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Abstract: Navigating safely in dynamic human environments is crucial for mobile service robots, and social naviga-
tion is a key aspect of this process. In this paper, we proposed an integrative approach that combines motion prediction
and trajectory planning to enable safe and socially-aware robot navigation. The main idea of the proposed method is
to leverage the advantages of Socially Acceptable trajectory prediction and Timed Elastic Band (TEB) by incorporating
human interactive information including position, orientation, and motion into the objective function of the TEB algo-
rithms. In addition, we designed social constraints to ensure the safety of robot navigation. The proposed system is
evaluated through physical simulation using both quantitative and qualitative metrics, demonstrating its superior perfor-
mance in avoiding human and dynamic obstacles, thereby ensuring safe navigation. The implementations are open source
at: https://github.com/thanhnguyencanh/SGan-TEB.git

Keywords: Social Navigation, Trajectory Planning, Dynamic Human Environments.

1. INTRODUCTION

As the development of social capabilities in mobile
service robots advances, effective navigation becomes
crucial to autonomously performing tasks in dynamic un-
known environments such as airports [1], museums [2],
and offices [3]. The primary objective of these systems is
to ensure that robot navigation is performed in a socially
acceptable manner, prioritizing human safety and com-
fort [4]. However, in almost all scenarios, robots often
face challenges in deciding how to proceed toward their
intended destination unless an obstacle moves out of the
way.

Several previous works have focused on designing ob-
stacle avoidance algorithms and motion safety methods.
These include artificial potential field [5], dynamic win-
dow approach (DWA) [6], vector field histogram [7], ve-
locity obstacles [8], time elastic band (TEB) [9], random-
ized kinodynamic planning [10], reciprocal velocity ob-
stacles [11], and inevitable collision states [12]. Addi-
tionally, multi-sensors fusion methods [13], using cam-
era and lidar sensors, have shown potential for effectively
avoiding static and dynamic obstacles of various shapes
and sizes in different environments. While these tech-
niques have successfully avoided obstacles in dynamic
environments, they often lack the human characteristics
and social constraints necessary for friendly and safe nav-
igation.

To ensure the ability of navigation, Simultaneous Lo-
calization and Mapping [14], [15] approach is leveraged
to localize and construct the surrounding environment.
This approach provides the current robot pose and pre-
estimated map, supporting navigation and obstacle avoid-
ance tasks. However, human or dynamic obstacles can-
not be defined on the static map, requiring a local plan-
ning algorithm capable of predicting their future motion

during the robot’s movement. On the other hand, com-
puter vision and machine learning for robot navigation
have inspired a significant amount of research over the
past three decades [16]. By investigating motion behavior
prediction, mobile robots can effectively manage social
interaction. Although existing human-aware robot navi-
gation systems [17], [18] based on the social force model
have been developed and verified in the real world envi-
ronment, achieving considerable success. However, these
systems typically only consider human state information
such as human position, orientation, and velocity.

In particular, interaction-aware planning has been ad-
vanced through the use of Partially Observable Markov
Decision Processes [19] and Model Predictive Con-
trol [20] with safety constraints. These methods pro-
vide robust frameworks for decision-making in uncertain
environments by anticipating future states and optimiz-
ing control actions over a predicted horizon. Despite the
strengths of these methods, there remains a gap in inte-
grating these with real-time motion prediction and social
adaptability in densely populated environments.

To address these challenges, this paper proposes an
effective approach by integrating motion prediction and
trajectory planning for social robot navigation in dy-
namic human environments. We consider several condi-
tions concerning social constraints and kinodynamic con-
straints. The main contributions of this work are summa-
rized as follows:
• An effective system for social robot navigation in dy-
namic human environments.
• Construction of a novel objective function for local
planners based on social constraints.
• Investigation of human motion prediction based on
Generative Adversarial Networks (GAN).
• Demonstration of our proposed system’s performance
in both quantitative and qualitative metrics.



The rest of this paper is organized as follows: Section
2 introduces our proposed system, focusing on human
identification, motion estimation, and trajectory plan-
ning. Experimental results using both quantitative and
qualitative metrics are shown in Section 3. Finally, Sec-
tion 4 presents the conclusions of our system.

2. METHODOLOGY

Our proposed pipeline is shown in Fig. 1, which in-
cludes two main parts: socially aware and social trajec-
tory planning. First, RGB-D images are used as input
to detect and track humans, with the output being the
human pose in world coordinates, while IMU and Li-
DAR data are used for localization path to estimate robot
pose. After that, they are combined with robot poses
to predict human trajectory by leveraging Social GAN
method [21], which is detailed in Section 2.1 . Subse-
quently, we construct a novel objective function by inte-
grating social constraints such as personal distance and
rules for moving within a narrow range into the TEB
planner (Section 2.2).

We consider robots as well as humans to aim to reach
a pre-defined goal and safety navigation in a dynamic
human environment like Fig. 2. We denoted pr =[
xr yr θr

]T
as robot pose. i−th person’s trajectory is

described by Bsi = (si1,∆T1, s
i
2,∆T2, . . . , s

i
n,∆TN)

with sij =
[
xi
j yij

]T
is i − th person position at the

time j and ∆Tk represents the time duration that the mo-
bile robot have to need to move between two consecutive
poses sik and sik+1. pg =

[
xg yg θg

]T
is the pose of

the destination.

2.1 Socially Aware
The goal of the Socially Aware part is to estimate hu-

man pose and motion trajectory based on RGB-D images.
We first detect humans and calculate human position fol-
lowing this equation:

si =

[
xi

yi

]
=

[(
xc
min +

xc
max−xc

min

2 −mcx

)
d

mfy

d

]
(1)

where xc
min, x

c
max are the minimum and maximum co-

ordinate values along the x−axis of the human detec-
tion bounding box, respectively. d is the depth value and
mcx,mfy are intrinsic camera parameters.

Afterward, we employed the Social GAN method [21]
to predict motion trajectory. The Social GAN consists of
three main components: Generator (G), Pooling Module
(PM), and Discriminator (D). G is based on the encoder-
decoder conceptual framework, where the encoder and
decoder hidden states are interconnected through PM.
Given the input motion trajectory B̄si , G generates the
predicted trajectory Bsi . D evaluates the entire sequence
including the input trajectory B̄si and the generated pre-
diction Bsi , distinguishing between ”real” and ”fake” tra-
jectories.

The choice of Social GAN is driven by its robust capa-
bility to model complex interactions and effectively pre-
dict nuanced human movement patterns, making it espe-
cially suitable for environments with unpredictable hu-
man behaviors. This method allows for a probabilistic
rather than deterministic forecasting of future paths, en-
abling more flexible and adaptive navigation strategies.
The trajectories of multiple individuals are tracked, cap-
turing their 8 previous positions recorded at intervals of
0.5 seconds. This data, along with human identifiers,
is fed into the motion prediction system. Using Social
GAN, future human trajectories are forecasted over the
next 6 seconds, comprising 12 predicted positions along
their trajectory. Subsequently, these predicted trajecto-
ries are integrated into the robot’s local planning system
for navigation and obstacle avoidance.

2.2 Proposed MP-TEB algorithm
The main purpose of the MP-TEB method is to de-

termine control commands that enable the robot to move
from an initial pose to a goal pose within minimal time in-
tervals while satisfying kinodynamic constraints, adher-
ing to social constraints, and maintaining a safe distance
from objects. To achieve this, we designed a new ob-
jective function that integrates social constraints and mo-
tion prediction information with the Time Elastic Band
(TEB) [9] method, a well-established motion planning
approach. The traditional objective function V(B) is de-
fined as follows:

V(B) =

N−1∑
i=1

[
∆T2

i + δh||hi||22 + δv||min{0,vi}||22

+ δo||min{0,oi}||22 + δα||min{0,αi}||22
]

= wTf(B)
(2)

subject to:
0 ≤ ∆Ti ≤ ∆Tmax

hi(si+1, si) = 0: Nonholonomic kinematics
oi(si) ≥ 0: Clearance from surrounding objects
vi(si+1, si,∆Ti) ≥ 0: Limitation of robotic veloci-

ties
αi(si+1, si, si−1,∆i,∆Ti−1) ≥ 0: Robot accelera-

tions limitation
The objective function in Eq. (2) aims to deform a

path to the goal by applying internal constructive forces,
which result in the shortest possible path, and external
repulsive forces, which radiate from the obstacles to en-
sure a collision-free trajectory. In which w are individ-
ual weights corresponding to individual cost terms f(B).
Constraints of the environment include kinematics, clear-
ance from obstacles, and limitation of velocities and ac-
celerations formula by equality and inequality equations.

The local optimal trajectory sequence with m obsta-
cles (B∗

1 ,B
∗
1 , . . . ,B

∗
m) is generated by solving the fol-

lowing non-linear program:



Fig. 1.: Overview of our proposed method. The system is composed of two main units: Socially Aware and Social
Trajectory Planning

Fig. 2.: Illustrative example of social navigation in the
dynamic human environment. The robot needs to achieve
a predetermined goal while safely avoiding moving peo-
ple s1 and s2.

B∗
1 ,B

∗
1 , . . . ,B

∗
m = argmin

B\{s1,sN}
V(B) (3)

Then the optimal TEB trajectory B̂∗ based on the
global minimum is determined by solving the following
equations:

B̂∗ = argmin
B∗

j ∈{B∗
1 ,B

∗
1 ,...,B

∗
m}

V(Bj) (4)

In the proposed system, the robot’s movement behav-
ior is assumed as human. This means that the robot’s
navigation is like human navigation. This strategy fos-
ters a natural interaction environment that allows humans
to easily predict and respond to robot behavior and vice
versa. To achieve this, the robot needs to create a path that
closely follows the predicted path in human scenarios.
It enhances predictability and smoothness in the robot’s
movements, adapting paths that are intuitively safer for
nearby humans. Therefore, a constraint that reflects a pre-
dicted human path can be formula based on the following
cost function:

ehum−like
t = w1||prt − pst || (5)

where pst and w1 are human pose and weight for human
trajectory constraint at the time t, respectively.

The dynamic obstacle constraint cost is calculated as
follows:

edyn−obs
t = w2||prt − (pobst + vobstt)|| (6)

where pobst and vobst are dynamic obstacle pose and ve-
locities at the time t, respectively. w2 is dynamic obstacle
constraint weight.

In addition, in narrow spaces such as corridors or en-
trances, a robot moving along the shortest path can cause
obstruction or affect the movement space of surrounding
people. Therefore, it is necessary for the robot to fol-
low human movement rules. An important strategy is to
move closer to the curb on the right-of-way and avoid
people coming from the opposite direction. To determine
whether the obstacle is on the priority side or the non-
priority side of the robot, we use the following equation:

eprit = cos(θr)(yobst −yrt)−sin(θrt)(xobst −xrt) (7)

where xobst and yobst is position of obstacle at the time t.
If eprit > 0, the obstacle is on the non-priority side of the
robot and vice versa, the obstacle point is on the priority
side of the robot.

Finally, we obtain the objective function of the pro-
posed MP-TEB method as follows:

Ṽ(B) = V(B)+δmp(e
hum−like
t + edyn−obs

t − eprit ) (8)

where, δmp is a normalization factor and are predefined
value.

After achieving the optimal trajectory, the motion con-
trol command ur =

[
vr, ωr

]T
is generated to control the

mobile robot with vr and ωr is linear velocity and angular
velocity, respectively. The kinematic model is given by:xi+1

r

yi+1
r

θi+1
r

 =

xi
r

yir
θir

+


vr
r+vl

r

2 cos θidt
vr
r+vl

r

2 sin θidt
vr
r−vl

r

L dt

 (9)



where vrr = vr +
Lωr

2 dt and vlr = vr − Lωr

2 dt are the ve-
locities of the robot’s right and left wheels, respectively,
L is the wheelbase of the robot.

(a) (b) (c)

Fig. 3.: Scenario 1: Reverse direction (a) simulation en-
vironment, (b) trajectory estimation, (c) real trajectory.

3. EXPERIMENTS

To demonstrate the capabilities of our proposed sys-
tem, we conducted extensive tests within a physical
simulation environment. We utilized two frameworks,
the Gazebo simulator and the Robot Operating System
(ROS), to create the environment and visualize the re-
sults. The software for the proposed system was devel-
oped using ROS-C++ and ROS-Python.

3.1 Simulaion Setup
The robot is set to move from the start position to the

pre-defined goal position. The robot’s initial velocity is
set to 0.0[m/s] and the maximum linear and angular ve-
locities set to 1.0[m/s] and 0.5[rad/s], respectively. The
range of the LiDAR sensor is 8[m] and the camera has a
horizontal field of view (FOV) of 87 degrees.

To evaluate the performance of our MT-TEB algo-
rithm, we created four typical scenarios including (1)
Scenario 1 - a mobile robot and a person moving in the
reverse direction, (2) Scenario 2 - a mobile robot avoid-
ing two persons, (3) Scenario 3 - a mobile robot move
around the door in the narrow corridor, (4) Scenario 4 -
a robot turn right and avoid a person. For each scenario,
we conducted three experiments corresponding to a dif-
ferent trajectory planning algorithm: DWA [6], TEB [9],
and MP-TEB. Experimental results are compared based
on qualitative metric and quantitative metrics, which in-
clude
• Path Length l (m) is the total length of the trajectory
the robot has moved
• Total time t (s) is the total time consumed when the
robot moves from start to goal
• Min H-R distance d (m) is the closest distance in the
moving trajectory between the human and the robot

3.2 Results
For the robot’s movements to be human-compatible,

the trajectory predictor processes both the robot’s tra-
jectory and the human’s trajectory to create a dynamic

human-robot environment. The actual trajectory is il-
lustrated with a solid line, while the predicted trajectory
is represented by a dashed line, as shown in Fig. 3b,
Fig. 4b. Fig. 3, Fig. 4 illustrate the results of Scenario
1 and Scenario 2, respectively. Using data from motion
prediction, the robot successfully navigates around the
predicted movement area of two people in the test en-
vironment. This proactive response enhances safety by
allowing the robot to anticipate and avoid potential sur-
prises. A qualitative comparison of DWA, TEB, and MP-
TEB is presented in Fig 4c. It can be seen that with the
proposed system, the path created is smoother and more
natural due to its superior ability to predict future human
positions. In contrast, the DWA method is surprised by
the human’s reaction to avoid the road, causing its move-
ment to stop a lot, because this method fails to anticipate
the movement of dynamic obstacles. Although the TEB
method can avoid obstacles, it is typically a less smooth
and natural path compared to our proposed method.

In Scenario 3, the robot was able to safely move away
from the closed door, as illustrated in Fig. 5. In Scenario
4, the robot turns a wide angle at the intersection for the
conventional TEB method, which risks causing a sudden
collision with a human because it does not maintain a
safe distance enough as shown in Fig. 6b. For the pro-
posed MP-TEB method, the robot turns a smaller angle,
creating greater safety, while saving robot distance and
travel time (Fig. 6c)

To evaluate the stable performance of the MP-TEB
method, we repeated it 10 times in each scenario and av-
eraged the results as shown in Table 1. In scenarios such
as navigating in the reverse direction, DWA achieved a
path length of 8.01m, a total time of 24.04s, and a min-
imum distance of 0.22m, while MP-TEB improved to
7.23m, 20.01s, and 0.64m, respectively. The maneu-
vering between multiple people showed that MP-TEB
had the shortest path length (6.73m), the lowest total
time (23.80s), and the safe minimum distance (0.36m)
compared to DWA and TEB. Navigating through narrow
corridors, MP-TEB maintained competitive path length
(7.11m), total time (24.46s), and safe distance (0.79m).
When performing a right turn to avoid a human, MP-
TEB achieved superior performance with a path length
of 6.54m, a total time of 21.38s, and a safe minimum
distance of 0.83m, outperforming DWA and TEB in both
efficiency and safety metrics in all scenarios. Overall, the
total time of the MP-TEB method is much shorter than
those of the other two methods because the path of the
MP-TEB method is optimized for humans, so it does not
take much time for the system to adapt to changes in hu-
man movement.

4. CONCLUSION

In conclusion, our study introduces and evaluates the
Motion-Predictive Timed Elastic Band (MP-TEB) algo-
rithm to enhance the navigation capabilities of mobile
service robots in dynamic human environments. Through



(a) (b) (c)

Fig. 4.: Scenario 2: Multi-person (a) simulation environment, (b) trajectory estimation, (c) real trajectory (left: DWA,
mid: TEB, right: MP-TEB).

Table 1.: Quantitative results of social robot navigation.

Scenarios DWA [6] TEB [9] MP-TEB
Path
Length
(m)

Total
Time
(s)

Min
H-R
Dist (m)

Path
Length
(m)

Total
Time
(s)

Min
H-R
Dist (m)

Path
Length
(m)

Total
Time
(s)

Min
H-R
Dist (m)

Reverse direction 8.01 24.04 0.22 7.89 22.76 0.47 7.23 20.01 0.64
Multi persons 8.11 26.33 0.29 7.57 25.16 0.46 6.73 23.80 0.36
Corridor 7.75 23.12 0.40 6.95 24.94 0.39 7.11 24.46 0.79
Turn right 6.97 23.12 0.34 7.07 22.62 0.29 6.54 21.38 0.83

(a) (b)

Fig. 5.: Scenario 3: Avoid door in corridor scenario: (a)
simulation environment, (b) real trajectory.

simulations and quantitative assessments across varied
scenarios, including complex maneuvers and obstacle
avoidance tasks, MP-TEB consistently outperformed tra-
ditional methods like the Dynamic Window Approach
(DWA) and the standard Timed Elastic Band (TEB). The
algorithm demonstrated superior performance in terms of
path efficiency, navigation time, and maintaining safe dis-
tances from humans, ensuring effective and socially ac-
ceptable robot interactions. However, limitations include
the need for further refinement in real-world deployment
scenarios and adapting to highly unpredictable human be-
haviors. Moving forward, further refinements and inte-
gration of advanced technologies could continue to en-
hance MP-TEB’s capabilities, contributing to its broader

adoption in real-world applications where robots interact
closely with humans.
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