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Abstract 
In recent years, AI technology has advanced rapidly. Technologies such as image 

recognition and speech recognition are being used across various fields, including 

healthcare, manufacturing, transportation, distribution, education, and entertainment. 

Recently, AI has evolved not only in recognizing text, images, and audio but also in 

naturally generating them, allowing it to increasingly support or even replace human 

creators and operators. 

Games, with their clear rules, accessibility, and ease of evaluation, also require 

intellectual thinking. Due to these characteristics, games have frequently served as 

testbeds for artificial intelligence. Indeed, a variety of AI technologies have been 

developed or evaluated with games as their focus. 

When applied to games, the most straightforward goal is to create a strong computer 

player. This goal has been pursued in academic research for many years, leading to the 

development of various methods and notable achievements, such as DeepBlue in chess 

and AlphaGo Zero in Go, which have outperformed top human players. Although 

research continues to focus on building stronger AI players, interest is gradually shifting 

toward making strong computer players beneficial for humans. Examples of this include 

creating human-like computer players, implementing AI that can be played to entertain, 

automatically generating puzzles and game content, and supporting skill improvement. 

Supporting the improvement of beginner and intermediate players is crucial for 

maintaining or increasing the player base of a game. A coach who provides this support 

needs more than just "skill in the game." Advanced abilities are required, including 

explaining the core of the game, identifying the current issues a student faces, guiding 

them along the path to improvement, and maintaining their motivation. For this reason, 

many sports and well-known games have established roles for coaches focused on player 

improvement, where students typically need to pay a fee for quality instruction. If part of 

this coaching role could be replaced by a computer coach, it could not only promote the 

development of the game itself but also serve as a meaningful step toward building a 

better relationship between humans and AI. 

Ikeda et al. conducted interviews with Go coaches to investigate the types of guidance 

provided. They reported that among the various coaching methods, one of the core tasks 

is reviewing a match after it concludes, pointing out the student's bad moves, and 

explaining the reasons behind them. The moves considered "bad" are not merely "loss-

making" moves. Some moves that incur minor losses are allowed if they serve as bold 

moves to take control or as safe moves to secure victory. On the other hand, even if a loss 

is minor, a move that reveals flawed thinking on the student's part is often pointed out. To 

make the selection and explanation of bad moves replicable by a computer, Ikeda et al. 

asked Go coaches to annotate game records of intermediate-level players. They requested 

that for each move, the coach decide "whether to point it out as a bad move" and, if so, 

"to select the reason from ten categories." Using the collected training data, they applied 

supervised learning to develop a model for detecting bad moves and a model for reasoning 

behind them. Although these models perform slightly below the level of a human expert 

coach, professional players have judged them to be sufficiently practical. 

In this study, following the work of Ikeda et al., we undertook a similar approach using 

Xiangqi (Chinese Chess) as our focus. Xiangqi is a very popular game in China. While 

its nature shares similarities with Chess and Shogi, it is a fairly different game from Go. 



 

Therefore, to build a model, it was necessary to carry out tasks such as game record 

collection, reason label selection, annotation, and feature engineering. 

We first conducted interviews with several Xiangqi coaches and observed their actual 

coaching sessions. As a result, we found that "pointing out bad moves and explaining the 

reasons" is one of the main tasks, similar to Go. However, the nature of the reason 

explanations was found to be completely different from Go. We first accumulated much 

natural-language explanations from the coaches regarding their reasons and, through 

discussions with the coaches, grouped them into about 16 categories. We then requested 

annotations on 100 game records from intermediate-level players. The collected training 

data consisted of 4,666 annotations, of which only 798 were marked as bad moves. If this 

were to be treated as a 16-class problem as-is, some groups would have too few samples, 

making high-accuracy predictions unlikely. Therefore, we further grouped these into five 

reason groups for supervised learning. 

In supervised learning, when there is a significant imbalance in the number of samples 

across classes, it often limits the learning performance. In fact, the number of moves 

identified as bad moves is only about one-fifth of those identified as good moves. 

Therefore, we decided to augment the training data for bad moves through oversampling. 

One critical factor that affects the performance of supervised learning is what input to 

use. In cases where new board states can be generated indefinitely through self-play, as 

with AlphaZero, or where an extremely large database is available, as with Maia, high 

performance can be expected even if the board state itself is used as input. However, the 

training data we used consists of only 4,666 samples for the detection model and 798 for 

the reasoning model. For this reason, rather than directly inputting the board state and 

moves, we need to provide (as input) the "meaning and features in Xiangqi" that they 

have. 

We held discussions with Xiangqi coaches to clarify which aspects of the board state 

and moves are considered important when detecting bad moves and providing reasoning. 

These aspects were then quantified in a definable way. Next, we conducted preliminary 

experiments to investigate how combining these aspects could improve performance—or, 

alternatively, decrease it due to overfitting. 

Additionally, many different models have been proposed for supervised learning, and 

it is essential to choose the appropriate model based on the characteristics of the input 

space, output space, and the volume and distribution of the data. After comparing and 

evaluating numerous models available in the supervised learning tool Weka, we selected 

RandomForest for the bad move detection model and AdaboostM1 for the reasoning 

model. 

Based on these preparations, the training yielded an accuracy for the bad move 

detection model (F1-score for bad moves) of 0.825. Although this is slightly lower than 

the level of agreement among the three coaches (average F1-score of 0.837), it is quite 

close in performance. The reasoning model achieved an accuracy of 0.501, which slightly 

exceeded the human average of 0.497. While this result is not statistically significant due 

to the limited number of samples, it can be considered promising. 

Finally, a coach with a professional Xiangqi coaching license evaluated the bad move 

detection and reasoning results for 10 games. The results from the three coaches involved 

in training, as well as those from the proposed RandomForest/AdaboostM1 method, were 

presented in a blind manner and rated on a five-point scale for suitability. The evaluation 

for bad move detection showed scores of 3.988 for the human coaches and 4.074 for the 



 

proposed method. For reasoning, the human coaches scored 4.074, while the proposed 

method scored 4.048. These results indicate that, in addition to statistical agreement, the 

quality of our approach is at a level comparable to human coaches.  
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Chapter 1  Introduction 

1.Introduction 

In recent years, Artificial Intelligence (AI) has made tremendous progress and is now 

widely applied across various industries. From healthcare to finance, AI technologies are 

fundamentally changing how we address problems and make decisions. Algorithms have 

become increasingly complex, enabling them to handle complex tasks with higher 

accuracy and efficiency. Board games are also an important application direction for 

artificial intelligence. Chinese chess, also known as Xiangqi, ranks among the world's 

most played board games, boasting a player base in the hundreds of millions [1]. As a 

strategic two-player game with zero-sum dynamics, its complexity in terms of state-space 

and game-tree is substantial, estimated at approximately 1048 and 10150 respectively. 

These figures position Chinese chess in complexity between Shogi and international 

chess, indicating a significant depth and challenge in gameplay [2][3][4].  

Games have proven to be excellent testbeds for developing and honing AI technologies. 

They provide controlled and rule-based environments where AI algorithms can be tested 

rigorously [5]. Games like chess, Go, and even more complex multiplayer online games 

challenge AI with intricate strategies and decision-making scenarios that mimic real-

world complexity. 

Most top-performing Chinese chess programs, like QITIANDASHENG and Inspur TS, 

use alpha-beta pruning techniques similar to those in computer chess. This method 

evaluates the advantage of board positions by considering factors such as piece 

characteristics, placement, mobility, threats, protection, and king safety, with specific 

weights assigned to these factors. It is important to note that the state evaluation function 

is used to assess the position on the board by analyzing various factors and assigning 

weights to calculate a numerical value representing the position's advantage. Alpha-beta 

pruning, on the other hand, aggregates the evaluation values of leaf nodes (the deepest 

evaluated positions) during the search process to select the best move, and improves 

search efficiency by pruning suboptimal branches. Typically, the advantage of a position 

is determined by assigning weights to these specific features [6]. Historically, these 

evaluation factors were carefully selected, and their weights were manually adjusted by 

experts. However, as the number of features increased, this manual adjustment process 

became increasingly complex and time-consuming. Modern chess programs have turned 

to machine learning techniques, such as neural networks, to automatically adjust and 

optimize these weights. This has significantly improved the efficiency and effectiveness 

of position evaluation, enabling the programs to engage in more complex and competitive 

gameplay. 

In recent years, Chinese chess programs have advanced by using neural networks for 

feature selection and methods like AlphaZero's self-play, improving their performance to 

rival and even surpass top human players. AIs like "Fine Art" and "Xiangqi Tianji" have 

consistently outperformed professional players [8], leading to a greater reliance on AI-

assisted analysis in training and significantly impacting traditional chess competitions, 

while still offering potential for innovation in entertainment and education. 

Board game software using AlphaGo technology has defeated top professionals, 

benefitted skilled players but there is little research on programs for ordinary players or 
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beginners. It is important to note that these players also need to enjoy the game and 

improve their skills by playing against computers. Therefore, programs for entertainment 

and training of players have great potential and are a promising research direction. To 

achieve the goal of entertaining or guiding players, we first need to understand how 

human coaches do this. The following is a brief description of the teaching process. We 

will explain these processes in detail in Chapter 4. 

1) Maintaining Balance: Coaches maintain balance in instructional matches by 

making gentle yet reasonable moves, preventing quick wins and giving learners more 

opportunities to think and learn. 

2) Appropriate Thinking Time: Coaches adjust thinking time for each move 

according to the learner's level, ensuring the pace is appropriate. 

3) Error Detection and Explanation: Coaches promptly identify learners' incorrect 

moves and provide explanations using diagrams, text, or verbal communication to help 

them understand and correct their mistakes. 

4) Dynamic Difficulty Level Adjustment: The coach dynamically adjusts the level 

of game skills taught based on the learner's progress, ensuring that the learner always 

learns skills appropriate for their current level. 

In this research, we focus on how to find bad moves as human coaches. Taking the 

Chinese chess teaching process as an example, human players often play against stronger 

opponents and seek feedback on their erroneous moves. Therefore, an ideal coaching 

computer program should be able to identify incorrect moves, highlight the types of errors, 

and provide detailed explanations. Additionally, showing professional recommendations 

on better moves and their expected results would be very helpful. In this research, we 

specifically address the detection and marking of incorrect moves. 

In this research, we initially collected a large amount of user data from Chinese chess 

beginners, gathering game moves and decisions to analyze typical patterns and common 

errors made by beginners. After the data collection was completed, we conducted 

thorough data cleansing to remove any outliers and irrelevant information that might 

distort the analysis results, thus ensuring the accuracy and relevance of the data. 

Subsequently, we performed feature calculation, extracting key attributes from the data 

that significantly impact model performance, such as piece positions, timing of moves, 

and defensive and offensive strategies employed by the players. 

Using the cleaned and structured data, we trained two models under a supervised 

learning framework: the first model was used to classify each move as "good" or "bad", 

these "good" or "bad" labels are annotated by experts we invited, providing feedback on 

the quality of moves to beginners; the second model focused on diagnosing the reasons 

for bad moves. These analyses were based on the review and data annotation by Chinese 

chess experts, who provided insights into why certain moves were detrimental to the 

player's position or strategy. 

To validate the effectiveness of our research and the accuracy of the models, we invited 

several Chinese chess experts to evaluate the results produced by the models. These 

experts reviewed the models' predictions and their related reasoning to assess their 

correctness and practical relevance. Their feedback was crucial for refining the models, 

ensuring that they could effectively help beginners improve their chess skills. This 

comprehensive evaluation not only confirmed the effectiveness of our approach but also 

demonstrated the practical utility of applying machine learning techniques to Chinese 

chess training for beginners. 
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This thesis is structured as follows. Chapter 2 introduces the game of Chinese chess, 

including some of its unique rules. Additionally, this chapter discusses the differing 

perceptions of bad moves between beginners and expert players in Chinese chess. Chapter 

3 reviews relevant literature and academic research, defining key terms and contrasting 

these sources with the methodologies employed in this thesis. 

Chapter 4 is dedicated to the methodology of this research. It elaborates on the methods 

used for data collection, processing, and computation in this study, as well as the 

approaches and outcomes of feature selection. This chapter also details the results 

obtained from running the model, specifically the identification of bad moves. 

Chapter 5 involves the evaluation and discussion, which includes the selection of 

experts and the analysis of the results. Finally, Chapter 6 summarizes the findings of the 

paper. 
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Chapter 2  Chinese chess (Xiangqi) 

Chinese chess (Xiangqi) is one of the most popular board games in the world, with 

approximately one billion players. The modern form of Chinese chess has a long history, 

becoming widely popular during the Southern Song Dynasty (1127-1279 AD). The 

earliest recorded games and theoretical writings on Xiangqi originated from this era.[9] 

Chinese chess is a two-player game where both players have access to all information. 

Approximately 800 years ago, experts began developing knowledge and strategies for the 

game. Today, there are many outstanding human players worldwide. Despite the game's 

complexity, the most advanced Chinese chess programs have achieved a level comparable 

to top human players. Table 1 illustrates the state-space complexity and game-tree 

complexity of international chess, Chinese chess, shogi, and Go [10],. 

 

Table 1: Computational complexity of different Boardgames 

 

Game State-space compl. Game-tree compl. 

Go(19 x 19) 10172 10360 

Shogi 1071 10226 

Chinese Chess 1048 10150 

Chess 1046 10123 

 

In this paper, our introduction to Chinese chess will be divided into sections 2.1 to 2.4: 

 The Board  

The Chinese chess (Xiangqi) board consists of 9 vertical lines and 10 horizontal lines 

intersecting each other. The pieces are placed on the intersections of these lines and move 

along the lines. The middle row of the board, which lacks a vertical line, is called the 

"river boundary". 



5 

 

  

 

Figure 1: Chinese chess board Figure 2: Chinese chess initial settings 

 

In Figure 1, it can be observed that at the bottom of each side of the board, there is an 

X-shaped area. This area represents the palace, within which the general (or king) moves. 

The pieces are placed on the intersections of the horizontal and vertical lines and move 

along these intersections according to specific rules detailed in section 2.2. In Figure 2, 

we can see Chinese chess initial settings. The pieces for each side are distinguished by 

color, usually red and black, to indicate the respective players. The objective of the game 

is similar to that of international chess: to capture the opponent's general. When a player 

captures the opponent's general, they win the game [11]. 

 Pieces and Movement Rules 

Chinese chess features seven distinct types of pieces. Each player controls a King, two 

Advisors, two Elephants , two Rooks, two Horses, two Cannons, and five Pawns (Figure 

x), abbreviated as K, A, B, R, H, C, and P, respectively. The king can move horizontally 

or vertically, covering one unit distance at a time, represented on the board as moving one 

intersection at a time. The king is restricted to moving within the palace and cannot leave 

this area. Additionally, the two kings cannot face each other directly, which means they 

cannot be on the same vertical line without any intervening pieces. If this occurs, the 

player making the move will lose the game. Advisors are also confined to the palace, but 

unlike the king, they can move diagonally within the X-shaped palace. They move one 

unit at a time, meaning advisors cannot move in horizontally, vertically, they only can 

move diagonally, which is different from the king's movement. Advisors are also confined 

to the Palace and move one space diagonally at a time, without the ability to move 

horizontally or vertically. Elephants are limited to their side of the board and cannot cross 
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the river. They move  

two spaces diagonally per turn, effectively shifting two spaces up or down, and two  

 

Figure 3: General and advisors 

 

spaces left or right. Elephants can be obstructed; if a piece occupies the space next to 

an Elephant’s diagonal path, it blocks the Elephant’s movement in that direction. 

Elephants cannot move horizontally or vertically. Instead, they move diagonally by two 

units, as long as they do not cross the river in the middle of the board. If there is a piece 

occupying the space one unit diagonally from the elephant's current position in the 

direction it wants to move, the elephant's movement is blocked, and it cannot proceed. 

The rook can move horizontally or vertically across any distance, as long as there are 

no pieces (on either side) obstructing the path between the starting and target points. The 

knight cannot move horizontally or vertically but can move in an L-shaped pattern, 

similar to the elephant. This means it moves to a point that is two intersections away in 

one direction and then one intersection perpendicular, covering a diagonal distance of  

 

Figure 4: The long-range threat of the cannon    Figure 5: Special movement rules 

 

approximately 2.24 units. If there is a piece in the path of the knight's intended move, 

it cannot proceed. 



7 

 

Cannons move in a manner similar to rooks, capable of horizontal and vertical 

movements over any distance. However, capturing an opponent's piece follows a unique 

rule: there must be exactly one intervening piece between the cannon and the target. This 

intervening piece can belong to either side. Lastly, soldiers move similarly to the king, 

advancing one unit at a time either vertically or horizontally. Before crossing the river, 

soldiers can only move vertically. Once they cross the river, they can move both vertically 

and horizontally but can only advance forward and not retreat or move backward. 

 Recording the Moves of Pieces   

In Xiangqi (Chinese Chess), recording a move simply means indicating which piece 

moves from which position to which position. There are two common methods for this: 

the "Vertical Line Method" and the "Coordinate Method." Here is a brief explanation of 

each: 

2.3.1 Coordinate Method 

This method, commonly used in international chess, assigns a coordinate to each square 

on the board. A move is determined by the starting square and the destination square, 

making it more convenient and logical. This method can also be applied to other board 

 

Figure 6: Chinese chess board under different representation methods 

 

 games. In Xiangqi, following international chess conventions, the vertical lines (for the 

red side) are labeled from left to right as a, b, c, d, e, f, g, h, i, and the horizontal lines are 

labeled from bottom to top as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (as shown in Figure). 

2.3.2 Forsyth-Edwards Notation (FEN) File Format 

FEN (Forsyth-Edwards Notation) is a specialized standard for recording positions in 

Xiangqi. Under this standard, a game position can be simply represented with a single 

line of "FEN format string" rather than laboriously describing the position in words, such 

as "the red king is on the fourth file from the bottom, and the black king is on the fifth 

file from the bottom...". 

Since it is a text format (involving only a limited set of letters, numbers, and symbols), 

it is very convenient to transmit game positions over the internet. There's no need to draw 
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the board on paper or awkwardly describe it in text. Instead, one can set up the position 

using game notation software, automatically generate the FEN string, and then post it to 

text-capable online platforms such as web pages, BBS, and electronic forums. 

When readers encounter a FEN string, they can use game notation software to "copy and 

paste" the string and fully reproduce the position, making the exchange of game records 

quick and efficient. 

Representation of Historical Positions 

This method is used exclusively in the "Universal Chinese Chess Interface" (UCCI) 

protocol to represent historical positions. In the UCCI protocol, the position is transmitted 

using position fen <fen_string>. Since the FEN format string cannot record historical 

positions, the moves option must be used to specify the moves leading to the current 

position. 

For example, consider the following position transmitted to the engine: 

position fen 9/9/3k5/9/9/9/4R4/3A5/8r/4K4 b - - 0 1 

In this case, it is acceptable for the engine to make the move R9+1. However, if this 

position is part of a perpetual check sequence, the interface must provide the  

historical moves as well: 

position fen 9/9/3k5/9/9/9/4R4/3A5/4K4/8r b - - 0 1 moves i0i1 e1e0 i1i0 e0e1 i0i1 

e1e0 i1i0 e0e1 i0i1 e1e0 

Although this is the same board position, the context has changed. In this scenario, the 

engine cannot play R9+1 because it would result in a third repetition of the position after 

K5+1, causing the black side to lose by perpetual check. 

2.3.3 Portable Game Notation (PGN) File Format 

PGN (Portable Game Notation) is a file format used to record chess games. Given that 

international chess has adopted this standard for recording game moves, PGN is an 

excellent choice for Chinese chess, which currently lacks a unified standard. Table 2 is 

the PGN tags about Chinese chess.PGN files have the following characteristics: 

Text Format: PGN files are in text format, which can be created and modified using 

any text editor. 

Structured Sections: PGN files are divided into two main sections: the "Tag Pair 

Section" and the "Move Text Section". Both sections are well-structured, making them 

easy to read and convenient for chess software to generate and interpret. 

Multiple Games: A single PGN file can contain multiple games, forming a simple chess 

database. 

Open Format: The format of PGN files is open and has been widely accepted by most 

chess software. 

 

Table 2: PGN Tags for Chinese Chess 

 

PGN Tags for Chinese Chess  

Game This tag specifies the game type. 

It is not used in international 

chess but must be the first tag 

in a Chinese chess PGN file, and 

its value must be "Chinese Chess" 
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Event The name of the tournament or 

event. 

Site The location of the tournament. 

Date The date of the game in the 

format "yyyy.mm.dd" 

Round The round number of the game 

Red The player with the red pieces, 

differing from international 

chess's "White". 

Black The round number of the game. 

Result The result of the game. "1-0" 

indicates a win for Red, "0-1" 

indicates a win for Black, "1/2-

1/2" indicates a draw, and "*" 

indicates an unknown result. 

RedTeam and BlackTeam The teams (club, chess 

association, province, or 

country) of the players, 

typically written before the Red 

and Black tags. 

Opening These tags provide information 

about the opening, variation, and 

ECCO (Encyclopedia of Chinese 

Chess Openings) number 

FEN Opening positions, middlegame, 

endgame, and composed positions 

 

 Other ways to play Chinese chess 

Chinese chess has several interesting variants that add new dimensions to the 

traditional game. One popular variant is "Dark Chess" (also known as "Blind Chess" or 

"Hidden Chess"). In this variant, the pieces are placed face down on the board at the 

beginning of the game, hiding their identities from both players. The game starts with 

players flipping over pieces to reveal their identities, introducing an element of chance 

and surprise. Players must then strategize based on the newly revealed pieces, making for 

an unpredictable and exciting game. 

Another variant is "Banqi" or "Half Chess," which uses the same pieces as traditional 

Chinese chess but follows different rules and objectives. The pieces are again placed face 
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down randomly on the board, and players take turns revealing and moving them. 

Capturing and winning are based on the relative strengths of the pieces as they are 

revealed. 

These variants add layers of complexity and excitement to the classic game of Chinese 

chess, attracting players who enjoy both the traditional strategy and the added elements 

of luck and discovery. 

 Chinese chess culture 

For those looking to improve their Chinese chess skills, there are many ways to 

enhance their level of play. For children who want to learn Chinese chess, the first step is 

to understand and master the basic rules. Joining a Chinese chess training class is an 

effective way to systematically learn chess skills. Practicing with opponents of different 

skill levels is an important way to test and improve their abilities. Watching expert games 

and reading classic chess manuals can help them understand tactics and strategies. 

Additionally, many places offer Chinese chess training classes taught by experienced 

players or coaches, covering basic rules, tactics, practice games, and competition 

techniques. 

Adults are well-suited for learning Chinese chess, which offers both mental exercise 

and enjoyment. Many cities offer adult training classes led by experienced coaches, 

covering theory, demonstration games, practice matches, and game analysis. Classes may 

adjust based on skill level; for example, stronger players might face restrictions, or 

beginners may get the first move advantage. Coaches guide learners through rules and 

tactics, helping them analyze their games to identify mistakes and areas for improvement. 

Chinese chess can be played in diverse settings: parks often have dedicated areas, 

community centers host regular activities, and schools may offer courses or competitions. 

Online platforms like Xiangqi Online, Chinese Chess Online, and TianTian Xiangqi 

provide convenient access, offering online matches, AI games, chess puzzles, and live 

broadcasts. Players can learn through game analysis, real-time matches, and training 

classes. Apps and software like Xiangqi Wizard and Xiangqi Master support all skill 

levels, making it easy for beginners to experts to improve skills and enjoy the game. 
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Chapter 3  Related work 

Scientists began researching the field of artificial intelligence in the mid-20th century. 

In 1950, a paper on the Turing Test had already introduced the concept of artificial 

intelligence. As society developed, the performance of computers and the capabilities of 

machine learning algorithms also increased significantly. People moved from endowing 

computers with logical reasoning abilities to enabling them to acquire knowledge to solve 

more general problems. This transition was not smooth. The initial algorithms required 

people to collect vast amounts of knowledge summarized by experts and input this 

knowledge into computers[12]. The computers would then search for answers in the 

database when solving problems. This method not only could not guarantee correctness 

but also was highly inefficient. For game problems like Go, which have a vast search 

space, there is no complete expert database. Therefore, to solve related problems, machine 

learning methods emerged, leading to the development of the Monte Carlo Tree Search 

reinforcement learning method. Automated game programs has also become a core 

research direction in the field of artificial intelligence. The development of computer 

gaming technology has gone through three important stages: the initial stage, the growth 

stage, and the rapid development stage. Over more than a century of growth, the field of 

computer gaming has developed a variety of machine learning and search algorithms. 

Initial Stage: In 1989[13], IBM developed "Deep Thought," which played against the 

world champion Garry Kasparov and was defeated by a score of 0:2. In 1992, Tesauro 

and others applied reinforcement learning to backgammon and created the program TD-

Gammon. After 1.5 million self-play training sessions, TD-Gammon reached the level of 

a human master and defeated the human champion with a score of 39:1. In 1993, 

Professor Chen Zhixing from Sun Yat-sen University developed the Go program 

"Handtalk," which won the International Computer Go Championship. In 1994, Chinook 

used a rich database of checkers positions to defeat the human world champion in 

international checkers, marking the first time a computer program won an official world 

championship in a game. In 1997, an enhanced version of "Deep Blue" could calculate 

200 million moves per second and defeated Garry Kasparov, the world's top-ranked chess 

player. The program used minimax and pruning algorithms, allowing Deep Blue to search 

and evaluate up to 12 future moves, whereas human chess players could predict about 10 

moves ahead. This advantage in predicting future positions, owing to its immense 

computing power, led to the computer's victory. This match brought Deep Blue to fame 

and caused a worldwide sensation, as it represented the first time a computer had defeated 

the world's best human player in such a complex board game. 

Development Stage: From the late 20th century to the early 21st century, through 

extensive and in-depth research by scientists, the field of computer gaming gradually 

developed several excellent algorithms, including parallel search algorithms(1998), and 

genetic algorithms(2000)[13]. These excellent algorithms were also applied by scholars 

at the time in the development of Chinese chess software. In 2005, Professor Xu Xinhe 

from Northeastern University in China and his team developed the Chinese chess program 

"Qitian Dasheng," which possessed the skills of a top-level Chinese chess master and won 

the championship at the 2006 World Computer Chinese Chess Olympiad. In 2006, Hinton 

and his students published "Reducing the Dimensionality of Data with Neural Networks" 

in Science. The paper proposed the method of reducing high-dimensional data to lower-
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dimensional data using neural networks, sparking a wave of deep learning research in 

academia. In the same year, the Upper Confidence Trees (UCT) algorithm proposed by 

Kocsis and others revolutionized the application of reinforcement learning in Go. In 2007, 

Chinook perfected the checkers database for the best move in every position, making it 

an unbeatable presence in the field of international checkers[14]. 

Application Stage: The development of gaming technology has reached a point where 

there has been a qualitative leap in computer hardware, alongside breakthrough progress 

in the field of machine learning. The successful application of neural networks in machine 

gaming has solved many practical problems. In 2012, Google trained a machine learning 

model, "Deep Neural Networks (DNN)," on parallel computing devices. In 2013, Baidu 

announced the establishment of the "Institute of Deep Learning" (IDL). In March 2016, 

the artificial intelligence program AlphaGo defeated the world Go champion Lee Sedol 

with a total score of 4:1 in a man-machine match. AlphaGo again defeated the world 

champion Ke Jie with a score of 3:0 in May 2017. The AlphaGo program caused a 

sensation in the academic world, marking a significant success in computer gaming 

technology. In March 2020, DeepMind announced that Agent57 had surpassed human 

players on all 57 Atari games for the first time. Agent57 uses reinforcement learning 

algorithms, and its scores increase with more computing power. Scientists are now 

applying these models to other areas, such as electronic sports games that combine 

multiple technologies, including image recognition. However, these methods have yet to 

reach the heights achieved in gaming in other fields. 

From these milestone events in computer gaming, it is evident that some board game 

systems have reached or even surpassed the level of top human players. 

Historically, the research focus of international board game projects has been mainly 

on Go and chess. In recent years, as gaming technology has matured, computer gaming 

in Chinese chess has gradually attracted the attention of many scholars. Its spatial 

complexity and search complexity are higher than those of chess, making the 

development of Chinese chess machine gaming more challenging. This challenge has 

attracted many researchers to this field, resulting in numerous achievements. 

In conclusion, the development of Chinese chess gaming technology has made 

significant progress in recent years. However, due to the late start of computer Chinese 

chess research, with relevant literature only emerging in the late 1970s, it lags behind 

international chess research by 20 years and is relatively less mature compared to 

computer chess technology. Despite the remarkable achievements in the level of Chinese 

chess software due to the tireless efforts of many chess programming enthusiasts and 

development teams, chinese chess software capable of defeating top human players has 

already been designed. Chinese chess is the most widespread and representative board 

game, holding a crucial position with a large base of players who enjoy human-computer 

gaming. Therefore, there is a promising future for Chinese chess machine gaming. The 

research on Chinese chess machine gaming is significant and urgent[15]. 

In the process of researching and developing Chinese chess software, learning from 

and drawing inspiration from the development of Go software is crucial and meaningful. 

For this reason, Chinese chess program designers created the UCCI protocol, establishing 

a framework for the future development of Chinese chess computer programs. In go, 

similar to the UCCI standard in Chinese chess software, Go software also has its own 

protocols and frameworks. For instance, platforms like GNU Go and CGOS (Computer 

Go Server) provide open and standardized interfaces, enabling different Go engines and 
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interfaces to be compatible and interact with each other. This standardization has 

facilitated the development of Go AI, allowing researchers to focus on their areas of 

expertise and driving continuous improvements in Go software. 

The current research results are enough to create a Chinese Chess program that is far 

stronger than human players, still has limitations in terms of entertainment and 

educational applications for players. While Chinese Chess AI can compete at the highest 

levels, it often lacks the ability to provide engaging and instructive experiences for casual 

players and learners. Playing games that are too difficult or against programs that are too 

strong can be frustrating, while playing games that are too easy or against programs that 

are too weak can be boring; both scenarios can cause players to lose motivation to 

continue playing. Some researchers have conducted studies to address these issues, 

aiming to develop Chinese Chess software that not only excels in competition but also 

enhances the learning experience and enjoyment for a wider audience. 

In the early days, game developers used a technique called Dynamic Difficulty 

Adjustment (DDA) to achieve dynamic game difficulty adjustments. Specifically, this 

technique was used in the game Zanac, compiled in 1986, where the game automatically 

adjusted its difficulty level based on the player's skill, shooting speed, and the current 

defense level of the spaceship. In other research, some researchers intentionally weakened 

and restricted powerful programs in order to create less dominant programs. Specifically, 

Sephton et al. [16] studied several methods for selecting moves in MCTS, one of which 

is based on the SoftMax strategy. However, a problem with this method is that very poor 

moves have a chance to be selected as long as their visit count is not zero. To address this 

issue, Liu et al. [17] introduced a visit count threshold to solve this problem. 

In addition to having proper strength, some researchers further utilized human games 

in their programs to achieve human likeness. For example, In 2013[18], Ikeda and 

colleagues proposed a computer Go program designed to entertain players by employing 

various strategies and manipulating the board position. Nakamichi and Ito[19] used shogi 

amateur games to train evaluation functions. They then replaced the evaluation functions 

in a strong program with the trained ones to create weaker but human-like programs. As 

another way to use human players’ games to create human-like programs，McIlroy Young 

et al [20] trained neural networks to predict chess amateur moves. 

Based on these, the research field focused on making board games more entertaining 

and educational for players is continuously developing. In 2015, Kameko and colleagues 

applied machine learning to generate natural language commentary on Shogi positions. 

That same year, Ikeda and colleagues used machine learning to learn the natural language 

terms commonly used by humans to describe moves in the game of Go. In 2016, Ikeda[21] 

and colleagues further used machine learning to implement the marking and classification 

of bad moves in Go. Let the program's judgment of good and bad moves be very close to 

the accuracy of the human coach's judgment of the good and bad moves pointed out by 

the beginner player game records. 

In summary, although Chinese chess and Go differ in their rules and complexity, their 

trajectories in the field of artificial intelligence development are similar. Both have 

evolved from basic algorithms to advanced machine learning techniques and shifted the 

goal from strong players to entertaining or educating programs. 
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Chapter 4  Methodology 

In this chapter we will describe in detail the methods and main experimental procedures 

used in this research, as well as the results obtained. 

 Method overview 

In this section, we will give an overview to all the research methods used in this paper, 

such as observation and interview, data collection and annotation, feature engineering, 

and learning two models. 

Initially, we employed user research methods to determine the ideal teaching process 

that our program aims to emulate. In the user research process, we used observation and 

interview methods to investigate our target subjects. Specifically, we interviewed several 

professional coaches and observed their teaching methods, then took time to discuss with 

them the typical mistakes[22] made by beginners.  

This dataset was newly created specifically for our research, consisting of game records 

from numerous beginner and intermediate players. After obtaining this dataset, we invited 

a professional coach to spend time annotating every piece move in each game. The 

annotations classify moves as either good or bad, including explanations for why each 

bad move was considered suboptimal. Following this, to enable summarization and 

generalization of these reasons, we discussed with experts to translate their abstract 

explanations of poor moves into specific bad move labels. This preparatory work will 

greatly support our subsequent research. 

We also leveraged expert knowledge for feature engineering, as the design and 

selection of features are crucial for the accuracy of supervised learning. On the one hand, 

we studied the foundational and complex features selected in prior research and learned 

methods for calculating them. Additionally, we referenced findings from studies in other 

board games, such as Go, to observe commonly chosen features in those contexts. Based 

on feedback and discussions with experts, we extracted and calculated features that can 

effectively distinguish good moves from poor ones, such as board control scores, 

positional safety among pieces, and the threat level posed by the opponent’s pieces 

toward one’s own. Furthermore, we filtered and optimized these features to enhance 

classification accuracy. This feature engineering approach enables the model to more 

efficiently evaluate good and bad moves in game scenarios, providing robust support for 

further classification of the causes behind suboptimal moves. 

Finally, we developed two models for detecting and labeling poor moves. The first 

model is a classification model that identifies whether a move is good or bad based on 

the extracted features. It uses supervised learning to understand patterns in labeled data 

and provides a binary output, helping to streamline the initial identification of suboptimal 

moves.The second model, a cause identification model, goes a step further by 

categorizing the reasons behind each poor move. This model analyzes the specific 

characteristics of a move and labels the underlying cause according to predefined 

categories (e.g., weak board control, lack of piece safety, or high opponent threat). 

Together, The combination of these two models not only enables automatic detection of 

poor moves but also helps players understand specific weaknesses in their moves, 

providing targeted guidance for improving strategy and skills.  
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 Interviews with human coaches 

User research is crucial in Chinese chess studies, offering insights into the experiences 

and needs of players and coaches during teaching and learning, and providing a scientific 

basis for research and program development. This study specifically examines how 

coaches identify bad moves, highlighting the importance of coaching beginners and 

methods used by coaches to guide them in practice. In this process, we employed both 

observational and interview methods to clarify the coaching process. Through 

observation, we directly observed chess classrooms and matches, obtaining real data on 

teaching methods and student reactions, which helped us understand the dynamics and 

details of teaching. The interview method involved in-depth discussions with coaches and 

students to gather their insights and experiences for understanding common teaching 

issues and the specific needs of students.  

Therefore, in this experiment, we interviewed a coach from a Chinese chess school in 

Shanghai that specializes in teaching beginners. The insights gained from this interview 

are quite significant and provide valuable reference points for our research. 

Based on the interview, there are many ways to improve one's Chinese chess skills, such 

as watching professional matches, replaying games between professional players, solving 

Chinese chess endgame puzzles that have been developed over centuries, or reading 

books on common Chinese chess techniques, openings, and tactics. However, it is 

generally believed that one of the best ways to improve is to play games with stronger 

players and review the games with them.By engaging with and learning from experts, 

players can gain a deeper understanding of strategies and tactics within Chinese chess, 

rapidly enhancing their skills.Chinese chess coaching is a somewhat effective method and 

is also popular among Chinese chess players. However, this method is also the most 

expensive way for players to improve their skills. Coaches typically charge by the hour, 

and many players cannot afford these fees. 

Additionally, beginner and intermediate players might avoid using this method due to 

the fear that their skills are too low to understand the coach's teachings. If a computer 

program could provide a similar coaching experience tailored to the player's skill level, it 

would be extremely valuable and helpful, especially for players at the beginner to 

intermediate levels. 

In observing the teaching process of Chinese chess coach, we learned that the teaching 

process of human coaches can be summarized into the following four steps, this 

observation was almost the same to the case of coaching Go [23].first(1) Detect a bad 

move, then(2) explain why it is bad, referred to as a "label" in this paper,(3)Explain the 

caused result, at last(4) Show the best move and expected variation. Below, I will use 

image to explain this process in more detail. 
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Figure 7:Detect a bad move and explain why it is bad 

 

 
Figure 8: Explain the caused result 
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Figure 9: Show the best move and expected variation 

In this paper, we address only the first two steps: the detection of bad moves and 

labeling with some "reason." In future studies and work, if given the opportunity, I hope 

to develop a program that can fully execute all four steps. 

 Expert knowledge acquisition and annotation 

In the field of Chinese chess (Xiangqi) artificial intelligence and research, Expert 

Knowledge Acquisition and Annotation play critical roles. Expert knowledge acquisition 

involves extracting strategic insights and decision-making patterns from the games of 

Xiangqi masters. By analyzing a vast number of historical games, experts can derive key 

concepts such as classical openings, offensive and defensive strategies, and tactical 

maneuvers. This expert knowledge is then systematized and converted into rules or 

models that can be used by Xiangqi AI systems. 

For annotation, researchers often label different moves in a game based on its phase—

opening, middlegame, and endgame. For instance, a common opening like the "Central 

Cannon vs. Screen Horse" can be annotated with labels such as "central control" or "king 

safety" to capture the intent behind specific moves. These detailed annotations enable 

machine learning models to better grasp the underlying strategies in Xiangqi, enhancing 

the AI's decision-making capabilities. Expert knowledge acquisition and annotation are 

essential steps in advancing Xiangqi AI, ensuring it can replicate high-level human 

thinking in complex games. 

Moreover, expert knowledge acquisition in Chinese chess goes beyond simple move 

replication; it involves understanding the deeper layers of strategy and anticipating an 

opponent's actions several moves ahead. For this, experts provide not only tactical 

insights but also broader strategic frameworks, such as positional evaluation, long-term 

planning, and risk management. These high-level concepts are harder to quantify but are 

crucial for developing AI systems capable of sophisticated play. By capturing these 

nuanced elements, the AI can make decisions that mirror a human expert's reasoning 

rather than just following pre-set algorithms[24]. 



18 

 

Annotation, on the other hand, ensures that these expert-level insights are 

systematically documented for machine learning purposes. This process often includes 

labeling key turning points in a game, where a specific move significantly shifts the 

balance of power, as well as documenting mistakes or suboptimal moves for AI training. 

By combining both expert knowledge acquisition and detailed annotation, the system is 

capable of learning not only from optimal games but also from flawed ones, improving 

its ability to handle a wider range of scenarios and opponents. This dual approach is vital 

for creating a robust and adaptable Xiangqi AI. 

 Feature selection 

Feature selection is a critical step in machine learning and AI model development, 

aimed at improving performance by identifying the most relevant features while reducing 

noise and complexity. One effective approach for feature selection is ablation experiments. 

Ablation involves systematically removing or "ablating" one or more features from the 

model to observe how their absence affects performance. By doing so, researchers can 

assess the importance of each feature in contributing to the overall effectiveness of the 

model. 

In ablation experiments, the process typically begins by training a baseline model with 

all features included. Then, individual features (or groups of related features) are 

selectively removed in subsequent experiments. If removing a feature significantly 

degrades model performance, it indicates that the feature is essential. Conversely, if the 

model’s performance remains unchanged or improves, that feature might be redundant or 

even detrimental, suggesting it could be removed to simplify the model and potentially 

avoid overfitting. 

Ablation experiments provide a structured way to identify and eliminate irrelevant or 

weak features, leading to models that are not only more efficient but also generalize better 

to unseen data. This method is particularly useful in complex datasets where feature 

interactions are not always obvious, and traditional feature selection techniques may 

struggle to distinguish the most informative features. 

Building on the foundation of ablation experiments, feature selection becomes a more 

robust and insightful process, especially when dealing with complex, high-dimensional 

datasets. By iteratively removing or masking specific features, ablation experiments 

provide a direct way to assess the contribution of each feature or group of features to the 

model's performance. This method stands out because it allows for a deeper 

understanding of how features interact with each other and how crucial they are in the 

model’s decision-making process. 

When conducting ablation experiments, researchers may follow several strategies. One 

common approach is single-feature ablation, where each feature is removed individually, 

and the impact on model accuracy, precision, recall, or other performance metrics is 

evaluated. This provides a straightforward view of which features are most important. 

However, features often have interactions with one another, meaning that the importance 

of a feature might depend on the presence of others. To account for this, group ablation 

can be used, where sets of related features (such as those that represent similar types of 

data or are highly correlated) are removed together[25]. By doing this, researchers can 

detect whether certain combinations of features are collectively important. 

Another aspect to consider in ablation experiments is the potential trade-off between 

model complexity and performance. In many machine learning tasks, having too many 
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features can lead to overfitting, where the model becomes too tailored to the training data 

and performs poorly on new, unseen data. By systematically removing less relevant or 

redundant features, ablation helps streamline the model, making it more generalizable. 

This also has practical benefits, such as reducing computational costs, improving model 

interpretability, and speeding up inference times. 

Ablation experiments vs. traditional feature selection methods: While ablation 

provides a direct, experimental approach to feature selection, traditional methods such as 

filter methods (e.g., correlation coefficients, chi-square tests) or wrapper methods (e.g., 

recursive feature elimination) rely more on statistical techniques and heuristics[26]. 

These traditional methods can be quicker, especially for very large datasets, but they 

might not capture the intricate dependencies between features as effectively as ablation 

experiments do. For instance, filter methods typically evaluate features independently, 

without considering their interactions with other features, whereas ablation experiments 

directly test the impact of removing features in the context of the model’s performance. 

Furthermore, ablation experiments can be extended to include hybrid approaches. For 

example, initial feature selection can be done using a filter or wrapper method to narrow 

down the number of features, followed by ablation to refine the final feature set. This 

combination allows for faster feature selection while still maintaining the depth of insight 

provided by ablation experiments. 

In more complex models, such as deep learning architectures, ablation experiments can 

be applied to specific layers or components of the model. For instance, in convolutional 

neural networks (CNNs), researchers may perform layer-wise ablation, where entire 

layers or even specific filters are removed to assess their significance in feature extraction 

and decision-making. This can provide valuable insights into the internal workings of the 

model and highlight which parts are crucial for performance and which are redundant or 

underperforming. 

In summary, ablation experiments are a powerful tool for feature selection, providing 

a practical and insightful approach to understanding which features (or combinations of 

features) drive model performance. By iteratively removing features and observing the 

impact on results, researchers can fine-tune their models, improve generalization, reduce 

overfitting, and simplify model complexity. When used in conjunction with traditional 

methods, ablation experiments offer a comprehensive strategy for optimizing feature sets 

in machine learning applications. 

In addition to their role in identifying critical features, ablation experiments can also 

serve as a diagnostic tool to detect hidden biases or weaknesses within a model. When 

certain features are removed and the model's performance drops disproportionately, it can 

indicate that the model is overly reliant on those specific features, which might not 

generalize well to new data. This is particularly important in real-world applications 

where datasets often contain noise, outliers, or imbalances that can mislead the model 

during training. By using ablation experiments to systematically assess the importance of 

each feature, researchers can uncover dependencies that could result in biased or unstable 

predictions and take corrective actions, such as rebalancing the data or refining feature 

engineering processes. 

Moreover, ablation experiments can be employed to evaluate the robustness and 

resilience of machine learning models. In many practical applications, models are 

deployed in environments where data can be incomplete, noisy, or subject to unforeseen 

changes. Ablation allows researchers to simulate such scenarios by artificially removing 
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or corrupting parts of the data and observing how well the model adapts. A robust model 

should be able to maintain reasonable performance even when key features are missing 

or degraded. If ablation reveals that the model’s performance collapses in the absence of 

certain features, it may indicate that the model is too fragile and needs further refinement, 

such as through regularization, improved data preprocessing, or additional training with 

more diverse datasets. 

Lastly, ablation experiments can be invaluable in interpreting black-box models, such 

as deep learning networks, which are often criticized for their lack of transparency. By 

systematically removing inputs or altering the architecture in ablation studies, researchers 

can gain insights into how these complex models make decisions. For instance, in 

computer vision tasks, ablation can be used to determine which specific parts of an image 

are most influential in the model’s prediction by masking different regions and analyzing 

the resulting changes in output. Similarly, in natural language processing (NLP), ablation 

experiments can help pinpoint which words, phrases, or linguistic features are most 

critical to the model’s understanding and prediction. This not only enhances the 

interpretability of the model but also aids in debugging and optimizing the learning 

process by revealing which parts of the data or model architecture are underperforming.  

In conclusion, feature selection through ablation experiments provides a versatile and 

robust method for refining machine learning models. Beyond simply identifying 

important features, ablation allows for a deeper understanding of feature interactions, 

model dependencies, and potential weaknesses. By iteratively experimenting with feature 

removal, researchers can make informed decisions about which features to keep, which 

to discard, and how to balance model complexity with performance. This method also 

enhances the interpretability and robustness of models, making it an essential tool in the 

development of both traditional machine learning systems and more advanced deep 

learning architectures. When applied thoughtfully, ablation experiments offer a clear path 

toward creating more efficient, reliable, and interpretable models capable of handling 

real-world challenges. 
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Chapter 5  Experimentation and Evaluation 

In this section, we show four series of experiments. The brief content is as follows: 

1) Baseline Experiment provides criteria for the results obtained by subsequent 

evaluation procedures. 

2) Learning of bad move detection system, and comparison with huma’s decision. 

3) Learning of bad move labeling system, and comparison with human’s decision. 

4) Invite human experts to evaluate the results. 

 Baseline Experiment 

In this experiment, we will invite three strong human players, compile their annotation 

data, and compare and evaluate the matching rate between the annotation results of each 

pair of players. The specific procedure involves each coach independently analyzing one 

or more chess games and marking the moves they consider to be bad. Afterward, the other 

two coaches evaluate the same games independently, determining whether they agree 

with the bad moves identified by the first coach. In this research, Human Player A labeling 

all 100 game records, while Human Players B and C labeling 20 out of the 100 games for 

comparison with Human Player A. 

The core of the experiment lies in comparing the degree of agreement between the 

three coaches. By counting the bad moves identified by each coach and the number of 

those moves agreed upon by the other two coaches, the level of consistency between each 

pair of coaches is calculated as a percentage. For example, if Coach A identifies 10 bad 

moves, and 8 are agreed upon by Coach B while 7 are agreed upon by Coach C, then the 

agreement between Coach A and Coach B would be 80%, and between Coach A and 

Coach C, it would be 70%. Similarly, Coach B and Coach C’s agreement can be calculated 

in the same manner. This mutual evaluation among the three coaches allows for a 

comprehensive understanding of their consistency in evaluating bad moves. By 

comparing the agreement levels between each pair of coaches, the experiment can further 

analyze which types of errors are more likely to reach consensus and which are prone to 

varying judgments[27]. 

This multi-coach evaluation method reveals more details, especially regarding 

differences in assessment standards among the coaches. Some bad moves might be 

universally recognized by all three coaches, while others may be agreed upon by only 

some, highlighting the complexity or controversy of these moves.  

 

Table 3: F-measures (good/bad/total) among three coaches 

 

Players F-measures 

Player A for B 0.908/0.411/0.839 

Player B for C 0.863/0.353/0.805 

Player C for A 0.920/0.455/0.866 
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Average 0.897/0.406/0.837 

 

Table 3 shows the F-measures (good/bad/total) among three coaches. We can see that only 

around 40% of bad moves pointed by one player are also pointed by another player. 

  This result shows how challenging this task is and how diverse policies coaches have.  

 

It also provides a specific goal for our subsequent experimental results. These two points 

are very important to our research. 

 Training Preparation 

Two models for detection and labeling are trained through supervised learning using 

annotated data. 

To accomplish this, the data was divided for validation, adjustments were made to 

correct the imbalance between positive and negative samples, after get the new dataset, a 

learning method is selected, and feature selection is performed..  

5.2.1. Training Data 

The original data we collected consists of 100 matches between novice players, with a 

total of 4666 moves. Due to the small sample size, directly splitting the dataset may result 

in insufficient data in the training or validation sets, which could affect the model's 

generalization ability. To address this issue, we adopted 10-fold cross-validation[28]. In 

this method, the dataset is evenly divided into 10 subsets. In each iteration, one subset is 

used as the validation set, and the remaining nine subsets are used for training. This 

process is repeated 10 times, ensuring that each subset is used once for validation and 

once for training. The overall model performance is evaluated by averaging the results of 

all. 

5.2.2. Correction of Positive and Negative Sample Imbalance 

During the process of data set segmentation and sample balancing, we found that only 

798 of the 4666 samples were negative samples, resulting in an uneven distribution of 

categories. To alleviate the bias problem caused by this imbalance, we adopt an 

oversampling method to increase the number of negative samples to the same level as the 

positive samples. Specifically, the proportion of positive and negative samples in the data 

set is balanced by copying existing negative samples or generating synthetic samples so 

that the number of negative samples reaches the same number as positive samples.  

To confirm the effectiveness of over-sampling, we conducted a preliminary experiment. 

The employed learning method is Multilayer Perceptron in a free machine learning 

platform, Weka version 3.8.6[29]. 

To evaluate the performance of the model, we use F-measure, a comprehensive metric 

that combines precision and recall. When we do not do any resampling of the model, we 

can get the confusion matrix in Table 4 : 
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Table 4: Confusion matrix of original dataset 

 

good by coach bad by coach  

3181 249 estimated as good 

492 106 estimated as bad 

 

The F-measure is 0.912/0.222/0.823 (good moves, bad moves, weighted average).  

We can see that the performance is very poor when judging bad moves to be bad. Because 

the number of positive samples in the data set is much higher than the negative samples, 

this result is reasonable.  

When we resample the data set, the results we get are as the confusion matrix in Table 

5: 

 

Table 5: Confusion matrix of resampled dataset 

 

good by coach bad by coach  

2944 1123 estimated as good 

538 3529 estimated as bad 

 

After observing Table 5, we can know that when the multi-layer perceptron is also used 

for testing, the result of F-measure is 0.780/0.809/0.795. The result shows that the ability 

to identify wrong moves has been improved, which proves that we are targeting 

Preliminary processing of the data set makes sense. 

5.2.3. Model selection 

In this section, we describe the process of selecting several promising models for 

classification. and comparing their performance using the Weka software. Initially, we 

begin by exploring Weka's extensive classifier library, which includes options like 

decision trees, support vector machines (SVM), and neural networks. The choice of 

models was selected based on their performance on our dataset. 

Next, we proceed to fine-tune the parameters of each selected model to enhance its 

performance. For instance, we adjust the depth of decision trees, the kernel type for SVMs, 

and the number of layers in neural networks. This parameter optimization step is crucial 

for improving each model’s accuracy and adaptability to our dataset[30]. 

Following model training, we employ various evaluation metrics in Weka to compare 

the model’s effectiveness. Metrics such as accuracy, recall, and F1-score are used to 
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gauge how well each model performs on our classification task. So, we tried a variety of 

classifiers with the goal of narrowing down the choices, selecting a few classifiers with 

better performance and using them in subsequent experiments.  

We conducted a preliminary experiment for this selection. Its setting is different from 

what we have explained. Specifically, only one supervised learning trial was done for 

each model, using fixed training data (70%) and test data (30%). In other words, 10-fold 

cross validation was not employed. Further, we didn't employ oversampling. To better 

approximate real-world application scenarios, we manually divided the dataset into 

training and test sets. The split was performed using Python [X_train, X_test, y_train, 

y_test = split_data(size=0.3)]function. The classifiers were then trained and tested on 

imbalanced samples to ensure that the selected models perform well in the context of this 

project.  

The experimental results in the following table are obtained. In this experiment a 

positive example is a bad move The evaluation index is weight F-measure results of bad 

moves. We will select the top 10 classifiers for subsequent experiments. The results are 

summarized in Table 6. 

 

Table 6: All available classifier results on weka 3.8.6 

 

classifiers TP FP FN TN Accur

acy 

Precisi

on 

weight F-Measure 

RandomForest 22 161 56 1176 

84.66

% 12.02% 0.819  

RandomCommittee 20 163 59 1173 

84.31

% 10.93% 0.815  

RandomSubSpace 28 155 109 1123 

81.34

% 15.30% 0.802  

RandomizableFilteredClassif

ier 37 146 132 1100 

80.35

% 20.22% 0.800  

RandomTree 37 146 144 1088 

79.51

% 20.22% 0.795  

AdaboostM1 38 145 155 1077 

78.80

% 20.77% 0.790  

LMT 46 137 183 1049 

77.39

% 25.14% 0.784  
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Baggiing 54 129 201 1031 

76.68

% 29.51% 0.782  

PART 41 142 189 1043 

76.61

% 22.40% 0.777  

J48 48 135 203 1029 

76.11

% 26.23% 0.776  

5.2.4. Employed Features 

In this section, we employ the Incremental Feature Enhancement approach to 

systematically improve model performance by gradually adding new features. This 

method allows us to evaluate the impact of each additional feature set on the model's 

accuracy, ensuring that each feature contributes meaningfully to the detection of bad 

moves. 

Initially, we train the model using distance feature group as a baseline, obtaining a 

preliminary performance measurement. From this baseline, we then incrementally 

introduce additional feature groups, such as piece relationships, move evaluations, and 

spatial positions. With each iteration, we assess the model’s performance metrics, 

including accuracy, F1 score, and recall, to gauge the effectiveness of the added 

features[31]. 

In this experiment, we first made the following settings. Based on past researchers’ 

references to Chinese chess research and other chess studies, we selected 29 features from 

features that can be obtained directly in the program and features that are calculated. 

Conduct experiments, in which we divide these 29 features into 6 types for experiments. 

 

Table 7: Employed features result 

 

features F-measures 

A. distance feature group 0.853/0.269/0.779 

B. A+Chess piece relationship evaluation score 0.873/0.312/0.802 

C. B+ Traditional program assessment scores 
0.894/0.306/0.819 

D. C+Winning/loss rate 0.897/0.332/0.825 

E. D+ Piece weight assignment 0.918/0.235/0.831 

F. E+ Neural network evaluation score 0.934/0.247/0.847 

 

The results, as shown in Table 7, indicate that certain features, such as those derived 

from neural network evaluations and piece interactions, lead to notable improvements in 
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performance. For instance, adding features related to piece distance and positional 

evaluations significantly boosted the F-measure, particularly in the detection of bad 

moves. This demonstrates the importance of incorporating domain-specific insights, as 

these features capture the unique dynamics of Chinese chess that simpler features may 

overlook. 

Here, we take the random forest as an example to conduct ablation experiments on this 

classifier, dividing the 29 features into seven categories: A, B, C, D, E, F, and G. Detailed 

information will be provided in the appendix. 

 Training result 

5.3.1. Machine-Learning for Detection 

In the previous section, we observed that several additional features effectively 

improved detection accuracy using 10-fold cross-validation. In this section, due to the 

limitation of learning and analysis time, the training and test sets are manually separated, 

and the performance on the test data is compared with that of strong human players(result 

like Table 2).  

According to the preliminary experiment, we employed Random Forest as the learner. 

Not only is its robust and accurate estimation, but also its output of "feature importance" 

is valuable to analysis. 

For our experiment, we used train_1 as the training set, containing 2844 good moves 

and 519 bad moves, and test_1 as the test set, with 1223 good moves and 177 bad moves. 

Observing an imbalance in the number of good and bad moves in the training set, we 

applied a resampling method to increase the number of bad moves to equalize them with 

the good moves at 2844 each. According to Ikeda et al.'s study[21], this approach proves 

more effective than removing good moves, ensuring a balanced dataset that enhances 

model training. 

 

Table 8: F-measures of good/bad detection 

 

Players F-measures 

Player A for B 0.908/0.411/0.839 

Player B for C 0.863/0.353/0.805 

Player C for A 0.920/0.455/0.866 

Average 0.897/0.406/0.837 

Random forest 0.872/0.332/0.825 
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The resulting F-measure values are 0.872/0.332/0.825. It can be seen that the model’s 

performance is slightly below the average level of strong human players but outperforms 

Player B’s evaluation of Player C. This suggests that, compared to skilled human players, 

the bad moves detected by the newly trained model exhibit a certain degree of rationality. 

5.3.2. Machine-Learning for Labeling 

The second model assigns a type label to each detected bad move. We have a total of 

598 instances of bad moves. As with the training process for the first model mentioned 

earlier, we conducted some preliminary experiments to select a classification method and 

reference features. After comparing several methods available in Weka, such as J4.8, 

LADTree, SMO, and Multilayer Perceptron, we selected "AdaboostM1" as the 

classification method. When using all 29 features, the overall F-measure (average of 10-

fold cross-validation) is 0.413. In contrast to the incremental feature enhancement shown 

in 5.2.4, we employed an ablation optimization of features.First, the baseline model was 

learned with using all 29 features. 

Then, we removed one (group of) feature and retrain the model.  

To further analyze and optimize this model, we applied ablation experiments. By 

systematically removing specific groups of features, we could assess their individual 

contributions to the model’s performance. This process allows us to identify which 

features are most impactful for accurately labeling types of bad moves, thus refining the 

model and potentially improving its classification accuracy without unnecessary 

complexity. Then, we remove one set features and retrain the model. The specific details 

of the experiment are as follows: 

The experimental process is as follows: first, a baseline test is conducted using the full 

feature set to establish the model’s optimal performance. Then, in each subsequent 

experiment, we remove one feature or group of features and retrain the model. By 

comparing changes in accuracy, F1 score, and other performance metrics, we can evaluate 

the contribution of each feature. This approach enables us to identify the features that 

most significantly enhance model performance, optimizing feature selection strategies 

and improving model efficiency. 

Through the experiments, we observed that removing certain features led to an 

improvement in the F-measure of the second model. After removing some features from 

the six types of feature, the F-measure showed a slight increase, and after further 

adjustments, the F-measure reached 0.437. 

 Next we need to divide the data set into a training set and a test set as we did before, and 

compare the obtained F-measure with the F-measure value of a powerful human player. 

 For our experiment, we used train_2 as the training set, containing 1617 good moves 
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and 217 bad moves, and test_2 as the test set, with 869 good moves and 109 bad moves.  

As a comparison baseline, we selected two games with a total of 127 moves, including 

96 good moves and 31 bad moves, and had strong human players A, B, and C label them. 

After obtaining the F-measure, the model then labeled the baseline game records as well. 

The F-measure results from the model were subsequently compared with those from the 

human players. 

 

Table 9: F-measures for AdaboostM1 

 

Players F-measures 

Player A for B 0.487 

Player B for C 0.574 

Player C for A 0.432 

Average 0.497 

AdaboostM1 0.501 

 

The overall F-measure for human players is shown in Table 9, with an average F-

measure of 0.497, indicating that even among strong human players, there was no 

consistent agreement on the labels for errors. The F-measure obtained by AdaboostM1 is 

0.501, which is better than the human average. However, since the number of moves in 

the baseline test is relatively small, with only 127 moves, this result may not be 

universally applicable. 

For the labeling system, it is inherently more challenging than the detection system, as 

the output is not binary but multi-class. The subcategories include more than ten different 

error reasons, and when summarized, there are five main categories. Additionally, the 

number of training samples remained unchanged, which may also impact the accuracy of 

the labeling system compared to the detection system. If we were able to obtain more 

training data, the results of the second system might improve. 

 Result evaluation 

In Sections 5.3.1 and 5.3.2 the F-measure is primarily used to evaluate the results, 

comparing them with the average F-measure of strong human players. However, the F-

measure cannot fully capture whether a bad move has occurred accurately. To accurately 

evaluate move quality, it’s essential to recognize varying levels of error severity. Some 

moves may seem reasonable for beginners but get misclassified as poor, while strong 

players might overlook certain subtle errors. Similarly, errors differ in impact: just as 

mistaking a monkey for a gorilla is less critical than mistaking a human for a monkey, 
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distinguishing move mistakes by severity can prevent inappropriate generalization and 

improve labeling accuracy. 

Therefore, we decided to invite a strong human player to provide a final evaluation of 

the experimental results. The specific procedure is as follows: we first invited the three 

strong human players mentioned previously to label ten new game, Gamerecord_1. After 

obtaining Gamerecord_1, we used the system from Section 5.3.1 to detect bad moves, 

followed by the system from Section 5.3,2 to label the bad moves. The labeling results 

were then recorded. Then we will get Gamerecord_1 through Gamerecord_10. 

After obtaining these game records, we invited another professional coach, D, who 

holds a certified Chinese chess coaching license, to evaluate these labels. The evaluation 

was conducted in the form of a questionnaire, with each move rated on a scale of 1 to 5, 

representing the following: 

(1) [Completely incorrect label]to (5)[Completely correct, highly valuable for beginner 

players]. 

Coach D scored the judgments and labels made by the three strong human players and 

the two models based on his assessment. The final results are as follows: 

 

Table 10: Evaluation scores by a professional, for bad move detection 

 

Players Professional evaluation 

Player A  4.162 

Player B  3.832 

Player C  3.96 

Average 3.988 

Our method 4.074 

 

Table 11: Evaluation scores by a professional, for type labeling 

 

Players Professional evaluation 

Player A  4.122 

Player B  4.014 

Player C  4.086 

Average 4.074 

Our method 4.048 

 

Table 10 shows the scores for (1) bad move detection, and Table 10 presents the scores 

for (2) type labeling. We found that the score differences among the strong human players 

A, B, and C were minimal, which indirectly confirms that there is a small skill gap 

between the human players participating in our experiment.. Our model scored higher 

than the average, indicating that it is usable. 

In the Table 11, we observe that due to the reduced sample size, Table 11 shows the 

scores for type labeling. We can see that our method perform as good as human coaches,  
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and achieve acceptable level. Although our model's results were slightly below the 

average human score, they were better than the lowest-performing human player, which 

we consider an acceptable outcome. 

Based on these evaluation results, we believe that our method is promising and 

potentially usable to some extent. For bad move labeling, if we can obtain more data(this 

means more game records and annotators.), we anticipate that the results would improve 

further. 
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Chapter 6  Conclusion and Future Work 

As powerful computer players are capable of conducting numerous games, their 

potential in entertainment and guidance has emerged as a new topic in artificial 

intelligence. This paper presents the design and development of a system capable of 

detecting bad moves which are pointed by human coaches, along with a labeling system 

for annotating these moves. The interviews with three Xiangqi coaches and the analysis 

of the annotation results revealed that even among human coaches, the level of agreement 

on points to highlight is not very high. It also became clear that, to enable accurate 

judgments by the computer, it is necessary to design features that fully represent the 

characteristics of the Xiangqi board state and moves.. We collected 4,666 moves labeled 

by skilled players, extracted 29 features, and applied a two-step supervised learning 

approach. 

The quality of detection and labeling in this system was assessed by professional 

coaches. Results show that, while both systems perform slightly below the level of top 

human players, they have reached a usable level. 

In future work, we plan to expand the training dataset, as supervised learning requires 

extensive features and data to reduce overfitting. Additionally, we aim to explore other 

aspects of game coaching. Developing an explanatory system to complement or replace 

the current guidance based on optimal moves would also be valuable. After detecting and 

labeling bad moves, further analysis to recommend the best alternative moves would 

greatly enhance the system. Guiding human players to grasp abstract concepts remains a 

complex and meaningful area for research.   
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Appendix A 

In Chapters 4 and 5 of this article, the 29 features used in this experiment are mentioned. 

Here is a brief introduction to all the features. In this experiment, all features are divided 

into 6 types, All the characteristic values mentioned below can be obtained from the 

console of powerful Chinese chess software such as Pikafish. 

Type 1: Distance feature group 

Distance1: Distance from enemy king. 

Distance2: Distance from ourselves king. 

Distance3: Distance from best move from Chinese chess program. 

Distance4: Distance from best move from Chinese chess program. 

Distance5: The distance from the previous move of the chess piece. 

Type 2: Chess piece relationship evaluation score 

Protection score: The value score of pieces that protect another piece 

Capture score: The value score of the piece that captures the opponent's piece 

Black moving score: Score after black's move from Chinese chess program. 

Red moving score: Score after red's move from Chinese chess program. 

Black block moving score: Black's value points for preventing other pieces from 

moving. 

Red block moving score: Red's value points for preventing other pieces from moving. 

Type 3: Traditional program evaluation scores 

Round: length of Chinese chess gamerecord. 

Type: There are seven types of chess pieces in total 

Value: Basic value points of chess pieces 

Depth: The number of moves (ply) the engine looks ahead in its analysis to predict 

potential outcomes. 

Seldepth: The selective depth, or the maximum depth reached within specific lines the 

engine prioritizes as more relevant. 

Multipv: Refers to "Multi Principal Variation," indicating multiple best move options 

explored by the engine simultaneously. 

Score Mode: The mode or setting defining how scores are represented (e.g., centipawns, 

win probability) in evaluation outputs. 

Score: The numerical evaluation value indicating which side has an advantage and by 

how much, typically measured in centipawns. 

Color: color of chess piece 

Type 4: 
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Winning/loss rate: Changes in winning percentage when piece move. 

Type 5: Piece weight value 

Cumulative Move Value: In Chinese chess, if a piece remains in play, it will accumulate 

move value over time. 

Mobile efficiency: Move Efficiency: Due to the differences between types of pieces, 

each piece has a distinct move efficiency. 

Cumulative Capture Value: The change in a piece's value after capturing an opponent's 

piece. 

Type 6:Neural network evaluation score 

NNUE Evaluation: A neural network-based evaluation method that assesses positions 

using pre-trained parameters, enhancing chess engines' accuracy in evaluating complex 

positions. 

Bucket: A grouping mechanism that organizes similar positions or evaluations into 

categories for streamlined processing. 

Material: An evaluation component that measures the value of all remaining pieces on 

the board. 

Positional: An evaluation that considers a piece's placement and influence on the board, 

beyond just material value. 

Final Evaluation: The concluding assessment of a position after all calculations, used 

to determine the overall advantage or disadvantage. 

Appendix B 

After discussions with powerful Chinese chess human players, we summarized the 

following labels (for humans) for labeling bad moves, which are classified into six types 

in total. The details are as follows: 

Type 1: Multiple Moves for One Piece 

a. Moving a piece back to its original position 

b. Could complete the move in one step but spent extra turns 

c. Did not account for cumulative movement value (multiple moves for the same piece) 

Type 2: Violation of Opening Principles 

a. Using low-value pieces in the opening (not moving major pieces) 

b. Failing to balance the board left and right 

c. Not occupying effective terrain (missed opportunity to position pieces in high-value 

locations) 

d. Leaving a favorable position 

Type 3:Unfavorable Exchange or Accepting Opponent's Exchange Invitation 
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a. Exchanging a high-value piece for a low-value piece 

b. Losing position (resulting in a poor shape/reduced attack speed) 

Type 4:Mistakes in Attack 

a. Incorrect piece choice (attacking with low-mobility or low-threat pieces or using 

such pieces for tactical tasks) 

b. Correct piece choice but targeting the wrong location 

Type 5:Piece Loss (Beginner Mistake, Direct Loss of Piece) 

a. Losing a piece 

b. Losing the general (checkmate blunder) 

Type 6:Greedy Attack or Over-capturing 

a. Capturing a piece but losing initiative 

b. Capturing a piece but losing position (resulting in a poor shape/reduced attack speed) 

c. Capturing a piece but getting captured in return 
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