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Abstract

The rapid expansion of the tourism industry has led to the growing research
focused on tourist route planning. However, most existing studies concen-
trate on individual tourist routing, leaving a significant gap in addressing sce-
narios that involve multiple tourists. Traditional approaches for multi-tourist
route planning, often adapted from single-tourist models, tend to emphasize
tourist preferences and advantages. This has resulted in challenges such as
popularity-biased route planning, which intensifies issues like overtourism in
highly popular areas and hinders sustainable tourism practices. To overcome
these challenges, we propose a multi-agent reinforcement learning (MARL)
framework for planning routes for multiple tourists, integrating tourist dis-
tribution into the process. Our method comprises two essential components:
first, a novel reinforcement learning environment tailored for tourism, allow-
ing interactions with multiple tourists; second, a dual-congestion model that
accounts for both localized congestion at attractions and the broader city-
wide distribution of tourists. This dual-congestion concept formulates the
reward structure within our MARL framework. We validate our approach
through extensive experiments using real-world human mobility data from
Kyoto, a renowned global tourist destination. The results demonstrate that
our model outperforms current approaches in optimizing route rewards while
managing tourist distribution effectively. Furthermore, we conducted a user
study to assess the impact of our congestion-aware mechanism on tourist
experiences. The findings suggest that while our dual-congestion model may
slightly impact tourists who favor popular destinations, it underscores the
generally conflicting relationship between sustainable tourism and individual
tourist preferences. Importantly, our model shows potential in transforming
this conflict into a more cooperative interaction.

Additionally, we explore multi-agent communication protocols. To allevi-
ate the non-stationary problem in MARL, we employ techniques to denoise
irrelevant information and perform information fusion effectively. Our im-
plementation of two types of selectors and three attention-based methods
shows the framework’s capability to handle large-scale agents’ interaction.
Moreover, experiments indicate that traditional methods provide limited
improvements for the non-stationary challenges in our scenario, pointing
to future research directions focusing on sequential actions of agents and
the adaptation of joint optimization in collaborative-adversarial scenarios.
Next, we reveal the similarity between multi-agent communication and Multi-
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hop Question Answering (QA), and apply our proposed communication
framework on Multi-hop QA. We develop the advancements in Multi-hop QA
by developing the "Answer Multi-hop questions by Single-hop QA" (AMS)
system. This innovative approach employs a denoise component and a single-
hop QA model adopting the co-attention and self-attention architecture. Our
AMS system outperforms existing GNN-based models on the HotpotQA
dataset, showcasing improvements in Joint EM and Joint F1 scores while
using fewer resources. It illustrates our framework’s effectiveness in other
complicated task.

In summary, this research advocates a comprehensive approach for mul-
tiple tourists route planning with MARL. This work establishes a robust
and collaborative framework for addressing the complex issue of popularity-
biased tourists route planning, significantly advancing the capabilities for
achieving sustainable tourism and efficient information sharing in complex
environments.

Keywords: Multiple Tourists Route Planning, Multi-agent Reinforce-
ment Learning, Multi-agent System Communication, Unbiased Route Plan-
ning, Sustainable Tourism Sightseeing.
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Chapter 1

Introduction

1.1 Motivation

Tourism not only fosters job creation by stimulating local economies through
associated industries but also serves as a crucial bridge for cultural ex-
change and understanding by exposing travelers to diverse cultural heritages.
Recently, tourism industry has been acting an indispensable part of the
global economy, promoting economic development in numerous countries and
regions. Annually, the increasing number of global tourists and the growth in
contribution to the GDP highlight the industry’s significant influence. After
COVID-19 pandemic, the growth in tourism expenditure is seven times higher
than nominal GDP growth. Figure 1.1 shows the statistical comparison
between global nominal GDP growth and nominal tourism spending growth
from Tourism Economics [1].

Figure 1.1: Comparison between global nominal GDP growth and nominal
tourism spending growth from Tourism Economics [1].
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Figure 1.2: Overtourism problem in Kyoto (Japan) and Rome (Italy).

However, the rapid expansion of tourism presents some challenges in
tourism destinations, including environmental pollution, cultural conflicts,
and resource over-exploitation, which are generally caused by overtourism
(tourism pollution). The phenomenon of overtourism, where visitor numbers
greatly exceed a destination’s capacity, leads to negative impact on the local
residents, environment and culture, which ultimately harms both the visitor
experience and tourism sustainable development. Conversely, under-tourism,
a strongly related issue with overtourism, represents a significant issue in
lesser-known tourist spots that fail to attract adequate visitor numbers due to
insufficient promotion or resource allocation, thus limiting economic growth
and leading to under-investment and infrastructural deficiencies. The root
of these issues stems from the uneven distribution of tourists, largely a
result of biased-sightseeing influenced by media portrayals and promotional
strategies that favor certain regions. This bias not only limits tourist choices
but also exacerbates pressures on popular destinations while hindering the
development of other lesser-known ones. Figure 1.2 shows overtourism in
world famous tourism spots.

Research of tourist route planning has been boosted by the rapid growth
of tourism in the last decades. However, there are three limitations in existing
research regarding the above issues:

- Existing research only focuses on popular point-of-interest (POI) con-
gestion, addressing crowding at famous destinations but often neglect-
ing less popular ones, thereby overlooking under-tourism. It results in a
missed opportunity to balance regional development and enhance local
economies. At the core of the problem is the inequitable distribution
of tourism resources, which can lead to environmental destruction and
degradation of cultural heritage, thereby contributing to unsustainable
tourism practices.
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- Existing research on tourist route planning predominantly focuses
on single tourist planning, resulting in homogenized itineraries and
POI congestion. While some recent studies have begun to explore
multiple tourist planning, they typically prioritize tourist benefits
without addressing the interests of the destinations. Our research aims
to systematically resolve bias issues by considering both tourist and
destination interests, thereby promoting sustainable tourism.

- Multi-Agent Reinforcement Learning (MARL) has not been extensively
explored in the route planning for multiple tourists, where existing
studies relying on single-agent frameworks yield suboptimal results.
Our research is dedicated to the application of MARL in planning
routes for multiple tourists, employing Kyoto as a practical example
to tackle real-world challenges.

Our research proposes a systematic approach to alleviate overtourism
by addressing the biased-sightseeing issue, aiming to achieve equitable dis-
tribution of tourists. This not only facilitates tourists in discovering new
destinations but also contributes to the sustainability of the tourism and
provides new strategies for local governments and tourism organizations.
Consequently, the objective of our research is to establish a scalable and
robust model utilizing MARL to effectively manage route planning for mul-
tiple tourists. This model takes into account both sustainable tourism and
tourists’ preferences, striving to achieve unbiased sightseeing and promote
sustainable tourism practices.

1.2 Research problems and Objectives

We focus on three research problems as follows:

RQ1. How to solve the unbiased-sightseeing problem with MARL?

Objective: we model the multiple tourists route planning with MARL,
where each agent represents a tourist. We propose a mechanism that
considers both local congestion at tourist spots and overall city-wide
tourist’ distribution to formulates the reward system in our MARL
framework. This mechanism should guide the MARL algorithm to
generate routes with an even and equatable distribution of tourists.

RQ2. How to conduct communication in multi-agent system considering
agents’ scalability?
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Objective: we propose an method that can improve the efficiency in
large-scalar agents’ communication. Our model consists of two main
parts that first denoise irrelevant agents and then conduct information
sharing.

RQ3. Could we extend our multi-agent communication framework to other
complicated task?

Objective: we abstract the similarity between multi-agent communi-
cation and other complicated task (Multi-hop QA). We study the ap-
plication of our communication framework on the Multi-hop Question
task.

1.3 Contributions

In this work, we make following contributions:

- We introduce the critical issue of popularity-biased sightseeing, a
prevalent challenge arising from neglecting lesser-known POIs. We
address it by a novel tourism MARL framework, including considering
concentration of tourists at individual POIs and their distribution
across the entire network of POIs. (Chapter 3)

- We conduct extensive experiments using a Kyoto real human-mobility
dataset. Our model consistently generates tourist routes that achieve
a more equitable distribution of visits across POIs, a more balanced
distribution of tourists, and higher rewards compared to existing mod-
els. This performance is particularly notable in large-scale tourists
scenarios. (Chapter 3)

- We conduct a survey to empirically investigate the impact of our
method on tourists’ experience, which gives reference for practical
implementation for sustainable tourism. (Chapter 4)

- We analyze tourists’ preference and sustainable tourism development
based on game theory, including the discussion of our method in
transforming the relationship between them from a non-cooperative
relationship to a cooperative one. (Chapter 4)
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- We propose an intention-aware communication protocol for MARL.
Our proposed intention-aware communication protocol can effectively
enhance RPMTD performance in Kyoto real human-mobility dataset
for better achievement in the sustainable development goal of tourism.
(Chapter 5)

- We reveal the similarity between multi-agent communication and
Multi-hop QA, and extend the communication framework to the QA
task. We investigate an effective method AMS to answer multi-hop
questions, which incorporates single-hop QA models with a document
filter. And it is further enhanced with two-step tuning. AMS outper-
forms other sophisticated GNN-based models in HotpotQA dataset,
while it requires less computational resource.(Chapter 6)

1.4 Organization of this Thesis

The rest of this thesis is structured as follows:

- Chapter 3 presents our proposed RPMTD model, which incorpo-
rates dual congestion-aware mechanism for tourists route planning by
MARL.

- Chapter 4 presents an empirical user study of several congestion-aware
route planning methods.

- Chapter 5 presents a collaborative and intention-aware Multi-agent
framework for scalable agents.

- Chapter 6 presents a new model, called AMS, for multi-hop QA, which
shares the similar framework with our communication method.

- Chapter 7 concludes this thesis by summarizing our key contributions
and highlighting various directions for future work.
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Chapter 2

Background

2.1 Orienteering Problem

The Orienteering Problem (OP) is a combinatorial optimization challenge
that originates from the sport of orienteering. In this sport, participants
aim to navigate between checkpoints in unfamiliar terrain, under time
constraints, to maximize their score. The orienteering problem abstracts
this by presenting a scenario where one must select a subset of available
locations to visit, each with an associated score, and determine the most
profitable route that respects a given time or distance limit. The main goal
is to maximize the total score obtained from visiting various checkpoints.
There is a strict limit on the total traveling time or distance, which cannot
be exceeded. Traveling Salesman Problem (TSP) is similar with this problem
with the additional complexity of score maximization under constraints.

TSP is a highly recognized and widely studied problem in both operations
research and theoretical computer science. It involves determining the
shortest possible route that visits a given set of cities exactly once before
returning to the starting point. The primary objective is to minimize the
total distance or travel time. As a fundamental problem in combinatorial
optimization, TSP aims to find the optimal loop that ensures each city is
visited only once while reducing the overall travel cost, whether measured by
distance or time.

2.2 Tourist Route Planning

Tourist Route Planning is a specialized area within route optimization that
focuses on developing itineraries for tourists based on specific criteria such
as minimizing travel time, maximizing the attractiveness or satisfaction of
the visit, and adhering to constraints like opening hours of attractions and
the available time of the tourist. The goal is to create an optimal visiting
plan that enhances the tourist’s experience by effectively scheduling visits to
various Points of Interest (POIs) within a given timeframe. The objective
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is to optimize the tourist’s route so that it maximizes their satisfaction
from visiting various attractions while considering personal preferences and
practical constraints. These constraints can include the operating hours
of POIs, geographic distances between locations, the preferred duration of
stay at each site, budget limits, and the total time available for touring.
Like TSP, Tourist Route Planning involves finding an efficient path among
a set of locations. The basic structure of Tourist Route Planning can be
viewed as a variant of TSP where each city in TSP is similar to a tourist
attraction. Different from TSP, Tourist Route Planning incorporates more
complex constraints and objectives, such as matching the tourist’s interests
and preferences, which are not considerations in the classic TSP. Like TSP
and OP, Tourist Route Planning is generally NP-hard, particularly due
to its additional constraints and the need for personalization. Effective
solutions often employ sophisticated algorithms, including heuristic methods,
genetic algorithms, and machine learning approaches, to approximate the
best routes. Recently, there are works utilizing the reinforcement learning
to train Pointer Networks for the TSP and other related combinatorial
optimization problems, and the promising results are obtained [2–4].

2.3 Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning that trains agents
by feedback from environment. Unlike supervised learning, where training
data come with labels indicating the correct action, in reinforcement learning,
an agent learns the policy by interacting with an environment and rewards
based on its actions. This learning paradigm is heavily inspired by behavioral
psychology and how entities learn from the consequences of their actions in
real-world scenarios. Following shows some key concepts in RL:

- Agent: decision-maker normally a neural network model in deep learn-
ing.

- Environment: the parameters the agent interacts with.

- Actions: what the agent can do. Each action affects the environment.

- State: the current situation returned by the environment.

- Observation: piece of information that an agent perceives about the
environment at any given time.
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- Reward: a feedback from the environment. Rewards can be positive
(reinforcing a behavior) or negative (discouraging a behavior).

- Policy: a strategy that the agent determines its actions based.

- Value Function: it predicts the long-term return expected from a state
or state-action pair, used to evaluate the quality of states and guide
the policy.

In RL, the agent learns to a policy to make actions based on the given
state in a way that maximizes cumulative reward. It begins often without
prior knowledge, and through repeated interactions (trial and error). This
experience helps the agent to refine its policy, increasingly favoring actions
that lead to higher rewards. Genially, there are three type of RL methods:
value-based, policy-based and actor-critic methods.

Value-based method
Value-based methods focus on learning the value function with states or
state-action pairs. The main concept is to estimate the value of being in
a specific state by considering the expected cumulative long-term rewards,
which is termed as return in RL. Following shows key concepts of value-based
methods: The value function assigns a value to each state (or state-action
pair) that represents the return over the future, starting from that state
or after taking a particular action in that state. The main types of value
functions include:

- State Value Function (V (s)): Represents the expected return (re-
wards) starting from state s, and following a particular policy π.

- Action Value Function (Q(s, a)): Represents the expected return
starting from state s, taking an action a.

Policy-based method
Policy-based methods focus on learning a policy function that directly
maps states to a probability distribution over actions. Unlike value-based
approaches, which first learn a value function and then derive the policy,
policy-based methods optimize the policy directly. These methods often
exhibit more stable convergence compared to value-based techniques. Due to
their reliance on probability distributions, policy-based updates are generally
smoother. The policy, expressed as π(a|s), is usually represented as a
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parameterized function with parameters θ, which defines the likelihood of
selecting action a in state s.

The learning process involves adjusting the parameters θ of the policy
function πθ(a|s) to maximize some objective function, typically the expected
return from the start distribution, J(θ). The updates to θ are usually done
using gradient ascent on J(θ):

θ ← θ + α∇θJ(θ) (2.1)

where α is the learning rate.
Followings shows some popular policy-based algorithms

- REINFORCE: This algorithm uses the return from a complete
episode to update the policy gradient. It estimates the gradients using
complete episodes. This indicates it calculates the total reward from
each state-action pair at the end of an episode, which it uses to update
the policy gradient. The update for REINFORCE is given by:

θ ← θ + α
T∑
t=0

Gt∇θ log πθ(at|st) (2.2)

where θ represents the policy parameters, α is the learning rate, Gt is
the return from time step t, and ∇θ log πθ(at|st) is the gradient of the
logarithm of the policy’s probability of taking action at in state st.

- Proximal Policy Optimization (PPO): PPO is a more advanced
policy gradient method that addresses some of the practical issues of
earlier algorithms like REINFORCE and TRPO (Trust Region Policy
Optimization). It’s designed to take multiple steps of optimization
using the same batch of data. One of the key innovations of PPO is
its objective function, which includes a clipping mechanism to prevent
excessively large policy updates. This is mathematically represented as
following:

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(2.3)

where rt(θ) is the ratio of the new policy probability to the old policy
probability of taking action at at state st, Ât is the advantage estimate
at time t, and ϵ is a small number.

Actor-critic Method
The Actor-Critic method is a fundamental technique in reinforcement learn-
ing that combines both policy-based and value-based methods. It consists of
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two main components: the actor determines actions given the current state;
it is is usually parameterized by θ. The policy function πθ(a|s) determines
the likelihood of selecting action a when in state s; the critic evaluates the
proposed actions by the value function. Its evaluation is typically conducted
using a value function, either a state-value function V (s) or an action-
value function Q(s, a), which is generally parameterized by w. Together,
these two components work to optimize the policy and the value function
simultaneously. The actor and the critic are updated as following:

- Critic Update:
δ = r + γV (s′)− V (s) (2.4)

w ← w + αcriticδ∇wV (s) (2.5)

where r is the reward, γ is the discount factor, s′ is the next state, and
αcritic is the learning rate for the critic.

- Actor Update:

θ ← θ + αactorδ∇θ log πθ(a|s) (2.6)

where αactor is the learning rate.

2.4 Multi-agent Reinforcement Learning

Multi-agent Reinforcement Learning (MARL) expands upon the conventional
single-agent framework of reinforcement learning by introducing environ-
ments where several agents operate and interact at the same time. In MARL,
each agent learns to make decisions based on its observations and the shared
environment, often with the goal of maximizing their individual or collective
rewards. This field is crucial in understanding and designing intelligent
systems where multiple decision-makers interact. Following shows the key
concepts in MARL:

- Multiple Agents: Unlike single-agent environments, MARL involves
multiple agents, each with their capacity to learn and act indepen-
dently. These agents may have either cooperative, competitive, or
mixed objectives.

- Environment Dynamics: The inclusion of multiple agents introduces
certain complexity to the interaction and environment. The result of
one agent’s action may be influenced not only by the environmental
state but also by the actions of other agents. This inter-agent depen-
dence can create a non-stationary environment from the viewpoint of
an individual agent.
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- Communication and Coordination: Agents may need to commu-
nicate or coordinate their actions, especially in cooperative tasks. Ef-
fective strategies for communication and coordination are key research
areas in MARL.

There are three learning types in MARL:

- Independent Learning: Each agent perceives the other agents as
part of its environment and learns its own policy independently. While
this method is straightforward, it may encounter difficulties in adapting
to the non-stationary conditions caused by the dynamic behaviors and
learning processes of the other agents.

- Joint Action/Centralized Learning: Agents consider the joint ac-
tions of all agents in their decision-making process. This approach can
become inpractical and infeasible with increasing numbers of agents.

- Centralized Training with Decentralized Execution: Agents
are trained in a centralized method where global information may be
used to optimize performance, but they execute their learned policies
independently.

2.5 MARL Cooperation Mode

MARL is a complex field because it includes varying dynamics among agents
within the same environment. These dynamics can be broadly categorized
into cooperative, competitive, and hybrid (both cooperative and competitive)
modes, each presenting unique challenges and requiring different strategies.

Cooperative MARL
In cooperative scenarios, agents work together towards a common goal, often
sharing a collective reward based on the overall performance of the group.
This requires agents to learn behaviors that not only benefit themselves but
also complement and enhance the actions of their peers. Coordination is
crucial, and agents often benefit from some level of communication, allowing
them to align their strategies and optimize joint actions. Training in these
environments might involve centralized learning processes where a global
view helps to optimize collective strategies, aiding in more synchronized and
efficient teamwork. Such cooperation is evident in tasks like multi-robot
systems in logistics, where harmonious collaboration directly translates to
increased productivity.

Competitive MARL
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Competitive MARL places agents in opposition, with each agent striving to
maximize its own individual rewards, often at the expense of others. This
creates an adversarial environment where agents must continuously adapt to
the strategies of their opponents, leading to a complex dynamic of actions
and counteractions. The challenge here is for each agent to outmaneuver or
outperform the others, which can resemble playing a high-stakes game where
each player seeks to win over the others. Competitive settings are typical in
games like poker or strategic games where the success of one agent means a
loss for another, pushing each agent to refine their strategies in a continual
arms race.

Mixed MARL
Mixed interaction modes present a scenario where agents must both coop-
erate with some agents and compete against others. This mode is highly
reflective of many real-world situations where interactions are not strictly
adversarial or collaborative. Agents in such environments must navigate
complex social landscapes, forming temporary alliances or competing as
dictated by their objectives, which may change based on the context or phase
of the task at hand. This requires agents to develop nuanced strategies that
can adapt to shifting alliances and oppositions, often necessitating a delicate
balance between self-interest and collective goals. Mixed modes are common
in scenarios like team sports or corporate strategies where entities might
collaborate on some projects while competing in others.

2.6 Challenges in MARL

Challenges in Multi-agent Reinforcement Learning (MARL) stem from the
complexities caused by interactions from multiple agents within a shared
environment. These challenges differentiate MARL from single-agent rein-
forcement learning, requiring distinct approaches and solutions. Here are
several key challenges encountered in MARL:

Non-stationarity
When each agent learns and updates its policy, the environment change
becomes unstable for an individual agent. This is because the environment is
updated with joint actions from multi-agent. And the actions and strategies
of other agents, which are part of the environment’s dynamics, are continually
evolving. Thus, what might appear as an optimal action at one point can
become suboptimal as other agents adjust their behaviors.
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Scalability
The complexity of MARL problems increases exponentially with the number
of agents. This issue arises because the joint action space grows exponentially
with the number of agents involved. Managing and computing optimal
policies in such large-scale systems become computationally infeasible with
standard algorithms, necessitating scalable solutions that can effectively
approximate solutions without exhaustive computation.

Partial Observability
In many real-world MARL scenarios, agents do not have access to complete
information about the environment or the states of other agents. This
partial observability adds another layer of complexity, as agents must make
decisions based on limited, and often noisy, information. The challenge lies
in designing agents that can effectively infer the necessary information from
their observations and predict the actions of other agents to make optimal
decisions.

Multi-Agent Communication
Effective communication strategies can significantly enhance coordination
and learning in MARL. However, designing these communication protocols
(what information to share, when, and with whom) introduces additional
complexity. Communication can lead to better-informed decisions and more
coherent group behavior, but it also incurs costs in terms of bandwidth,
privacy, and computational overhead.

Exploiting and Exploring
In MARL, agents are required to balance between exploitation, which in-
volves using existing knowledge, and exploration, where new actions are taken
to gather more information about the environment. This balance becomes
more complex in a dynamic context where the actions of other agents also
influence the environment. The exploratory actions of one agent can have a
significant effect on the rewards that other agents receive.

2.7 Multi-hop QA in Nature Language Process-
ing

Multi-hop QA in Natural Language Processing (NLP) is a complex task that
involves synthesizing and connecting information from multiple data sources
to answer queries that require more than one inferential step. This type of
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QA challenges systems to not only locate relevant information but also to
link disparate pieces of information logically to construct an accurate answer.

In multi-hop QA, the questions are inherently intricate, often necessi-
tating an understanding of various aspects of the content spread across
different sections of a text or across multiple documents. The system
must identify these relevant segments, determine their interrelationships,
and derive conclusions that are not explicitly stated but implied by the
interconnected data.

The process begins with a deep analysis of the question to understand
the underlying requirements. The system then scans through large datasets
to pull together bits of information that appear relevant to the query. Each
piece of information is like a clue in a larger puzzle; the system must not
only collect these clues but also figure out how they fit together to form a
complete work. With the development of deep learning, advance models
like Transformers, Graph Neural Networks, and Memory Networks have
promoted the capabilities of multi-hop QA systems. These technologies
enable more dynamic handling of data connections and memory, facilitating
deeper understanding and more coherent responses to multifaceted questions.
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Chapter 3

Dual Congestion-Aware Route Plan-
ning for Tourists by Multi-agent
Reinforcement Learning

3.1 Introduction

As a worldwide leisure activity, tourism has developed into a significant
source of revenue and one of the world’s largest industries in recent decades,
boosting tourist route planning research in past years. Sophisticated models
have been developed to enhance tourist route planning from various aspects,
such as popular route optimization and route personalization [5–8]. Existing
studies have primarily focused on single tourist route planning, yet little
attention has been paid to multiple tourists route planning. This results in
homogenization of route planning and points-of-interest (POIs) congestion
problem when route planning is performed for a large number of tourists [9].

Recently, although some studies [9–13] have attempted to diversify mul-
tiple tourists’ routes, they were still developed from the perspective of single

Figure 3.1: An example of real popularity-biased sightseeing in Kyoto, Japan;
there is no tourists in the lesser-known attraction, but the popular attraction
is crowded with tourists.
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tourist planning methods. That is, as only the benefits of tourists are
considered in existing methods, visits are mainly planned on popular POIs,
and some minor POIs remain unvisited at the end of the trip [9]. We term this
problem as popularity-biased route planning, which implies that particular
popular POIs attract excessive visits, whereas other POIs do not attract
visits. In reality, famous POIs attract a large number of tourists, causing
overtourism. However, some less well-known POIs suffer from under-tourism
because of the shortage of tourists [14–16]. Figure 3.1 illustrates the problem
of Kyoto popularity-biased sightseeing in reality. This problem not only
poses a burden on the popular POIs but also discourages the development of
sustainable tourism [17]. It has become a global issue, especially in famous
tourism cities, such as Kyoto (Japan), Paris (France), and Rome (Italy) [18].
Recently, some countries and organizations (e.g., European Union, France,
Japan, New Zealand) have implemented tourists’ distribution policies to
alleviate this problem [19–22].

To tackle the challenges of popularity-biased route planning and POI
congestion, we introduce a new route planning model, the Route Planning
Model with consideration of Tourist Distribution (RPMTD). Our approach
is two-fold: Initially, we develop a novel tourism multi-agent reinforcement
learning (RL) environment capable of interacting with multiple tourists.
Building upon this environment, we introduce the RPMTD model, distin-
guished by its dual-congestion awareness. This model strategically assesses
tourists’ distribution to optimize route planning. In detail, the RPMTD
model incorporates two types of congestion rewards: local and global. The
local congestion reward measures the level of crowding at individual POIs,
helping to avoid over-concentration of tourists at specific locations. In
contrast, the global congestion reward assesses the overall distribution of
tourists across all POIs, aiming for a more balanced and equitable allocation
of tourists. This dual-congestion approach ensures that tourism’s individual
and collective impacts are considered, promoting sustainable and enjoyable
tourism experience. Figure 3.2 illustrates the comparison of our method with
existing single and multiple tourists route planning methods.

In our reinforcement learning (RL) environment, we leverage authentic
human mobility data from Kyoto, Japan, renowned for its popularity and
representativeness in global tourism. To capture the intricate dynamics of
human movement, we consider three distinct types of mobility data: (i)
the mobility patterns of residents, (ii) the movements of tourists, and (iii)
pseudo-mobility data, which simulates a broader spectrum of real-world
scenarios. We apply our model, RPMTD, to 72 POIs in Kyoto. The model’s
performance is meticulously evaluated based on several critical metrics: the
equitable distribution of visits across POIs, the overall evenness in the
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Exiting Single Tourist 
Route Planning Model

Exiting Multiple Tourists 
Route Planning Model

Our Proposed Model 
RPMTD

Figure 3.2: Comparison of our method with existing single and multiple
tourists route planning methods in terms of multiple tourists planning. Single
tourist planning methods generate homogenized route for all tourists. Ex-
isting multiple tourists planning methods generate routes biased on popular
POIs. Our method generates routes with a balanced distribution of visits.

distribution of tourists, and the total reward achieved. The results from these
evaluations demonstrate that our model not only surpasses competing models
in performance but also exhibits considerable robustness across various
tourists scenarios.

The main contributions of our study are summarized as follows:

1. We introduce the popularity-biased sightseeing problem and propose a
novel tourism multi-agent RL framework for it, including an environ-
ment for interaction with tourists and a model with consideration of
both local and global congestion.

2. Unlike existing methods, we implement three types of mobility data to
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simulate the RL environment: 1) mobility of residents, 2) mobility of
tourists, and 3) pseudo-mobility generated automatically. This fashion
makes our RL environment more close to the real world.

3. We conduct extensive experiments to validate our method with real
datasets including 72 POIs in Kyoto. The experimental results
demonstrate that our model generates routes with fairer POIs’ visits,
more even tourists’ distribution and higher reward than other existing
models, specifically in large-scale tourists planning.

3.2 Related Work

Single tourist planning: Numerous works have developed single tourist
route planning schemes considering different aspects. Some studies aim
to maximize trip rewards. Hsieh et al. [23] consider the tourist route
planning problem as an orienteering problem and generate the route with
specified starting and ending POI. Gunawan et al. [24] utilize integer linear
programming to model the problem. Gama et al. [4] construct a sophisticated
model based on the pointer network and apply RL for the model training.
Some works focus on personalized route planning. Duan et al. [5] personalize
the route recommendation by analyzing the user’s history of interest from
check-in behavior. Gionis et al. [25] customize the recommendation by
consideration of the order of POI’s category. Taylor et al. [26] consider
mandatory POIs visiting in route recommendation. Some works enhance
performance based on location-based social network services and social
media. Xu et al. [27] and Padia et al. [7] discriminate the POIs by sentiment
analysis based on users’ reviews. Seo et al. [28] take into account the
anchoring effect in route planning by weighting the tourist’s initial check-
in data. Qian et al. [29] and Yu et al. [30] consider contextual factors in
POI recommendation. Zhang. et al [31] propose incorporating a visual
model to improve POI recommendation. Gao et al. [32] use the social
information from an expanded set of friends to deal with the data sparsity
problem. Cheng et al. [33] measure the geographical importance and fuse
it with social information for route recommendation. Liu et al. [34] and
Chen et al. [6] recommend topics and POIs to tourists by utilizing POIs’
textual information. Besides, there are also some works [35–37] studying
other aspects, such as privacy protection, user transition pattern analysis,
and mixed styles of sightseeing.

Multiple tourists planning: Conversely, few studies focus on multiple
tourists. Sylejmani et al. [10] plan a group of tourists considering individual
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preferences and mutual social relationships. Lim et al. [12] and Elmi et
al. [13] cluster tourists into groups and apply a single tourist method to
recommend routes for each group. Sarkar et al. [11] apply Subgame-Perfect
Nash equilibrium of game theory to recommend various routes for a group
of tourists. Kong et al. [9] apply the single-agent RL framework to diversify
multiple tourist routes.

Other congestion-related problems: Lee et al. [38] and Normoy et al. [39]
study the navigation of agent’s behavior in crowds to avoid obstacles. Li et
al. [40] and Sridhar et al. [41] investigate traffic-flow management to prevent
road congestion. Unlike them, our work focuses on the spots’ congestion
problem and tourist’ distribution.

Difference with previous works: Our work differs from previous works
in the following aspects: (i) previous works generate the route only from
the benefits of tourists, e.g., optimized route recommendation and route
personalization, whereas we consider the POIs’ benefits; (ii) previous works
apply either heuristic methods or single-agent RL for multiple tourists
route planning, whereas, we propose multi-agent RL framework for multiple
tourists planning; (iii) previous works are based on simple and small-scale
tourist scenarios, while our work is validated on real and large-scale mobility,
which is more realistically applicable;

3.3 Preliminaries and RL Environment

In this section, we first summarize the notations used in our work in Table
3.1. Subsequently, we define our problem and the proposed RL Environment.

3.3.1 Basic concept

We represent the set of POIs in the target city as:

P = {p1, ..., pn} (3.1)

where n is the number of POIs. Each POI pi is associated with capacity ci,
location loci, time cost costpi , score scri, visit number vnt

i, and number of
tourists numt

i. We represent the set of tourists as:

T = {t1, ..., tm} (3.2)

where m is the number of tourists. Each tourist tj is associated with activate
time Iactj , remaining time brej , time budget bj, starting POI psj , and ending
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Table 3.1: Description of notations.
Notation Description Notation Description
P The set of all POIs T The set of all tourists
pi A specific POI, where pi ∈ P tj A specific tourists, where tj ∈ T
ci Capacity (max number of tourists) of

pi

spj Moving Speed of tj

POI loci Coordinate of pi, i.e., (latitude, longi-
tude)

bj Time budget for tj

& costpi The amout of time needed to visit pi psj Starting POI of tj
Tourist scri Score of pi, denoting the attractiveness

of pi
pej Ending POI of tj

vnt
i Number of pi has been visited at time

t
Qj Query of tj, including bj, psj and pej

numt
i Number of people (population) in pi at

time t
Sj Route of tj, a sequence of POIs

ri Reward of visiting pi
agentj A specific agent in RL, representing a tourists tj
M Mobility Matrix, representing POIs’ population change over one day
Icur Indicator of current time slot in M at each interaction
Iactj Indicator of activate time for tj/Agentj. (tj is unstarted or in sightseeing before activate time.)

RL brej Remaining time budget for tj
tmij The amount of time needed to move from tj’s current POI to pi
Oi

j Observation of pi for tj (including ci, costpi , scri, vnt
i, numt

i, brej , bj, tmij)
Oj Global observation for tj, stacking Oi

j of all POIs together
Aj Action of Agentj given observation Oj, next visiting POI

POI pej . For tj, the query Qj is given as a tuple:

Qj = (bj, p
s
j , p

e
j) (3.3)

where bj, psj and pej denotes the time budget, starting and ending POI,
respectively. Based on Qj, the model returns a route Sj for tj, which includes
k POIs. In Sj, the tourist must begin at psj and terminate at pej , while keeping
the traveling time within bj.

The reward of a tourist visiting a POI dynamically depends on the
visited POI’s crowdness and the global tourists’ distribution. The objective
is to maximize the sum of all tourists’ rewards accumulated from tourists
sequentially visiting POIs in their routes.

3.3.2 Problem Formulation

3.3.2.1 General Tourists Route Planning

We first define the General Route Planning without consideration of dual-
congestion awareness.

Definition Definition 3.1 General Route Planning for Tourists
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Given T , the query Qj = (bj, p
s
j , p

e
j) is specified for tj. A route Sj should be

generated for tj from P . The objective function of maximizing the sum of
all tourists’ rewards is represented as follows:

Max
m∑
j=1

n∑
i=1

ri ·Xj(pi), where Xj(pi) =

{
1, if pi ∈ Sj

0, otherwise
(3.4)

ri is the reward of visiting pi; most existing works use scri and users’
preference to estimate it. Function Xj(pi) calculates if pi in Sj. Eq. (1)
is solved by following constraints:

Constraint 1:
Sj = (pj1, ..., p

j
k)

where
pj1, ..., p

j
k ∈ P

pj1 = psj and pjk = pej
|
{
pj1, ..., p

j
k

}
| = k

(3.5)

Constraint 2:

k−1∑
i=1

Dj
i ≤ bj, where Dj

i = costpji
+ travel_time(pji , p

j
i+1) (3.6)

where travel_time(pji , p
j
i+1) calculates the time needed to travel from POI

pji to the next POI pji+1, and pji , p
j
i+1 ∈ Sj. This is the approximated time

based on the POIs’ locations and spj.
Constraint 3:

2 ≤ H(pjx),H(pjy) ≤ k,∀x, y = 2, ..., k

H(pjx)−H(pjy) + 1 ≤ (k − 1)(1− F(pjx, p
j
y))

(3.7)

where H(pjx) calculates the position of pjx in Sj. F(pjx, p
j
y) calculates the

consecutivity of pjx and pjy in Sj. F(pjx, p
j
y) = 1 if pjy is visited after pjx,

otherwise F(pjx, p
j
y) = 0.

Constraint 1 ensures that (i) all visited POIs are in the set P ; (ii) the
route must begin at the starting POI and terminate at the ending POI; (iii)
no POI can be visited more than once. Constraint 2 ensures that for tj, the
travel duration should not exceed bj. Constraint 3 ensures that sub-tours are
eliminated.
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3.3.2.2 Dual-congestion aware Route Planning

As one class of General Routes Planning, we define the dual-congestion
reward of visiting a POI as follows:

Definition Definition 3.2 Local Congestion Reward

The local congestion reward of visiting pi evaluates the congestion of pi,
which depends on ci, numt

i, vnt
i and scri.

rlocali = flocal(ci, num
t
i, scri, vn

t
i) (3.8)

Definition Definition 3.3 Global Congestion Reward

The global congestion reward of visiting pi evaluates the global tourists’
distribution, which depends on all POIs’ capacity and number of tourists.

rglobali = fglobal(c1, ..., cn, num
t
1, ..., num

t
n) (3.9)

Definition Definition 3.4 Dual-congestion Reward

The dual-congestion reward of visiting the POI pi is the sum of the global
and local congestion rewards.

ri = sum(rglobali , rlocali ) (3.10)

Dual congestion evaluates global and local congestion simultaneously.
The objective function also maximizes the sum of all tourists’ rewards while
subject to the same constraints.

3.3.3 Multi-agent Reinforcement Learning Environment

Our proposed environment consists of the mobility matrix, tourists, and
POIs. The U × V mobility matrix M presents the POIs’ population change
over one day, where U is the number of POIs; V is the number of time slots
representing one day. Celluv of M indicates the number of people in POI
u at the specific time slot v. There is a current time indicator Icur for M ,
indicating the current interaction time slot and moving to the next time slot
after one interaction. For tj, there is an indicator of activate time Iactj . Before
the activation time, tj does not interact with the environment. Specifically,
tj is either in sightseeing or unstarted before the activation time. For pi,
numt

i is set according to the current time slot of the mobility matrix in each
interaction.
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Icur is initialized by the tourists’ starting time. The POIs’ popularity
is set according to the current time slot from the mobility matrix M .
Environment generates the observation Oj for tj, which is stacking of each
POI pi’s observation Oi

j. In Oi
j, there are 8 features: ci, costpi , scri, vnt

i,
numt

i, brej , bj, and tmij. Given Oj, agentj outputs the action Aj, the next
visiting POI. Based on Aj, M and Iactj is updated, and rewards are given.

Figure 3.3 shows an example of interaction. The black arrow on the
mobility matrix M is the current time indicator Icur; blue, red and green
arrows under M are the activate time indicators of agent1, agen2, agent3,
respectively. agent1, agen2 start at 9:00, and agent3 starts at 9:30. At the
beginning, Icur is set at 9:00, and each POI’s population is set according
to the 9:00 slot of M . The environment generates the observations O1, O2

at 9:00 for agent1 and agent2, respectively, based on which the two agents
output actions (next POIs). agent1 will stay in p4 from 9:00 to 10:00 and
agent2 will stay in p6 from 9:00 to 9:30. M and two agents’ activation time is
updated accordingly. The rewards of visiting p4 and p6 are given. Then Icur

skips 9:15 and moves to 9:30, as no agents are activated at 9:15. Observations
O2, O3 at 9:30 are generated for the agent2 and agent3, respectively. agent2
and agent3 output actions, based on which M and two agents’ activate time
is updated. Then Icur moves to 9:45 where agent3 is activated. Interaction
repeats until all tourists finish their trips.

3.4 Dual-congestion aware Routes Planning Model

In this section, we first illustrate the RL implementation. Subsequently, our
Dual-congestion mechanism is described.

3.4.1 Multi-agent Reinforcement Learning Implementa-
tion

Our work is based on the fully decentralized approach to adapt our model
to scalable tourists scenarios. The actor-critic method is adopted, and
independent PPO (IPPO) [42] is utilized for training. Since all the agents
are homogeneous, meaning they have the same state space, action space, and
optimization objective, parameter sharing is conducted.

In our scenario, the model is required to handle interactions among a
variable number of tourists. IPPO is employed due to its intrinsic capability
to address such dynamic challenge. This dynamic challenge is attributed
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from two factors: (i) the model should generate routes for various number
of tourists, instead of only for a constant number of tourists; (ii) in each
interaction, not all agents participate in the interaction. Because some agents
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Figure 3.4: Schematic diagram of multi-agent IPPO algorithm and model
structure of actor and critic networks.
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are inactive and in sightseeing.
In the actor-critic method, the actor outputs the action and learns a

policy with the critic’s guide. The observation O (we omit the subscript for
a general denotation) is given for an agent from the environment in each
interaction. Specifically, O = {O1, ..., On} ∈ Rn×d, where n and d denotes
the number of POIs and the POI’s feature dimension. The actor first maps
O into the hidden space with a feed-forward network (FNN). The hidden
representation O′ is obtained as following:

O′ = FFN1(O) ∈ Rn×h (3.11)

where h denotes the hidden dimension.
Then, the self-attention is applied to update hidden representation O′,

which is motivated by its effectiveness in combinatorial optimization studies
[43]. Specifically, it learns the relations between each pair of POIs and
updates each POI’s representation from all POIs. We use the transformer
encoder [44] as a self-attention module.

H = TransformerEncoder(O′) ∈ Rn×h (3.12)

The updated representation H is further fed into another FNN to calcu-
late the logits of each POI, and then is normalized by softmax. The final
action is obtained by random sampling.

H′ = softmax(FFN2(H)) ∈ Rn (3.13)

The critic’s structure is similar to the actor except that it finally calculates a
scalar value. Figure 3.4 shows the structures of the actor and critic networks.

The actor network and the critic network are represented as πθ (ai|oi) and
Vω(oi), where θ and ω are learnable parameters in the networks. Given the
trajectory from interactions {(o1, a1, r1, o′1), . . . , (oM , aM , rM , o′M)}, where oi,
ai, ri, o′i are the current observation, action, reward, and next observation at
i-th step, the critic network is learned by minimizing following loss:

Lcritic =
1

M

M∑
i=1

(ri + γVω(o
′
i)− Vω(oi))

2 (3.14)

where γ is the discount factor. The actor network is learned by maximizing
the following objective:

Lclip
actor = E[min(liAi, clip(li, 1− ϵ, 1 + ϵ)Ai)] (3.15)

where li =
πθ(ai|oi)

πθold
(ai|oi) is the likelihood ratio; clip(x, k, h) clips x in [k, h]; Ai

is the advantage estimate; ϵ is the hyperparameter that controls the clipping
ratio.
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3.4.2 Dual-congestion mechanism

We propose a dual-congestion mechanism for unbiased route planning to
construct a reward function. Specifically, local congestion considers visited
POI crowdedness, and global congestion considers the evenness of tourists’
overall distribution. The total reward is the weighted sum of both rewards:

Rewardtotal = ω1Rewardglobal + ω2Rewardlocal (3.16)

where ω1 and ω2 are weights for local and global congestion rewards.
Reward based on Local Congestion: Rewardlocal evaluates the

visited POI’s crowdness. The intuition is that fewer tourists pose less burden
on the POI and make tourists more satisfied, which results in higher rewards.
We use a linear function to define the local congestion reward without
considering negative reward as follows:

Rewardlocal = max(scoresc · (1−
numt

c
), 0) (3.17)

where scoresc is the scaled POI score, which depends on each POI’s visit
number and overall trip process, aiming to improve the minor POIs’ visiting.
The intuition is that POIs with fewer visits will have higher scores.

scoresc = max(I(x) · Sc(numt), 1) · score

I(x) =
1

1 + e−20(x−λ)

Sc(numt) = 1 +
20

(numt + 1)4

(3.18)

where I(x) is the trigger function. x is the percentage of total tour process.
Sc(numt) is the score scaling function. I(x) triggers score scaling function
after a certain time. λ is a hyperparameter set to 0.6 as default, indicating
that the score scaling function is triggered from 60% of the total touring
process. The score scaling function scales the POI’s score according to the
cumulative visit number. For instance, the scores of POIs with zero, one,
two, and three visits are multiplied by 21, 2.25, 1.25, and 1.08, respectively.

Reward based on Global Congestion: To more fairly distribute
the tourists over all the POIs, we propose the global congestion reward
Rewardglobal, which is inversely proportional to the variance of attendance
percentages across all POIs:

Rewardglobal =
1

V ar(ap1, ..., apn)
(3.19)

where api is the attendance percentage of pi, api =
numt

i

ci
.
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3.5 Experiment and Result

3.5.1 Target City Background

Our experiments are conducted on a real-human mobility dataset collected
from Kyoto, Japan, one of the world’s most famous and typical tourism
destinations.

Kyoto accounts for 3.5% of the world’s tourists each year, which is similar
to other popular tourism cities, such as New York (4.4%), London (1.9%),
and Paris (2.9%). More than 10% local people are employed in tourism, and

Figure 3.5: Locations distribution of 72 POIs of Kyoto in our experiment
(upper) and popularity-biased tourists’ distribution based on real mobility
data at rush hour (lower). Each circular yellow mark represents one POI’s
location.

30



the tourism value was about 12 billion U.S. dollars in 2018, making up about
17% gross domestic product of this city. [45]. Thus, Kyoto is a typical tourism
city, and proper distribution of tourists is crucial for both tourism and the
development of the city. There are numerous temples, shrines, and historical
houses in Kyoto. Our experiments are conducted on 72 POIs, including 14
famous World Cultural Heritage Sites. Figure 3.5 shows the locations of 72
POIs and popularity-biased tourists’ distribution at rush hour.

3.5.2 Experiment Setting

Mobility Data Preparation To simulate the real world and validate
our model robustness, we conduct experiments on two mobility datasets: F-
Data and FYP-Data. The data is collected from two resources: (i) Flickr,
a widely used image hosting and sharing platform worldwide; (ii) Yahoo!
JAPAN, a popular portal service in Japan, provides various daily services,
including search engine, news, entertainment, weather forecast, etc. Details
are given as follows:

- F-Data: We count the number of Flickr users who post photos on
Flickr in each POI and different time slots. Laplace smoothing is
conducted for the POIs whose visit number is zero, adding a minimum
non-zero number for all POIs’ visit numbers. It represents the Kyoto
tourists’ mobility; the maximum is about 4000.

- Y-Data: This dataset is provided by LY Corporation (previous Yahoo
Japan Corporation). It includes 6667031 trajectories of 757878 mobile
users using Yahoo! JAPAN services in 16 days. The data is pre-
anonymized and random noise is added. We count the number of mobile
users in each POI every half hour to obtain the mobility data and
average them for further processing. It represents the Kyoto residents’
mobility, and the maximum mobility is about 25000.

- P-Data: Based on Y-data, we use a density model [46] to generate
trajectory data of 500 pseudo-users to simulate the mobility of random
tourists in the same day.

- FYP-Data: This data is the combination of Y-Data, F-Data and
P-Data, which is closer to reality.

We obtain the mobility data for each time slot and generate the mobility
matrix M for experiments.

Tourists Setting We generate 100, 200 tourists as small-scale tourists
and 500, 1000 as large-scale tourists. In F-Data experiment, we only
consider small-scale tourists. In FYP-Data, we consider both small-scale and
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large-scale tourists. Starting POIs are selected from Kyoto’s three popular
sightseeing POIs and destinations are selected as the city center and Kyoto
station. Each tourist’s time budget is randomly set between 6 and 8 hours.

Implementation details The FFNs in both actor and critic networks
are set as 2-layer with 0.2 dropout. For the transformer self-attention module,
we stack 2 layers and 8 heads. In the main experiments, λ, ω1, and ω2 are set
as 0.6, 0.1, and 1, respectively. In RL training, discount factor γ, clip control
factor ϵ, and learning rate for actor and critic are set as 0.99, 0.2, 3e-4, and
1e-3, respectively. We implement experiments on one A100 GPU server.

3.5.3 Baseline Setting

We select two models based on RL as our baseline, and implement them on
our proposed environment for comparison.

- MARLRR [9] diversifies tourists’ routes by dynamic reward function
from a tourism economic model and applies the single-agent RL method
DQN for multiple tourists route planning.

- Pointer-NN [4] constructs model with pointer networks and dynamic
graph self-attention. The model is trained by the REINFORCE
algorithm. It is one of the state-of-the-art models for single tourist
route planning.

We also select other multi-agent reinforcement learning (MARL) algorithms
as our baseline to compare with IPPO. Specifically, we consider independent
learning and centralized policy gradient methods. Value decomposition
methods are not considered as they specialize in decomposing a single joint
reward for multiple agents, whereas in my scenario each agent gets an
individual reward from the environment.

- IQL [47]is a commonly-used independent learning algorithm and devel-
oped from Q-Learning. In IQL, each agent learns independently and
perceives the other agents as part of the environment. Therefore, it
can be directly applied for our scenario.

- MADDPG [48] is a centralized policy gradient algorithm based on
centralized training with decentralized execution (CTDE) framework.
In MADDPG, each agent is trained with a deep deterministic policy
gradient approach while considering the presence of other agents.

- MAPPO [49] is also a CTDE algorithm. Similar with IPPO, it is an
extension of the Proximal Policy Optimization algorithm to multi-agent
environments. The difference is that the learning of agents in MAPPO
is based on global information.
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However, MADDPG and MAPPO cannot be directly applied in our
dynamic scenario due to their intrinsic limitations of critic network in
processing inputs of variable dimensions. To solve the variable-length input
problem, we utilize self-attentive embedding [50] to convert the variable-
length input into a fixed-length embedding.

Specifically, we firstly simplify the observations of agents. Each agent’s
observation contains POI-specific information and tourist-specific informa-
tion. As the POI-specific information is consistent across all agents, we only

Figure 3.6: An example of converting three agents’ input into a constant
dimension input. (||) denotes the concatenation function. The POI-specific
information is in orange; the tourist-specific information is in gray, blue and
green; the multiple tourists-specific information processed by self-attentive
embedding is in black.
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concatenate tourist-specific information and convert it into a fixed-length
embedding with self-attentive embedding. Furthermore, one-hot vector is
employed to represent agent‘s action. We accumulate each agent’s action
one-hot vector along dimension of each POI to represent the joint actions.
Through this method, a constant dimension input is obtained to apply
MADDPG and MAPPO for our scenario. Figure 3.6 shows an example of
converting three agents’ input into a constant dimension input.

3.5.4 Evaluation Metrics

To evaluate the performance, the following evaluation metrics are utilized:

(1) Maximum and average variance of all POIs’ attendance percentage
(Varmax and Varaverage) throughout the whole trip are utilized to
measure the bias/imbalance of tourists’ distribution.

(2) Gini coefficient [51] of POIs (GiniPOI) and tourists (Ginitourist) are uti-
lized to measure the fairness among POIs’ visiting and tourists’ reward,
respectively. A higher Gini coefficient indicates greater unfairness.

(3) Total static reward (Rewardstatic) and total congestion-aware/dynamic
reward (Rewarddynamic) are utilized to measure the total reward of all
tourists.

(4) Average of edit distance (EDr) is utilized to measure the diversity of
planned routes. Higher edit distance indicates greater diversity.

3.5.5 Experimental Results

We first present the comparison between IPPO and other MARL algorithms
on F-Data and FYP-Data.

Table 3.2 shows the comparison result of MARL algorithms. As IQL,
MADDPG and MAPPO all fail to converge in the scenarios of FYP-data
500 and 1000 tourists, the comparison is not shown in the table. IPPO
outperforms other MARL algorithms in both F-data and FYP-data. IQL
performs the worst and fails in convergence in scenario of more than 100
tourists. MADDPG and MAPPO fail in convergence in scenarios of 500
and 1000 tourists in FYP-data. The reason could be that in large-scale
agents’ interaction, current method cannot effectively represent the global
observations of all agents; thus, the central critic network cannot accurately
provide guidance to each agent’s actor network.

We present the comparison between our model RPMTD and other two
route planning models on F-Data and FYP-Data.
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Table 3.2: Result of MARL algorithms based on F-data and FYP-data.

GiniPOI Ginitourist Varave Varmax EDr

IPPO 0.309 0.119 0.075 0.094 1265.281
F-data MADDPG 0.473 0.136 0.079 0.113 1274.67

100 tourists MAPPO 0.488 0.124 0.087 0.096 1264.725
IQL 0.503 0.137 0.082 0.128 1270.169

IPPO 0.321 0.12 0.063 0.093 2214.93
F-data MADDPG 0.628 0.131 0.093 0.152 2039.486

200 tourists MAPPO 0.735 0.146 0.119 0.173 2184.971
IQL - - - - -

IPPO 0.612 0.168 0.036 0.067 1315.29
FYP-data MADDPG 0.685 0.193 0.046 0.105 1154.658

100 tourists MAPPO 0.719 0.204 0.054 0.129 1243.854
IQL 0.758 0.181 0.049 0.094 1268.541

IPPO 0.625 0.189 0.032 0.071 2265.35
FYP-data MADDPG 0.752 0.191 0.062 0.138 2146.347

200 tourists MAPPO 0.827 0.215 0.071 0.113 2048.807
IQL - - - - -

Table 3.3: Result of route planning methods based on F-Data.

GiniPOI Ginitourist Varave Varmax EDr

F-Data
100 tourists

RPMTD 0.309 0.119 0.075 0.094 1265.281
MARLRR 0.555 0.121 0.079 0.099 1320.825
Pointer-NN 0.675 0.113 0.157 0.485 91.512

F-Data
200 tourists

RPMTD 0.321 0.120 0.063 0.093 2214.927
MARLRR 0.617 0.126 0.081 0.110 2042.472
Pointer-NN 0.717 0.118 0.184 0.427 173.947

Table 3.3 shows the result on F-Data. Pointer-NN shows the worst
result except Ginitourist, as it generates homogenized routes, which causes
POI congestion problems in multiple tourists planning. Generally, RPMTD
shows better result in GiniPOI , Varave, and Varmax, while MARLRR shows
comparable performance with RPMTD in EDr. Additionally, GiniPOI of all
three models with 200 tourists is higher than that for 100 tourists, indicating
that the unfairness of POI grows with increasing tourists.

Figure 3.7 shows each POI’s visit number at the end of the trip.
MARLRR shows a skewed distribution, where the popular POIs attract most
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((a)) Visit distribution of MARLRR with 100 tourists
on F-Data
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((b)) Visit distribution of RPMTD with 100 tourists on
F-Data
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((c)) Visit distribution of MARLRR with 200 tourists
on F-Data
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((d)) Visit distribution of RPMTD with 200 tourists on
F-Data

Figure 3.7: Comparison of visits distribution at the end of the trip between
RPMTD and MARLRR based on F-Data.

tourists, and some minor POIs have zero visits. In contrast, our method
distributes tourists more evenly, and all the POIs have been visited. Our
model retains the characteristics of tourism that popular POIs still have more
tourists than others. Comparison between 100 and 200 tourists shows that
popular POIs are more likely to attract visits when the number of tourists
increases, which is consistent with the Table 3.3 result that the unfairness of
POI grows with increasing tourists.

Similarly, we conduct experiments on FYP-Data, and Table 3.4 shows
the results. Compared with F-Data, the FYP-Data result shows a generally
larger Gini coefficient, which is due to the data difference. RPMTD shows
the smallest GiniPOI , while MARLRR and Pointer-NN show much larger
GiniPOI , indicating stronger unfairness of POI. Pointer-NN shows the small-
est Ginitourist and EDr, which means that tourists’ rewards are similar and
routes are homogeneous. Meanwhile, this results in the low Rewarddynamic in
Table 3.6. RPMTD and MARLRR show comparable Ginitourist in small-scale
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Table 3.4: Result of route planning methods based on FYP-Data.

GiniPOI Ginitourist Varave Varmax EDr

FYP-Data
100 tourists

RPMTD 0.612 0.168 0.036 0.067 1315.286
MARLRR 0.713 0.176 0.038 0.071 1287.936
Pointer-NN 0.821 0.196 0.275 0.356 69.328

FYP-Data
200 tourists

RPMTD 0.625 0.189 0.032 0.071 2265.351
MARLRR 0.736 0.191 0.107 0.181 2313.025
Pointer-NN 0.868 0.187 0.292 0.478 93.836

FYP-Data
500 tourists

RPMTD 0.651 0.193 0.043 0.081 3619.283
MARLRR 0.692 0.269 0.151 1.498 3592.875
Pointer-NN 0.921 0.186 0.412 1.754 151.802

FYP-Data
1000 tourists

RPMTD 0.674 0.216 0.045 0.096 5812.231
MARLRR 0.851 0.659 0.398 0.967 5762.922
Pointer-NN 0.948 0.201 1.104 3.257 184.064
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Figure 3.8: Comparison of Gini coefficient and variance based on FYP-Data
.
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Table 3.5: Result of ablation study on FYP-Data with 1000 tourists.
ω1 ω2 GiniPOI Ginitourist Varave Varmax EDr

0.01 1 0.784 - 0.081 0.192 6059.608
0.1 1 0.674 - 0.045 0.096 5812.231
1 1 0.667 - 0.041 0.091 5864.692
10 1 0.670 - 0.042 0.089 5901.156

tourists scenarios. However, Ginitourist of MARLRR increases significantly in
large-scale tourists scenarios. In terms of Varave and Varmax, RPMTD shows
the best performance. Pointer-NN performs much worse than the other two
models because tourists are planned in similar POIs.

Figure 3.8 illustrates the comparison of Gini coefficient and variance
on FYP-Data. Three models show the same tendency in GiniPOI that
unfairness always grows with increasing tourists. Except Ginitourist, Pointer-
NN performs much worse than RPMTD and MARLRR, especially in the
case of 500 and 1000 tourists, which indicates that the existing single tourist
planning methods cannot be applied for large-scale tourists planning. The
performance of MARLRR is generally worse than that of RPMTD and
unstable. In contrast, RPMTD shows better and more robust performance
with scalable tourists.

3.5.6 Ablation Study

Different ratios of dual congestion will affect the policy learning, ultimately
affecting the distribution of tourists. We study the impact of different
ratios of dual congestion on model performance by fixing the weight of local
congestion ω2 as 1 and setting different weights of global congestion ω1. The
ratio of dual congestion will affect the calculation of the tourist’s reward.
This implies that under different ratios, the tourists’ rewards cannot be
standardized, making Ginitourist comparison inapplicable. Thus, Ginitourist
is not compared here. The experiment is conducted on FYP-Data with 1000
tourists, and the weights are normalized in implementation. Table 3.5 shows
the result.

Generally, global congestion contributes to GiniPOI , Varave, and Varmax.
When ω1 increases from 0.01 to 0.1, GiniPOI , Varave, and Varmax increase by
14%, 44%, and 49% respectively. The global congestion effect is very weak
when ω1 is 0.01; the total reward is dominated by local congestion, and the
model degenerates into a single-congestion model. Less well-known POIs do
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Table 3.6: Comparison based on total static and dynamic reward on FYP-
Data

Rewardstatic Rewarddynamic

200 tourists
RPMTD 10366 5582

MARLRR 10537 4621
Pointer-NN 13205 342

1000 tourists
RPMTD 49792 241847

MARLRR 42377 150854
Pointer-NN 65830 910

not have visits. When ω1 increases to 0.1, the total reward is contributed
by global and local congestion. Less well-known POIs have visits. When
ω1 increases from 1 to 10, performance is relatively stable, indicating global
congestion becomes dominant.

3.5.7 Scalability

Each model uses an individual reward policy, which is unified. Thus, we make
a comparison based on both static and dynamic/congestion rewards. Table
3.6 shows the results, which are calculated with small-scale and large-scale
tourists on FYP-Data.

Pointer-NN shows the best performance in Rewardstatic but the worst
performance in Rewarddynamic. The reason is that homogeneous route
planning leads to POIs’ congestion and low dynamic reward. This problem is
exacerbated by large-scale tourists. MARLRR and RPMTD show compara-
ble results in small-scale tourists scenarios. In large-scale tourists scenarios,
RPMTD significantly outperforms MARLRR in Rewarddynamic. This result is
aligned with the observation in Figure 3.8 that MARLRR performs unstably
in large-scale tourists scenarios.

3.5.8 Case Study

Both RPMTD and MARLRR achieve Varmax around 15:00. Figure 3.9 shows
the comparison and visualization based on FYP-data with 1000 tourists.
RPMTD maintains each POI’s attendance percentage generally under 100%.
MARLRR result shows several POIs exceeding the capacity significantly. In
MARLRR planning, tourists in the same region would be planned to the POI
with the highest score, which might be the reason for its unstable performance
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((a)) POIs’ attendance percentage of RPMTD and the visualization

((b)) POIs’ attendance percentage of MARLRR and the visualization

Figure 3.9: Comparison and visualization of all POIs’ attendance percentage
at 15:00 in FYP-Data.

with large-scale tourists. RPMTD balances between the tourists’ distribution
and the high visiting score.

3.6 Summary

In this section. we propose the popularity-biased routes planning problem.
We solve this problem by introducing multi-agent RL framework, which
includes an environment for interaction with multiple tourists and a dual-
congestion aware model. In our experiment, we consider three novel mobility
data to make it more close to the reality. Extensive experiments and
comparison with baseline models are conducted, the result shows our model
superior performance and robustness. Our work is the first to conduct
multiple tourists’ routes planning from the interest of POIs. The proposed
RL environment provides a prerequisite for other study of multi-agent RL
in this domain. Meanwhile, we find the new problem that bias grows with
increasing tourists, which could be our further study. Additionally, our work
could be incorporated with existing models for the sustainable development
goal of tourism. We leave these as our further work.
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Chapter 4

User Study of Congestion-aware
Route Planning

Our work RPMTD considers the interests of POIs in route planning, which
mainly benefits the sustainable development of tourism and local residents.
We evaluate the effectiveness of our work on the distribution of tourists.
However, tourism is a service-oriented industry, which highlights the critical
significance of the tourists’ experience. Considering the selfish nature of
tourists, those who are scheduled away from popular POIs may feel less
satisfied and unfairly treated. In other words, the relationship between sus-
tainable tourism and tourists’ preferences could be adversarial. A sustainable
congestion-aware route planning model should, on the one hand, cater to
tourists’ satisfaction, and on the other hand, take into account the benefits of
POIs when planning routes. Therefore, a survey is conducted to empirically
study the impact of congestion-awareness on user experience, which could
serve as reference for its future practical implementation.

4.1 Methodology

Our user study is part of Yi et al. [52]. Unlike theirs, our analysis is based on
game theory, and we focus on discussion of cooperative and non-cooperative
relationships.

A questionnaire is assigned to 41 participants in Kyoto for user experience
evaluation. Four route planning models with different degrees of congestion
awareness are examined, which is aligned with our previous experiments.

- MARLRR considers single dynamic congestion for individual visited
POI.

- RPMTD considers both local congestion of visited POI and global
congestion of tourists’ distribution.

- Non-Dual RPMTD only considers local congestion of visited POI,
and global congestion is not considered.

- Point-NN does not consider any congestion at all.
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Five popular queries are conducted in the survey:

- ( 4 hours, Kyoto Tower, Kawaramachi)
- ( 6 hours, Kyoto Tower, Kawaramachi)
- ( 8 hours, Kyoto Tower, Kawaramachi)
- ( 4 hours, Kawaramachi , Arashiyama Station)
- ( 6 hours, Kawaramachi , Kinkakuji Temple)

Each model generates one route for each query. In total, 20 routes are
generated.

In the questionnaire, participants are asked to evaluate each route based
on the information shown on a screen. Figure 4.1 shows an example of the
screen, which is divided into three sections. The left section illustrates the
details of the query and planned route. The middle section visualizes the
planned route and congestion level of the city on the map. The right section
shows the information on visited POI, including photos, comments, aesthetics
score, and POI’s congestion level.

Participants evaluate each route from five aspects:

- Time Scheduling evaluates whether the time planned for sightseeing
and moving is reasonable.

- Visiting Order evaluates whether the order of sightseeing POIs is
reasonable.

- Traveling Distance evaluates whether the distance between planned
POIs is reasonable.

- Traveling Comfort evaluates comfort level regarding congestion in
POI sightseeing.

- Overall Satisfaction evaluates comprehensive satisfaction.

Each aspect is rated from 1 to 5, where 1 indicates very unsatisfied; 2
indicates unsatisfied; 3 indicates neutral; 4 indicates satisfied; 5 indicates
very satisfied. Participants could give comments/reasons for their evaluation.

4.2 Survey Result

Figure 4.2 illustrates the details of satisfaction levels for all models.
Figure 4.2(a) shows time scheduling evaluation. Point-NN achieves most

"satisfied" or "very satisfied" (62%). MARLRR achieves the most "very
unsatisfied" (15%). RPMTD has higher "very unsatisfied" or “unsatisfied”
than Non-Dual RPMTD.

Figure 4.2(b) shows the visiting order evaluation. Point-NN achieves the
most "satisfied" or "very satisfied" (59%), followed by MARLRR (50%).
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RPMTD and Non-Dual RPMTD show comparable results that achieve
around 40%.

Figure 4.2(c) shows the traveling distance evaluation. Point-NN achieves
the most "satisfied" or "very satisfied" (59%), followed by Non-Dual RPMTD
(37%). RPMTD and MARLRR show comparable results achieving around
30%. MARLRR achieves the most "unsatisfied" or "very unsatisfied" (44%).

Figure 4.2(d) shows the traveling comfort evaluation. Point-NN achieves

((a)) Time Scheduling score ((b)) Visiting Order score

((c)) Traveling Distance score

((d)) Traveling Comfort score ((e)) Overall Satisfaction score

Figure 4.2: Survey result for all methods on aspects of time scheduling,
visiting order, traveling distance, traveling comfort, and overall satisfaction.

44



Table 4.1: Weighted score of aspects for each method.

MARLRR RPMTD Non-Dual
RPMTD Point-NN

Time Scheduling 2.81 3.15 3.42 3.66
Visiting Order 3.25 3.13 3.25 3.68
Traveling Distance 2.76 3.08 3.34 3.67
Traveling Comfort 2.96 3.17 3.46 3.72
Overall Satisfaction 3.15 3.25 3.37 3.74

the most "satisfied" or "very satisfied" (52%), followed by Non-Dual RPMTD
(44%). RPMTD and MARLRR show comparable results that achieve around
30%. MARLRR achieves the most "unsatisfied" or "very unsatisfied" (39%)

Figure 4.2(e) shows the overall satisfaction evaluation. Point-NN achieves
the most "satisfied" or "very satisfied" (66%). Non-Dual RPMTD, RPMTD
and MARLRR show comparable results that achieve around 40%.

The result is summarized as the weighted score for each aspect and model
in Table 4.1.

4.3 Discussion

4.3.1 Model Comparison

Point-NN vs. Congestion-aware Models: Point-NN outperforms
congestion-aware models in terms of weighted scores of all aspects. Specif-
ically, regarding the weighted score of overall satisfaction, POINT-NN out-
performs MARLRR, RPMTD, Non-Dual RPMTD by 15%, 13%, and 10%,
respectively. There could be two reasons: (i) congestion-aware models
avoid visiting the most popular POIs, while Point-NN mainly travels to the
most popular POIs. Although tourists have different preferences for POIs,
satisfaction will be greatly reduced if the must-see POIs are not included
in planned routes; (ii) congestion-aware models affect other aspects, which
finally results in reduced overall satisfaction.
RPMTD vs. NON-Dual RPMTD: Global congestion awareness con-
siders the overall distribution of tourists, representing the fairness of POIs.
RPMTD tends to plan tourists to less well-known POIs, which results in Non-
Dual RPMTD being 8% better than RPMTD on the weighted score of time
scheduling, traveling distance, and overall satisfaction. This is also aligned
with our previous thought that tourists would be less satisfied if they are
scheduled to visit less well-known POIs. Therefore, determining congestion
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level and balancing it with tourists’ satisfaction is crucial for sustainable
route planning models.
MARLRR vs. Non-Dual RPMTD: Both MARLRR and Non-Dual
RPMTD only consider single congestion. However, Non-Dual RPMTD
performs better than MARLRR in all aspects. Such differences should
come from the reward design and the RL framework. Our multi-agent RL
framework has an advantage in multiple tourists planning, especially in large-
scale tourists scenarios.

4.3.2 Inconsistency of Evaluations

The objective evaluation of experiments shows the effectiveness of our model
for proposed problem; while subjective evaluation shows decline in tourists’
satisfaction, which indicates the inconsistency between two evaluations. In
our opinion, the major reason is the different perspectives of these evalu-
ations. Objective evaluation is based on global view, while the subjective
evaluation of users is only based on the individual view of local POI. There-
fore, tourists’ evaluation is not comprehensive and cannot fully represents
the performance of the model.
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Figure 4.3: Comparison of average attendance percent of the POIs in the
routes generated by our model and Point-NN based on 5 queries.
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Additionally, Point-NN unexpectedly outperforms our model in terms of
traveling comfort, which contradicts the result of our experiment. Thus, we
compare the average attendance percent of the POIs in the routes generated
by our model and Point-NN based on 5 queries. Figure 4.3 shows the
comparison result, which illustrates that the congestion level of our model’s
route is better than that of Point-NN. It illustrates the problem that user’s
perception contradicts actual congestion level, and our analysis of this gap
stems from the following two factors:

- The survey was conducted in 2023. As COVID-19 was still spreading
in Japan, we utilized the virtual questionnaire on iPad instead of on-
site sightseeing questionnaire. Participants rated the congestion score
according to the heatmap on screen, which cannot make participants
perceive the real-world congestion level. The virtual sightseeing ques-
tionnaire may have certain limitations, and on-site sightseeing will be
conducted in our future surveys.

- In cognitive science, user’s experience would be affected by prior knowl-
edge [53, 54]. Thus, we suspect that tourists’ perception of congestion
could be related to their prior knowledge of POIs. For instance,
the prevailing perception of tourists regarding popular POIs is their
massive visitor volumes, which could cause a psychological adjustment
and a higher congestion tolerance for these POIs. Conversely, lesser-
known POIs are typically perceived as less crowded, which would
cause heightened perceptions of crowding when there are slightly more
tourists. This a novel problem identified in our research. Future
investigations could delve into the effects of tourists’ prior knowledge
on their experience, extending our understanding of the cognitive
mechanisms in the congestion-aware route planning.

4.3.3 Lesser-known POIs’ attractiveness

Survey results show the decline of tourists’ satisfaction as a result of being
planned to lesser-known POIs. The observed decline in tourists’ satisfaction
should not be attributed to lesser-known POIs’ low attractiveness. Con-
versely, we think that lesser-known POIs possess their unique attractiveness.
To clarify this, a statistical analysis is conducted to compare the ratings
of POIs in Kyoto, as sourced from Google Maps, against their attendance
percentage during peak periods. The result is shown in Figure 4.4. POIs with
an attendance percentage below 0.3 are categorized as lesser-known; POIs
with an attendance percentage exceeding 1 are classified as popular; and the
rest are classified as usual. The analysis reveals ratings of lesser-known POIs

47



3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

0 0.2 0.4 0.6 0.8 1 1.2 1.4

to
u

ri
st

s 
ra

te
d

 s
co

re
 

POI attendance percentage

lesser-known POI usual POI popular POI

Figure 4.4: Statistics analysis between the scores of Kyoto POIs from Google
Maps and the attendance percentage of each POI during rush hours.

are comparable to those of popular ones. The mean score of lesser-known
POIs is 4.38, and the mean score of popular POIs is 4.37, indicating that
lesser-known POIs could be attractive as popular POIs.

4.3.4 Non-cooperative vs. Cooperative Relation

In this study, we find that tourists tend to feel less satisfaction when they
are scheduled to visit less popular POIs. Conversely, the less popular POIs
experience more equitable and sustainable development due to the reasonable
distribution of tourists. It illustrates an adversarial relationship in tourism
[55, 56]. There is also research showing the same adversarial relationship in
other recommendation systems, indicating recommending fair content harms
user satisfaction [57]. In general, such a relationship is termed as non-
cooperative relation in game theory.

It is important to emphasize that tourists feel lower satisfaction with less
popular POIs, not because less popular POIs are not worth visiting or have
low aesthetic value. In fact, many less popular POIs are just as beautiful and
interesting as popular POIs. However, due to the Matthew effect [17, 58],
popular POIs become famous and attract more tourists, and the influx of
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more tourists brings even greater fame. On the contrary, less popular POIs
have fewer visitors and gradually become less well-known. This can create
a vicious cycle where popular POIs become even more popular, while less
popular POIs become even less known. Our congestion-aware mechanism
can help to break this vicious cycle by planning tourists to visit less popular
POIs.

By helping to break the vicious cycle, our congestion-aware mechanism
can benefit both tourists and the sustainable development of tourism.
Tourists’ satisfaction with less popular POIs is initially low due to their
lack of understanding of these places. However, as less popular POIs receive
more visits, their popularity increases, and thus their attraction to tourists
and tourists’ satisfaction will increase. In this process, tourists and the
sustainable development of tourism will find mutual benefits, and their
relationship transforms from the initially non-cooperative relationship to a
cooperative one, which will benefit both parties [59].

4.3.5 Decline of Tourists’ Satisfaction

In our opinion, the decline in tourists’ satisfaction is predicted. This
anticipated decline can be attributed to two factors. First, due to the
adversarial relationship as discussed above, satisfaction of those tourists who
are planned to lesser-known POIs will decline. Second, current evaluation
is based on the perspective of single tourist. Our model specializes in
multiple tourists planning and prioritizes collective benefits over individual
preference. As pursuit of collective interests would result in compromising
individual interests [60], our model is less satisfying compared with single-
tourist planning model.

The survey results indicate about 15% decline in satisfaction. This is
an empirical value in our research rather than the value in actual imple-
mentation. The primary objective of this survey is to gain an empirical
understanding of the impact of our method on tourists’ satisfaction, providing
a foundational reference for its practical application. In various real-world
scenarios, the effect of dual-congestion should be balanced by adjusting the
weight of global congestion. Moreover, we think that the decline in tourists’
satisfaction is a transient effect because our method could transform their
relationship from non-cooperative to cooperative. Anticipating the long-term
implications of this paradigm shift, we hypothesize a sustained improvement
in tourists’ satisfaction. Our future surveys will substantiate this hypothesis.
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4.3.6 Unilateral Bias

This survey concentrates on tourists to understand their experience of
congestion-aware route planning. However, only surveying tourists represents
a limited perspective within the tourism industry. Other groups, such as local
residents and the local governments, are also involved in this domain.

The impact of the congestion awareness mechanism on the entire tourism
industry is a complex issue involving multiple stakeholders. Tourists are
the obvious stakeholders, as they are the ones who first experience the
congestion. However, local residents and businesses are also affected, as they
may experience noise, pollution, and other negative impacts from congestion.
The government also has a vested interest in congestion awareness, as it can
contribute to reducing congestion and improving the overall quality of life.

Future surveys should include all of these stakeholders in order to get a
more comprehensive and objective understanding of the impact of congestion
awareness on tourism. This will help to ensure that any policies implemented
to address congestion are effective and consider the needs of all stakeholders.

4.4 Summary

This user study is conducted to analyze the our method’s impact on users’
experience, and the result indicates that our model could transform the non-
cooperative relationship between users and tourism into a cooperative one.
This relationship transformation represents a significant advancement to-
wards achieving sustainable tourism that caters to both tourists’ preferences
and broader environmental and social concerns. A more comprehensive and
long-term survey regarding the relationship between tourists and tourism
should also be further investigated.

50



Chapter 5

Collaborative and Intention-aware
Communication for Scalable Multi-
agent Framework

5.1 Introduction

Multiple tourists route planning requires a dynamic interaction of variable
tourists as we discussed in previous chapters. Therefore, in our scenario,
application of independent learning is effective because of its simplicity and
adaptability. However, in independent learning, each agent is executed with a
single-agent algorithm, indicating there is no communication between agents
and each agent makes action only based on the their individual observation.
In other words, each agent independently updates its policy based on its
own experience, without considering the existence or strategies of other
agents. This would cause the non-stationary problem, meaning that when
an agent is learning to adapt to the environment, the parallel learning and
strategy adjustments of other agents would cause the dynamics of the entire
environment, making the state transition of the environment unstable and
unpredictable for any single agent.

Table 5.1 shows an example of non-stationary problem in MARL. Black
and blue agents obtain their observations at k step. The actions of black and
blue agents are moving object to right and down, respectively. Their joint
actions move the object to right-down position. In the next step, environment
generates observations for both agents, which would confuse them, as the
object is not on the their expecting position. In our scenario, non-stationary
problem indicates that the change of mobility matrix is unpredictable for
every single agent in current interaction because all agents jointly update
the mobility matrix. Such a problem would discourage model’s convergence
and performance.

In MARL, the non-stationary problem usually could be solved by follow-
ing aspects:
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Figure 5.1: An example of non-stationary problem in MARL.

- centralized training: using the centralized training strategy, the in-
formation of all agents is used in the training phase to learn how to deal
with uncertainty and dynamic changes in the environment. In MARL,
apart from independent learning, there are other two paradigms: Fully
Centralized (FC) and Centralized Training with Decentralized Execu-
tion(CTDE) methods. Both of these two methods apply a centralized
controller for information sharing and coordination, which enables
the individual agent access the global information for better decision
making, accordingly alleviating the non-stationary problem. However,
these two paradigms cannot be applied in our scenario because they
cannot fulfill our dynamic requirement. FC methods face flexibility
challenges and CTDE methods face the scalability problem.

- communication mechanism: establishing an effective communica-
tion protocol between agents so that they can share useful information
and coordinate actions to respond to changes in the environment.
Current MARL communication works are mostly developed from the
CTDE methods. Because agents only communicate with limited-
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bandwidth channel decentralized execution, and centralized training
provide rich information for communication. Methods with communi-
cation protocol generally outperform the communication-free methods.

In this section, we focus on the development of communication protocol for
our independent learning MARL framework, further improving our model
performance in multiple tourists route planning. We consider two factors in
our scenario: (i) large-scale agents communication; (ii) efficient information
fusion.

We propose an intention-aware communication protocol for MARL based
on existing attention methods. Our work is developed from two aspects:

- intention communication: each agent takes action at the same
round, which means that everyone will not know the actions taken
by other agents. Therefore, getting everyone’s intentions and commu-
nicating before each agent takes action is significantly helpful to each
agent’s action making and coordination.

- communicatee type: in multi-agent communication, we need to
answer two key questions: (i) whom should communicate with; (ii) how
to conduct communication, especially in large-scale agents scenarios.
Broadcasting with every agent is unnecessary and inefficient.

Our method consists of 3 components: (i) retrieval/denoise: individual
agent selects other agents related to its own; (ii) information fusion: the
single agent communicates with the selected collective agents; (iii) action:
a single agent learns from other agents’ intentions and make a decision.
Specifically, in the first step, we propose intention-related and distance-
related methods to select the most relevant agents. For the distance-related
method, the agent only interacts with agents within a certain range around
it. This is practical in other MARL environments, such as StarCraft. In
our scenario, the intuition is that, tourists who are in the same region would
have similar visiting plans. In the second step, we propose attention-based
methods to obtain collective intentions and fuse the collective intentions
with individual’s. Finally, agents make action based on the fused intentions.
We conduct experiments on our Kyoto tourism mobility dataset FYP-data
and compare with our proposed baseline model RPMTD. Results shows
that the proposed communication protocol can effectively promote model
performance.
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5.2 Related Works

5.2.1 Multi-agent Communication

Communication plays a crucial role in MARL. By understanding and com-
municating with other agents, an agent can better perceive changes in
the environment. With the rapid development of CTDE framework, most
existing works focus on the communication enhancement conditioned on this
framework. VDN [61] and QMIX [62] are value decomposition methods,
which specialize in decomposing a single joint reward for multiple agents
in cooperative scenarios. These methods compose implicit communication
learning; namely, agents do not explicitly communicate with others, however
they could implicitly learn other agents’ policies during training. Majority
of researches focus on explicit communication. RIAL and DIAL [63] learn to
pass message from current step to next step. CommNet [64] conducts com-
munication by aggregating hidden layer representations of agents’ respective
networks. IC3Net [65] introduces the gating mechanism that determines
whether an agent should communicate with other agents at given time step.
Therefore, it contributes to scenarios where agents need to decide when to
communicate and when to act. BiC-Net [66] utilizes Bi-directional Recurrent
Neural Networks to process information between agents. This structure
allows information to flow in both directions between agents, enabling agents
to more fully understand the entire environment and the status of other
agents. ATOC [67] combines attention mechanisms and communication
protocols to dynamically decide when and how to pass information between
agents. This approach allows an agent to adapt its communication behavior
based on the needs of the current environment and the status of other
agents. These methods communicate with all agents and totally depend
on the central critic networks, which is highly cost and inefficient. Some
works attempt agents selection and peer communication. TMC [68] proposes
the mutual information to measure the information sharing in agents and
minimize the entropy of message. TraMAC [69] use an additional key
from the sender to the receiver to calculate the information importance.
However, these methods are based on CTDE framework and unpractical
for our scenario. Additionally, our model should process large-scale agents
communication; however, these models work on small-scale scenario.

5.2.2 Intention of Agents

In cognitive science, especially in Theory of Mind, intention refers to the
mental state of an individual planning to achieve a certain goal. This is a

54



core concept in understanding the behavior of others, as it involves predicting
and interpreting the actions of others based not only on their current behavior
but also on their purposes. In MARL, understanding and utilizing intentions
can improve the efficiency of collaboration and coordination between agents.
Qi et al. [70] attempts a linear function approximation of the utility function
with consideration of the belief in the planning process. Fang et al. [71]
consider a multi-agent reinforcement learning method for multi-order execu-
tion in finance and proposes a learnable communication protocol, involving
the intention sharing with other agents. Xu et al. [72] let agents infer the
intentions of nearby agents by their local observations and integrate it into
their decision making in traffic planning. Kim et al. [73] propose an intention-
sharing communication protocol based on the iteratively generated pseudo
trajectory.

5.3 Proposed Method

We develop a multi-agent communication protocol which consists of three
steps: (i) selection of most relevant agents; (ii) sharing and integration
information with the selected agents; (iii) making an action based on
the fused information. Our communication module is integrated into the
decision-making pipeline of each agent’s actor network. Specifically, it works
prior to the final action determination stage. The module processes the
intentions of each agent, facilitating inter-agent communication, before these
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intentions are passed to the softmax and sampling layers for action making.
In our method, intention refers to the pre-determined cognitive state of each
agent, representing their preliminary assessment prior to engaging with the
probability distribution of all POIs. After several rounds of information
sharing and fusion, each agent makes an action. Figure 5.2 shows the
communication module integrated in RPMTD.

5.3.1 Communication Mechanism Structure

Given the specific agent’s intention and the collective agents’ intentions, we
select agents from collective ones. Then the selected agents’ intentions are fed
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Figure 5.3: The structure of our communication mechanism.
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in a self-attention layer to enhance their collective features. Subsequently,
the feature-enhanced collective intentions are fed into the attention-based
intention fusion layer together with the specific agent’s intention for infor-
mation sharing and integration. Afterwards, the fused individual intention
and the selected collective intentions are obtained. The process of self-
attention feature enhancement and attention-based intention fusion repeats
for N rounds for better information aggregation. Finally, the action is made
based on the fused individual intention. Figure 5.3 shows the structure of
our communication mechanism.

5.3.2 Agents Selector

For a specific agent, given the collective intentions of all agents, we first
select the relevant agents for that agent. The selector is the crucial part of
communication mechanism and we implement two types of agents selector:
intention-based and distance-based selector. In our methods, we implement
either of them.

- The intention-based selector aims to neglect the agents who have
irrelevant route planning intentions and focus on the ones who have the
similar planning. The intuition is that the agents having the similar
planning are more likely to visit the same POI and cause congestion.
We firstly use a FNN to map the intention tensor into the hidden space
and then apply cosine similarity to calculate the similarity between
the specific agent’s and other ones’. The cosine similarity equals to 1
meaning that the intentions of the two agents are exactly the same; the
cosine similarity equals to 0 meaning orthogonality and the intentions
of the two agents are not related; the cosine similarity equals to -1
meaning that the intentions of the two agents are opposite. Agents
selection is based on the threshold of cosine similarity which is set as
a hyperparameter θ. We select agents whose cosine similarity with the
specific agent is greater than θ.

- The distance-based selector indicates that agents only communicate
with ones who are in a certain range. This is also aligned with other
MARL environment such as Starcraft that each agent can only observe
information within a certain range around it, forcing the agent to make
decisions based on partial information and learn how to coordinate
actions with other agents nearby. Agents selection is according to the
distance hyperparameter k. We select agents who are within k distance
from the specific agent.
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5.3.3 Attention-based Intention Fusion

The selected collective intentions Ec ∈ Rlc×d and individual intention Ei

∈ R1×d are given, where lc is the number of selected agents. d denotes the
size of intention. Then the individual intention needs to be intensified by
the selected collective intentions. For this purpose, we apply the attention
mechanism to learn the relationship between them. To validate the generality
of attention model’s effectiveness, we conduct experiments with three kinds
of attention mechanisms: co-attention (pre-self-attention), self-attention and
cross-attention (post-self-attention). In our method, either of them could be
implemented:

I′,C′ = attention_fusion(Ei,Ec) (5.1)

where I′ is the fused individual intention and C′ is fused (selected1) collective
intentions.

5.3.3.1 Co-attention

Co-attention [74] is a vital model for QA. It enables the question (individual)
and context (collective) to attend mutually, and also learns the question-
aware context representation iteratively. We implement it as follows: col-
lective intentions Ec and individual intention Ei is mapped into the hidden
dimension by FFNs. Affinity vector A is the product of collective intentions
C and individual intention I. In vector A, each value is the related score of
individual intention and other intention from the collective ones:

C = FFN1(Ec) ∈ Rlc×h (5.2)
I = FFN2(Ei) ∈ R1×h (5.3)

A = softmax(CI⊤) ∈ Rlc×1 (5.4)

By multiplying A with collective intentions C, we can obtain the indi-
vidual intention I′ attended by the collective intentions. Similarly, we derive
the collective intentions Sc attended by the individual intention as follows:

I′ = A⊤ ×C ∈ R1×h (5.5)
Sc = A× I ∈ Rlc×h (5.6)

where ⊤ denotes the transpose.
Let the updated individual intention I′ attend collective intentions again

with A. In addition, the attended collective intentions is further fed into a
BiGRU as follows:

Dc = BiGRU(A× I′) ∈ Rlc×h (5.7)
1From here on, "selected" is omitted for simple expression.
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Dc and Sc are collective intentions intensified by the individual inten-
tion. Finally, they are concatenated and further applied with the FFNd to
transform into the original length:

C′ = FFNd([Dc||Sc]) ∈ Rlc×h (5.8)

where [·||·] denotes the concatenation function.

5.3.3.2 Self-attention

Self-attention (Transformer) [44] is a revolutionary model in NLP develop-
ment. It enables a model to weigh the importance of different words in a
sentence relative to each other. The result is a dynamic attention model that
adjusts based on the input, allowing for a context-aware representation that
enhances tasks like translation, summarization and QA. Self-attention block
consists of several components: Multi-head attention, Add & Norm layer,
FFN and Residual Connection.

The core component of self-attention is Multi-head attention. The input
x is mapped in to three spaces: key (K), query (Q) and value (V) by three
linear transformations:

Q = xWQ, K = xWK , V = xW V (5.9)

For each head, attention scores are computed using the dot product of
queries and keys, scaled by the dimensionality of the keys (

√
dk), where dk

is the dimension of the key. The softmax function is applied to obtain the
weights on the values:

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V (5.10)

The model projects the queries, keys, and values several times with
different linear transformations. This results in multiple sets of K, Q and
V for each head. The attention function is applied independently on each
set of projections, allowing the model to jointly attend to information from
different representation subspaces at different positions. The outputs of each
head are concatenated and then projected once more with another learned
weight matrix WO:

MultiHead(Q,K,V) = Concat(head1, . . . , headh)W
O (5.11)

where headi = Attention(QWQ
i ,KWK

i ,VW V
i ).
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Figure 5.4: The interaction of K, Q and V in cross-attention.

In our method, we firstly concatenate the individual intention Ei and
collective intentions Ec, and then feed them into self-attention block for
information fusion:

I′,C′ = Self_attention(Ei||Ec) (5.12)

5.3.3.3 Cross-attention

Cross-attention [44] is also proposed in Transformer. The structure of
cross-attention is similar with self-attention. The difference is that self-
attention focuses feature enhancement within the same sequence to model
relationships among its elements. Cross-attention focuses on elements from
one sequence in relation to another sequence. Therefore, it specializes in
two resources information fusion, which properly meet the requirement in
our communication method. Specifically, in our scenario, the key (K), value
(V) come from the collective intentions, and query (Q) comes the individual
intention. The remaining of operations are same with self-attention. Figure
5.4 shows the interaction of K, Q and V in cross-attention. The input is
collective intentions and individual intention, and the output is intensified
individual intention or collective intentions. We utilize two cross-attention
blocks to intensify individual and collective intentions, respectively:

I′ = Cross_attention1(Ec,Ei) (5.13)

C′ = Cross_attention2(Ei,Ec) (5.14)
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Figure 5.5: Comparison of self-attention and cross-attention.

Figure 5.5 shows the comparison of self-attention and cross-attention imple-
mented in our method.

5.3.3.4 Other Implementation

Apart from the our proposed communication mechanism, we also consider
other tricks which are widely used to counter on non-stationary problem and
improvement of multi-agent cooperation:

- implicit state update: the uncertainty of non-stationary dynamic in
our scenario is the mobility information updated by all activated agents.
To alleviate this problem, we propose to update the observation of next
agent, when one agent makes an action. This operation is performed
sequentially according to the agent sequence. Although our agents are
not a sequence but a set, this trick is expected to reduce impact of
non-stationary problem.

- joint optimization: in our scenario, each agent makes an action
according to its observation and obtains a reward from environment
individually. In cooperative scenarios, multiple agents receive a shared
reward based on the collective actions and outcomes of the entire group.
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Joint reward is used to promote cooperation among agents, guiding
them to work together towards a common goal. This mechanism is
especially valuable in scenarios where agent collaboration is essential
for success. Thus, we consider the mean of rewards from all activated
agents in one interaction:

reward =
1

N

N∑
1

Reward(agenti(Oi)) (5.15)

where N denotes the number of activated agents in the interaction.

5.4 Experiments and Results

5.4.1 Experiment setting

Mobility Data Preparation In order to be consistent with previous
experiments, we conduct our experiments on our Kyoto real-human mobility
dataset FYP-Data.

Tourists Setting We also keep consistent with previous experiments.
We generate 100, 200 tourists as small-scale tourists and 500, 1000 as large-
scale tourists.

Implementation details The FFNs implemented in this section are
all set as 2-layer with 0.2 dropout. Dropout in BiGRU of co-attention is
set as 0.3. Transformer encoder is adopted for self-attention module. We
stack 2 layers and 8 heads for both self-attention and cross-attention blocks.
In the intention-based selector, θ is selected from { -0.3, 0 (default) and
0.3}. In distance-based selector, k is selected from {1km, 1.5km (default)
and 2km}. Repeat number N of self-attention feature enhancement and
attention-based intention fusion is selected from {1, 2 and 3 (default)}.
Other hyperparameters are set the same with previous implementation. We
implement experiments on one A100 GPU server.

Baseline setting Since our communication mechanism design is based
on our previous work, we select RPMTD as our baseline model, which adopts
IPPO as MARL algorithm. Additionally, we also consider IQL which fails in
model convergence to validate the effectiveness of our communication.
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5.4.2 Evaluation Metrics

We follow our previous study evaluation metrics, except that total static
rewards is not considered:

(1) Maximum and average variance of all POIs’ attendance percentage
(Varmax and Varaverage) throughout the whole trip

(2) Gini coefficient [51] of POIs (GiniPOI) and tourists (Ginitourist)
(3) Total congestion-aware/dynamic reward (Rewarddynamic

2)
(4) Average of edit distance (EDr)

5.4.3 Experimental Results

5.4.3.1 Main Results

We first validate our communication method on FYP-Data with IPPO as
MARL algorithm implemented. For intention-based and distance-based
selectors, θ and k is set as 0 and 1.5, respectively. Information fusion repeat
N is set as 3. For the attention-based intention fusion model, cross-attention
is implemented. Table 5.1 shows the result of RPMTD with two types of
selectors communication methods. Both types of selectors can improve the
model performance. We find that distance-based method is outperformed
by intention-based method in small-scale tourists scenarios. Since distance-
based selector might be influenced by the distribution of tourists. It strongly
depends on the tourists around the agent. In small-scale tourists scenarios,
there could be very few or even no other ones in the agent’s communication
range. In large-scale tourists scenarios, the distance-based method shows
better performance in terms of Varave and EDr. Generally, the intention-
based method outperforms distance-based one.

We also validate our communication method on FYP-Data with IQL
as MARL algorithm implemented. Without communication, IQL-based
RPMTD fails in convergence in scenarios of more than 100 tourists. Result
is shown in Table 5.2. With the intention-based communication, model
converges with 200 tourists, even though the performance is much worse
than IPPO-based RPMTD. And in large-scale (500 and 1000) tourists,
IQL-based model still shows convergence failure. Such results indicate two
points: (i) our two types of selector-based communication methods can
both promote model performance, and intention-based selector shows better
enhancement; (ii) IQL does not work well for large-scale agent scenarios with
our communication method. Compared with IQL, IPPO performs better in
our scenario. Thus, we implement IPPO in following experiments.

2For simple expression, the subscript ’dynamic’ is omitted in following part.
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Table 5.1: Result of IPPO-based RPMTD with communication based on
FYP-Data. "/" means RPMTD without communication.

selector GiniPOI Ginitourist Varave Varmax EDr Reward

FYP-Data
100 tourists

/ 0.612 0.168 0.036 0.067 1315.286 3041
intention-based 0.582 0.159 0.034 0.064 1400.356 3554
distance-based 0.601 0.161 0.035 0.066 1350.294 3221

FYP-Data
200 tourists

/ 0.625 0.189 0.032 0.071 2265.351 5582
intention-based 0.594 0.180 0.030 0.068 2418.873 6273
distance-based 0.603 0.182 0.031 0.069 2364.115 5748

FYP-Data
500 tourists

/ 0.651 0.193 0.043 0.081 3619.283 131464
intention-based 0.586 0.174 0.039 0.073 3671.201 143498
distance-based 0.593 0.176 0.044 0.075 3806.247 138488

FYP-Data
1000 tourists

/ 0.674 0.216 0.045 0.096 5812.231 241847
intention-based 0.606 0.195 0.043 0.087 6389.954 265225
distance-based 0.641 0.206 0.041 0.091 6202.306 253692

Table 5.2: Result of IQL-based RPMTD with communication methods based
on FYP-Data. "/" means RPMTD without communication.

selector GiniPOI Ginitourist Varave Varmax EDr Reward

FYP-Data
100 tourists

/ 0.758 0.181 0.049 0.094 1268.541 2145
intention-based 0.712 0.169 0.046 0.088 1370.344 3182
distance-based 0.737 0.173 0.048 0.092 1320.443 3122

FYP-Data
200 tourists

/ - - - - - -
intention-based 0.797 0.178 0.060 0.137 2301.671 4863
distance-based - - - - - -

5.4.3.2 Hyperparameter Search

We further investigate the hyperparameters impact on model performance.
For intention hyperparameter θ, we search it from {-0.3, 0, 0.3}, with repeat
hyperparameter N set as 3. We conduct experiments in scenarios of 200
and 1000 tourists and the results are shown in Table 5.3. It shows that
θ = 0 outperforms other hyperparameters in scenario of 200 tourists. For
θ = 0.3, threshold is set relatively high, agents may rarely find others,
leading to insufficient communication and coordination. For θ = −0.3,
agents may communicate too frequently, with those whose intentions are
not aligned enough. In scenario of 1000 tourists, results of θ = 0.3 and 0 are
similar, indicating that agents could have sufficient communication although
threshold is high. This may also indicate that communication has reached
the upper limit of the model, and interacting with more agents does not lead
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Table 5.3: Result of intention hyperparameter θ search based on FYP-Data.
rand_0.5 indicates random communication with possibly of 50%.

θ GiniPOI Ginitourist Varave Varmax EDr Reward

FYP-Data
200 tourists

rand_0.5 0.639 0.207 0.047 0.092 2124.721 5481
-0.3 0.631 0.191 0.053 0.103 2206.927 5594
0 0.594 0.180 0.030 0.068 2418.873 6273

0.3 0.623 0.190 0.035 0.072 2204.190 5645
1 0.625 0.189 0.032 0.071 2265.351 5582

FYP-Data
1000 tourists

rand_0.5 0.648 0.254 0.060 0.103 5641.285 218745
-0.3 0.652 0.212 0.056 0.114 5748.357 236162
0 0.606 0.195 0.043 0.087 6389.954 265225

0.3 0.637 0.205 0.041 0.092 6470.855 261963
1 0.674 0.216 0.045 0.096 5812.231 241847

to more effective communication. Results of θ = −0.3 and 13 are similar , and
θ = −0.3 are even worse than θ = 1 in terms of variance, which means that
agents’ communication with irrelevant ones could bring noise for decision
making. 50% randomness communication is also conducted as comparison,
which underperforms other parameters. This data is obtained by averaging
5 experiments. Generally, θ = 0 shows more stable performance than others;
thus, considering both small and large-scale tourists, θ = 0 is set as default.

We conduct similar experiments for distance hyperparameter k. We
search it from {1, 1.5, 2}, with repeat hyperparameter N set as 3. The
results are shown in Table 5.4. It tells the similar story that if agents
communicate only within limited range, they may not receive sufficient
information. Conversely, if agents communicate over a large range, it can
lead to information overload and bring noise. From k=1 to k=1.5, the reward
increases by more than 10%. From k=1.5 to k=2, the performance is stable.
Therefore, k is set as 1.5 as default.

To verify the number of communication, we search hyperparameter N
with two types of selectors from {1, 2, 3}, with k set as 1.5 and θ set as 0.
Results are shown in Table 5.5 and Table 5.6. For intention-based model, the
increase of communication does not bring significant improvement in model
performance. From one to three-hop communication, the reward is improved
by within 4%. Differently, the increase of communication enhances distance-
based model performance by 12% in 1000 tourists scenario. Especially when
the hop of communication increases from one to two-hop, reward is improved
by 10%. Generally, the intention-based model shows more stable and better
performance than distance-based one. The distance-based model could be

3θ = 1 means no communication.
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sensitive with the number of communication, number of tourists and tourists’
distribution.

Table 5.4: Result of distance hyperparameter k search based on FYP-Data.

k GiniPOI Ginitourist Varave Varmax EDr Reward

FYP-Data
200 tourists

1 0.673 0.193 0.055 0.105 1946.181 5152
1.5 0.603 0.182 0.031 0.069 2364.115 5748
2 0.624 0.184 0.037 0.075 2292.656 5575

FYP-Data
1000 tourists

1 0.691 0.220 0.048 0.103 5595.451 217502
1.5 0.641 0.206 0.041 0.091 6202.306 253692
2 0.622 0.208 0.047 0.089 6181.908 229207

Table 5.5: Result of number of communication hyperparameter N search for
distance-based model based on FYP-Data.

N GiniPOI Ginitourist Varave Varmax EDr Reward

FYP-Data
200 tourists

1 0.687 0.236 0.048 0.113 1829.847 5430
2 0.619 0.192 0.037 0.081 2455.285 5597
3 0.603 0.182 0.031 0.069 2364.115 5748

FYP-Data
1000 tourists

1 0.732 0.283 0.049 0.129 5977.493 225019
2 0.710 0.241 0.047 0.134 6104.472 247108
3 0.641 0.206 0.041 0.091 6202.306 253692

Table 5.6: Result of number of communication hyperparameter N search for
intention-based model based on FYP-Data.

N GiniPOI Ginitourist Varave Varmax EDr Reward

FYP-Data
200 tourists

1 0.601 0.182 0.034 0.070 2361.045 6174
2 0.598 0.184 0.035 0.065 2401.038 6316
3 0.594 0.180 0.030 0.068 2418.873 6273

FYP-Data
1000 tourists

1 0.611 0.202 0.044 0.090 6270.031 257268
2 0.612 0.193 0.047 0.092 6319.452 257026
3 0.606 0.195 0.043 0.087 6389.954 265225
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Table 5.7: Result of three intention fusion models based on intention selector.

attention type GiniPOI Ginitourist Varave Varmax EDr Reward

FYP-Data
200 tourists

/ 0.625 0.189 0.032 0.071 2265.351 5582
co-attention 0.620 0.186 0.031 0.065 2379.293 5741
self-attention 0.607 0.183 0.029 0.063 2350.328 6097

cross-attention 0.594 0.180 0.030 0.068 2418.873 6273

FYP-Data
1000 tourists

/ 0.674 0.216 0.045 0.096 5812.231 241847
co-attention 0.652 0.210 0.040 0.092 5979.462 243145
self-attention 0.619 0.192 0.044 0.089 6423.507 245803

cross-attention 0.606 0.195 0.043 0.087 6389.954 265225

5.4.3.3 Comparison of Intention Fusion Models

In previous experiments, only cross-attention model is considered. We
compare it with other two models: co-attention and self-attention based on
the intention selector. k, θ and N are set as 1.5, 0, 3, respectively. Results
are shown in Table 5.7. In 200 tourists scenario, self-attention and cross-
attention shows comparable performance. In 1000 tourists scenario, cross-
attention outperforms self-attention in terms of GiniPOI and Reward; in other
metrics, two models’ performance is similar. Generally three intention fusion
models can bring gain in RPMTD performance; cross-attention outperforms
self-attention in large-scale scenario; co-attention shows less improvement
compared with other two.

5.4.3.4 Trick Validation

In our main experiments, tricks of implicit state update (ISU) and joint
optimization (JO) are not implemented. We investigate its effect based on
our intention selector and cross-attention. Results of ISU analysis are shown
in Table 5.8. In scenario of 200 tourists, the implementation of the ISU does
not enhance model performance, except for marginal improvements observed
in Ginitourist and Reward. In the case of 1000 tourists, the implementation
of ISU appears to detrimentally affect performance, with the exception of
Varave. Overall, ISU cannot enhance the performance of our model. It is
suspected that ISU is effective in sequential decision-making models, which
requires that agents act in a specific order. Contrary to this, in our scenario,
agents are required to act simultaneously, without any inherent sequential
properties. Additionally, the non-stationary level in the sequence of decision
making is different for each agent. Namely, the former agents have a greater
impact on the state update, but at the same time they suffer from a higher
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Table 5.8: Result of implicit state update (ISU) effect analysis based on
intention selector.

ISU GiniPOI Ginitourist Varave Varmax EDr Reward
FYP-Data
200 tourists

w/o 0.594 0.180 0.030 0.068 2418.873 6273
with 0.591 0.187 0.035 0.075 2404.158 6292

FYP-Data
1000 tourists

w/o 0.606 0.195 0.043 0.087 6389.954 265225
with 0.617 0.206 0.041 0.093 6021.741 240267

Table 5.9: Result of joint optimization (JO) effect analysis based on intention
selector with FYP-Data 1000 tourists.

ω1 ω2 JO GiniPOI Ginitourist Varave Varmax EDr Reward
0.01 1 w/o 0.714 - 0.075 0.178 6451.420 -
0.01 1 with 0.735 - 0.081 0.203 6012.835 -
0.1 1 w/o 0.606 - 0.043 0.087 6389.954 -
0.1 1 with 0.674 - 0.051 0.105 6101.709 -
1 1 w/o 0.604 - 0.040 0.082 6437.424 -
1 1 with 0.610 - 0.034 0.061 6914.726 -

level of uncertainty. Due to the dynamic issue in our scenario, the decision
order of the same agent is uncertain in different interactions. This leads to
inconsistent level of stabilisation states perceived by the same agent, which
could be worsen when the decision-making sequence is long. It could be the
reason that model performance generally degrades in 1000 tourists scenario.
What is more, parameter sharing is conducted in our all experiments. It
could be difficult for the same model to learn from different levels of non-
stationary state. Therefore, how to implement ISU in scenario like ours is a
novel problem and could be future investigated.

We also investigate the joint optimization effect based on our intention-
based model with different dual-congestion ratios. We fix the weight of
local congestion ω2 as 1 and set different weights of global congestion ω1

in Equation 3.16. ω1 default value is 0.1 in our main experiments and
the weights are normalized in implementation. Different dual-congestion
ratios represent different cooperation modes. As the ratio of dual-congestion
directly influences the reward, the comparison of Ginitourist and Reward is not
conducted. When ω1=0.01, reward is dominated by local congestion. Agents
primarily learn to maximise individual gain; The relation between agents
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is almost competitive. Joint optimization does harm model performance.
Individual agent could have conflicting goals. The use of joint optimisation
may lead to reward inconsistency, i.e. optimisation by one agent may nega-
tively affect other agents. When ω1=0.1, reward is contributed by both local
and global congestion. Agents learn to compromise individual interest with
collective interests. The relation between agents is collaborative-adversarial
(Hybrid). Similar with competitive one, joint optimization would decrease
model performance. When ω1=1, reward is dominated by global congestion.
Agents are more likely to learn maximising collective interests. The relation
between agents is almost cooperative. Joint optimization improves the
Varave, Varmax and EDr by 15%, 26% and 7%. This results validate the
joint optimization effectiveness in cooperative mode. However, ratio of dual-
congestion changes according to real practice. Considering route planning
model primarily serves the tourists, improvement on collaborative-adversarial
(Hybrid) model performance is necessary. Thus, we need study when to
communicate and what information to share. Adaption of joint optimization
in our scenario could be the further study.

5.5 Summary

In this section, we introduce a multi-agent communication protocol that con-
siders agents’ intention and information fusion to address the non-stationary
problem inherent in dynamic environments. We first retrieve the most related
agents from collective agents. Subsequently, an attention-based information
fusion technique is implemented to utilize the relevant data effectively. This
approach enhances the agents’ ability to make informed decisions in complex
scenarios. Two types of selector and three attention-based methods are
implemented in this work and results show the effectiveness of this framework.
We further investigate the widely used tricks against the non-stationary
problem in our method. Limited improvement is observed. We conclude
that study of agents acting in a specific order in our scenario and adaption
of joint optimization in collaborative-adversarial mode could be our future
work.
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Chapter 6

From Multi-agent Communication
to Multi-hop comprehension: An
Effective Method for Answering
Multi-hop Questions with Single-
hop QA System

6.1 Introduction

The core of this section is "apply Multi-agent communication to Multi-hop
comprehension", which is inspired by the intuition that Multi-hop QA and
multiple agents’ communication could share the same framework. In multiple
agents’ communication, the irrelevant agents would be firstly denoised,
and the single agent selectively communicate with the retrieved agents by
attention-based information module. This could be aligned with the Multi-
hop QA task, where the QA system could firstly denoise most of irrelevant
information from a large amount of text and retrieve paragraphs most related
to the query. Additionally, the communication between a single agent and
other agents is similar to the interaction between the query and context in
the QA system. Specifically, a single agent share its intention with other
agents, and it obtains collective intention from other agents. In the QA
system, the query interacts with the retrieved information, so that the two
parties’ information can be fused with each other. Figure 6.1 shows the
similar frameworks of Multi-hop QA and multi-agent communication.

As a popular task in Natural Language Processing (NLP), much effort
has been made to the development of question answering (QA) systems, due
to the release of many large-scale and high-quality datasets such as [75–77].
Early on, these datasets mainly concentrate on single-hop questions, in which
an answer can be retrieved from a single paragraph and only one fact is
involved. With the recent explosion of success of deep learning techniques,
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Figure 6.1: Framework comparison of Multi-hop QA (left) and multi-agent
communication (right).

QA models such as [78,79] have correspondingly improved and have achieved
super-human performance, especially in SQuAD 2.0. More recently, multi-
hop QA datasets including [80–82] have gained increasing attention. These
datasets require models to answer a more complicated question by integrating
information from multiple paragraphs and facts.

Figure 6.2 shows an example from HotpotQA [82], which is a popular
multi-hop QA dataset. Here, given a complex question and a document, the
question is the composition of two single-hop sub-questions: (i) ‘Who is the
author of “Armad”?’ (the answer is Ernest Cline) and (ii) ‘Which novel by
Ernest Cline will be adapted as a feature film by Steven Spielberg?’. The
document contains 10 paragraphs but only two paragraphs are related to the
question. Models are required to aggregate information from scattered facts
across multiple paragraphs, and predict both the answer and supporting facts
(i.e., sentences showing evidences of the answer).

Regarding the current research line, there has been a trend of exploiting
graph neural network (GNN) for multi-hop QA [83–85]. Investigation of the
graph construction and applying GNN reasoning has been explored. GNN-
based models intuitively consider answering multi-hop questions as reasoning
process on a document graph. Specifically, the document is first modeled
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Paragraph 1: Ernest Cline 

Ernest Christy Cline (born March 29, 1972) is an American novelist, 

spoken-word artist, and screenwriter. 

He is mostly famous for his novels "Ready Player One" and 

"Armada"; he also co-wrote the screenplay of "Ready Player One"'s 

upcoming film adaptation by Steven Spielberg.  

 

Paragraph 2: Armada (novel) 

Armada is a science fiction novel by Ernest Cline, published on July 

14, 2015 by Crown Publishing Group (a division of Random House).  

The story follows a teenager who plays an online video game about 

defending against an alien invasion ... 

 

Paragraph 3: The Last Stage ... 

… 

Paragraph 10: Influence of Stanley Kubrick ... 

 

 

 

  

Answer: Ready Player One 

Supporting Facts: (Paragraph 1, 2nd Sentence), (Paragraph 2, 1st Sentence) 

Question: Which novel by the author of "Armada" will be adapted as a 

feature film by Steven Spielberg? 

 
Document 

Figure 6.2: An example from HotpotQA. A document and A compositional
question are given. Both the answer and supporting facts (in green back-
ground) should be predicted.

into a graph, and then GNN is applied for information propagation and
aggregation. The updated graph state is expected to have the semantics of
each node with its neighbors, which would be used for the final prediction.
However, it has been studied that the computation of GNN is usually
expensive and the graph construction strongly depends on prior knowledge
[86].

Recently, document filters [83, 84, 87] are proposed to denoise any docu-
ment by selecting the most relevant paragraphs inside it. Table 6.1 shows
promising performance of the filter from Hierarchical Graph Network (HGN)
[84]. For 2-paragraph selection, both precision and recall can achieve around
95%. For 4-paragraph selection, recall is nearly 99%. We observe that
such performance can effectively neglect irrelevant information while keeping
necessary evidences, making it acceptable to utilize single-hop QA model for
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multi-hop QA.

Table 6.1: Performance of HGN’s document filter.
Filter Precision Recall

2-paragraph selection 94.53 94.53
4-paragraph selection 49.45 98.74

Inspired by this, our work proposes an effective method to Answer Multi-
hop questions by Single-hop QA system (AMS). We consider HGN [84], one
of state-of-the-art (SOTA) models, with its document filter as our baseline.
Our AMS exploits existing single-hop QA models based on the attention
mechanism and integrates with the HGN’s document filter. Since the predic-
tion of supporting facts is also required, additional layers are incorporated for
related sub-tasks to adapt multi-task learning. Besides, two-step tuning is
proposed to enhance model’s performance, which is based on transfer learning
from other QA datasets. We conduct comprehensive experiments on five
datasets to study how two-step tuning impacts on the model’s performance.
To validate our method, we focus on the HotpotQA dataset distractor setting
[82]. The result shows that AMS can outperform the strong baseline model,
and decrease both model’s size and computational resource by around 80%
and 23%, respectively. Moreover, AMS also outperforms other sophisticated
GNN-based models.

To conclude, our contributions are threefolds. First, we propose an
effective method (AMS) to answer multi-hop questions, which incorporates
single-hop QA models with a document filter. Second, the proposed model
outperforms the strong baseline and other sophisticated GNN-based models,
while it requires less computational resource. Lastly, we propose a new
two-step fine-tuning scheme that can improve the overall performance. We
experimentally study its effectiveness with diverse datasets to analyze their
effect on the model’s performance.

6.2 Related Work

GNN-based Multi-hop QA GNN-based models attempt to construct
a graph based on entities or other levels of granularity in text, which could
bridge scattered information in different paragraphs. For instance, MHQA-
GRN [88] integrates evidence by constructing an entity-based graph and
investigates two GNNs to update graph state. Entity-GCN [89] refines entity-
based graphs with different edges representing different relations. HDE-
Graph [90] constructs a heterogeneous graphs by introducing the entity
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and document nodes. CogQA [91] imitates human reasoning to construct
a cognitive graph and predicts both possible answer spans and next-hop
answer spans. DFGN [83] proposes a RoBERTa-based document filter to
select the most relevant paragraphs and develops a dynamic entity-based
graph interacting with context. SAE [87] improves the document filter by
considering information between paragraphs. HGN [84] utilizes Wikipedia’s
hyperlinks to retrieve more paragraphs and proposes a hierarchical graph
consisting of entity, sentence, paragraph and question nodes. BFR-Graph [85]
constructs a weighted graph by relational information and poses restrictions
on information propagation to improve the efficiency of graph reasoning.

No-GNN-based Multi-hop QA There are also attempts to address
multi-hop QA by exploiting the existing NLP methods. For instance, Coref-
GRU [92] extracts entities and their coreference from different paragraphs,
and aggregates the information by using multi-GRU layers with a gated-
attention reader. CFC [93] employs the hierarchical attention to construct
the coarse and fine module for two-stage scoring. QFE [94] follows an extrac-
tive summarization work and incorporates an additional sentence prediction
layer for multi-task learning. C2F Reader [95] considers the graph-attention
as a special kind of self-attention, and argues that GNN may be unnecessary
for multi-hop reasoning. Compared with the above methods, our work takes
a step forward to effectively utilize existing single-hop QA models, and shows
better performance than sophisticated GNN-based models.

Fine-tuning for NLP Tasks ULMFiT [96] proposes the discriminative
fine-tuning that employs layer-wise learning rates, and slanted triangular
learning rates with a sharp increase and a gradual decrease of the learning
rates. [97] compare the performance of feature extraction and fine-tuning, and
demonstrates that the distance between pre-training and the target task can
impact on their relative performance. [98] explores a general scheme to fine-
tune BERT for text classification, ranging from in-domain tuning, multi-task
learning, to the fine-tuning in the target task. [99] proposes compact adapter
modules for the text Transformer. Above works explore general fine-tunning
schemes or study on a specific task. However, to the best of our knowledge,
there is no work focusing on multi-hop QA.
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6.3 Proposed Model

We select HGN [84], which is the SOTA approach for HotpotQA, as our
strong baseline. Inspired from HGN, our model is the integration of its
document filter and single-hop QA models. In our approach, the document
is first denoised by the filter and then is fed into the attention-based single-
hop QA model for the sub-tasks prediction and multi-task learning. Figure
6.3 shows an overview of our model.

Attention-based 
 single-hop QA model

Paragraph  
Prediction

Supporting Facts 
Prediction

Answer
PredictionMulti-task

learning

QA mdoel

Document
denosie

Question Document

Filter

Question Context

Figure 6.3: Overview of our model. Answer prediction includes answer span
prediction and answer type prediction.

6.3.1 Document Denoise

The filter plays a crucial role in our work and we follow HGN’s filter consisting
of three components:

- Paragraph Ranker: It is trained based on RoBERTa and followed by a
binary classification layer to calculate the probability of whether each
paragraph contains supporting facts.
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- Title Matching: It searches for paragraphs whose title exactly match
any phrase with the question.

- Entity Matching: It searches for paragraphs which contain any entity
exactly that appears in the question.

HGN’s filter selects paragraphs within two steps. In the first step, it retrieves
paragraphs by Title Matching. If multiple paragraphs are returned, two
paragraphs yielding the highest score from Paragraph Ranker are selected.
If it fails to retrieve any paragraphs, it further searches for paragraphs
by Entity Matching. If it also fails, the paragraph yielding the highest
score from the Paragraph Ranker is thus selected. In the second step, the
filter retrieves additional paragraphs by Wikipedia’s hyperlinks from the
paragraphs identified by first step.

Table 6.1 show the performance of the adopted filter. According to
the table, we select four paragraphs from the total ten paragraphs since it
achieves high recall (98.74%). The retrieved paragraphs are concatenated
and used as context. Figure 6.4 shows the distribution of token length
of the context, indicating that around 94% token length is within 500.
Such performance can effectively reduce the input length and keep necessary
information. At this stage, the output is the question and context denoised
from the filter:

Question,Context = Filter(Question,Document) (6.1)
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Figure 6.4: Distribution of context token length from 4-paragraph selection.
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6.3.2 QA Model

With the promising performance of the document filter, we propose a single-
hop QA model to eliminate the burden of GNN in the multi-hop QA task.
Figure 6.5 illustrates the proposed single-hop QA model architecture, which
performs the following steps.

First, it feeds the question and the context into the RoBERTa-large model
to obtain question embeddings Eq ∈ Rlq×d and context embedding Ec ∈
Rlc×d, where lc and lq are the length of context and question. d denotes the
size of RoBERTa-large embedding.

After the representation of each context and question is extracted, the
context embedding needs to be intensified by the question embedding. For
this purpose, we apply the attention mechanism to learn the relationship
between them. To show the generality of our single-hop QA model’s effec-
tiveness, we conduct experiments with two kinds of attention mechanisms:
co-attention and self-attention. As a result, context can be updated by either
of them:

C′ = attention(Eq,Ec) ∈ Rlc×h (6.2)

where h denotes the hidden dimension. The detail is explained in the
subsequent sections.

6.3.2.1 Co-attention

Co-attention [74] is a vital model for single-hop QA. It enables the question
and context to attend mutually, and also learns the question-aware context
representation iteratively. We implement it as follows: Embedding Ec and
Eq is mapped into a hidden dimension by two-layer feed-forward networks
(FFNs1). Affinity matrix A is the product of context representation C and
question representation Q. In matrix A, each value is the related score of
one word from the question and one word from the context:

C = FFNc(Ec) ∈ Rlc×h (6.3)
Q = FFNq(Eq) ∈ Rlq×h (6.4)

A = CQ⊤ ∈ Rlc×lq (6.5)

We normalize matrix A row-wise by softmax, so that each row indicates
how much one word from the context is attended by all words from the
question. By multiplying it with context representation C, we can obtain

1All FFNs in this work includes two linear transformations with ReLU, Layer Normal-
ization and Dropout in between.
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Figure 6.5: Architecture of proposed attention-based single-hop QA model.

the question representation Sq attended by the context. Similarly, we derive
the context representation Sc attended by the question as follows:

Sq = softmax(A⊤)×C ∈ Rlq×h (6.6)
Sc = softmax(A)×Q ∈ Rlc×h (6.7)

where softmax(·) denotes the normalization column-wise and ⊤ denotes the
matrix transpose.

Let the updated question Sq attend context again with the matrix A. In
addition, the attended context is further fed into a BiGRU as follows:

Dc = BiGRU(softmax(A)× Sq) ∈ Rlc×h (6.8)

Dc and Sc are context representations intensified by the question. Finally,
they are concatenated and further applied with the FFNd to transform into
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the original document’s length:

C′ = FFNd([Dc||Sc]) ∈ Rlc×h (6.9)

where [·||·] denotes the concatenation function.

6.3.2.2 Self-attention

We use a Transformer encoder [44] for defining self-attention, including a
linear layer that maps the representation into the hidden dimension. It can
capture relations between each pair of words from the query and the context.
We set 8-head attention and stack two encoder layers to keep the model’s
size smaller than HGN.

C′ = Self-attention([Eq||Ec]) ∈ Rlc×h (6.10)

6.3.2.3 Prediction

After the attention module, updated context C′ is sent to a mean-pooling
layer to extract the representations of paragraphs and sentences:

P = Mean-pooling(C′, startp, endp) (6.11)
S = Mean-pooling(C′, starts, ends) (6.12)

where startp and starts denote the starting positions of each paragraph and
each sentence, respectively. Similarly, endp and ends denote the ending
positions.

Unlike the conventional single-hop QA, additional layers are employed
for sub-tasks. the paragraphs’ representation P is sent to a FFN for binary
classification to calculate the probability that they contain supporting facts
or not. Similarly, the sentences’ representation S is sent to a FNN to calculate
the probability that they are supporting facts or not.

opara = FNN1(P) (6.13)
osent = FNN2(S) (6.14)

On the other hand, updated context C′ is directly sent to other FFNs to
predict the starting and ending positions of the answer span:

ostart = FNN4(C
′) (6.15)

oend = FNN5(C
′) (6.16)

Since the answer type could be “yes”, “no” or an answer span, 3-way
classification is conducted. If the prediction is “yes” or “no”, the answer
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is directly returned. Otherwise, the answer span is returned. Similar
with HGN, we also use the first hidden representation for answer type
classification.

otype = FNN6(C
′[0]) (6.17)

6.3.3 Multi-task Learning

Finally, an answer type, an answer span with the starting and ending
positions, gold paragraphs, and support facts are jointly predicted for multi-
task learning. The cross-entropy loss is used for each task. Thus, the total
loss (Ltotal) is a weighted sum of each loss and each weight λi is our hyper-
parameter:

Ltotal =λ1Ltype + λ2Lstart + λ3Lend

+ λ4Lpara + λ5Lsent

(6.18)

6.4 Two-step Tuning

BERT-based language models [100, 101] are pre-trained on the large-scale
corpora to learn universal semantics. But for a specific task, such as multi-
hop QA, the data distribution can be different. More tuning on a related
domain is expected to bring improvement as also investigated in [98, 99].
Therefore, we propose two-step tuning with an in-task distribution and a
cross-task distribution for enhancing the model’s performance. To study its
effectiveness based on diverse datasets, we experiment with five datasets:
SQuAD [102], NewsQA [103], TweetQA [104], CoLA [105], IMDB [106].

In-task Tuning: In this scenario, language model is first tuned in a QA
dataset2, including SQuAD, NewsQA and TweetQA3. Then, we use the tuned
language model as an embedding in our proposed AMS and perform the
second tuning in HotpotQA.

Cross-task Tuning: In this scenario, the first tuning dataset is not a QA
dataset. Specifically, CoLA is a grammatical classification dataset and IMDB
is a sentimental classification dataset. The second tuning process is the same
as the in-task tunning.

2We only tune the the language model, instead of the entire model, in first tuning. It
enables us to study its effectiveness from cross-task datasets.

3There is no annotated answer span in TweetQA. We retrieve the span with the best
BLUE-1 score for training.
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6.5 Experiment

6.5.1 Dataset

HotpotQA [82] is a popular multi-hop QA dataset, which is constructed
from Wikipedia. There are two sub-datasets: the distractor setting and the
fullwiki setting. For each case in the distractor setting, a compositional
question and a document containing 10 paragraphs are given. In the
document, only 2 paragraphs are related with the question and other 8
paragraphs are distractions. The gold paragraphs, supporting facts and
ground-truth answers are annotated. The QA system is required to predict
both an answer and supporting facts. In the fullwiki setting, the answer
should be retrieved from the whole Wikipedia. In this work, we focus on the
distractor setting. Official evaluation metrics are considered, i.e., EM (exact
match) and the F1 score for the individual and joint evaluations of both the
answer and supporting facts.

6.5.2 Experimental Setting

We conduct experiments based on a Quadro RTX 8000 GPU. We train the
model for 8 epochs, and set learning rate as 1e-5 with batch size 8. For the
hyper-parameters in our multi-task learning, we search λ1, λ2, λ3 and λ4

from {1,3,5} and λ5 from {5, 10, 15, 20}, in which the boldface indicates the
best setting.

6.5.3 Experimental Result

6.5.3.1 Comparison with Baseline

We reproduce HGN with its source code and the result is based on RoBERTa-
large. The upper part of Table 6.2 shows the comparison between our
proposed AMS and HGN on the development set. According the table,
the co-attention based model (AMSco-attention) underperforms HGN within
1.0 point. The self-attention based model (AMSself-attention) yields the better
performance and especially outperforms HGN by 0.89 points for Joint EM.

6.5.3.2 Comparison based on Two-step Tuning

Table 6.3 shows the comparison between the original RoBERTa-large em-
bedding and our two-step tuning embedding. This result is based on
AMSco-attention, demonstrating the following information:
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Table 6.2: Comparison between HGN and AMS on dev set. The upper part
is based on original RoBERTa-large embedding, which means the RoBERTa-
large embedding from HuggingFace without two-step tuning. The lower part
is based on SQuAD tuning embedding, which means two-step tuning based
on SQuAD. ‘Ans’ indicates ‘Answer’ and ‘Sup’ indicates ‘Supporting facts’.
∆ = model’s performance - HGN (reproduced) performance with original
RoBERTa-large.

Embedding Model Ans Sup Joint
EM F1 EM F1 EM F1

HGN (reproduced) 68.33 82.04 62.89 88.53 45.78 74.06
AMSco-attention 67.85 81.55 63.28 87.7 46.35 73.58

Original ∆ -0.48 -0.49 0.39 -0.83 0.57 -0.48
RoBERTa-large AMSself-attention 68.87 82.14 63.20 88.45 46.67 74.21

∆ 0.54 0.10 0.31 -0.08 0.89 0.15
HGN (reproduced) 69.14 82.55 63.24 88.82 46.75 74.75

∆ 0.81 0.51 0.35 0.29 0.97 0.69
SQuAD AMSco-attention 69.21 82.48 63.7 88.62 47.33 74.41
tuning ∆ 0.88 0.44 0.81 0.09 1.55 0.35

AMSself-attention 69.26 82.51 64.4 88.63 47.56 74.62
∆ 0.93 0.47 1.51 0.1 1.78 0.56

Table 6.3: Comparison between different embeddings.
Ans Sup JointEmbedding EM F1 EM F1 EM F1

Original RoBERTa-large 67.85 81.55 63.28 87.7 46.35 73.58
SQuAD tuning 69.21 82.48 63.7 88.62 47.33 74.41

TweetQA tuning 67.87 81.79 63.52 88.62 46.84 73.93
NewsQA tuning 68.28 82.09 63.65 88.77 47.24 74.21
CoLA tuning 67.86 81.44 63.59 87.29 46.84 73.29
IMDB tuning 67.56 81.43 63.66 87.31 46.65 73.15

83



• In-task tuning can improve overall performance.
• SQuAD tuning yields the best improvement and TweetQA yields the

smallest improvement. Potential reasons could be: (i) SQuAD and
HotpotQA are all constructed from Wikipedia; thus, they may share
the same resource and most relevant data distribution. (ii) TweetQA
is more oral-style than other datasets. And the retrieved answer for
training in TweetQA could be incomplete.

• Cross-task tuning can improve Sup EM but cannot benefit the answer
prediction. We hypothesize that this is because supporting facts
prediction is closely aligned with the classification task.
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on Joint EM (upper) and Joint F1 (lower).
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The lower part of Table 6.2 illustrates that both HGN and AMS can be overall
enhanced by SQuAD tuning (two-step tuning based on SQuAD). Compared
with the reproduced HGN, AMS with SQuAD tuning can outperform it
obviously in Sup EM and Joint EM. Furthermore, under the condition of
both AMS and HGN using SQuAD tuning, their performances are quite
competitive.

Figure 6.6 shows curve comparisons between the original RoBERTa-large
and the SQuAD tuning based on Joint F1 (bottom) and Joint EM (top).
From the figure, the SQuAD tuning curve is initially better than the original
RoBERTa-large curve and it converges around 4th epoch. This is faster than
the original RoBERTa-large, showing the power of transfer learning in multi-
hop reasoning.

6.5.3.3 Comparison with Related Work

We make comparisons with GNN-based models that use the BERT-based
language model and the document filter. Table 6.4 shows the comparison
result on the development set. According to the table, our proposed method
outperforms GNN-based models with both BERT-base and RoBERTa-large,
and AMSself-attention yields the best performance.

6.5.4 Comparison of Model’s size and Computational
Resource

Table 6.5 shows the comparison of the model’s size, computational resource
and performance. The result is based on RoBERTa-large. AMSco-attention

model’s size is only about 20% of HGN and AMSself-attention model’s size is

Table 6.4: Comparison with related work on dev set. AMS result is based
on SQuAD tuning and HGN result is without SQuAD tuning.

Embedding Model Ans Sup Joint
EM F1 EM F1 EM F1

Bert-base

DFGN 55.66 69.34 53.10 82.24 33.68 59.86
HGN 60.23 74.49 56.62 85.91 38.16 66.20
AMSco-attention 61.39 75.39 58.78 85.93 40.04 67.03
AMSself-attention 62.11 75.76 59.20 85.78 40.73 67.39

RoBERTa-large

SAE 67.70 80.75 63.30 87.38 46.81 72.75
HGN 68.33 82.04 62.89 88.53 45.78 74.06
AMSco-attention 69.21 82.48 63.70 88.22 47.33 74.41
AMSself-attention 69.26 82.51 64.40 88.63 47.56 74.62
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Table 6.5: Comparison of model’s size, computational resource and perfor-
mance.

Baseline Proposed model
HGN AMSco-attention AMSself-attention

Model’s size 31.61M 6.30M 30.83M
RoBERTa-large 355M 355M 355M
Training time 191 min 148 min 160 min
Joint EM 45.78 47.33 47.56
Joint F1 74.06 74.41 74.62

close to HGN. For computational resource, AMSco-attention and AMSself-attention

is 77.5% and 83.8% of HGN, respectively. Since RoBERTa-large (355M)
dominates the total model’s size, training time is not reduced significantly.
The computational resource is expected to further decrease by incorporating
a lighter language model. Generally, both proposed models show better
performance and use less computational resource.

6.5.5 Error Analysis
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Figure 6.7: Answer F1 score distribution on dev set. There are almost 10%
answer F1 score less than 0.2

We analyse the answer F1 score on the development set. Figure 6.7
illustrates its distribution. Almost 10% of the answer F1 score is less than 0.2,
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in which 9.7% answer F1 score is 0. Further improvement can be considered
from this error. Similar with HGN, we randomly sample 100 examples with
answer F1 score as 0 and they are categorized as follows:

• Multi-answer (12%): There are multiple gold answers and the pre-
dicted answer is different from the annotation. For example, the
annotation is ‘National Broadcasting Company’ and the predicted
answer is ‘NBC’.

• Multi-hop (28%): The supporting facts prediction is incorrect, from
which the model fails to predict the right answer. For example, the
supporting facts are the 1st and the 2nd sentences, but the model
predicts the 3rd and the 4th sentences as supporting facts and retrieves
answer from them. Accordingly, the answer prediction is incorrect.

• MRC (38%): The supporting facts’ prediction is right but the answer
prediction is wrong. For example, the supporting facts are the 1st and
the 2nd sentences. The model predicts them correctly. But the final
answer prediction is wrong.

• Comparison (22%): The model fails to do numerical operations that
involves information aggregation. For example, the question is ‘ The
CEO of Walmart and the CEO of Apple, who is older?’

Multi-hop and MRC account for more than 50%, which indicates that the
performance could be further improved by more advanced QA models.

Another tricky error is that there are 1,322 cases, about 17% of the

Table 6.6: Some examples that supporting facts F1 is 0 but answer F1 is 1.

ID Answer Supporting Facts Predicted An-
swer

Predicted Supporting
Facts

5ae180195542
9901ffe4aec4

Battle
Creek,
Michigan

[[‘Adventures of
Superman (TV
series), 2], [‘
Kellogg’s’, 0],
[‘Kellogg’s’, 2]]

Battle
Creek,
Michigan

[[‘Cocoa Krispies’,
0],[‘Adventures of
Superman (TV series)’,
0]]

5ae1fa2b5542
997f29b3c1df

Eminem
[[‘Mack 10
discography’, 2],
[‘Numb (Rihanna
song)’, 0]]

Eminem
[[‘The Monster (song)’,
0], [‘Numb (Rihanna
song)’, 1]]

5ae18d615542
997283cd2229

mixed
martial
arts

[[‘Liz McCarthy
(fighter)’, 0],
[‘Atomweight
(MMA)’, 0]]

mixed
martial
arts

[[‘Atomweight’, 0], [‘Am-
ber Brown (fighter)’, 0]]
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development set, that supporting fact F1 is 0 but answer F1 is 1. This
means that the supporting facts prediction is wrong but the answer prediction
is right. Table 6.6 shows some examples of this case. Such interpretable
problem may occur when the answer is not directly retrieved from predicted
sentences. It could be further studied by considering supporting facts
prediction’s restrictions for the answer prediction.

6.6 Summary

In this section, we propose a simple yet effective model, called AMS, for multi-
hop QA. AMS is the integration of HGN’s document filter and single-hop QA
models, which shares the similar framework with our MARL communication
framework. We also introduce a new fine-tuning scheme for improving its
performance. The result shows that AMS can outperform the strong baseline
HGN with less amount of computational resource. Furthermore, AMS can
achieve the better performance than other sophisticated GNN-based models.
In contrast to GNN-based methods, our method can effectively leverage
existing single-hop QA models and does not require any auxiliary tool, such
as NER, which should gain more attention in the further research.
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Chapter 7

Conclusion

This research aims to solve the overtourism and under-tourism caused by
biased-sightseeing problem in route planning for multiple tourists. Our work
undertakes a exploration of MARL and communication protocol, addressing
critical challenges through innovative frameworks that reflect an integrated
approach to problem-solving.

We begin with introducing the popularity-biased route planning problem,
resolved through our MARL framework incorporating a dual congestion-
aware model. Our model RPMTD evaluates both the crowdedness of visited
POIs and the distribution of tourists, leveraging novel mobility data to create
a realistic interaction environment. The experimental results underscore
the model’s superior performance and robustness in managing tourist distri-
bution, highlighting its practical potential for urban tourism management.
Notably, the user study reveals that our model transforms non-cooperative
relationships between users and tourism into cooperative ones, marking a
significant advancement towards sustainable tourism that balances tourists’
preferences with broader environmental and social concerns.

Next, we propose multi-agent communication protocols which aims to
mitigate the non-stationary problem, employing methods to denoise irrel-
evant information and perform information fusion. By implementing two
types of selectors and three attention-based methods, we demonstrate the
framework’s effectiveness. However, experiments reveal limited improve-
ments from widely used tricks against the non-stationary problem. Future
research will focus on the sequential actions of agents and the adaptation of
joint optimization in collaborative-adversarial scenarios.

Finally, we extend our communication framework to multi-hop QA and
propose the AMS model for this task, which integrates HGN’s document
filter with single-hop QA models and introduces a novel fine-tuning scheme.
Our findings demonstrate that AMS not only outperforms the strong baseline
HGN with fewer computational resources but also surpasses other sophisti-
cated GNN-based models. This approach focuses on existing single-hop QA
models without auxiliary tools like NER, suggesting significant potential for
further research.
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We also points out several limitations of our research: (i) this work
majorly considers the interests of POIs, and the interests of tourists such
as must-see POIs are not considered. The tourism industry should satisfy
tourists and balance two parts in reality. Cooperating with other tourist-
oriented work could be further work; (ii) we only planned maximum 1000
tourists in our scenario. However, in reality, there are far more than this
amount of tourists. Development of a practical method for real number
of users is necessary; (iii) in real tourist route planning, the randomness of
tourists exists. Modeling these randomness will be a step forward to practical
and real tourist route planning.

In summary, this study advocates a comprehensive approach to address-
ing the real-world biased-sightseeing problem utilizing MARL. By incorporat-
ing innovative models with practical, real-world mobility data and emphasiz-
ing both cooperation and competition among agents, this research establishes
a foundational framework for MARL studies focused on route planning for
multiple tourists, fostering a more adaptive, efficient, and scalable system.
This work marks a development of sustainable and efficient tourist route
planning methodologies, which signifies a considerable advancement toward
achieving sustainable tourism that balances the preferences of tourists with
broader environmental and social considerations.
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