JAIST Repository

https://dspace.jaist.ac.jp/

Title gobooooooooboooooooo

Author(s) oo, 00

Citation

Issue Date 2006-03

Type Thesis or Dissertation

Text version aut hor

URL http://hdl.handle.net/ 10109/ 1971
Rights

Description Supervisor: goooo, ooooooo, 00

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



An Optimized Type Inference Algorithm with Delayed Type
Substitution

Katsuhiro Ueno (410015)

School of Department of Information Science,
Japan Advanced Institute of Science and Technology

February 9, 2006

Keywords: Type Inference, Optimized Algorithm, Functional Programming
Language, ML.

Type inference is a major characteristics of modern functional programming language,
such as Standard ML, Haskell, ObjectiveCaml, etc. This is a feature to infer the most
general type of a program. By this feature, compiler can decide the type of a given untyped
program. The polymorphic type inference algorithm defined against extended lambda
expression including polymorphic let expressions which allows type variable bindings for
polymorphic types is the core of this feature.

Since the idea of polymorphic type inference has proven very useful in practice, range
of programming languages have adopted this feature. But on the other hand, the type
inference is one of the most complex and most time-consuming step among compiler front-
end phases, so it makes compiler implemenation more complex and increases processing
time for compilation. Development of functional and efficient type inference algorithm
is an important task for next generation of programming languages equipped with the
polymorphic type inferecence feature.

However, it is already shown that typing a polymorphic functional programming lan-
guage is DEXPTIME-complete. Constructing an “efficient algorithm” in the meaning of
computational theory is impossible. In spite of existence of this theoritical limit, practi-
cally more efficient type inference algorithm has been needed in order to speed up com-
pilation processes. In this thesis, I propose a new functional and practically fast type
inference algorithm, as a basis of reliable and efficient implemantations of state-of-the-art
functional programming languages.

Milner’s type inference algorithm Y, which is adopted by many recent compilers of
functional programming languages, has the following problems abround its efficiency.

e W heavily repeats applying type substitutions to large structures including type
terms such as type environments.

e While let expressions appear very often in actual program, a whole scan of type
environment is needed every time to calculate a set of bounded type variables for a
polymorphic type produced by each let expression.

Copyright (© 2006 by Katsuhiro Ueno



I solved the first problem by preserving a type substitution as an explicit environment
for evaluating type environment and then delaying application of type substitution. The
other problem can be solved by keeping a set of free type variables which is reachable from
type environment at every turn. Additionally, in order to achieve this strategy that delays
type substitutions, the unification algorithm should be refined so that it can calculate a
unifier under the type substitution environment.

In this thesis, I present a set of an unification algorithm DU and practically efficient
type inference algorithm D)W constructed on the ideas described above. I also prove the
soundness and completeness of DU, and the type soundness of DW. DWW seems much
more efficient than W: For example, algorithm W involves O(n?) time type substitutions
for typing nested lambda abstractions, but in contrast, algorithm DWW completes the
typing only with O(n) time substitutions.

I also implement a type inference module based on DW adequated to Core Syntax of
Standard ML on SML# compiler in order to demonstrate its practical feasibility. Fur-
thermore, I took some benchmarks among several type inference algorithms by using this
implementation and practical programs to clear that DWW is faster than VW in practice.
The result of the benchmark shows that D)V is intensely faster than W, and DWW is as
fast as the well-known ad-hoc imperatively-extended type inference algorithm.

At the last of this thesis, I present some discussions about additional extensions to make
DWW more efficient.



