods for peak shaving services. During peak hours, the UC sends incentive price signals

to schools, encouraging them to discharge stored energy from ESBs, thus reducing peak

demand and generation costs while providing monetary benefits to the schools. The model

employs a non-cooperative game to determine optimal incentive pricing and discharge

energy amounts. Additionally, during low demand periods, ESBs can charge, helping

to flatten the energy profile curve and ultimately reducing the system’s peak-to-average

ratio.

The proposed inter-community energy sharing management for fully moving energy

storage (eFMES) scheme addresses the optimization of energy pricing in hierarchical

multi-communities integrated with electric vehicles (EVs). With a projected increase

in EVs on the road, they become significant power consumers and sources, capable of

moving across different smart grid communities, each with its energy profile and pricing.

By utilizing energy sharing prices from utility companies, EVs can contribute to grid

stabilization by adjusting their charging or discharging activities, thus smoothing the

grid profile. To mitigate peak demands caused by typical human behavior, the scheme

employs a three-level Stackelberg game involving utility companies, community energy

aggregators, and EVs. Through strategic decision-making, all entities can maximize their

benefits, receiving monetary rewards while reducing the peak-to-average ratio, ultimately

enhancing grid efficiency.

6.2 Contributions

The main contribution of the dissertation can be concluded as follows:

• The eNMES Scheme is proposed: This scheme introduces DPFA that helps reduce

energy loss in DPFS and proposes a load-shifting algorithm to further reduce en-

ergy loss and energy storage capacity. The findings and results indicate that the

MPFA significantly outperforms the SPFA, reducing energy loss by up to 55.2%.
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Additionally, with the implementation of a load-shifting algorithm, energy loss is

further reduced to 72.9%, and the required energy storage capacity is decreased by

up to 57%.

• The ePMES Scheme is proposed: This scheme introduces a critical hour energy

sharing management model using ESBs that are highly suitable to provide any

ancillary services and presents an OEP algorithm to achieve the equilibrium that is

unique and always exists. The findings and results demonstrate that the electricity

bills for schools are reduced by up to 22.6%. The peak-to-average ratio is decreased

by up to 9.5%, and the additional generation cost during peak periods is reduced

by 36%.

• The ePMES Scheme is proposed: This scheme proposes a novel inter-communities

energy sharing management model for movable energy storage and presents a 3OEP

algorithm to obtain the equilibrium that is unique and always exists.The findings and

results demonstrate that the scheme effectively helps prevent peak load and flatten

the energy profile, reducing the peak-to-average ratio by 40.7%. Additionally, the

total electricity bills for EVs are reduced by 8.3%.

The main findings and results are also presented in Figure 6.1.

6.3 Future Works

Although this dissertation has fulfilled the objective of introducing a novel hierarchical

multi-community energy sharing management framework (hMESH), there remain certain

gaps that could be further studied in the future.

For the smart home environment level, future research directions could explore the

proposed MPFA/SG and MPFA/MG algorithms in scenarios with a large number of

power loads (PLs). Additionally, investigating the impacts of charging and discharging

efficiencies, as well as storage capacity, on distributed power-flow assignment warrants

attention. Furthermore, examining power priority assignments to PLs while considering
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Figure 6.1: Main finding of the dissertation.

constraints on total energy supply is crucial. Finally, addressing fluctuations in power

supply and variations in demand within the Distributed Power Flow System (DPFS),

taking into account the irregular daily activities of residents, presents a significant avenue

for further investigation.

At the single community level, exploring the integration of electric buses with other

community loads and generation sources would provide valuable insights into their mutual

impacts and interactions within the system dynamics. Secondly, investigating the direct

sharing of stored energy within large batteries such as ESB with other institutions, such

as schools or buildings, within the community offers a promising avenue for study.

At the multi-community level, future research could focus on several directions. One

approach is to consider a greater variety of loads and building types in detail to understand

their effects on the overall energy profile. Expanding the study to encompass larger areas

would provide a broader perspective on how the total energy profile changes. Additionally,

incorporating other types of electric vehicles (EVs) beyond personal cars, such as electric

taxis, electric trucks, and electric vans, would be valuable. However, this requires the
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accurate prediction of EV trips to be introduced for effective analysis.
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