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FlexScatter: Predictive Scheduling and Adaptive
Rateless Coding for Wi-Fi Backscatter

Communications in Dynamic Traffic Conditions
Xin He, Member, IEEE, Jingwen Xie, Aohua Zhang, Weiwei Jiang, Yujun Zhu,

Tad Matsumoto, Life Fellow, IEEE

Abstract—The potential of Wi-Fi backscatter communications
systems is immense, yet challenges such as signal instability
and energy constraints impose performance limits. This paper
introduces FlexScatter, a Wi-Fi backscatter system featuring
a designed scheduling strategy based on excitation prediction
and rateless coding to enhance system performance. Initially,
a Wi-Fi traffic prediction model is constructed by analyzing
the variability of the excitation source. Then, an adaptive
transmission scheduling algorithm is proposed to address the
low energy consumption demands of backscatter tags, adjusting
the transmission strategy according to predictive analytics and
taming channel conditions. Furthermore, leveraging the benefits
of low-density parity-check (LDPC) and fountain codes, a novel
coding and decoding algorithm is developed, which is tailored
for dynamic channel conditions. Experimental validation shows
that FlexScatter reduces bit error rates (BER) by up to 30%,
enhances energy efficiency by 7%, and overall system utility by
11%, compared to conventional methods. FlexScatter’s ability
to balance energy consumption and communication efficiency
makes it a robust solution for future IoT applications that rely
on unpredictable Wi-Fi traffic.

Index Terms—Wi-Fi Backscatter Communication Systems,
Traffic Prediction, Coding Algorithm, Transmission Scheduling,
Deep Learning

I. INTRODUCTION

Recent advancements in Internet of Things (IoT) technolo-
gies have brought backscatter communication to the forefront
as a promising solution for energy-efficient data transmission,
leveraging existing environmental radio frequency sources. A
standard backscatter communication system consists of an
excitation source, tags, and a receiver. These tags modulate
and reflect signals from the excitation source to the receiver
without regenerating their own signals, allowing tags to oper-
ate at ultra-low power levels, typically in the microwatt range.

Ambient backscatter communication, which utilizes ambient
radio signals from devices such as Wi-Fi routers and TV
transmitters, is favored over dedicated systems due to its lower
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deployment costs and the ubiquity of signal sources [1]–[4].
The pervasive nature of Wi-Fi signals, in particular, provides
substantial advantages for deployment in varied settings like
shopping malls and residential areas.

However, the intermittent nature of Wi-Fi signals, governed
by protocols such as IEEE 802.11a/g/n, brings significant
challenges in maintaining continuous data transmission for
backscatter systems [5]. The challenges include variable silent
periods between transmissions, which can destabilize the
communication link and increase packet loss in backscatter
communications. Additionally, the inherent low-power char-
acteristic of backscatter tags restricts their ability to adapt
to fluctuating signal availability and interference from other
environmental signals.

To address these challenges, this article introduces FlexS-
catter, a system designed to enhance the performance of
Wi-Fi backscatter systems by leveraging predictive modeling
of Wi-Fi signals. The main contributions of this paper are
summarized as follows:

• Adaptive backscatter scheduling: The paper introduces an
adaptive transmission scheduling algorithm that dynam-
ically adjusts transmission strategies based on real-time
Wi-Fi traffic predictions. This improves energy efficiency
and communication reliability in unpredictable Wi-Fi
environments.

• Wi-Fi traffic prediction: We use deep learning to predict
Wi-Fi traffic patterns. These predictive models enhance
the adaptability of backscatter communication, enabling
dynamic adjustments to variations in Wi-Fi traffic.

• We integrate low-density parity-check (LDPC) codes with
the principles of fountain codes, using omnipresent Wi-Fi
signals for efficient and reliable data transmission. This
approach adapts to varying channel conditions by adjust-
ing the encoded packets or bit rates, ensuring optimal use
of transmission resources.

The rest of this paper is organized as follows. Section
II introduces related work. Section III describes the system
architecture adopted in this study. In Section IV, the proposed
methods are detailed. Section V presents the experimentally
verified results and analysis, comprehensively evaluating the
effectiveness of the proposed methods. Finally, Section VI
summarizes the entire paper with concluding remarks.
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II. THE STATE-OF-THE-ART

A. Backscatter Communications

Thanks to the significant efforts made by the research
community, backscatter communications have been enabled
over various radio signals. A breakthrough work in ambient
backscatter communication is introduced in [3], where a
prototype was developed to transmit information via tele-
vision signals using backscatter. LoRa backscatter [6] and
PLoRa [7] enable long-range backscatter communication using
LoRa signals as the excitation signal, where the frequency
characteristics of the chirp signal are effectively utilized. FM
backscatter [8], which uses continuous FM radio signals as the
excitation, has a variety of new applications in urban areas.

Wi-Fi-based backscatter communication has seen consid-
erable development as well. BackFi [9] operates backscatter
communications over the Wi-Fi excitation signals transmitted
from Wi-Fi access points with hardware modification. Wi-
Fi backscatter [10] connects the RF-powered devices to the
Internet excited by a Wi-Fi signal. Passive Wi-Fi demonstrates
for the first time that it can generate 802.11b backscatter
transmissions using backscatter tags [11]. HitchHike [12]
enables the backscatter communication over 802.11b signals of
the off-the-shelf Wi-Fi transceivers using a proposed codeword
translation technique. A more recent work [13] enables per-
symbol and in-band backscatter communication over the Wi-Fi
excitation signals using a so-called flicker detector by utilizing
the residual channel knowledge of the Wi-Fi packets. Further-
more, backscattering of ultra-wideband signals is considered
in [14], and X-Tandem [15] enables a multi-hop backscatter
system using Wi-Fi signals as excitation sources.

However, these systems have rarely considered how un-
controlled Wi-Fi traffic can be used effectively as an exci-
tation signal. Bitalign [16] achieves 1.98 Mbps throughput
and a 0.5% bit error rate by optimizing synchronization and
managing uncontrolled signals, providing valuable insights
into improving backscatter system reliability. Nti et al. [17]
introduce nonsequential link adaptation with repetition codes
for Wi-Fi backscatter, improving throughput and reliability
through a testbed-validated framework. To enable more flex-
ible backscatter communications, the inherent nature of the
excitation signal must be taken into account. GuardRider [18],
[19] system aims at the effective utilization of the backscatter
information in real Wi-Fi networks. However, it assumes
that the Wi-Fi signaling duration follows Pareto distributions
without verifying the correctness of the actual Wi-Fi traffic
characteristics. Yang et al. propose a cooperative ambient
backscatter communication (CABC) system [20], which opti-
mizes maximum likelihood (ML) and successive interference
cancellation (SIC) detectors for OFDM-based backscatter,
improving detection performance while reducing system com-
plexity through spectrum sharing. RapidRider [21] system
embeds the tag’s data into a single OFDM symbol to reduce
the effects of uncontrolled Wi-Fi traffic.

B. Overview of Traffic Prediction Techniques

Traffic prediction in wireless networks is broadly catego-
rized into model-driven and data-driven approaches.

Fig. 1. The proposed system model of Wi-FI backscatter communications
with rateless encoding and traffic-based scheduling.

1) Model-driven approaches: These methods model traf-
fic as a statistical process and predict based on predefined
distributions. For instance, ref. [22] treats wireless traffic as
an unstable process and utilizes a statistical model based on
a-stable processes for prediction. This method is particularly
suitable for handling abrupt changes in self-similar traffic
patterns, which are common in wireless networks.

2) Data-driven approaches: In contrast, data-driven ap-
proaches rely on historical traffic data for the predictions,
often employing time series analysis and machine learning
techniques. Ref. [23] indicates that autoregressive integrated
moving average (ARIMA) models could predict regular com-
ponents, but random components are complex due to low inter-
correlation. Ref. [24] successfully predicts the arrival times
of wireless network traffic using a random forest regression
algorithm, outperforming traditional linear models. Refs. [25]
and [26] verify that long short-term memory (LSTM) and other
recurrent neural networks outperform conventional statistical
methods like ARIMA in predicting network traffic. Ref. [27]
makes further advancement of the traffic estimation by em-
ploying an LSTM-based framework to predict packet arrival
times, enabling more effective dynamic scheduling in wireless
networks. Hence, in this work, we implement the Wi-Fi traffic
predictor using a deep-learning method.

III. SYSTEM ARCHITECTURE

A. System Overview

Most existing Wi-Fi-based backscatter communication sys-
tems assume that the excitation source is controllable and
continuous. However, to facilitate the practical deployment of
the systems, it is necessary to address both intermittent WiFi
signal transmission and strong interference.

As shown in Fig. 1, FlexScatter consists of three main
components: a Wi-Fi traffic predictor, a customized tag, and
a receiver. The Wi-Fi traffic predictor provides input to a
scheduler in the tag, determining whether or not to transmit the
source message based on the predicted traffic. If the transmis-
sion is decided, the source message is channel-encoded using a
rateless coding technique, which ensures efficient and reliable
data transmission even under varying channel conditions. The
encoded message is then modulated and transmitted by the tag,
with a 20 MHz frequency shift. The “roadside” Wi-Fi access
point (AP) acts as the excitation source for the backscatter
communication. At the receiver, the signal is demodulated
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Fig. 2. The workflow of the proposed method for Wi-Fi traffic prediction.

and decoded, with a hard decision block determining the
final message. The system also incorporates an ACK/NACK
feedback loop between the receiver and the tag, which further
enhances communication reliability by allowing for a rateless
coding concept.

However, due to the ultra-low power consumption design
of the tags, the Wi-Fi traffic predictor is implemented on the
receiver side rather than on the tag itself. The receiver, after
predicting the traffic, communicates its decision to the tag by
sending a two-bit ACK signal—either ‘11’ or ‘00’—to notify
the tag of whether or not to proceed with the transmission. The
use of a two-bit signal, instead of a one-bit signal, is crucial
for improving the detection reliability at the low-power tag,
ensuring that the tag can correctly interpret notifications of the
receiver instructions even under challenging power constraints.
This design concept enhances the overall efficiency and robust-
ness of the FlexScatter system, particularly in scenarios where
energy consumption is of crucial importance.

B. Wi-Fi Traffic Predictor

To implement the Wi-Fi traffic predictor, we employ a
deep-learning-based approach leveraging a multi-scale chan-
nel attention mechanism. This algorithm leverages previously
stored traffic data to train a model capable of making accurate
predictions about future Wi-Fi traffic patterns, adapting to
complex and dynamic network conditions. By focusing on
this approach, the system is designed to effectively balance
accuracy and computational efficiency, catering to different
timing scales and performance requirements.

The algorithm consists of three key stages: data preparation,
data processing, and data modeling, as illustrated in Fig. 2.

1) Data Collection: We collected Wi-Fi traffic data with
the Edimax EW-7811Un Wi-Fi card, capturing data through
the tcpdump tool on a configured computer setup. Each card
was assigned to one of the three non-overlapping 2.4 GHz
channels (Channels 1, 6, and 11) to ensure comprehensive
data collection without interference. Typically, the captured
data contains the following features with different scales: time
stamp, frame length (bytes), radio duration (µs), interval time
(s), data rate (Mbps), and signal strength (dBm). The purpose
of the traffic predictor is to estimate the future interval time
using these features.

To validate the intermittent transmission of the Wi-Fi signal
in real-world environments, we conducted measurements in
three representative scenarios: a shopping mall, a laboratory,

TABLE I
DETAILS AND SETTINGS OF WI-FI TRAFFIC DATA COLLECTION

SCENARIOS

Scenario Area (m²) Number of APs
Shopping Mall 8000 4 (Ch. 1), 2 (Ch. 6), 3 (Ch. 11)

Laboratory 200 5 (Ch. 1), 3 (Ch. 6), 4 (Ch. 11)
Home Apartment 140 1 (Ch. 1), 2 (Ch. 6), 1 (Ch. 11)

and a home apartment. These scenarios represent environ-
ments with varying traffic densities and practical deployment
conditions for backscatter communication systems. Table I
summarizes major specifications of the data collection settings,
including the area size and the number of access points (APs)
on each channel.

Among these scenarios, the shopping mall (Channel 6)
was selected as the representative high-traffic environment
for further analysis. This environment exhibited consistent
and dense traffic activity, making it suitable for studying the
intermittent transmission of the Wi-Fi signal and its impact on
backscatter communication systems.

Recognizing the potential for discrepancies due to device
failures or malfunctions from various monitoring setups, we
conduct a preprocess to refine the raw data beforehand.

2) Data Preparation: The preprocessing begins with a
detailed inspection of the dataset to identify and rectify issues
such as irrelevant or unquantifiable parameters, missing values,
and outliers. We then slice the data into clusters using 1 second
per cluster. Particular attention is paid to the intervals between
clusters of Wi-Fi data as shown in Fig. 3. Following the initial
cleanup, we transform the dataset to feature uniform time
intervals, enhancing the consistency and analytical viability
for subsequent time series evaluations. Finally, we implement
a min-max normalization strategy, adjusting all feature values
to a [0, 1] range, which normalizes the data, facilitating more
effective comparisons and analyses in the later stages.

3) Data Processing: The goal of Wi-Fi traffic flow pre-
diction refers to the process of predicting the on/off state
in the future based on the time series of Wi-Fi traffic data,
that is, using the data of the current time t to estimate the
Wi-Fi traffic at the next time t + ∆t. Furthermore, to meet
the requirements of applications including Wi-Fi backscatter
communications, we aggregate predictions over future time
steps ∆t to estimate overall trends. The reason is twofold; First
of all, by aggregating the values within ∆t, a more accurate
prediction is achieved. Then, it is extremely power-consuming
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(a) CDF Comparison (b) Data Distribution with

Fig. 3. Analysis of interval time data with Pareto distribution.

for the tag to adjust the transmission frequently within a short
time period.

4) Data Modeling: We design a deep learning model
based on the multi-scale channel attention fusion module
(MSCAFM) to predict Wi-Fi traffic while considering tem-
poral factors accurately. The model implementation comprises
three key stages: multidimensional feature extraction, temporal
factor fusion, and sequence prediction.

In the multidimensional feature extraction stage, SAMSA-
Net leverages MSCAFM to capture multi-scale temporal fea-
tures of Wi-Fi traffic data. It combines the squeeze-and-
excitation (SE) attention mechanism and gating units to
optimize the representation and integration of the selected
features, establishing a robust feature foundation for sequence
prediction.

During the temporal factor fusion stage, the model incorpo-
rates long-term time stamps (such as hours and weekdays) as
features and integrates them with traffic data through attribute
feature units (AF-units). It enhances the sensitivity of the
model to temporal variations, improving prediction accuracy
and real-time performance.

Finally, in the sequence prediction stage, SAMSA-Net pro-
cesses the integrated feature matrix using gated recurrent units
(GRU) and self-attention mechanisms. It enables the model to
effectively capture long- and short-term trends in traffic data,
which enhances the prediction accuracy.

C. Scheduler

The designed scheduler is to enhance data transmission
reliability and efficiency under varying Wi-Fi conditions. The
algorithm dynamically adjusts its strategy based on the Wi-
Fi traffic conditions estimated in real-time, by the Wi-Fi
traffic predictor, effectively managing transmission intervals
to alleviate large interference and optimizing both network
reliability and energy conservation.

Real-time Wi-Fi traffic data is collected for the current
period and used to predict future traffic values for the next
∆t seconds based on the past L time steps. In the following
experiments, multiple ∆t time step predictions are summed

up to estimate overall trends and traffic levels. Experiments
indicated that using L = 64 and ∆t = 5 provide the best
predictive performance. After that, we compare the predicted
Wi-Fi interval rate with a predefined threshold WI . If the
predicted value is under WI , then the tag will backscatter its
message. Otherwise, the tag keeps silent to save energy.

D. Rateless LDPC Coding

For the channel-encoding process, the tag implements
LDPC coding with an infinite code rate, focusing on a well-
designed check matrix construction and adaptive encoding and
decoding processes.

1) Index matrix construction: LDPC codes utilize parity
check matrices for encoding. To adapt to infinite code rates,
we dynamically generate various index matrices by modifying
initial exponent values in the index matrix, as

P =


axby ax+1by · · · ax+mby

axby+1 ax+1by+1 · · · ax+mby+1

...
...

. . .
...

axby+n ax+1by+n · · · ax+mby+n

 (1)

where a and b stand for prime numbers, and x and y are
discrete random variables characterized by their probability
distributions.

These index matrices facilitate encoding with different gen-
erator matrices, ensuring continuous transmission of encoded
data packets. Fig. 4 shows the simulation results demonstrating
bit error rate (BER) performance with the index x as a
parameter. It is found that the BER performance is stable over
different matrices.

2) Efficient check matrix Design: The system employs a
new encoding technique for constructing the parity check
matrix of irregular QC-LDPC codes. The check matrix H
consists of two parts, H1 and H2, where H1 is derived from
the index matrix, and H2 includes a shiftable identity matrix
I, facilitating the construction of a cycle-free irregular matrix.
This structure not only mimics the performance of random
LDPC codes but also simplifies the computation with the
corresponding generator matrix.
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Fig. 4. BER performance with various initial exponent values.

H1 =


Iaxby Iax+1by · · · Iax+mby

Iaxby+1 Iax+1by+1 · · · Iax+mby+1

...
...

. . .
...

Iaxby+n Iax+1by+n · · · Iax+mby+n

 (2)

H2 =



I I 0 · · · 0 0
0 I I · · · 0 0
...

...
...

. . .
...

...
I 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · I I
I 0 0 · · · 0 I


(3)

After constructing the parity check matrix H, it is converted
into a standard form [I|Q] through row-wise Gaussian elim-
ination. Consequently, the generator matrix G is formed as
[P|I], where P = QT .

3) Adaptive encoding and decoding of LDPC: Unlike tra-
ditional LDPC coding, our method adopts feedback from the
receiver to notify the transmitter of the encoding strategies.
The tag in the system dynamically adapts encoding processes
based on feedback. Positive feedback leads to successive
information frame encoding, while negative feedback (NACK
signals) prompts the regeneration of new index and generator
matrices for re-encoding the failed frames. This adaptive en-
coding approach enhances the resilience of data transmission.

4) Enhanced decoding with improved BP algorithm: Our
decoding strategy incorporates an improved Belief Propagation
(BP) algorithm, which utilizes saved decoding results from
previous iterations to further refine decoding accuracy in
subsequent attempts. This iterative process effectively reduces
BER and ensures reliable data transmission over noisy chan-
nels.

Specifically, the algorithm flow is shown in Algorithm 1,
where BPfunction represents the improved BP algorithm,
and the normalization function represents the normalization
algorithm. Let the code length of a single encoded packet be

Algorithm 1 Rateless LDPC Code Decoding Process
Require: Prior probability of observations L(Ci)
Ensure: Hard decision for each bit x̂

1: count = 1
2: while ACK ̸= 11 do
3: if count == 1 then
4: (ACK,L(Qi)) = BPfunction(L(Ci))
5: else
6: L(Ci) = [L(Ci)(1 : M), L(Qi)(M + 1 : N)]
7: Normalization function(L(Ci))
8: (ACK,L(Qi)) = BPfunction(L(Ci))
9: end if

10: end while
11: if L(Qi) < 0 then
12: x̂ = 1
13: else
14: x̂ = 0
15: end if

N , and let M be the half of the code length. Thus, L(Qi)
represents the parity bits of the encoded packet, and L(Ci)
represents the information bits of the encoded packet.

The improved BP algorithm returns two values: a feedback
signal and posterior probabilities.

• The feedback signal is either ACK or NACK, represented
by binary 11 and 00, respectively. ACK indicates success-
ful decoding and informs the tag to encode and send the
next information frame. Conversely, if the receiver sends
a NACK, the tag will continue to use the indexing matrix
module and the generator matrix module to construct
more generator matrices to re-encode the unsuccessfully
decoded information frame and resend it to the receiver.

• The posterior probabilities consist of the probabilities of
information bits and parity bits. If decoding fails, the
results of the most recent information bits are retained
and used to replace the information bits in the next BP
algorithm iteration, while the parity bits in the new packet
remain unchanged. Therefore, in practical system opera-
tion, apart from the first transmission, which requires a
complete encoded packet, subsequent transmissions only
need to send encoded parity bits if decoding fails.

The normalization algorithm ensures that the results after
each BP algorithm iteration are within a certain range to main-
tain successful decoding. It is particularly important because
a high signal-to-noise ratio (SNR) can affect the posterior
probability range in the improved BP algorithm, potentially
generating erroneous values and leading to decoding failures.
In the experiment detailed in the following Section, the nor-
malization algorithm employs a linear function to limit the
posterior probability values within the range of -5 to 5.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Performance Metrics

Typically, we consider the BER indicating the transmission
accuracy. Besides, energy consumption is a crucial factor for
the tag requiring ultra-low power consumption. Hence, we
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Fig. 5. BER comparison between rateless and QC-LDPC codes across
different SNRs.

Fig. 6. Effect of adjusting the coding rate on BER of rateless LDPC codes.

jointly consider BER, throughput, and energy consumption
when designing a new metric, namely, utility in the backscatter
communications.

For evaluating energy efficiency, first of all, based on the
ultra-low power consumption characteristics of backscatter
communication systems, this paper assumes that each bit
transmitted by the backscatter tag consumes 10 µJ of energy.
According to Algorithm 1, except for the first transmission,
which requires a complete coded packet, subsequent transmis-
sions only need to send parity bits. Therefore, the total energy
required to send a coded packet is given by

E = 10

(
N

2
(n+ 1)

)
, (4)

where n represents the total number of packets and N the
number of bits in each coded packet.

To describe system performance in terms of how much
information is correctly received per unit of time, we adopt
throughput as an indicator of reliable transmission perfor-
mance, defined as:

T = R(1− Pe), (5)

Fig. 7. Performance comparison of different SNR across varied Wi-Fi traffic
interval ratios.

where R is the transmission rate at the tag and Pe the BER
after n transmissions.

With the energy and throughput metrics, the utility value U
is defined to evaluate system performance:

U =
αT

βE
. (6)

In this work, α and β are set at 1 for a general evaluation.
To make solid evaluations of the system performance, we

consider three distinct cases:
• Without scheduling: In this scenario, the system operates

without any predictive scheduling, relying solely on the
immediate availability of Wi-Fi signals, which may result
in suboptimal performance due to the unpredictability of
traffic.

• Scheduling using deep learning: Here, the system em-
ploys the proposed deep-learning-based algorithm for
traffic prediction, enabling it to schedule transmissions
more effectively by anticipating Wi-Fi traffic patterns.

• Scheduling using ideal values: In this case, the sys-
tem uses perfect, idealistic predictions of Wi-Fi traffic
(i.e., knowing the exact future traffic conditions). This
serves as an upper-bound benchmark, showing the max-
imum possible performance improvement that could be
achieved with perfect prediction.

B. Micro-Benchmark Experiments

1) Evaluation on coding/decoding design: This section
evaluates the performance of rateless LDPC codes with differ-
ent communication scenarios, focusing on BER as the primary
performance metric. The experiments are conducted on an
additive white Gaussian noise (AWGN) channel to simulate
varying noise levels represented by different SNRs.

The simulation transmits 1000 packets in total, with 1310
bits per packet. Each packet is encoded using LDPC with rate
1/2 and the index matrix parameters being a = 3 and b = 7.

Initial experiments aim to compare the rateless LDPC codes
with conventional QC-LDPC codes. As shown in Fig. 5, the
rateless codes consistently outperformed QC-LDPC codes in
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Fig. 8. Performance comparison of rateless LDPC coding and ARQ under
varied Wi-Fi conditions.

terms of BER over the entire SNR values tested, demonstrating
their robustness in noisy environments.

The simulation then changed the coding rate to evaluate
the BER performance sensitivity to the coding rate matching.
The results reveal that an increase in the number of transmitted
packets notably decreased BER, highlighting the superiority of
rateless codes to maintain low error rates, as shown in Fig. 6.

Due to the interval rate of Wi-Fi traffic affecting the
performance largely, we adopt a set of Wi-Fi interval ratios
to evaluate the performance of rateless LDPC codes. As
demonstrated in Fig. 7, the adopted rateless LDPC code could
still perform effectively until 20% interval ratios with different
SNR values. Hence, we set the threshold of the interval ratio
to 20% in the scheduling algorithm.

Lastly, a comparative evaluation against a basic ARQ re-
transmission mechanism underlined the superior adaptability
of rateless LDPC codes to fluctuating network conditions, as
shown in Fig. 8. In the ARQ scheme, the construction matrix
of the LDPC code remains the same and we just send the
same coded packets repeatedly. Compared to the ARQ case,
we gain around 0.5 dB in SNR.

These extensive tests validate the superior performance
of rateless LDPC codes, making them highly suitable for
environments with variable interference and discontinuity of
Wi-Fi traffic.

2) Wi-Fi traffics prediction: The Wi-Fi traffic dataset
adopted in this study was captured in commercial shopping
venues, covering the main operational hours from 9:00 AM to
10:00 PM daily over a week. An 80/20 data split strategy was
employed to identify the best model configuration.

A sliding window technique was employed, utilizing the
data at the current time t to predict the Wi-Fi traffic at the next
timing t+∆t. The sliding window approach is chosen because
it allows the model to capture temporal dependencies in the
data, making it particularly effective for time-series prediction.
By clustering similar patterns within the window, the model
can accurately predict and anticipate future traffic trends.

In the experiments, the model hyperparameters included a
learning rate of 0.0001, a batch size of 64, and a training period

TABLE II
COMPARISON OF EXPERIMENTAL RESULTS UNDER DIFFERENT SETTINGS

Method MSE RMSE MAE
ARIMA 0.027819 0.166790 0.103130

MLP 0.012733 0.112840 0.082369
CNN 0.011440 0.106960 0.084562

LSTM 0.009120 0.095499 0.070014
GRU 0.008823 0.093932 0.062518

CNN-GRU 0.008659 0.093056 0.063019
Our Method 0.008285 0.091021 0.061926

of 100 epochs. We utilize the Adam optimizer for gradient
descent, and all neural network-based methods were imple-
mented using the PyTorch framework due to its flexibility and
convenience for deep learning research.

To evaluate the performance of our prediction models, we
select three primary performance metrics: mean squared error
(MSE), root mean squared error (RMSE), and mean absolute
error (MAE).

To demonstrate the superiority and effectiveness of our
proposed method, we compare it with several widely used
baseline models, including ARIMA, MLP, CNN, LSTM, GRU,
and CNN-GRU. The results are summarized in Table II.

The experimental results clearly demonstrate that our deep
learning methods significantly outperform the traditional time-
series models such as MLP and ARIMA in terms of prediction
accuracy for the next ∆t = 5. The results demonstrate that
our proposed method can achieve substantial improvements in
MSE, RMSE, and MAE compared to these models. Specif-
ically, our method reduces MSE by approximately 70.22%,
RMSE by 45.43%, and MAE by 39.95% compared to the
ARIMA model; it reduces MSE by approximately 34.93%,
RMSE by 19.34%, and MAE by 24.82% compared to the
MLP model.

Moreover, when compared with other deep learning models
such as CNN, LSTM, GRU, and CNN-GRU, our method also
demonstrates superior performance. Our method reduces MSE,
RMSE, and MAE by 27.58%, 14.90%, and 26.77% compared
to CNN; 9.16%, 4.69%, and 11.55% compared to LSTM;
6.10%, 3.10%, and 0.95% compared to GRU; and 4.32%,
2.19%, and 1.73% compared to CNN-GRU. These results not
only assure the effectiveness of our method in the field of
deep learning but also highlight its significant advantages in
time-series prediction.

3) Impact of Scheduling Threshold: To optimize the
scheduling strategy for backscatter tags, we propose halting
data transmission when the Wi-Fi interval rate exceeds a
predefined threshold to conserve energy. Backscatter tags will
resume transmission only when the interval rate is below this
threshold. During low interval rates, the number of encoding
packets is restricted based on fountain coding principles to
efficiently utilize limited energy resources.

We then investigate the utility value variations under differ-
ent coding rates as the interval rate increases, with a fixed SNR
of 10 dB in an AWGN channel. The Wi-Fi interval rate ranges
from 0 to 0.5, using a rateless LDPC coding scheme. The
maximum number of encoding packets was randomly changed
between 2 and 9, and the data transmission rate R was set at 1
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Fig. 9. Comparison of system utility values at different interval rates and
different numbers of coding packets.

Mbps. The utility value was used as the primary performance
indicator of our design system.

Figure 9 presents utility values against Wi-Fi interval rates
with maximum encoding packet limit as a parameter. The
utility value curves plateau between interval rates of 15% to
25%. The plateau occurs because the total energy used remains
constant as the number of encoding packets needed for reliable
transmission increases, leading to stabilization in throughput
and utility value.

Increasing the maximum number of encoding packets re-
sults in a stable utility value with the same interval rate.
This is because each additional packet monotonically increases
the transmission energy, while throughput increase diminishes,
leading to stable utility value, as shown in (4).

To avoid low utility value regions, it is recommended that
the interval rate threshold WI be set at 25%. Backscatter tags
should remain silent when the Wi-Fi interval rate exceeds this
threshold and resume transmission when it falls below the
threshold. The optimal coding rate is 1/5, and the maximum
number of encoding packets should be set to 4, which opti-
mizes the transmission utility.

The configuration of the time slice length ∆t and the sliding
window size L significantly affect the system performance of
the scheduling algorithm, by making a balance of prediction
accuracy, computational complexity, and energy efficiency.
Experimental results suggest that ∆t = 5 seconds and L = 64
achieve an optimal tradeoff under the given conditions.

As shown in Table III, the shorter the time slices, (e.g.,
∆t = 2 with L = 16), the better the prediction accuracy,
with reduced MSE, RMSE, and MAE by 11.89%, 6.10%, and
5.27%, respectively, compared to ∆t = 5 seconds (L = 64).
The observed improvements are due to the ability of the system
to capture rapid traffic variations more effectively. However,
the shorter time slices require more frequent scheduling and
predictions, which results in significantly higher computational
complexity and energy consumption. These factors limit the
practicality of such configurations in resource-constrained
environments.

Conversely, the longer time slices, e.g., ∆t = 10 seconds

TABLE III
PREDICTION PERFORMANCE METRICS FOR DIFFERENT TIME SLICE

CONFIGURATIONS

Time Slice Duration
(∆t) and L

MSE RMSE MAE

∆t = 2 (L = 16) 0.015 0.122 0.098
∆t = 5 (L = 64) 0.017 0.130 0.103
∆t = 10 (L = 256) 0.021 0.145 0.114

TABLE IV
SYSTEM PERFORMANCE METRICS FOR DIFFERENT CONFIGURATIONS

Time Slice Length
(∆t) and L

BER Utility Throughput (Mbps)

∆t = 2 (L = 16) 0.12 0.85 0.99
∆t = 5 (L = 64) 0.14 0.78 1.00
∆t = 10 (L = 256) 0.50 0.39 0.93

with L = 256, the smaller the computational complexity but
the worse the prediction accuracy. Compared to ∆t = 5
seconds, and L = 64, MSE, RMSE, and MAE increase by
25.06%, 11.84%, and 11.08%, respectively. This observation
indicates the reduced adaptability of the system in the presence
of dynamic traffic fluctuations, resulting in higher error rates
and lower reliability.

From a system performance perspective (see Table IV),
∆t = 5 seconds and L = 64 achieve a balanced tradeoff
across the key metrics. With this configuration, the system
achieves a BER of 0.14, utility of 0.78, and throughput of
1.00 Mbps, providing a good compromise between accuracy,
energy efficiency, and system adaptability.

With shorter time slices (e.g., ∆t = 2, L = 16), BER is
reduced by 14.3% and the utility metric improved by 8.97%.
However, the throughput slightly drops by 1.0%, compared
to ∆t = 5 seconds. Despite the improvements of the BER
and the utility metric, the high energy cost due to frequent
scheduling and predictions makes the shorter time slices less
practical for real-world deployments.

On the other hand, longer time slices (e.g., ∆t = 10,
L = 256) result in significant performance degradation.
Compared to ∆t = 5 seconds, BER increases by 257.1%,
utility decreases by 50.0%, and throughput drops by 7.0%.
It verifies that the system can rarely adapt to dynamic traffic
patterns in this case, leading to lower reliability and efficiency.

It is important to emphasize that ∆t = 5 seconds and
L = 64 represent the optimal configuration for the specific
experimental conditions tested in this paper. While shorter time
slices improve prediction accuracy, their higher computational
and energy costs limit their practicality. Conversely, longer
time slices reduce energy consumption but sacrifice predic-
tion accuracy and adaptability. Therefore, ∆t = 5 seconds
and L = 64 provide the best compromise under the given
conditions.

C. Macro-benchmark Experiments

This section analyzes the impacts of scheduling strategies
using deep learning predictive methods on the performance
enhancement of backscatter communication systems. Our sim-
ulations were conducted in realistic environments character-
ized by AWGN with an SNR of 10 dB. The scheduling
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Fig. 10. The improvement on the system performance using scheduling driven from deep learning and perfect knowledge. The perfect knowledge is adopted
as the optimal performance for performance comparison.

strategies used in the simulations are a 0.25-time slot interval
rate threshold and a 1/5 code rate, and are benchmarked
against systems without scheduling strategies under identical
conditions.

1) Impact of Scheduling: To test the overall system per-
formance of the scheduling and rateless coding, we randomly
selected 20-time slices from the test set of the captured Wi-Fi
data. Each time slice contains a total number of 24,000 data
frames to be transmitted.

As shown in Fig. 10, it is found that, specifically, the BER
decreases by approximately 29.7%; and transmission energy
by approximately 6.8% on average. Throughput increases by
approximately 2.5% on average. The utility factor increases
by approximately 11.1% on average. The results indicate that
using deep learning models for predictive scheduling signif-
icantly enhances the accuracy and efficiency of the system’s
transmission performance.

Idealistic scheduling conditions, serving as a benchmark
for the system’s optimal performance, result in an average
decrease of 64.9% in BER and 12.5% in transmission energy,
while throughput and utility increase by 6.1% and 21.6%,
respectively, compared to no scheduling case. These results
highlight the superiority of scheduling algorithms under opti-
mal conditions.

Through comparative analysis, although predictive schedul-
ing can not achieve the optimal results of idealistic scheduling,
it still shows significant advantages over no scheduling con-
ditions. Specifically, predictive scheduling exhibits noticeable
decreases in key performance metrics such as BER, and
transmission energy, while throughput and utility metrics also
show significant improvements. This indicates that despite
limitations in predictive accuracy, the overall performance of
predictive scheduling outperforms the case without scheduling
and approaches the best performance under idealistic schedul-
ing conditions, validating the effectiveness and rationality of
the predictive scheduling strategy. Although transmission time
is slightly extended, it remains within an acceptable range,
ensuring a balance between transmission efficiency and system
reliability.

In summary, the experimental results demonstrate that the
predictive scheduling strategy significantly improves system
performance and efficiency compared to no scheduling. These
findings validate the effectiveness of our proposed predictive
scheduling strategy both in enhancing transmission accuracy
and system throughput and assuring its rationality and poten-
tial in practical applications.

2) Comparative Analysis: To fully evaluate the perfor-
mance of FlexScatter and demonstrate its advantages, we com-
pare it with other state-of-the-art Wi-Fi backscatter systems.
Table V presents the key features, including excitation signal
type, scheduling strategies, energy efficiency and performance
metrics.

Table V clearly indicates the advantages of FlexScatter
compared to other existing Wi-Fi backscatter systems. Unlike
traditional systems such as BackFi and Passive Wi-Fi, FlexS-
catter employs a predictive adaptive scheduling strategy that
significantly improves energy efficiency and reduces BER by
30%. Moreover, it introduces an adaptive coding scheme to
maintain reliability under dynamic Wi-Fi traffic conditions.
These features allow FlexScatter to achieve a 7% increase
in energy efficiency and an 11% improvement in utility,
exhibiting the superiority over other state-of-the-art solutions.

3) Impact of Sites: After analyzing the Wi-Fi traffic data in
three different scenarios: a shopping mall, a laboratory, and a
residential apartment, it is found that the cumulative distribu-
tion function of the idle state of the excitation source fits the
Pareto distribution, as shown in Fig. 3. Based on the collected
Wi-Fi data, we estimate the Pareto distribution parameters α in
these three scenarios, as shown in Table VI, where α represents
the shape parameter of the Pareto distribution; the larger the
α, the thinner the tail of the distribution, indicating a lower
probability of large idle times.

To demonstrate the scheduling strategy’s effectiveness, we
generate packet intervals using the estimated Pareto distribu-
tion parameters with which we conducted simulations having
500 runs. Each simulation uses 5 milliseconds as a time slice,
transmitting 100 frames per time slice.

As shown in Fig. 11, the scheduling strategy significantly
improves performance metrics compared to the non-scheduling
strategy in all three scenarios.

In the laboratory scenario, scheduling reduces the BER
by 80%, from 0.1607 to 0.033, a fivefold improvement.
Throughput increases by 7% (from 1.1869 to 1.2743), and
utility improves by 22% (from 38.7053 to 47.1117).

In the residential scenario, scheduling reduces the average
BER by 83%, from 0.0559 to 0.0092, a sixfold improvement.
Throughput rises by 3% (from 1.2626 to 1.2981), and utility
improves by 21% (from 59.7128 to 72.2397).

In the shopping mall scenario, scheduling reduces the aver-
age BER by 81%, from 0.1467 to 0.0278, a fivefold improve-
ment. Throughput increases by 7% (from 1.1968 to 1.2774),
and utility improves by 24% (from 36.4366 to 45.1348).

The differences in initial BER and the improvement levels
of the scheduling strategy across different scenarios are closely
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Fig. 11. The performance with/without scheduling in three different scenarios using re-generated packets using Pareto distribution with the obtained parameters
from the captured data.

TABLE V
COMPARISON OF WI-FI BACKSCATTER COMMUNICATION SYSTEMS

System Excitation Signal Scheduling Strategy Energy Efficiency Key Innovations Performance Metrics Complexity
FlexScatter Unstable Wi-Fi signal Predictive adaptive

scheduling
Energy efficiency +7% Predictive scheduling + adaptive

coding for BER reduction
BER ↓ 30%, Utility ↑ 11%, Energy
↑ 7%

Low

BackFi Wi-Fi signal None Low (backscatter de-
pendent)

High-throughput backscatter using
ambient Wi-Fi signals

1 Mbps (5m), 5 Mbps (1m) Medium

Passive Wi-Fi Ambient Wi-Fi signal None (passive communi-
cation)

Ultra-high (microwatt
level)

Ultra-low power 802.11b transmis-
sions for IoT devices

14.5µW @ 1 Mbps, 59.2µW @
11 Mbps, Range: 30-100 ft

Low

HitchHike Wi-Fi signal None (standard Wi-Fi sup-
port)

High (low-power
backscatter)

Compatible backscatter modulation
with standard Wi-Fi devices

Compatible with 802.11b Wi-Fi Medium

GuardRider Wi-Fi signal Traffic-prediction-based Moderate (depends on
traffic)

Traffic prediction for optimized
backscatter communication

Optimized for specific traffic mod-
els

High

RapidRider Wi-Fi signal OFDM symbol-level
scheduling

High (efficient trans-
mission)

Single-symbol backscatter + dein-
terleaving twins decoding

Max throughput: 235.3 kbps, 1.97x
MOXcatter, 3.92x FreeRider

Medium

EEWScatter Ambient Wi-Fi signal None (system-wide en-
ergy design)

System power lowest Low-power design + single-
receiver decoding

System power: 1/3 of Passive WiFi,
Tag power 1/1000 of radio

Medium

TABLE VI
PARETO DISTRIBUTION PARAMETERS FOR DIFFERENT SCENARIOS

Scenario Channel α
1 0.57

Laboratory 6 0.54
11 0.43
1 0.57

Shopping Mall 6 0.54
11 0.43
1 0.16

Residential Apartment 6 0.09
11 0.04

related to their environmental characteristics (see Table I).
The shopping mall scenario, with its large area, high density
of APs, and dynamic traffic patterns, experiences frequent
collisions and interference, leading to the highest initial BER.
In this complex environment, scheduling is essential for man-
aging resource contention and significantly enhancing system
performance.

In contrast, the laboratory scenario, characterized by mod-
erate AP density, stable configurations and predictable traffic
patterns, has a lower initial BER. The scheduling strategy
optimizes traffic resource allocation and improves efficiency
in this scenario.

The residential scenario, with minimal AP density and
sparse traffic, has the lowest initial BER due to its low traffic
demand. Even in this low-traffic environment, the scheduling
strategy effectively enhances system reliability and reduces the
waste of resources.

These findings demonstrate that the scheduling strategy is
typically advantageous in high-traffic and dynamic environ-
ments, such as the shopping mall, while still delivering per-

formance improvements in low-traffic settings, underscoring
its adaptability and practicality across diverse scenarios.

V. DISCUSSIONS

Continuous and reliable Wi-Fi backscatter communication
is critical for many practical applications. For instance, in
health monitoring, real-time sensing of a patient’s movement
or breathing depends on uninterrupted signal transmission.
Backscatter tags, which operate with minimal power consump-
tion, must consistently transmit data to healthcare providers to
ensure accurate and timely diagnosis. Any disruption in this
communication can lead to incomplete data capture, delaying
diagnosis or treatment and potentially compromising patient
outcomes. Similarly, in logistics tracking, continuous backscat-
ter communication ensures the precise monitoring of items in
motion. Interruptions in communication can cause inventory
discrepancies and shipment delays, particularly in dynamic
environments like warehouses and distribution centers, where
rapid and accurate updates are essential.

These examples underscore the importance of addressing
the challenges associated with maintaining continuous Wi-Fi
backscatter [28]. To tackle these issues, the proposed FlexS-
catter system introduces adaptive transmission scheduling and
deep learning-based traffic prediction. These innovations allow
the system to anticipate fluctuations in Wi-Fi traffic and
dynamically adjust its transmission schedule, ensuring stable
communication. By combining these predictive capabilities
with energy-efficient operations, FlexScatter significantly en-
hances both the reliability and utility of backscatter systems
in real-world applications.

The final model configuration for the traffic predictor
demonstrates its suitability for resource-constrained IoT sce-
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narios. With an input sequence length of 64, 8 features, 50
hidden units, and a step size of 5, the model achieves efficient
performance with an inference complexity of approximately
1.7M FLOPs. This balance between computational efficiency
and predictive accuracy ensures that the system meets the real-
time traffic prediction requirement without overburdening the
constrained hardware resources.

However, to minimize energy consumption, the current
implementation of the traffic predictor processes data at the
receiver, where predictions are computed and feedback is
sent to the backscatter tag. This design reduces computational
overhead on the low-power tag, enabling the system to operate
within stringent energy limits. In future work, quantization
methods will be explored to simplify the predictor, allowing
for its potential deployment directly on the backscatter tag.
This enhancement would enable real-time, on-tag adaptability
to dynamic Wi-Fi conditions, improving the flexibility of
our system and broadening its applicability to diverse IoT
environments with limited resources.

VI. CONCLUSION

In this paper, we have proposed a novel deep learning-based
traffic prediction and coding technique, FlexScatter, for Wi-Fi
backscatter communications with uncontrolled traffic. The ef-
fectiveness and practicality of the coding and scheduling tech-
nique proposed in this paper have been verified through simu-
lations with the aim of its application to the Wi-Fi backscatter
communication systems. By leveraging deep learning-based
traffic prediction, we have designed a scheduling algorithm
which effectively identifies whether to transmit or to stay
silent. Furthermore, we have proposed a rateless LDPC code to
tackle the problem of dynamically varying channel conditions.
It has been shown that the proposed system significantly
enhances both reliability and efficiency. The improvements in
terms of reliability and efficiency have been demonstrated not
only in controlled laboratory environments but also in real-
world application scenarios, to provide strong support for the
deployment in diverse and complex settings.
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