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Abstract

In the game field, computer programs have surpassed top human play-
ers in many games. A well-known example is AlphaZero. These strong
programs provide human players with opportunities to improve their
skills. However, human players may not enjoy such strong opponents.
To make middle-level players learn from playing good-quality games
with strong programs, we have proposed to combine programs with
distinct roles in our previous research. One role is a superhuman pro-
gram that proposes and accurately evaluates candidate moves. The other
role is a naturalness (or human likeness) evaluator. Candidate moves
are evaluated by combining the two roles using a function, and the
moves with the highest scores are played. This study builds upon our
earlier work to further improve the naturalness of moves. First, we
propose a search mechanism inspired by the sequential halving algo-
rithm to decide candidate moves and the moves to play. Second, we
propose a new score function to address several issues of the previous
approach. We conduct experiments to compare the proposed approaches
with several existing approaches. The results show that the move nat-
uralness of the proposed approaches is greatly improved and that
performance in other aspects is at least as good as existing approaches.

Keywords: Teaching, Strength Adjustment, Entertaining, Go, Naturalness
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1 Introduction

Artificial intelligence has made significant progress in many fields, including
computer games. For a long time, one of the primary focuses of the game
field has been the development of strong computer programs. With substantial
advancements in deep learning techniques and many other algorithms, com-
puter programs have now outperformed top human players in a wide range
of games. A well-known example is AlphaZero [1], which masters chess, shogi,
and Go through self-play games without requiring domain-specific knowledge
from human experts.

These strong programs present opportunities for human players to acquire
new skills; however, human players may not enjoy playing against and learning
from these programs. For one reason, these programs are too strong for human
players to defeat. When losing constantly, human players may be frustrated
and less motivated for continuous gameplay. For another reason, computer
programs sometimes play moves that are beyond expectations. Amateurs or
even experts may not understand the logic behind such moves, making it
challenging for human players to learn from these strong programs.

If these strong programs can teach as human teachers do, amateurs will
have an additional option to improve their skills, which is more accessible than
hiring a teacher or attending classrooms in terms of expense. There are sev-
eral methods for human teachers to teach their students, such as showing good
examples, pointing out bad moves, or playing teaching games [2]. In the follow-
ing, we discuss the case of playing teaching games in a board game, Go, where
the teaching game culture also exists in other games such as shogi and Chinese
chess. The solid-lined dialog in the background part of Fig. 1 illustrates what
human teachers typically consider when playing teaching games. A teaching
game can be further divided into two phases: playing a good-quality game and
reviewing the game. In this paper, we focus on the former phase and leave the
latter phase as future research.

Regarding good-quality games, we have discussed four critical factors in our
previous work [3], where human teachers aim to achieve these factors implicitly
or explicitly.
(a) playing balanced games with the students

Go teachers are usually stronger than their students, and it is easy for
the teachers to defeat their students. However, the teachers avoid winning
against the students always. (a1) Sometimes, the teachers win, while at
other times, the teachers intentionally let the students win. Also, in each
game, the teachers try to avoid winning or losing by a large margin.

(b) reflecting the goodness and badness of the students’ moves in the final
wins and losses
Related to (a1), the teachers sometimes intentionally let the students win.
To make the students remember good and bad moves clearly with strong
impressions, the teachers try to associate the final wins and losses with
the students’ moves’ goodness and badness. For example, when a student
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Fig. 1: An overview of this paper, where the background part illustrates
teaching games by human teachers (solid-lined dialog) and strong programs
(dotted-lined dialog), the method part shows the concept of our proposed
approach, and the results part summarizes the findings

plays many good moves during a game, the teachers tend to let the student
win as a kind of reward.

(c) keep the quality of their (teachers’) own moves as good as possible
Related to (a), the teachers need to put in some effort to play balanced
games with the students, which can be achieved by giving handicap stones,
intentionally playing some bad moves to lose advantages, or doing both.
Giving handicap stones occurs before the start of the games and is beyond
the scope of our consideration. As for playing bad moves, even though it
is necessary, the teachers try to keep the quality of their moves as good as
possible so that the students can learn good stone shapes or good move
sequences by observing the teachers’ gameplay.

(d) playing natural (or say human-like) moves
Playing human-like moves is not an issue to most human teachers but is a
non-trivial task for computer programs. As an illustrative example, human
players tend to finish a local battle before moving to another, while strong
Go programs, especially AlphaZero-based programs, do not exhibit such
a tendency.1

The evaluation metrics of these factors will be explained in Section 5. Our
goal is to create computer programs capable of playing good-quality games
with middle-level players using strong programs, as depicted using the dotted-
lined dialog in the background part of Fig. 1. More specifically, we target

1This is widely known among Go players and has been verified by us with necessary data.
An average Euclidean distance for a KataGo’s move to its previous move was 4.649, while that
of middle-level human players was 3.426. KataGo used 1,000 simulations per move, where the
program version was 20d34784703c5b4000643d3ccc43bb37d418f3b5 and the neural network ver-
sion was kata1-b40c256-s9948109056-d2425397051. The middle-level human players’ data is from
Table 4.



Springer Nature 2021 LATEX template

4 Playing Natural and Good-Quality Games with Middle-Level Players

Go players ranging from kgs8k to kgs2d2, which covers approximately 80% of
active players on the KGS Go Server.

Creating programs that can achieve a single factor is not difficult; however,
considering all four factors at once is a challenging task. For example, to achieve
(a1), a näıve method can be employed, which selects moves with win rates
closest to 50%. However, this method will select a bad move when the opponent
makes a mistake in order to cancel the advantage; the method plays well when
the opponent plays well. Therefore, the goodness and badness of the opponent’s
moves are hardly reflected in the final wins and losses, failing to achieve (b).
Also, moves with win rates closest to 50% may not have good shapes and good
flows nor be human-like, failing to achieve (c) and (d).

In our previous work [3], we proposed playing good-quality games with
middle-level players by combining programs with two different roles. The first
role employed a superhuman program to generate candidate moves and accu-
rately evaluate how advantageous each move is. The second role employed a
neural network trained using strong human players’ games to evaluate the
naturalness (human likeness) of moves. By combining the statistics from both
roles using a function, we calculated the scores of candidate moves and selected
the one with the highest score.

In this paper, we aim to further improve the naturalness of the moves, where
the naturalness is measured via a neural network trained using strong human
players’ games, which has been shown to reflect experts’ evaluations [3]. In our
approaches, first, we propose a search mechanism inspired by the sequential
halving algorithm [4, 5]. Second, we replace the move score calculation with
a smoother and situation-based function. Experiments show that the natural-
ness of the proposed approaches’ moves is greatly improved (factor (d)) while
the other factors (a)–(c) remain at the same level or have slightly improved
compared with existing approaches.

The rest of this paper is organized as follows. Section 2 provides background
information. Section 3 reviews our previous work [3] and discusses some issues
with the approach. Section 4 presents our approaches, and the experiments
are shown in Section 5. Finally, Section 6 makes concluding remarks.

2 Background

In this section, Subsection 2.1 introduces several representative works that
have developed strong Go programs, and Subsection 2.2 reviews several works
that tried to create human-centered opponent programs.

2.1 Strong Go Programs

Go is a two-player zero-sum perfect-information deterministic board game
with a long history. When played on 19×19 boards, the game-tree complexity

2KGS is an online Go server for players (including humans and computer programs) to play
Go, which also assigns rankings to the players, https://www.gokgs.com.

https://www.gokgs.com
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is about 10360 [6], which is considerably complex. Creating strong Go pro-
grams was considered one of the most challenging research topics in the field
of artificial intelligence.

The first significant milestone was reached in the late 2000s when Monte-
Carlo tree search (MCTS) was applied to Go [7]. Since then, most Go programs
employed MCTS, and many approaches were proposed to further improve
the programs’ strength. For example, some researchers incorporated knowl-
edge learned from human games into MCTS [8, 9]. Strong MCTS-based Go
programs achieved the skill levels of high-ranking amateur human players.

The second significant milestone was reached in the mid-2010s when deep
learning was employed. In 2016, AlphaGo [10] became the first Go program
that defeated a top-level professional player. AlphaZero [1] was a successor of
AlphaGo. A big difference between AlphaGo and AlphaZero was that Alp-
haZero did not use human games in its learning. Instead, AlphaZero learned
from self-play games. Several open-source projects tried to create strong Go
programs based on AlphaZero-like approaches, including ELF OpenGo [11],
Leela Zero [12], and KataGo [13].

2.2 Player-Centered Programs

In addition to creating strong game-playing programs, considerable effort has
been put into developing human-player-centered programs for teaching and/or
entertaining human players. For this purpose, an important direction is to
make the games have proper difficulty or make the opponent programs have
proper strength. Playing too-difficult games or playing against too-strong pro-
grams is frustrating, while playing too-easy games or playing against too-weak
programs is boring; both make human players lose motivation to play the
games. Making games have proper difficulty (often referred to as dynamic dif-
ficulty adjustment) has been widely studied in various games, such as horror
game [14] and vocabulary learning game [15].

To create opponent programs with proper strength, some researchers inten-
tionally weakened strong programs. Specifically, Sephton et al. [16] investigated
several ways of move selection in MCTS, among which one selected moves
based on a softmax policy: select move i with a probability of (ni)

z
/Σj(nj)

z
,

where ni is move i’s visit count and z a strength-controlling parameter. How-
ever, a problem with this approach was that very bad moves had chances to
be selected as long as their visit counts were not 0. To address this problem,
Liu et al. [17] introduced a threshold for visit counts. Assuming that the move
with the highest visit count was visited nmax times during MCTS, moves with
ni < nmax ×Rth were excluded from consideration.

In addition to having proper strength, some researchers further utilized
human games in their programs to achieve human likeness. For example,
Nakamichi and Ito [18] used shogi amateur games to train evaluation func-
tions. They then replaced the evaluation functions in a strong program with
the trained ones to create weaker but human-like programs. Rosemarin and
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Rosenfeld [19] proposed a variant of MCTS by introducing several parame-
ters. They then used chess amateur games with different rating ranges to tune
the introduced parameters so that the programs achieved the corresponding
strength of the given rating range.

As another way to use human players’ games, McIlroy-Young et al. [20]
trained neural networks to predict chess amateur moves. They separated chess
amateur games according to the players’ ratings and trained a neural network
for each of the rating ranges [1100, 1199], [1200, 1299], and so on. When pre-
dicting chess amateurs’ moves in a specific rating range, their experiments
showed that the neural network trained using the corresponding rating range
performed the best. They also analyzed moves played by AlphaZero-based
programs and concluded that the moves were quite different from human play-
ers. To further improve the prediction accuracy, Jacob et al. [21] and Baier et
al. [22] found that incorporating neural networks into MCTS was an effective
way, while the programs’ strength was also improved.

Some researchers employed game-specific knowledge instead of human
games to achieve human likeness. For example, Shi et al. [23] employed the
Euclidean distance between moves and the previous moves in their Go pro-
gram. Moon et al. [24] in their work on fighting game estimated players’
affective states by machine learning models and incorporated the estimations
into MCTS.

In our previous work [3], we proposed to combine programs with different
roles, which will be presented in more detail in the next section.

3 Previous Work and Its Issues

In this section, Subsection 3.1 reviews our previous work [3], and then
Subsection 3.2 discusses the issues of the approach.

3.1 Combining Programs with Different Roles

To play good-quality games with middle-level players, as described in Section 1,
we proposed to combine programs with different roles [3]. In more detail, we
employed two programs, (1) a superhuman program that proposed candidate
moves and accurately evaluated each move’s degree of advantage and (2) a
naturalness evaluator that informed us how natural each candidate move looks.

In the implementation for Go, we employed the AlphaZero-based superhu-
man program KataGo [13] as the first role and a neural network trained using
strong human players’ games3 as the second role. In the rest of this paper, the
policy (probability distribution of moves) from the neural network is denoted
as πhuman. We consider that both roles are necessary for the following reasons.

3https://sjeng.org/zero/best v1.txt.zip, released along with the Leela Zero project [12]. The
input of the network contains 17 binary planes of size 19×19, where 16=8×2 planes represent
the black and white stones (×2) for the 8 most recent board states and the remaining 1 plane to
indicate which player is going to play. The output of the network contains a 362-dimensional policy
for possible moves (19×19 intersections + PASS) and a 1-dimensional value to predict the degree
of advantage of the player to move. The network was trained using strong human players’ games
that were openly available, referring to https://github.com/leela-zero/leela-zero/issues/628.

https://sjeng.org/zero/best_v1.txt.zip
https://github.com/leela-zero/leela-zero/issues/628
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(a) (b)

Fig. 2: (a) Visualization of Eq. (1) showing the relation between amax and
ltarget with two parameters α and β and (b) the advantage-controlling score
in Eq. (2) (i.e., the second term)

First, good moves from KataGo’s view may look strange to human players.
McIlroy-Young et al. [20] also showed that an AlphaZero-based chess program
played quite differently from humans. Second, programs trained using human
games may not accurately evaluate board states or moves because they are
biased by human data. Therefore, it is reasonable to separate different roles
into different programs.4

Algorithm 1 shows the move decision procedure. The target loss ltarget in
step 3 was defined as follows5:

ltarget =


0, if amax ≤ −α
(1 + amax

α )× β, if − α < amax ≤ α

2× β, if α < amax

(1)

where α is a positive number deciding the range to tune ltarget finer (a higher
α makes the target loss depend less on the current situation), and β decides
the degree of the loss (a higher β tries to reduce the strength more), which is
depicted in Fig. 2a. When the program has an advantage, the target loss ltarget

is high, making the program more likely to select moves with high losses. On
the contrary, when the program has a disadvantage, it prefers moves that lose
few or no territories.

Based on ltarget, the score si considering both strength and naturalness of
move i was defined as follows:

si = (p′i + ϵ)× γei (2)

4For games other than Go, we consider that the idea of separating roles is also applicable.
Taking chess as an example, one may use Stockfish [25] as the superhuman role and Maia [20] as
the naturalness evaluator.

5The term and notation used in our previous work were ideal loss and l∗. However, the word
“ideal” was misleading, and “target” is more proper.
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where p′i is move i’s probability from πhuman, ϵ a small number (say 10−3) to
prevent the first term from being 0, ei move i’s error of loss compared to the
target loss (i.e., |(amax − ai) − ltarget|), and γ a coefficient (say 0.4) deciding
the importance of ei.

The first term (p′i) is the naturalness score (for factor (d)), and the sec-
ond term is the advantage-controlling score (for factors (a)–(c)). Assuming
that ltarget is 8, the curve in Fig. 2b depicts the advantage-controlling score
in Eq. (2). Moves with advantage losses close to the target loss receive higher
advantage-controlling scores, where the target loss is decided by the current
territory advantage. While trying to play balanced games with the opponent
(factor (a)), the program tries to avoid moves that lose big advantages (fac-
tor (c)). When the program has an advantage, it does not try to immediately
reduce the advantage to 0. Instead, it tries to play natural moves with proper
advantage losses. By doing so, the advantage control is done in a long term
during the game, making it possible to reflect the opponent’s moves’ goodness
(factor (b)).

Algorithm 1 The move decision procedure in our previous work [3]

Require: A board state, #simulation Nsim, parameters α, β, γ and ϵ for
Eqs. (1) and (2)

Ensure: A move to play
1: // Step 1: do KataGo’s MCTS
2: Let KataGo search using Nsim simulations to obtain a set of candidate

moves M
3: Let ni and ai denote move i’s visit count and territory advantage,

respectively

4: // Step 2: filter out obviously bad moves
5: Delete move i from M where ni < 10 // to have reliable statistics
6: amax = maxi∈{j|nj>10} ai // i.e., maximum territory advantage
7: Delete move i from M where amax − ai > 20

8: // Step 3: calculate target advantage loss ltarget

9: Calculate ltarget using Eq. (1)

10: // Step 4: calculate each move’s score si
11: Calculate si using Eq. (2)

12: // Step 5: play the move with the highest si
13: return argmaxi∈M si
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(a) (b)

Fig. 3: Examples showing that natural-looking moves are ignored by KataGo’s
MCTS, where triangles indicate the natural-looking moves and crosses the
played moves

The experiments targeted three middle-level programs, GNU Go6 level 10
(˜kgs8k) and Pachi7 with settings of kgs3k and kgs2d. Several approaches (e.g.,
[17, 20]) were compared, and the results showed that Algorithm 1 was the
most promising to play good-quality games with these middle-level players.

3.2 Remaining Issues

Despite the generally good results, several issues remained, and two major
issues are discussed as follows. First, KataGo’s MCTS usually ignores accept-
able bad moves that are natural-looking. Fig. 3 shows two examples. In Fig. 3a,
it is the black player’s turn, and playing at Q18 (the triangle mark) to connect
black stones is natural. πhuman gave a probability of 54.8% to play this move,
which is relatively high. However, during KataGo’s MCTS with Nsim = 1000,
the move Q18 was visited only 3 times and was deleted in step 2. From
KataGo’s view, playing at R9 would obtain a territory advantage of +8.74
points, better than Q18 whose advantage was +6.16 points. With an advan-
tage loss of 2.58 points, spending too many simulations on move Q18 was
wasteful in terms of being a strong player. Thus, it was reasonable that the
visit count of move Q18 was low. Among moves with visit counts higher than
or equal to 10, our previous approach played at N18 (the cross mark), with
an advantage of +7.43 points from KataGo and a probability of 7.2% from
πhuman. Move N18 is an advanced move that high-level players might play but
may be difficult for middle-level players.

6https://www.gnu.org/software/gnugo/
7https://github.com/pasky/pachi
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In Fig. 3b, it is the black player’s turn, and it is natural to play at J10
(the triangle mark) to save the two black stones at J11 and K11. πhuman gave
a probability of 88.2% to play this move, which is considerably high. From
KataGo’s view, playing at M7 seemed the best, where the territory advantage
was +15.88 points. In contrast, playing at J10 obtained +12.13 points, which
was visited only 8 times during MCTS. Among moves with visit counts higher
than or equal to 10, our previous approach played at L7 (the cross mark), with
an advantage of +13.49 points from KataGo and a probability of 2.7% from
πhuman. Move L7 gives the black player a better shape in the bottom-right
corner, which is worth giving up the two black stones at J11 and K11. However,
for middle-level players, it may look more natural to save the two stones.

To achieve a superhuman level, it is not problematic to ignore bad moves
even when they are natural-looking, such as Q18 in Fig. 3a and J10 in Fig. 3b.
However, to play good-quality games with middle-level players, these moves
are worth considering. If such natural-looking but acceptable bad moves can
be included in the candidates, we expect the approach to play more natural
moves and be easier to play balanced games.

The second issue lies in the advantage-controlling score in Eq. (2) (i.e., the
second term), which can be discussed from two aspects:

• As shown in Fig. 2b, the curve is sharply centered at the target loss ltarget,
meaning that the score drops drastically as the advantage loss gets away from
the target loss. Although increasing the γ value can alleviate the problem, it
introduces another problem that the width of the mountain shape becomes
too wide, as shown in Fig. 4a (e.g., γ = 0.8). With wider mountain shapes,
moves with high advantage losses receive lighter penalties and are more
likely to be played, which should be avoided.

• Regardless of the value of the target loss ltarget, the mountain width is the
same as long as γ is the same, as shown in Fig. 4b. However, according to
different situations, the same error |(amax−ai)− ltarget| has totally different
effects. For example, an error of 2 is big for ltarget = 2 (i.e., 2±2) but
is moderate for ltarget = 8 (i.e., 8±2). The mountain width should vary
according to the target loss, and lower target losses should have narrower
mountain widths.

The second issue makes the approach likely to select moves with losses
close to the target loss and ignore naturalness, where Fig. 5 shows two exam-
ples. In Fig. 5a, it is the black player’s turn, and it is natural to play at C6
(the triangle mark) to push through the white stones at B6 and D6. πhuman

gave a probability of 64.2% to play this move, which is fairly high. This board
state’s territory advantage was +27.93, the same as move C6’s. Namely, the
advantage loss of move C6 was 0. Assuming α = 25 and β = 3, the tar-
get loss ltarget was 2 × β = 6. With γ = 0.4, the score of move C6 was
(0.642+ 10−3)× 0.4|0−6| = 2.6× 10−3. Another candidate move, A7, obtained
+26.40 points of advantage according to KataGo. πhuman gave a probability



Springer Nature 2021 LATEX template

Playing Natural and Good-Quality Games with Middle-Level Players 11

(a) (b)

Fig. 4: The advantage-controlling score in Eq. (2) with different γ and ltarget:
(a) γ ∈ {0.4, 0.6, 0.8} with ltarget = 8 and (b) γ = 0.4 with ltarget ∈ {2, 8}

(a) (b)

Fig. 5: Examples showing that naturalness is sacrificed to make advantage
loss close to the target loss, where triangles indicate the natural-looking moves
and crosses the played moves

of 19.8% to play this move, which looks less natural than C6. The differ-
ence in territory advantages between these two moves was 1.54. At a board
state with an advantage of +27.93, losing only 1.54 points is minor, which is
not worth sacrificing naturalness too much. However, move A7 had a score of
(0.198 + 10−3)× 0.4|1.54−6| = 3.3× 10−3 and was played.

In Fig. 5b, it is the black player’s turn, and it is natural to play at C5
(the triangle mark) to connect the neighboring black stones. πhuman gave
a probability of 95.2% to play this move, which is considerably high. This
board state’s territory advantage was +25.18 points by playing at P17 to
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Fig. 6: An example of the sequential halving algorithm

invade the top-right corner. Meanwhile, the territory advantage of move C5
was +7.79 points, meaning that it had an advantage loss of 17.39 points.
Since the advantage loss was big, the move score was extremely low, which
was (0.952 + 10−3) × 0.4|17.39−6| = 2.8 × 10−5. Another candidate move, P6,
obtained +21.60 points of advantage according to KataGo (i.e., an advantage
loss of 3.58). πhuman gave a probability of 0.007% to play this move, which
looks unnatural. Also, playing at P6 wastes a ko threat, which is meaningless
and should be avoided when playing teaching games. However, move P6 had
a score of (0.00007 + 10−3)× 0.4|3.58−6| = 1.2× 10−4 and was played.

4 Approaches

To solve the issues mentioned in Subsection 3.2, we propose two solutions.
First, we replace KataGo’s MCTS (Step 1 in Algorithm 1) with a search mecha-
nism inspired by the sequential halving algorithm [4, 5], which will be presented
in Subsection 4.1. Second, we replace the calculation of the advantage-
controlling score in Eq. (2) with a situation-based smoother function, which
will be presented in Subsection 4.2.

4.1 Sequential Halving for Playing Good-Quality Games

Because our goal is to play good-quality games with middle-level players, it
may be improper to employ KataGo’s MCTS to propose candidate moves.
KataGo’s MCTS tries to find optimal moves; thus, it is reasonable to spend no
or only a few simulations on moves with small territory advantages. However,
such moves may be suitable for playing with middle-level players. With too
few simulations, these moves have unreliable statistics and are deleted from
candidates (Algorithm 1 line 5), making these moves have no chance of being
selected.

The sequential halving algorithm [4] divides a given number of simulations
into several rounds and searches moves with the same number of simulations
in each round. The goal is to identify the best move to play using the given
simulation budget. Fig. 6 illustrates a simple example, where board state s has
4 movesm1–m4. As the name implies, the worse half of the moves are deleted in
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each round, so the search is divided into R = log2 4 = 2 rounds. Assuming that
the simulation budget Nsim is 1,000, each round uses Nsim/R = 1000/2 = 500
simulations. In round 1, the 500 simulations are evenly distributed to the 4
moves m1–m4. Based on the win rates, the worse half of the moves (i.e., moves
m2 and m3 ) are deleted. Similarly, in round 2, the remaining 500 simulations
are distributed to the remaining 2 moves, and the worse move (i.e., m1) is
deleted. Finally, the remaining move (i.e., m4) is played.

Fabiano and Cazenave [5] presented a more general form of sequential halv-
ing. In each round, a fraction λ ∈ (0, 1) of moves remains, and the rest (1−λ)
are deleted. Namely, the original sequential halving is a special case with
λ = 1/2. In addition, they empirically compared restart and stockpile. Restart
means that statistics from previous rounds are not brought to later rounds.
An example has been shown in Fig. 6, where moves m1 and m4’s statistics in
round 1 are ignored in round 2. On the contrary, to gather more accurate statis-
tics, stockpile includes the statistics obtained from the previous rounds when
calculating win rates. With stockpile, the win rates of moves m1 and m4 in
round 2 become (60+105)/(125+250) and (50+120)/(125+250), respectively.
Their experiments showed that stockpile obtained better results than restart.

Inspired by sequential halving, we propose a new search mechanism for
playing good-quality games with middle-level Go players, as presented in
Algorithm 2.

First, we need to decide a set of candidates moves to search (lines 1–2).
Straightforwardly, we can search all legal moves. However, since each board
state in Go has many legal moves (≈250 [10]), it is time-consuming to search
all. To address this, we consider only moves that satisfy one of the following
three conditions:

• When sorting moves according to πhuman (probabilities of moves predicted
by a neural network trained using human games), the move is within the
top 25.8

• When sorting moves according to πKataGo (probabilities of moves predicted
by KataGo’s policy network), the move is within the top 5.

• The move is a pass (i.e., not placing stones on the board).

πhuman provides us natural-looking moves, and πKataGo provides us good
moves. Since moves from πKataGo often overlap with those from πhuman, we
have approximately 26 candidate moves. The necessity of including moves from
πKataGo will be explained in Subsection 4.1.1.

With the set of candidate moves M0, round 1 (lines 3–10) uses Nsim/2
simulations to investigate these moves and decides 4 moves to remain. More
specifically, the 4 moves that have the top-4 move scores remain. Different from
sequential halving, we select moves according to the move scores instead of the

8We confirmed that moves within the top 25 generally contained those possibly considered by
human players. We also confirmed that moves outside the top 25 generally need not be consid-
ered, though in some rare cases, some critical moves are not included in the top 25, as shown
in Subsection 4.1.1. The number 25 resulted in a good balance between strength adjustment and
thinking time.
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Algorithm 2 Our proposed search mechanism

Require: A board state, #simulation Nsim, parameters α, β, γ, and ϵ for
Eqs. (1) and (2)

Ensure: A move to play
1: // Initialization: Decide candidate moves M0 to search
2: M0 ← {top 25 from πhuman} ∪ {top 5 from πKataGo} ∪ {PASS}

3: // Round 1: Determine 4 moves to remain
4: // - Use approximately Nsim/2 simulations to investigate ∀i ∈M0

5: N1 ← ⌊(Nsim/2)/|M0|⌋
6: Do KataGo’s MCTS (N1 simulations) on each move i ∈M0

7: Assume that Nsim is high enough s.t. N1 ≥ 10
8: Calculate move scores using Algorithm 3 with Mconsidering being M0

9: // - Select 4 moves with the top-4 scores
10: M1 ← {i ∈M0 | si is within top 4}

11: // Round 2: Investigate M1 further
12: // - Use approximately Nsim/2 simulations to investigate ∀i ∈M1

13: N2 ← ⌊(Nsim −N1 × |M0|)/|M1|⌋
14: Do KataGo’s MCTS (N2 simulations) on each move i ∈M1

15: Update the 4 moves’ statistics based on the new results
16: Calculate move scores using Algorithm 3 with Mconsidering being M1

17: Note 1: the maximum territory advantage may change because of the
search in round 2

18: Note 2: the maximum territory advantage is obtained from M0 instead of
M1

19: // Special situation: do extra simulations
20: if maxi∈{M1} si < maxi∈M0\M1

si then
21: // i.e., moves in M1 turn out to have lower scores than deleted moves
22: Do N2 simulations on each move i ∈M0 \M1

23: Update the moves’ statistics based on the new results
24: Calculate move scores using Algorithm 3 with Mconsidering being M0

25: end if

26: // Decision: play the move with the highest si
27: return argmaxi∈M0

si

win rates. The move score calculation on line 3 of Algorithm 3 can be replaced
with other functions, such as the one that will be presented in Subsection 4.2.

With the shrunk set of candidate moves M1 (|M1| = 4), round 2 (lines 11–
18) uses the remaining simulation budget to investigate the remaining 4 moves.
The move statistics (e.g., territory advantage) from round 2 are merged with
those from round 1, weighted by the visit counts. Reusing the results in round 1
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Algorithm 3 Score calculation in our proposed search mechanism

Require: A set of moves considering Mconsidering, parameters α, β, γ and ϵ
for Eqs. (1) and (2)

1: amax = maxi∈{M0} ai // i.e., maximum territory advantage
2: Calculate ltarget using Eq. (1)
3: Calculate each move i ∈Mconsidering’s score si using Eq. (2)
4: But move i losing more than 20 points is not considered (si = −∞) as

Algorithm 1

is similar to stockpile. Move scores of i ∈ M1 are then calculated similarly
to round 1. Note that when calculating the maximum territory advantage, we
check all candidates i ∈ M0’s territory advantages instead of only checking
M1. The move with the maximum territory advantage may not be included in
M1 because it is unpromising for playing good-quality games with middle-level
players. However, including such moves is crucial for accurately evaluating the
board states’ degrees of advantage and other moves’ advantage losses.

The following explains a minor problem that may happen at the end of
round 2 and a solution to the problem (lines 19–25). For some complicated
board states, the territory advantages may be overestimated when the number
of simulations is low (round 1). If a move leading to such a board state remains
in round 2 and receives more simulations, it turns out that this move has a
very low score due to a big territory loss. The problem is that when all 4 moves
in round 2 turn out to have scores lower than the deleted moves’ scores, it is
strange to select a move from the 4 in round 2. For example, it is possible that
all 4 moves in M1 turn out to have territory losses higher than 20 points and
have si = −∞.

In such a situation, we consider the given board state unstable and propose
to do the same number of simulations (i.e., N2) on the deleted moves M0 \
M1. The concept of searching more when unstable is similar to quiescence
search [26]. Although the extra simulations increase the time cost, we argue
that such situations rarely happen, approximately 0.2-0.3 times per game, and
that the overhead can be neglected.

4.1.1 Including Moves from KataGo’ Policy Network

It is necessary to include moves from πKataGo, where Fig. 7 shows two exam-
ples. In Fig. 7a, it is the black player’s turn, and playing at A9 is the only move
that can capture white stones in the middle-left area. The territory advan-
tage of this move was +11.91, and others’ were lower than −13. When playing
teaching games, move A9 should be played to let students understand that the
white stones would be captured. However, πhuman gave a probability of 0.1%
to play this move, which was ranked as the 26th highest. In contrast, πKataGo

gave a probability of 89.9% to play this move and helped the approach avoid
overlooking move A9.
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(a) (b)

Fig. 7: Examples showing that including the top-5 moves from πKataGo is
necessary, where triangles indicate the only moves that should be played

In Fig. 7b, it is the white player’s turn, and playing at S19 is the only
move that has a chance of winning the game. Capturing the black stones
in the top-right corner also looks natural for human players. The territory
advantage of this move was +21.22, and others’ were lower than −1. πhuman

gave a probability of 0.05% to play this move, which was ranked as the 27th
highest. πKataGo gave a probability of 99.5% to play this move and helped the
approach avoid overlooking move S19.

4.2 Situation-Based Smoother Advantage-Controlling
Scores

As discussed in Subsection 3.2, the advantage-controlling score in Eq. (2) has
two problems. First, the score drops drastically as the advantage loss gets
away from the target loss. Moves with advantage losses around the target
loss should receive higher scores. Second, the mountain shape has the same
width no matter how large the target loss is. The mountain shape should
become narrower for lower target losses. Examples in Fig. 5 have shown that
the advantage-controlling score in Eq. (2) influences the overall score si a lot,
which tends to sacrifice moves’ naturalness.

To improve the move naturalness by addressing the two mentioned
problems, we propose the following equation to calculate move i’s score snewi :

snewi = (p′i + ϵ)× 1

( (ei)2

ltarget+1 + 1)
τ (3)
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(a) (b)

(c)

Fig. 8: The advantage-controlling score in Eq. (3): (a) comparing the cases of
different target losses ltarget ∈ {2, 8} and comparing with Eq. (2) (blue dotted
curve) where the y-axis is in (b) the normal scale and (c) the log scale

where p′i, ϵ, and ei are the same as Eq. (2) (i.e., p′i is move i’s probability
from πhuman, ϵ = 10−3 a small number to prevent the first term from being 0,
and ei = |(amax − ai) − ltarget| move i’s error of loss compared to the target
loss ltarget), and τ is a coefficient (say 2) deciding the importance of ei. With
a higher τ , the score drops more drastically as ei increases. The target loss
ltarget is involved in the score calculation in a way that lower target losses have
a narrower mountain shape, as shown in Fig. 8a.

Figs. 8b and 8c depict the advantage-controlling scores in Eq. (2) and
Eq. (3), assuming that the target loss ltarget is 8. From Fig. 8b, we observe that
the advantage-controlling score function in Eq. (3) is smoother than Eq. (2).
From Fig. 8c (log scale), we can clearly observe that when the advantage loss
goes far away from the target loss ltarget, Eq. (3) gives much higher values than
Eq. (2).

When considering the examples in Fig. 5 again, Eq. (3) successfully selects
natural moves. For the board state in Fig. 5a, moves C6 (p′ = 0.642 and
loss= 0) and A7 (p′ = 0.198 and loss=1.54) were discussed in Subsec-
tion 3.2. With a target loss ltarget of 6, the two moves’ scores snewi are



Springer Nature 2021 LATEX template

18 Playing Natural and Good-Quality Games with Middle-Level Players

(0.642 + 10−3)/((0− 6)2/(6 + 1) + 1)
2

= 1.7 × 10−2 and (0.198 + 10−3)/

((1.54− 6)2/(6 + 1) + 1)
2
= 1.3 × 10−2, respectively. The relatively natural

move C6 is selected.
For the board state in Fig. 5b, moves C5 (p′ = 0.952 and loss= 17.39) and

P6 (p′ = 0.00007 and loss= 3.58) were discussed. With a target loss ltarget of

6, the two moves’ scores snewi are (0.952+10−3)/((17.39− 6)2/(6 + 1) + 1)
2
=

2.5 × 10−3 and (0.00007 + 10−3)/((3.58− 6)2/(6 + 1) + 1)
2

= 3.2 × 10−4,
respectively. The relatively natural move C5 is selected.

5 Experiments

In the experiments, we compared the proposed approaches in Section 4 with
several existing approaches. Subsection 5.1 presents the experiment settings,
Subsections 5.2 to 5.5 show the experiment results with respect to different
teaching game factors, and Subsection 5.6 makes a brief summary.

5.1 Experiment Settings

Following our previous work [3], we targeted middle-level programs and set-
tings with well-known strength: GNU Go level 10 (˜kgs8k) and Pachi with
settings of kgs3k and kgs2d. The reason for employing programs instead of
human players as opponents was to collect numerous games for analysis. For
existing approaches included in the comparison, we let them play against the
above-mentioned middle-level programs. Each pair played 500 games, and the
programs alternatively played black and white. Japanese rules with a komi of
6.5 were applied. The board size was 19×19.

As comparison baselines, we used human players’ game records and 4 kinds
of approaches. The human players’ games were collected in the same way as
our previous work [3]. We employed the Fox Go dataset9 and identified players
who played most frequently at the ranks of 5k, 1d, and 5d (corresponding to
kgs8k, kgs3k, and kgs2d) to extract approximately 30 games played between
those players for each rank. The 4 kinds of approaches are as follows.

• P1 (middle-level programs themselves, e.g., Pachikgs3k versus Pachikgs3k),
• P2 (Maia-like supervised learning neural network [20])
• P3 (the softmax method [17]), and
• P4 (Algorithm 1, i.e., [3]).

For the proposed approaches in this paper, we compared

• P5 (halving with Eq. (2)) and
• P6 (halving with Eq. (3)).

P3–P6 were based on KataGo10 with an Nsim of 1,000. P5 and P6 differed from
P4 in the search mechanism: P4 used KataGo’s MCTS to propose candidate

9https://github.com/featurecat/go-dataset
10The program version was 20d34784703c5b4000643d3ccc43bb37d418f3b5 and the neural net-

work was kata1-b40c256-s9948109056-d2425397051.

https://github.com/featurecat/go-dataset
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moves while P5 and P6 used sequential halving as presented in Subsection 4.1.
P6 differed from P5 in the move score function: P5 used Eq. (2) and P6 used
Eq. (3).

After the games were played or collected, we employed another KataGo
program to review these games to evaluate the played moves and determine
the final winners. In the cases that some player resigned, we respected the deci-
sion and counted a loss for that player. Otherwise, the player with a positive
territory advantage was the winner of the game.

We set a prerequisite to the six approaches so that they must have win rates
of approximately 50% when playing against the middle-level programs (i.e.,
achieving factor (a1)). P1 needed no parameter tuning. For P2, our previous
work [3] reported win rates of 19.2±3.5% and 65.8±4.2% against Pachikgs2d
and Pachikgs3k, respectively, when selecting the moves with the highest proba-
bilities from πhuman. Namely, P2 in our previous work was considerably weaker
than Pachikgs2d and slightly stronger than Pachikgs3k. With πhuman alone, it
is hard to create a stronger player that is suitable to Pachikgs2d; nevertheless,
it is possible to create weaker players to fit Pachikgs3k or GNU Go (˜kgs8k).
More specifically, in this paper, we controlled the players’ strength by select-
ing moves in proportion to (p′i)

ρ
, where p′i is move i’s probability from πhuman

and ρ a tunable parameter.11 For P3, we used z to control the strength and
set Rth to 0.1 following Liu et al. [17]. For P4–P6, we used β in Eq. (1) to
control the strength and fixed other parameters. In more detail, we set α in
Eq. (1) to 25.0, ϵ in Eqs. (2) and (3) to 0.001 for P4–P6, γ in Eq. (2) to 0.4
for P4–P5, and τ in Eq. (3) to 2 for P6.

In practice, we further introduced a trick called optimistic komi for P3 and
P4 because they hardly lost to the middle-level programs12. Other approaches,
including the proposed P5 and P6, did not require this trick.

Tables 1 to 3 show the parameter settings and P1–P6’s win rates against
GNU Go, Pachikgs3k, and Pachikgs2d, respectively, where the 95% confidence
intervals are also presented. We confirmed that P2–P6 could achieve win rates
close to 50% against a wide range of opponent levels (from kgs8k to kgs2d),
as long as the parameters were properly set, except for P2 against Pachikgs2d.
In the rest of this paper, we used the ρ, z, and β settings shown in Tables 1
to 3. To keep the paper simple and easy to understand, we only include the
results of playing against Pachikgs3k because those of GNU Go and Pachikgs2d
generally had similar tendencies.

11Another way to create weaker players is to do supervised learning on weaker players’ games,
as McIlroy-Young et al. [20] did. However, it is much more expensive to obtain neural networks
with desired strength.

12With an optimistic komi of k, KataGo evaluated the advantages with k more points. Assume
that we have a board state close to terminal games with two candidate moves, one leading to a
win of +0.5 points and the other to a loss of −0.5 points. When doing MCTS with the normal
komi, the former move’s win rate is close to 100% while the latter move’s close to 0%; thus, the
latter move is rarely visited and is deleted due to the thresholds of visit counts (i.e., nmax ×Rth

for P3 and 10 for P4 (line 5 in Algorithm 1)). In the experiments, k was set to 4. For the same
example, KataGo evaluates the former move as a win of +4.5 and the latter move as a win of
+3.5, both with win rates close to 100%; thus, the latter move has a chance of being selected.
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Table 1: Approaches P1–P6’s win rates along with the 95% confidence inter-
vals when playing against GNU Go (kgs8k) with the listed parameter settings.

Parameter Win Rate

P1 (GNU Go) – 52.0±4.4%
P2 (Maia-like [20]) ρ = 0.87 49.0±4.4%
P3 (Softmax [17]) z = 0.65 49.4±4.4%
P4 (Previous work [3]) β = 6.00 53.6±4.4%

P5 (Halving with Eq. (2)) β = 3.65 53.2±4.4%
P6 (Halving with Eq. (3)) β = 5.05 54.4±4.4%

Table 2: Approaches P1–P6’s win rates along with the 95% confidence inter-
vals when playing against Pachikgs3k with the listed parameter settings.

Parameter Win Rate

P1 (Pachikgs3k) – 47.8±4.4%
P2 (Maia-like [20]) ρ = 3.0 52.0±4.4%
P3 (Softmax [17]) z = −0.5 47.4±4.4%
P4 (Previous work [3]) β = 3.00 48.4±4.4%

P5 (Halving with Eq. (2)) β = 2.95 50.4±4.4%
P6 (Halving with Eq. (3)) β = 3.20 49.2±4.4%

Table 3: Approaches P1–P6’s win rates along with the 95% confidence inter-
vals when playing against Pachikgs2d with the listed parameter settings.

Parameter Win Rate

P1 (Pachikgs2d) – 50.6±4.4%
P2 (Maia-like [20]) – –
P3 (Softmax [17]) z = 1.00 50.4±4.4%
P4 (Previous work [3]) β = 2.00 50.4±4.4%

P5 (Halving with Eq. (2)) β = 2.30 52.4±4.4%
P6 (Halving with Eq. (3)) β = 2.30 50.8±4.4%

5.2 Results of Move Naturalness

Move naturalness (factor (d)) can be assessed from two perspectives: One
is from teachers who can judge whether the teaching games are properly
conducted, and the other is from students who will be the targets of these
approaches. Following our previous work [3], we focused on evaluating the move
naturalness from teachers’ perspectives, leaving the consideration of students’
perspectives to future research. In our previous work, we asked Go experts to
evaluate the move naturalness of P1, P3, P4, and human games (Fox Go) to
obtain qualitative evaluations. However, since Go experts’ evaluations are not
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easily available, in this work, we only employed quantitative evaluation met-
rics. We considered the following four metrics as appropriate because these
metrics generally aligned with the experts’ evaluations:
1. The Euclidean distance between a move and the previous move.

As discussed in Section 1, human players tend to finish a local battle
before going to another, which we considered can be reflected by the
Euclidean distance.

2. The arithmetic average of p′i from πhuman for each played move i.
Let Mp be the set of moves played by some approach. The arithmetic
average of p′i is

1
|Mp| ×

∑
i∈Mp

p′i. In many cases, moves with high p′i look

natural for human players, and vice versa.
3. The geometric average of p′i from πhuman for each played move i.

This was extended from the second metric, where we calculated the

geometric average, i.e., (
∏

i∈Mp
p′i)

1
|Mp| . The reason for additionally

employing the geometric average is that the arithmetic average may not
well reflect moves with low p′, explained as follows. Consider two groups
of moves, (i) A and B and (ii) C and D, where p′A, p

′
B , p

′
C , and p′D are 0.9,

0.001, 0.4, and 0.1, respectively. Group (i)’s arithmetic average of 0.4505
is higher than group (ii)’s 0.25, which well reflects that moves likely natu-
ral to humans (i.e., A) are selected. However, the relatively high value of
0.4505 fails to reflect the selection of possibly unnatural moves (i.e., B).
In contrast, the geometric average addresses this limitation, where groups
(i) and (ii)’s geometric averages are 0.03 and 0.2, respectively. We consider
both the arithmetic and geometric averages to be worth referring to.

4. The ratio of moves when p′ higher than 0.9 were not played.
This metric was also based on πhuman. Moves with p′ higher than 0.9 are
those that middle- and high-level human players are highly likely to play.
If the approaches ignored such moves and played other moves, human
players might feel strange; thus, ignoring such moves should be avoided.

Table 4 shows the results of P1–P6’s move naturalness. The results of the
expert evaluation from our previous work [3] are in the rightmost column,
showing that the quantitative metrics were generally reliable. The results of
the Euclidean distance between a move and the previous move showed that
P3 was notably unnatural compared to other approaches. Among the others,
P6 had the highest naturalness, P2 was the second, and P5 was the third.

P2 obtained the highest values of the arithmetic and geometric averages of
p′, though the results were unsurprising in that πhuman was directly employed
to select moves. Excluding P2, P4–P6 were identified as the most natural.
While the differences among P4–P6 were limited in the arithmetic average of
p′, clear distinctions emerged when considering the geometric averages. The
improvement of P5 and P6 came from the fact that moves with very low p′’s
were played less.

To sum up, we concluded that the search mechanism inspired by sequential
halving (Algorithm 2) indeed helped improve the naturalness (i.e., P5 versus
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Table 4: Approaches P1–P6’s move naturalness when playing against
Pachikgs3k.

Euclidean
distance

Arith-
metic
average
of p′

Geome-
tric

average
of p′

(%)
Neglecting
moves with
p′ > 0.9

Expert
evaluation
(1 to 5)
from [3]

Interpretation:
In which terms is better

Closer to
humans

Higher Lower Higher

Fox Go 3.426 0.364 0.162 0.589% 3.60

P1 (Pachikgs3k) 3.627 0.381 0.150 0.857% 2.90
P2 (Maia-like [20]) 3.352 0.551 0.471 0.003% –
P3 (Softmax [17]) 5.860 0.253 0.041 4.429% 1.80
P4 (Previous work [3]) 3.711 0.468 0.322 0.588% 3.35

P5 (Halving with Eq. (2)) 3.586 0.475 0.340 0.335% –
P6 (Halving with Eq. (3)) 3.435 0.487 0.364 0.152% –

P4). Also, the new score function Eq. (3) further improved the naturalness
(i.e., P6 versus P5).

5.3 Results of Move Quality

Different from move naturalness in Subsection 5.2 which can be considered
from both teachers’ and students’ perspectives, move quality (factor (c)) is
solely considered from teachers’ perspectives. In our previous work [3], we
asked Go experts to evaluate the move quality of P1, P3, P4, and human games
(Fox Go) to obtain qualitative evaluations. Similar to Subsection 5.2, we only
employed quantitative metrics in this work since it is not easy to obtain expert
evaluations. We considered the following two metrics to be reasonable, where
the first one was used in our previous work and the other was newly proposed.
1. The frequency of playing moves losing more than 15 points, i.e., amax −

ai > 15.0.
Although Fig. 5b has shown that moves losing more than 15 points are not
necessarily bad from experts’ views, we kept this metric because moves
losing many points are generally bad.

2. The frequency that the played moves received probabilities less than 1%
from both πKataGo and πhuman.
A move receiving a probability less than 1% from πKataGo implies that the
move’s quality is low from a superhuman player’s view. A move receiving
a probability less than 1% from πhuman implies that middle- or high-level
human players prefer not to play this move. When both conditions are
satisfied, the move is likely to have low quality.

Table 5 shows P1–P6’s move quality evaluations. When looking at the
frequency of playing moves losing more than 15 points, four distinct groups
emerged: (i) P2 was obviously the worst, where two examples will be discussed
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Table 5: Approaches P1–P6’s move quality when playing against Pachikgs3k.

(%) Moves
losing

>15 points

(%) Moves
receiving <1%

from both
πKataGo and πhuman

Expert
evaluation
(1 to 5)
from [3]

Interpretation:
In which terms is better

Lower Higher

Fox Go 7.35% 7.88% 3.30

P1 (Pachikgs3k) 1.87% 9.52% 3.00
P2 (Maia-like [20]) 3.32% 0.005% –
P3 (Softmax [17]) 0.22% 22.72% 2.40
P4 (Previous work [3]) 0.28% 0.51% 3.50

P5 (Halving with Eq. (2)) 0.09% 0.29% –
P6 (Halving with Eq. (3)) 0.21% 0.07% –

in Subsection 5.3.1. (ii) P1 was the next worst, as expected. (iii) The next ones
were P3, P4, and P6. (iv) P5 played such moves the least frequently.

The reason why P5 played fewer moves with big losses than P4 is explained
as follows. P5 differed from P4 in the search mechanism (i.e., sequential halving
versus MCTS). When KataGo found that some move seemed bad in MCTS, it
would then spend only a few or no more simulations on this move. With only
a few simulations, the move’s advantage might be overestimated, making the
advantage loss smaller than what it should be13. For example, a move that
should have an advantage loss of 18 might be erroneously evaluated to have
a loss of 8. Assuming the target loss is 6, P4 is likely to select this move. In
contrast, as illustrated in Algorithm 2, P5 conducted N1 simulations on each
candidate move (line 5) and then N2 simulations on 4 moves in round 2 (line
13), which reduced the possibility of overestimating moves’ advantages. With
the sharp score function Eq. (2), moves with big losses usually had very low
scores. Thus, P5 could avoid playing such moves.

Regarding why P5 played fewer moves with big losses than P6, with the
score function Eq. (3) (i.e., P6), moves with big losses had much higher scores
than Eq. (2) (i.e., P5), as shown in Fig. 8c. Thus, the results were unsurprising.

In Table 5, the results of expert evaluations from our previous work [3]
are in the rightmost column, aligning well with the frequency of receiving
probabilities less than 1% from both πKataGo and πhuman. Namely, approaches
that played such moves more often had lower move quality from the experts’
views. Among P1–P4, P3 was clearly the worst, and P2 was the best. P5 and
P6 further improved over P4, especially P6. From the two quantitative metrics,
it was hard to tell whether P5 or P6 was better. Nevertheless, we concluded
that P5 and P6 had better move quality than the existing approaches P1–P4.

13Conversely, moves’ advantages might also be underestimated with only a few simulations, and
the new search mechanism of P5 could also alleviate this problem. However, this issue does not
relate to playing moves with big losses and is beyond the scope of this discussion.



Springer Nature 2021 LATEX template

24 Playing Natural and Good-Quality Games with Middle-Level Players

(a) (b)

Fig. 9: Examples showing bad moves made by P2 (Maia-like), where crosses
indicate the played moves

5.3.1 Bad Moves Played by the Maia-Like Approach

Bad moves played by P2 (Maia-like approach in this paper) generally fall into
two types: (i) πhuman assigned high probabilities to bad moves, and (ii) bad
moves were occasionally selected because moves were selected in proportion to
(p′)

ρ
. Fig. 9 shows an example of each type.

Fig. 9a shows an example of bad moves of type (i), where it is the black
player’s turn. After the white player played at O8 as the 42nd move, πhuman

gave a probability of 85.0% to play at O9. The black stone at O9 cut the
white stones at N9 and O8, which had a good local shape when considering
only the very limited area; thus, the probability of 85.0% was understandable.
However, playing at O9 was a bad move since it made the black stones at P9,
P10, and Q8 dead. The territory loss of this move was 31.91 points. After the
white player’s 46th move at Q7, the black stones at O9, P9, P10, Q8, and Q9
had no way to live (i.e., going to be captured). However, πhuman assigned a
probability of 76.4% to play at R8 as the 47th move. The advantage loss of
this move was 15.71 points. Even amateur players would recognize that those
black stones were dead and would play elsewhere instead of R8.

Fig. 9b shows an example of bad moves of type (ii), where it is the black
player’s turn. πhuman assigned a probability of 4.7% to play at Q8 as the 63rd
move. Right after the 62nd move, the move with the highest probability from
πhuman was Q9 (25.4%). The black and white stones in that area were in a
capture race. Playing at Q9 could capture 7 white stones, which was the best
move according to KataGo’s evaluation. In contrast, playing at Q8 would cause
more than 10 black stones to be captured if the white player played at K8 as the
64th move. According to KataGo’s evaluation, playing at Q8 as the 63rd move
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had a territory loss of 84.76 points. In this case, the bad move was occasionally
selected. In either case, our approach does not play these bad moves because
both the loss and naturalness of candidate moves are considered.

5.4 Results of Reflecting Goodness of the Opponent’s
Moves

In our previous work [3], we proposed to use the Matthews correlation coef-
ficient (MCC)14 of a classification task to measure whether the approaches
could well reflect the goodness and badness of the opponent’s moves to the
final wins and losses (factor (b)). To eliminate ambiguity, we assume that the
opponent (the student) is Pachikgs3k. MCC is commonly used to evaluate the
quality of binary classifications. It ranges from −1 to 1, with 1 indicating
perfect predictions.

For this metric, we first defined the badness of Pachikgs3k’s moves. To know
how bad a move was, we referred to the evaluator KataGo’s analysis as men-
tioned in the 3rd paragraph of Subsection 5.1. For a given board state in the
game records, we obtained the maximum territory advantage amax as Algo-
rithm 1 (line 6). We then calculated the loss of Pachikgs3k’s move i using
amax − ai. The badness of Pachikgs3k’s moves in a game was then defined as
the average loss of its moves.

Using the badness values obtained from the 500 games played, we did
simple supervised learning to predict Pachikgs3k’s final wins and losses in the
games. Given game g’s badness bg, we predicted Pachikgs3k to win if bg was
lower than some threshold bth ∈ {0, 0.01, 0.02, ..., 5.98, 5.99} (i.e., played well);
otherwise, we predicted Pachikgs3k to lose. Among the threshold values in bth,
we selected the one that led to the highest MCC and used the MCC value
to measure whether the approaches could reflect the badness of Pachikgs3k’s
moves to the final wins and losses. A higher MCC value indicated a better
reflection of Pachikgs3k’s badness.

Table 6 shows P1–P6’s highest MCC values. P1 and P2 were clearly the
worst ones to reflect their opponent’s badness in the final wins and losses.
This deficiency could be attributed to P1 and P2 also making mistakes and
playing very bad moves. In contrast, P3–P6 had relatively high MCC values,
showing that they could well reflect the goodness and badness of the opponent
(i.e., Pachikgs3k) to the final wins and losses. Among P3–P6, P3 and P6 were
slightly better than P4 and P5.

5.5 Results of Advantage Control

For playing balanced games (factor (a)), we already set a prerequisite that
the approaches should have win rates close to 50% (factor (a1)). To measure
whether the approaches could play close games against middle-level players
(factor (a2)), we employed the following two metrics, where the first one was
used in our previous work and the other was newly proposed.

14https://en.wikipedia.org/wiki/Phicoefficient

https://en.wikipedia.org/wiki/Phi coefficient
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Table 6: Approaches P1–P6’s degrees of reflecting the goodness and badness
of Pachikgs3k’s moves to the final wins and losses.

MCC of predicting
wins/losses from badness

Interpretation:
In which terms is better

Higher

Fox Go – (due to the small number of games)

P1 (Pachikgs3k) 0.240
P2 (Maia-like [20]) 0.189
P3 (Softmax [17]) 0.720
P4 (Previous work [3]) 0.645

P5 (Halving with Eq. (2)) 0.647
P6 (Halving with Eq. (3)) 0.700

Table 7: Approaches P1–P6’s ratios of playing close games with Pachikgs3k,
where the 95% confidence intervals are also shown.

(%) Games with
territory difference in [−10, 10]

the 100th move the final

Interpretation:
In which terms is better

Higher

Fox Go 17.9±14.2% 7.1±9.5%

P1 (Pachikgs3k) 38.0±4.3% 20.4±3.5%
P2 (Maia-like [20]) 12.4±2.9% 22.0±3.6%
P3 (Softmax [17]) 57.6±4.3% 53.4±4.4%
P4 (Previous work [3]) 52.8±4.4% 59.4±4.3%

P5 (Halving with Eq. (2)) 57.0±4.3% 54.8±4.4%
P6 (Halving with Eq. (3)) 52.0±4.4% 56.6±4.3%

1. The ratios of games where the final territory differences were within −10
to 10.

2. The ratios of games where the territory differences at the 100th move
were within −10 to 10.
This metric was an extension of the first. We considered that the terri-
tory differences should be small during the whole game instead of being
small only at the final. In the opening phase (say until the 50th moves),
the differences are usually small; in the endgame phase (say after 200
moves), the differences are usually similar to those at the end. Therefore,
we selected the middle-game phase at the 100th move.
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Table 7 shows P1–P6’s ratios of playing close games with Pachikgs3k. In
both the middle and final games, P1 and P2 clearly performed the worst, while
P3–P6 played approximately 50–60% close games. For P5 and P6, although
the ratios did not improve compared to the existing approaches P3 and P4,
they neither got worse too much.

5.6 Summary

For the proposed approaches P5 and P6, we have confirmed the following:

• the strength could be adjusted using the β parameter, where win rates
close to 50% against middle-level players could be achieved (factor (a1),
Subsection 5.1),

• the move naturalness was greatly improved compared to existing approaches
P1, P3, and P4 (factor (d), Subsection 5.2),

• the move quality was better than existing approaches (factor (c), Subsec-
tion 5.3)

• the goodness and badness of the middle-level players’ moves could be well
reflected in the final wins and losses at a level comparable to existing
approaches P3 and P4 (factor (b), Subsection 5.4), and

• the ratios of playing close games with middle-level players were approxi-
mately at the same level as existing approaches P3 and P4 (factor (a2),
Subsection 5.5).

Regarding P2, although it generally achieved superior results of move nat-
uralness than P5 and P6, this superiority could be primarily attributed to
P2 directly using πhuman to select moves, where three out of four metrics
were based on πhuman. Considering the remaining three factors, i.e., playing
balanced games (factor (a)), reflecting the opponents’ goodness and badness
(factor (b)), and having good quality of moves (factor (c)), P2 was unsuitable
to play teaching games compared to P5 and P6.

6 Conclusions and Future Work

As computer programs have surpassed top human players in playing skills, a
promising research direction is to investigate how these strong programs can
be used to help improve human players’ skills. Our goal is to utilize these
strong programs to play teaching games with middle-level players (analog to
students), as shown in the background part of Fig. 1. In the initial phase,
we focus on developing programs capable of playing good-quality games that
emphasize four important factors: (a) playing balanced games with the stu-
dents, (b) reflecting the goodness and badness of the students’ moves in the
final wins and losses, (c) keeping the quality of the played moves as good as
possible, and (d) playing natural or human-like moves.

For this goal, our previous work combined two programs with different
roles. The first role employed a superhuman program, KataGo, to generate
candidate moves and evaluate each move’s degree of advantage. The second role
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employed a neural network to evaluate candidate moves’ naturalness, where
the neural network πhuman was trained using strong human players’ games.
Candidate moves’ statistics obtained from the two roles were combined using
a function that considers both naturalness and advantage control. The moves
with the highest scores among the candidates were then selected.

In this paper, we tried to further improve the move naturalness using
two approaches. First, we proposed a search mechanism inspired by sequen-
tial halving. We decided a set of initial candidate moves according to πhuman

and πKataGo (KataGo’s policy network) and divided search budgets into two
rounds, where the first round investigated all moves in the set of initial can-
didates and the second round focused on investigating four promising moves.
Second, we proposed a new score function in this paper, which is smoother
than that in the previous work. The new score function also considered the
current situation (target advantage loss). We conducted thorough experiments
to compare the proposed approaches with several existing approaches. The
results showed that the move naturalness (factor (d)) was greatly improved
using our proposed approaches, while the other factors (a)–(c) were at the
same level or slightly improved compared to existing approaches.

Despite the generally positive results, several issues remain to be addressed.
For example, when reviewing the moves played by the proposed approaches,
we found that some moves had relatively high scores compared to other can-
didates, but almost no human teachers would play these moves. As a future
research direction, we will review more game records to identify potential
problems and propose new approaches. In addition, we plan to deploy our
approaches on online Go servers such as KGS to play against human play-
ers for verifying whether our approaches yield good results. Another future
research direction involves adapting the proposed approaches to other games
such as chess and shogi.
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