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Abstract

There is a great concern regarding the misuse of deepfake speech technology to
synthesize a real person’s voice. Therefore, developing speech-security systems
capable of detecting deepfake speech remains paramount in safeguarding against
such misuse. Although various speech features and methods have been proposed,
their potential for distinguishing between genuine and deepfake speech remains
unclear. Since speech-pathological features with deep learning are widely used to
assess unnaturalness in disordered voices associated with voice-production mecha-
nisms, investigated the potential of speech-pathological features for distinguishing
between genuine and deepfake speech.

In this work, two categories of pathological speech features were investigated:
perceptual and acoustic features. For perceptual features, eight characteristics
were examined: depth, sharpness, booming, hardness, brightness, roughness, war-
mth, and reverberation. The acoustic features analyzed included jitter (three
types), shimmer (four types), harmonics-to-noise ratio (HNR), cepstral-harmonics-
to-noise ratio, normalized noise energy (NNE), and glottal-to-noise excitation ratio
(GNE). The proposed method was evaluated on four datasets: Automatic Speaker
Verification Spoofing and Countermeasures Challenges (ASVspoof) 2019 and 2021,
and Audio Deep Synthesis Detection (ADD) 2022 and 2023.

In the first step, two types of speech-pathological features, perceptual and
acoustic, are investigated. The data from the feature extraction for each type
of feature were averaged. These averaged features were then fed into a multi-
layer perceptron neural network for training and evaluating the performance of
the model.

After investigation, it was found that acoustic speech-pathological features and
perceptual speech-pathological features could effectively detect deepfake speech,
except for HNR. To improve the efficiency of the proposed features, the important
features from both acoustic and perceptual speech-pathological features were se-
lected. The results indicate that when the important speech-pathological features
are combined, the efficiency of the proposed features is improved.

Consequently, aimed to enhance the efficiency of the acoustic speech-pathologi-
cal features by using segmental frames of analysis. This approach extends the
dimension of the features beyond a simple average. The results indicated that using
segmental frames of analysis significantly improved the efficiency of the acoustic
speech-pathological features.

Therefore, in this work, proposes a method for detecting deepfake speech by
using segmental frames of analysis of speech-pathological features. These features
include jitter (local), jitter (PPQ3), jitter (PPQ5), shimmer (local), shimmer
(APQ3), shimmer (APQ5), shimmer (APQ11), GNE, NNE, CHNR. These fea-
tures are fed into a ResNet-18 for classification, and the results demonstrate that
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incorporating these ten features with ResNet-18 significantly improves the effi-
ciency of detecting fake speech.

Moreover, this paper proposes a method of combining two models on the basis
of two different dimensions of speech-pathological features to greatly improve the
effectiveness of deepfake speech detection, along with mel-spectrogram features, to
enhance detection efficiency. The proposed method is evaluated on the ASVspoof
2019, 2021, ADD 2022, and ADD 2023 datasets. It consistently outperforms the
baselines in terms of accuracy, recall, F1-score, and F2-score across these datasets.
However, the equal error rate for the ADD 2022 test set remains relatively high.
Overall, the method demonstrates high performance and effectiveness in deepfake
speech detection.

Keywords: Deepfake speech detection, speech-pathological features, acousti-
cal features, perceptual features, and neural network.
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Chapter 1

Introduction

1.1 Research Background

Recent advances in Artificial Intelligence (AI) are transforming many aspects of
life. With its remarkable capabilities, AI brings numerous benefits across diverse
fields, spanning from healthcare and finance to transportation and entertainment.
Essentially, AI involves computers simulating human intelligence processes, en-
abling them to undertake tasks that conventionally demand human cognitive abil-
ities, including learning, reasoning, and problem-solving. AI possesses a crucial
advantage in boosting efficiency and productivity across various sectors. By au-
tomating and optimizing tasks, AI simplifies processes, decreases manual work,
and decreases mistakes, resulting in considerable cost reductions and enhanced
operational efficiency. In manufacturing, for example, robots powered by AI can
execute repetitive and laborious tasks accurately and consistently, thereby aug-
menting production while maintaining quality control.

Moreover, AI facilitates informed decision-making based on data by analyzing
vast amounts of complex information at speeds exceeding human capabilities. By
extracting valuable insights and patterns from massive datasets, businesses can
gain a competitive edge, improve strategies, and anticipate changes in the market.
In the healthcare industry, AI-driven diagnostic platforms can assist healthcare
professionals in accurately diagnosing illnesses, recommending personalized treat-
ment plans, and predicting patient outcomes, ultimately saving lives and improving
healthcare outcomes. Furthermore, artificial intelligence facilitates the creation of
new and advanced products and services designed to meet the changing demands
and tastes of consumers. Whether it’s virtual assistants and chatbots offering indi-
vidualized customer assistance or recommendation systems providing customized
content and suggestions, AI elevates user satisfaction and encourages interaction
with customers across a range of digital medium. Additionally, AI offers the po-
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tential to tackle societal issues and foster sustainable development. Utilizing tools
such as predictive analytics and intelligent resource management, AI can enhance
resource distribution, minimize environmental hazards, and advance energy con-
servation, thereby fostering a more sustainable future. In the field of speech, AI
has revolutionized it in numerous ways, offering a range of advantages and applica-
tions. For example, Speech Recognition facilitates precise and effective conversion
of spoken language into written text, enabling computers to perform this task.
This innovation finds utility in various domains such as voice-operated virtual
aides, transcription tools, dictation software, and automated customer support.
Second, Natural Language Processing (NLP) - AI-driven NLP algorithms facili-
tate machines in comprehending and deciphering human language. In speech, NLP
assists in endeavors like analyzing sentiment, translating languages, and grasping
semantics, fostering more authentic and significant interactions between humans
and machines. Third, Speech Synthesis - AI facilitates the creation of natural syn-
thetic speech, which is utilized in various domains such as text-to-speech (TTS)
systems. These systems transform written text into spoken language, benefiting
visually impaired individuals, language learning applications, and navigation sys-
tems in automobiles. Fourth, Healthcare Applications - In this application, AI
aids in analyzing speech to diagnose and track medical conditions like speech dis-
orders, cognitive impairments, and neurological diseases. Lastly, Voice Biometrics
- AI enables the utilization of voice biometrics for authentication and security ob-
jectives. Voiceprints serve to authenticate an individual by their distinct vocal
traits, thereby bolstering security measures in realms like access control, banking,
and online commerce.

Despite the numerous advantages offered by AI speech, such as its ability to
streamline communication processes and enhance accessibility, the misuse of these
technologies, known as deepfake speech, poses a significant threat to economies
and societies worldwide. For example, criminals take advantage of speech syn-
thesis applications to cheat voice biometric systems, such as automatic speaker
verification (ASV) systems. They exploit the advanced capabilities of these ap-
plications to mimic the voices of others, circumventing security measures meant
to authenticate users based on their unique vocal patterns. Therefore, detecting
deepfake speech is crucial for fraud protection and ensuring the reliability of ASV
systems.

In this dissertation study, techniques for deepfake speech detection are ex-
plored, aimed at improving the efficiency of current methods in detecting deepfake
speech.

Detecting deepfake speech has involved using several advanced techniques pri-
marily focusing on two approaches: creating efficient classifiers [10, 11, 12] and
exploring acoustic features [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. In the first
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approach, various classifiers have been used, including Gaussian mixture models
(GMMs) [24], deep neural networks [25], recurrent neural networks (RNNs) [26],
convolution neural networks (CNNs) [27], and residual neural networks (ResNets)
[28]. The selection of these classifiers might depend on the characteristics and
dimensions of the features. For example, features with small dimensions are suit-
able for traditional machine-learning models, while those with large dimensions
are better handled with deep-learning models, such as CNNs, RNNs, and ResNets
[29].

The second approach is focused on using speech and acoustic features as front-
end features [7]. Numerous features have been used for detecting deepfake speech,
including spectrograms, linear-frequency cepstral coefficients (LFCCs) [30], mel-
frequency cepstral coefficients [31], constant-Q transform [32], and constant-Q cep-
stral coefficients [33]. For example, Yi [9] and Wang [34] independently proposed
deepfake-detection methods using LFCCs with GMM. These features are repre-
sented in phase, power spectrum, and cepstral coefficients. These features, how-
ever, were used without thoroughly clarifying their potential for distinguishing
between genuine and deepfake speech.

Speech-pathological features, on the other hand, have been introduced to detect
the unnatural characteristics of synthesized audio [35, 23]. Speech-pathological fea-
tures are crucial components closely intertwined with the complex human speech-
production mechanisms, representing relevant acoustic, phonatory, and aerody-
namic parameters. Speech-language pathologists and otolaryngologists typically
use these features to distinguish between normal and disordered voices [36]. In
combination with machine-learning algorithms, speech-pathological features are
also used in automatic voice assessment and evaluation systems. These systems
assist healthcare professionals and medical doctors in classifying, diagnosing, as-
sessing the severity of, and identifying the types of voice disorders [37, 38, 39].
However, the study of pathological features for deepfake speech detection is lim-
ited. A method proposed by Kai et al. uses only a few features and is used for
fake audio detection [23]. Therefore, a comprehensive investigation of the poten-
tial of speech-pathological features in distinguishing between genuine and deepfake
speech is necessary.

3



1.2 Research Problems

Nowadays, deepfake speech is a misuse of artificial intelligence (AI) technolo-
gies that synthesizes speech through advanced voice conversion (VC) and text-
to-speech (TTS) techniques. It generates audio waveforms so realistic that they
can fool humans, closely approximating natural human voices. This poses a sig-
nificant threat to economies and societies. By convincingly replicating voices and
producing artificial speech, deepfake technology undermines confidence in audio
recordings and verbal exchanges, posing a significant risk of disseminating misin-
formation and causing widespread confusion. This trend not only threatens the
credibility of public discussions but also raises apprehensions regarding privacy
violations and the manipulation of prominent individuals.

There are the example of using deepfake to commit fraud. For example, in 2019,
criminals have exploited deepfake speech to impersonate a CEO’s voice, success-
fully defrauding over USD 243, 000 [40]. Moreover, in 2020, The bank manager in
Hong Kong was contacted by someone resembling a company director with whom
he had previously conversed. This individual requested the manager to authorize
transfers amounting to $35 million. Trusting their prior interaction, the manager
initiated transfers totaling $400,000 before becoming suspicious. Subsequently,
it was discovered that the manager had fallen victim to a sophisticated scheme
wherein fraudsters utilized deepfake technology to replicate the director’s voice
[41].

Therefore, the development of robust speech-security systems capable of ac-
curately detecting deepfake speech is crucial. These systems serve as a primary
defense, preventing the harmful consequences resulting from the misuse of such
technology. In today’s digital era, where misinformation spreads rapidly and ex-
tensively, there is an urgent need for proactive measures to maintain communica-
tion integrity. Consequently, concerted research and innovation efforts are essential
to strengthen defenses against this ever-evolving threat. By doing so, trust and
authenticity in discourse can be upheld, thereby preserving the fundamental prin-
ciples of a healthy and well-informed society.

Numerous approaches and methodologies have been proposed to discern be-
tween genuine and deepfake speech. However, their effectiveness necessitates sig-
nificant refinement, especially given the ongoing advancements in speech synthesis
technology. With the emergence and evolution of new techniques, it becomes
increasingly crucial to integrate linguistic patterns, prosody, and spectral charac-
teristics into detection algorithms. The endeavor to consistently detect deepfakes
grows increasingly intricate as creators employ progressively sophisticated tech-
niques to emulate authentic speech patterns and subtleties. Therefore, sustained
efforts aimed at enhancing these detection capabilities through interdisciplinary
collaboration and technological innovation are imperative to effectively address
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the escalating complexity of deepfake production and mitigate its potential so-
cietal implications. These motor instructions govern the intricate coordination
of various components involved in vocalization, including the lungs, vocal cords,
tongue, lips, and jaw. Together, they form what is known as the articulatory phase
of speech production. The lungs play a crucial role by facilitating the airflow nec-
essary for sound production. Meanwhile, the vocal cords vibrate to create the
initial sound source. Subsequently, the tongue, lips, and jaw work in harmony to
shape and modulate this sound into intelligible speech. This intricate process un-
derscores the remarkable coordination required for the human capacity for spoken
communication, showcasing the complexity of the vocal mechanism.

1.3 Research Motivation

This research is motivated from the following human speech production mech-
anism. Because the human speech production mechanism is intriguing, encom-
passing physiological and neurological elements. It begins with the conceptu-
alization of a linguistic message in the mind, known as the cognitive-linguistic
stage. Here, thoughts and ideas are formulated and subsequently translated into
linguistic structures. he encoded message is then transformed into a series of
motor commands in the motor planning stage, a complex process requiring metic-
ulous coordination. This involves not only the selection and sequencing of specific
phonemes, which are the smallest units of sound, but also the orchestration of
intricate muscle movements necessary for articulating these sounds into coherent
words and sentences. The brain must meticulously decide which muscles to acti-
vate, delicately orchestrating their timing, force, and sequence to ensure accurate
communication. The final phase in the process of delivering a speech involves the
transmission of sound waves containing the spoken message to the listener. As
these waves travel through the air, they undergo changes influenced by various
factors like environmental conditions, distance, and obstacles. These waves carry
not only the literal message but also convey subtle information about the speaker’s
emotions, culture, and even physical traits. Elements like pitch, rhythm, and tone
in speech play a significant role in how the message is understood by the listener,
adding complexity to communication. This stage of sound transmission is crucial
for conveying meaning and fostering connection beyond mere words, facilitating
deeper understanding and resonance between individuals.

From the aforementioned, the complexities inherent in human speech produc-
tion mechanisms pose a significant obstacle for artificial emulation, as each speaker
exhibits a unique constellation of individual characteristics. From the meticulous
orchestration of muscles within the vocal tract to the subtle modulation of pitch,
tone, and rhythm, the human voice embodies a plethora of nuanced variations
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and peculiarities. Moreover, elements such as accent, cadence, and even emotional
expression augment the rich mosaic of human communication, rendering each in-
dividual’s speech production a distinct phenomenon. Consequently, endeavors to
replicate this complexity in artificial systems require an in-depth comprehension
not only of the physiological processes implicated but also of the intricate in-
terplay between cognition, emotion, and linguistic experience. Thus, the quest
to reproduce human speech production in artificial systems constitutes a capti-
vating frontier in the disciplines of artificial intelligence and cognitive science,
promising profound revelations about the nature of human communication and
the quintessence of individual identity.

Although advances in AI speech are rapidly evolving, with researchers con-
tinually developing new techniques and algorithms to improve the realism and
expressiveness of synthesized speech, replicating the human speech production
mechanism remains constrained and challenging. AI speech struggles to capture
the unique characteristics that make each person’s voice distinct. Furthermore,
they are typically trained on large datasets of recorded speech, which may not
encompass the diversity of human speech patterns across different languages, di-
alects, and cultures.

In this research, speech-pathological features are used to detect deepfake speech,
which can also be utilized to identify voice disorders resulting from abnormalities
in the human speech production mechanism, and which manifest as unnatural-
ness. Deepfake speech is characterized by its unnaturalness; hence, the hypothesis
suggests that deepfake speech could possibly be the perceived acoustic quality of
the disordered voice. Therefore, speech-pathological features can be crucial clues
for deepfake speech detection based on human speech production.

1.4 Research Goals

The goal of this research is to propose a scheme of deepfake speech detection based
on speech-pathological features. Inspired by the human speech product, speech-
pathological features are crucial components closely intertwined with the complex
human speech-production mechanisms, representing relevant acoustic, phonatory,
and aerodynamic parameters. Speech-language pathologists and otolaryngologists
typically use these features to distinguish between normal and disordered voices.
This research investigates the possibility of using speech-pathological features that
detect voice disorders for distinguishing between deepfake and genuine speech. In
this dissertation, the following speech-pathological speech features are investigated:
jitter, shimmer, harmonics-to-noise ratio (HNR), cepstral-harmonics-to-noise ra-
tio (CHNR), normalized noise energy (NNE), and glottal-to-noise excitation ratio
(GNE). The speech-pathological features mentioned are analyzed to discuss the
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advantages and disadvantages of each feature. The significant speech-pathological
features are applied with the classifiers, for example, other machine learning mod-
els, or deep learning algorithms, to distinguish between genuine and deepfake
speech. In this dissertation, there are three research questions as follows:

• To investigate the pathological features used to distinguish between normal
and pathological voices whether they can be used to detect deepfake speech.

• To improve the efficiency of using speech-pathological features for detecting
deepfake speech.

• To find out the significant speech-pathological feature for detecting deepfake
speech among those mentioned above.

1.5 Challenges

There are several challenges in to detecting deepfake speech in currently.

• Unseen data

Unseen data poses significant challenges for deep fake speech detection pri-
marily because it encompasses instances or scenarios that the model hasn’t
been exposed to during training. Typically, deep fake detection models un-
dergo training on datasets comprising examples of both authentic and fabri-
cated speech. Nonetheless, the sheer diversity of potential modifications in
fake speech renders it impractical to train a model on every conceivable vari-
ation. Confronted with unseen data, such as novel techniques for generating
deep fake speech or alterations that were not encountered during training,
the model may encounter difficulty in accurately discerning between genuine
and fabricated speech. This limitation arises due to the model’s constrained
capacity to generalize from the training data to unobserved instances. As a
result, the effectiveness of the model in distinguishing between real and fake
speech may diminish when confronted with unseen data.

• Background noise

The presence of background noise presents significant challenges in iden-
tifying deepfake speech. This noise, which comprises unwanted electrical
signals infiltrating a communication system through its medium, disrupts
the intended message. Common sources of such interference include human
voices, vehicle sounds, rainfall, and wind. Even recorded voices, whether
captured indoors or outdoors, are susceptible to real-world disturbances like
laughter and rain. Unfortunately, attackers can exploit these natural noises
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to manipulate detection systems, underscoring the critical need for robust-
ness in fake voice detection technologies. Regrettably, minimal research has
been devoted to this issue within the realm of deepfake detection. Previous
endeavors have failed to adequately address the impact of real-world noise
using proposed detection methods that are still under development. Address-
ing this gap could serve as a promising entry point for researchers seeking
to develop a robust fake audio detection approach capable of functioning
effectively despite encountering noisy data in real-world settings.

1.6 Organization of Thesis

As shown in Fig. 1.1, this thesis consists of seven chapters. Apart from the intro-
duction chapter, the remaining chapters are organized as follows.

Chapter 2 presents a comprehensive literature review related to this study. It
begins by introducing the introduction of deepfake speech detection, human speech
production mechanism, followed by an introduction to the method of voice disor-
der assessment. Lastly Chapter 2, the features used for assessing voice disorders
include perceptual features and acoustical features are described.

Chapter 3 the contribution of using perceptual and acoustical speech-patholo-
gical features to detect fake speech. After that, it describes the philosophy of this
dissertation, which involves using speech-pathological features for deepfake speech.
Then, the perceptual and acoustical speech-pathological features are explained.
Lastly, the dataset and metrics used in this dissertation are presented.

Chapter 4 presents a method for detecting fake speech using acoustical speech-
pathological features. It details experiments conducted on ASVspoof 2019, ASVsp-
oof 2021, ADD 2022, and ADD 2023 datasets, analyzing the results and discus-
sions. Additionally, it identifies the key acoustical speech-pathological features
crucial for fake speech detection. Furthermore, the chapter introduces a novel ap-
proach employing segmental analysis of acoustical speech-pathological features for
fake speech detection. This includes the proposed method, results, and discussions
based on experiments conducted on ASVspoof 2019 and ASVspoof 2021 datasets,
along with additional data from ADD 2022 and ADD 2023. It then identifies
the critical segmental frames of analysis within the acoustical speech-pathological
features that are most effective for detecting fake speech. Finally, the chapter
concludes with a summary.

Chapter 5 demonstrates a method for detecting fake speech using perceptual
speech-pathological features and presents the results and discussion of experiments
conducted on ASVspoof 2019, ASVspoof 2021, ADD 2022, and ADD 2023. Ad-
ditionally, it identifies the important of perceptual speech-pathological features in
detecting fake speech. Finally, a summary is provided.
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Chapter 6 demonstrates a method for detecting fake speech using the im-
portant acoustical and perceptual speech-pathological features and presents the
results and discussion of experiments conducted on ASVspoof 2019, ASVspoof
2021, ADD 2022, and ADD 2023. Finally, a summary is provided.

Chapter 7 contains a summary, contributions, and the remaining works of
this study.
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Figure 1.1: Organization of this dissertation.
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Chapter 2

Literature Review

2.1 Introduction

Detecting deepfake speech has involved the utilization of several advanced tech-
niques, with primary emphasis on two main parts: the development of efficient
classifiers [10, 11, 12] and the exploration of various acoustic features [13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23]. Figure 2.1 shows two main part of the method for
fake speech detection.

Figure 2.1: General method for fake speech detection.

In the first part, various classifiers have been employed, including GMMs [24],
deep neural networks [25], RNNs [26], convolution neural networks (CNNs) [27],
and residual neural networks (ResNets) [28]. The selection of these classifiers might
depend on the characteristics and dimensions of the features. For example, features
with small dimensions are suitable for traditional machine-learning models, while
those with large dimensions are better handled with deep-learning models, such
as CNNs, RNNs, and ResNets [29].

The second approach is focused on using speech and acoustic features as front-
end features [7]. Numerous features have been used for detecting deepfake speech,
including spectrograms, linear-frequency cepstral coefficients (LFCCs) [30], mel-
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frequency cepstral coefficients [31], constant-Q transform [32], and constant-Q cep-
stral coefficients [33].

There are various researchers to proposed the method for fake speech detec-
tion. For example, Yu et al. [42] proposed a new scoring method called Human
Log-Likelihoods (HLLs), which utilizes a Deep Neural Network (DNN) classifier to
improve the detection rate. They compared this method with a traditional scor-
ing approach known as Log-Likelihood Ratios (LLRs), which relies on the GMM.
DNN-HLLs and GMM-LLRs were evaluated using the ASV Spoof Challenge 2015
dataset, with features extracted automatically. These evaluations confirmed that
DNN-HLLs outperformed GMM-LLRs, achieving an Equal Error Rate (EER)
of 12.24%. Moreover, Yi [9] and Wang [34] independently proposed deepfake-
detection methods using LFCCs with GMM. Borrelli et al. [43] devised a SVM
model coupled with Random Forest (RF) to forecast synthetic voice Automatic
Speaker Verification (ASV) spoofing challenges using the dataset from the 2019
challenge [7]. Their experiments were based on a novel audio feature termed Short-
Term Long-Term (STLT). The findings revealed that the SVM outperformed the
RF model by 71% in terms of performance. Liu et al. [20] compared the robust-
ness of SVM with a deep learning method called CNN in detecting fake stereo
audio from real ones. The comparison revealed that CNN is more robust than
SVM, despite both achieving a high accuracy of 99% in detection. However, SVM
encountered issues similar to those faced by the Logistic Regression (LR) model
during the feature extraction process.

Based on the works examined up to this point, it is evident that the fea-
tures in ML models must be extracted manually, requiring intensive preprocessing
before training to achieve satisfactory performance. Nonetheless, this process is
time-consuming and susceptible to inconsistencies, prompting the research com-
munity to explore advanced DL techniques. To address this, Subramani and Rao
[44] developed an approach to detect synthetic audio using two CNN models: Effi-
cientCNN and RES-EfficientCNN. In their study, RES-EfficientCNN outperformed
EfficientCNN, achieving a higher F1-score of 97.61% compared to 94.14% F1-score
for EfficientCNN, as demonstrated on the ASVspoof 2019 dataset. Another adap-
tation of CNN model, Zhenchun Lei et al. [45], proposed a 1-D CNN and a Siamese
CNN for detecting fake audio. In the case of the 1-D CNN, the model’s input com-
prised speech log-probabilities, while the Siamese CNN utilized two trained GMM
models. The Siamese CNN consisted of two identical CNNs, akin to the 1-D CNN,
but concatenated them using a fully connected layer with a softmax output layer.
Both models underwent testing on the ASVspoof 2019 dataset, revealing that the
proposed Siamese CNN surpassed the GMM and 1-D CNN by improving the EER
when utilizing LFCC features. However, performance slightly declined when em-
ploying CQCC features. Additionally, it was noted that the model lacked sufficient
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robustness and was tailored to work with specific types of features. One limitation
of this study is that it utilized many layers and convolutional networks, resulting
in management complexities.

Chintha et al. [46] developed two novel models that depend on a convolu-
tional RNN for audio Deepfake classification. First, the Convolutional Recurrent
Neural Network Spoof (CRNN-Spoof) model contains five layers of extracted au-
dio signals that are fed into a bidirectional LSTM network for predicting fake
audio. Second, the Wide Inception Residual Network Spoof (WIRE-Net-Spoof)
model has a different training process and uses a function named weighted neg-
ative log-likelihood. The CRNN-Spoof method obtained higher results than the
WIRE-Net-Spoof approach by 4.27% EER in the ASVspoof 2019 dataset. To ad-
dress this limitation, Shan and Tsai [35] proposed an alignment technique based
on classification models: Long Short-Term Memory (LSTM), bidirectional LSTM,
and transformer architectures. The technique classifies each audio frame as either
matching or nonmatching from a set of 50 recordings. The reported results in-
dicate that bidirectional LSTM outperforms the other models, achieving a 99.7%
accuracy and 0.43% EER. However, it is noted that the training process was time-
consuming, and the dataset used in the study was small, potentially leading to
overfitting.

In regard to transfer learning and unimodal methods, Aravind et al. [47] pro-
posed a new framework based on transfer learning and the ResNet-34 method
for detecting faked English-speaking voices. The transfer learning model was pre-
trained on the CNN network. The ResNet-34 method was employed to address the
vanishing gradient problem that commonly arises in deep learning models. The
results indicated that the proposed framework achieved the best performance, as
measured by EER, with a result of 5.32%. However, it should be noted that train-
ing with ResNet-34 can be time-consuming due to its deep architecture. Similarly,
Khochare et al. [48] investigated feature-based and image- based approaches for
classifying faked audio generated synthetically. New DL models called the Tempo-
ral Convolutional Network (TCN) and Spatial Transformer Network (STN) were
used in this work. TCN achieved promising outcomes in distinguishing between
fake and real audio with 92% accuracy, while STN obtained an accuracy of 80%.
Although the TCN works well with sequential data, it does not work with inputs
converted to Short-Time Fourier Transform (STFT) MFCC features. A novel au-
dio feature descriptor, introduced by Arif et al. [49] named ELTP-LFCC, combines
Local Ternary Pattern (ELTP) and LFCC. This descriptor was integrated into a
Deep Bidirectional Long Short-Term Memory (DBiLSTM) network to enhance
model robustness for detecting counterfeit audio across various indoor and out-
door settings. The model underwent testing on the ASVspoof 2019 dataset, which
encompasses both synthetic and imitation-based fake audio. The results revealed
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superior performance on synthetic audio (0.74% EER), while imitation-based sam-
ples exhibited lower performance (33.28% EER). A method called ASSERT (Anti-
Spoofing with Squeeze-Excitation and Residual neTworks) was introduced by Lai
et al. [50], leveraging variations of the Squeeze-Excitation Network (SENet) and
ResNet. This approach utilizes log power magnitude spectra (logspec) and CQCC
acoustic features for DNN training. Evaluation on the ASVspoof 2019 dataset re-
vealed that ASSERT achieved over a 17% relative improvement in synthetic audio
detection. However, during testing, the model exhibited zero EER in a logical
access scenario, indicating a significant degree of overfitting.

Based on the literature, the selection of classifiers depends on the characteris-
tics and dimensions of the features. For instance, features with small dimensions
are suitable for traditional machine learning models, whereas those with large di-
mensions are better handled by deep learning models such as CNNs, RNNs, and
ResNets. Additionally, these deep learning models are commonly used in combi-
nation for detecting fake speech.

In the field of features extraction, these features are represented in phase, power
spectrum, and cepstral coefficients, and other acoustic characteristics. These fea-
tures, however, were used without thoroughly clarifying their potential for distin-
guishing between genuine and deepfake speech.

In this study, an in-depth investigation was conducted into the potential fea-
tures associated with the mechanism of speech production. The aim was to enhance
the detection of deepfake speech, a growing concern in today’s digital communica-
tion landscape. By understanding these features, researchers hope to develop more
robust and reliable methods for identifying and mitigating the impact of deepfake
speech.

2.2 Human Speech Production Mechanism

Speech, as the innate mode of human communication, stands as the fundamental
and widely employed means of conveying thoughts and ideas. To the average
person, speech may simply constitute the audible vibrations emitted from the
mouth and interpreted through the ears. However, its generation involves intricate
processes. Understanding the mechanisms behind human speech production and
perception holds paramount significance, essential for advancing technologies such
as hearing aids, cochlear implants, speech recognition, enhancement, simulation,
and modeling. The mechanism of speech production comprises three primary
functions, depicted in Fig. 2.2 through a block diagram.

Motor control pertains to the cognitive process orchestrated by the human
brain, initiating the formation of speech and subsequently transmitting control
signals via sensory nerves to the speech production organs. Upon receipt of these

14



Figure 2.2: Block diagram of human speech production mechanism [1].

signals from the motor control unit, the speech production organs adapt and as-
sume the appropriate configurations to articulate the intended words or sounds.
Next, the concept of articulatory motion will be further elucidated in subsequent
paragraphs. The third element of the human speech production mechanism is
speech generation, involving the expulsion of air from the mouth and nasal cavity,
producing acoustic waves released into the surrounding space. Concerning speech
perception, the acoustic waves generated by the mouth and nasal cavity reach
the human ear and are interpreted through sensory nerves linking the ear to the
brain. This paper exclusively concentrates on the speech production mechanism,
excluding discourse on speech perception.

2.2.1 Motor control function

The process of controlling speech production entails the coordination of numerous
muscles and structures responsible for generating speech sounds. It is a mul-
tifaceted process that harmonizes neural signals from the brain with muscular
actions to produce distinct sounds and speech patterns. The process of motor
control unfolds as follows: speech production commences with the activation of
specific brain regions, predominantly within the left hemisphere for the majority
of right-handed individuals (including Broca’s area and the motor cortex). These
regions take charge of planning and initiating the movements necessary for speech.
The brain devises a sequence of movements required to articulate the intended
speech sounds, meticulously selecting the appropriate muscles and coordinating
their actions. Once the motor plan is set, signals are dispatched from the brain to
the muscles involved in speech production, traversing through the motor pathways
in the nervous system until they reach the muscles of the vocal tract. Upon re-
ceiving signals from the nervous system, these muscles contract in synchronization
to execute the desired movements. Distinct muscles are engaged depending on
the specific speech sounds being articulated. For instance, the lips, tongue, jaw,
and vocal cords each contribute significantly to shaping the vocal tract to produce
varied sounds. Throughout the speech production process, the brain continually
receives feedback from diverse sources, including auditory feedback (such as hear-
ing one’s own voice), proprioceptive feedback (sensations from muscles and joints),
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and visual feedback (observing one’s own articulatory movements). This feedback
is utilized to monitor and adjust speech production in real-time, ensuring preci-
sion and clarity. Moreover, speech production involves fine-tuning of movements
based on contextual factors like speaking rate, emphasis, and coarticulation (the
interplay between adjacent sounds). This meticulous adjustment enables smooth
and natural speech production.

2.2.2 Articlulatory motion

Several organs play a crucial role in the production of speech and sound in human
beings. These organs possess flexibility and can change their shape and size in
response to motor control signals from the brain, depending on the type of speech
or sound needed. The lungs supply the necessary airflow to create sound in the
form of acoustic waves. This airflow travels through the vocal tract, which connects
the lungs to the throat, as well as through the vocal cords, glottis, epiglottis, and
other mouth organs before being emitted through the mouth and nasal cavities
as acoustic waves. Figure 2.3 illustrates the various organs through which airflow
passes during the process of generating speech and sound.

The process of motor control unfolds in the following manner: during speech,
air expelled from the lungs ascends through the trachea and enters the larynx.
Within the larynx, the air encounters vocal cords, which are paired lip-like tissues
responsible for determining speech pitch. These vocal cords, characterized by
their pearly white appearance, are attached at one end to the arytenoid cartilages
at the rear and to the thyroid cartilage at the front. Typically, males possess
larger larynxes, resulting in lower-pitched voices, whereas females tend to have
smaller larynxes, leading to higher-pitched voices. The length of vocal folds varies
between genders, ranging from 17 to 25 mm in males and 12.5 to 17.5 mm in
females. Voiced speech is produced by the vibration of the vocal folds, while
unvoiced speech is generated by their momentary restriction. In addition to basic
speech, vocal cords adjust their opening and closing in various patterns, known
as phonemes, enabling airflow through the upper part of the vocal tract. This
tract, resembling a tube, extends from the glottis to two openings: the oral and
nasal cavities. Its non-uniform cross-section spans approximately 17 cm in males,
branching out at the soft palate halfway through the tract and opening up at the
nostrils as a secondary branch, measuring approximately 13 cm. As air exits the
vocal cords, it enters the pharyngeal, oral, and nasal cavities, where resonance
occurs. These cavities amplify certain frequencies and dampen others, thereby
shaping the sound according to the intended words. Additionally, various organs
within the mouth including the soft palate, teeth, tongue, lips, and jaw, adjust
their positions to regulate airflow through the mouth and nose, thus modulating
the shape and volume of the sound. Due to differences in the size and shape
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Figure 2.3: Human vocal apparatus [2].
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of these speech production organs, each individual’s speech possesses a unique
quality. Remarkably, despite the complexity of these articulatory movements, the
system reacts rapidly to adjust to changing speech parameters. Furthermore, the
epiglottis and false vocal cords below the pharynx play a crucial role in preventing
food from entering the larynx and isolating the esophagus from the vocal tract
acoustically [1].

2.2.3 Sound generation

In the sound generator unit, often referred to in linguistic terms as phonemes, plays
a crucial role in forming spoken words. Phonemes represent the most basic sounds
within a language, capable of altering meaning. The phonemes of a language
encompass contextual nuances, emotions, and the unique traits of the speaker,
all of which contribute to their pronunciation, though such intricacies are not
necessary in written text. These phonemes are primarily constructed based on the
articulatory gestures of the vocal tract.

The phonetics of any language typically consist of two main types of phonemes:
vowels and consonants. Vowels are always voiced sounds, while consonants can
be either voiced or voiceless. Voiced sounds occur when the vocal cords vibrate
regularly as air passes through them, with a fundamental frequency of about 110 Hz
for men, 200 Hz for women, and 300 Hz for children. Apart from the fundamental
frequency, the movements of the speech production organs generate resonance
frequencies specific to each phoneme. These resonance frequencies, denoted as
N number, including F1, F2, ..., Fn, are termed as Formant Frequencies. For
adult males, the typical range of formant frequencies is as follows: F1 = 180 to
800 Hz, F2 = 600 to 2500 Hz, F3 = 1200 to 3500 Hz, and F4 = 2300 to 4000
Hz. Conversely, unvoiced sounds exhibit a completely random nature. During the
generation of voiceless sounds, the vocal cords can be either fully open, fully closed,
or partially open. Vowel phonemes are generated by the frequent vibration of the
vocal cords. These phonemes are categorized into three types based on the position
of the tongue in the oral cavity: Front, including sounds like /IY/, /IH/, /EY/,
and /EH/; Mid, such as /AA/ and /ER/; and Back, which comprises sounds
like /AE/, /AO/, /UH/, /OW/, and /AH/. Consonants can be categorized as
either voiced or unvoiced, and they are further divided into Nasal, Stop or Plosive,
Fricative, and Affricate sounds. Nasal sounds, such as /M/, /N/, and /NG/, occur
when the mouth cavity is closed, and the air passes through the nasal cavity via
the open velum. Plosive sounds, like /P/, /B/, /T/, /K/, /D/, and /G/, occur
when pressure builds up behind the vocal cords and is suddenly released upon
momentary closure. Among these, /B/, /D/, and /G/ are voiced, while /P/,
/T/, and /K/ are unvoiced. Fricative sounds, such as /HH/, /F/, /V/, /TH/,
/DH/, /S/, /Z/, /SH/, and /ZH/, are produced when the mouth cavity is not
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fully blocked, allowing for a quasi-periodic flow of air due to vocal cord vibrations.
Affricate sounds, like /CH/ and /JH/, result from a combination of plosive and
fricative actions [1].

2.3 Voice Disorders Assessment

A voice disorder is a condition that affects the ability to produce a clear, normal
voice. Voice disorders can impact a person’s ability to communicate effectively
in their daily life. Common causes of voice disorders include overuse of the vocal
cords, such as from excessive yelling, singing, or speaking loudly for long periods,
growths or abnormalities on the vocal cords, and neurological issues that affect the
muscles involved in speech production. When the vocal cords are unable to vibrate
properly, it results in alterations in voice quality such as hoarseness, breathiness,
strain, or challenges in maintaining control over vocal volume and pitch. These
voice changes can negatively impact a person’s ability to communicate clearly and
be understood by others during speech production.

Research has delved into voice disorders and speech production. Deary et al.
[51] discovered a correlation between self-reported voice issues and personality
traits as well as psychological distress, indicating a subjective interpretation of
voice quality. While, Niimi et al. [52] examined the influence of neuromuscular
diseases on voice and speech disorders, emphasizing the crucial role of the neuro-
muscular system in speech production. Next, Chen et al. [53] enhanced speech
production models through an analysis of disordered speech in diverse groups,
identifying distinctive characteristics. The research of Dietrich et al. [54] delved
deeper into the neural control of phonation under stress, uncovering how limbic-
motor interactions affect speech production. Together, these studies highlight the
intricate nature of voice disorders and their connection to speech production.

2.3.1 Assessment of Voice Disorders by Clinicians

The evaluation of disordered voice generally requires a thorough, multidisciplinary
strategy, integrating both standardized and non-standardized assessment. The
auditory-perceptual evaluation method is widely utilized in clinical settings and is
often regarded as the benchmark for assessing voice quality [55].

The Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V) is exten-
sively employed as a standardized instrument, offering structured guidelines for
the perceptual assessment of atypical vocal characteristics [3].

The example of consensus CAPE-V form as shown in Fig. 2.4. This assessment
serves as the foundation of the evaluation process, during which a clinician assesses
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Figure 2.4: Example Consensus Auditory-Perceptual Evaluation of Voice (CAPE-
V) Form. [3].
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various aspects of voice quality, including overall severity, roughness, breathiness,
strain, pitch, and other characteristics.

Another crucial aspect of voice assessment involves the utilization of stro-
boscopy, a diagnostic technique enabling thorough examination of the oscillat-
ing vocal folds. This visual inspection yields valuable insights into vocal fold
performance, aiding in the detection of root causes behind voice disorders. The
evaluation of voice disorders is most effectively carried out through a team ef-
fort, with collaboration between otolaryngologists (specialists in ear, nose, and
throat conditions) and speech-language pathologists. Through the utilization of
an extensive array of assessment tools and the collaboration of a multidisciplinary
team, clinicians can gain a comprehensive insight into the patient’s voice disorder,
thereby facilitating the development of more efficient treatment and management
approaches.

2.3.2 Automatic Voice Disorders Assessment

Instead of solely relying on clinicians’ expertise to assess voice disorders, the uti-
lization of machine learning (ML) algorithms holds promise in aiding clinicians
in analyzing and evaluating the effectiveness of treatments for voice disorders.
One important approach entails utilizing classifier model algorithms to detect and
assess voice abnormalities through analyzing acoustic speech signals.

Researches have investigated various machine learning methods, including sup-
port vector machines, neural networks, and decision trees, to categorize voice
recordings as either disordered or healthy. These algorithms usually gather various
speech characteristics such as pitch, formants, cepstral coefficients, and measures
of voice quality. These collected features are subsequently utilized as inputs for the
classification models [56, 4]. They introduce an automatic voice disorder detec-
tion (AVDD) system, which can be helpful for both patients and laryngologists.
This work explains the process of developing the AVDD system using machine
learning, as shown in Fig. 2.5. The essential procedures entail several key stages:
initially, designated voice recordings stored as audio files undergo manual labeling
by experts to distinguish between healthy and pathological voices. Following this,
the audio data within each file are segmented into brief frames, with each frame
being processed to extract pertinent features. Subsequently, the gathered set of
features extracted from all frames serves as input for machine learning algorithms.
The dataset is then divided into training and testing sets, with observations ran-
domly chosen from both normal and pathological voice categories. The training
set is used to develop the ML model, while the testing set is employed to evaluate
its performance. Throughout the assessment phase, the classification accuracy is
computed, serving as a metric to evaluate the efficacy of various AVDD systems.

The two key points of the AVDD systems are the feature extraction and ML
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Figure 2.5: Automatic voice disorder detection (AVDD) system [4].
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models. Several research studies are developing methods to evaluate voice dis-
orders. Behroozmand and Almasganj [57] have investigated the role of energy
and entropy features extracted using wavelet packet decomposition for the speech
signal with unilateral vocal fold paralysis. The extracted features are optimized
using a genetic algorithm and classified using Support vector machine (SVM) with
a linear kernel. An accuracy of 100% is achieved with entropy features and 93.62%
with energy features. Cairns et al. [58] have proposed a noninvasive method to
detect hypernasality in speech based on a nonlinear operator. They classified
normal and hypernasal voices based on probability distribution functions. The
maximum classification accuracy was 94.7%. Gomez et al. [59]. has conducted
experiments to detect pathological voices in the larynx (such as polyps, nodules,
cysts, sulcus, edemas, carcinoma, etc.) using two neural network classification ap-
proaches, namely Multilayer perceptron (MLP) and learning vector quantization
with Mel-frequency cepstral coefficient (MFCC) features. They have reported that
the learning vector quantization method outperformed MLP, achieving a classifi-
cation accuracy of 96%. Ali [60] et al.. have proposed a system for voice disorder
detection using Gaussian Mixture Model (GMM), where they detect voice disor-
ders by determining the source signal from speech through linear prediction (LP)
analysis. The spectrum, computed using the features obtained from LP analysis,
provides the distribution of energy in both normal and pathological voices, which
will be used to differentiate them. The system is tested with both sustained vowels
and running speech and achieved accuracies of 99.94% and 99.75%, respectively.
Hadjitodorov and Mitev [61] developed a methodology for pathology detection us-
ing acoustic parameters such as jitter, shimmer, several harmonics-to-noise ratios
(HNRs), along with new parameters for estimating turbulent noise in voice signals
(Turbulent Noise Index) and characterizing ”breathy” voice. The classification
accuracy achieved was up to 96.1%.

The above-mentioned information pertaining to the AVDD systems reveals that
almost all proposed methods demonstrate exceptional performance when it comes
to evaluating voice disorders, boasting an accuracy rate exceeding 93%. This
indicates that the AVDD system holds significant promise for aiding both patients
and clinicians in the comprehensive assessment of voice disorders. With its high
level of accuracy, the system can provide invaluable insights into the diagnosis and
treatment of various vocal impairments, thereby facilitating more effective and
targeted interventions for individuals experiencing such conditions. Consequently,
the utilization of the AVDD system stands to greatly benefit not only patients
seeking reliable diagnostic measures but also healthcare professionals striving for
enhanced precision and efficacy in their clinical evaluations.

23



2.4 Perceptual Speech-Pathological Features for

Assessing Voice Disorders

The assessment of voice disorders is based on auditory perception, which evaluates
the quality of voice by examining perceptual characteristics such as pitch, loud-
ness, resonance, and overall timbre. This evaluation encompasses various factors
that can affect a person’s voice quality, including vocal fold anatomy, respiratory
support, and vocal technique. In numerous instances, alterations in voice quality,
such as hoarseness, breathiness, roughness, or strained vocal quality, may result
from voice disorders. Nonetheless, not all variations in voice quality signify a voice
disorder. Temporary shifts in voice quality may arise from factors such as acute
illness, fatigue, or vocal strain, whereas voice disorders usually entail persistent or
recurrent abnormalities in voice production. Evaluating voice quality is crucial in
the diagnosis and treatment of voice disorders, and it involves the utilization of
diverse tools and methods by speech-language pathologists and otolaryngologists
(ENT doctors), such as perceptual assessment, acoustic analysis, and laryngeal
imaging. Therefore, perceptual features can be crucial clues for voice order detec-
tion based on auditory perception.

There are research related to detecting voice disorders that evaluates voice
quality by examining perceptual characteristic. Sasou [62] introduces a technique
to evaluate pathological voice quality automatically using the grade-roughness-
breathiness-asthenia-strain (GRBAS) categorization, which is a widely accepted
standard in the field. It achieves an impressive average F-measure of 87.25%
for tasks related to identifying speakers, demonstrating its efficacy in accurately
discerning subtle nuances in vocal characteristics. The second work reported by
Hidaka et al. [63] explores automatic estimation of voice quality using an Re-
current Neural Network (RNN) with non-parametric features extracted from the
amplitude and phase spectrograms. This automated method has the potential
to significantly enhance reproducibility in laryngological practice, offering a stan-
dardized approach to voice quality assessment. Non-parametric features extracted
from amplitude and phase spectrograms, especially when transformed into the
mel scale, demonstrated enhanced efficacy in evaluating hoarseness. Specifically,
temporal phase variation along the mel scale proved effective for assessing Grade,
Rough, Breathy, and Strained qualities, while log mel amplitude emerged as a
reliable indicator for Asthenic characteristics. Then, Jouaiti et al.. [64] conducted
a detailed analysis of speech data collected over time from individuals with speech
impairments, aiming to gain insights into cognitive changes. They manually la-
beled the speech data and matched these labels to acoustic features using openS-
MILE, identifying critical features that contribute to perceptual ratings related to
phonation, breathiness, roughness, asthenia, and strain. The experiment resulted
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in successful assessments of phonation aspects, with an F1-score of 55%; breath-
iness, 71%; roughness, 60% ; asthenia, 65%; and strain, 0.74%. Finally, Krue
et al. [65] proposed that using musical features extracted from voice recordings
improved the accuracy of discriminating Parkinson’s disease (PD) patients from
healthy individuals. This work applied musical features consisting of Dynamics,
Rhythm, Timbre, Pitch, and Tonality. They applied these features to K-Nearest
Neighbors (KNN) and SVM, and the results indicated that they outperformed
existing studies in terms of accuracy.

From the above-mentioned works, the feature related to evaluating the voice
quality of abnormal voices found that those features can potentially detect voice
disorders. Timbre features, such as roughness and brightness attributes, are uti-
lized in these studies. Consequently, it can be inferred that timbre features possess
the capability to identify voice disorders effectively.

2.5 Acoustical Speech-Pathological Features for

Assessing Voice Disorders

Pathological features used for identifying voice disorders denote unusual attributes
observed in an individual’s voice, suggesting a possible underlying medical issue
or impairment. These attributes encompass alterations in pitch, volume, and
resonance, alongside occurrences such as voice breaks, hoarseness, or breathiness.
Several speech pathology features and classifiers are utilized for detecting voice
disorders. These methods aim to automate the assessment of voice disorders,
assisting clinicians in improving their expertise to enhance the performance of
detecting voice disorders.

Various research studies are developing methods to assess voice disorders.
Zhang and Jiang [66] examined the acoustic properties of sustained and running
vowels in both healthy individuals and patients with laryngeal disorders. They
utilized perturbation techniques, such as jitter and shimmer, along with signal-to-
noise ratio analysis, and nonlinear dynamic methods, such as correlation dimen-
sion and second-order entropy, to analyze these vowels. The results indicated a
significant statistical distinction between the voices of individuals with laryngeal
pathologies and those with normal vocal function. Watts et al. [67]. assessed var-
ious aspects of vocal performance in a professional singer with vocal fold edema
both before and after medication. They found that following medication, there
was a notable rise in the fundamental frequency (F0), along with significant re-
ductions in jitter, shimmer, long-term frequency, and amplitude variability. Shama
and Cholayya [68] conducted a study aimed at detecting various laryngeal patholo-
gies such as adductor paralysis, cysts, leukoplakia, vocal fold polyps, degenerative
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polyps, vocal fold edema, and vocal nodules. They utilized the HNR measure and
critical-band energy spectrum as features for this purpose. HNRs were estimated
across four frequency bands and served as one set of features. The normalized
energies were obtained by filtering voiced speech signals through 21 critical band-
pass filters, mimicking human auditory neurons, and constituted another set of
features. The set of HNR features achieved an accuracy of 94.28%, while the
critical energy spectrum features achieved 92.38% accuracy when employed with
a KNN classifier. The results indicate that these features can complement the
perceptual evaluation of speech in detecting suspected laryngeal pathologies. Im-
portantly, this method requires a shorter length of speech data for analysis and
is computationally less expensive compared to extracting fundamental frequency
and noise measures. Parsa and Jamieson [69] examined various glottal noise met-
rics, including signal-to-noise ratio, HNR, normalized noise energy, frequency do-
main HNR, pitch amplitude, and spectral flatness ratio, to distinguish between
healthy and pathological voices. They categorized these metrics into two groups
and compared them based on (1) the probability distribution, (2) the ranking,
and (3) the Receiver Operating Characteristic (ROC) of each metric. The highest
achieved classification accuracy was 96.50%. Hadjito-Dorov et al. [70] presented
a technique focused on creating prototype distribution maps (PDM) to model the
probability density functions of input vectors from both normal and pathological
speakers. This method utilizes characteristics like pitch period, pitch pulse shape,
HNR, and low-to-high energy ratio. The results showed a classification accuracy
of 95.10%. Teixeira et al. [71]. examined the role of various acoustic features,
including jitter, shimmer, and HNR, in evaluating voice disorders through artifi-
cial neural networks (ANN). Their analysis encompassed samples from both male
and female voices, culminating in a remarkable achievement: they achieved a per-
fect accuracy rate of 100% for female voices and an impressive 90% accuracy for
male voices. Gomez et al. [72] introduced a method for automatically detecting
voice disorders utilizing the glottal-to-noise excitation ratio (GNE) and cepstral
harmonics-to-noise ratio (CHNR). To classify the data, this study employed or-
dinal regression and Gaussian regression. The most effective automatic detector,
trained using the Saarbrücken voice disorders database, achieves an Area Under
The Curve (AUC) of 88%. WU et al. [73] investigated the application of glottal
flow waveform in conjunction with a random forest classifier for detecting voice
pathology. The study yielded high accuracies in detecting voice disorders by uti-
lizing a combined feature set derived from the glottal source signal. The results
showcased enhanced performance through the utilization of glottal flow waveform,
surpassing existing methods. The accuracy rates for voice pathology detection were
88.52% for the Saarbrücken Voice Database and 100.00% for the Massachusetts
Eye and Ear Infirmary Database in this study.
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The aforementioned details pertain to the utilization of acoustical speech-
pathological features for automated voice disorder detection. The findings indicate
that a majority of the proposed methods demonstrate notably high performance
in assessing voice disorders. These methods achieve accuracy rates surpassing
88% and even reaching up to 100% on certain datasets. Such results underscore
the promising potential of integrating speech-pathological features with classifiers.
This integration holds considerable promise for assisting both patients and clini-
cians in conducting comprehensive assessments of voice disorders, thereby enhanc-
ing diagnostic accuracy and facilitating tailored treatment plans.
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Chapter 3

Contribution of Using Perceptual
and Acoustical Speech
Pathological Features to Detect
Fake Speech

3.1 Concept and Idea of Proposed Features

The concept and idea of utilizing speech-pathological features represent hypothe-
ses regarding the perceived acoustic quality of a disordered voice. The hypothesis
of this research is that deepfake speech could potentially simulate the perceived
acoustic quality of a disordered voice. Moreover, voice disorders are indeed ab-
normalities in the speech production mechanism. They occur when there are
issues with the structures involved in producing voice, such as the vocal cords,
larynx, and lungs. These disorders can affect the quality, pitch, volume, and other
characteristics of a person’s voice. The abnormalities of voice disorders represent
unnaturalness. Deepfake speech is synthesized from a machine generator, and it
is also unnatural speech. Therefore, the speech pathological features can be clues
to detect deepfake speech, as depicted in Fig. 3.1. There are several features used
to detect voice disorders. In this research, we focus on two concepts: acoustic and
perceptual features.

The idea of using acoustical speech-pathological features is that these features
are widely used to distinguish a healthy voice from disordered voices, thereby pro-
viding invaluable insights into the diagnosis, treatment, and management of var-
ious speech disorders and conditions. Acoustical speech-pathological features are
crucial components closely intertwined with the complex human speech-production
mechanisms, representing relevant acoustic, phonatory, and aerodynamic param-
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Figure 3.1: Concept and idea of using acoustical and perceptual speech patholog-
ical features to detect fake speech.

eters that not only illuminate the intricacies of communication disorders but also
offer invaluable insights into the diagnosis, treatment, and rehabilitation of indi-
viduals facing speech and language challenges. Both disordered voice and deepfake
speech represent unnaturalness. Therefore, acoustical speech-pathological features
can be crucial clues for deepfake speech detection.

Perceptual features are based on auditory perception, which evaluates voice
quality by examining characteristics such as pitch, loudness, resonance, and overall
timbre. Research has been conducted using perceptual features to evaluate the
voice quality of disordered voices [62, 67, 68]. The results indicate that perceptual
features could potentially effectively detect disordered voices. The concept of
using auditory perceptual to detect deepfake speech is that deepfake speech could
possibly be the perceived acoustic quality of the disordered voice. Because voice
disorder and deepfake speech exhibit unnaturalness, so perceptual features possible
be to detect deep fake speech.

The relationship of speech-pathological features derived from disordered voice
(Hyperkinetic dysarthria) [74], deepfake, and genuine speeches is investigated. Fig-
ure 3.2 shows an example of shimmer features: shimmer (local), shimmer (APQ3),
and shimmer (APQ5). These features exhibit notable distinctions. The feature
values of disordered voice and deepfake speech are close to each other, whereas the
feature values of genuine speech are different. Therefore, these speech-pathological
features, particularly the shimmer features, might be crucial indicators for de-
tecting deepfake speech so that we investigate the potential of the 11 speech-
pathological features in more detail in Section Acoustical Speech-Pathological Fea-
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Figure 3.2: Bar graph comparing four shimmer features of disordered voices, fake
speech, and genuine speech.

tures.
The perceptual features investigated in this dissertation comprise eight at-

tributes including Hardness, Depth, Brightness, Roughness, Warmth, Sharpness,
Boominess, and Reverberation are examined using statistical techniques. The pre-
dominant features are subsequently employed to differentiate between authentic
and deepfake speech. These significant features are then integrated into MLP for
the accurate identification of genuine and deepfake speech.

In this dissertation, six acoustical speech-pathological features are investigated:
jitter, shimmer, harmonics-to-noise ratio (HNR), cepstral-harmonics-to-noise ratio
(CHNR), normalized noise energy (NNE), and glottal-to-noise excitation ratio
(GNE). These speech-pathological features are analyzed using statistical methods.
The insignificant features are removed, and the dominant features are then utilized
to distinguish between genuine and deepfake speech. The identified significant
features are applied with MLP to effectively differentiate between genuine and
deepfake speech.
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3.2 Philosophy of Utilizing Speech-Pathological

Features for Deepfake Speech

The aim of this dissertation is to propose a framework for detecting deepfake speech
based on speech-pathological features , which are typically utilized to differentiate
between normal and pathological voices [62] and diagnose various diseases such as
Parkinson’s disease [75], neck and head cancers [76], and organic pathologies [77].

This study seeks to explore the speech-pathological traits utilized in distin-
guishing between normal and pathological voices [68, 73], with a focus on their
potential application in identifying deepfake speech. Therefore, the primary objec-
tive of this research is to identify and analyze the critical indicators of pathological
features necessary for effectively detecting deepfake speech. Through this explo-
ration, significant features will be carefully selected and employed to differentiate
between fake and genuine speech. As a result, this research aims to propose a
comprehensive framework rooted in pathological speech processing for the precise
detection of deepfake speech.

The hypothesis suggests that utilizing speech-pathological features for speech
detection may indicate a potential correlation between deepfake speech and the
perceived acoustic quality of a disordered voice. It proposes that deepfake speech
detection via speech-pathological features could be connected to the perceived
acoustic qualities of a disordered voice. Additionally, both deepfake speech and
disordered voice exhibit unnatural characteristics [35, 23] and have been utilized
to identify the artificial attributes of synthetic audio. Furthermore, the lack of
naturalness in synthesized speech often stems from limitations in capturing and
reproducing diverse prosodic elements, which include the non-linguistic aspects of
voice. Addressing this challenge is crucial for enhancing the quality of synthesized
speech.

While the natural human speech production mechanisms are complex and diffi-
cult to replicate artificially, the tiny variations in the speech production mechanism
are unique to individual speakers. The first step is motor control function, which
discusses how the brain controls the muscles involved in speech production. It
includes the neural pathways and processes that govern the coordination and tim-
ing of muscle movements necessary for speech. The second step is articulatory
motion; this step focuses on the physical movements of the articulators, such as
the tongue, lips, and jaw, involved in shaping sounds during speech production.
This section delves into how these movements are precisely coordinated to produce
specific phonemes and sequences of phonemes. The last step is sound generation,
which examines how the movements of the articulators result in the production of
speech sounds. It encompasses the airflow, vocal cord vibrations, and resonance in
the vocal tract that contribute to the creation of different speech sounds, including
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vowels and consonants [1].
Although advances in speech synthesis technologies have made it possible to

create increasingly realistic speech, it remains constrained and challenging to repli-
cate. Therefore, speech-pathological feature can be crucial clues for deepfake
speech detection based on speech production described in the above. The phi-
losophy of this dissertation is shown in Fig. 3.3.

The novelty of this research lies in the application of speech-pathological fea-
tures for the detection of deepfake speech. This approach mirrors the methods
employed by medical professionals when diagnosing speech disorders in patients.
By utilizing these pathological features, a novel and effective strategy is created
for identifying deepfake speech, thereby enhancing the security and authenticity
of digital communication.

Figure 3.3: Philosophy of Utilizing Speech-Pathological Features for Deepfake
Speech.

In this dissertation, two kinds of speech-pathological features were investigated.
The first involves acoustic features, including jitter, shimmer, HNR, CHNR, NNE,
and GNE. The second category comprises perceptual features, including Hardness,
Depth, Brightness, Roughness, Warmth, Sharpness, Boominess, and Reverbera-
tion.
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3.3 Acoustical Speech-Pathological Features

Acoustical speech-pathological features are typically used to distinguish between
normal and pathological voices [62]. These features are crucial for diagnosing var-
ious medical conditions, including Parkinson’s disease [75], neck and head cancers
[76], organic pathologies [77], infections, autoimmune disorders, and genetic dis-
eases. Pathologists analyze tissue samples obtained through biopsies, surgeries, or
autopsies to identify these features and provide insights into the underlying disease
processes.

This section describes the derivation of acoustical speech-pathological features,
which have the potential to distinguish between genuine and deepfake speech.
In this dissertation, six acoustical speech-pathological features are discussed: jit-
ter, shimmer, harmonics-to-noise ratio (HNR), cepstral-harmonics-to-noise ratio
(CHNR), normalized noise energy (NNE), and glottal-to-noise excitation ratio
(GNE).

3.3.1 Jitter Features

Jitter measures the period variation from cycle to cycle of a speech signal [78, 71],
as shown in Fig. 3.4. Since Jitter can be defined by several methods, this work
focused on three definitions as follows.

Figure 3.4: Jitter and shimmer concept illustration.
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Jitter (local)

Jitter (local) is the percentage of the average absolute difference between consec-
utive periods divided by the average period, that is:

Jitter (local) =
1

N−1

∑N−1
i=1 |Ti − Ti+1|
1
N

∑N
i=1 Ti

× 100, (3.1)

where Ti is the period lengths of the extracted fundamental frequency (F0), and
N is the number of F0 periods [71].

Jitter (PPQ3)

Jitter (PPQ3), also known as jitter rap, is the percentage of the average absolute
difference between a period and the average of that period with its two neighbors,
divided by the average period. It is defined as:

Jitter (PPQ3) =
1

N−1

∑N−1
i=1 |Ti − (1

3

∑i+1
i=i−1 Ti)|

1
N

∑N
i=1 Ti

× 100. (3.2)

Jitter (PPQ5)

Jitter (PPQ5) is the percentage of the average absolute difference between a pe-
riod, and the average of that period with its four neighbors, divided by the average
period. It is defined as:

Jitter (PPQ5) =
100
N−1

∑N−2
i=2 |Ti − (1

5

∑i+2
i=i−2 Ti)|

1
N

∑N
i=1 Ti

× 100. (3.3)

3.3.2 Shimmer features

Shimmer measures the amplitude variation, resulting from irregular vocal fold
vibrations, as shown in Fig. 3.4. Research in [79] demonstrated that the shimmer
has significant differences in speaking styles. This feature can be used to assess
the vocal quality and potentially indicate a voice disorder [71]. Since there are
various ways to identify shimmer characteristics, focused on two types of shimmer
features as follows.
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Shimmer (local)

Shimmer (local) refers to the percentages of the average of absolute differences be-
tween the source signal amplitude related in each index (Ai) and its next neighbor
(Ai+1), divided by the average of the signal amplitudes. It is defined as:

Shimmer (local) =
1

N−1

∑N−1
i=1 |Ai − Ai+1|
1
N

∑N
i=1Ai

× 100, (3.4)

where N is the number of F0 periods, and Ai denotes the signal amplitude at index
i.

Shimmer (x-point amplitude perturbation quotients, APQx)

Shimmer x-point amplitude perturbation quotients, Shimmer (APQx), are defined
similarly to Shimmer (local). However, shimmer considers the absolute difference
between the amplitude of each index (Ai) and the average of the x-point closest
neighbors around Ai. It is defined as:

Shimmer (APQx) =
1

N−m+1

∑N−m
i=m |Ai − ( 1

x

∑i+m
n=i−m An)|

1
N

∑N
i=1Ai

× 100, (3.5)

where m = x−1
2

. In this study, three x-point shimmer features were investigated:
APQ3, APQ5, and APQ11.

3.3.3 Harmonics-to-Noise Ratio (HNR)

HNR is a metric that quantifies the balance between the harmonic and noisy ele-
ments present in speech. Calculating the noise component (ιEn) involves comput-
ing the energy of the residual signal obtained by subtracting the average waveform
from each cycle. The harmonic energy (γEn) is derived from the energy of an
average waveform created from a frame pitch that is synchronized with approxi-
mately ten consecutive glottal cycles. Therefore, this feature relies on an earlier
estimation of F0 [5]. The HNR is defined as:

HNR = 20 log
γEn

ιEn

. (3.6)

It is computed for each frame of analysis. The final HNR is calculated averaging
the values obtained for each frame.
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3.3.4 Cepstral-Harmonics-to-Noise Ratio (CHNR)

CHNR, as called cepstral-HNR (CHNR) is employed to compute the HNR by
quantifying the disparity in energy levels between the overall spectrum and the
energy attributed to noise. In this context, noise energy represents the portion of
energy that cannot be attributed to the original signal’s spectrum [5]. The CHNR
computation involves several steps for each analysis frame: (1) calculating the
cepstrum of the signal; (2) identifying the harmonic components of the signal as
periodic rahmonics (which correspond to harmonics in the cepstrum); (3) removing
these components through a liftering operation to extract the equivalent noise
energy; and (4) determining CHNR by comparing the previously calculated noise
energy with the total cepstral energy. The CHNR calculation procedure is shown
in Fig. 3.5.

Figure 3.5: CHNR calculation process [5].
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3.3.5 Normalized noise energy (NNE)

NNE measures the extended additive noise. The NNE is determined by comparing
the energy of the noise to the overall energy of the signal within each analyzed
frame [5]. To summarize the computation of NNE, the process involves: (1) cal-
culating the F0 of the signal and its log-spectrum; (2) directly computing the
noise energy in the valleys from the spectrum, while estimating the noise energy
in the harmonic peaks by interpolating the minima of neighboring valleys; and
(3) ultimately determining NNE as the difference in level between the spectral
total energy and the noise energy. The NNE calculation procedure is presented in
Fig. 3.6.

Figure 3.6: NNE calculation process [5].
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3.3.6 Glottal-to-Noise Excitation Ratio (GNE)

GNE characterizes turbulent noise in speech, disregarding modulation effects [80].
It assumes that glottal pulses generate simultaneous and synchronous excitation
across multiple frequency channels, as evidenced by the correlation observed in
the Hilbert envelopes of these distinct frequency bands [5]. Computing NNE can
be summarized as follows: (1) downsampling the input speech to 10 kHz; (2)
applying an inverse filtering operation to obtain an estimate of the speech source;
(3) calculating Hilbert envelopes for various frequency bands with fixed bandwidths
and different center frequencies; (4) computing the cross-correlation for each pair
of envelopes where the difference in their center frequencies is equal to or greater
than half the bandwidth; (5) determining the GNE value as the maximum absolute
value among all correlation functions. The calculation of the GNE is shown in
Fig. 3.7.

Figure 3.7: GNE calculation process [5].
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3.4 Perceptual Speech-Pathological Features

The perceptual feature used in this dissertation is timbre features, because it is of
significant importance in music and audio cognition, conveying essential emotional
and perceptual data crucial in different domains of audio processing.

It represents a complex range of auditory qualities that together determine the
essence or nature of a sound. Generally, timbre encompasses a variety of spectral
and harmonic elements that impart unique traits to a sound [81]. The definition of
timbre states that even if two sounds have the same pitch, loudness, and duration,
they can still be perceived as different because they have different timbre features
[82].

The timbral qualities are part of psychoacoustic features, with each relating
to a distinct sensation experienced when listening to music [83]. Psychoacoustics,
dedicated to understanding the complex interplay between sound and psychology
in human perception, elucidates this relationship. It’s worth noting that algorithm-
generated scores fail to faithfully reproduce these attributes due to the inherent
subjectivity in human sensory experiences.

Several studies have explored the modeling of timbre based on psychoacoustics,
and the creation of objective metrics for each timbral characteristic. An influen-
tial example is the framework of the Audio Commons project, which formulated a
timbral model. This model expresses eight high-level timbre features consisting of
hardness, depth, brightness, roughness, sharpness, warmth, boominess, and rever-
beration, by integrating low-level timbre features, such as the spectral centroid,
dynamic range, and spectral energy ratios, and rating them from 0 to 100 [6].
These high-level timbre features are described as follows.

3.4.1 Hardness

The perception of sound hardness primarily results from a combination of two
factors: loudness and harshness. When a sound is labeled as harsh, it indicates an
irregularity in its audio core. In this context, the audio core pertains to the fre-
quency spectrum ranging from 2kHz to 5kHz, which corresponds to the frequency
range where human hearing is most sensitive. Hence, hardness serves as a measure
to assess the pleasantness or discomfort of a sound by examining the coherence
between its loudness and frequency range, as perceived by the human ear. Essen-
tially, it quantifies how effectively the balance between these two aspects conforms
to human auditory preferences.

Several studies have identified factors contributing to the perception of hard-
ness. For instance, Williams [84] proposed that the initial segment of a sound
influences how hardness is perceived. Furthermore, Freed [85] introduced a frame-
work for understanding the perception of mallet hardness in individual percussive

39



sounds, considering four acoustic parameters: (1) spectral mean level (a type of
long-term average spectrum, LTAS); (2) spectral level slope (similar to cepstrum
analysis); (3) spectral centroid mean (average spectral centroid over time, mea-
sured on the bark scale); and (4) spectral centroid TWA (time-weighted mean of
the spectral centroid).

Solomon’s research [86] also recognized the perceptual dimension of hard-
ness/softness as a significant psychological aspect of timbre. This study proposed
that this characteristic may be linked to rhythmic distinctions among stimuli, al-
though it did not present any specific methods for quantifying this relationship.

Although no explicit model of hardness exists in the literature, there is an indi-
cation that the attack portion of a sonic event determines the apparent hardness,
along with the spectral content of the attack. Therefore, a model of hardness
was developed which employs three metrics: (1) attack time; (2) attack gradient;
and (3) spectral centroid of attack. A linear regression model was then used to
estimate the apparent hardness from these parameters.

There are four appropriate parameters for hardness prediction: the mean of
the time-varying spectral centroid, the time weighted-average of the time-varying
spectral centroid, the mean across time of the time-varying spectral level, and the
slope of the spectral level [87].

3.4.2 Depth

While numerous academic papers discuss the concept of depth, none have pre-
sented a model or proposed any acoustic features associated with it. Nonetheless,
in an online experiment named Social-EQ conducted by Pardo and Cartwright
Pardo [88], participants were requested to provide a timbral descriptor along with
a suitable adjustment on a 40-band graphic equalizer to illustrate that descriptor.

Six participants opted to use the term deep. Figure 3.8 displays the 40-band
equalization treatment submitted by each participant. The average equalization
across all participants, along with 95% confidence intervals, is depicted by the bold
black line.

The trend depicted in Fig. 3.8 illustrates that all subjects’ EQ treatments pri-
oritize enhancing the low frequency components of the signal. Given the consid-
erable similarity among these EQ treatments, it is probable that emphasizing low
frequency content correlates with timbral depth. Hence, it is proposed that an
appropriate model for depth analysis should include: 1) assessing the spectral cen-
troid of lower frequencies (indicating energy concentration towards the low-end);
2) evaluating the ratio of low frequency energy; 3) considering the low-frequency
limit of the audio excerpt (referring to the point at which low frequencies begin to
roll off).
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Figure 3.8: Social-EQ graphic equaliser settings representing the timbral descriptor
deep [6].

Lower spectral centroid =

∑n(200Hz )
n(30Hz ) f (n) x (n)∑n(200Hz )

n(30Hz ) x (n)
, (3.7)

where n(s) is the bin number relating to frequency s, is the frequency of the nth
bin, and is the magnitude of the nth bin. The mean lower spectral centroid is then
calculated across all frames.

The model also computes the lower ratio for each frame, which is the ratio of
energy between 30Hz and 200Hz in comparison to the total energy between 30Hz
and the Nyquist frequency:

Lower ratio =

∑n(200Hz )
n(30Hz ) f (n) x (n)∑n(200Hz )

n(30Hz ) x (n)
, (3.8)

where n(Nyquist) represents the frequency bin corresponding to the Nyquist fre-
quency, the mean lower ratio is subsequently computed across all frames.

The final metric computed by the model pertains to the low-frequency limit.
This calculation mirrors the methodology employed for the ’spectral rolloff’ metric
in the IRCAM timbre toolbox [89]. In this context, the low-frequency limit is
delineated as the frequency wherein 95% of the spectral energy is situated above.
The mean low-frequency limit is then calculated across all frames.
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x(n)2 =

∑n(200 )
n(30Hz ) x (n)∑n(Nyquist)

n(30Hz ) x (n)
, (3.9)

The depth model was calculated using a linear regression based on lower spec-
tral centroid, lower ratio, and low-frequency limit (x(n)2).

3.4.3 Brightness

Brightness, a characteristic of sound quality, has received considerable attention in
research. Several studies have indicated that the spectral centroid is a metric that
aligns with perceived brightness [90, 91]. Nevertheless, certain studies propose
that the proportion of high frequencies compared to the total energy may serve
as a more accurate predictor. In a recent study, Pearce examined existing models
and formulated a novel brightness model that integrates both a variant of spectral
centroid and spectral energy ratio [92]. This model is used in Audio Commons [6],
which is introduced in the dissertation.

The calculation of brightness is as follows : First, the audio signal is segmented
into small frames and transformed into the frequency domain through FFT. Next, a
sample-by-sample half-octave smoothing method is applied to refine the magnitude
frequency response of each audio frame. This refined response is then utilized
to calculate two metrics, one of which is the frequency-limited spectral centroid
(FLSC), designed to focus on frequencies exceeding 3 kHz and ratio.

Frequency-limited spectral centroid =

∑n(Nyquist)
n(3kHz) f (n) x (n)∑n(Nyquist)

n(3kHz) x (n)
, (3.10)

Ratio =

∑n(Nyquist)
n(3kHz ) x (n)∑n(Nyquist)
n(20Hz ) x (n)

, (3.11)

In this context, n(s) signifies the bin number corresponding to a frequency s,
f(n) represents the frequency linked with the nth bin, ‘x(n)’ denotes the magnitude
of nth bin, x(n) and n(Nyquist) stands for the bin number corresponding to the
Nyquist frequency. At last, a linear regression analysis is utilized to obtain findings
regarding brightness.

B = 25.8699 + 64.0127((log10(Ratio) + 0.44 log10(FLSC)). (3.12)
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3.4.4 Roughness

Roughness gives the sense of buzzing and produces a harsh feeling. Rough sound
is perceived on the basis of the amplitude fluctuations of voice modulated between
16 and 80 Hz. The roughness model is constructed by considering three variables
from a sinusoidal model approach study. The first two variables, which relate to
the amplitude of two sinusoidal components, are the dependence of the roughness
on intensity and the dependence of roughness on the amplitude-fluctuation degree
[93].

The calculation of roughness in this dissertation is introduced in [94, 6]. Ini-
tially, the audio signal is divided into frames, each lasting 50 milliseconds. These
frames undergo windowing using a Hanning window and are then zero-padded to
the closest power of two after each frame. Following this, each frame undergoes
Fast Fourier Transform (FFT), and the magnitudes of the frequency components
in all frames are standardized. This standardization guarantees that the highest
magnitude across all frequencies and frames is set to 1.0, enabling uniform com-
parisons and evaluations. After applying the FFT and normalization procedures,
a peak-picking algorithm is utilized on individual frames to detect peaks within
the frequency spectrum. Roughness is then computed for each pair of detected
peaks within a frame.

R = 0.5X0.1Y 3.11Z (3.13)

with:

X = Amin ∗ Amax, (3.14)

Y =
2Amin

Amin + Amax

, (3.15)

Z = e(−3.5g(fmax−fmin)) − e(−5.75g(fmax−fmin)), (3.16)

where R denotes to roughness, Amax and Amin indicate the maximum and mini-
mum magnitudes of the peak pairs, while fmax and fmin correspond to the maxi-
mum and minimum frequencies of the two peaks, respectively. The total roughness
of a frame is determined by adding up all the pairs of roughness values within it.
The total roughness of an audio file is subsequently computed as the average of
roughness values across all frames.
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3.4.5 Warmth

The perception of warmth has been examined in several studies, which have iden-
tified various factors that contribute to it. For example, Sorensen [95] discovered
that the acoustic characteristics of concert venues, including their shape and the
way sound bounces, greatly influence how warm orchestral music sounds to lis-
teners. Certain aspects of the room, such as its size, how long sound echoes, and
where reflections occur, were demonstrated to enhance the feeling of liveness and
fullness in the lower frequencies of the music, which are strongly linked to warmth
perception.

Bromham [96] delved into the impact of various audio effect processing methods
on warmth. The research emphasized the significance of the bass ratio (BR) metric,
which gauges the energy distribution in the low-frequency spectrum. Alterations to
the BR, achieved through methods such as equalization, were shown to markedly
affect the perceived warmth of the audio.

Expanding upon this idea, Williams [97] created a method enabling the precise
adjustment of warmth in sound through the manipulation of diverse timbral char-
acteristics. This system illustrates the intricate, multifaceted aspect of warmth
perception and the capacity to mold it through meticulous examination of various
acoustic and signal processing element

Farbood [98] expanded comprehension of warmth by exploring its correlation
with the perception of tension in music. Distinct timbral attributes such as inhar-
monicity and roughness were demonstrated to impact the perception of tension, a
factor closely associated with the overall warmth of the sound.

These studies highlight the nuanced and multifaceted nature of warmth percep-
tion in sound, involving the interplay of acoustic, timbral, and perceptual factors.
The research underscores the importance of considering these various elements
when aiming to create a desired sense of warmth in audio applications, such as
music production and sound design.

3.4.6 Sharpness

Sharpness is a measure linked to the perception of acute or piercing sensations.
It intensifies when the central frequency shifts to a higher range. Zwicker et al.
introduced the notion of ”acum” based on this observation. An acum is defined as
a unit of narrowband noise centered at 1,000 Hz with a loudness level of 60 phon
[99]. Following this, a model for sharpness was formulated, calculated as follows.

Sharp = 0.11

∫ 24Bark

0
D

′
(x)g(x)xdx∫ 24Bark

0
D′dx

(3.17)
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In the equation, Sharp represents sharpness, while D
′
(t) signifies the density

of loudness within the critical-band rate t. Loudness, an inherent characteristic
of auditory perception, is measured in phons. The function g(t) represents the
weighting factor for Sharp at the given rate. Through psychoacoustic studies, this
weighting factor is established as 1.0 for frequencies up to 3,000 Hz, with a sharp
increase to 4.0 for frequencies above this range.

3.4.7 Boominess

Research has extensively delved into the surging phenomenon across various do-
mains, including construction machinery [100], automobiles [101], and interior ve-
hicle noise [102]. The surging sensation typically arises from low-frequency ele-
ments, notably those associated with the engine [103]. In response, studies have
proposed objective metrics, such as a sound quality index [101] and a weighted
sound pressure level [102], to assess and quantify the surging sensation. These
metrics have proven effective in mitigating the surging sensation, particularly con-
cerning interior vehicle noise [102]. Although there is no explicit model of boomi-
ness documented in the literature, this dissertation utilized it within the Audio
Commons framework [6].

3.4.8 Reverberation

Reverberation is a prolonged sound that continuously lasts even after the source
has already stopped. Reverberation may be caused by the reflection of multiple
sounds from the environment. The term reverberation refers to the acoustic fading
of an audio signal and encompasses various standard measures. Among these, the
most prevalent is RT60, which gauges the duration of decay. Although RT60 is
often assessed in concert halls and similar settings, estimating it from recordings
poses challenges. In 2015, the IEEE conducted the ACE challenge to attempt
blind estimation of RT60 and the direct-to-reverberant ratio in recorded speech
signals [104].

The reverb algorithm was executed according to the method outlined by Prego
et al. [105]. Initially, a power spectrogram of the signal is computed. Without
specifying frame length or window function, a Hamming window of 2048 length is
arbitrarily selected, with a frame overlap of 512 samples. Subsequently, analysis is
performed within the frequency range of 20 Hz to 4 kHz. This range is significant
as it encompasses the majority of information in speech signals and aligns with
the frequency spectrum typically utilized for measuring and specifying RT60 in
building acoustics (averaged across 500 Hz, 1 kHz, and 2 kHz octave bands). Each
identified SFDR entails the calculation of Schroeder integration using the provided
equation:
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c(k,l,n) = 10 log10

∑L
a=nE(k, a)∑L
a=nE(k, a)

, (3.18)

c(k, l, n) represents the nth frame within the ℓ-th SFDR in the kth sub-band,
where L denotes the total number of frames within the SFDR. E(k, a) signifies
the energy in the kth sub-band at frame a, with n indicating the current frame
under analysis. The Schroeder integral is examined for each Signal-to-Noise and
Distortion Ratio (SFDR) to estimate the SFDR RT60. Initially, the beginning of
the analysis period is determined as the first frame within the SFDR where the
Schroeder integral starts.

If the most linear portion of the Schroeder integral exhibits a dynamic range of
less than 10dB, then select the most linear portion that demonstrates a dynamic
range of at least 60dB. In cases where a 60dB dynamic range cannot be found for
any segment, the algorithm seeks out the most linear segment with a minimum
dynamic range of 40dB. If no suitable segment is identified under this criterion,
the search threshold is progressively lowered to 20dB and then 10dB.

A linear regression analysis is performed on the chosen segment of the SFDR.
Subsequently, the SFDR RT60 is determined from the regression coefficients, rep-
resenting the duration for the linear regression line to decay by 60dB.

Following this, the sub-band RT60 is computed as the median value among all
SFDRs within the respective sub-band. The overall RT60 is then approximated
as the median value derived from all sub-band RT60s. To improve the accuracy of
the estimated RT60, an arbitrary adjustment is applied by dividing the calculated
RT60 by 3.

3.5 Dataset and Metrics

3.5.1 Dataset

The datasets from the ASVspoof 2019 [7] and ASVspoof 2021 [106] challenges were
used to evaluate the performance of the proposed method.

The ASVspoof is a series of bi-annual, competitive challenges where the goal is
to develop countermeasures capable of distinguishing between genuine and spoofed
or deepfake speech since 2015. The ASVspoof 2019 is the first edition focusing on
countermeasures for logical access related to spoofing attacks on speech synthesized
by using text-to-speech and voice conversion techniques. The dataset is divided
into three subsets: training set, development set, and evaluation set. The datasets
from the ASVspoof 2019 [7] and ASVspoof 2021 [106] were utilized to assess the
effectiveness of the proposed method.
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Table 3.1: Number of utterances in the ASVspoof 2019 and 2021 datasets [7, 8].

Dataset
Number of utterances

Genuine spoofed Total

ASVspoof 2019
Training 2,580 22,800 25,380
Development 2,548 22,296 24,844
Evaluation 7,355 64,578 71,933

ASVspoof 2021 Evaluation 18,452 163,114 181,566

Similarly, the ASVspoof 2021 challenge extends the 2019 challenge. The eval-
uation set aims to assess the robustness of channel variation of the detection.
The statistical information of both ASVspoof 2019 and ASVspoof 2021 datasets
is shown in Table 3.1. The training set was used to train the models, while the
development and evaluation sets were used for evaluation.

Table 3.2: Number of utterances in the ADD 2022 [9] and 2023 datasets.

Dataset
Number of utterances

Genuine spoofed Total

ADD 2022

Training 3,012 24,072 27,084
Development 2,307 21,295 23,602
Adaptation 300 700 1,000
Test - - 109,199

ADD 2023
Training 3,012 24,072 27,084
Development 2,307 26,017 28,324
Test - - 118,477

The datasets from the ADD 2022 [9] and ADD 2023 [107] challenges were chosen
to evaluate the effectiveness of the proposed method. These challenges are aimed at
influencing the future trajectory of detecting deep synthetic and manipulated audio
in multimedia. In ADD 2022, all tracks utilize identical training and development
datasets, with each track having an individual adaptation dataset provided for fine-
tuning and evaluation. On the other hand, ADD 2023 only includes the training
and development datasets. Test datasets for both ADD 2022 and ADD 2023 are
accessible online, containing unseen audio samples generated from various speech
synthesis systems. This dissertation utilizes data from the low-quality FAD (LF)
track in ADD 2022 and the audio fake game detection (FG-D) track in ADD 2023.
The distinction between these datasets lies in the competition system settings;
notably, the FG-D track in the ADD 2023 challenge incorporates two rounds of
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testing. Given that the second round is more challenging, this paper focuses solely
on the results from the second round. Statistical information regarding these
datasets is provided in Table 3.2.

3.5.2 Metrics

In this dissertation, various metrics were employed to evaluate the efficacy of
deepfake speech, encompassing accuracy, balanced accuracy, precision, recall, F1-
score, F2-score, and the EER. These metrics serve as vital tools in quantifying the
performance of deepfake detection systems.

Accuracy

Accuracy refers to the extent to which predictions made by a model are correct
compared to the total number of predictions it makes. It is a crucial metric in
evaluating the performance of a model. Mathematically, accuracy can be defined
as the ratio of correct predictions to the total number of predictions. In essence,
accuracy provides insight into how well a model is able to make accurate predic-
tions across its entire dataset. It serves as a fundamental measure in assessing
the reliability and effectiveness of a model’s predictions. In mathematical terms,
accuracy is represented as:

Accuracy =
TP + TN

TP + TN + FP + FN

(3.19)

where TP is the number of true positive, TN is the number of true negative, FP
is the number of false positive, and FN is the number of false negative.

Balanced Accuracy

Balanced accuracy is a metric commonly used to evaluate the performance of bi-
nary classifiers, especially when dealing with imbalanced datasets. It takes into
account both the true positive rate (sensitivity) and the true negative rate (speci-
ficity). Specifically, it is defined as the average recall obtained on each class.

Balanced Accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
(3.20)

48



Precision

Precision is a crucial metric in evaluating the performance of a model, as it quanti-
fies the accuracy of positive predictions. Specifically, precision measures the ratio
of true positive predictions to all positive predictions made by the model. In
essence, it highlights the model’s capability to correctly identify relevant instances
while minimizing false positives. A higher precision value indicates a lower rate
of false positives, signifying the model’s effectiveness in discerning true positives
from the overall positive predictions. It is defined as:

Precision =
TP

TP + FP
, (3.21)

Recall (Sensitivity)

Recall measures the ratio of correctly identified positive predictions to the total
number of actual positive instances in the dataset. Essentially, it gauges how
effectively the model captures all relevant positive cases. This metric is crucial
in assessing the model’s sensitivity to identifying positives, making it valuable in
scenarios where comprehensively capturing all positives is vital, such as medical di-
agnoses or anomaly detection. A high recall score signifies that the model is adept
at minimizing false negatives, ensuring that few positive cases slip through unde-
tected. Conversely, a low recall indicates that the model is missing a considerable
number of positive instances, which could lead to critical oversights or incomplete
analyses. Thus, achieving a balance between precision and recall is essential for
optimizing model performance and ensuring reliable results. It is defined as:

Recall =
TP

TP + FN
. (3.22)

F1-score

The F1-score, regarded as the harmonic mean of precision and recall, offers a
nuanced evaluation by striking a balance between these two metrics. This be-
comes particularly beneficial in scenarios marked by disparate class distributions
or where the implications of false positives and false negatives diverge in signifi-
cance. Essentially, it serves as a robust measure, encapsulating both the ability
to correctly identify relevant instances (precision) and the ability to capture all
relevant instances (recall) within its calculation. It is defined as:
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F1-score =
2 × Precision × Recall

Precision + Recall
. (3.23)

This balanced assessment proves invaluable in various fields, including but not
limited to machine learning, where an accurate understanding of model perfor-
mance is paramount for effective decision-making.

F2-score

The F2-score operates much like the F1-score but places greater emphasis on recall.
This emphasis is particularly beneficial in scenarios where recall holds greater
significance than precision, as in medical diagnosis or anomaly detection. In such
cases, capturing as many true positives as possible is paramount, even if it means
tolerating some false positives. The F2-score is appropriate for this scenario since
reducing the false negative rate is more important than reducing the false positive
rate. It is defined as:

F2-score =
(1 + 22) × Precision × Recall

(22 × Precision) + Recall
. (3.24)

Equal Error Rate (EER)

Equal Error Rate (EER) serves as a standard performance measure frequently
employed in biometric technologies like facial recognition, fingerprint identification,
and speaker verification. It signifies the threshold at which the False Acceptance
Rate (FAR) matches the False Rejection Rate (FRR). In biometric systems, the
objective is to reduce both FAR and FRR, though often there exists a compromise
between these two rates. It is defined as:

EER = min
T

{FAR(T ) = FRR(T )} (3.25)

where FAR(T ) is the False Acceptance Rate at threshold T , which is the propor-
tion of impostor attempts incorrectly accepted by the system. FRR (T ) is the
False Rejection Rate at threshold T , which is the proportion of genuine attempts
incorrectly rejected by the system. T is the decision threshold of the biometric
system.
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Chapter 4

Deepfake Speech Detection using
Acoustical Speech-Pathological
Features

4.1 Proposed Method using Acoustical Speech-

Pathological Features

This chapter conducts preliminary studies to investigate the potential of acousti-
cal speech-pathological features for distinguishing between genuine and deepfake
speech. The fundamental effectiveness of each pathological feature is first analyzed
based solely on their average values. These acoustical speech-pathological features
are then incorporated into a basic classifier.

Jitter and shimmer are first derived using the instantaneous robust algorithm
for pitch tracking (IRAPT) [108], while the HNR, CHNR, NNE, and GNE are
extracted using the AVCA-ByO toolbox [5]. The speech signals are set to 4 s,
with a sample rate of 16 k. Note that to ensure all signals are 4 s long, signals
shorter than 4 s are repeated from the beginning, whereas signals longer than 4 s
are truncated.

A classifier is implemented using a neural network. This classifier is structured
with ten nodes in the input layer, ten nodes in the hidden layer, and another
single node in the output layer. The hidden layer utilizes the ReLU function for
activation, while the output layer employs the sigmoid function as its activation
function. The classifier’s training setup includes a maximum of 100 epochs, a
learning rate set at 0.0001, and a batch size of 128. Binary cross-entropy serves as
the loss function, and the optimization is carried out using the Adam optimizer.
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Figure 4.1: Proposed method using acoustical speech-pathological features with
multi-layer perceptron neural networks.
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4.1.1 Results and discussion in ASVspoof 2019 and 2021
datasets

As depicted in Table 4.1 provides a clear demonstration of the effectiveness of
acoustical speech-pathological features when they are utilized in conjunction with
a neural network model on the development set of the ASVspoof 2019 dataset.
Through careful observation and analysis, it has been noted that two specific
features, namely shimmer (APQ11) and shimmer (APQ3), exhibit particularly
strong performance in terms of recall. They achieve impressive rates of 95.97%
and 94.03%, respectively, which underscores their superior ability to detect fake
speech when compared to other features. Moreover, the NNE achieves dominant
performance in terms of balanced accuracy and precision, reaching 62.84% and
92.95%, respectively, compared to other features.

Interestingly, this study found that a combination of 10 features (excluding
HNR) yields better results than when all 11 features are combined. This somewhat
counterintuitive finding suggests that the inclusion of HNR may not contribute
positively to the performance of the model. When these 10 features are combined
(excluding HNR), the results indicate an accuracy of 89.94%, a balanced accuracy
of 61.82%, a precision of 92.04%, a recall of 97.20%, an F1-score of 94.55%, and
an F2-score of 96.12%.

These findings not only provide valuable insights into the role of individual
features in detecting deepfake speech but also suggest that acoustical speech-
pathological features hold significant promise for effectively tackling this challenge.
This could potentially pave the way for more robust and reliable deepfake detection
systems in the future.

As shown in Table 4.2, The performance of integrating the 10 acoustical speech-
pathological features (excluding HNR) with the neural network on the evaluation
sets of both the ASVspoof 2019 and 2021 datasets has been observed.The particular
focus on the ASV2021 evaluation set stems from the fact that its training and
development sets are identical to those of ASVspoof 2019. This consistency allows
for a more accurate and reliable comparison of the results.

The results from this integration are quite promising. They indicate that the
combination of these 10 features has the potential to effectively detect deepfake
speech. In fact, this combination achieved a notable recall rate of 97.86%, which
is a significant accomplishment in the field of deepfake detection. This high recall
rate suggests the model, with the selected features, is highly sensitive and capable
of identifying a large proportion of actual deepfake instances.

These findings reinforce the importance of feature selection in the design of
effective deepfake detection systems. They also highlight the potential of acoustical
speech-pathological features in enhancing the performance of such systems. As the
model is further refined and other potential features are explored, there is hope
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for further improvement in the accuracy and reliability of deepfake detection.

4.1.2 Results and discussion in ADD 2022 and 2023 datasets

Results and discussion in ADD 2022 datasets

Table 4.3 provides a detailed depiction of the performance of Speech-pathological
features when they are employed in conjunction with a neural network model
on the adaptation set of the ADD 2022 dataset. Three specific features stand
out: shimmer (APQ3) with its strong recall rate of 99.42%, GNE for its balanced
accuracy and precision, and again, shimmer (APQ11) for its dominant F1-score

These impressive rates indicate their superior capability in identifying fake
speech, setting them apart from other features in the model.

Interestingly, this study found that a combination of 10 features (excluding
HNR) yields better results than when all 11 features are utilized. This finding
suggests that the inclusion of HNR may not contribute positively to the perfor-
mance of the model. When these 10 features are integrated (excluding HNR), the
results show an accuracy of 71.10%, a balanced accuracy of 52.50%, a precision of
71.07%, a recall of 99.00%, an F1-score of 82.75%, and an F2-score of 91.78%.

These findings are quite revealing. They show that acoustical speech-pathologi-
cal features hold significant potential for effectively detecting deepfake speech. This
could potentially lead to the development of more robust and reliable deepfake
detection systems in the future. As the model is further refined and other potential
features are explored, there is hope for further improvement in the accuracy and
reliability of deepfake detection.

Results and discussion in ADD 2023 datasets

Table 4.4 presents a detailed analysis of the performance of acoustical speech-
pathological features when they are utilized in conjunction with a neural network
on the adaptation set of the ADD 2023 dataset. One specific features, the jitter
(PPQ3) stand out due to their robust recall rates of 97.27%. This high recall rate is
indicative of their exceptional ability to identify fake speech, thereby outperforming
other features in the same category. Another feature to consider is NNE, as it
demonstrates dominant performance with a balance accuracy of 78.24% and a
precision of 97.64%.

An interesting observation made during the experiment was that the combina-
tion of 10 selected features, excluding HNR, yielded superior results compared to
the utilization of all 11 features. This suggests that the exclusion of HNR from
the feature set could potentially enhance the performance of the model.
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When these 10 selected features are integrated with a neural network, the re-
sults are quite impressive. The model achieved 95.58% accuracy, 77.61% balanced
accuracy, 96.22% precision, 99.08% recall, 97.62% F1-score, and 98.49% F2-score.
These metrics provide a comprehensive evaluation of the model’s performance,
demonstrating its effectiveness and reliability.

These findings underscore the significant potential of acoustical speech-patholo-
gical features in the field of deepfake speech detection. It suggests that these
features, when used appropriately, can contribute significantly to the development
of more effective and reliable deepfake detection systems. This opens up new
avenues for further research and development in this field. This study serves as
a stepping stone towards the development of more sophisticated and accurate
deepfake detection models. It highlights the importance of feature selection in
improving the performance of such models and paves the way for future research
in this area.

4.1.3 Ablation study of Acoustical Speech-Pathological Fea-
tures

Table 4.5 provides a comprehensive illustration of an ablation study conducted
on the development set of ASVspoof 2019. This study meticulously analyzes the
performance of each acoustical speech-pathological feature when integrated with
a neural network. In this unique approach, one acoustical speech-pathological
feature was systematically removed at a time. This method was employed to assess
the importance and potential contribution of each individual feature towards the
detection of deepfake speech.

This study’s findings reveal that shimmer (APQ3) and GNE play a pivotal
role in spoofed speech detection. Removing these features from the set resulted
in the most significant performance decline across all metrics, including accuracy,
balanced accuracy, precision, F1-score, and F2-score on the development set.

This observation underscores the critical importance of shimmer (APQ3) and
GNE as features in the detection of deepfake speech. It suggests that the inclusion
of shimmer (APQ3) in the feature set can significantly enhance the effectiveness of
deepfake detection systems. This insight could be instrumental in guiding future
research and development efforts in the field of deepfake speech detection. It
highlights the need for a deeper understanding of the role and impact of individual
features in the performance of deepfake detection models.

Table 4.6 depicts the results of an ablation study conducted on the adapta-
tion set of ADD 2022. This study meticulously examines the performance of each
acoustical speech-pathological feature when it is integrated with a neural network.
In this insightful analysis, one acoustical speech-pathological feature was system-
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atically eliminated at a time. This method was employed to evaluate the signifi-
cance and potential contribution of each individual feature towards the detection
of deepfake speech.

This study’s results are particularly insightful. They reveal that shimmer
(APQ11) and GNE emerge as crucial features for the detection process. The
removal of GNE from the feature set provides the strongest evidence for this,
as it results in the most significant performance drop across all metrics on the
adaptation set.

This observation underscores the critical importance of shimmer (APQ11) and
GNE in the detection of deepfake speech. It suggests that the inclusion of shimmer
(APQ11) and GNE in the feature set can significantly enhance the effectiveness of
deepfake detection systems. This insight could be instrumental in guiding future
research and development efforts in the field of deepfake speech detection. It
highlights the need for a deeper understanding of the role and impact of individual
features in the performance of deepfake detection models.

Table 4.7 provides a comprehensive illustration of an ablation study conducted
on the development set of ADD 2023. This study meticulously investigates the
performance of each individual speech-pathological feature when it is integrated
with a neural network. In this insightful analysis, each feature was systematically
removed one at a time. This method was employed to evaluate the significance and
potential contribution of each individual feature towards the detection of deepfake
speech.

The results of this study are quite revealing. They underscore the jitter local
and GNE as the crucial features in the detection process. This is evidenced by the
fact that the exclusion of jitter local and GNE from the features set results in the
significant drop in performance across all metrics on the development set.

This observation underscores the critical importance of jitter local and GNE
in the detection of deepfake speech. It suggests that the inclusion of jitter local
and GNE in the features set can significantly enhance the effectiveness of deepfake
detection systems. This insight could be instrumental in guiding future research
and development efforts in the field of deepfake speech detection. It highlights the
need for a deeper understanding of the role and impact of individual features in
the performance of deepfake detection models. This could potentially lead to the
development of more sophisticated and accurate deepfake detection systems in the
future.
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4.2 Deepfake Speech Detection using Segmen-

tal Frames of Analysis of Acoustical Speech-

Pathological Features

Although the average of acoustical speech-pathological features has the potential
to distinguish between genuine and deepfake speech, it might be not adequate. For
instance, if the disparity between genuine and fake speech lies in consistency, with
approximately 70%–80% consistency, while the remaining portions of the speech
exhibit significant fluctuations, the average between genuine and fake speech be-
comes inconsequential. Therefore, instead of deriving the average of acoustical
speech-pathological features from the speech signal as the conventional method
does, a segmented frames of analysis technique is proposed for deriving acoustical
speech-pathological features.

Figure 4.2: Segmental frames of analysis of acoustical speech-pathological features.

The process of deriving speech-pathological features using segmented frames
of analysis is illustrated in Fig. 4.2. The process involves receiving a speech signal
and segmenting it into frames. The acoustical speech-pathological feature is then
extracted from each frame. This derivation process starts from the first frame
to the M -th frame. Thus, the number of acoustical speech-pathological features
depends on the number of frames.

The effectiveness of applying segmented frames of analysis for acoustical speech-
pathological features was evaluated. Each feature is derived frame by frame, with
a window frame of 50 ms and an overlap of 25 ms. Thus, for a 4-s signal with a
sampling rate of 16 k, each acoustical speech-pathological segmental feature has
a dimension of 159, i.e., the 4-s signal consists of 159 frames. These features are
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Figure 4.3: Proposed method, combining of (1) ten pathological-segment features
with their first-order and second-order derivatives with ResNet-18 and (2) mel-
spectrogram with ResNet-18, through score fusion.

inputted into a neural network similar to the previous study. The classifier model
consists of three layers: an input layer with 159 nodes corresponding to the new
dimension of the feature, hidden layer with 159 nodes, and single node for the out-
put. The hidden layer is activated with the ReLU function, whereas the output
layer is activated with the sigmoid function. The classifier’s training settings in-
cluded up to 100 epochs, learning rate set to 0.0001, and batch size of 128. Binary
cross-entropy served as the loss function, and the Adam optimizer was used.

Table 4.8 lists the results of applying segmental frames of analysis with the
acoustical speech-pathological features. The results indicate that extending the
dimensions of ten speech-pathological features, excluding HNR, through segmental
frames of analysis significantly improves performance compared with using the
average method (as shown in Table 4.1) as follows: accuracy from 74.60 to 87.79%,
recall from 79.00 to 95.70%, F1-score from 84.00 to 93.60%, and F2-score 81.20 to
95.00%.

4.2.1 Proposed Method of using segmental frames of anal-
ysis of acoustical speech-pathological features

Although the ten segmental speech-pathological features are effective for distin-
guishing between genuine and deepfake speech, there is still room for improvement.
Therefore, this method combines two models to enhance the effectiveness of deep-
fake speech detection: 1) PF+∆+∆∆ with ResNet-18, and 2) mel-spectrogram
with ResNet-18. These two models are integrated using score fusion.

The proposed method is illustrated in Fig. 4.3. The method involves using
PF+∆+∆∆ with the ResNet-18 model as the primary model, while the mel-
spectrogram with the ResNet-18 model is the secondary model. If the prediction
score from the primary model exceeds a predetermined threshold of 0.5, it is con-
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sidered the final decision. However, if the score is below the threshold, the final
score is determined by averaging the outputs from both the primary and secondary
models. Segmental speech-pathological features for this study were derived using
the following methods.

For jitter and shimmer, the IRAPT algorithm [108] are used. For the HNR,
CHNR, NNE, and GNE, the AVCA-ByO toolbox [5] are used. The segmental
speech-pathological features were derived from a speech signal of 4 s with a sam-
pling rate of 16 k. The length of window frames was set to 50 ms with an overlap
of 25 ms. Consequently, the total frames of a speech signal were 159. The seg-
mental features of ten of the pathological features were concatenated. Hence, the
dimension of these features was 10 × 159. The design of the features is illustrated
in Fig. 4.3.

The mel-spectrogram and LFCC were derived using the torchaudiolibrary
[109]. The dimensions of the mel-spectrogram are 80 × 401, while the dimen-
sions of the LFCC are 60 × 265. The LFCC and its first-order and second-order
derivatives were baseline features in ASVspoof 2019 [7].

A ResNet [110], used as a classifier, is an effective deep neural network archi-
tecture that addresses the vanishing gradient problem, wherein the gradients dur-
ing backpropagation become excessively small. Numerous studies have leveraged
ResNet in audio and speech-signal processing [111, 112, 113], including detecting
synthetic speech [114, 115, 116]. The learning of the residual function of the resid-
ual block, which incorporates an intermediate input into the output of a sequence
of convolutional blocks, is defined as:

out = F(in) + in, (4.1)

where in and out denote the input and output from the previous layer, respectively,
and F(in) is a component of a CNN comprising several convolutional blocks.
Residual blocks are available across multiple layers, ranging from 10 to over 100
layers, with each layer containing a distinct number of residual blocks. However,
excessive features were not deemed necessary for this study. The decision was
made to use 18 residual layers (ResNet-18 model) for classification.

The ResNet-18 models were utilized as a classifier. The training process con-
sisted of 100 epochs, a learning rate of 0.0001, and a batch size of 32. The Adam
optimizer was employed. The binary cross-entropy between the predictions and
the targets was used as the loss function. The output score was computed using
the output of the “fake” node at the last fully connected layer before the softmax
operation.
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4.2.2 Results and discussion in ASVspoof 2019 and 2021

Table 4.9 presents the experimental results obtained using the ASVspoof 2019
dataset. When comparing the LFCC and mel-spectrogram on the development
set, these two features were comparable. However, on the evaluation set, the
mel-spectrogram was better than the LFCC in terms of accuracy, recall, F1-score,
F2-score, and EER, while the LFCC was slightly better only in terms of balanced
accuracy and precision. The reason is that the LFCC correctly detects genuine
speech better than the mel-spectrogram but correctly detects deepfake speech less
effectively than the mel-spectrogram on an imbalanced dataset. Therefore, the
mel-spectrogram showed significantly better results than LFCC. When comparing
the efficiency of the mel-spectrogram in both development and evaluation sets, the
results were similar, with high accuracy, balanced accuracy, F1-score, and F2-score
and low EER.

The third to fifth rows display the results of PF , ∆, and ∆∆ with dimensions
of 10 × 159. In the comparison between ∆ and ∆∆, the results indicate that ∆
outperforms ∆∆ in almost all metrics on both the development and evaluation sets,
except for EER. However, it’s important to note that the difference in EER between
∆ and ∆∆ is less significant. Nonetheless, the method using PF outperforms both
methods with ∆ and ∆∆. Thus, PF is considered to be the most contributing
feature among them in terms of performance.

The results of the combinations of the segmental speech-pathological features:
PF+∆, PF+∆∆, and ∆+∆∆, each with a dimension of 20 × 159 are presented
in the sixth to the eighth rows. The row no. 9 presents the results from the com-
bination of PF+∆+∆∆, which has a dimension of 30 × 159.

When comparing the combination of PF+∆∆ with PF+∆+∆∆, the results
indicate that PF+∆+∆∆ was better in terms of accuracy, recall, F1-score, and
F2-score on both datasets. The differences in the rest of the metrics are not
significant; this is because PF+∆+∆∆ has more dimensions than ∆+∆∆. Among
the ten segmental speech-pathological features listed from the third to the ninth
rows, PF+∆+∆∆ was the most effective at detecting fake speech. The results
of the PF+∆+∆∆ on the development and evaluation sets are quite similar. Its
efficiency was high in terms of accuracy, recall, F1-score, and F2-score. The rest
of the metrics were also similar, except for the balanced accuracy, which differed
significantly.

In comparison with the LFCC and mel-spectrogram, the findings indicate that
PF+∆+∆∆ performed better than using the LFCC in terms of accuracy, re-
call, F1-score, and F2-score. Conversely, PF+∆+∆∆ marginally underperformed
relative to the mel-spectrogram. However, these differences are not statistically
significant, as they are less than 1%, except the EER.

The results on the ASVspoof 2019 evaluation set indicate that the proposed
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method is comparable in efficiently detecting deepfake speech to the mel-spectrogr-
am in terms of accuracy, recall, F1-score, and F2-score. However, its balanced
accuracy exhibits a degree of decline.

These results highlight two interesting aspects: (1) the dimensionality of the
features and (2) classification of speech as genuine or synthetic. Since the dimen-
sions of PF+∆+∆∆ are relatively small, i.e., 30 × 159, compared with those of
the LFCC and mel-spectrogram, i.e., 60×265 and 80×401, respectively. However,
the efficiency of them was comparable. Thus, it might be possible to enhance the
performance of the proposed method by extending its resolution, such as reducing
the length of window frames. These results also indicate that the mel-spectrogram
was more effective for correctly detecting genuine speech, whereas PF+∆+∆∆
was more effective for correctly detecting fake speech.

Table 4.10 lists the experimental results on ASVspoof 2021. In the comparison
between LFCC and mel-spectrogram, the results indicate that the mel-spectrogram
provided better results than LFCC in terms of accuracy, recall, F1-score, and F2-
score. PF+∆+∆∆ slightly outperformed the mel-spectrogram in terms of accu-
racy, balanced accuracy, precision, F1-score, and particularly the EER. However,
PF+∆+∆∆ exhibited only a slight decrease compared with the mel-spectrogram
in terms of recall and F2-score.

When PF+∆+∆∆ is combined with the mel-spectrogram and ResNet-18, i.e.,
the proposed method, the results indicate that the performance of the proposed
method surpasses that of the individual components in terms of recall, F1-score,
and F2-score. However, balanced accuracy and precision showed a decrease. The
reason for this is that both PF+∆+∆∆ and the mel-spectrogram exhibited simi-
lar characteristics, resulting in high performance in correctly detecting fake speech
but lower performance in correctly detecting genuine speech. Although the pro-
posed method, which combines these two models, did not improve in terms of all
metrics, it showed high recall rates. The advantages of high recall are crucial for
preventing unauthorized access and impersonation. In tasks involving sensitive
scenarios in which unauthorized access carries a significant cost, prioritizing high
recall is crucial for deepfake speech detection.

As evident from the third row of Table 4.10, the accuracy, balanced accuracy,
and precision exhibited a slight decrease compared with the results obtained on
the ASVspoof 2019 dataset. The effectiveness of PF+∆+∆∆ has limitations in
detecting synthetic audio in environments involving communication over telephony
and Voice over Internet Protocol (VoIP) networks, particularly due to various
coding and transmission effects [8].This scenario will be further investigated.
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4.2.3 Results and discussion in ADD 2022 and 2023 datasets

Results and discussion in ADD 2022 dataset

Table 4.11 provides a detailed performance analysis of segmental frames in the
context of acoustical speech-pathological features. These features were employed
in conjunction with a neural network on the adaptation set of the ADD 2022
dataset. Among the various features analyzed, the GNE feature stands out with
its impressive metrics. It boasts a recall rate of 99.14%, an F1-score of 83.72%, an
F2-score of 92.33%, and an ERR of 30.00%.

These remarkable results underscore the superior capability of the GNE fea-
ture in detecting fake speech, outperforming other features in the same category.
As a result, the analysis of segmental frames of acoustical speech-pathological fea-
tures demonstrates significant potential for effectively detecting deepfake speech,
a growing concern in today’s digital age.

On the other hand, the HNR feature underperformed in comparison. Its lower
performance metrics led us to conclude it may not be the best choice for the
proposed study. Therefore, the use of HNR is not recommended for this particular
research endeavor.

Tables 4.12 show the comparision the proposed ten segmental speech-pathological
features (PF ), the first order derivative of PF (∆), the second order derivative
of PF (∆∆), and the combinations of them. and their combinations. LFCC is
the baseline feature in this study. The mel-spectrogram is a famous feature that
is also used in voice disorder detection.

The results of the experiment presented in Table 4.12 were obtained using the
ASVspoof 2019 dataset. When comparing the LFCC and mel-spectrogram on the
adaptation set, these two features were comparable. However, on the test set, the
mel-spectrogram performed better than the LFCC in terms of EER. The reason
is that the mel-spectrogram has fewer false negatives in anonymized noisy speech
than the LFCC.

The third to fifth rows display the results of PF , ∆, and ∆∆ with dimensions
of 10 × 159. In the comparison between PF , ∆ and ∆∆, the results indicate that
PF outperforms ∆ and ∆∆ in almost all metrics on both the adaptation and test
sets. Thus, PF is considered to be the most contributing feature among them in
terms of performance.

The results of the combinations of the segmental speech-pathological features:
PF+∆, PF+∆∆, and ∆+∆∆, each with a dimension of 20 × 159 are presented
in the sixth to the eighth rows. The row no. 9 presents the results from the com-
bination of PF+∆+∆∆, which has a dimension of 30 × 159.

When comparing the combination of PF+∆∆ with PF+∆+∆∆, the results
indicate that PF+∆+∆∆ was better in all metrics on both datasets. While

72



T
ab

le
4.

11
:

R
es

u
lt

s
of

u
si

n
g

se
gm

en
ta

l
fr

am
es

of
an

al
y
si

s
of

sp
ee

ch
-p

at
h

ol
og

ic
al

fe
at

u
re

s
w

it
h

n
eu

ra
l

n
et

w
or

k
s

on
th

e
ad

ap
ta

ti
on

se
t

of
A

D
D

20
22

.

S
p

ee
ch

-p
at

h
ol

og
ic

al
fe

at
u

re
s

A
cc

u
ra

cy
(%

)
B

al
an

ce
d

ac
cu

ra
cy

(%
)

P
re

ci
si

on
(%

)
R

ec
al

l
(%

)
F

1-
sc

or
e

F
2-

sc
or

e
(%

)
E

E
R

(%
)

J
it

te
r

(l
oc
a
l)

69
.5

0
53

.1
4

71
.4

4
93

.2
9

80
.9

2
87

.9
1

45
.5

3
J
it

te
r

(P
P
Q

3)
69

.9
0

52
.0

2
70

.8
9

96
.7

1
81

.8
1

90
.4

6
47

.9
7

J
it

te
r

(P
P
Q

5)
69

.2
0

52
.6

7
71

.2
1

94
.0

0
81

.0
3

88
.3

5
46

.0
0

S
h

im
m

er
(l
oc
a
l)

70
.3

0
53

.3
4

71
.5

0
95

.7
1

81
.8

6
89

.6
4

40
.0

0
S

h
im

m
er

(A
P
Q

3)
69

.3
0

52
.6

4
71

.2
0

94
.2

9
81

.1
3

88
.5

4
43

.3
3

S
h

im
m

er
(A

P
Q

5)
71

.1
0

54
.4

0
71

.9
4

98
.1

4
83

.0
2

91
.4

8
32

.6
7

S
h

im
m

er
(A

P
Q

11
)

72
.4

0
5
5
.6
2

72
.5

1
97

.5
7

83
.1

9
91

.2
6

35
.6

7
C

H
N

R
71

.3
0

53
.2

1
71

.4
0

98
.4

3
82

.7
6

91
.5

0
39

.8
5

N
N

E
69

.2
0

53
.3

3
71

.5
3

93
.0

0
80

.8
7

87
.7

4
45

.0
0

G
N

E
7
3
.0
0

55
.5

7
72

.4
4

9
9
.1
4

8
3
.7
2

9
2
.3
3

3
0
.0
0

H
N

R
52

.8
0

55
.5

2
7
5
.1
1

48
.7

1
59

.0
9

52
.3

9
45

.0
0

73



T
ab

le
4.

12
:

C
om

p
ar

is
on

of
re

su
lt

s
ob

ta
in

ed
fr

om
th

e
p

ro
p

os
ed

m
et

h
o
d

an
d

th
e

b
as

el
in

es
on

th
e

A
D

D
20

22
d

at
as

et
.

M
et

h
o
d

A
d

ap
ta

ti
on

se
t

(%
)

T
es

t
se

t
(%

)

A
cc

u
ra

cy
B

al
an

ce
d

ac
cu

ra
cy

P
re

ci
si

on
R

ec
al

l
F

1-
sc

or
e

F
2-

sc
or

e
E

E
R

E
E

R

1.
L

F
C

C
(6

0
×

26
5)

92
.4

0
91

.0
5

94
.7

0
94

.4
2

94
.5

6
94

.4
8

8.
33

38
.5

7

2.
M

el
-s

p
ec

tr
og

ra
m

(8
0
×

40
1)

91
.4

0
85

.6
7

89
.0

6
1
0
0

94
.2

1
97

.6
0

4.
33

3
3
.5
5

3.
P
F

(1
0
×

15
9)

87
.6

0
80

.3
8

85
.9

1
98

.4
2

91
.7

4
95

.6
4

11
.0

0
48

.7
2

4.
∆

(1
0
×

15
9)

76
.3

0
60

.7
0

74
.8

1
99

.7
1

85
.4

9
93

.4
9

16
.3

3
48

.7
5

5.
∆

∆
(1

0
×

15
9)

84
.7

0
77

.1
7

84
.3

2
96

.0
0

89
.7

8
93

.4
1

21
.0

0
48

.9
3

6.
P
F

+
∆

(2
0
×

15
9)

90
.0

4
84

.4
8

88
.4

2
99

.2
8

93
.5

4
96

.9
0

7.
00

48
.4

9

7.
P
F

+
∆

∆
(2

0
×

15
9)

87
.4

0
79

.7
6

85
.5

4
98

.8
6

91
.6

6
95

.8
4

11
.0

0
48

.7
0

8.
∆

+
∆

∆
(2

0
×

15
9)

77
.1

0
62

.3
1

75
.6

3
99

.8
6

85
.8

5
93

.4
4

16
.0

0
48

.7
2

9.
P
F

+
∆

+
∆

∆
(3

0
×

15
9)

93
.8

0
89

.6
7

91
.8

6
1
0
0

95
.7

6
98

.2
0

3.
90

47
.3

8

1
0
.
P
ro

p
o
se
d

m
e
th

o
d

9
7
.6
0

9
6
.0
0

9
6
.6
9

1
0
0

9
8
.3
1

9
9
.3
1

1
.0
0

35
.5

4

74



PF+∆ was better than PF+∆∆ and ∆+∆∆ in all metrics on adaptation set
and EER in test set.

In comparison with the LFCC and mel-spectrogram, the findings indicate that
PF+∆+∆∆ performed better than using the LFCC and mel-spectrogram in terms
of accuracy, recall, F1-score, and F2-score on adaptation set, however on test
PF+∆+∆∆ performed less than the mel-spectrogram and LFCC. This is because
pathological speech gradually degrades in noisy environments due to anonymous
audio noise.

These results highlight the dimensionality of the features. The dimensions of
PF+∆+∆∆ are relatively small, i.e., 30× 159, compared with those of the LFCC
and mel-spectrogram, which are 60× 265 and 80× 401, respectively. However, the
efficiency of them was comparable in adaptation set. The EER for the test set,
which uses pathological speech features, is worst in various anonymous audio noise.
This may be because pathological speech is used to detect voice disorders. How-
ever, the ADD dataset is an audio file with several background noises. Therefore,
this issue will be studied further.

Results and discussion in ADD 2023 dataset

Table 4.13 presents a comprehensive evaluation of the effectiveness of segmental
frames analysis of speech-pathological features. This analysis was conducted using
a neural network on the adaptation set of the ADD 2023 dataset. The results are
quite revealing. The shimmer (local) feature, in particular, demonstrates a robust
performance with an accuracy of 95.70%, a balanced accuracy of 81.14%, and an
F1-score of 97.68%. These impressive metrics underscore the superior capability
of the shimmer (local) in detecting fake speech, outperforming other features in
the same category. These findings suggest that the segmental frames analysis
of speech-pathological features holds significant potential for effectively detecting
deepfake speech. The shimmer (local) emerges as a particularly effective feature
in this regard. However, the HNR did not perform as well in comparison. Its
effectiveness in detecting deepfake speech was found to be inferior. Consequently,
HNR was not recommended for the proposed study. This decision was based on the
comparative analysis of the performance of different features in detecting deepfake
speech.

Table 4.14 presents the experimental results obtained from the adaptation set
of the ADD 2023 dataset. The focus of this analysis was a comparison between
two features: LFCC and mel-spectrogram. The results of this comparative study
indicate that the mel-spectrogram slightly outperformed LFCC across all metrics.
These metrics included accuracy, balanced accuracy, precision, recall, F1-score,
F2-score, and EER. Notably, the mel-spectrogram achieved a high rate of over
99.90% across these metrics. The performance underscores the effectiveness of the
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mel-spectrogram in the analysis. This suggests that the mel-spectrogram might
be a more reliable feature for the study compared to LFCC.

When compare two speech-pathological features: PF and PF+∆+∆∆. The
results indicate PF+∆+∆∆ outperformed PF across all metrics. These metrics
included accuracy, balanced accuracy, precision, recall, F1-score, F2-score, and
EER. Notably, the PF+∆+∆∆ achieved a high rate of over 99.90% across these
metrics like mel-spectrogram.

In comparison with the LFCC and mel-spectrogram, the findings indicate
PF+∆+∆∆ that performed slightly lower. However, these differences are not
statistically significant, as they are less than 1%. These results highlight two in-
teresting aspects: (1) the dimensionality of the features and (2) the classification
of speech as genuine or synthetic. The dimensions PF+∆+∆∆ of are relatively
small, i.e., 30× 159, compared with those of the LFCC and mel-spectrogram, i.e.,
60×265 and 80×401, respectively. Despite this, their efficiencies were comparable.
Thus, it might be possible to enhance the performance of the proposed method by
extending its resolution, such as reducing the length of window frames.

When PF+∆+∆∆ is combined with the mel-spectrogram and ResNet-18, i.e.,
the proposed method, the results indicate that the performance of the proposed
method surpasses that of the individual components in all metrics: the acuracy,
balanced accuracy, presision, F1-score, F2-score, and EER are 99.99%, 99.92$,
99.96%, 100%, 99.98%, 99.99%, and 0.00%, respectively.

The reason for the higher efficiency of all features in this dataset might be
twofold. First, the training set and the adaptation set share similar characteris-
tics. Second, this dataset has less background noise, specifically white noise and
reverberation. In contrast, ADD 2022 contains various background noises such as
background music, car engines, and people chatting. Additionally, while the train-
ing set for ADD 2022 consists of clean speech without noise, the adaptation set
includes significant background noise. Consequently, the efficiency of all features
on ADD 2023 surpasses that of ADD 2022.

4.2.4 Ablation Study of Segmental Frames of Analysis of
Speech-Pathological Features

The ablation study of the proposed features on the ASVspoof 2019 dataset, as
shown in Table 4.15. ResNet-18 was a classifier, and the datasets were the devel-
opment and evaluation sets. In this study, one speech-pathological feature was re-
moved at a time to assess the importance and potential of each feature for deepfake
speech detection. The results of the baselines, which use all speech-pathological
features, are presented in the last row. The findings indicate that the CHNR is the
most important feature since its removal leads to the lowest performance in terms
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of accuracy, recall, F1-score, F2-score, and EER on the development set. These
trends were also observed in the accuracy and F1-score on the evaluation set.

Table 4.16 presents an ablation study conducted on the adaptation set of the
ADD 2022 dataset. This study examines the performance of each feature derived
from the segmental frames analysis of speech-pathological characteristics when in-
tegrated with a ResNet-18 model. In this analysis, one feature from the segmental
frames analysis of speech-pathological characteristics is removed at a time. This
method allows for the evaluation of the significance and potential of each individ-
ual feature in the context of detecting deepfake speech. The results of this study
are quite revealing. They show that the shimmer (APQ11) feature emerges as the
most crucial element in this context. When this feature is removed from the anal-
ysis, the accuracy, recall, F1-score, and F2-score on the adaptation set all drop
to their lowest levels. This finding underscores the importance of the shimmer
(APQ11) feature in the detection of deepfake speech. It suggests that this feature
plays a pivotal role in the performance of the ResNet-18 model when applied to
the task of deepfake speech detection.

Table 4.17 presents the results of an ablation study that was conducted on the
adaptation set of the ADD 2023 dataset. This study investigates the performance
of each feature derived from the segmental frames analysis of speech-pathological
characteristics when they are incorporated with a ResNet-18. In this analysis, a
systematic approach is taken where one feature from the segmental frames analysis
of speech-pathological characteristics is removed at a time. This method allows for
a thorough assessment of the significance and potential of each individual feature
in the context of detecting deepfake speech. The findings from this study are
quite revealing. They highlight the GNE feature as the most important element in
this context. When the GNE feature is excluded from the analysis, the accuracy,
balanced-accuracy, recall, F1-score, and F2-score on the adaptation set all drop to
their lowest levels. This finding underscores the importance of the GNE feature
in the detection of deepfake speech.

4.3 Summary

This chapter explores the use of acoustical speech-pathological features for deep-
fake speech detection. Two methods are proposed: the first utilizes the average
value of these features with a Multi-Layer Perceptron (MLP) neural network, and
the second leverages segmental frames of analysis with a ResNet-18 architecture.

For the first method, the potential of acoustical speech-pathological features
for distinguishing between genuine and deepfake speech is investigated. The six
features are investigated consis of 3 jitter, 4 shimmer, HNR, CHNR, NNE, and
GNE. After feature extraction, the average value of these features is calculated.

79



T
ab

le
4.

15
:

A
b

la
ti

on
st

u
d

y
of

se
gm

en
ta

l
fr

am
es

of
an

al
y
si

s
of

sp
ee

ch
-p

at
h

ol
og

ic
al

fe
at

u
re

s
w

it
h

R
es

N
et

-1
8

on
A

S
V

sp
o
of

20
19

d
at

as
et

.

E
x
c
lu

d
e
d

F
e
a
tu

r
e

D
ev

el
o
p
m
en

t
se
t
(%

)
E
v
a
lu
a
ti
o
n
se
t
(%

)

(9
×

1
5
9
)

A
c
c
u
ra

c
y

B
a
la
n
c
e
d

a
c
c
u
ra

c
y

P
re

c
is
io
n

R
e
c
a
ll

F
1
-s
c
o
re

F
2
-s
c
o
re

E
E
R

A
c
c
u
ra

c
y

B
a
la
n
c
e
d

a
c
c
u
ra

c
y

P
re

c
is
io
n

R
e
c
a
ll

F
1
-s
c
o
re

F
2
-s
c
o
re

E
E
R

J
it
te
r
(l
o
ca

l)
9
6
.0
9

8
2
.1
6

9
6
.1
0

9
9
.6
7

9
7
.8
6

9
8
.9
5

7
.5
7

9
3
.6
6

7
8
.4
7

9
5
.4
2

9
7
.6
1

9
6
.5
0

9
7
.1
6

1
5
.1
5

J
it
te
r
(P

P
Q
3
)

9
6
.4
9

8
4
.4
9

9
6
.6
1

9
9
.5
9

9
8
.0
7

9
8
.9
7

6
.8
3

9
2
.9
4

7
0
.7
2

9
3
.7
4

9
8
.7
3

9
6
.1
7

9
7
.6
9

1
0
.4
5

J
it
te
r
(P

P
Q
5
)

9
5
.9
9

8
2
.4
2

9
6
.1
7

9
9
.4
9

9
7
.8
0

9
8
.8
1

7
.1
8

9
2
.8
1

8
3
.1
5

9
6
.6
1

9
5
.3
2

9
5
.9
6

9
5
.5
7

1
1
.6
4

S
h
im

m
er

(l
o
ca

l)
9
5
.7
1

8
0
.6
8

9
5
.8
0

9
9
.5
9

9
7
.6
6

9
8
.8
1

7
.0
3

9
3
.2
7

7
1
.2
2

9
3
.8
3

9
9
.0
1

9
6
.3
5

9
7
.9
2

1
0
.9
7

S
h
im

m
er

(A
P
Q
3
)

9
5
.8
2

8
1
.4
5

9
5
.9
7

9
9
.5
2

9
7
.7
1

9
8
.7
9

7
.5
0

9
3
.7
5

8
4
.0
1

9
6
.7
3

9
6
.2
9

9
6
.5
1

9
6
.3
7

1
0
.1
8

S
h
im

m
er

(A
P
Q
5
)

9
6
.5
5

8
6
.5
7

9
7
.0
9

9
9
.1
3

9
8
.1
0

9
8
.7
1

8
.1
6

9
4
.4
6

8
1
.1
7

9
5
.9
8

9
7
.9
2

9
6
.9
4

9
7
.5
3

9
.3
5

S
h
im

m
er

(A
P
Q
1
1
)

9
5
.8
2

8
8
.7
8

9
5
.8
1

9
9
.7
0

9
7
.7
2

9
8
.9
0

6
.4
3

9
3
.0
6

7
1
.4
7

9
3
.8
9

9
8
.6
8

9
6
.2
3

9
7
.6
8

1
2
.3
7

C
H
N
R

9
5
.0
6

8
4
.8
8

9
6
.8
1

9
7
.7
0

9
7
.2
6

9
7
.5
3

8
.4
3

9
2
.3
5

7
9
.2
5

9
5
.7
1

9
5
.7
6

9
5
.7
4

9
5
.7
5

1
0
.8
8

N
N
E

9
5
.9
3

8
2
.4
2

9
6
.1
8

9
9
.4
2

9
7
.7
8

9
8
.7
6

8
.3
5

9
3
.4
5

7
6
.7
4

9
5
.0
4

9
7
.8
0

9
6
.4
0

9
7
.2
4

1
1
.5
4

G
N
E

9
6
.1
0

8
2
.0
0

9
6
.0
6

9
9
.7
4

9
7
.8
7

9
8
.9
9

6
.1
2

9
4
.2
8

8
1
.3
6

9
6
.0
5

9
7
.6
4

9
6
.8
4

9
7
.3
1

9
.8
0

A
ll
F
ea

tu
re
s

(1
0
×

1
5
9
)

9
6
.6
7

8
5
.8
1

9
6
.6
0

9
9
.4
7

9
8
.1
7

9
8
.9
5

8
.8
9

9
1
.3
6

7
2
.9
9

9
4
.3
3

9
6
.1
4

9
5
.2
3

9
6
.7
7

1
1
.3
3

80



T
ab

le
4.

16
:

A
b

la
ti

on
st

u
d

y
of

se
gm

en
ta

l
fr

am
es

of
an

al
y
si

s
of

sp
ee

ch
-p

at
h

ol
og

ic
al

fe
at

u
re

s
w

it
h

R
es

N
et

-1
8

on
on

th
e

ad
ap

ta
ti

on
se

t
of

A
D

D
20

22
.

E
x
cl

u
d

ed
F

ea
tu

re
A

cc
u

ra
cy

(%
)

B
al

an
ce

d
ac

cu
ra

cy
(%

)
P

re
ci

si
on

(%
)

R
ec

al
l

(%
)

F
1-

sc
or

e
F

2-
sc

or
e

(%
)

E
E

R
(%

)

J
it

te
r

(l
oc
a
l)

80
.3

0
71

.1
7

80
.9

3
94

.0
0

86
.9

8
91

.0
6

2
3
.0
0

J
it

te
r

(P
P
Q

3)
81

.6
0

72
.2

9
81

.3
9

95
.5

7
87

.9
1

92
.3

5
18

.3
4

J
it

te
r

(P
P
Q

5)
8
0
.0
0

72
.4

5
81

.7
8

93
.5

7
87

.2
8

90
.9

5
19

.0
0

S
h

im
m

er
(l
oc
a
l)

80
.8

0
71

.0
5

80
.6

8
95

.4
3

87
.4

3
92

.0
6

2
3
.0
0

S
h

im
m

er
(A

P
Q

3)
81

.3
0

72
.1

7
81

.4
0

95
.0

0
87

.6
7

91
.9

3
20

.6
7

S
h

im
m

er
(A

P
Q

5)
80

.5
0

72
.1

7
81

.6
8

93
.0

0
86

.7
9

90
.4

9
22

.0
0

S
h

im
m

er
(A

P
Q

11
)

8
0
.0
0

72
.5

7
82

.2
2

9
1
.1
4

8
6
.4
5

8
9
.2
0

21
.3

3
C

H
N

R
80

.8
0

70
.6

7
8
0
.3
8

96
.0

0
87

.5
0

92
.4

1
22

.3
3

N
N

E
93

.6
9

6
9
.8
8

94
.9

8
98

.3
2

96
.6

2
97

.6
4

15
.8

6
G

N
E

83
.6

0
77

.6
2

85
.2

6
92

.5
7

88
.7

7
91

.0
1

19
.8

6

81



T
ab

le
4.

17
:

A
b

la
ti

on
st

u
d

y
of

se
gm

en
ta

l
fr

am
es

of
an

al
y
si

s
of

sp
ee

ch
-p

at
h

ol
og

ic
al

fe
at

u
re

s
w

it
h

R
es

N
et

-1
8

on
on

th
e

ad
ap

ta
ti

on
se

t
of

A
D

D
20

23
.

E
x
cl

u
d

ed
F

ea
tu

re
A

cc
u

ra
cy

(%
)

B
al

an
ce

d
ac

cu
ra

cy
(%

)
P

re
ci

si
on

(%
)

R
ec

al
l

(%
)

F
1-

sc
or

e
F

2-
sc

or
e

(%
)

E
E

R
(%

)

J
it

te
r

(l
oc
a
l)

98
.9

1
99

.3
1

99
.8

0
98

.8
3

99
.4

0
99

.0
6

0.
35

J
it

te
r

(P
P
Q

3)
97

.2
8

98
.3

4
9
9
.6
4

97
.0

7
98

.5
0

97
.6

4
1.

00
J
it

te
r

(P
P
Q

5)
96

.1
3

97
.8

3
99

.9
8

95
.7

9
97

.8
4

96
.6

0
0.

78
S

h
im

m
er

(l
oc
a
l)

97
.8

1
98

.7
5

99
.9

8
97

.6
3

98
.7

9
98

.0
9

0.
47

S
h

im
m

er
(A

P
Q

3)
96

.1
7

97
.9

99
.9

9
95

.8
4

97
.8

7
96

.6
4

1
.8
3

S
h

im
m

er
(A

P
Q

5)
94

.9
7

97
.2

4
99

.9
9

94
.5

3
97

.1
8

95
.5

7
0.

56
S

h
im

m
er

(A
P
Q

11
)

98
.2

9
99

.0
1

99
.9

8
98

.1
5

99
.0

6
98

.5
1

0.
98

C
H

N
R

97
.9

8
98

.6
8

99
.9

5
97

.8
4

98
.8

9
98

.2
6

0.
99

N
N

E
97

.8
7

98
.7

6
99

.9
8

97
.7

0
98

.8
2

98
.1

4
0.

05
G

N
E

8
9
.7
8

9
4
.4
1

99
.9

9
8
8
.8
9

9
4
.1
1

9
0
.9
0

0.
56

82



These features are then fed into an MLP neural network for training and testing
efficiency. The proposed method is evaluated using four datasets: ASVspoof 2019,
ASVspoof 2021, ADD 2022, and ADD 2023 datasets.

Upon investigation, it was discovered that HNR is not useful for detecting
deepfakes in all datasets. Consequently, in this chapter 10 speech-pathological
features are combined, which include: jitter (local), jitter (PPQ3), jitter (PPQ5),
shimmer (local), shimmer (APQ3), shimmer (APQ5), shimmer (APQ11), GNE,
NNE, CHNR.

The results from ASVspoof 2019 indicate that the accuracy, recall, F1-score,
and F2-score are 89.94%, 97.20%, 94.55, and 96.12%, respectively. For ASVspoof
2021, the accuracy, recall, F1-score, and F2-score are 84.56%, 92.19%, 91.43%,
and 91.88%, respectively. The experimental outcomes from ADD 2022 demon-
strate that the performance metrics accuracy, recall, F1-score, and F2-score stand
at 70.10%, 99.00%, 82.75%, and 91.78% respectively. This indicates a robust
model performance. While, the experiments conducted on ADD 2023 reveal even
more impressive results. The accuracy, recall, F1-score, and F2-score are 95.58%,
99.08%, 97.62%, and 98.49% respectively. The above results suggest that the pro-
posed method could effectively detect deepfake speech.This is achieved by utilizing
a mere ten features in combination with a simple neural network.

In the search for the most significant attribute among acoustical speech-path-
ological features, it was discovered that shimmer (APQ3) holds the utmost impor-
tance in ASVspoof2019. Similarly, GNE is of paramount importance in ADD2022
and ADD2023 datasets.

For the second method, the goal is to improve the efficiency of speech-pathologi-
cal features in detecting deepfake speech. Previous methods used an average of
each feature, which limited their effectiveness. In this work, a new method is
developed that extends the dimension of speech-pathological features by using
segmental frames of analysis. This approach enhances the performance of speech-
pathological features, making them more effective in detecting deepfake speech.

After applying the segmental frames of analysis to all speech-pathological fea-
tures, it was found that HNR is not useful for detecting deepfakes in all datasets.
The results from ASVspoof 2019 indicate that segmental frames of analysis signifi-
cantly improves performance compared with using the average method in accuracy
from 74.60% to 87.79%, recall from 79.00% to 95.70%, F1-score from 84.00% to
93.60%, and F2-score 81.20% to 95.00%, respectively, on development set.

For ASVspoof 2021, the performance of segmental frames of analysis improves
performance compared with using the average method in accuracy, from 92.23%
to 92.60%, recall from 97.86% to 99.09%, F1-score from 94.74% to 96.65%, and
F2-score 96.68% to 97.84%, respectively, on development set.

The experimental outcomes from ADD 2022 demonstrate that segmental frames
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of analysis improves performance compared with using the average method in accu-
racy from 70.10% to 87.60%, recall from 99.00% to 99.28%, F1-score from 82.75%
to 93.54%, and F2-score 91.78% to 91.90%,respectively on adaptation set.

While, the experiments conducted on ADD 2023 reveal segmental frames of
analysis improves performance compared with using the average method in accu-
racy from 95.58% to 99.80%, recall from 99.08% to 99.87%, F1-score from 97.62%
to 99.89%, and F2-score 98.49% to 99.88%,respectively on adaptation set. The
above results suggest that the proposed method could effectively detect deepfake
speech.
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Chapter 5

Deepfake Speech Detection using
Perceptual Speech-Pathological
Features

5.1 Proposed Method using Perceptual Speech-

Pathological Features

This chapter proposes a method for detecting deepfake speech by using simple
neural networks with a combination of the eight timbre features base on auditory
perception as illustrated in Fig. 5.1. For, timbral feature extraction processes must
be applied to the input speech signal. The result from the timbral feature consists
of eight values. Each value is the average of each attribute, which includes: depth,
sharpness, booming, hardness, brightness, roughness, warmth, and reverberation.

For timbre feature extraction, Python code from the Audio Common timbre
model 1 is implemented. After the eight timbre features were extracted, they were
saved and imported to the Python program for training and testing.

The speech signals are set to 4 s, with a sample rate of 16 k. Note that to ensure
all signals are 4 s long, signals shorter than 4 s are repeated from the beginning,
whereas signals longer than 4 s are truncated.

A multilayer perceptron neural network (MLP) is then used as a classifier. The
structure of the classifier comprises one node in the input layer, eight nodes in the
hidden layer, and eight nodes in the output layer. The hidden layer is activated
with the ReLU function, and the sigmoid function is the activation function in the
output layer. The training configurations of the classifier consisted of a maximum
of 100 epochs, learning rate of 0.0001, and batch size of 128. The loss function

1https://github.com/AudioCommons/ac-audio-extractor
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Figure 5.1: Proposed method using perceptual speech-pathological features with
multi-layer perceptron neural networks.

was binary cross-entropy, and the Adam optimizer was used.

5.2 Results and discussion in ASVspoof 2019 and

2021 datasets

The effectiveness of the perceptual timbral features is shown in Table 5.1 when used
with the neural network on the development set of the ASVspoof 2019 dataset.
Among the timbral features, hardness exhibit particularly high performance in
recall, achieving 92.74%. This superior performance can be attributed to the
ability of hardness to correctly identify fake speech more effectively than other
timbral features. Moreover, hardness suggests strong performance compared to
other features with a balanced accuracy of 61.94% .
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Another feature is brightness, which exhibits a particularly high precision per-
formance, achieving 85.87%.

When all timbral features are combined and used with the neural network, the
results are impressive, demonstrating 82.03% accuracy, 61.57% balanced accuracy,
87.65% precision, 92.24% recall, 89.89% F1-score, and 88.53% F2-score. These
metrics highlight the robustness and reliability of the timbral features in detecting
deepfake speech.

These findings suggest that timbral features, when integrated with neural net-
works, have significant potential in the realm of deepfake speech detection. The
high recall rates, in particular, indicate a strong capability to identify false posi-
tives, thereby enhancing the overall effectiveness of the detection system.

Table 5.2 show the effectiveness of the overall timbral features when used with
the neural network on the evaluation sets of the ASVspoof 2019 and 2021 datasets.
The reason for presenting the performance on the evaluation set of ASV2021 is that
the training and development sets of ASVspoof 2021 consist of the same data as
those in ASVspoof 2019. Consequently, the performance of the proposed method
on the evaluation set of ASVspoof 2021 is the focus to provide a clear and distinct
assessment.

These results indicate that timbral features have the potential to effectively
detect deepfake speech, demonstrated by a high recall of 92.19%. This high recall
rate underscores the method’s ability to correctly identify a large proportion of
fake speech instances, minimizing false negatives. This performance is crucial for
practical applications where accurate and reliable detection of deepfake speech is
essential.

Furthermore, the integration of timbral features with a neural network not
only enhances recall but also contributes to the overall robustness of the detection
system. By leveraging the unique characteristics of timbral features, the neural
network can more accurately distinguish between genuine and fake speech, thereby
improving the system’s reliability and effectiveness in detecting deepfake speech.
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5.3 Results and discussion in ADD 2022 and 2023

datasets

5.3.1 Results and discussion in ADD 2022 dataset

Table 5.3 demonstrates the effectiveness of utilizing timbral features with the neu-
ral network on the adaptation set of the ADD 2022 dataset. Among the tim-
bral features, roughness shows particularly high performance in recall, achieving
99.57%. Sharpness exhibits stronger performance than other features in terms of
accuracy, balanced accuracy, and precision, achieving 72.00%, 55.81%, and 72.63%,
respectively.

When all timbral features are combined with the neural network, the results are
as follows: 75.10% accuracy, 62.50% balanced accuracy, 76.07% precision, 94.00%
recall, 84.09% F1-score, and 89.76% F2-score. These results indicate that timbral
features have significant potential for effectively detecting deepfake speech.

The high recall rates of roughness and depth suggest that these features are
particularly adept at identifying instances of fake speech, reducing the likelihood
of false negatives. This is crucial for applications that require high sensitivity in
detecting deepfake speech to ensure the integrity and authenticity of audio content.

Additionally, the combined use of all timbral features with the neural network
enhances the overall performance of the detection system. The metrics demon-
strate a well-rounded capability, with strong precision and F-scores, indicating a
balanced approach to both identifying fake speech and minimizing false positives.
This comprehensive performance highlights the robustness and reliability of the
proposed method in practical, where accurate deepfake detection is essential.

5.3.2 Results and discussion in ADD 2023

Table 5.4 highlights the effectiveness of integrating timbral features with the neu-
ral network on the development set of the ADD 2023 dataset. The sharpness fea-
ture exhibits strong accuracy and recall rates of 91.57% and 98.60%, respectively,
compared to other timbral features, indicating their high capability in effectively
identifying fake speech. Depth exhibits strong performance, achieving a balanced
accuracy of 61.23% and a precision of 93.56%, which are higher than those of other
features.

Upon combining all timbral features with the neural network, the results are
as follows: the accuracy reaches 93.37%, the balanced accuracy stands at 67.54%,
precision reaches 94.59%, recall achieves 98.40%, and both the F1-score and F2-
score attain 96.46% and 97.62%, respectively.

These results demonstrate that the integration of timbral features with the
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neural network significantly enhances the system’s performance in detecting deep-
fake speech. The high recall rates of sharpness and roughness underscore their
importance in identifying fake speech, reducing the likelihood of false negatives,
which is critical for ensuring the integrity and reliability of audio content.

Furthermore, the combined use of all timbral features with the neural network
results in a well-rounded detection system. The high precision rate of 94.59%
indicates a strong ability to minimize false positives, while the robust F1 and F2
scores reflect a balanced and effective approach to deepfake speech detection.

The reason for the higher efficiency of all features in this dataset might be
twofold. First, the training set and the adaptation set share similar characteris-
tics. Second, this dataset has less background noise, specifically white and babble
noises and, reverberation. In contrast, ADD 2022 contains various background
noises such as background music, car engines, and people chatting. Additionally,
while the training set for ADD 2022 consists of clean speech without noise, the
adaptation set includes significant background noise. Consequently, the efficiency
of all features on ADD 2023 surpasses that of ADD 2022. Moreover, from the
observations, both the training and development sets exhibited a high signal-to-
noise ratio (SNR). In contrast, the adaptation and test sets demonstrated a low
SNR, characterized by a high level of various types of real-world background noise.
Therefore, this research randomly applied data augmentation techniques, including
the introduction of reverberation, babble, and music noise, during the extraction
of the speech-pathological feature to enhance the diversity of the training set.

5.4 Ablation study of Perceptual Speech-Pathological

Features

Table 5.5 depicts an ablation study on the development set of ASVspoof 2019, ana-
lyzing the performance of each timbral feature when utilized with a neural network.
In this study, one timbral feature was removed at a time to assess the importance
and potential of each feature for deepfake speech detection. The findings indicate
that sharpness and brightness are the important features, as their removal led to
the lowest performance across all metrics on the development set.

This ablation study highlights the critical role that the sharpness and bright-
ness features play in the detection process. When sharpness and brightness are
excluded, the neural network’s ability to accurately identify and classify fake speech
diminishes significantly. This reduction in performance metrics underscores sharp-
ness’s essential contribution to the overall effectiveness of the detection system.
Moreover, this analysis provides valuable insights into the individual impact of
each timbral feature, guiding future improvements and optimizations in deepfake
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speech detection methodologies. By understanding the relative importance of each
feature, researchers and developers can prioritize the most influential ones, en-
suring the development of more robust and reliable detection systems. Overall,
the results from Table 5.5 emphasize the necessity of including the sharpness and
brightness features for achieving high detection performance, reinforcing its value
in the ongoing efforts to combat deepfake speech.

Table 5.6 illustrates an ablation study on the adaptation set of ADD 2022,
evaluating the performance of individual timbral features when integrated with a
neural network. Throughout this investigation, one timbral feature was eliminated
at a time to assess the significance and efficacy of each feature for detecting deep-
fake speech. The results show that brightness emerges as the important feature,
as its removal results in the lowest recall and F1-score on the adaptation set. This
ablation study underscores the critical role that the brightness feature plays in the
detection of deepfake speech. Furthermore, the analysis provides valuable insights
into the individual impact of each timbral feature, allowing researchers to prioritize
features that contribute most significantly to the detection process. By identify-
ing and focusing on the most influential features, such as brightness, it becomes
possible to enhance the overall effectiveness of deepfake detection systems.

As depicted in Table 5.7, an ablation study on the adaptation set of ADD
2023 provides a comprehensive evaluation of the performance of individual timbral
features when they are incorporated into a neural network model. This study
is not a cursory examination, but a thorough investigation where each timbral
feature is systematically removed in a step-by-step process. The objective of this
methodical approach is to gauge the significance and effectiveness of each feature
in the complex task of detecting deepfake speech, a growing concern in the realm
of digital communication. The results of this study are illuminating, particularly
in the case of the reverberation feature. The findings underscore the critical role
that reverberation plays in the detection process. When this feature is absent from
the model, a notable decrease in the performance metrics is observed. Specifically,
the accuracy, balanced-accuracy, and precision on the adaptation set all reach
their lowest levels without the reverberation feature. This compelling evidence
highlights the indispensable role of reverberation in the successful detection of
deepfake speech, reinforcing its importance in the design of the neural network
model.
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5.5 Summary

In this chapter, the potential of timbral features for distinguishing between gen-
uine and deepfake speech is investigated. The eight attributes—depth, sharpness,
booming, hardness, brightness, roughness, warmth, and reverberation—are con-
sidered. After feature extraction, the average value of these features is calculated
and fed into an MLP neural network for training and testing efficiency. The pro-
posed method is evaluated using four datasets: ASVSpoof 2019, ASVSpoof 2021,
ADD 2022, and ADD 2023. The ASVSpoof 2019 and 2021 datasets consist of
speech samples without background noise. The model is trained using the training
set and tested with the development set from ASVSpoof. However, for ASVSpoof
2021, evaluation is performed using the evaluation set since this dataset only has
an evaluation set. The training and development sets remain the same as those
used for ASVSpoof 2019. The ADD 2022 and 2023 datasets contain audio samples
with various types of background noise, particularly in ADD 2022. These two
ADD datasets are trained with the training set and tested with the adaptation
set.

The results from ASVspoof 2019 indicate that the accuracy, recall, F1-score,
and F2-score are 82.03%, 92.24%, 89.89%, and 88.53%, respectively. For ASVspoof
2021, the accuracy, recall, F1-score, and F2-score are 84.56%, 92.19%, 91.43%, and
91.88%, respectively. The experimental outcomes from ADD 2022 demonstrate
that the performance metrics accuracy, recall, F1-score, and F2-score - stand at
70.10%, 94.00%, 84.09%, and 89.76% respectively. This indicates a robust model
performance. While, the experiments conducted on ADD 2023 reveal even more
impressive results. The accuracy, recall, F1-score, and F2-score have significantly
improved to 93.37%, 98.40%, 96.46%, and 97.62% respectively.

The above results suggest that the proposed method could effectively detect
deepfake speech.This is achieved by utilizing a mere eight features in combination
with a simple neural network.

In the search for significant attributes among timbral features, hardness, sharp-
ness, and brightness have been shown to be important in ASVspoof 2019. Similarly,
sharpness, brightness, and roughness are of paramount importance in ADD 2022.
Finally, depth, sharpness, and reverberation take precedence in ADD 2023.

98



Chapter 6

Deepfake Speech Detection using
Acoustical and Perceptual
Speech-Pathological Features

6.1 Proposed Method using Acoustical and Per-

ceptual Speech-Pathological Features

This chapter selects the important acoustic and perceptual speech-pathological
features from Chapters 5 and 6. After investigation, it is found that six signif-
icant acoustical speech-pathological features are utilized: jitter (local), shimmer
(APQ3), shimmer (APQ11), GNE, NNE, and CHNR. Additionally, six important
perceptual features are incorporated: sharpness, hardness, brightness, roughness,
depth, and reverberation, as shown in Fig. 6.1. These features are combined and
fed to an MLP for detecting deepfake speech. This approach aims to assess the
effectiveness of the proposed method in identifying deepfake speech based on both
acoustic and perceptual features.

A neural network-based classifier was implemented for this task. The network
architecture consists of an input layer with 12 nodes, a single hidden layer with
12 nodes, and an output layer with a single node. The hidden layer utilizes the
ReLU activation function and The output layer employs the sigmoid function. The
training process was configured with a maximum of 100 epochs. A learning rate of
0.0001 was used to control the magnitude of weight updates. A batch size of 128
samples was chosen to balance computational efficiency and gradient estimation
accuracy. Binary cross-entropy was chosen as the loss function to measure the
discrepancy between the predicted and actual labels. The Adam optimizer was
employed for efficient optimization of the network weights during training.

The results presented in Table 6.1 demonstrate the performance of the proposed
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Figure 6.1: Proposed method using important acoustic and perceptual speech-
pathological features with multi-layer perception neural networks.
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method on four datasets: ASVspoof 2019, ASVspoof 2021, ADD 2022, and ADD
2023. The analysis reveals that the proposed method achieves high performance
on ASVspoof 2019, ASVspoof 2021, and ADD 2022. In these datasets, accuracy
surpasses 90% and recall exceeds 98%, indicating strong detection capabilities.
However, the performance on the ADD 2023 dataset is considerably lower. Here,
accuracy drops to around 70%, and other metrics also fall below those observed in
the other datasets. The difference in performance between ADD 2022 and ADD
2023 datasets might be attributed to the presence of background noise. ADD
2022 exhibits a higher prevalence of diverse background noises, including engine
sounds, music, and people talking. Conversely, ADD 2023, while not entirely free
of background noise, features a significantly lower rate of such distractions. In
contrast, the ASVspoof 2019 and ASVspoof 2021 datasets contain clean speech
recordings devoid of any background noise.

6.2 Results and discussion in ASVspoof 2019 and

2021 datasets

The results in table 6.2 shows the comparison of the results from the combination
of acoustical and perceptual features with the individual results of each acoustical
and perceptual feature using a neural network on the development set of ASVspoof
2019. The experimental results showed that when comparing the performance of
acoustic features and perceptual features, acoustic features performed better in
terms of accuracy, balanced accuracy, recall, F1-score, and F2-score. Further-
more, the experiments demonstrated that combining the important acoustic and
perceptual features significantly improved performance metrics such as accuracy,
recall, F1-score, and F2-score. This improvement was observed compared to using
only acoustic features or perceptual features on their own.

Table 6.3 presents a comparison between combining acoustical and perceptual
features and using each feature set individually. This analysis is based on the
performance of a neural network trained on the ASVspoof 2019 dataset. The ex-
perimental results demonstrated that when comparing the performance of acoustic
features and perceptual features, acoustic features outperformed perceptual fea-
tures across all metrics. Additionally, the findings indicated that combining the
important acoustic and perceptual features led to significantly better performance
in terms of accuracy, recall, F1-score, and F2-score compared to using percep-
tual features alone. However, when comparing the combined features to acoustic
features alone, it was observed that the combination performs better in terms of
recall and F2-score, while the other metrics showed a slight decline, which was not
statistically significant. This suggests that the proposed method enhances the de-
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tection of fake speech more effectively, particularly in a highly imbalanced dataset
where fake speech is more prevalent than genuine speech.

6.3 Results and discussion in ADD 2022 and 2023

datasets

Table 6.4 compares the results of combining the important acoustical and per-
ceptual features with the individual results of each feature type, using a neural
network on the ADD 2022 adaptation set. The experimental results demonstrated
that when comparing the performance of acoustic features and perceptual fea-
tures, perceptual features outperformed acoustic features in terms of accuracy,
balanced accuracy, precision, and F1-score. This indicates that perceptual fea-
tures perform well across various levels of background noise. When combining the
important acoustic and perceptual features, the proposed method showed better
accuracy, balanced accuracy and precision compared to using acoustic features
alone, although the other metrics were lower. Furthermore, when comparing the
combination of features to individual perceptual features, the combination was
found to be less effective. This suggests that the proposed method’s performance
decreases with varying levels of background noise.

Table 6.5 presents a comparison between the results obtained by combining
acoustical and perceptual features and the results from each feature type individ-
ually, utilizing a neural network on the ADD 2023 development set.

The experimental results revealed that acoustic features consistently outper-
formed perceptual features across all evaluation metrics. Furthermore, combining
these informative acoustic features with key perceptual features yielded significant
improvements in performance on nearly all metrics compared to using perceptual
features alone. Notably, the proposed combination of features surpassed the per-
formance of acoustic features in terms of accuracy, balanced accuracy, precision,
and F1-score. This suggests that the combined feature set offers a more robust
approach for discriminating between genuine and fake speech, particularly in the
presence of low level of background noise.

6.4 Discussion

This chapter investigates the efficacy of combining important acoustic and per-
ceptual features within a MLP neural network for deepfake speech detection. The
proposed method achieved superior performance on datasets with clean or low
background noise (ASVspoof 2019, ASVspoof 2021, and ADD 2023). This suggests
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that both acoustic and perceptual features can effectively capture characteristics
of genuine speech when the environment is relatively noise-free.

However, the performance drop observed in the ADD 2022 dataset highlights
the limitations of the current approach when dealing with significant background
noise. The high prevalence of various noises, such as engine car, pepole chating,
music noise, white, pink, and babble noise, likely disrupts the informative content
within the speech signal, making it more challenging for both acoustic and percep-
tual features to accurately distinguish genuine from spoofed speech. This warrants
further investigation into feature extraction techniques specifically designed to be
robust against background noise.

Exploring feature normalization or noise reduction techniques for audio data
pre-processing before feature extraction presents a promising avenue for future re-
search. Additionally, investigating alternative feature sets or feature fusion meth-
ods specifically designed for noisy environments could be fruitful. Addressing these
challenges will enhance the overall robustness and generalizability of the proposed
method for real-world deepfake speech detection scenarios.

6.5 Summary

This chapter proposes of combining important acoustical and perceptual speech-
pathological features for deepfake speech detection using a MLP neural network.
Six acoustical speech-pathological features are utilized, including jitter (local),
shimmer (APQ3), shimmer (APQ11), GNE, NNE, and CHNR. Additionally, six
perceptual features are incorporated, encompassing sharpness, hardness, depth,
brightness, roughness, and reverberation.

The proposed method was evaluated using four different datasets. The results
demonstrated that when the important acoustic and perceptual features were com-
bined, the performance improved across almost all datasets compared to when
these features were used individually. This suggests that the integration of acous-
tic and perceptual features enhances the method’s ability to accurately analyze
and interpret the data. Therefore, the utilization of speech-pathological features
can be employed for the detection of deepfake speech.
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Chapter 7

Conclusion

7.1 Summary

Deepfake speech refers to a synthesized human voice generated using advanced
voice conversion and text-to-speech techniques. It finds applications in various
domains, such as audio books, customer services, and virtual assistants. However,
the misuse of deepfake speech poses a significant threat to economies and societies.
Therefore, detecting deepfake speech is crucial for fraud protection and ensuring
the reliability of automatic speaker verification (ASV) systems.

Detecting deepfake speech has involved using several advanced techniques pri-
marily focusing on two approaches: creating efficient classifiers and exploring
acoustic features. In this dissertation, aim to investigate speech-pathological fea-
tures to detect deepfake speech, which may also aid in identifying voice disorders
caused by abnormalities in the human speech production mechanism. These disor-
ders often manifest as unnaturalness. Since deepfake speech is also characterized by
unnaturalness, the hypothesis suggests that it might mimic the perceived acoustic
quality of a disordered voice. Therefore, speech-pathological features can be cru-
cial clues for deepfake speech detection. Inspired by the human speech production
mechanism, this process is complex and difficult to replicate artificially. Moreover,
the tiny variations in speech production mechanism are unique to speaker indi-
viduality. Although advances in deepfake speech have made it possible to create
increasingly realistic speech, it is still constrained and challenging to replicate.
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The goal of this research is to propose a method for detecting deepfake based
on speech-pathological features with three research questions.

• To answer the first question of whether speech pathological features is used
to detect disorder voices can detect deepfake speech. In this study, two
types of speech-pathological features were investigated: acoustic and per-
ceptual features. The acoustic speech-pathological features include three
types of jitter, four types of shimmer, CHNR, NNE, and GNE. The per-
ceptual speech-pathological features consist of depth, sharpness, booming,
hardness, brightness, roughness, warmth, and reverberation. When these
two sets of speech-pathological features were used with an MLP neural net-
work, the results indicated that acoustic features and perceptual features
could effectively detect deepfake speech.

• To address the second question of whether speech-pathological features can
be enhanced to detect deepfake speech, extending the range of acoustic
speech-pathological features proves more efficient compared to others. By
utilizing segmental frames of analysis techniques in acoustic speech-patholo-
gical features without HNR, the detection of deepfake speech can be signifi-
cantly improved.

• To answer the last research question: which features are important in de-
tecting deepfake speech. The results of the experiment show that shimmer
(APQ11), GNE, NNE, CHNR, sharpness, hardness, and brightness are im-
portant for detecting deepfake speech without background noise, while jitter
local, shimmer (APQ3), shimmer (APQ11), GNE, brightness, sharpness,
depth, roughness, and reverberation are important for detecting deepfake
speech in noisy environments.

7.2 Contributions

This study focuses on deepfake speech detection by utilizing speech-pathological
features, which are traditionally used to detect voice disorders, drawing inspira-
tion from human speech production mechanisms. By integrating these features,
the study aims to enhance the accuracy and robustness of identifying deepfake
speech. Therefore, this research contributes significantly to society by improving
the security and reliability of digital speech communication systems. For example,
by analyzing voiceprints for authenticity, these systems can enhance security mea-
sures in various applications, such as voice banking, access control, and forensic
investigations. This leads to more reliable biometric authentication and safeguards
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against fraudulent activities. Furthermore, this research sheds light on the funda-
mental mechanisms of human speech production, advancing knowledge beyond the
realm of security and technology. Its findings hold significant implications for di-
verse fields, including speech emotion recognition, the biological basis of language
processing, linguistic theories of speech production and perception, the psychology
of auditory attention, and the cognitive processes underlying communication.

7.3 Remaining Works

To improve the efficiency of using speech-pathological features in detecting deep-
fakes, future work will focus on the following areas.

• Analyzing the feature extraction of speech-pathological features for detect-
ing deepfake speech in more detail, consider the following aspects. First,
investigate the speech length—determining the optimal duration for detect-
ing deepfake speech. Second, explore the sampling rate of the speech signal,
aiming to identify a suitable rate that significantly contributes to deepfake
detection. Lastly, examine the frame length, seeking an appropriate frame
size for effective deepfake speech detection.

• Investigating the effectiveness of additional acoustic speech-pathological fea-
tures in detecting deepfake speech. These features include the largest Lya-
punov exponent (LLE), rate of points above linear average (RALA), and
correlation dimension (D2). These features have been shown to be efficient
in detecting voice disorders, suggesting their potential applicability in un-
covering the subtle manipulations characteristic of deepfakes. Therefore, hy-
pothesize that these features might perform well in differentiating between
genuine and deepfake speech.

• Applying segmental frames of analysis to perceptual speech pathological fea-
tures, similar to how they are used with acoustic speech-pathological features,
can be beneficial. These perceptual features, including depth, sharpness,
booming, hardness, brightness, roughness, warmth, and reverberation, can
then be investigated for their importance in detecting deepfake speech.
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