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Abstract

Oracle bone inscriptions, a corpus of ancient Chinese script carved onto an-
imal bones and turtle shells, constitute one of the most valuable cultural
assets in understanding the early formation of Chinese civilization. Dating
back more than three millennia (circa the Shang Dynasty, c. 1600–1046
Before the Common Era), these inscriptions embody proto-forms of Chinese
characters and reflect the beliefs, rituals, historical records, and sociopolitical
structures of the period.

The distinct pictographic nature of oracle bone inscriptions, where glyphs
represent objects or concepts, makes them an invaluable resource for archae-
ologists, epigraphers, historians, and artists. However, the comprehensive
digital analysis, stylistic rendering, and generation of oracle bone inscription-
style images present profound challenges. These challenges stem from limited
datasets, intricate visual features, and the need to translate modern concepts
into the archaic and stylistically rich oracle bone inscription’s visual language.

However, applying state-of-the-art generative artificial intelligence (AI)
to oracle bone inscriptions is nontrivial. Transformation of a modern ob-
ject image into an oracle bone inscription-inspired glyph requires modeling a
unique aesthetic that is neither purely symbolic nor entirely representational.
oracle bone inscription glyphs often combine ideographic and pictographic el-
ements, implying that their stylistic formation depends on both the object’s
semantic meaning and visual representation. Unlike conventional style trans-
fer tasks that apply superficial filters or patterns, oracle bone inscription style
transformation demands fidelity to ancient carving techniques, line thickness
variations, spatial composition rules, and subtle textural cues that reflect in-
scription on hard surfaces rather than ink on paper. Moreover, the historical
erosion of numerous oracle bone inscription samples introduces additional
noise and uncertainty to the visual features.

To solve these issues, this thesis introduces a generation pipeline based on
a diffusion model specifically tailored to generate images in the style of ora-
cle bone inscriptions. The proposed approach builds upon three key compo-
nents: (1) constructing a domain-specific dataset aligning ancient oracle bone
inscription references, textual descriptions, and contemporary object images,
it contains 44 categories of oracle bone inscription and 180 sets of data pairs;
(2) fine-tuning a diffusion model enhanced by ControlNet to achieve control-
lable oracle bone inscription-style image generation aligned with both shape
and semantic intent; and (3) refining generative outputs to better adhere to
the structural norms, carving patterns, and stylistic conventions of authentic



oracle bone inscriptions. Evaluations using IP-Adapter, pix2pix, and Cy-
cleGAN demonstrate that the proposed method achieves superior results in
generating semantically consistent oracle bone inscription-style images.

Moreover, the proposed method is evaluated with the IP-Adapter, pix2pix,
and CycleGAN. In qualitative evaluation, this work shows excellent perfor-
mance in reconstructing existing oracle bone inscriptions, generating new
characters, and generating diverse stylistic variants. In quantitative evalua-
tion this work achieves optimal scores in Fréchet Inception Distance, CLIP
Image-Image Similarity, and Neural Image Assessment. In the user prefer-
ence study, 44% of the users preferred the results generated by this work
and also obtained the highest scores for original image similarity. All the
evaluations show that this method generates semantically consistent oracle
bone inscription-style images.
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Chapter 1

Introduction

The study of oracle bone inscriptions (OBIs) represents a crucial intersection
between historical linguistics, archaeology, and computational analysis. As
the earliest known form of Chinese writing, OBIs not only provide insights
into the evolution of the Chinese script but also serve as invaluable records of
early human civilization. Their unique pictographic and ideographic nature
differentiates them from modern writing systems, making their study both
historically significant and technically challenging. However, despite their
importance, OBIs remain difficult to analyze and reproduce due to their
fragmented state, stylistic variations, and the lack of comprehensive datasets.

With advancements in artificial intelligence (AI) and generative mod-
els, there is growing interest in applying computational techniques to aid in
the digital reconstruction and generation of OBI-style images. While tradi-
tional methods rely heavily on manual efforts by experts, machine learning
approaches—particularly those leveraging generative adversarial networks
(GANs) and diffusion models—offer promising new directions for automated
OBIs synthesis. These methods have the potential to facilitate historical
preservation, stylistic exploration, and artistic reinterpretation of OBIs. How-
ever, existing generative approaches often struggle with maintaining the
stylistic authenticity and semantic integrity required for OBIs representa-
tion.

This study addresses these challenges by introducing a novel diffusion
model-based framework tailored specifically for OBI-style image generation.
By leveraging a domain-specific dataset and incorporating structured con-
straints, this research seeks to balance generative flexibility with stylistic
fidelity, ensuring that generated OBI-style images remain both visually com-
pelling and historically accurate. The following sections provide a detailed
examination of the historical background of OBIs, the motivations behind
this research, and the technical contributions of this study.
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Figure 1.1: An oracle bone fragment (a) and oracle bone inscriptions (b). The
inscription in the red box is “sun”. Images license under creative commons
of Wikipedia.

1.1 Background

Oracle bone inscriptions (OBIs), dating back over 3,500 years, represent one
of the earliest known forms of written communication in human history.
These inscriptions, etched onto turtle shells or animal bones, were primarily
used for divination purposes during the Shang Dynasty (c.1250 –c.1046 BC)
in ancient China. The historical significance of OBIs lies not only in their
status as an early form of script but also in their role as a record of political,
social, and religious practices of the time. They offer unique insights into
early Chinese civilization, contributing to research fields such as archaeology,
linguistics, and cultural studies.

Unlike linear and abstract modern writing systems, such as the Roman
alphabet or Arabic script, OBIs exhibit unique pictographic and ideographic
features. These inscriptions often visually resemble the objects or concepts
they represent, blending artistic abstraction with communicative intent. For
instance, as shown in the red box in Figure 1.1 the character for “sun” takes
the form of a circular representation with a dot at the center, closely mirroring
the natural form of the sun.

In the realm of art and design, OBIs inspire modern reinterpretations,
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influencing calligraphy, graphic design, and cultural exhibitions [9] [10]. Their
distinctive aesthetic qualities, combining simplicity and abstraction, make
them a cornerstone of visual culture in East Asia. However, the lack of
standardized forms and the significant variations in style present challenges
for consistent reproduction and analysis.

Despite their significance, OBIs present substantial challenges for both
archaeological research and computational analysis. More than 160,000 frag-
ments have been uncovered, as shown in Figure 1.1(a), yet only 4,500 unique
characters have been cataloged, of which two-thirds remain undeciphered [11].
The inscriptions lack a standardized writing system, and their stylistic vari-
ations reflect differences in authorship, periods, and intended usage. These
complexities make OBIs difficult to interpret, analyze, and reproduce, par-
ticularly when adapting them for modern applications such as digital art
or cultural preservation. Moreover, the irregular brushstrokes and degraded
nature of numerous inscriptions add layers of difficulty to computational pro-
cessing.

Nowadays, artificial intelligence technology has been explored extensively
to understand and explore this ancient script. Researchers have utilized gen-
erative adversarial networks (GANs) to address the challenges of data scarcity
and stylistic variability. For example, GAN models were employed to directly
train existing OBIs for recognition and style adaptation [12]. Additionally,
GAN-based approaches extended OBIs writing styles through handwritten
adaptations, enabling the generation of synthetic OBIs to augment train-
ing datasets and improve recognition accuracy [13]. Despite their success
in generating a sufficient number of synthetic OBIs, GANs often face issues
related to controllability and unstable training, limiting their practical ap-
plications for tasks requiring precise stylistic and semantic alignment. In
contrast, diffusion models (DMs) have emerged as a more robust and con-
trollable alternative for image synthesis. Models such as Stable Diffusion [14]
and ControlNet [8] leverage stable learning objectives and text-prompt-based
controllability to produce high-quality, semantically consistent images. By
iteratively refining noisy latent variables, diffusion models achieve superior
stability and flexibility compared to GANs, making them particularly well-
suited for tasks involving complex visual styles and semantic precision [15].
However, existing research in diffusion models for OBIs primarily focuses on
recognition and detection tasks and often has difficulty to decipher inscrip-
tions without integrating text prompts for generating content or exploring
interpretations of OBI-style images.

Despite these technological advancements, applying state-of-the-art gen-
erative models to generate OBI-style images remains a non-trivial task. Chal-
lenges include the scarcity of annotated data, the unique pictographic struc-
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ture of OBIs, and the need to preserve their stylistic integrity while adapting
them for modern contexts. These factors underscore the importance of de-
veloping specialized approaches that can balance fidelity to the original style
with creative flexibility.

1.2 Research Motivation

Oracle bone inscriptions (OBIs) hold immense historical, cultural, and lin-
guistic value, yet their study and preservation present significant challenges.
One of the key issues lies in the limited availability of high-quality OBIs
datasets, as only a small subset of the total discovered inscriptions has
been digitized, annotated, or analyzed[16, 1, 1, 4]. Furthermore, the in-
complete and eroded state of many inscriptions adds noise and uncertainty
to their visual features, complicating efforts to standardize and interpret
these ancient scripts. The irregular shapes and diverse stylistic variations
of OBIs—resulting from differences in authorship, carving techniques, and
historical periods—further exacerbate the difficulty of analysis. As shown in
Figure 1.2, this is a set of the same oracle bone inscription “Jian”, meaning
two people are holding a dagger-axe together.

Figure 1.2: Different styles of the same oracle bone inscription. The thick-
ness, position, and even direction of the strokes differ from each other but
have the same meaning.

Generating OBI-style images introduces a unique set of technical chal-
lenges. Unlike traditional style transfer tasks [17], OBI-style generation may
go beyond applying superficial visual effects or filters. Instead, it demands
fidelity to the intricate visual characteristics of OBIs, including their irregu-
lar line thickness, spatial composition, and the distinct pictographic features
that connect abstract glyphs to the forms or ideas they represent. These
inscriptions blend semantic meaning with visual representation, requiring a
nuanced approach that preserves their ideographic essence while accurately
reflecting their stylistic identity. Capturing these elements ensures that gen-
erated images are both visually compelling and contextually faithful to their
origins.
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The conventional generative models, such as GANs [18], have been em-
ployed to address some of these challenges. However, GAN-based approaches
often suffer from unstable training and limited controllability, which hinder
their ability to generate stylistically precise and semantically consistent OBI-
style images. Meanwhile, diffusion models offer promising improvements in
stability and controllability, their application to OBIs has largely been lim-
ited to recognition and detection tasks [19, 20, 21, 22], without addressing the
generation of OBI-style images from contemporary inputs, such as textual
descriptions or object images.

To summarize the issues and their technical challenges, Figure 1.3 pro-
vides an outline of the inputs and outputs involved in this work. The inputs
consist of modern object images and textual descriptions, while the outputs
are OBI-style images that adhere to the semantic and stylistic characteristics
of the originals.

1.3 Technical Contributions

This work addresses the significant challenges in generating high-quality or-
acle bone inscription (OBI)-style images by introducing a novel diffusion
model-based framework, DiffOBI [23]. This work makes the following key
contributions:

Domain-Specific Dataset Construction: This work constructed a
unique dataset tailored to the requirements of OBI-style image generation.
This dataset aligns ancient OBIs references with contemporary object images
and textual descriptions, serving as a foundation for robust model training
and evaluation.

Diffusion model-Based Generative Framework: DiffOBI is pro-
posed as a two-stage diffusion model-based pipeline enhanced with Con-
trolNet for style control over generated outputs. The framework enables
the transformation of modern object images into semantically meaningful
and stylistically accurate OBI-style images, going beyond conventional style
transfer methods by incorporating both semantic and stylistic fidelity.

Refinement Module for Enhanced Quality: To address the stylistic
and structural complexities of OBIs, a refinement module was developed to
iteratively improve the raw outputs of the diffusion model. This module
ensures that the final results adhere closely to the structural norms, line
thickness, and spatial compositions characteristic of OBIs.

Comprehensive Evaluation Framework: Extensive evaluations were
conducted to compare DiffOBI with state-of-the-art generative models, in-
cluding GAN-based approaches (e.g., pix2pix [24], CycleGAN [25]) and re-

5



Figure 1.3: Overview of the input and output in the proposed framework.
Modern object images and textual prompts serve as inputs, while the gen-
erated outputs are oracle bone inscription (OBI)-style images that retain
semantic and stylistic fidelity.

cent diffusion models (e.g., IP-Adapter [26]). Both qualitative results and
user preference studies demonstrate the superiority of the proposed method
in producing semantically consistent and visually compelling OBI-style im-
ages.

Advancing Cultural Preservation through AI: This work contributes
to the preservation and reinterpretation of ancient Chinese cultural heritage
by leveraging modern artificial intelligence techniques. By bridging the gap
between historical artifacts and contemporary applications, the proposed ap-
proach provides a novel tool for cultural preservation, artistic expression, and
education.
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1.4 Outline of Thesis

The remainder of this paper is organized as follows:
In Chapter 2, this thesis explores the historical and cultural significance

of oracle bone inscriptions (OBIs) and examines their current relevance in
research. It provides an overview of advancements in generative modeling
techniques, including GANs, VAEs, and diffusion models, and introduces
conditional image generation methods. Additionally, this chapter highlights
the limitations of existing datasets and methods in OBIs studies, emphasiz-
ing the need for semantic alignment and stylistic fidelity in generated OBIs
representations.

In Chapter 3, this thesis provides foundational insights into the three core
domains relevant to this research: OBIs, diffusion models, and ControlNet.
It details the origins, characteristics, and cultural significance of OBIs, fol-
lowed by an in-depth explanation of Denoising Diffusion Probabilistic Models
(DDPMs) and Latent Diffusion Models (LDMs). Lastly, it introduces Con-
trolNet as an innovative framework for controlled generation, providing the
theoretical basis for the proposed method.

In Chapter 4, this thesis introduces DiffOBI, the proposed framework
for OBI-style generation. The framework comprises a two-stage architec-
ture: the generation stage employs a ControlNet-enhanced diffusion model
to produce semantically and stylistically consistent OBI-style images, while
the refinement stage applies advanced optimization techniques for binary fil-
tering, impurity removal, edge enhancement, and resolution improvement.

In Chapter 5, this thesis outlines the construction of a novel OBI-specific
dataset tailored to support the proposed method. It details the selection of
data sources, the preprocessing pipeline for aligning textual descriptions with
images, and the use of ControlNet for generating aligned object images.

In Chapter 6, this thesis evaluates the effectiveness of DiffOBI through
qualitative and quantitative analyses. It presents the model’s performance in
reconstructing existing OBIs, generating novel glyphs, and producing stylis-
tically diverse outputs. Comparative studies with baseline models such as
pix2pix, CycleGAN, and IP-Adapter are included, alongside user preference
surveys and metric-based performance evaluations.

In Chapter 7, this thesis discusses the broader implications of the findings,
evaluating the strengths and limitations of DiffOBI in the context of OBIs
research and generative modeling. Future research directions, such as ex-
panding dataset coverage, enhancing computational efficiency, and exploring
additional applications, are proposed. The chapter concludes by summariz-
ing the study’s contributions to the field of OBIs preservation and generative
modeling.
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Chapter 2

Related Works

In this chapter, an overview of existing works that are related to the proposed
framework DiffOBI is provided. In Section 2.1 first discusses the study of
oracle bone inscriptions (OBIs), reviewing key advances in character detec-
tion, recognition, and evolutionary analysis. In Section 2.2, Few-Shot Font
Generation (FFG) is examined, highlighting its shared challenges with OBIs
and how these two domains may inform each other. Section 2.3 explores
related datasets for OBIs, focusing on their different properties and roles in
driving the oracle decipherment and oracle image generation fields. Finally,
Section 2.4 explores recent developments in generative models, emphasizing
their potential to support complex, historical script tasks.

2.1 Oracle Bone Inscriptions

In the domain of oracle bone inscriptions (OBIs) research, various methods
have been proposed to facilitate character detection, recognition, and inter-
pretative analysis. OBIs were used approximately 3000 years ago, provide
critical insights into ancient Chinese writing and early societal structures
[27, 22]. Despite their value, many inscriptions remain challenging to in-
terpret because of degraded bones, background noise, and incomplete glyph
shapes, prompting researchers to pursue automated techniques for accurate
and efficient OBIs analysis [28, 21]. Early work often relied on handcrafted
graph-based or morphological features, but the rise of deep learning has led to
significant improvements in robustness and processing efficiency when deal-
ing with noisy, fragmentary data[22, 29].

Two-stage paradigms, in which a detection model isolates inscription re-
gions before a classifier recognizes individual glyphs, have become common
for dealing with cluttered or incomplete bone surfaces [27, 29]. Furthermore,
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generative adversarial networks (GANs) were introduced to aid interpretation
by producing morphological shape cues or even simulating character evolu-
tion. For example, Gao et al. [30] leverage GAN-based translation models to
generate shape hints for partially annotated OBIs, enabling their system to
handle incomplete or noisy strokes; in doing so, they provide clearer glyphs
that experts can reference for further decoding. Meanwhile, Sundial-GAN
proposed by Chang et al. [19] adopts a cascaded structure of multiple GANs,
each targeting a different historical phase so that an oracle bone inscription
image can be gradually transformed toward a recognizable modern form,
capturing both coarse and finer evolutionary traits in the process. In tasks
with limited samples or under-interpreted characters, specialized frameworks
based on few-shot learning or pseudo-category labeling can mitigate data im-
balance, leveraging relationships between known and unknown categories to
improve generalization [20, 21]. While certain networks rely on direct convo-
lutional neural network (CNN) backbones or Inception-style models, others
incorporate attention modules or metric learning, helping address the un-
balanced distribution of OBIs classes and the diversity of stroke patterns
[22].

Gao et al. also benefited from newly established datasets and annotation
software, accelerating the creation of large-scale labeled corpora [30]. These
datasets often include real rubbing images with severe cracks and occlusions,
thereby testing the resilience of deep neural models [28, 22]. To address the
challenge of fragment rejoining, which is essential for reconstructing ancient
bones, Zhang et al. [29] introduced a set of strategies designed to align broken
edges and extract local shape features. These strategies are complemented by
an interface that ranks potential fragment matches, facilitating the reassem-
bly process. Their pipeline can process boundary curves of cracks, match
fragment contours, and produce a short list of possible rejoin pairs for expert
validation.

2.2 Few-Shot Font Generation (FFG)

Font generation aims to transfer a set of references in a particular style
into novel character shapes with the same style while preserving the original
content. Recently, few-shot font generation (FFG) has emerged as a vital
direction in this domain, aiming to synthesize new fonts using as few exem-
plars as possible (e.g., below 10 reference glyphs). As shown in figure 2.1,
a small number of reference fonts (a) are input as a style cue while a stan-
dard font (b), and other characters (c) with the style of font (a) are output.
Prior research can be broadly categorized into global style representation and
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localized style representation.

Figure 2.1: The process of few-shot font generation. (a) denotes a small
number of reference fonts, (b) is a standardized font, and (c) is generated
new fonts.

A significant number of existing few-shot font generation approaches
adopt a global style representation for each font. For instance, AGIS-Net en-
codes the shape and texture of glyph images to address style transfer under
a very limited set of references [31]. Similarly, Zhang et al. [32] proposed the
EMD framework, which learns a universal style embedding along with con-
tent features to achieve better style-content disentanglement. These methods
are effective for transferring relatively simple font styles but often struggle
with capturing the complex local details of characters, particularly for non-
linear scripts like Chinese, which include sophisticated radicals and strokes.
This limitation becomes even more pronounced in OBIs, where glyphs are
not simply textual characters but pictographic sketches closely tied to objects
or concepts.

To capture the internal structure of glyphs, several works propose learning
localized style features. LF-Font factorizes the style embeddings into com-
ponent and style factors so that the model can reconstruct the entire vocab-
ulary even with incomplete references [33]. DG-Font integrates deformable
convolutions in the generator and uses a multi-task discriminator to handle
large stroke-level variations without direct style label supervision [34]. Simi-
larly, CF-Font and XMP-Font further refine content-style fusion through ba-
sis font features [35] and cross-modality pre-training [36], respectively. These
approaches excel in scenarios where precise alignment between radical-level
structure and style is required. However, applying such techniques directly
to OBIs faces unique challenges, as OBIs are not merely structured charac-
ters but highly irregular glyphs influenced by artistic abstraction and ancient
carving tools. Unlike font glyphs that follow consistent compositional rules,
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OBIs often resemble freehand sketches with varying spatial arrangements and
degraded edges[37].

To address the limitations of global and localized style representations,
recent studies focus on fine-grained local-style mining. For example, Tang et
al. [38] propose an attention-based style aggregation mechanism to precisely
extract subtle patterns from references, enabling their system to generate
glyphs that faithfully capture both style and content. While this approach
shows promise for detailed scripts, OBIs require even higher levels of adapt-
ability due to their hieroglyphic nature, where glyphs are conceptual rep-
resentations of objects (e.g., “sun,” “rain”) rather than abstract characters.
Fine-grained methods for OBIs may account for this pictographic complexity.

While few-shot font generation shares certain characteristics with OBIs
image generation such as the need for style transfer with limited references—key
differences exist. Generate OBIs are fundamentally different from generate
fonts. Fonts typically emphasize uniformity and regularity, whereas OBIs
embody a pictographic and artistic nature, more akin to ancient sketches or
conceptual drawings. The irregular stroke patterns, spatial variability, and
semantic alignment of OBIs introduce challenges that go beyond those en-
countered in traditional font generation. The proposed methods developed
for FFG, such as deformable convolutions and attention-based style aggrega-
tion [34, 38], may inspire, but adaptations are required to accommodate the
unique visual and semantic characteristics of OBIs.

2.3 Datasets for OBIs

The study of oracle bone inscriptions (OBIs) has been significantly advanced
by various datasets that differ in scale, data types, and annotation granular-
ity. These datasets primarily focus on deciphered characters, rubbings, hand-
writing, and even multi-modal representations, catering to diverse research
tasks such as recognition, denoising, and decipherment. Early datasets, such
as the one presented by Guo et al. [16], introduced approximately 20,000
character images collected from non-public resources, focusing exclusively on
deciphered OBCs and proposing a hierarchical framework to bridge shape-
based recognition and sketch analysis. Similarly, datasets like OBC306 [4],
comprising over 300,000 images from scanned rubbings and authoritative
works, emphasize large-scale raw data but cover only 306 deciphered cate-
gories, reflecting a long-tail distribution where frequent characters dominate.
These efforts highlight the foundational role of deciphered datasets, despite
their limited coverage of the many undeciphered OBCs. To address the chal-
lenges posed by real rubbings, recent datasets prioritize multi-modal and real-
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Figure 2.2: Sample images from publicly available Oracle datasets, listed
in order, are OBI-125 [1], OBIMD [2], HUST-OBC [3], OBC306 [4],
HWOBC [5], EVOBC [6].

world data characteristics. OBIMD [2] combines over 10,000 pieces of oracle
bones with pixel-aligned facsimiles, rubbings, bounding boxes, and reading
sequences, facilitating tasks such as enhancing rubbing clarity and predict-
ing character reading order. In contrast, OBI-125 [1] focuses specifically on
rubbing-type data, offering 125 categories with dynamic data augmentation
to handle imbalance and overfitting issues. These datasets capture the noise,
cracks, and occlusions inherent in rubbings, thereby enhancing the resilience
of models trained for real-world conditions.

Other datasets expand the scope to handwriting-based or evolutionary
studies. HWOBC [5], containing 83,245 samples across 3,881 categories,
emphasizes calligraphy and handwriting recognition. On the other hand,
EVOBC [6]focuses on the historical evolution of Chinese characters, linking
oracle bone inscriptions to later scripts such as bronze inscriptions and seal
scripts. With 229,170 images spanning 13,714 categories, EVOBC provides
a comprehensive resource for studying morphological lineages and facilitates
zero-shot analyses of glyph evolution. Moreover, HUST-OBC [3] combines
deciphered and undeciphered OBCs, offering 77,064 deciphered and 62,989
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undeciphered images across multiple modalities, aiming to bridge the gap
between known and unknown glyphs for decipherment tasks.

To illustrate the differences in visual characteristics across datasets, Fig-
ure 2.2 presents a curated compilation of sample images from all datasets ex-
cept Oracle-20K, which is excluded due to its non-open-source status. This
figure highlights variations in noise, preprocessing, and handwriting inclu-
sion, emphasizing the strengths and challenges posed by each dataset.

In summary, while existing datasets have made significant contributions
to OBIs research, they primarily focus on textual, structural, or evolutionary
characteristics. Few datasets explicitly explore the pictographic nature of
OBIs or their relationships to real-world imagery. This work addresses this
gap by emphasizing the visual and semantic alignment between OBI glyphs
and corresponding real-world objects. By integrating annotated examples
that highlight these connections, the proposed approach facilitates the study
of OBIs as both ancient sketches and meaningful linguistic artifacts, pushing
forward AI-based oracle bone decipherment and visual interpretation.

2.4 Generative Models

Generative models aim to create new data samples resembling a given dataset,
rather than simply classifying or predicting. They learn the distribution of
training data and then generate new samples from it. Early generative meth-
ods relied on simple probabilistic assumptions, limiting their performance in
complex domains. With deep neural networks, generative models can now
produce realistic images, fluent text, and coherent audio. However, challenges
like mode collapse [39] and capturing data variability persist. Despite these
issues, deep generative models are widely applied in creative content gener-
ation, simulation, and data recovery. Representative generative models in-
clude normalized flows (NFs) [40], energy-based models (EBMs) [41], genera-
tive adversarial networks (GANs) [42], variational autoencoders (VAEs) [43],
and diffusion models [15], with GANs, VAEs, and diffusion models especially
influential in Conditional Image Generation.

Generative Adversarial Networks (GANs) [42] employ an adversarial setup
of a generator and a discriminator to synthesize high-quality data. Fig-
ure 2.3 illustrates this framework, where the generator attempts to fool the
discriminator by producing realistic samples. Following their introduction by
Goodfellow et al. [42], GANs rapidly advanced, with DCGAN [44] and Pro-
GAN [45] improving training stability and image resolution. Beyond static
images, VGAN [46] targeted video synthesis, while SeqGAN [47] explored
text generation via reinforcement learning. In medical imaging, adversarial
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Figure 2.3: Overview of the Generative Adversarial Network (GAN) frame-
work. The generator G(z) transforms random noise z into realistic samples
x′, while the discriminator D(x) evaluates the realism of generated data.

strategies aided lung segmentation [48] and brain tumor segmentation [49].
More recently, Li et al. [12] addressed long-tailed oracle character recognition
through tailored adversarial techniques, boosting tail-class accuracy. Despite
their versatility, GANs still face issues like training instability, mode collapse,
and limited evaluation metrics.

Variational Autoencoders (VAEs) [43] are probabilistic models that map
inputs to a latent Gaussian space for both reconstruction and new sample
generation. As shown in Figure 2.4, the encoder produces parameters of a
latent distribution, while the decoder attempts to reconstruct the input. A

Figure 2.4: Overview of the Variational Autoencoder (VAE) architecture.
The encoder qϕ(z|x) maps input x into a latent space z, while the decoder
pθ(x|z) reconstructs x′ from z.

VAE’s loss function combines a reconstruction term and a Kullback-Leibler
(KL) divergence term, which regularizes the latent space toward a Gaussian
prior. Conditional VAEs (CVAEs) [50] incorporate labels to direct genera-
tion, while VFAE [51] disentangles noise from meaningful features. Hybrid
approaches, such as CVAE-GAN [52] and PixelVAE [53], combat blurriness
by introducing adversarial or autoregressive components. Wasserstein Au-
toencoders (WAE) [54] adopt the Wasserstein distance for smoother opti-
mization, and NVAE [55] leverages hierarchical structures for high-resolution
tasks. VAEs have broad applications in image synthesis, NLP, and anomaly
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Figure 2.5: Overview of the diffusion model process. Starting from a noisy
input xT , the model iteratively denoises to generate a high-quality output
x0.

detection, though they can produce blurry outputs under pixel independence
assumptions and remain computationally intensive.

Diffusion models iteratively refine noisy data into high-fidelity samples,
adding noise in a forward process and learning to reverse it. Figure 2.5 shows
the progression from noisy input to a clean output. Denoising Diffusion Prob-
abilistic Models (DDPM) [56] and continuous-time SDE approaches [57] laid
the groundwork for diffusion-based generative modeling. Text-to-image sys-
tems like DALL-E 2 [58], Imagen [59], and Stable Diffusion [14] generate
photorealistic images from text. Refinements include InstructPix2Pix [24],
Palette [60], and DiffEdit [61] for precise editing, as well as eDiff-I [62] and
DreamBooth [63] for higher-resolution and personalized outputs. Beyond
images, text-to-3D methods such as Point-E [64] and DreamFusion [65] gen-
erate point clouds and neural radiance fields, with Magic3D [66] improving
fidelity. Diffusion has also shown promise in text generation [67, 68], medical
imaging [69, 70], and molecular design [71, 72, 73]. By iterative denoising,
diffusion models mitigate mode collapse and often yield high-quality outputs,
though sampling can be slow [74]. Accelerations like DPM-Solver [75] offer
faster inference but real-time deployment remains challenging. Overall, diffu-
sion models stand out for their stability, control, and impressive performance
across diverse tasks.

2.5 Conditional Image Generation

Conditional image generation has proven to be a transformative tool across
diverse applications, ranging from image editing and restoration to more
specialized tasks such as personalization, composition, and layout control.
These applications leverage the ability of generative models to integrate spe-
cific conditional inputs, enabling precise control over the synthesized outputs.
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Beyond the commonly used text prompts, modern conditional generation
methods introduce additional controls to guide the output more precisely. In
sketch-guided flow field generation, Chang et al.[76] utilized a latent diffu-
sion model (LDM) to generate 2D velocity fields constrained by sketches, im-
proving robustness compared to cGAN-based methods. Similarly, Zhang et
al.[77] proposed a sketch-guided spatial control framework for text-to-image
diffusion models, where segmented sketches provide precise spatial guidance
for generating complex multi-object images. In the realm of fashion design,
TexControl by Zhang et al. [78] employs a two-stage pipeline integrating
sketch-based ControlNet and texture optimization to produce high-quality
clothing images with fine-grained details.

A foundational contribution to conditional image generation is the in-
troduction of conditional adversarial networks (cGANs) by Isola et al. [79].
This framework uses a generator-discriminator setup where the generator
synthesizes outputs and the discriminator evaluates their realism. The in-
tegration of a U-Net-based generator and a PatchGAN discriminator allows
cGANs to handle tasks such as converting edge maps to photos, colorizing
grayscale images, and translating semantic labels into photorealistic scenes.
In recent years, diffusion models have largely replaced GANs as the backbone
of conditional image generation tasks due to their superior stability and sam-
ple quality. Unlike GANs, diffusion models leverage an iterative denoising
process, allowing for more controlled and precise image generation.

The T2I-Adapter improves text-to-image generation by using lightweight
convolutional adapters to encode visual inputs, like sketches and depth maps,
into multi-scale features. These features are then injected into the U-Net
backbone of the diffusion model, allowing it to handle additional conditional
inputs beyond text descriptions. This flexibility makes T2I-Adapter particu-
larly useful for multi-modal creative design tasks [80]. Similarly, ControlNet
improves conditional control by cloning the deep encoding layers of the diffu-
sion model’s U-Net architecture, enabling it to process complex visual inputs
like pose and segmentation maps. This design enhances alignment between
input conditions and generated images, making ControlNet effective in high-
precision applications such as virtual try-on and lighting control [8].

In scenarios requiring fine-grained control over image-based inputs, the
IP-adapter introduces cross-attention layers to inject image embeddings di-
rectly into the T2I backbone. This method is especially effective for cus-
tomization and advanced editing tasks, where detailed control is crucial
[26]. Meanwhile, GLIGEN focuses on layout control, incorporating gated
self-attention mechanisms to process spatial layout information like bound-
ing boxes. By ensuring precise spatial organization of objects, GLIGEN
proves invaluable in tasks such as scene generation and compositional editing
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[7].Figure 2.6 illustrates two examples of such methods: GLIGEN and Con-
trolNet. GLIGEN incorporates bounding box annotations to define spatial
layouts alongside textual prompts, enabling structured generation based on
the explicit positional information. Similarly, ControlNet integrates sketch-
based conditions, using hand-drawn outlines to ensure the generated images
adhere to the desired shapes and structures.

Figure 2.6: Examples of conditional image generation. GLIGEN [7] (top) in-
troduces bounding box control in addition to text prompts to manage spatial
layouts, while ControlNet [8] (bottom) uses sketch inputs to provide struc-
tural guidance. Both demonstrate how additional conditions enhance control
over generated outputs.

For semantic image editing, Imagic utilizes inversion and interpolation
techniques to achieve intuitive edits while preserving the original image’s
core structure and details [81]. It optimizes text embeddings for the source
image and interpolates between source and target text descriptions, allowing
for high-fidelity edits aligned with user intentions. In the realm of personal-
ization, DreamBooth fine-tunes text-to-image models using a few reference
images, embedding unique user-specific objects or subjects into generated im-
ages. This approach ensures that personalized elements retain their distinct
characteristics, enabling tailored content creation for artistic and professional
applications [63].

These models highlight the versatility and power of conditional diffusion
frameworks in addressing diverse and complex image-generation tasks. De-
spite their successes, challenges remain, such as the computational intensity
of iterative sampling and the difficulty of aligning new conditional inputs with
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pre-trained models. However, ongoing advancements continue to expand the
possibilities for diffusion models, paving the way for further innovation in
personalized, efficient, and precise image synthesis.
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Chapter 3

Prior Knowledge

This chapter presents the essential background knowledge that underpins
this research. It begin by examining oracle bone inscriptions (OBIs) in Sec-
tion 3.1, highlighting their historical importance and unique linguistic char-
acteristics. Next, in Section 3.2 explores existing OBIs databases, discussing
their respective scopes, data preprocessing methods, and annotation strate-
gies. Sections 3.3 and 3.4 introduce denoising diffusion probabilistic models
(DDPM) and latent diffusion models (LDM), explaining their foundational
principles and their role in facilitating efficient, high-fidelity generative tasks.
Finally, Section 3.5 presents ControlNet [8] as an extension of stable diffusion
models, demonstrating how external guidance signals can steer the generative
process toward specific, task-oriented outputs.

3.1 Oracle Bone Inscriptions (OBIs)

Oracle Bone Inscriptions (OBIs), also referred to as “Jiaguwen”, “oracle
script”, or “inscriptions on tortoise shells and animal bones”, represent the
earliest known system of mature Chinese writing. These inscriptions, pri-
marily found on turtle plastrons and ox scapulae, date back to the Shang
and early Zhou Dynasties (16th to 11th centuries BCE), marking a signifi-
cant milestone in the evolution of Chinese characters and serving as a vital
cultural legacy. The OBIs were first discovered in 1899, with major findings
concentrated in the ruins of Yin at Anyang for the later Shang period and
in Zhengzhou for earlier Shang remnants [82].

OBIs are deeply rooted in the religious and sociopolitical fabric of Shang
Dynasty society, where divination played a central role in decision-making.
Shang kings and their officials inscribed questions concerning state affairs,
agriculture, warfare, weather, and personal matters onto these bones and
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shells. The process involved heating pre-drilled pits on the bones to produce
cracks, known as “omen cracks”, which were interpreted to derive divine
guidance. The inscriptions recorded the question, the resulting cracks, and
occasionally the outcome. These inscriptions, therefore, form a detailed his-
torical record, reflecting social, political, economic, and spiritual dimensions
of life during the Shang Dynasty.

The OBIs, totaling over 160,000 fragments discovered by 2019 [83], con-
tain more than 4,500 unique characters. Among these, approximately 1,500
have been deciphered, revealing a linguistic system that blends pictographic
and ideographic elements. These inscriptions employ various structural mech-
anisms aligned with the “Six Principles of Chinese Character Formation”
(Pictographs, Compound ideographs, Phono-semantic compounds, Indica-
tives, Derivative cognates, and Loangraphs ). Compared to contemporary
writing systems, OBIs show significant variability in form and function, yet
already demonstrate a mature writing system. In 2017, OBIs were inscribed
into the UNESCO Memory of the World Register, recognizing their global
cultural significance [84].

OBIs mark the inception of a continuous tradition of Chinese writing,
which evolved through subsequent stages such as Bronze Inscriptions (BI),
Spring and Autumn Characters (SAC), Warring States Characters (WSC),
Seal Script (SS), and Clerical Script (CS), eventually giving rise to modern
Chinese characters. While OBIs are known for their flexibility and picto-
rial nature, they also demonstrate early examples of structural conventions
that later solidified into more formalized scripts. These inscriptions, unlike
the rigid and highly stylized Seal Script, retain a fluidity akin to sketches,
emphasizing their dual roles as practical communication tools and artistic
expressions. The evolution from OBIs to modern characters illustrates a
gradual shift from symbolic depictions to phonetic and structural regularity,
bridging the gap between abstract representation and linguistic precision.
This transformative journey is visually captured in Figure 3.1, which out-
lines the sequential progression from OBIs to contemporary Chinese script.

OBIs continue to inspire interdisciplinary research, bridging fields such as
archaeology, linguistics, artificial intelligence, and digital humanities. Their
irregularities, while challenging for modern analysis, provide a unique op-
portunity to study the linguistic creativity and adaptability of early Chinese
civilization.
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Figure 3.1: Evolution of Chinese Characters from oracle bone inscriptions
(OBIs) to Modern Script. Data except modern scripts are from the EVOBC
dataset[6]. This diagram illustrates the sequential development of Chi-
nese writing, starting from OBIs and tracing through key historical script
forms, including Bronze Inscriptions, Spring and Autumn Characters, War-
ring States Characters, Seal Script, and Clerical Script, to the contemporary
system, with the first column showing the interpretations of their expres-
sions.

3.2 OBIs Datasets

To provide a comprehensive overview of the major publicly discussed datasets
for oracle bone characters, this section analyzes the key properties of each re-
source. The comparison involves aspects such as the total number of images
and character classes, whether those character classes have been deciphered,
the presence or absence of handwriting or real rubbings, the degree of pre-
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processing (e.g., denoising, binarization, image cropping), and the level of
annotation (e.g., image-level labels, detection bounding boxes, multi-modal
alignment). The following will analyze and summarize each dataset.

The dataset referred to as Oracle-20K [16] consists of 20,039 oracle bone
character images spanning 261 deciphered categories. It was compiled by
extracting oracle bone characters and their corresponding labels from an on-
line repository that derived its data from an authoritative oracle character
lexicon. Initially, a total of 31,876 samples covering 952 unique characters
were gathered. However, to maintain consistency and reliability in exper-
imentation, characters with fewer than 25 occurrences were excluded. As
a result, the dataset contains characters distributed across deciphered cate-
gories, with the most frequently occurring category comprising 291 samples,
while the least populated categories contain 25 samples each.

Another dataset is OBI-125 [1], containing 4,257 images of oracle bone
characters categorized into 125 deciphered classes. Its images come primarily
from scanned books of rubbings, with each image retaining the textures and
artifacts of real fragments. The dataset performs only basic image cropping
without strong binarization or enhancement, so various forms of noise or
incomplete strokes remain. Furthermore, it includes no handwritten samples
and only offers image-level class annotations. Although the dataset’s scale
is smaller compared to some others, it captures genuine rubbing noise and
is commonly used for studying oracle bone character recognition under real-
world quality constraints. This dataset has a limited category count, making
it less suitable for very large-scale tasks.

The OBI-125 dataset [1] comprises 4,275 oracle bone character images
categorized into 125 deciphered classes. These images were derived from
rubbings scanned from the “Oracle Bone Inscriptions Collection” held by
the Shanghai Museum. All characters were manually segmented and clas-
sified according to their annotations. The dataset retains the textures and
artifacts of real fragments, with minimal preprocessing limited to basic crop-
ping. Noise and incomplete strokes are preserved, and the dataset does not
include handwritten samples. It provides only image-level class annotations,
focusing on real-world quality constraints for studying oracle bone character
recognition. Although the size of this dataset is small compared to other
datasets, it emphasizes real friction noise.

OBIMD (Oracle Bone Inscriptions Multi-modal Dataset) [2] focuses on
entire bone fragments. Specifically, This dataset includes 10,077 rubbings,
each paired with a pixel-aligned facsimile image. These facsimiles were man-
ually created by scholars based on rubbings and historical sources. OBIMD
provides comprehensive annotations, including bounding boxes for all visi-
ble characters, inscription group information, and reading sequences. Ad-

22



ditionally, it incorporates a two-level character category structure from the
“Oracular Digital Platform” and includes attributes marking contentious or
missing parts, and a large fraction of these characters remain undeciphered.
Because OBIMD provides pairs of rubbings and facsimiles, it is considered a
multi-modal resource, facilitating tasks such as the detection of inscriptions
on a full bone piece, multi-modal alignment, and group reading order analy-
sis. Because the data is not uniform single-character images, it is well-suited
for layout analysis, line/sequence recognition, or domain adaptation studies.

The OBC306 dataset [4] offers 309,551 single-character images spanning
306 deciphered categories. These images were cropped from scanned or pho-
tographed rubbings, covering diverse noise artifacts. The dataset demon-
strates a severe long-tail distribution: a few categories account for the ma-
jority of samples, while many have fewer than 100 instances. The most
frequent category contains 25,898 samples, while 29 categories have only one
sample each. It does not include handwritten data or any border annotations
but rather provides image-level class labels referring to deciphered modern
Chinese counterparts. This dataset has been used primarily for building and
evaluating classification models for deciphered oracle bone characters.

Distinct from the above datasets, HWOBC [5] is a handwriting-oriented
dataset, featuring 83,245 images produced by twenty-two participants who
rendered each oracle bone character on a plain 400×400 white canvas, re-
sulting in uniform, noise-free images. It includes 3,881 classes of deciphered
characters, with each class on average having over twenty samples. Since
HWOBC is fully handwritten, it bypasses the complexities of rubbings or
fragment noise yet loses direct contact with the real surfaces of ancient bones.
With only image-level labeling, it offers no bounding boxes or multi-modal
references. The dataset contains only image-level labels, making it suitable
for use in accelerating the digitization of oracle characters, with text-level
parsing, and for future oracle decipherment research.

Another recent dataset is EVOBC [6], which covers six historical script
phases, from oracle bone script to clerical script. It has 229,170 images
grouped into 13,714 modern Chinese categories, meaning each modern Chi-
nese character is linked to multiple historical shapes. Its data come from a
mix of scanned texts and partial manual reproductions across various dynas-
ties, reflecting morphological evolutions. The dataset attempts some stan-
dardized contextualization, merges simplified/traditional forms, and maps
correspondences between deciphered texts and images, but does not strongly
denoise or unify the topographies for each era. It is partially relevant to or-
acle bone research but focuses on tracing cross-time evolution, so the oracle
bone portion is only one subset. EVOBC can thus facilitate studies on script
lineage or zero-shot recognition across eras, rather than emphasizing a single
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era’s noise or data distribution.
Lastly, HUST-OBC [3] consolidates diverse images from scanned books,

multiple websites, and existing databases (including HWOBC). This leads
to 10,999 classes, of which 1,588 are deciphered and 9,411 remain undeci-
phered. The total image count is 140,053, with some images being genuine
rubbings, others being digital facsimiles, and some being handwriting. The
pipeline used for HUST-OBC attempts to standardize backgrounds and re-
move duplicates across sources, while also separating deciphered from un-
deciphered classes. Its manual review by experts ensures relatively high
annotation quality. HUST-OBC, therefore, is notable for including a large
number of undeciphered categories, which can be valuable for zero-shot or
decipherment-focused studies.

To better understand the datasets available for oracle bone character
(OBC) research, Table 3.1 provides a comprehensive comparison of the key
publicly discussed datasets. These datasets vary widely in scale, standard-
ization practices (e.g., denoising, cropping, or background unification), the
inclusion of handwriting samples, and the availability of undeciphered char-
acters. For instance, while Oracle-20K [16] provides a foundational dataset
of 20,000 images, its closed-source nature limits its accessibility for broader
research. In contrast, the remaining datasets, such as OBI-125, OBIMD,
OBC306, HWOBC, EVOBC, and HUST-OBC, offer open or partially open
resources with diverse attributes and use cases.

Among the datasets compared, EVOBC provides a comprehensive re-
source with 13,714 categories and a total of 229,170 images. This dataset
undergoes a rigorous standardization process, ensuring uniformity in back-
ground and preprocessing, making it well-suited for tasks requiring clean and
consistent data. In contrast, OBC306, despite offering 309k images, includes
only 306 categories and lacks any substantial data preprocessing, which can
pose challenges for downstream tasks involving noisy or fragmented samples.
On the other hand, HWOBC, a handwriting-based dataset, features entirely
redrawn oracle bone characters. While this contributes to the standard-
ization and digitization of OBCs, it omits the critical depth and thickness
variations inherent to the original carvings. Considering these factors, the
EVOBC dataset was selected as the foundational dataset for this study due
to its balance of scale, standardization, and relevance to the objectives of
this thesis.
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Table 3.1: Comparison of Oracle Bone Inscription Datasets

Name Scale Std. HW Open
Oracle-20K [16] 20k / 261 No No No
OBI-125 [1] 4.2k / 125 No No Yes
OBIMD [2] 10.1k fragments Yes No Partially
OBC306 [4] 309.6k / 306 No No Yes
HWOBC [6] 83.2k / 3,881 Yes Yes Yes
EVOBC [6] 229.1k / 13.7k Yes No Yes
HUST-OBC [3] 140.1k / 11k Yes Partial Yes

Notes:

• Scale: Total number of images and categories in the dataset (e.g.,
“20k / 261” means 20,000 images across 261 classes).

• Std. (Standardization): Indicates whether the dataset underwent
denoising, cropping, or background unification.

• HW (Handwriting): Specifies whether the dataset includes
handwritten characters (“Partial” means some handwritten samples
are included).

• Open: Denotes the dataset’s accessibility—whether it is fully open,
partially available, or closed.

• For OBIMD, “fragments” represent oracle bone fragments rather
than single-character images.

3.3 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPM) are landmark generative
models that utilize a probabilistic framework to generate high-quality data.
By employing a two-phase process inspired by nonequilibrium thermodynam-
ics, DDPM involves a forward diffusion process that incrementally corrupts
data with noise and a reverse process that learns to denoise and reconstruct
the data, as shown in Figure 3.2. This iterative framework ensures stable
training and facilitates the synthesis of realistic samples, outperforming tra-
ditional generative models such as GANs and VAEs in various tasks [56].

In the forward diffusion process, the data is progressively perturbed by
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Figure 3.2: An illustration of the diffusion model. In the forward process,
noise is progressively added to the data over T steps. In the reverse process,
noise is gradually removed until a clean image is recovered.

adding Gaussian noise at each timestep t, transforming the original struc-
tured data into nearly pure noise by the final timestep T . Mathematically,
this process is represented as:

r(zt|zt−1) = N (zt;
√
αtzt−1, βtI). (3.1)

Here, r(zt|zt−1) represents the transition probability of the data from
timestep t− 1 to t during the forward diffusion process. The term zt denotes
the corrupted data at timestep t, which depends on zt−1, the data from the
previous timestep. The term αt = 1 − βt represents the proportion of the
previous timestep’s contribution that remains. The term βt represents the
variance of the added Gaussian noise. The symbol N represents a Gaussian
distribution, with the mean

√
αtzt−1 scaling the contribution of the prior

timestep’s data and the variance βtI introducing isotropic Gaussian noise.
The identity matrix I ensures that the noise affects all dimensions equally.

The reverse denoising process aims to reconstruct the original data by
progressively removing the noise added during the forward process. This
process is parameterized as:

sϕ(zt−1|zt) = N (zt−1;µϕ(zt, t),Σϕ(zt, t)). (3.2)

Here, sϕ(zt−1|zt) denotes the probability of reconstructing zt−1 from the
noisy data zt. The mean µϕ(zt, t), predicted by a neural network parameter-
ized by ϕ, determines the most likely denoised value. The variance Σϕ(zt, t)
quantifies the uncertainty in this prediction and is often simplified during
training to reduce computational complexity. This iterative denoising trans-
forms the noisy data back into a coherent and realistic sample.
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Figure 3.3: The framework of the Latent Diffusion Model (LDM), highlight-
ing its forward and reverse processes across latent and pixel spaces.

DDPM offers several advantages, including robust training dynamics due
to its non-adversarial framework and the ability to model complex data dis-
tributions with exceptional fidelity. The progressive refinement of samples
ensures detailed and realistic outputs. However, the computational demands
of DDPM are significant, with slow sampling speeds requiring hundreds of
timesteps for generating a single data point.

3.4 Latent Diffusion Models

The Latent Diffusion Model (LDM) [14] introduces a groundbreaking ap-
proach to generative modeling by performing the diffusion process in a per-
ceptually compressed latent space. This method significantly reduces com-
putational costs while preserving the high fidelity of generated images. Fig-
ure 3.3 illustrates the LDM framework, which integrates a pre-trained au-
toencoder for compression and a U-Net-based diffusion model for generation.
This structure enables LDM to efficiently handle complex tasks such as high-
resolution image synthesis, super-resolution, inpainting, and text-to-image
generation.

During the forward process, an input image x ∈ RH×W×3 in pixel space,
where H and W represent the height and width of the image, respectively,
is first compressed into a latent representation z ∈ Rh×w×c using the encoder
E in the following form:

z = E(x), (3.3)

where h = H/f and w = W/f , with f as the downsampling factor, c denotes
the number of feature channels in the latent space, which captures essential
semantic information while reducing spatial dimensions. This compression
abstracts high-frequency details while retaining semantic content. The diffu-
sion process then operates in this latent space, where Gaussian noise is itera-
tively added to z, creating a sequence of noisy representations {z0, z1, . . . , zt}.
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A time-conditional U-Net architecture is employed to predict and refine the
noise at each timestep, leveraging time embeddings to maintain temporal
coherence.

A key innovation of LDM is the introduction of conditioning mechanisms
through cross-attention. These mechanisms enable multi-modal training and
support a variety of conditional image generation tasks. For example, text
prompts can be encoded and injected into the U-Net using cross-attention, fa-
cilitating text-to-image synthesis. Similarly, class labels or layout information
can condition the generation process, supporting tasks like class-conditional
image generation and layout-to-image synthesis. The cross-attention mecha-
nism ensures that conditioning information is effectively integrated at every
stage of the reverse diffusion process.

In the reverse process, the model begins with a noisy latent variable zt
and iteratively denoises it to recover the clean latent representation z0. This
process is expressed as:

zt−1 = Denoise(zt, t,Conditioning). (3.4)

Finally, the decoder D reconstructs the image x̃ from the denoised latent
representation:

x̃ = D(z0). (3.5)

The separation of perceptual compression and generative modeling offers
several key benefits. By performing the diffusion process in a compressed
latent space, LDM reduces the computational overhead associated with high-
dimensional pixel space. This allows the model to leverage the inductive
biases of convolutional U-Net architectures effectively. Furthermore, the use
of cross-attention for conditioning inputs enables flexible and precise control
over the generated outputs, making LDM highly versatile across a range of
applications.

While LDMs demonstrate exceptional capabilities in high-fidelity image
generation, generating oracle bone inscriptions (OBIs) remains a significant
challenge for existing commercial diffusion models. Figure 3.4 showcases sev-
eral examples generated using Stable Diffusion 1.5, Stable Diffusion 3.0, Sta-
ble Diffusion XL, Flux, and DALL·E 3 models with the text prompt “Oracle
Bone Characters, Tree.”. These outputs consistently fail to capture the intri-
cate pictographic and stylistic characteristics of OBIs. The generated images
lack the semantic and structural precision required for accurate OBIs repre-
sentation, producing results that neither reflect the intended glyph shapes
nor exhibit the aesthetic qualities of oracle bone inscriptions.
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Figure 3.4: Bad examples of OBI-style glyphs generated using Stable Diffu-
sion 1.5, Stable Diffusion 3.0, Stable Diffusion XL, Flux, and DALL·E 3 with
the text prompt “Oracle Bone Characters, Tree.” These examples highlight
the models’ inability to capture the stylistic and semantic characteristics of
OBIs.

3.5 ControlNet

ControlNet [8] builds upon the foundational work of Latent Diffusion Mod-
els (LDMs) and its practical implementation, Stable Diffusion. While LDMs
introduced the idea of performing diffusion in a perceptually compressed la-
tent space, Stable Diffusion enhanced this concept by leveraging significantly
larger datasets, refined text encoders, and multi-resolution training strate-
gies. Specifically, Latent Diffusion was trained on the LAION-400M dataset,
whereas Stable Diffusion utilized the much larger LAION-2B-en dataset. The
latter also incorporated data curation techniques, such as filtering out water-
marked images and prioritizing images with high aesthetic scores, to improve
data quality. In addition, Stable Diffusion adopted a pretrained CLIP text
encoder for text conditioning, which proved superior to the randomly initial-
ized transformer used in LDMs. Another key improvement was the training
strategy: while Latent Diffusion was trained only at 256 × 256 resolution,
Stable Diffusion was first pretrained at 256 × 256 and then fine-tuned at
512× 512, resulting in significantly better high-resolution outputs.

ControlNet extends these advancements by enabling task-specific condi-
tions to be incorporated into pretrained diffusion models, allowing for more
precise control over image generation. Figure 3.5 illustrates the ControlNet
framework, which introduces and integrates task-specific conditional inputs,
such as edge maps, depth maps, or keypoint annotations, into the interme-
diate layers of the U-Net architecture. This integration is carefully designed
to preserve the pretrained capabilities of Stable Diffusion while allowing the
model to adapt flexibly to diverse tasks. The additional conditions are pro-
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Figure 3.5: The framework of ControlNet, illustrates how task-specific con-
ditions are injected into the network via the training copy to control the
generative process. This mechanism preserves the pretrained model’s capa-
bilities while adapting to new tasks.

cessed through dedicated layers that inject external guidance signals directly
into the generative process, ensuring seamless adaptation to new inputs with-
out disrupting the original model’s behavior.

The results of incorporating various conditional inputs into ControlNet
are illustrated in Figure 3.6. For example, when edge maps are provided as
conditions, ControlNet effectively reconstructs structural details while gener-
ating realistic textures and colors that adhere to the given edges. Similarly,
depth maps allow the model to synthesize images with coherent depth and
perspective, enhancing scene realism. Keypoint annotations, such as those
produced by OpenPose, guide the generation of human figures, ensuring ac-
curate poses and limb placements. Segmentation maps enable layout-specific
synthesis, ensuring that different regions in the image correspond to their
intended semantic labels.
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Figure 3.6: Examples of ControlNet results with various conditional inputs,
including Inpaint, Canny, Lineart, OpenPose, Scribble, and Anime Line-art.
These conditions enable diverse and precise control over the image generation
process.
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These examples demonstrate ControlNet’s remarkable versatility and adapt-
ability. The ability to condition the diffusion process with multimodal inputs
allows for a wide range of creative and practical applications. For instance,
edge-to-image generation can assist in artistic design, depth-to-image syn-
thesis can aid in realistic scene rendering, and pose-to-image generation is
particularly valuable for character design and animation. The seamless in-
tegration of these diverse modalities highlights the robustness and flexibility
of ControlNet as an extension of Stable Diffusion, making it a powerful tool
for controlled and specialized image synthesis.

3.5.1 ControlNet Scribble

ControlNet Scribble is a powerful feature of the ControlNet framework that
uses freehand sketches as guiding inputs for image generation. Unlike other
conditional inputs, such as edge maps or depth maps, scribbles provide a
highly intuitive and flexible way for users to define the structure and layout
of the desired image. This functionality proves especially useful in contexts
requiring rapid conceptualization and prototyping of visual ideas, establish-
ing it as an essential tool in both artistic and scientific workflows.

The core functionality of ControlNet Scribble lies in its ability to interpret
rough, hand-drawn sketches as structural constraints during the diffusion
process. By injecting these sketches into the intermediate layers of the U-Net
architecture, ControlNet ensures that the generated image adheres closely to
the provided outline while simultaneously producing realistic textures, colors,
and details. This approach bridges the gap between rough drafts and polished
outputs, enabling precise and controlled image synthesis from highly abstract
inputs.
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Chapter 4

Proposed Model

To solve the challenge of maintaining both stylistic fidelity and semantic
accuracy in OBI-style image generation, this thesis proposes DiffOBI, a two-
stage framework that integrates modern generative diffusion models with
refinement techniques, which represents a significant advancement in gen-
erating OBI-style images. The first stage of the framework, the generation
module, is built upon ControlNet, which incorporates conditional inputs such
as text prompts and object images into the diffusion process. This ensures
that the generated images align with both the stylistic characteristics of OBIs
and the contextual requirements specified by the user. The second stage, the
refinement module, applies a suite of post-processing techniques, including
binary optimization, impurity filtration, edge refinement, and resolution en-
hancement. These processes collaboratively enhance both the visual quality
and structural precision of the generated images, refining initial outputs into
well-defined results. As illustrated in Figure 4.1, this iterative refinement
ensures that the final images adhere closely to the stylistic and structural
characteristics of OBIs.

4.1 Generation Module

The generation module is the key contribution of DiffOBI, leveraging the
capabilities of ControlNet [8] to integrate conditional controls into the image
generation process. ControlNet can enhance the functionality of Stable Diffu-
sion by introducing additional inputs, such as text descriptions and reference
images, which guide the diffusion process and ensure that the generated out-
puts meet specific stylistic and contextual requirements.

ControlNet operates by freezing the weights of the pretrained model
N(x; Θ), where x represents the input features and Θ are the model pa-
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Figure 4.1: Overview of the DiffOBI framework. The two-stage process
includes a generation stage using ControlNet for conditional OBIs image
synthesis and a refinement stage to enhance visual quality and structural
accuracy.

rameters. A trainable copy N(x; Θc) is introduced, with Θc representing the
trainable parameters adapted for task-specific conditions. Zero convolution
layers, represented as Z(c; Θz), are used to incorporate control conditions c
into the model. The final output yc is calculated as follows:

yc = N(x; Θ) + Z (N (x+ Z(c; Θz1); Θc) ; Θz2) , (4.1)

where Θz1 and Θz2 are the parameters of the zero convolution layers respon-
sible for injecting and processing the control conditions.

During the generation process, text prompts are encoded into latent rep-
resentations τθ, which capture the semantic context of the desired output.
Simultaneously, reference object images are encoded into latent features cf ,
providing structural guidance. These inputs are combined with random la-
tent noise zt, which is iteratively refined by the diffusion model:

zt−1 = ϕθ(zt, t, cf , τθ), (4.2)

where zt represents the noisy latent state at time step t, ϕθ is the denoising
function parameterized by θ, and t denotes the timestep. This iterative
process ensures that the generated image transitions from noise to a coherent
and detailed OBI-style representation. By the end of the diffusion process,
the latent representation z0 is decoded into an initial OBI-style image.

The generation module is designed to capture the intricate patterns and
textures characteristic of OBIs. By incorporating additional controls, such as
reference images and text prompts, DiffOBI provides the flexibility to tailor
the outputs to specific artistic or contextual requirements. This module forms
the foundation for producing high-quality initial results, which are further
refined in the subsequent module.
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Figure 4.2: The generation module of DiffOBI utilizes ControlNet to inte-
grate textual prompts and conditional image inputs into the stable diffusion.
This process ensures the production of preliminary OBI-style images with
structural and semantic guidance.

4.2 Refinement Module

As shown in Figure 4.3, the refinement module applies sequential processing
steps, including binary optimization, impurity filtration, Gaussian smooth-
ing, and resolution optimization. Each step improves the quality and clarity
of the OBI-style images, with intermediate results visualized for better un-
derstanding. The refinement module addresses the limitations and imperfec-
tions of the initial results produced by the generation module. This module
employs a series of post-processing techniques to enhance the visual quality,
structural integrity, and overall appeal of the generated images.

The first step in the refinement process is binary optimization. This
step separates the OBIs patterns from the background using a pixel-based
binarization technique. Each pixel value P (x, y) in the image is compared to
a predefined threshold T and transformed as follows:

P ′(x, y) =

{
0, if P (x, y) < T,

255, if P (x, y) ≥ T.
(4.3)

Here, P (x, y) is the original pixel intensity, P ′(x, y) is the binarized intensity,
and T is the threshold value. After testing multiple thresholds, T = 50 was
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Figure 4.3: The refinement module applies a sequence of post-processing
steps: binary optimization separates patterns from the background, impu-
rity filtration removes artifacts, Gaussian smoothing enhances edges, and
resolution optimization improves clarity. Each step’s output is shown along-
side a zoomed-in view of a specific region.

found to provide the optimal balance between detail preservation and noise
reduction in this work.

Impurity filtration removes artifacts such as dark corners introduced dur-
ing training. This process is based on a flood-filling algorithm implemented
as:

if I(y, x) < 50, then floodFill(I,M, (x, y), 255, loDiff = 0, upDiff = 100),
(4.4)

where I(y, x) is the pixel intensity at coordinates (x, y), M is the mask array,
and (x, y) is the seed pixel. The flood fill algorithm begins at a specified seed
point and replaces connected pixels that satisfy the intensity difference con-
straints defined by loDiff and upDiff. The seed point is set to four vertices,
and the replacement value is set to 255 (white), ensuring that unwanted dark
regions are effectively removed, resulting in a cleaner image.

Edge refinement is implemented using Gaussian smoothing to enhance
the continuity and coherence of the OBIs patterns. The Gaussian function
is defined as:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (4.5)

where G(x, y) represents the Gaussian kernel value at position (x, y), and σ
controls the degree of smoothing. This operation reduces pixel-level irreg-
ularities while preserving the overall structure of the inscriptions, ensuring
smooth and visually appealing edges.

Resolution enhancement is achieved through bilateral filtering, which
combines spatial and range kernels to smooth intensity differences while pre-
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serving edges. The filtering process is expressed as:

I∗(p) =
1

Wp

∑
pi∈S

I(pi) · fr(|I(pi)− I(p)|) · fs(|pi − p|), (4.6)

where I(p) and I∗(p) represent the original and filtered intensities, pi denotes
neighboring pixels, S is the spatial domain, fr is the range kernel controlling
intensity similarity, fs is the spatial kernel controlling proximity, and Wp is
a normalization factor ensuring the sum of the weights is equal to 1.

Combining all the above functions together, these refinement techniques
transform the preliminary results into polished and high-quality OBI-style
images. By addressing common artifacts and imperfections, the refinement
module ensures that the outputs are visually consistent, structurally accu-
rate, and contextually appropriate. This comprehensive approach makes
DiffOBI a reliable and versatile tool for generating OBI-style images for ap-
plications in cultural heritage preservation, artistic reinterpretation, and his-
torical research.
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Chapter 5

Dataset Construction

The construction of a novel dataset forms the cornerstone of this research,
addressing the limitations of existing datasets in the domain of OBIs. Pre-
vious datasets, while instrumental in advancing the study of OBIs, have
notable shortcomings. They often lack meaningful contextual alignment be-
tween OBIs and real-world representations, making it difficult to leverage
modern generative models for stylistically faithful and semantically coherent
image generation. Another significant limitation is the absence of detailed
textual explanations for deciphered OBIs. This motivated the creation of a
dataset that bridges these gaps, enabling conditional generation by aligning
OBIs with textual prompts and real-world representations.

To construct the dataset, the EVOBC dataset [6] was utilized, a rich
repository containing diverse OBIs and their associated meanings. A total of
44 different groups of OBIs were selected from this resource, each consisting of
3-5 images, resulting in 180 unique OBIs. These groups were carefully chosen
to represent a wide range of glyph styles and semantic contexts, ensuring
comprehensive coverage of both pictorial and textual diversity.

For each oracle bone inscription, textual meanings were researched by
consulting authoritative books and verified online resources. These meanings
were then paired with their corresponding OBIs images to create semantic-
text prompts. Using these text prompts and the OBIs images as inputs, a pre-
trained ControlNet Scribble model was employed to generate aligned images.
This approach enabled the synthesis of object images that remain faithful
to the semantic essence and stylistic characteristics of the original OBIs.
Figure 5.1 illustrates this process, showcasing the workflow for generating
aligned images from OBIs data and their associated meanings.

The generated dataset comprises 180 pairs, each consisting of the original
OBIs image, its textual meaning as a prompt, and the corresponding aligned
image generated by ControlNet. To facilitate training and evaluation, the
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Figure 5.1: Framework for generating aligned images from original OBIs and
their textual meanings using ControlNet. The pipeline ensures semantic and
stylistic alignment between OBIs and their generated representations.

dataset was divided into two subsets: 150 pairs were allocated to the train-
ing set, and 30 pairs were reserved for the test set. This stratified division
ensures a robust experimental setup, allowing for both model training and
the assessment of generalization performance.

To provide an overview of the dataset, a subset of the training and testing
images is shown in Fig. 5.2. This visualization highlights the diversity of the
dataset, showcasing the alignment between OBIs, their textual prompts, and
the generated images.

By constructing this dataset, the critical need for aligning OBIs with real-
world representations is addressed, paving the way for improved conditional
generative modeling. The dataset’s combination of original OBIs, textual
prompts, and aligned images may play a significant advancement in facilitat-
ing research on OBIs and their stylistic and semantic transformations.
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Figure 5.2: Sample images from the training set (a) and test set (b) of the
constructed dataset, demonstrating the diversity of OBIs and its consistency
with textual prompts and the aligned images generated from ControlNet.
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Chapter 6

Results and Evaluation

In this chapter, the implementation of the generative model is detailed, fo-
cusing on training strategies, data augmentation, and the computational
setup used to achieve high-quality results. The performance of the proposed
DiffOBI framework is evaluated through both qualitative and quantitative
analyses. The qualitative evaluation, presented in Section 6.2, examines the
model’s ability to reconstruct existing oracle bone characters, generate novel
characters, and produce diverse stylistic variations, emphasizing its fidelity
to the aesthetic and semantic features of OBIs. The quantitative evalua-
tion, detailed in Section 6.3, compares the proposed model against baseline
approaches, including pix2pix[17], CycleGAN[25], and IP-Adapter[26], us-
ing metrics such as Fréchet Inception Distance (FID), CLIP Image-Image
Similarity (CLIP-I), and Neural Image Assessment (NIMA). Furthermore,
Section 6.4 highlights the results of a user preference study, providing in-
sights into the subjective evaluations of image quality, stylistic fidelity, and
semantic consistency from participants. Finally, these evaluations demon-
strate the robustness and versatility of DiffOBI in generating high-quality
OBI-style images while preserving their cultural and artistic significance.

6.1 Implementation Details

The process of training ControlNet to generate OBI-style images involved
multiple stages to ensure alignment between the textual and visual charac-
teristics of the dataset. During the training phase, the previously generated
aligned images were used as source images, while the corresponding OBIs
served as target images. The textual meanings associated with the ”Oracle
Bone Character” were combined with the original text prompts to create
enhanced prompts, improving the semantic relevance and diversity of the
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training data.
The stable diffusion model (v2-1-512-ema-pruned) was employed as the

foundational architecture for training the ControlNet. This pre-trained model
provided a robust generative framework, enabling the integration of OBIs
characteristics while retaining the semantic fidelity of the aligned images.
To address the challenges posed by the limited dataset size, data augmenta-
tion techniques were applied, including random horizontal and vertical flips,
rotations in multiples of 45°, random cropping, and resizing operations. Ad-
ditionally, random adjustments to brightness, contrast, saturation, and tone
were introduced to create variations in lighting and color distribution. These
augmentations not only increased the effective size of the training dataset
but also improved the model’s generalization to diverse visual conditions.
Figure 6.1 presents a sample of the augmented training dataset, where the
top row displays real-world aligned images, and the bottom row shows the
corresponding OBIs.

Figure 6.1: Sample images from the training dataset showcasing both the
generated aligned real-world images and their corresponding oracle bone in-
scriptions (OBIs).

To ensure optimal learning, the model underwent 1,500 epochs of training,
with a batch size of 4, leveraging the computational power of an NVIDIA
A100 GPU.

6.2 Qualitative Evaluation

In this section, a qualitative evaluation of the proposed DiffOBI framework
is presented, focusing on three critical aspects: the reconstruction of existing
characters, the generation of novel characters, and the diversity of styles in
the generated outputs. These evaluations demonstrate the versatility and
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fidelity of the model in producing stylistically consistent and semantically
accurate OBIs.

6.2.1 Reconstruction of Existing Characters

To evaluate the model’s performance in reconstructing existing characters,
its outputs were compared with those from IP-Adapter[26], pix2pix[17], and
CycleGAN[25]. As shown in Fig. 6.2, the proposed model effectively preserves
both the semantic integrity and stylistic characteristics of OBIs. This high
fidelity in reconstruction highlights the model’s ability to retain essential
features of the original inscriptions.

Figure 6.2: Results of generated images of objects (first row from training
dataset, the others from the test dataset).
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6.2.2 Generation of Novel Characters

The ability of the proposed model to generate novel characters not present
in the original dataset was also assessed, such as “bike”, “fuji”, “ice cream”,
“Eiffel Tower”, “ice coffee”. The results, depicted in Fig. 6.3, showcase the
model’s capacity to produce outputs that adhere to the stylistic norms of
OBIs while introducing new semantic content. This demonstrates the model’s
potential to expand the creative possibilities of OBIs generation by synthe-
sizing unique objects that align with traditional aesthetics.

6.2.3 Diversity of Styles in Generated Outputs

The diversity of styles in the generated outputs was evaluated by examining
the model’s ability to produce stylistic variations for the same item using
identical prompts. For example, variations were explored for items such as
“oracle bone character, lamp.” As shown in Fig. 6.4, the model success-
fully captured both the semantic essence and stylistic diversity of the inputs.
These results highlight the model’s capability to generate outputs that are
not only diverse but also consistent with the traditional OBIs aesthetic.

6.3 Quantitative Evaluation

To assess the performance of the proposed model, a quantitative evaluation
was conducted using three widely recognized metrics: Fréchet Inception Dis-
tance (FID), CLIP Image-Image similarity (CLIP-I), and Neural Image As-
sessment (NIMA). These metrics were used to compare the proposed model
with IP-Adapter[26], pix2pix[17], and CycleGAN[25].

Table 6.1: Quantitative comparison results.

pix2pix CycleGAN IP-Adapter Ours

FID (↓) 367.39 316.90 404.08 249.63
CLIP-I (↑) 0.79 0.76 0.56 0.81
NIMA (↑) 4.34 4.75 4.48 5.03

The Fréchet Inception Distance (FID) metric quantifies the distance be-
tween the generated images and the original dataset in terms of feature dis-
tributions, with lower scores indicating higher visual fidelity. As shown in
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Figure 6.3: Results of generated images of objects not present in the original
dataset.

Table 6.1, the proposed model achieved the lowest FID score of 249.63, signif-
icantly outperforming pix2pix (367.39), CycleGAN (316.90), and IP-Adapter
(404.08), highlighting the superior visual quality of the generated images.

The CLIP Image-Image Similarity (CLIP-I) metric measures the semantic
similarity between the generated and reference images, where higher scores
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Figure 6.4: Examples of generated images showing stylistic variation within
a single category.

indicate better alignment with the input prompts and reference images. The
proposed model achieved the highest CLIP-I score of 0.81, surpassing pix2pix
(0.79), CycleGAN (0.76), and IP-Adapter (0.56). This result demonstrates
the model’s capability to produce semantically coherent images that closely
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align with the intended input descriptions.
The Neural Image Assessment (NIMA) metric evaluates the aesthetic

quality of the generated images on a scale from 1 to 10, with higher scores
reflecting better visual presentation. The proposed model achieved a NIMA
score of 5.03, outperforming pix2pix (4.34), CycleGAN (4.75), and IP-Adapter
(4.48), indicating that the generated images exhibit the highest aesthetic
quality among the compared methods.

The quantitative evaluation demonstrates the superiority of the proposed
model across all three metrics. By achieving the lowest FID score, highest
CLIP-I score, and best NIMA score, this approach establishes a new bench-
mark for generating high-quality, semantically coherent, and aesthetically
refined images in the domain of OBIs generation.

6.4 User Preference Study

To further assess the effectiveness of the proposed model, a user preference
study was conducted, comparing it with three other generative models: IP-
Adapter (based on diffusion models), pix2pix, and CycleGAN (both utilizing
GAN structures). Each model was trained using the same dataset to ensure
a fair evaluation. The study aimed to assess two key criteria: fidelity to the
oracle bone inscription (OBI) style and the similarity between the original
and generated OBI-style images. The questionnaire used for this study can
be found in the Appendix.

Table 6.2: The comparison results from user preference study.

pix2pix CycleGAN IP-Adapter Ours

Selection rate/% 33.75 17.75 4.50 44.00
Average score 2.46 3.11 1.69 3.54

Initially, 100 participants were introduced to the distinctive morphology
and characteristics of OBIs, as detailed in Appendix 7.2. This familiarization
process ensured that they could effectively assess the generated images. Par-
ticipants were then presented with a set of 16 images (four from each model)
and asked to select the four images that best represented the OBI-style, as
outlined in Appendix 7.2. The proposed model was selected in 44.00% of the
choices, significantly outperforming pix2pix (33.75%), CycleGAN (17.75%),
and IP-Adapter (4.50%). This strong preference underscores the model’s
superior ability to capture the essence of OBIs.
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To further validate the results, participants rated the similarity between
the generated OBI-style images and their corresponding originals on a scale
of 1 (very poor) to 5 (very good), as described in Appendix 7.2. The proposed
model achieved the highest average score of 3.54, surpassing pix2pix (2.46),
CycleGAN (3.11), and IP-Adapter (1.69). These ratings, summarized in
Table 6.2, confirm that this approach not only adheres to the stylistic norms
of OBIs but also maintains a closer resemblance to the original images.

These results highlight the effectiveness of the proposed model in gen-
erating high-quality OBI-style images. By achieving the highest selection
rate and average similarity score, this approach demonstrates its potential
for practical applications in digital art and cultural preservation.
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Chapter 7

Conclusion

In this thesis, DiffOBI, a novel two-stage framework for generating OBI-
style images using diffusion models, was proposed. The approach ensures
stylistic accuracy and semantic relevance by leveraging a dataset compris-
ing original OBIs images, corresponding real-world objects, and descriptive
textual prompts. The refinement module further enhances the initial out-
puts, aligning them more closely with the traditional structure and norms of
OBIs. Experimental results demonstrate the high visual quality and strong
user preference for the generated images, underscoring the effectiveness of
the proposed method.

Despite these achievements, DiffOBI faces certain challenges, particularly
in generating multi-object images and maintaining stylistic consistency. Ad-
dressing these limitations in future work will further enhance the capabilities
of OBI-style image generation. Ultimately, DiffOBI represents a step for-
ward at the intersection of cultural heritage preservation and generative AI,
offering new possibilities for both artistic and academic exploration.

7.1 Limitations

While the DiffOBI framework demonstrated significant advancements in gen-
erating OBI-style images, certain limitations remain. One of the primary
challenges lies in generating multi-object images as shown in Fig 7.1, where
“man” is missing in the upper case and only “house” is generated in its corre-
sponding position. In the lower case, “man” and “dog” are interpreted as one
object resulting in only one OBI-style image being generated as well. This
limitation arises from the single-object-focused nature of the training data,
which constrains the model’s ability to seamlessly synthesize complex compo-
sitions. Additionally, variations in brushstrokes and stylistic inconsistencies
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can lead to discrepancies between the generated images and the ground truth.
These issues highlight the need for further refinement in handling stylistic
diversity and structural complexity inherent to OBIs.

Figure 7.1: Example of a failure case generating inconsistent results for the
number of targets in the multi-target case.

7.2 Future Work

To address the limitations identified in this study, several avenues for future
work can be considered. First, improving the stability of multi-object genera-
tion is a key objective. This involves leveraging the newly developed dataset,
which integrates semantic and contour-based segmentation tools to facilitate
the segmentation and annotation of multi-object compositions. As shown in
Fig. 7.2, this dataset includes progress on multi-object segmentation, dis-
playing original characters (first column), segmented regions (subsequent
columns), and annotations for each segmented part. These advancements
lay the groundwork for enhancing the model’s ability to generate complex
multi-object OBIs compositions.

Additionally, Additionally, exploring suitable evaluation metrics that bet-
ter quantify the diversity and fidelity of generated OBI-style is a key objec-
tive. Metrics tailored to capture the subtleties of brushstroke variations and
stylistic coherence will be essential for evaluating future iterations of DiffOBI.
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Figure 7.2: Visualization of the multi-object dataset progress, including orig-
inal characters (first column), segmented regions (subsequent columns), and
their respective annotations.

Furthermore, incorporating the historical evolution of OBIs characters into
the generation process presents an intriguing research direction. By modeling
the transformations of OBIs characters over time, the cultural and historical
significance of the generated outputs can be further enriched.

51



Acknowledgement

I would like to begin by expressing my deepest gratitude to my supervi-
sor, Prof. Haoran Xie, for his invaluable guidance and unwavering support
throughout my research journey. Prof. Xie’s profound knowledge and in-
sightful feedback have significantly shaped the direction and quality of this
work. His emphasis on rigor and clarity has instilled in me a deeper appre-
ciation for academic excellence and meticulous research.

I am also sincerely grateful to all the members of our lab for their collab-
oration and support. Their constructive feedback during lab meetings and
willingness to share ideas have greatly contributed to this research. Special
thanks to my peers who provided assistance and encouragement, creating a
collaborative and motivating environment.

Finally, I wish to extend my heartfelt thanks to my family, whose encour-
agement and unwavering support have been a constant source of strength
and inspiration. Their belief in my abilities has been instrumental in helping
me navigate the challenges of this journey.

52



References

[1] X. Yue, H. Li, Y. Fujikawa, and L. Meng, “Dynamic dataset augmenta-
tion for deep learning-based oracle bone inscriptions recognition,” ACM
Journal on Computing and Cultural Heritage, vol. 15, no. 4, pp. 1–20,
2022.

[2] B. Li, D. Luo, Y. Liang, J. Yang, Z. Ding, X. Peng, B. Jiang, S. Han,
D. Sui, P. Qin et al., “Oracle bone inscriptions multi-modal dataset,”
arXiv preprint arXiv:2407.03900, 2024.

[3] P. Wang, K. Zhang, X. Wang, S. Han, Y. Liu, J. Wan, H. Guan,
Z. Kuang, L. Jin, X. Bai et al., “An open dataset for oracle bone char-
acter recognition and decipherment,” Scientific Data, vol. 11, no. 1, p.
976, 2024.

[4] S. Huang, H. Wang, Y. Liu, X. Shi, and L. Jin, “Obc306: A large-
scale oracle bone character recognition dataset,” in 2019 International
Conference on Document Analysis and Recognition (ICDAR). IEEE,
2019, pp. 681–688.

[5] B. Li, Q. Dai, F. Gao, W. Zhu, Q. Li, and Y. Liu, “Hwobc-a handwrit-
ing oracle bone character recognition database,” in Journal of Physics:
Conference Series, vol. 1651, no. 1. IOP Publishing, 2020, p. 012050.

[6] H. Guan, J. Wan, Y. Liu, P. Wang, K. Zhang, Z. Kuang, X. Wang,
X. Bai, and L. Jin, “An open dataset for the evolution of oracle bone
characters: Evobc,” arXiv preprint arXiv:2401.12467, 2024.

[7] Y. Li, H. Liu, Q. Wu, F. Mu, J. Yang, J. Gao, C. Li, and Y. J. Lee,
“Gligen: Open-set grounded text-to-image generation,” arXiv preprint
arXiv:2301.07093, 2023.

[8] L. Zhang and M. Agrawala, “Adding conditional control to text-to-image
diffusion models,” arXiv preprint arXiv:2302.05543, 2023.

53



[9] M. L. Huang, R. Zhao, J. Hua, Q. V. Nguyen, W. Huang, and J. Wang,
“Designing infographics/visual icons of social network by referencing
to the design concept of ancient oracle bone characters,” in 2020 24th
International Conference Information Visualisation (IV). IEEE, 2020,
pp. 694–699.

[10] Y. Chen and S. A. Sharudin, “Research on the application of chinese
traditional carved symbols in cultural and creative product design,” In-
ternational Journal of Education and Humanities, vol. 13, no. 2, pp.
92–95, 2024.

[11] C. Bazerman, Handbook of research on writing: History, society, school,
individual, text. Routledge, 2009.

[12] J. Li, Q.-F. Wang, K. Huang, X. Yang, R. Zhang, and J. Y. Goulermas,
“Towards better long-tailed oracle character recognition with adversarial
data augmentation,” Pattern Recognition, vol. 140, p. 109534, 2023.

[13] J. Li, Q.-F. Wang, K. Huang, R. Zhang, and S. Wang, “Diff-oracle:
Diffusion model for oracle character generation with controllable styles
and contents,” 2023.

[14] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2022, pp. 10 684–10 695.

[15] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli,
“Deep unsupervised learning using nonequilibrium thermodynamics,”
in International Conference on Machine Learning. PMLR, 2015, pp.
2256–2265.

[16] J. Guo, C. Wang, E. Roman-Rangel, H. Chao, and Y. Rui, “Building
hierarchical representations for oracle character and sketch recognition,”
IEEE Transactions on Image Processing, vol. 25, no. 1, pp. 104–118,
2015.

[17] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image transla-
tion with conditional adversarial networks,” 2018.

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial net-
works,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

54



[19] X. Chang, F. Chao, C. Shang, and Q. Shen, “Sundial-gan: A cascade
generative adversarial networks framework for deciphering oracle bone
inscriptions,” in Proceedings of the 30th ACM International Conference
on Multimedia, 2022, pp. 1195–1203.

[20] M. Wang, Y. Cai, L. Gao, R. Feng, Q. Jiao, X. Ma, and Y. Jia, “Study
on the evolution of chinese characters based on few-shot learning: From
oracle bone inscriptions to regular script,” Plos one, vol. 17, no. 8, p.
e0272974, 2022.

[21] X. Fu, R. Zhou, X. Yang, and C. Li, “Detecting oracle bone inscriptions
via pseudo-category labels,” Heritage Science, vol. 12, no. 1, p. 107,
2024.

[22] Z. Guo, Z. Zhou, B. Liu, L. Li, Q. Jiao, C. Huang, and J. Zhang, “An
improved neural network model based on inception-v3 for oracle bone
inscription character recognition,” Scientific Programming, vol. 2022,
no. 1, p. 7490363, 2022.

[23] X. Xie, X. Du, M. Li, X. Yang, and H. Xie, “Diffobi: Diffusion-based
image generation of oracle bone inscription style characters,” in SIG-
GRAPH Asia 2024 Technical Communications, 2024, pp. 1–4.

[24] T. Brooks, A. Holynski, and A. A. Efros, “Instructpix2pix: Learning
to follow image editing instructions,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp.
18 392–18 402.

[25] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” 2020.

[26] H. Ye, J. Zhang, S. Liu, X. Han, and W. Yang, “Ip-adapter: Text
compatible image prompt adapter for text-to-image diffusion models,”
2023.

[27] Y. Fujikawa, H. Li, X. Yue, C. Aravinda, G. A. Prabhu, and L. Meng,
“Recognition of oracle bone inscriptions by using two deep learning mod-
els,” International Journal of Digital Humanities, vol. 5, no. 2, pp. 65–
79, 2023.

[28] X. Fu, Z. Yang, Z. Zeng, Y. Zhang, and Q. Zhou, “Improvement of oracle
bone inscription recognition accuracy: A deep learning perspective,”
ISPRS International Journal of Geo-Information, vol. 11, no. 1, p. 45,
2022.

55



[29] C. Zhang, R. Zong, S. Cao, Y. Men, and B. Mo, “Ai-powered oracle
bone inscriptions recognition and fragments rejoining,” in Proceedings
of the Twenty-Ninth International Conference on International Joint
Conferences on Artificial Intelligence, 2021, pp. 5309–5311.

[30] F. Gao, J. Zhang, Y. Liu, and Y. Han, “Image translation for oracle
bone character interpretation,” Symmetry, vol. 14, no. 4, p. 743, 2022.

[31] Y. Gao, Y. Guo, Z. Lian, Y. Tang, and J. Xiao, “Artistic glyph im-
age synthesis via one-stage few-shot learning,” ACM Transactions on
Graphics (ToG), vol. 38, no. 6, pp. 1–12, 2019.

[32] Y. Zhang, Y. Zhang, and W. Cai, “Separating style and content for
generalized style transfer,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 8447–8455.

[33] S. Park, S. Chun, J. Cha, B. Lee, and H. Shim, “Few-shot font generation
with localized style representations and factorization,” in Proceedings of
the AAAI conference on artificial intelligence, vol. 35, no. 3, 2021, pp.
2393–2402.

[34] Y. Xie, X. Chen, L. Sun, and Y. Lu, “Dg-font: Deformable genera-
tive networks for unsupervised font generation,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2021,
pp. 5130–5140.

[35] C. Wang, M. Zhou, T. Ge, Y. Jiang, H. Bao, and W. Xu, “Cf-font:
Content fusion for few-shot font generation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 1858–1867.

[36] W. Liu, F. Liu, F. Ding, Q. He, and Z. Yi, “Xmp-font: Self-supervised
cross-modality pre-training for few-shot font generation,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recogni-
tion, 2022, pp. 7905–7914.

[37] A. Egorov, M. Egorova, and T. Orlova, “The use of a comparative
analysis of the connection between ancient and modern chinese
languages in the process of teaching students chinese characters,”
in Proceedings of the 2nd International Conference on Education:
Current Issues and Digital Technologies (ICECIDT 2022). Atlantis
Press, 2022, pp. 10–19. [Online]. Available: https://doi.org/10.2991/
978-2-494069-02-2 3

56

https://doi.org/10.2991/978-2-494069-02-2_3
https://doi.org/10.2991/978-2-494069-02-2_3


[38] L. Tang, Y. Cai, J. Liu, Z. Hong, M. Gong, M. Fan, J. Han, J. Liu,
E. Ding, and J. Wang, “Few-shot font generation by learning fine-grained
local styles,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2022, pp. 7895–7904.

[39] M. Jaweed and R. F. Shaikh, “Optimizing generative ai by overcoming
stability mode collapse and quality challenges in gans and vaes,” MSW
Management Journal, vol. 34, no. 2, pp. 497–507, 2024.

[40] D. Rezende and S. Mohamed, “Variational inference with normalizing
flows,” in International conference on machine learning. PMLR, 2015,
pp. 1530–1538.

[41] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, F. Huang et al., “A
tutorial on energy-based learning,” Predicting structured data, vol. 1,
no. 0, 2006.

[42] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[43] D. P. Kingma, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[44] A. Radford, “Unsupervised representation learning with deep
convolutional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[45] Y. Zhang, Z. Yin, Y. Li, G. Yin, J. Yan, J. Shao, and Z. Liu, “Celeba-
spoof: Large-scale face anti-spoofing dataset with rich annotations,”
in Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XII 16. Springer, 2020,
pp. 70–85.

[46] C. Vondrick, A. Shrivastava, A. Fathi, S. Guadarrama, and K. Murphy,
“Tracking emerges by colorizing videos,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 391–408.

[47] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative
adversarial nets with policy gradient,” in Proceedings of the AAAI con-
ference on artificial intelligence, vol. 31, no. 1, 2017.

[48] J. Tan, L. Jing, Y. Huo, L. Li, O. Akin, and Y. Tian, “Lgan: Lung
segmentation in ct scans using generative adversarial network,” Com-
puterized Medical Imaging and Graphics, vol. 87, p. 101817, 2021.

57



[49] S. Nema, A. Dudhane, S. Murala, and S. Naidu, “Rescuenet: An un-
paired gan for brain tumor segmentation,” Biomedical Signal Processing
and Control, vol. 55, p. 101641, 2020.

[50] D. P. Kingma, S. Mohamed, D. Jimenez Rezende, and M. Welling,
“Semi-supervised learning with deep generative models,” Advances in
neural information processing systems, vol. 27, 2014.

[51] C. Louizos, K. Swersky, Y. Li, M. Welling, and R. Zemel, “The varia-
tional fair autoencoder,” arXiv preprint arXiv:1511.00830, 2015.

[52] J. Bao, D. Chen, F. Wen, H. Li, and G. Hua, “Cvae-gan: fine-grained
image generation through asymmetric training,” in Proceedings of the
IEEE international conference on computer vision, 2017, pp. 2745–2754.

[53] I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin, D. Vazquez,
and A. Courville, “Pixelvae: A latent variable model for natural images,”
arXiv preprint arXiv:1611.05013, 2016.

[54] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf, “Wasserstein
auto-encoders,” arXiv preprint arXiv:1711.01558, 2017.

[55] A. Vahdat and J. Kautz, “Nvae: A deep hierarchical variational autoen-
coder,” Advances in neural information processing systems, vol. 33, pp.
19 667–19 679, 2020.

[56] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic mod-
els,” Advances in Neural Information Processing Systems, vol. 33, pp.
6840–6851, 2020.

[57] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and
B. Poole, “Score-based generative modeling through stochastic differen-
tial equations,” arXiv preprint arXiv:2011.13456, 2020.

[58] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchi-
cal text-conditional image generation with clip latents,” arXiv preprint
arXiv:2204.06125, 2022.

[59] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton,
K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans
et al., “Photorealistic text-to-image diffusion models with deep language
understanding,” Advances in Neural Information Processing Systems,
vol. 35, pp. 36 479–36 494, 2022.

58



[60] C. Saharia, W. Chan, H. Chang, C. Lee, J. Ho, T. Salimans, D. Fleet,
and M. Norouzi, “Palette: Image-to-image diffusion models,” in ACM
SIGGRAPH 2022 conference proceedings, 2022, pp. 1–10.

[61] G. Couairon, J. Verbeek, H. Schwenk, and M. Cord, “Diffedit: Diffusion-
based semantic image editing with mask guidance,” arXiv preprint
arXiv:2210.11427, 2022.

[62] Y. Balaji, S. Nah, X. Huang, A. Vahdat, J. Song, Q. Zhang, K. Kreis,
M. Aittala, T. Aila, S. Laine et al., “ediff-i: Text-to-image diffu-
sion models with an ensemble of expert denoisers,” arXiv preprint
arXiv:2211.01324, 2022.

[63] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman,
“Dreambooth: Fine tuning text-to-image diffusion models for subject-
driven generation,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 2023, pp. 22 500–22 510.

[64] A. Nichol, H. Jun, P. Dhariwal, P. Mishkin, and M. Chen, “Point-e: A
system for generating 3d point clouds from complex prompts,” arXiv
preprint arXiv:2212.08751, 2022.

[65] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall, “Dreamfusion: Text-
to-3d using 2d diffusion,” arXiv preprint arXiv:2209.14988, 2022.

[66] C.-H. Lin, J. Gao, L. Tang, T. Takikawa, X. Zeng, X. Huang, K. Kreis,
S. Fidler, M.-Y. Liu, and T.-Y. Lin, “Magic3d: High-resolution text-to-
3d content creation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023, pp. 300–309.

[67] X. Li, J. Thickstun, I. Gulrajani, P. S. Liang, and T. B. Hashimoto,
“Diffusion-lm improves controllable text generation,” Advances in Neu-
ral Information Processing Systems, vol. 35, pp. 4328–4343, 2022.

[68] J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. Van Den Berg,
“Structured denoising diffusion models in discrete state-spaces,” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 17 981–
17 993, 2021.

[69] H. Chung and J. C. Ye, “Score-based diffusion models for accelerated
mri,” Medical image analysis, vol. 80, p. 102479, 2022.

59



[70] Y. Yang, H. Fu, A. I. Aviles-Rivero, C.-B. Schönlieb, and L. Zhu,
“Diffmic: Dual-guidance diffusion network for medical image classifi-
cation,” in International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, 2023, pp. 95–105.

[71] M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, and J. Tang, “Geodiff:
a geometric diffusion model for molecular conformation generation,”
2022. [Online]. Available: https://arxiv.org/abs/2203.02923

[72] B. Jing, G. Corso, J. Chang, R. Barzilay, and T. Jaakkola, “Torsional
diffusion for molecular conformer generation,” Advances in Neural In-
formation Processing Systems, vol. 35, pp. 24 240–24 253, 2022.

[73] H. Huang, L. Sun, B. Du, Y. Fu, and W. Lv, “Graphgdp: Generative
diffusion processes for permutation invariant graph generation,” in 2022
IEEE International Conference on Data Mining (ICDM). IEEE, 2022,
pp. 201–210.

[74] A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilis-
tic models,” in International conference on machine learning. PMLR,
2021, pp. 8162–8171.

[75] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu, “Dpm-solver: A
fast ode solver for diffusion probabilistic model sampling in around 10
steps,” Advances in Neural Information Processing Systems, vol. 35, pp.
5775–5787, 2022.

[76] H. Chang, Y. Peng, S. Sato, and H. Xie, “Sketch-guided flow field gen-
eration with diffusion model,” in International Workshop on Advanced
Imaging Technology (IWAIT) 2024, vol. 13164. SPIE, 2024, pp. 290–
295.

[77] T. Zhang and H. Xie, “Sketch-guided text-to-image generation with spa-
tial control,” in 2024 2nd International Conference on Computer Graph-
ics and Image Processing (CGIP), 2024, pp. 153–159.

[78] Y. Zhang, T. Zhang, and H. Xie, “Texcontrol: Sketch-based two-stage
fashion image generation using diffusion model,” 2024. [Online].
Available: https://arxiv.org/abs/2405.04675

[79] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image transla-
tion with conditional adversarial networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1125–
1134.

60

https://arxiv.org/abs/2203.02923
https://arxiv.org/abs/2405.04675


[80] C. Mou, X. Wang, L. Xie, Y. Wu, J. Zhang, Z. Qi, and Y. Shan, “T2i-
adapter: Learning adapters to dig out more controllable ability for text-
to-image diffusion models,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 38, no. 5, 2024, pp. 4296–4304.

[81] B. Kawar, S. Zada, O. Lang, O. Tov, H. Chang, T. Dekel, I. Mosseri, and
M. Irani, “Imagic: Text-based real image editing with diffusion models,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 6007–6017.

[82] G. Yuan, “Observing the traces and defining the book: The inheritance
and development of xia and shang scripts in the archaeological
perspective,” 2021. [Online]. Available: https://epaper.gmw.cn/gmrb/
html/2021-05/12/nw.D110000gmrb 20210512 1-11.htm

[83] C. C. C. I. Communication and Z. U. Education Research Center, Spring
and Autumn of Oracle Bones - Commemorating the 120th Anniversary
of the Discovery of Oracle Bones, 2019.

[84] Xinhua, “Chinese oracle bone inscriptions added to unesco world
memory register,” 2017. [Online]. Available: http://english.scio.gov.cn/
chinavoices/2017-12/27/content 50168640.htm

61

https://epaper.gmw.cn/gmrb/html/2021-05/12/nw.D110000gmrb_20210512_1-11.htm
https://epaper.gmw.cn/gmrb/html/2021-05/12/nw.D110000gmrb_20210512_1-11.htm
http://english.scio.gov.cn/chinavoices/2017-12/27/content_50168640.htm
http://english.scio.gov.cn/chinavoices/2017-12/27/content_50168640.htm


Appendix

User Study Questionnaire

To evaluate the quality of OBI-style images generated by different models,
participants completed a structured questionnaire divided into three parts:
an introduction to OBI, an image selection task, and a similarity rating task.
The detailed questionnaire is provided below:

Part 1: Introduction

Participants were introduced to the distinctive morphology and stylistic char-
acteristics of oracle bone inscriptions (OBIs). The purpose of this introduc-
tion was to provide them with sufficient background to assess the generated
images accurately. Figure A.1 illustrates typical examples of OBI glyphs.

Part 2: Image Selection Task

Participants were presented with multiple sets of generated images, with four
images per set corresponding to different generative models. For each set,
participants were asked to select the image that best represented the OBI-
style.

Questionnaire 1: Select the image that best represents the OBI-style
from the following options:

• (a) Image 1

• (b) Image 2

• (c) Image 3

• (d) Image 4
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Figure A.1: Examples of oracle bone inscriptions (OBI) style. These images
were shown to participants to highlight the structural and stylistic charac-
teristics of OBIs.

To ensure unbiased evaluation, the order of the options (a, b, c, d) was
randomized for each participant and each question. This randomization pre-
vents participants from developing systematic biases toward specific posi-
tions.

The problem was repeated for 5 sets of images. Each set of images con-
sisted of one image generated by the proposed model and three images gen-
erated by other models. Figure A.2 shows all the images in the problem.
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Figure A.2: Question for the Image Selection Task. Participants were asked
to select the image that best represented the OBI-style.

Part 3: Similarity Rating Task

Participants were asked to evaluate the similarity between the generated OBI-
style images and the original input images (e.g., object or textual inputs).
The task involved rating the similarity on a scale of 1 to 5, where 1 represents
”very poor” and 5 represents ”excellent.”

Questionnaire 2: Rate the similarity between the generated OBI-style
image and the original input image based on the following criteria:

• 1: Very Poor

• 2: Poor
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• 3: Fair

• 4: Good

• 5: Very Good

The problem was repeated for 5 sets of images. As shown in Figure A.3,
“Refer” corresponds to “original input”, “Options” corresponds to “gener-
ated OBI-style image”.
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Figure A.3: Question of an Original and Generated Image Pair used for the
Similarity Rating Task. Participants rated the similarity between the “Refer”
and “Options” on a scale of 1 to 5.
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