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Abstract

Speech translation is a vital technology that bridges language barriers,

enabling people from different linguistic backgrounds to communicate effec-

tively. However, developing speech translation systems for low-resource lan-

guages poses significant challenges. Low-resource languages are those with

limited available data for training models, making it difficult to create accu-

rate and reliable translation systems.

The primary objective of this research is to enhance the performance

of a direct speech translation model tailored for low-resource languages. A

direct speech translation model translates spoken language directly from the

source language to the target language without relying on intermediate text

representations. The model architecture consists of three main components:

an encoder, a dimensionality reduction module, and a transformer decoder

layer.

A key contribution of this work is the exploration and implementation

of two novel pretraining techniques. These techniques are derived from re-

cent advancements in speech representation learning and are designed to

improve the quality of the encoder’s understanding of the source language

audio. The first technique focuses on creating semantically aligned, multi-

modal, cross-lingual speech representations that enhance the model’s ability

to understand and translate spoken language across different languages. The

second pretraining technique employs self-distillation and online clustering

to learn robust and meaningful speech representations without requiring ex-

tensive labeled data. In this study, both pretraining techniques are applied

to the encoder using audio data from a low-resource language. Specifically,

the audio data of the Tamasheq language, a Niger-Congo language spoken in

parts of Mali, Algeria, and Niger, is used. The entire direct speech transla-

tion architecture is fine-tuned after pretraining the encoder with the chosen

techniques.



The research utilizes data from the IWSLT2024 competition, specifically

focusing on the low-resource speech translation task involving the Tamasheq-

French language pair. The IWSLT (International Workshop on Spoken Lan-

guage Translation) competition provides a standardized benchmark for eval-

uating speech translation systems, allowing for consistent and objective com-

parisons of different models and techniques.

To evaluate the effectiveness of the two pretraining techniques, BLEU

score metric is used. The results of this research are expected to demonstrate

that both pretraining techniques significantly improve the performance of the

direct speech translation model for the low-resource Tamasheq-French lan-

guage pair. Moreover, the research highlights the potential of applying these

pretraining techniques to other low-resource language pairs, contributing to

the larger goal of making speech translation technologies more accessible.
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Chapter 1

Introduction

1.1 Motivation

In our increasingly interconnected world, the ability to communicate between

people from different languages has become more crucial than ever. The mo-

tivation behind this research comes from the desire to make communication

more inclusive and accessible.

Speech translation, the task of converting spoken language from one lan-

guage to another, holds great potential for breaking down these language

barriers. While machine translation technology has made huge progress in

recent years, particularly for widely-spoken languages, many of the world’s

approximately 7,000 languages remain underserved by these technological

advances. Low-resource languages are spoken by communities that may lack

access to the technological advancements enjoyed by speakers of high-resource

languages like English, Spanish, or Mandarin. By developing speech trans-

lation systems for these languages, we can empower speakers to access in-

formation, participate in global conversations, and preserve their linguistic

heritage.
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1.2 Problem Statement

Speech translation, which enables translation of spoken content from one

language to another, represents a particularly challenging frontier in this

domain. This technology holds great potential for preserving cultural her-

itage, facilitating education, and enabling access to information in commu-

nities where written literacy might be limited. However, developing effective

speech translation systems for low-resource languages presents unique chal-

lenges, primarily due to the insufficiency of training data and the limited

availability of parallel speech-text corpora. These languages often lack the

extensive datasets and linguistic resources that support the development of

robust machine learning models. This scarcity comes from various factors,

including limited digital presence, lack of standardized orthography, and the

sheer diversity of languages spoken across the globe.

Traditional approaches to speech translation often rely on a cascaded

system, where speech recognition and machine translation models are used

together. While effective for high-resource languages, this approach suffers

from error propagation in low-resource scenarios, where errors in the speech

recognition stage can cascade into the machine translation stage, leading

to inaccurate translations. Direct speech translation models, which directly

map speech input to translated text, offer a promising alternative. These

models eliminate the need for intermediate transcription, potentially reduc-

ing error accumulation and improving efficiency. Moreover, direct speech-

to-speech translation (S2ST) models have the potential to preserve paralin-

guistic and non-linguistic features, such as tone and emotion, which can be

crucial for conveying meaning in certain languages [1].
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1.3 Research Objectives and Contributions

This thesis aims to address the challenges of developing speech translation

systems for low-resource languages by focusing on the Tamasheq-French lan-

guage pair. Tamasheq is a Niger-Congo language spoken in parts of Mali,

Algeria, and Niger, and it exemplifies the characteristics of a low-resource lan-

guage with limited digital resources. French, as a widely spoken language,

serves as an appropriate target language for translation.

A key contribution of this work is the exploration and implementation

of two novel pretraining techniques applied to the problem of speech trans-

lation for low-resource languages. These techniques are derived from recent

advancements in speech representation learning and are designed to improve

the quality of the encoder’s understanding of the source language audio.

• Samu-xlsr Pretraining Technique: Based on the method described in

the paper ”Samu-xlsr: Semantically-aligned multimodal utterance-level

cross-lingual speech representation,” this technique focuses on creating

multimodal, semantically aligned, cross-lingual speech representations.

By aligning speech data across different languages at the utterance

level, the model gains a better understanding of the semantic content,

which enhances its ability to translate spoken language accurately.

• DinoSR Pretraining Technique: Inspired by the ”Dinosr: Self-distillation

and online clustering for self-supervised speech representation learn-

ing” paper, this method employs self-distillation and online clustering

to learn robust and meaningful speech representations without requir-

ing extensive labeled data. Self-supervised learning allows the model

to capture the nuances of the source language’s audio, which is partic-

ularly beneficial for low-resource settings where labeled data is scarce.

1.4 Thesis Outline

The structure of this thesis is organized as follows: In Chapter 1, the motiva-

tion, problem statement and objectives of this study were discussed. Chapter
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2 covers related studies in this field. Chapter 3 presents the 2 audio encoder

pretraining techniques used in this study. Chapter 4 describes our experimen-

tal setup and details. Chapter 5 is a place for error analysis and discussion.

Chapter 6 concludes this entire study, as well as plans for future works.
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Chapter 2

Related Works

2.1 Low-Resource Speech Translation

In this section we discussed about related works on low-resource speech trans-

lation. It includes 2 parts: cascaded speech translation and direct speech

translation.

2.1.1 Low-Resource Cascaded Speech Translation

Early research in ST primarily focused on cascaded approaches, where speech

recognition (ASR) and machine translation (MT) were treated as separate

tasks. In this approach, the audio input in low-resource language could be

first processed and converted into the transcription in that same language.

Then a machine translation model takes place to translate it into the targeted

language.

Automatic Speech Recognition (ASR) There have been many works

that tried to develop new model architecture or training methods for better

performance on limited data. Singh et al [5] introduced a modified Model-

Agnostic Meta-Learning (MAML) approach, specifically through the imple-

mentation of a Multi-Step Loss (MSL) that enhances the training stability

and convergence speed for low-resource speech recognition. This method sig-

nificantly reduces character error rates when applied to various low resource

languages, demonstrating its effectiveness over standard MAML. It is evalu-
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Figure 2.1: Cascaded Speech Translation Approach

ated on Common Voice v7.0 with 10 low-resource languages. Yi et al [6] built

an innovative end-to-end automatic speech recognition (ASR) model that ef-

fectively integrates pretrained acoustic and linguistic encoders, specifically

wav2vec2.0 [40] and BERT[8]. This model addresses the challenges of low-

resource ASR by minimizing the need for labeled data during fine-tuning,

while also employing a monotonic attention mechanism that aligns speech

and language modalities efficiently. Zhao et al [9] explored the enhancement

of Automatic Speech Recognition (ASR) systems for low-resource languages

using self-supervised learning frameworks. Their findings indicate that multi-

lingual pre-training enhances performance, while phoneme recognition tasks

improve ASR outcomes. The study demonstrates significant improvements

in ASR performance through the application of wav2vec2.0 pre-trained mod-

els, surpassing traditional hybrid systems. This research achieved notable

success in the OpenASR21 Challenge[10], demonstrating the effectiveness of

self-supervised learning in low-resource settings. Hamed et al [15] introduced

a novel Automatic Speech Recognition (ASR) system specifically designed for

Egyptian Arabic–English code-switching, addressing the challenges posed by

low-resource dialectal languages. The researchers collected a new speech cor-

pus named ArzEn, which includes a diverse range of code-switched sentences,

and employed both DNN-based hybrid and Transformer-based end-to-end

models to leverage their complementary strengths.

On the other hand, some works proposed to focus on the quantity and

quality of data. Reitmaier et al [2] developed an ASR (Automatic Speech

Recognition) system tailored for low-resource languages, specifically isiX-

hosa and Marathi, through community partnerships. It emphasizes the im-
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portance of ethical data collection, community engagement, and the need for

multidisciplinary collaboration to enhance data quality and address linguistic

inequalities. The study advocates for the creation of mobile-friendly tran-

scription tools that accommodate code-switching, empowering marginalized

communities to generate high-quality transcripts and retain data sovereignty.

Meng et al[11] introduced a data augmentation technique for automatic

speech recognition (ASR) that leverages mixup methods to enhance model

training. By combining two speech features, such as mel-spectrograms, it

effectively generates new training samples, leading to improved recognition

accuracy. Their experiments were conducted on datasets like TIMIT[12],

WSJ[13], and HKUST[14]. Building upon the concept of data augmentation

commonly used in the image domain, Google introduced SpecAugment [16],

a technique aimed at enriching speech recognition datasets by applying aug-

mentation directly to the log-Mel spectrogram. SpecAugment employs meth-

ods like time-warping and adding masking blocks to both the frequency and

temporal dimensions, effectively reducing the risk of overfitting in Automatic

Speech Recognition (ASR) models. While this approach shifts the challenge

from overfitting to underfitting, it also demonstrates enhanced performance

when paired with larger model architectures and extended training durations.

Beside data augmentation, there has also been research about speech synthe-

sis to enrich the data. Notably, Kaneko et al [17] introduced CycleGAN-VC,

a voice conversion (VC) method designed to work without requiring paral-

lel data. This approach utilized a Cycle-consistent Generative Adversarial

Network (CycleGAN) equipped with gated convolutional neural networks

(CNNs) and an identity-mapping loss function. By combining adversarial

loss and cycle-consistent loss, CycleGAN-VC effectively learned bidirectional

mappings between two domains, enabling it to create pseudo pairs from un-

paired data. Building on this, Kameoka et al [19] proposed StarGAN-VC, an

extension of CycleGAN-VC that supports non-parallel many-to-many VC.

This model incorporated a domain classifier to identify the target speaker’s

class, significantly broadening its application. StarGAN-VC required only

a few minutes of non-parallel, unannotated speech per speaker. Hsu et al

[18] developed another non-parallel VC framework called VAW-GAN, which
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combined a Variational Autoencoder (VAE) and a Wasserstein Generative

Adversarial Network (W-GAN). The VAE modeled speaker-specific speech

characteristics, while the W-GAN generated speech for various speakers.

Machine Translation(MT) The initial focus is on model-centric ap-

proaches, where researchers aim to improve methods for modeling, training,

and inference. Despite the scarcity of labeled data in the form of sentence

pairs, abundant monolingual textual data offers opportunities for innovation.

Many studies [20, 22, 21] have embraced unsupervised learning strategies to

address this limitation. First, these methods align the latent spaces of source

and target languages, reducing the distance between their respective repre-

sentations. This alignment is often followed by a back-translation process,

where a denoising autoencoder plays a critical role. The autoencoder in-

tegrates forward translation (source to target) with backward translation

(target back to source), leveraging the concept of a shared latent space be-

tween languages. The model learns to reconstruct the original source sentence

from its noisy translation, capitalizing on the premise that languages share

common semantic structures. Additionally, Generative Adversarial Networks

(GANs) are employed to strengthen the mapping between source and target

languages. The GAN architecture includes a generator that produces trans-

lations and a discriminator that differentiates authentic target language data

from translations. The training process incorporates two key loss functions:

a reconstruction loss, which encourages accurate bidirectional reconstruction

of noisy translations, and a discrimination loss, derived from the classifier’s

ability to distinguish translated text from original text. Together, these tech-

niques facilitate robust unsupervised translation performance by exploiting

both linguistic similarities and adversarial learning principles.

As in speech recognition, the performance of low-resource machine trans-

lation can also be improved with data augmentation. Nag et al [23] involved

extracting a portion of sentences from an existing parallel or monolingual

dataset and creating new synthetic sentences by modifying words or phrases

within the selected set. A common strategy is leveraging a bilingual dictio-

nary to substitute either all words or specific uncommon terms in the chosen

sentences from a monolingual corpus with their equivalents in the target
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Figure 2.2: Direct Speech Translation Approach

language. This process effectively generates translated versions of the orig-

inal sentences for enhancing linguistic diversity in the dataset. Sennrich et

al [24] utilized back-translation technique, where a monolingual dataset in

the target language is translated back into the source language using a pre-

trained machine translation model. The resulting synthetic source-language

sentences are paired with their corresponding original target-language sen-

tences to create an artificial parallel corpus to use along with available data.

Certain approaches leverage data mining techniques to identify sentence pairs

within comparable corpora. These corpora consist of texts focused on sim-

ilar topics but are not exact translations of each other. Instead, they may

include segments that serve as translation equivalents, offering valuable op-

portunities for alignment and parallel data extraction. Mandy et al. [25]

developed an approach leveraging bilingual dual encoder architectures to

produce cross-lingual sentence embeddings. This method facilitates efficient

sentence alignment across languages. During the sentence ranking phase, for

each input sentence in one language, the model identifies a set of the most

closely related sentences from another language as potential parallel pairs,

based on the calculated similarity of their embeddings.

2.1.2 Low-Resource Direct Speech Translation

To solve the problem of overfitting in low-resource context, Hou et al [3, 21]

proposed a module called SimAdapter for adapter-based cross-lingual speech

translation. This module utilizes the attention mechanism to learn the sim-

ilarity between the source and target language during fine-tuning using the

adapters to boost the translation performance. They improve their perfor-

mance on five low-resource languages from the Common Voice dataset[4]. Di
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et al [26] was one of the first to propose Speech Transformer which adapts the

Transformer architecture[27] by first extracting audio feature (e.g. Fbank)

with a convolutional layer before feeding to Transformer model. In Gu et

al [28], convolutional neural networks is integrated with self-attention mech-

anisms. This design allows the model to capture both local correlations

through convolutions and global interactions via self-attention. Another

highlight method is non-autoregressive which predicts the whole sequence

in parallel. Inaguma et al [29] featured a dual-decoder approach, combining

a non-autoregressive (NAR) decoder for parallel token generation with an

autoregressive (AR) decoder for candidate selection.

Other works revolved around utilizing related auxiliary tasks to enhance

translation task, which is called multi-task learning. Sperber et al [30] built

the model upon a two-stage architecture, where the first stage focuses on

automatic speech recognition (ASR) and the second stage handles transla-

tion. Unlike traditional models that pass decoder states from the ASR to

the translation component, the attention-passing model transmits context

vectors, which helps alleviate the issues of error propagation commonly en-

countered in such systems. Instead of 2 sequential decoders, Liu et al [31]

generated transcription and translation using two decoders synchronously

since they considered generation processes of transcription and translation

can help to improve each other. Instead of the decoupled decoder, other

works [32, 33] also studied the use of dual-encoder architecture. The first

encoder learns audio shallow features and the second one further learns the

deep semantic representation used for translation decoding. Both encoders

can be guided by information from the transcription, like phonetic details

and text content.

Pino et al [34] expanded additional target language translation by using

a high-quality off-the-shelf MT system on a large amount of ASR data. In-

aguma et al [35] presented bidirectional sequence-level knowledge distillation

(SeqKD). This method integrates both forward and backward SeqKD, where

the forward SeqKD utilizes a text-based target-to-source NMT model to gen-

erate distilled translations, while the backward SeqKD leverages paraphrased

source transcriptions generated from a backward NMT model.

10



Beside the studies above, another promising method for low-resource

speech translation is pretraining. Pretraining has proven to be a highly

effective strategy for enhancing model performance in low-resource scenar-

ios. It typically utilizes readily available data sources, such as vast collec-

tions of raw text or speech data. It also often involves foundational tasks

such as reconstruction, masked prediction, and contrastive learning. These

methods enable the model to capture deeper contextual representations of

the data. Chen et al [36] developed Masked Acoustic Modeling (MAM), a

self-supervised technique that improves speech representation by randomly

masking segments of the speech spectrogram and training the encoder to re-

construct them. Building on MAM, Zheng et al [37] proposed the FAT frame-

work, which effectively integrates speech and text representations through a

unified masked language modeling process. In another approach, Wang et al

[38] introduced a curriculum learning strategy for encoder pretraining, de-

signed to systematically enhance both syntactic and semantic comprehension

capabilities. This thesis places a strong emphasis on exploring the

pretraining process, driven by a clear motivation that will be elab-

orated upon in detail in the upcoming ”Proposed Model” section.
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2.2 Audio Pretrained Models

Here exists some multi-lingual pretrained models that can be utilized for

this task of speech translation. For instance, SeamlessM4T [39] (Massively

Multilingual & Multimodal Machine Translation) is a multilingual model

designed for seamless text and speech translation across multiple languages.

The method integrates advanced self-supervised learning for speech and text.

SeamlessM4T uses a combination of massive multimodal datasets, including

CommonVoice, VoxPopuli, and multilingual corpora from publicly available

sources. Its capacity spans dozens of languages, providing high-quality trans-

lation for both high-resource and low-resource languages. wav2vec 2.0 [40]

is another model for speech representation. It learns directly from raw au-

dio waveforms by first applying a convolutional encoder to extract low-level

features and then masking portions of the latent representations. The model

predicts the masked portions using a contrastive loss. Trained on large-scale

speech datasets like LibriSpeech and LibriLight, wav2vec 2.0 achieves su-

perior results in Automatic Speech Recognition (ASR) tasks with minimal

labeled data. HuBERT [41] is another self-supervised speech representation

model that builds upon the strengths of wav2vec. It introduces a hidden-unit

prediction approach, where pseudo-labels for speech frames are iteratively re-

fined using k-means clustering on acoustic features. Like wav2vec, HuBERT

utilizes a masked prediction task, encouraging the model to learn contextu-

alized speech representations. It is trained on large audio datasets, such as

LibriSpeech and LibriLight

2.3 IWSLT competition

Our experiments follow the data and settings defined by the Low-Resource

Speech Translation track of the IWSLT competition. This section details the

approaches used by other teams in past IWSLT competitions for Tamasheq-

French language pair.

Back to 2022, ON-TRAC [44] submitted both primary and contrastive

end-to-end speech translation (ST) systems. Their primary system utilized a

12



wav2vec 2.0 base model that was trained on 234 hours of Tamasheq audio in

order to generate intermediate representations. The end-to-end ST system

consisted of a partial wav2vec 2.0 module, a linear layer, and a Transformer

decoder. The contrastive model used mel filterbank features as input, and

it used approximate transcriptions in Tamasheq which were produced by a

French phonemic ASR model. This model used a conformer architecture and

jointly optimized ASR, MT, and ST losses. The use of ASR transcriptions

as additional supervision was an effective strategy for low-resource settings.

GMU’s model [45] used the fairseq S2T extension, employing a Transformer

architecture. They fine-tuned a pre-trained XLS-R 300M encoder on French

and Arabic ASR, and then trained the entire model on the speech translation

task using all of the data provided. However, this model, despite multilingual

fine-tuning, failed to produce meaningful outputs for this particular task.

TalTech [45] also submitted a system that used XLS-R and mBART-50, but

this submission did not perform well either. This suggests that applying off-

the-shelf pre-trained multilingual models can be challenging for low-resource

tasks.

In 2023, ALEXA AI [46] submitted one primary and three contrastive

systems for Tamasheq-French, all in unconstrained condition. Their systems

reused the end-to-end Automatic Speech Translation (AST) model proposed

by the ON-TRAC Consortium [44] in the previous IWSLT edition. This

model uses a speech encoder initialized with the wav2vec 2.0 base model

pre-trained on 243 hours of Tamasheq audio. The decoder is a shallow stack

of two transformer layers with four attention heads. A feed-forward layer is

placed between the encoder and decoder. In their work, they focused on lever-

aging different data augmentation techniques such as audio stretching, back

translation, paraphrasing, and weighted loss. They also experimented with

post-processing approaches using Large Language Models (LLMs), such as

re-ranking, token masking, and sentence correction, and they also ensembled

AST models trained with different seeds and data augmentation methods.

NAVER [47] submitted one primary and two contrastive systems, concen-

trating on parameter-efficient training methods. They initialized their mod-

els with a pre-trained multilingual machine translation (MT) model, either

13



mBART[49] or NLLB [48] and then fine-tuned this model on the ST task

by inputting features extracted with a frozen pre-trained speech representa-

tion model, either wav2vec 2.0 or HuBERT. The encoder of their translation

model is modified by stacking several modality-specific layers at the bottom,

with adapter layers inserted between layers of the pre-trained MT model.

This method allows the same model to perform both speech-to-text and text-

to-text translation, maximizing knowledge transfer for improved low-resource

performance. Other teams also submitted systems to this track, and it was

noted that, in general, the 2023 submissions achieved better results com-

pared to the previous year’s best system. It was also observed that cascaded

systems (separated speech recognition and machine translation) were not

favored in this track, as none of the submitted systems were of this type.
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Chapter 3

Proposed Model

3.1 System Architecture

This section details the architecture of the direct speech-to-text transla-

tion system we are using, focusing on the encoder, dimensionality reduc-

tion, and decoder components. It also details how the SAMU-XLSR[43] and

DinoSR[42] models are integrated into the encoder and the overall training

and fine-tuning process.

Overall System Architecture

Our system adopts a direct speech-to-text translation approach, which

means that the system directly translates the input speech into a text se-

quence in the target language, without explicit intermediate representations

such as text from the source language. The overall architecture is composed

of three main components:

• Encoder: This component processes the input speech and converts

it into a high-dimensional representation. The encoder is where the

SAMU-XLSR and DinoSR models are integrated in our experiments.

• Dimensionality Reduction: This intermediate component reduces the

high-dimensional representation from the encoder into a lower-dimensional

representation suitable for the decoder. This helps to reduce compu-

tational cost and make it easier to learn the mapping between speech

and text.
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Figure 3.1: The overall architecture of our direct speech to text translation.
It comprises of 3 main components: encoder (along with its temporal CNN
to extract feature from raw audio), a dimensionality reduction module and
a decoder

• Decoder: This component takes the reduced representation and gener-

ates the corresponding text sequence in the target language.

Encoder Details

The encoder is the core component where we incorporate different self-

supervised learning models, including SAMU-XLSR and DinoSR. This com-

ponent transforms the input speech waveform into a sequence of contextual-

ized feature vectors. Here’s a breakdown:

• Input: The input to the encoder is a raw speech waveform denoted as

x, which is a 1D time series representing sample values of the speech
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signal.

• Feature Extraction:

– SAMU-XLSR: When using SAMU-XLSR, the input speech x is

first processed through a convolutional neural network (CNN) fea-

ture extractor, which is part of the pre-trained XLS-R model.

This CNN maps the 1D input to a 2D sequence of feature vectors

H ∈ RT×512. Each feature vector ht in H represents a 20ms seg-

ment of speech, similar to an acoustic frame. These are considered

frame-level representations.

– DinoSR: When using DinoSR, the input waveform is first down-

sampled to 50Hz using a convolutional feature encoder.

• Contextualization:

– SAMU-XLSR: The frame-level representations H are then fed into

a deep transformer encoder. This transformer encoder has 24

Multi-Headed Self-Attention (MHSA) blocks. The transformer

encoder converts H into contextual representations C ∈ RT×1024.

Each vector in C has a dimension of 1024. These are also consid-

ered frame-level representations.

– DinoSR: In DinoSR, a K-layer transformer encoder is used. This

encoder is identical in both the student and teacher network. The

input speech is partially masked for the student model to gener-

ate a masked representation zKt ∈ RD, where t = 1, ..., T is the

sequence length and D is the embedding dimension. The teacher

network takes unmasked input and produces the output represen-

tation denoted as z̃Kt . Both the student and teacher transformer

encoders have the same architecture.

• Utterance-Level Embedding (SAMU-XLSR): To get an utterance-level

embedding, a pooling mechanism is applied to C. SAMU-XLSR uses

a self-attention pooling mechanism followed by a non-linear projec-

tion layer. This produces a single embedding vector zs ∈ Rd that
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represents the entire utterance. The formula can be represented as

zs = NonLinearProjection(Pooling(C)), where Pooling represents

the self-attention pooling mechanism and NonLinearProjection is a

trainable non-linear layer.

• Discrete Units (DinoSR): DinoSR leverages online clustering to derive

discrete units from the teacher network’s output which are used to

guide the student network. This is done by using a codebook (set of

centroids) Ek = {ek1, ..., ekV }, where k is the layer and V represents the

number of codewords. A weighted sum of embeddings is used to update

each codeword.

Z̃k
v =

{
z̃kt

∣∣∣∣ v = argmin
i∈V

∥∥z̃kt − eki
∥∥
2

}
,

skv ←− τ skv + (1− τ)
∑

Z̃k
v ,

nk
v ←− τ nk

v + (1− τ)
∣∣∣Z̃k

v

∣∣∣ ,
ekv ←−

skv
nk
v

.

– Where Z̃k
v is the set of teacher output frames closest to the current

representation of v according to the codebook, skv is the sum of

neighboring teacher representations, nk
v is the count of the neigh-

bors, and ekv is the moving average of its neighbor set, and τ is the

decay rate.

Dimensionality Reduction

The dimensionality reduction component takes the high-dimensional out-

put of the encoder (either the utterance-level embedding zs from SAMU-

XLSR or the contextualized representations from DinoSR), and reduces it to

a lower dimension. This is done to reduce the computational complexity and

ease the decoder’s training. The dimensionality reduction can be done using

a simple linear layer, a non-linear layer, or a more complex technique like an

attention mechanism. The reduced representation is fed to the decoder.

zreduced = f(zs or z̃Kt ), where f is a dimensionality reduction function.
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Figure 3.2: The model detail of SAMU-XLSR

For a linear layer, f can be expressed as zreduced = Wzs + b, where W is the

weight matrix and b is the bias vector.

Decoder Details

The decoder is responsible for generating the target text sequence based

on the reduced representation. It is an autoregressive model that predicts the

next token given the previously predicted tokens and the encoder’s output.

In our design, decoder is 8-layer Transformer-based decoder. A transformer

decoder is a sequence-to-sequence model which predicts the next token based

on the output of the encoder, and a given sequence of tokens. The output of

the decoder is a probability distribution over the vocabulary, which is used

to predict the next token using the beam search technique.

Integration of SAMU-XLSR and DinoSR into the Encoder

Our research involves using both SAMU-XLSR and DinoSR for pre-

training the encoder. After pre-training, we fine-tune the entire model on

our low-resource speech-to-text translation task. This involves updating all

parameters of the model, including encoder, dimensionality reduction, and

decoder components using the target language training dataset.

In figure 3.4, we show the original architecture of SAMU-XLSR. Instead

of the XLSR-S encoder, in our research, we replace it with different speech

encoder, specificially HuBert, Wav2vec 2.0, DinoSR
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Figure 3.3: An explanation of how utilizing transcribed speech data with
LaBSE as a guiding model can foster connections between spoken and written
language across different tongues. In this example, we train with Tamasheq
audio paired with its French transcription.

3.2 SAMU-XLSR

SAMU-XLSR is a framework designed to learn semantically-aligned, multi-

modal, utterance-level speech representations that are shared across multiple

languages. Unlike previous models that focus on acoustic frame-level em-

beddings, SAMU-XLSR aims to create sentence-level embeddings where the

spoken utterance is clustered together with its speech and text translations

in various languages. This is achieved by leveraging a pre-trained multilin-

gual speech encoder, XLS-R, and a language-agnostic text encoder, LaBSE,

through a knowledge distillation process.

The key concepts driving SAMU-XLSR’s design are multimodality, cross-

linguality, semantic alignment, and utterance-level representation. Multi-

modality signifies that the embedding space is shared between both speech

and text modalities, enabling direct comparison and interaction between

them. Cross-linguality ensures that this shared space is consistent across dif-

ferent languages, facilitating cross-lingual understanding. Crucially, SAMU-

XLSR aims for semantic alignment, meaning that semantically similar utter-
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Figure 3.4: The training setup of SAMU-XLSR in our research. The model is
trained to push the embedding of Tamasheq speech to be as close as possible
with the text embedding in French

ances, regardless of their language or modality (speech or text), are clustered

closely together in the embedding space. This is achieved through utterance-

level processing, focusing on representations at the sentence level (approxi-

mately 5-10 seconds of speech) rather than the frame level (10-20 millisec-

onds). This broader context is essential for capturing the complete meaning

of an utterance. Ultimately, SAMU-XLSR aims to enable zero-shot transla-

tion, where speech utterances and their translations are naturally clustered

together in the embedding space without requiring explicit parallel training

data.

The SAMU-XLSR model combines a pre-trained frame-level speech en-

coder (XLS-R) with a mechanism for pooling the frame-level representations

into a single utterance-level embedding vector. This model is trained using

transcribed speech data. The framework’s architecture can be broken down

into the following key parts:

• Speech Encoder: The input speech waveform is processed by a deep

convolutional neural network (CNN), which maps it to a sequence of

feature vectors. The feature sequence is then transformed into contex-

tual representations by a deep transformer encoder.
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• Pooling Mechanism: To transform the frame-level contextual repre-

sentations into a single utterance-level embedding vector, a pooling

mechanism is applied.

• LaBSE Text Encoder: The LaBSE text encoder, gϕ, is used to create

sentence embeddings zT from text transcripts. LaBSE has a trans-

former encoder with 12 attention layers that process tokens, and then

a pooling step creates a compact sentence-level vector. The input text

is tokenized into word pieces, and the CLS token embedding is used

as the sentence embedding zT . The input text is tokenized into word

pieces, and the CLS token embedding is used as the sentence embedding

zT . This text encoder is language-agnostic and produces embeddings

in a semantically aligned vector space shared across 109 languages.

Through training, cross-lingual speech-to-text and speech-to-speech asso-

ciations emerge in the learned representation space. This happens without

the model explicitly being trained on cross-lingual data during training. The

model learns to cluster speech utterances with their corresponding text and

speech translations in different languages, thereby creating a semantically-

aligned, multimodal, cross-lingual embedding space.

In our research, we experiment with starting from some pretrained speech

encoder, pretraining that speech encoder using SAMU. As we are working

with Tamasheq-French translation, the pretraining setup runs on the dataset

of Tamasheq speech and French text, aims to push these 2 multimodal multi-

lingual data into the same feature space.

3.3 DinoSR

DinoSR is a self-supervised speech representation learning framework that

combines masked language modeling, self-distillation, and online clustering.

It aims to learn strong speech representations by leveraging the complemen-

tary strengths of these three techniques.

DinoSR leverages several key concepts and goals to achieve state-of-the-

art performance in speech recognition, particularly in low-resource settings.
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dependent codebooks for online clustering. The student model learns by pre-
dicting the cluster assignments of masked input. Neither the teacher model
nor the clustering mechanism (highlighted areas) require gradient computa-
tion. Source: [42]

At its core, DinoSR employs self-supervised learning, enabling it to learn

directly from unlabeled data by exploiting the inherent structure of speech.

This eliminates the dependency on large, costly, and often unavailable tran-

scribed datasets. A crucial component of DinoSR is Masked Language Mod-

eling (MLM), a technique borrowed from natural language processing. In this

context, MLM involves masking portions of the speech signal and training

the model to predict the masked segments based on the surrounding con-

text. This process encourages the model to learn rich, contextualized repre-

sentations of the speech signal. DinoSR further incorporates self-distillation,

utilizing a teacher-student framework. The student network learns from a

teacher network, which is an exponentially moving average of the student

itself. This approach provides a more stable learning target, leading to im-

proved training stability and performance. Another key innovation is the use

of online clustering. DinoSR employs an online clustering system to dynami-

cally discover a discrete inventory of acoustic units directly from the teacher’s
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embeddings. This allows the model to effectively create its own ”dictionary”

of acoustic units without relying on any prior phonetic knowledge or human-

defined transcriptions. This process of acoustic unit discovery results in units

that closely align with human phonetic understanding, enhancing the model’s

interpretability. By effectively combining these techniques – self-supervised

learning, masked language modeling, self-distillation, and online clustering

for acoustic unit discovery – DinoSR achieves significant performance gains,

surpassing previous state-of-the-art results in both limited-resource speech

recognition and unsupervised acoustic unit discovery tasks.

The DinoSR architecture is built around a teacher-student framework,

comprising two networks that share an identical K-layer transformer encoder

structure. The teacher network (θteacher) processes the input audio without

any masking, generating contextualized embeddings that capture the full con-

text of the audio sequence. Its parameters are updated using an exponential

moving average (EMA) of the student’s parameters, providing a more stable

and generalized learning target. Crucially, the teacher network serves two

primary functions: it provides the target features that the student network

is trained to predict, and it is responsible for performing the online clustering

that discovers the discrete acoustic units. The student network (θstudent), on

the other hand, processes a masked version of the same audio input. This

masking forces the student to learn contextual representations by predict-

ing the masked portions based on the surrounding unmasked context. The

student network is trained to predict the clustered outputs produced by the

teacher network, effectively learning to mimic the teacher’s representations.

While the student network’s parameters are updated using standard gradient

descent, the teacher’s parameters are updated using the EMA of the student’s

parameters, creating a dynamic and mutually beneficial learning process.

DinoSR employs an online clustering mechanism to discover a discrete

phone inventory directly from the teacher network’s representations. This

process operates on the top N layers of the teacher network. For each layer

k within these top N layers, a codebook Ek is introduced, consisting of V

codewords (eki ), where each codeword is a vector in a D-dimensional embed-

ding space. The codebook update occurs in two distinct steps. First, during
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the assignment step, each teacher output frame (z̃kt ) is assigned to the closest

codeword in the codebook Ek. This is achieved by finding the codeword ekv

that minimizes the Euclidean distance to the output frame, effectively finding

the nearest neighbor:

v = argmini∈V ||z̃kt − eki ||2

Following the assignment step, the update step refines the codewords.

Each codeword ekv is updated using an exponential moving average (EMA)

of all the teacher output frames that have been assigned to it. This update

is formalized as:

Z̃k
v =

{
z̃kt

∣∣∣∣ v = argmin
i∈V

∥∥z̃kt − eki
∥∥
2

}
,

skv ←− τ skv + (1− τ)
∑

Z̃k
v ,

nk
v ←− τ nk

v + (1− τ)
∣∣∣Z̃k

v

∣∣∣ ,
ekv ←−

skv
nk
v

.

where Z̃k
v represents the set of teacher output frames closest to the code-

word ekv , and τ is a codebook decay rate that controls the influence of past

updates on the current codeword value. This online clustering process dy-

namically adapts the codebooks to the evolving representations learned by

the teacher network, effectively discovering a set of acoustic units that cap-

ture the underlying phonetic structure of the speech data.

The self-distillation training process in DinoSR is a crucial aspect of its

learning mechanism. The process begins with input masking: the input

audio is partially masked before being fed to the student model, while the

teacher model receives the original, unmasked audio. This difference in input

is key to the knowledge distillation process. The student network processes

the masked input, producing a masked representation zKt , while the teacher

model processes the unmasked input, generating the unmasked representa-

tion z̃Kt . Following the forward pass, the teacher network’s parameters are
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updated using an exponential moving average (EMA) of the student’s pa-

rameters. This update is governed by the equation

θteacher −→ λθteacher + (1− λ)θstudent

where λ represents the decay rate of the teacher model at each training

step. This EMA update ensures that the teacher network maintains a stable

and generalized view of the learned representations, acting as a consistent

target for the student. The core training objective for the student network is

to predict the codeword index of the corresponding frame from the teacher

model’s output. In other words, the student tries to match the discrete

acoustic units discovered by the teacher. This is achieved by minimizing a

loss function defined as

∑
t∈M

∑
k∈(K−N,K]

log pϕk
(v|zKt )

where M is the set of masked timesteps, ϕk is a linear projection followed

by a softmax activation applied to the student’s output, and v represents the

index of the nearest codeword identified by the teacher’s online clustering

process. By minimizing this loss, the student learns to align its representa-

tions with the clustered representations of the teacher.

The pre-training phase of DinoSR utilizes a substantial dataset of 960

hours of speech drawn from the LibriSpeech corpus. The architecture em-

ployed for pre-training is a base-sized transformer with K = 12 layers and an

embedding dimension of D = 768. The raw 16 kHz input waveform under-

goes a downsampling process to 50Hz using a convolutional feature encoder,

preparing it for input into the model. For the student model, a significant

portion of the input features, specifically 80%, is masked. To ensure con-

textual learning, each masked span is constrained to be no shorter than 10

frames. The online clustering process, which discovers the discrete acoustic

units, is performed on the top N = 8 layers of the teacher network. Each of

these layers maintains a codebook consisting of V = 256 codewords. Opti-
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mization of the student model is carried out using the Adam optimizer with a

learning rate schedule that ramps up to a peak of 0.0005 and then undergoes

exponential decay. The computational demands of this pre-training phase

are considerable, requiring approximately 180 hours of training time on a

cluster of 16 NVIDIA V100 GPUs.

DinoSR presents several key differences compared to existing self-supervised

pre-training methods. Unlike HuBERT, which uses a multi-stage, iterative

training process, DinoSR employs a more streamlined, one-stage approach.

Furthermore, DinoSR performs clustering online during training, rather than

relying on offline clustering as in HuBERT. When compared to Wav2vec 2.0,

another prominent method, DinoSR diverges in its training objective. While

Wav2vec 2.0 utilizes contrastive learning coupled with vector quantization,

DinoSR focuses on cluster prediction as its primary learning task.
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3.4 Pretrained Models

HuBERT (Hidden Unit BERT) HuBERT is a self-supervised learning

method that uses masked language modeling (MLM) to predict discrete units

derived from the speech signal. Unlike models that predict raw audio fea-

tures, HuBERT targets automatically discovered hidden units.

HuBERT starts by generating initial discrete units using a simple clus-

tering algorithm (like K-means) on the raw audio features, or even random

linear projections. During training, the input speech is masked, and the

model is trained to predict the discrete units corresponding to the masked

regions, based on the surrounding context. The key feature of HuBERT is

its iterative refinement process. After the initial training, HuBERT uses the

pre-trained model’s output to generate new, improved discrete units by run-

ning offline K-means clustering. This process can be repeated multiple times

to further enhance the quality of the discrete units and the learned represen-

tations. The model can be re-trained with the new targets. HuBERT relies

on offline k-means clustering to generate the discrete targets, which can be

computationally expensive and requires careful tuning of hyperparameters.

HuBERT employs a transformer encoder as its core architecture to learn the

contextualized representations.

wav2vec 2.0

wav2vec 2.0 is a self-supervised learning framework that learns speech

representations through a contrastive learning task using vector quantization

(VQ). It focuses on learning robust representations at the acoustic frame-

level. The raw audio is passed through a convolutional neural network to

extract a sequence of feature vectors. The extracted features are then quan-

tized into discrete units using vector quantization. The model is trained to

distinguish between the true quantized representation of a masked audio seg-

ment and a set of distractors. wav2vec 2.0 masks portions of the input feature

sequence and then trains the model to predict the quantized representation

of the masked segment using the unmasked context. Vector Quantization is

also used to convert the continuous representations into discrete ones, which

are then used in the contrastive task Similar to HuBERT, wav2vec 2.0 utilizes
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a transformer network to process the contextualized representations.

Compared to HuBERT, both wav2vec 2.0 and HuBERT utilize masking

strategies during training; however, their objectives differ. wav2vec 2.0 fo-

cuses on a contrastive task with vector quantization, aiming to distinguish

true latent representations from negative samples. In contrast, HuBERT em-

ploys a masked language modeling (MLM) approach, predicting discrete units

derived from offline clustering of acoustic features. This distinction leads

wav2vec 2.0 to learn frame-level representations, while HuBERT captures

more contextualized representations that can be aggregated into utterance-

level embeddings.

Compared to DinoSR, DinoSR introduces an online clustering mecha-

nism, differing from wav2vec 2.0’s contrastive objective with vector quanti-

zation. This online clustering allows DinoSR to adapt its cluster assignments

dynamically during training, potentially leading to more efficient learning

processes. In contrast, wav2vec 2.0 relies on a fixed vector quantization pro-

cess to generate discrete units for its contrastive task.

In comparison to SAMU-XLSR, SAMU-XLSR is designed to learn se-

mantically aligned multimodal utterance-level cross-lingual speech represen-

tations. Unlike wav2vec 2.0, which focuses on frame-level acoustic details,

SAMU-XLSR emphasizes capturing semantic information across different

languages at the utterance level. This approach facilitates tasks that require

understanding the overall meaning of spoken sentences, whereas wav2vec 2.0

is more suited for tasks that benefit from detailed acoustic modeling.
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3.5 Pre-training Strategies

Pre-training has become an essential step in the field of speech processing,

allowing models to learn powerful representations from massive amounts of

unlabeled data, which can then be fine-tuned for specific downstream tasks.

This approach can drastically reduces the need for labeled data and improves

model performance.

Using SAMU-XLSR to pre-train the encoder component of a

speech translation system:

• SAMU-XLSR is trained using transcribed speech data. The model

learns by minimizing the distance between the speech embedding pro-

duced by SAMU-XLSR and the text embedding of the corresponding

transcript provided by LaBSE. Because LaBSE’s embedding space is

semantically aligned across languages, this process allows SAMU-XLSR

to learn cross-lingual speech-text associations without explicitly seeing

cross-lingual training pairs.

• The pre-trained SAMU-XLSR encoder can then be used as the encoder

component in a speech translation system. The idea is that the encoder

will produce semantically rich and cross-lingually aligned representa-

tions that improve translation performance.

• The pre-trained SAMU-XLSR encoder is then fine-tuned using a super-

vised speech translation dataset. This fine-tuning adjusts the encoder’s

parameters for the specific speech translation task, making use of the

general cross-lingual speech and text representations acquired during

pre-training.

Using DinoSR to pre-train the encoder component of a speech

translation system:

• DinoSR first extracts contextualized embeddings from the input audio

using the teacher network, then runs an online clustering system on

these embeddings to create a machine-discovered phone inventory. The
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student network is then trained to predict these cluster assignments

from masked input audio.

• The pre-trained student encoder from DinoSR can be used as the en-

coder component in a speech translation system.

• The pre-trained encoder is then fine-tuned on a task-specific dataset

for speech translation. This stage adapts the encoder’s learned features

from a phonetic space to the specifics of the speech translation task,

while retaining the discrete units that capture phonetic content.

Pre-training a model with DinoSR, then with SAMU-XLSR,

and then fine-tuning it:

This multi-stage pre-training approach combines the strengths of both

DinoSR and SAMU-XLSR by first pretraining the speech encoder with Di-

noSR and then continuing to pretrain with SAMU. Finally, that pretrained

encoder is used to finetune on speech translation task

• First Stage (DinoSR): The model is first pre-trained using DinoSR,

allowing the encoder to learn strong, discrete phonetic representations

of speech using a clustering method.

• Second Stage (SAMU-XLSR): The DinoSR pre-trained encoder is then

used as a basis for pre-training with SAMU-XLSR. In this stage, the

encoder learns cross-lingual, semantically aligned representations by

using text transcriptions as an anchor point using LaBSE.

• Fine-tuning: The resulting encoder is then fine-tuned on a speech trans-

lation dataset. This process combines the phonetic robustness from

DinoSR with the cross-lingual and multimodal understanding from

SAMU-XLSR to potentially improve overall translation performance.
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Chapter 4

Evaluation

4.1 Data

The Tamasheq-French dataset was a key component of the low-resource

speech translation shared task at the 19th International Conference on Spo-

ken Language Translation (IWSLT) in 2022. This task focused on developing

speech translation tools for languages with limited resources. The Tamasheq

language, being primarily oral, falls under this category. The goal was to

translate Tamasheq speech into French text.

Dataset Composition

• Tamasheq Speech: The dataset includes approximately 17 hours of

Tamasheq speech. This speech data comprises 5,829 utterances that

have been translated into French.

• French Translations: Each of the Tamasheq utterances has a corre-

sponding French text translation. This forms the parallel data neces-

sary for training speech translation models.

• Additional Audio Data: Besides the parallel data, additional audio

data was made available, including:

– 224 hours of Tamasheq audio.
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– 417 hours of audio in geographically close languages, such as

French from Niger, Fulfulde, Hausa, and Zarma. It is important to

note that this additional audio data does not have transcriptions.

• Speech Style: All of the speech data in the dataset is characterized by

a radio broadcasting style.

Data Characteristics

The dataset is considered low-resource due to the limited amount of par-

allel speech-translation data, typical of many of the world’s languages. This

contrasts with high-resource language pairs, which often have large quantities

of training data. Tamasheq is a predominantly oral language, which means

there’s a lack of written text, making it challenging to adapt techniques from

text-based machine translation. The additional 224 hours of Tamasheq au-

dio and 417 hours of audio in geographically close languages are provided

without transcriptions.

The speech translation systems in this study are categorized based on

the resources they are permitted to utilize during training. We follow the

original setup of the competition to categorize the systems as follow:

• Constrained Systems: These systems operate under strict limitations

regarding the training data. They are restricted to a medium-sized

framework, primarily to manage training time and resource consump-

tion. Crucially, constrained systems are not permitted to use any pre-

trained language models.

• Constrained with Large Language Models (Constrained+LLM) Sys-

tems: This category builds upon the constrained setting by allowing

the inclusion of a select group of large language models. While still

subject to limitations on the overall training data (similar to the con-

strained systems), these systems can leverage the knowledge encoded

within pre-trained LLMs.

• Unconstrained Systems: In contrast to the constrained approaches,

unconstrained systems face virtually no restrictions on the resources
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they can employ. They are free to utilize any available data, including

large language models, pre-trained models of all kinds, and any other

relevant resource (excluding the evaluation datasets themselves).
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4.2 Evaluation Metric

The Bilingual Evaluation Understudy (BLEU) score is a metric for auto-

matically evaluating machine-translated text. It’s one of the most widely

used metrics in natural language processing (NLP), particularly in machine

translation. BLEU works by comparing the machine-generated translation

against one or more human-produced reference translations. The core idea is

that a good translation should have a high degree of overlap with the refer-

ence translations. This overlap is measured using n-gram precision, combined

with a brevity penalty to account for overly short translations.

The final BLEU score is calculated as follows:

BLEU = BP · exp(
N∑

n=1

wnlog(pn))

Where:

BP is the brevity penalty. N here represents the maximum n-gram order

(typically 4). pn is the modified n-gram precision for n-grams of order n. wn

are the weights for each n-gram order. Usually, uniform weights are used

(e.g., wn = 1
N

for all n). In simpler terms, the BLEU score is the brevity

penalty multiplied by the geometric mean of the modified n-gram precisions.

For example, let’s consider a simple example with one reference transla-

tion and one candidate translation:

Reference: ”the cat sat on the mat”

Candidate: ”the cat sat on mat”

Let’s calculate the BLEU score with N=2 (bigrams):

Unigram precision: 5/5 = 1.0 (after clipping)

Bigram precision: 4/4 = 1.0 (after clipping)

Candidate length (c): 5

Reference length (r): 6

Brevity penalty (BP): e1−6/5 ≈ 0.82

BLEU score = 0.82 * exp((1/2 * log(1.0)) + (1/2 * log(1.0))) = 0.82
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4.3 Result

This section details the performance of our proposed direct speech trans-

lation model for the Tamasheq-French language pair. We conducted ex-

periments under constrained and constrained with large language models

(constrained+LLM) settings, comparing our approach against the current

state-of-the-art (SOTA) system developed by NAVER, which operates under

unconstrained conditions.

Table 4.1: Results of pretraining by SAMU on wav2vec 2.0 and HUBERT

for Tamasheq-French dataset

System constraint Valid BLEU Test BLEU

NAVER Unconstrained N/A 23.59

wav2vec2-base-960h Constrained with LLM 2.32 1.72

wav2vec2-base-960h+SAMU Constrained with LLM 2.57 2.06

HUBERT Constrained with LLM 2.16 1.67

HUBERT+SAMU Constrained with LLM 8.02 6.23

DINOSR Constrained with LLM 4.12 3.84

DINOSR+SAMU Constrained with LLM 8.34 6.89

Table 4.1 presents the BLEU scores obtained on the validation and test

sets for our models and the NAVER system. The NAVER system, utilizing

a substantial amount of diverse audio data including 17 hours of Tamasheq

speech with French transcriptions, 111 hours of French audio, 109 hours of

Fulfulde audio, 100 hours of Hausa audio, and 95 hours of Zarma audio,

achieves a test BLEU score of 23.59.

Our experiments focus on leveraging pre-trained models and a novel pre-

training approach using SAMU. Specifically, we fine-tuned the wav2vec 2.0

base model pre-trained for 960 hours and the HUBERT model, both un-

der constrained+LLM conditions. Direct fine-tuning of wav2vec2-base-960h

yields BLEU scores of 2.32 on the validation set and 1.72 on the test set.

Applying our proposed SAMU pre-training to wav2vec2-base-960h before

fine-tuning results in a modest improvement, achieving 2.57 on the valida-
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tion set and 2.06 on the test set. Similarly, fine-tuning the HUBERT model

achieves BLEU scores of 2.16 and 1.67 on the validation and test sets, re-

spectively. However, pre-training HUBERT with SAMU significantly boosts

performance, leading to BLEU scores of 8.02 on the validation set and 6.23

on the test set.

Furthermore, we explored the impact of DINOSR pre-training. Fine-

tuning the DINOSR model results in BLEU scores of 4.12 and 3.84 on the

validation and test sets. Applying SAMU pre-training on top of DINOSR

before fine-tuning further improves the results, yielding BLEU scores of 8.34

on the validation set and 6.89 on the test set.

Table 4.2: The data used by the State-of-the-art method and ours

Method Data

NAVER 17 hours of Tamasheq speech - French transcription

111 hours of French audio

109 hours of Fulfulde audio

100 hours of Hausa audio

95 hours of Zarma

Our methods 17 hours of Tamasheq speech - French transcription

Table 4.2 details the data used by the NAVER system and our proposed

methods. While NAVER leverages a large and diverse multilingual audio

dataset, our models are trained using only 17 hours of Tamasheq speech

with French transcriptions, adhering to the constrained+LLM setting. This

highlights the potential of our proposed SAMU pre-training method to effec-

tively leverage limited resources and significantly improve the performance

of direct speech translation systems, especially when combined with strong

acoustic models like HUBERT and DINOSR. Despite the significant data dis-

parity, our best system achieves a respectable performance, demonstrating

the effectiveness of our approach in low-resource scenarios.
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4.4 Error Analysis And Discusion

Figure 4.1: A sample of error remained in our best combination of DinoSR

and SAMU

Our error analysis reveals that the model’s mistakes are not primarily due to

grammatical errors, incorrect word order, or repetitive phrases, which would

suggest decoder issues. Instead, the errors point to weaknesses in the encoder

and a mix of encoder and decoder problems. Specifically, as shown in 4.1

the model fails to grasp the meaning of words and phrases within the larger

context of the sentence. In the example, the model translates ”Abdoulaye

Issa” as the president of an NGO doing agricultural work, while the target

refers to ”Abdoulnasser IDRISSA” fulfilling his dream of learning woodwork-

ing. The model missed the connection between the name and the described

activity. Moreover, the model misinterprets words with multiple meanings.

It chooses the wrong meaning for words in the source language, leading to

incorrect translations. Finally, the model’s translation drifts away from the

original meaning of the source text. It sometimes even ”hallucinates” con-

tent that is not present in the source at all. This suggests problems with

both understanding the input (encoder) and generating the correct output

(decoder). The example shows a clear hallucination, as the target text men-

tions woodworking, not agriculture. From these consideration, there may be

more room for improvement on encoder than with the decoder.
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Chapter 5

Conclusion

In this work, we investigated the impact of different pretraining techniques,

specifically DINOSR and our proposed SAMU, on the performance of direct

speech translation models for the low-resource Tamasheq-French language

pair within the IWSLT competition framework. Our experiments showed

that pretraining with DINOSR and SAMU helps. Using these methods made

our model better at learning from the limited data. We also found that

combining DINOSR and SAMU pretraining gave us the best results of all

our experiments. This shows that our pretraining methods are promising for

improving speech translation when data is scarce.

Even though our best results are not as good as the top system, that

system used a lot more data than we did. We only used the data given to

us for the IWSLT competition, while the top system used much more data

from other sources.

Furthermore, our method can be easily combined with other improve-

ments, like better decoders or different ways of training the model.

Future research directions could include:

• Combining the described pretraining techniques with other methods

such as better decoders.

• Exploring different model architectures, including end-to-end and cas-

caded approaches, and how they interact with pre-training methods
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