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Abstract—In this paper, we propose a new iterative model iden-
tification and tracking technique for distributed sensor systems
using a factor graph (FG). The idea is initiated from a position
identification technique we proposed [4], however, this paper aims
to provide an algorithm which is applicable to more generic
identification and tracking purposes. With the proposed tech-
nique, each sensor performs signal processing for compression
of the measurement data and sends the compressed data to the
fusion center. The marginal probability of the compressed sensing
results are calculated over the FG at the fusion center. At the final
stage, a maximum a posteriori probability (MAP) estimate of the
model can be obtained during the tracking phase through the FG.
The MAP over FG will be used for the prediction at the next state
of model identification to further improve the estimation accuracy
without requiring unacceptably high computation effort.

I. INTRODUCTION

A general technological trend towards B5G and 6G com-
munications systems is ”distributed”, such as edge computing,
distributed sensing network (DSN) [1], millimeter-wave back-
haul and access links based networks [2], and various cooper-
ative communications networks [3]. Compared to traditional
stand alone radar systems, distributed sensing systems are
more flexible to be implemented in practice without requiring
large hardware cost. With the development of monitoring
techniques in computer science and wireless communications,
the DSN-based techniques have been applied to broad areas
of applications, for instance, geolocation, autonomous vehicle
positioning, and agricultural monitoring, etc [4]–[6].

The primary objective of the distributed sensor-based model
identification-and-tracking techniques is to achieve high accu-
racy of estimation of parameters related to the model, and its

robustness against environment change by adequately tracking
the model. Particularly, in practice, since measured data sets
by the distributed sensors do not straightforwardly represent
the system models, mathematical properties of the functions
that connects the measurement and the parameters have to be
taken into account. In many cases, the connecting functions
are non-linear. Furthermore, the computational complexity
of the algorithm also need to be considered. Recently, [7]
introduced consensus filter-based method for distributed sensor
fusion. A vehicle classification method in a wireless DSN is
proposed in [8]. Moreover, [9] proposed a framework by using
factor graph (FG) for geolocation under Gaussian assumption.
The computational complexity can be drastically reduced due
to the fact that with the Gaussian assumption, only mean
and variance of Gaussian message need to be exchanged
and updated through iterations over FG, while the estimation
accuracy can be controlled with appropriate approximations.
[10] proposed a new unified extended Kalman filter based FG
(EKF-FG) for dynamic position tracking. The output from the
FG for model identification is used as observation state to
refine the prediction state which is obtained from previous
state in tracking EKF-FG at each timing step.

This paper investigates distributed sensors-based FG tech-
nique for model identification-and-tracking for a system. The
system model to be identified is not straightforwardly ex-
pressed by the measurements obtained from multiple sources.
The main contributions of this paper are summarized as
follows:

• A unified model identification and tracking FG algorithm
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is proposed to accurately estimate the parameters related
to the model and to track their states.

• The proposed algorithm can be applied to any kind of
non-linear system models, regardless of the relationship
between the snapshot and model parameters to be esti-
mated.

This paper is organized as follows. In section II, the schematic
model used in this paper is presented. The proposed unified
model identification-and-tracking FG and message expression
are detailed in section III. The performance of proposed
technique is evaluated through computer simulations, and the
results are shown in Section IV. Finally, Section V conclude
this paper with some concluding remarks. The Cramer-Rao
Lower Bound (CRLB) of the model identification is presented
in Appendix.

II. SYSTEM MODEL

The whole system is composed of the two parts which
are: model identification and tracking. We start with model
identification system using N distributed sensors, of which
self-information such as values set commonly used throughout
the iterations, for example, positions in the coordinate, is
known to the fusion center. Assume there are I independent
sources in the system model, each having M variables in
the set X = {xi,k,1, xi,k,2, . . . , xi,k,M}, which need to be
identified. i = 1, 2, . . . , I and k = 1, 2, . . . ,K are source and
timing indexes, respectively. The source index will be omitted
for the simplicity unless required.

The measurements of each distributed sensor at the timing
k is given by

ŷn,k = h(xn,k) + un,k, (1)

with n = 1, 2, . . . , N the sensor index and h(xn,k) a known
function representing the relationship between variable set X
and distributed sensors self-information, and un,k ∼ N (0, σ2

y)
the measurement error.

For the tracking part, we utilize the multiple variables
discrete state-space model (SSM), similar to [10]. The M
variables from the I sources can be presented in the vector
xk = [xi,k,1, xi,k,2, . . . , xi,k,M ]T with i = 1, 2, . . . , I at timing
k. The SSM is defined as

xk = f(xk−1) + wk, (2)

where the function f(·) can be linear or non-linear. Hence,
regardless of whether the model is linear or non-linear, the
algorithm derived in this paper can be commonly used.
wk = [wi,k,1, wi,k,2, . . . , wi,k,M ]T is the white Gaussian
driving force vector. It should be noticed that keeping the
messages exchanged over the FG being Gaussian distributed is
convenient, because the distribution is expressed only by mean
and variance. Therefore, the first order Taylor series (TS) is
utilized to approximate the function f(·), given by

f(xk−1) ≈ f(α) + f ′(α)(xk−1 −α) (3)

with α being the center point of the TS expansion, f(xk−1)
is the current state and f ′(α)(xk−1 − α) is the difference

between the current state xk−1 and the next state xk. As-
suming the difference between two states is not intractably
large, the derivative can be expressed by state gradient as
vk−1 = f ′(α)(xk−1 − α). Then (2) can be further expressed
as

xk ≈ xk−1 + vk−1 + wk. (4)

The changing speed vk−1 can be updated by extended Kalman
filter (EKF). The observation state jk of EKF is given by

jk = g(xk) + ek (5)

where g(xk) returns the mean of xk from model identification
FG and ek ∼ N (0, σ2

e) is the observation noise. Due to the
fact that ek is unknown, its variance σ2

e is also unknown.
Therefore, the smallest σ2

e calculated from the CRLB in
Appendix, is utilized [11].

III. PROPOSED ALGORITHM

A. FG for model identification

The proposed distributed sensors based model identification
and tracking technique with FG is given in this section. The
source and sensor indexes are omitted for the simplicity. It
should be emphasized that the first order TS expansion is
used to approximate the function h(xn,k), in the same way as
f(xk), centered at a point β, to keep the message Gaussianity
exchanged over the FG, expressed as

yk ≈h(β) +
∂h(xn,k)

∂xk,1
(xk,1 − β1) +

∂h(xn,k)

∂xk,2
(xk,2 − β2)

+ · · ·+ ∂h(xn,k)

∂xk,M
(xk,M − βM )

(6)
with β = [β1, β2, . . . , βm]T . The center point β is determined
by the predicted state xk|k−1 from tracking phase, which will
be discussed in the next subsection. Then, (6) can be rewritten
as

yk ≈ λk,1xk,1 + λk,2xk,2 + · · ·+ λk,Mxk,M + γk (7)

where λk,m, m = 1, 2, . . . ,M , and γk are the constants, given
by

λk,m =
∂h(xn,k)

∂xk,m
, (8)

γk = h(β)−
M∑

m=1

∂h(xn,k)

∂xk,m
βm (9)

The model parameters to be identified can then be derived as:

xk,m =

yk − γk −
M∑

m′=1,m′ ̸=m

λk,m′xk,m′

λk,m
(10)

The FG for the model identification is illustrated in the
upper part of Fig.1. Noted that the Fig.1 is used for estimating
one source parameters related to the model. It should be
emphasized that the algorithm for multiple sources model
identification can be derived in the same way. The measured
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Fig. 1. Proposed FG structure for model identification and tracking

messages from the distributed sensors are the input to the
measurement function node (FN) Dn for calculating mean
and variance, i.e., (myn,k

, σ2
yn,k

). The calculated mean and
variance from Measurement FN is passed through the iteration
FN. In this node, messages from multiple distributed sensors
are exchanged and updated. Let ζyn,k→xk,m

and ρxk,m→yn,k

denote the downward and upward messages between Iteration
FN and Estimation FN, respectively. The iteration process is
then described as follows, according to (8)-(10):

• Update of downward message

mζyn,k→xk,m
=

1

λk,m
myn,k

−

M∑
m′=1,m′ ̸=m

λk,m′mρx
k,m

′ →yn,k

λk,m

− γk
λk,m

(11)

σ2
ζyn,k→xk,m

=
1

λ2
k,m

σ2
yn,k

+

M∑
m′=1,m′ ̸=m

λ2
k,m′σ2

ρx
k,m

′ →yn,k

λ2
k,m

(12)
• Update of upward message

1

σ2
ρxk,m→yn,k

=

N∑
n′=1,n′ ̸=n

1

σ2
ζy

n′ ,k→xk,m

(13)

mρxk,m→yn,k
= σ2

ρxk,m→yn,k
·

N∑
n′=1,n′ ̸=n

mζy
n′,k→xk,m

σ2
ζy

n′,k→xk,m

(14)
The iteration is stopped when estimates are converged

or pre-defined maximum iteration number due to the com-
plexity or latency restriction is reached. At last, the esti-
mates corresponding to the identified model are achieved by
(mxk,m

, σ2
xk,m

), given by

1

σ2
xk,m

=

N∑
n=1

1

σ2
yn,k→xk,m

(15)

and

mxk,m
= σ2

xk,m
·

N∑
n=1

myn,k→xk,m

σ2
yn,k→xk,m

. (16)

It should be noted that the result mxk,m
of the FG iteration

can be seen as observation state of the EKF tracking phase.
From (5), the variance of the observation noise is not equal
to the estimation variance σ2

xk,m
. Since the observation noise

variance is unknown, we use the smallest value calculated from
CRLB to replace with it, as shown in Appendix.

B. FG for model tracking

Due to the space limitation, a tracking algorithm for only
one parameter xk,m with the model is presented as EKF-FG.
The rest of parameters can be updated in the same way. The
completeness of the derivation of EKF-FG is described in [12].
The variable index is omitted for the simplicity. Let µ and η
denote the flow message and observation over the tracking
phase. The whole tracking process can be divided into three
steps:

• State prediction
The prediction state is obtained from current state xk−1

and vk−1, given by

µ(xk|k−1)

=
∑
xk−1

∑
vk−1

f(xk|k−1|xk−1, vk−1)µa(xk−1)µb(vk−1),

(17)

• State update
The observation state ηk of model identification FG is
used to refine the prediction to obtain the next state xk,
given by

µe(xk) = µc(xk|k−1)µd(ηk) (18)

• Gradient Update
The state gradient vector vk is updated by current state
vk−1 and the changing rate v̂k between two adjacent
states divided by unit time, given by

µh(vk) =µb(vk−1)
∑
xk−1

∑
xk

f(v̂k|xk−1, xk)

µa(xk−1)µf (xk)

(19)

IV. SIMULATION RESULTS

In this section, results of the simulations conducted to
evaluate the performance of the proposed FG based model
identification and tracking algorithm using distributed sensors
are presented. In the simulations, because of the space limi-
tation, we only focus on single source scenario, however, the
proposed algorithm derived in the previous sections is also
applicable to multi-source cases. However, it should be noticed
that for the multi-source case, measurement data association,
such as clustering is needed, as in [4]. Let the set (An, Bn),
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n = 1, 2, 3, denote three sensors self-information, which
is unchanged during the iterations. (A1, B1) = (−30, 50),
(A2, B2) = (10, 5) and (A3, B3) = (60, 20), respectively. The
x1,k and x2,k defined in (6) and (7) are assumed to be given
as

x1,k = 0.05k2 + 0.03k + 6 + ω1,k (20)

x2,k = −0.02k2 + 0.07k + ω2,k (21)

in the simulation, where the timing k = {1, 2, . . . , 50} and
ω1,k, ω2,k ∼ N (0, σ2

ω) with σ2
ω = 0.5. The initial value of

source (x1,0, x2,0) is set at (2,−2). The non-linear function
h(xn,k) is defined by

h(xn,k) = (An − x1)
2 + (Bn − x2)

2 (22)

According to (6), the function h(xn,k) is first of all, approxi-
mated at the central point β = (β1, β2) = (x1,k|k−1, x2,k|k−1)
by the first order Taylor expansion, which is given by

yk ≈ h(β) +
∂h(xn,k)

∂xk,1
(xk,1 − β1) +

∂h(xn,k)

∂xk,2
(xk,2 − β2)

= λ1x1 + λ2x2 + γk
(23)

with
λ1 = −2(An − x1,k|k−1), (24)

λ2 = −2(Bn − x2,k|k−1), (25)

γk = A2
n − x2

1,k|k−1 +B2
n − x2

2,k|k−1 (26)

It should be noted that the function h(xn,k) can be arbitrary
function, regardless of linear or non-linear and the number of
parameters can also be chosen arbitrarily, depending on the
system or models.

At every measurement timing, each sensor receives 60
samples with standard deviation σy = 5. We set maximum
iteration number being 10 and the initial guess for iteration
set at (0, 0).

Fig. 2. Performance of convergence

Fig. 3. Performance of proposed tracking algorithm with σy = 5

Fig. 4. RMSE evaluation of the timing index

The convergence performance represented by the root mean
square error (RMSE) is shown in Fig. 2. It can be found
that with 4 or 5 iterations, the estimation result can acquire
the actual behavior of the model parameters, yielding very
small RMSE value with proposed FG based method. The
performance of model tracking is shown in Fig. 3. It is found
that the estimations of parameters related to the model by
FG are very close to the actual values. In addition, the gaps

Fig. 5. Average RMSE versus standard deviation with proposed FG based
model identification-and-tracking
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between the result of FG-EKF and actual trajectories of the
two parameters are very narrow. RMSE of model tracking is
calculated at each timing, of which results are shown in Fig. 4.
The average RMSE is also very small, which demonstrates
excellent performance of proposed model identification and
tracking algorithm. Finally, the accuracy of proposed technique
is evaluated by changing σy , of which result is shown in
Fig. 5. Obviously, with the increased standard deviation σy ,
also increases RMSE, however, surprisingly the accuracy of
model identification and tracking is not very sensitive to the
σy value change.

V. CONCLUSION

This paper has proposed a distributed sensors-based iterative
technique for model identification and tracking. A generic
mathematical model is, first of all, introduced for multiple
sources multiple variables which are aimed to be identified
and tracked. The proposed algorithm is then implemented
using a unified factor graphs (FG). Identification accuracy and
tracking performances have been evaluated through a series
of computer simulations for the case of a single source with
sensors. It has been demonstrated that besides its simplicity,
fast convergence can be achieved even if the initial guess is
very different from the actual values. The proposed technique
enables accurate model identification combined with dynamic
trajectory tracking. Furthermore, it should be stated that since
the tracker can predict the state at the future timings of which
state probability can be calculated from the previous state
probability, the technique can be used in, for example, colli-
sion prediction in autonomous driving system. Such practical
applications are left as future study.

VI. APPENDIX

A. CRLB deviation for observation noise

The observation noise ek ∼ N (0, σ2
e) will be calculated

from CRLB in this sub-section. As in [11], the CRLB can be
defined as

CRLB =
1

M
trace[F−1(x)] (27)

with F being the Fisher information matrix (FIM), of which
can be expressed as

F (x) = E

[(
∂

∂x
ln p(ŷ)

)2
]
, (28)

by giving the measurement ŷ with L samples. The PDF of
p(ŷ) is defined as

p(ŷ) =

L∏
l=1

1√
2πσ2

y

exp

[
− 1

2σ2
y

(ŷl − y)2
]
. (29)

Since

E

[(
∂

∂y
ln p(ŷ)

)2
]
= −E

[
∂2

∂y2
ln p(ŷ)

]
, (30)

and according to [12], (28) can further be expressed as

F (x) =
∂y

∂x

T

E

[(
∂

∂y
ln p(ŷ)

)T (
∂

∂y
ln p(ŷ)

)]
∂y

∂x

=
∂y

∂x

T

E

[(
∂

∂y
ln p(ŷ)

)2
]
∂y

∂x

=
∂y

∂x

T [
L

σ2
y

]
∂y

∂x
,

(31)

where ∂y
∂x is the Jacobin matrix, which can be given by

Jk|k−1 = ∂y
∂x =


∂y1

∂x1,k|k−1

∂y1

∂x2,k|k−1
. . .

...
...

...
∂yN

∂x1,k|k−1

∂yN

∂x2,k|k−1
. . .

. (32)

In this paper, we replace unknown true value (x1, x2) with
prediction state (x1,k|k−1, x2,k|k−1). Thereby, the CRLB is
given by

CRLB =
1

M
{trace[(JT

k|k−1Σ
−1
y Jk|k−1)L]}−1, (33)

where Σy = σ2
yIM denotes Gaussian covariance vector and

IM is identity vector.
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