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Abstract—We explore the problem of distributed Hypothesis
Testing (DHT) against independence, focusing specifically on
Binary Symmetric Sources (BSS). Our investigation aims to
characterize the optimal quantizer among binary linear codes,
with the objective of identifying optimal error probabilities under
the Neyman-Pearson (NP) criterion for short code-length regime.
We define optimality as the direct minimization of analytical
expressions of error probabilities using an alternating optimiza-
tion (AO) algorithm. Additionally, we provide lower and upper
bounds on error probabilities, leading to the derivation of error
exponents applicable to large code-length regime. Numerical
results are presented to demonstrate that, with the proposed
algorithm, binary linear codes with an optimal covering radius
perform near-optimally for the independence test in DHT.

I. INTRODUCTION

In collaborative decision-making scenarios, multiple agents

or sensors send their local observations to a decision cen-

ter that aims to infer a global state. Distributed Hypothesis

Testing (DHT) refers to a particular case where the decision

center’s objective is to decide between two hypotheses, H0

and H1, leveraging coded version of a source X and a

side information Y . The decision process is characterized by

Type-I and Type-II error probabilities, represented by αn and

βn, respectively. Information-theoretic DHT analyses often

investigate the achievable error exponent of Type-II error

probability, while satisfying a certain constraint ε on Type-I

error probability.

Berger [1] introduced the DHT problem, which has sparked

significant interest. Subsequently Ahlswede and Csiszar [2],

and later Han [3], considered a two-node system represented

in Fig. 1, where the first node collects data and communicates

with a second node acting as the decision center over a

noiseless, rate-limited link. In [2], an achievable optimal error

exponent of βn is provided for a special case of “testing

against independence”, which is of great interest in scenarios

where detecting absence of presence of statistical dependence

between sources may influence further analysis or decoding.

Several other variations of DHT problems have been explored

in [4]–[10].

However, practical coding perspective of DHT has received

much less attention compared to the information-theoretic

aspects of the problem. While certain studies, such as those

by Haim and Kochman in [11], have integrated linear codes

Fig. 1: Two-node system for distributed hypothesis testing problem.

into their analysis of the error exponent, the optimal properties

of such codes remain uncertain. Regarding the design of

practical quantizers for DHT, an iterative alternating optimiza-

tion (AO) algorithm [12] is designed, considering a criterion

of distributional distance (Bhattacharyya distance), to find

optimal quantizers in a multiple sensor setup, as discussed in

[13]. Furthermore, [14] studied the optimal scalar quantization

scheme for the distributed independence test in the case of

Gaussian sources. Additionally, in [15], memoryless quantiza-

tion methods are employed due to their memory-efficiency and

low-latency characteristics for use in a multiple-node setup.

Despite the efforts in optimizing local quantizers in DHT

problems, the scenario of testing against independence has

garnered comparatively less attention. This paper presents two

main contributions. First, it explores the utilization of linear

block codes as the local quantizer component, by relying

on exact analytical expressions for Type-I and Type-II error

probabilities provided in [16]. An iterative AO algorithm is

proposed to identify the optimal characteristics of the binary

local quantizer by optimizing the coset leader spectrum of

linear block codes while also optimizing a decision rule under

Neyman-Pearson (NP) criterion. Then, it derives error expo-

nents for Type-I and Type-II error probabilities using binary

linear codes as the local quantizer component. In addition

to the exact error exponent derivations, to grasp a general

tendency of Type-I and Type-II error exponents, upper and

lower bounds of Type-I and Type-II error probabilities are

derived.

II. PROBLEM STATEMENT

A. DHT against independence for Binary Symmetric Sources

Consider the system depicted in Fig. 1, where the first and

second nodes observe random vectors Xn and Yn of length

n, respectively. As a Binary Symmetric Source (BSS) case,



consider the scenario X and Y take values in a binary alphabet,

and PX(x) = PY (y) ∼ Bern( 12 ). Although the marginal

distributions of X and Y are identical, Y may represent a

noisy version of X . Denote Y � X ⊕ W , where ⊕ is the

summation over the binary field. Consider the following two

hypotheses,

H0 : W ∼ Bern (p0), (1)

H1 : W ∼ Bern (p1), (2)

where Bern(p) denotes the Bernoulli distribution with the

parameter p, and 0 ≤ p ≤ 1. We also assume throughout

the paper 0 ≤ p0 < 1
2 . Obviously H1 indicates that X and Y

are independent when p1 = 1
2 . As illustrated in Fig. 1, the first

node transmits a coded version of Xn under a communication

rate R over a noiseless channel. The second node makes

a decision based on the coded version of Xn and the side

information vector Yn. This decision may result in two types

of errors, with their probabilities defined as follows

αn = Pr(H1|H0), (3)

βn = Pr(H0|H1). (4)

In these expressions, αn is Type-I error probability and βn

is Type-II error probability. In [2], it is demonstrated that for

testing against independence, information-theoretic quantizer-

based schemes are optimal in minimizing Type-II error prob-

ability βn under the constraint αn ≤ ε.

B. Linear block codes and useful properties

Consider a binary linear code C defined by a k×n generator

matrix G with a rate of R = k
n as the binary quantizer

component [17]. According to the standard array concept [18],

the minimum Hamming weight vector dH (·) in each coset Cs
associated to the syndrome s is referred to as the coset leader
defined as

L(Cs) � arg min
z∈Cs

dH (z),

and all coset leaders are denoted by L =
{L (Cs) : for all possible s}.

Definition 1 (covering radius [19]): The covering radius of a

code C ⊆ {0, 1}n is the smallest integer such that every vector

x ∈ {0, 1}n is covered by a radius ρ Hamming ball centered

at a point c ∈ C, i.e.,

ρ(C) = max
x∈{0,1}n

min
c∈C

dH(x, c).

Definition 2 (coset leader spectrum): Let C be a binary linear

code. Its coset leader spectrum N = (N0, N1, ..., Nρ) is a

vector of length ρ+ 1, where

N i = | {L ∈ L : dH (L) = i} |,
i.e., the i-th component of N is the number of coset leaders

of weight i in L.

We represent a binary linear code associated with the gener-

ator matrix G and the covering radius ρ as [n, k]ρ throughout

the paper. For an [n, k]ρ, It is shown that
∑ρ

i=0

(
n
i

) ≥ 2(n−k)

called sphere-covering bound [19], and ρ ≤ n − k called

Singleton bound [19]. These two inequalities provide general

lower and upper bounds for the covering radius ρ, respectively.

III. ANALYSIS OF OPTIMUM QUANTIZER

A. The quantizer structure under Neyman-Pearson criterion

The optimal binary quantizer for minimizing the average

distortion criterion is known as Minimum Distance (MD)

quantizer [20]. An MD quantizer implemented by a binary

linear block code operates so that for a source vector xn, the

quantized vector uk
q is given by

uk
q = arg min

uk∈{0,1}k
dH

(
xn,xn

q

)
,

where xn
q = uk

qG. In the design of the rule to decide between

hypotheses H0 and H1 various methods are available. Given

that the probability distribution of the noise W is known under

both H0 and H1, we use the NP lemma [21] which minimizes

βn under a certain constraint on αn. By considering the BSS

model as defined in Section II-A, the NP lemma provides

following criterion [11]
n∑

j=1

(xq,j ⊕ yj) ≶ γt,

where γt ∈ N is an integer threshold chosen to minimize βn

while satisfying the constraint αn ≤ ε. Note that the symbol

< indicates a decision in favor of H0, while > indicates a

decision in favor of H1.

We next consider exact analytical expressions for Type-I

and Type-II error probabilities provided in [16] for the MD

quantizer. Specifically in the context of testing against inde-

pendence, the expressions of [16] can be simplified as follows

αn =
1

N

n∑
γ=γt+1

ρ∑
i=0

min(γ,i)∑
u=0

Γγ,i,up
j
0 (1− p0)

n−j
Ni, (5)

βn =
1

N

(
1

2

)n γt∑
γ=0

ρ∑
i=0

min(γ,i)∑
u=0

Γγ,i,uNi, (6)

where Γγ,i,u =
(
i
u

)(
n−i
γ−u

)
and j = i + γ − 2u. The total

number of the coset leaders is denoted by N =
∑ρ

i=0 Ni.

Additionally, for the weight of i, Γγ,i,u represents the number

of all possible vectors of weight γ with u 1’s in common with

xn.

B. Short code-length regime

In [16], the performance of the quantizer was evaluated for

specific linear codes, notably BCH codes, with specific coset

leader spectrums. Here, alternatively, our objective is to formu-

late an optimization problem only under generic constraints:

Minimize βn while αn ≤ ε. Consider N = (N0, . . . , Nρ) as

the coset leader spectrum of an hypothetical binary linear code



satisfying the condition N0+ . . .+Nρ = N . In the following,

(5) and (6) can be rewritten as

αn =
1

N

ρ∑
i=0

WαiNi, (7)

βn =
1

N

ρ∑
i=0

WβiNi, (8)

where

Wαi
=

n∑
γ=γt+1

min(γ,i)∑
u=0

Γγ,i,up
ji
0 (1− p0)

(n−ji) , (9)

Wβi
=

(
1

2

)n γt∑
γ=0

min(γ,i)∑
u=0

Γγ,i,u. (10)

Lemma 1: With the blocklength n and an integer threshold

0≤γt ≤ n, Type-II error probability can be expressed as:

βn =

(
1

2

)n γt∑
γ=0

(
n

γ

)
. (11)

Proof : According to (10), we have

Wβi
=

(
1

2

)n γt∑
γ=0

min(γ,i)∑
u=0

(
i

u

)(
n− i

γ − u

)
. (12)

Consider the summation term with respect to u in (12), we

separate it into the following two cases:

i) if γ < i, by utilizing the Vandermonde’s identity [22], we

have
γ∑

u=0

(
i

u

)(
n− i

γ − u

)
=

(
n

γ

)
.

ii) if γ > i, by using the binomial formula, we have

(1 + x)n =
n∑

γ=0

(
n

γ

)
xγ ,

(1 + x)i (1 + x)n−i =

i∑
u=0

(
i

u

)
xu

n−i∑
u′=0

(
n− i

u′

)
xu′

n∑
γ=0

δγ,u+u′

=

n∑
γ=0

xγ
i∑

u=0

(
i

u

)
n−i∑
u′=0

(
n− i

u′

)
δu′,γ−u

=

n∑
γ=0

xγ
i∑

u=0

(
i

u

)(
n− i

γ − u

)∣∣∣
0≤γ−u≤n−i

,

where δ(·,·) denotes the Kronecker delta function. Then, the

following equality is derived:
i∑

u=0
γ−(n−i)≤u≤γ

(
i

u

)(
n− i

γ − u

)
=

(
n

γ

)
, (13)

given that γ−(n− i) = γ−n < 0 when i = 0 is the minimum

possible value for the summation index, the summation in (13)

is properly bounded. Therefore, we can express (8) as,

βn =
1

N

(
1

2

)n ρ∑
i=0

γt∑
γ=0

(
n

γ

)
Ni

=

(
1

2

)n γt∑
γ=0

(
n

γ

)
. �

According to Lemma 1, minimizing βn is equivalent to

minimizing the decision threshold γt. First of all, suppose our

goal is to satisfy the constraint αn ≤ ε for a possible minimum

threshold γt. In this case, we can formulate a minimization

problem as follows

min
{Ni}

e =

ρ∑
i=1

Wαi
Ni, (14)

subject to, ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ≤ Ni ≤
(
n

i

)
; 1 ≤ i ≤ ρ (14a)

ρ∑
i=1

Ni = N − 1, (14b)

where Wαi
is defined as in (9). In this formulation, (14a)

comes from the finite number of vectors with a length of n and

a weight of i, additionally (14b) stems from the fact N0 = 11.

By solving the minimization problem outlined in (14), (14a)

and (14b), aimed at optimizing the coset leader spectrum N∗

of an hypothetical binary linear code [n, k]ρ∗ , we can meet

the constraint αn ≤ ε. Notably, the problem described in (14),

along with constraints (14a) and (14b), falls into the category

of integer linear programming (ILP) problems.

Corollary 1: Given an [n, k]ρ∗ , there exists a polynomial-time

algorithm that finds an optimal solution for the ILP problem

described in (14), with the constraints (14a) and (14b). The

solution is a vector with components, at most, 6 (n−k)
3
Φ.2

The proof is directly derived from [23, Theorem 16.2] and

[23, Corollary 17.1c], according to the Singleton bound. �
To determine the optimal decision threshold γ∗

t while en-

suring that the constraint αn ≤ ε is satisfied, we propose an

AO algorithm, outlined in Algorithm 1.

C. Large code-length regime

Following the discussions in the previous Section for the

local quantizers built from linear block codes first, we then

investigate characteristics of the optimal quantizer for a large

code-length regime.

Proposition 1: Let the DHT problem defined as in Sections

II and III, Type-I and Type-II error probabilities are bounded

with the exponential forms with the following exponents

E0 = Db

(γt
n
||p0

)
, (15)

E1 = 1−Hb

(γt
n

)
, (16)

with p0 ≤ γt

n ≤ 1
2 . Here, Db (p||q) represents the bi-

nary Kullback-Leibler divergence between the probability pair

1Particularly, N0 represents the all-zero codeword of the binary linear
code considered, hence N0 = 1.

2Φ represents the facet complexity of a rational polyhedron associated
with the ILP problem, defined by P = {x | Ax ≤ b}, where it is equal to
the maximum row size of the matrix [A b] [23].



Algorithm 1: Coset Leader Spectrum Optimization

1 Procedure Integer Linear Programming (n, k, p0, ε)

2 Set γt = 0;

3 Define the ILP problem in (14), (14a) and (14b);

4 Solve the ILP for γt = 0;

5 Compute αn from (7);

6 if αn ≤ ε then
7 return γ∗

t = 0, N∗;

8 end if
9 else

10 γt = γt + 1;

11 while αn > ε do
12 Update Wα and initialize Ni;

13 Solve the ILP;

14 Update αn;

15 γt = γt + 1;

16 end while
17 end if
18 return γ∗

t , N∗;

19 end Procedure

(p, q), where (p, q) ∈ [0, 1], and Hb (·) denotes the binary

entropy function.

Proof : We first derive an upper bound for Type-I error prob-
ability. According to Vandermond’s identity [22]

(
i
u

)(
n−i
γ−u

) ≤(
n
γ

)
and using (5) we find

αn ≤ 1

N

n∑
γ=γt+1

ρ∑
i=0

min(γ,i)∑
u=0

(
n

γ

)
pj0 (1− p0)

n−j Ni

=
1

N

n∑
γ=γt+1

(
n

γ

)
pγ0 (1− p0)

n−γ

×
ρ∑

i=0

(
p0

1− p0

)i

Ni

min(γ,i)∑
u=0

(
1− p0
p0

)2u

(a)
=

1

N

n∑
γ=γt+1

(
n

γ

)
pγ0 (1− p0)

n−γ

×
ρ∑

i=0

(
p0

1− p0

)i

⎡
⎢⎣
(

1−p0
p0

)2min(γ,i)

− 1(
1−p0
p0

)2

− 1

⎤
⎥⎦

︸ ︷︷ ︸
B

Ni,

where (a) originates from substituting the inner summation

with the sum of a geometric sequence with a common ratio(
1−p0

p0

)2

= κ. On the other hand, let

Δ �
ρ∑

i=0

(
1

κ

) i
2 [

κi − 1
]
Ni,

hence we have B
(b)

≤ Δ where (b) arises from 1 ≤ κ and the

property of the minimum function min (γ, i) ≤ i. With the

upper-bounding expression for B

αn

(c)

≤ Δ

N
2−nDb( 1+γt

n ||p0),

where (c) is derived from [24, Lemma 4.7.2] under the
conditions np0 − 1 < γt < n − 1. Using Stirling’s bounds

[25] as
√
2πn(n+

1
2 )e−n ≤ n! ≤ n(n+

1
2 )e1−n, we can write

αn =
1

N

n∑
γ=γt+1

(
n

γ

)
pγ0 (1− p0)

n−γ
ρ∑

i=0

(
p0

1− p0

)i

Ni

×
min(γ,i)∑

u=0

(
1− p0
p0

)2u
(
i
u

)(
n−i
γ−u

)(
n
γ

)
(d)

≥ 4π2e−3

N

n∑
γ=γt+1

(
n

γ

)
pγ0 (1− p0)

n−γ
ρ∑

i=0

(
p0

1− p0

)i

Ni

×
min(γ,i)∑

u=0

(
1− p0
p0

)2u √
γ

n.i
2−nHb(

γ
n
)

(e)

≥ Δ′

N

[
8 (γt + 1)

(
1− γt + 1

n

)]− 1
2

2
−nDb

(
γt+1

n

∥∥∥p0
)
,

where Δ′ = 4π2e−3
∑ρ

i=0

(
1
i

) 1
2

(
p0

1−p0

)i+2

Ni. (d) comes

from Jensen’s inequality [26] for Hb (·) and the conditions

γ ≤ n, u ≤ i. Additionally (e) arises the lower bound in

[24, Lemma 4.7.2]. According to Lemma 1 and by employing

a similar mathematical manipulation, we establish lower and

upper bounds for Type-II error probability as follows[
8γt

(
1− γt

n

)]− 1
2

2−nDb(1− γt
n || 12 ) ≤ βn ≤ 2−nDb(1− γt

n || 12 ),

such that for sufficiently n

E0 = −
{
1

n
logαn

}
; n → large

= Db

(γt
n
||p0

)
; p0 ≤ γt

n
≤ 1

and

E1 = −
{
1

n
log βn

}
; n → large

= Db

(
1− γt

n
||1
2

)
(f)
= 1−Hb

(γt
n

)
; 0 ≤ γt

n
≤ 1

2

where (f) arises from the symmetry property of the binary

entropy function Hb (·), when γt

n ≤ 1
2 .1 �

Corollary 2: Considering the DHT problem defined in Sec-

tions II and utilizing an [n, k]ρ as the local quantizer with a

sufficiently large blocklength n, the only effective parameter

influencing Type-I and Type-II error probabilities is the nor-
malized decision threshold γt

n , when p0 ≤ γt

n ≤ 1
2 .

proof : The proof directly follows from Proposition 1. �

1a detailed proof is available at http://arxiv.org/abs/2410.15839.
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(a) ROC curve for Reed-Muller (RM) code [16, 5]ρ=6, linear complementary
dual (LCD) code [16, 5]ρ=5, and the optimization result code [16, 5]ρ∗=5.
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(b) ROC curve for BCH code [31, 11]ρ=7, linear complementary dual (LCD)
code [31, 11]ρ=10, and the optimization result code [31, 11]ρ∗=7.

Fig. 2: ROC curves: exact values (solid lines), lower bounds

(dash-dotted lines), and upper bounds (dashed lines).

IV. NUMERICAL RESULTS

We set ρ = n−k to test Algorithm 1, according to the Sin-

gleton bound. For certain values of n, k provided in Table I, the

optimal solution precisely matches the coset leader spectrum
of existing linear codes1. It should be noticed that, however, in

some other cases, the solutions do not correspond, to our best

knowledge, to the coset leader spectrum of any known linear

block code, indicating that optimal DHT quantizers should not

necessarily be based on existing linear codes. We investigate

Type-II error probability, given the constraint ε ≤ 0.06 on

Type-I error probability and p0 = 0.05. Fig. 2a and Fig. 2b

1Remarkably, these codes exhibit an optimal covering radius.
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Fig. 3: The tradeoff between Type-I and Type-II in terms of E0 and E1.

TABLE I. COSET LEADER SPECTRUM OBTAINED AS SOLUTIONS, IN THE
INDICATED CASES, OF ALGORITHM 1

Optimal linear block code n k N∗
Hamming 7 4 (1, 7)

Reed-Muller 8 4 (1, 8, 7)
Hamming 15 11 (1, 15)

Golay 23 12 (1, 23, 253, 1771)
Extended Golay 24 12 (1, 24, 276, 2024, 1771)

Hamming 31 26 (1, 31)

provide Type-I versus Type-II error probabilities, referred to

Reciever Operating Characteristic (ROC) curve, where, the

lower and upper bounds are shown using Proposition 1; Fig.

2a considers the Reed-Muller code [16, 5]ρ=6 as well as the

linear complementary dual (LCD) code [16, 5]ρ=5 compared

to hypothetical linear code [16, 5]ρ∗=5 obtained by Algorithm

1. Similarly, Fig. 2b presents the results for the case of

the BCH code [31, 11]ρ=7 and the LCD code [31, 11]ρ=10

compared to the hypothetical linear code [31, 11]ρ∗=7 derived

from Algorithm 1.The numerical results demonstrate that as

the covering radius ρ of [n, k]ρ decreases, we approach [n, k]ρ∗

with ρ∗ satisfying the equality in the Sphere-covering bound

[27, Table I]. It is noteworthy that the gap between the lower

and upper bounds for [n, k]ρ∗ and [n, k]ρ with equal ρ is

attributed to the difference in the decision thresholds from

the AO algorithm and the thresholds chosen according to the

NP criterion, respectively. Moreover, it is observed that as the

code length n increases from n = 16 in Fig. 2a to n = 31 in

Fig. 2b, the gap between the lower and upper bounds and the

exact Type-II error probability decreases.

In Fig. 3, the results are generated utilizing Proposition 1

for p0 ≤ γt

n ≤ 1
2 . The figure indicates that the smaller p0

value, i.e., the smaller value of the lower bound for γt

n , the

larger exponents for Type-I and Type-II error probabilities.
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