
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

An Efficient Deep Reinforcement Learning Model

for Online 3D Bin Packing Combining Object

Rearrangement and Stable Placement

Author(s) ZHOU, PEIWEN

Citation

Issue Date 2025-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/19802

Rights

Description
Supervisor: 丁 洛榮, 先端科学技術研究科, 修士 (情報科

学)

Master’s Thesis

AN EFFICIENT DEEP REINFORCEMENT LEARNING MODEL FOR
ONLINE 3D BIN PACKING COMBINING OBJECT
REARRANGEMENT AND STABLE PLACEMENT

2310071 ZHOU PEIWEN

Supervisor CHONG Nak-Young

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

March 2025

Abstract

This paper presents an efficient deep reinforcement learning (DRL) frame-
work for online 3D bin packing (3D-BPP). The 3D-BPP is an NP-hard
problem significant in logistics, warehousing, and transportation, involving
the optimal arrangement of objects inside a bin. Traditional heuristic
algorithms often fail to address dynamic and physical constraints in real-
time scenarios.

We introduce a novel DRL framework that integrates a reliable physics
heuristic algorithm and object rearrangement and stable placement. Our ex-
periment show that the proposed framework achieves higher space utilization
rates effectively minimizing the amount of wasted space with fewer training
epochs.

The physics heuristic algorithm aims to ensure the stability of packed
objects. Three variants of this algorithm are introduced: convexHull-
1, convexHull-k, and convexHull–α. The convexHull-1 algorithm checks
stability by evaluating whether the center of a sliding window, matching the
dimensions of the incoming object, lies within the convex hull formed by the
highest points within that window. However, it was found to be insufficient
in complex multi-stack scenarios. The convexHull-k algorithm extends this
concept by considering the intersection of convex hulls across multiple layers,
but it still underestimates stability in certain cases. To address these
limitations, the convexHull-α algorithm is proposed, which ensures that the
supporting force originates vertically from the ground, using an empty map
to track wasted voxels along the z-axis. This algorithm significantly improves
the accuracy of stability checks, as demonstrated through simulations.

To further enhance packing efficiency, the framework incorporates an
object rearrangement process. This allows the robot manipulator to change
the orientation of incoming objects, an action that directly improves space
utilization without requiring additional time costs. The DRL model is
formulated as a Markov Decision Process (MDP), with two separate agents,
each responsible for predicting the optimal orientation and position for the
packing object. The reward function is designed to balance the increase in
space utilization and the minimization of wasted space.

The proposed DRL framework is trained and evaluated through both
simulation experiments. In the simulations, two vision sensors capture visual
information of the bin and incoming objects, enabling the model to predict
orientations, stable positions, and placement scores. The results show that

I

the proposed framework achieves higher space utilization rates compared to
baseline methods, while requiring fewer training epochs.

The real-robot experiments involve connecting a uFactory850 robotic arm
to the PC, performing hand-eye calibration using ArUco QR codes, and
recognizing and suctioning target objects. The target objects’ dimensions
and poses are accurately estimated using a semantic segmentation model
and OpenCV’s pose estimation functions. The robotic arm then adjusts the
object’s orientation and places it in the bin, as predicted by the DRL model.

The experimental results shows that: 1.The physics heuristic algorithm,
especially convexHull-α, significantly outperforms previous methods in terms
of stability check accuracy.2. the proposed DRL framework achieves higher
space utilization rates effectively minimizing the amount of wasted space with
fewer training epochs.

Keywords: 3D Bin Packing, Object Rearrangement, Placement Stabil-
ity, Deep Reinforcement Learning

II

Acknowledgment

My studying and working experience in Professor Chong’s lab at JAIST is
deeply unforgettable. I am grateful to Professor Chong, Dr. Gao, and Senior
Li for their help in my research, which also guided me into a new research
field—robotics. I also want to thank my brother Ye, Senior Song, Senior
Zhang, and Canh Thanh for their support in daily life, helping me survive
the Cold Winter in Ishikawa.

I am not an intelligent person, having a solitary personality and a terrible
temper. I am thankful to my parents for their education and financial support
since childhood. Thank for the time and effort they speed on me,that allowed
me to grow up healthily, and enabled me to achieve the current degree.
Additionally, I want to express my gratitude to Princess Yang, my wife, for
her willingness to always be by my side, encouraging me, supporting me, and
love me. I also will do my best to protect and love my Princess.

My 20-year journey of academic trip has now come to an end, and I am
about to start my career, integrating into society with a new identity. I am
profoundly grateful to everyone who has helped me. I wish everyone achieve
success in their studies and have a good future.

III

IV

List of Symbols

camTArUco The transformation matrix from real ArUco frame to camera
frame

camRArUco The rotation matrix from real ArUco frame to camera frame
eeTArUco The transformation matrix from real ArUco frame to robot

frame
eeRArUco The rotation matrix from real ArUco frame to robot frame
eeTcam The transformation matrix from camera frame to robot

frame
CoM Object’s center of mass
(Ot, Pt) The action tuple for time step t
(Pf) The upward support force in convex hull
γ The discount for the cumulative reward in Markov Decision

Processes
rt The reward for time step t
Rz(θ) Rotation around x axis about θ
Ry(θ) Rotation around y axis about θ
Rz(θ) Rotation around z axis about θ
st The environment state for time step t
t Markov Decision Processes time step t

V

VI

List of Figures

1.1 Online 3D-BPP, where the agent can only observe an upcom-
ing object and pack it on-the-fly. 2

2.1 The example for convexHull-1. 7
2.2 The example for convexHull-k 8
2.3 Comparison of convexHull-1 and convexHull-α 9
2.4 Six possible orientations of the packing object. 11
2.5 The pipeline of the DRL framework. 12

3.1 Simulation experiment. 15
3.2 Real robot experiment setup. 16
3.3 Example of Real robot connection. 18
3.4 Show of calibration tools. 19
3.5 Installation requirements for the vision sensor. 20
3.6 ArUco QR code detection example. 21
3.7 Significant gap between the rough estimates. 22
3.8 z-value approaches the true value. 23
3.9 Derivation of a transformation formula. 24
3.10 x, y, z-value approaches the true value. 25
3.11 Target object along with the ArUco QR code 26
3.12 Real robot suction target object in the Pose1. 27
3.13 Real robot suction target object in the Pose3 and Pose4. . . 28
3.14 Real robot suction target object in the Pose5 and Pose6. . . 28

4.1 Simulation experiment result. 31
4.2 Space utilization of our model independent of the standard

deviation in object volume. 32

VII

VIII

List of Tables

3.1 Real robot experiment setup 17
3.2 PC environment setup . 17
3.3 uFactory 850 parameters. 17
3.4 Orientation detail for Pose1 ∼ Pose6. 27

4.1 Comparison of convexHull-1 and convexHull-α. 29
4.2 Comparison of physics heuristics. 30
4.3 RL framework comparison and test result. 31

IX

X

Contents

Abstract I

Acknowledgment III

List of Figures VII

List of Tables IX

Contents XI

Chapter 1 Introduction 1
1.1 Background . 1
1.2 Relative work . 2

1.2.1 Heuristics in Bin Packing Problem 2
1.2.2 DRL in 3D-BPP . 3
1.2.3 Stability check in 3D-BPP 4

Chapter 2 Method 5
2.1 Stability Checking via Physics Heuristics 5

2.1.1 convexHull-1 . 5
2.1.2 convexHull-k . 7
2.1.3 convexHull-α . 8

2.2 DRL for Bin Packing . 10
2.2.1 Problem Formulation 10
2.2.2 State Definition . 10
2.2.3 Action Definition . 10
2.2.4 Reward Function . 11
2.2.5 Physics Heuristics DRL Framework 13

Chapter 3 Robot Experiment 15
3.1 Simulation experiment . 15

3.1.1 Simulation environment 15
3.1.2 Simulation process . 15

XI

3.2 Real Robot Experiment . 16
3.2.1 Real robot arm connection 17
3.2.2 Hand-eye calibration process 18
3.2.3 Target object recognition 23
3.2.4 Target object suction 24
3.2.5 Target object pose adjustment 25

Chapter 4 Result 29
4.1 Physics Heuristics Validation 29
4.2 Simulation result . 30
4.3 DRL framework result . 30

Chapter 5 Conclusion 33

References 35

Publications 41

XII

Chapter 1

Introduction

1.1 Background

Robotic bin packing has many applications in the fields of logistics, ware-
housing, and transportation. The 3D Bin Packing Problem (3D-BPP) [1], a
well-known NP-hard problems [2], is referred to as an optimization problem
of packing multiple objects into a bin(s), while satisfying the bin capacity
constraint [3]. The 3D-BPP can be tackled offline or online depending on
whether all objects can be accessible or not. In terms of offline bin packing
task, this setting assumes the prior knowledge of all objects, usually, finding
the optimal packing sequence and optimal placement are involved in this
setting. Typically, meta-heuristic algorithms [4] [5] [6] have been employed
to determine the optimal order sequence in previous studies [7], thereafter,
heuristic algorithms, such as DBLF proposed by Korha and Mustaf [8] or
HM proposed by Wang and Kris [9], are leveraged to determine where to
place the object into the bin.

Compared with offline bin packing, online bin packing is more chal-
lenging [10]. Basically, the packing order is random, and the agent can
only observe the upcoming objects (either single or multiple objects) as
illustrated in Fig. 1.1. In this context, relying exclusively on heuristics results
in a considerable decline in bin utilization [7]. Under these constraints,
Yang et al. [11] employed unpacking-heuristics to improve the utilization.
Nonetheless, this method raises the time cost, thereby diminishing the overall
efficiency of the packing process.

Recent progress in DRL has shown promising results in various domains
by enabling models to learn optimal policies through trial and error [12].
Compared with heuristic algorithms, DRL excels in addressing optimization
problems effectiveness in complex environments. However, real-world phys-
ical law damages the training efficiency as learning the physics in complex
environment takes many trial-and-error iterations, and the stable placement
cannot be guanranteed. Zhao et al. [13] and Yang et al. [11] leveraged neural
network to predict the physical feasibility map, enabling the agent to learn

1

Figure 1.1: Online 3D-BPP, where the agent can only observe an upcoming
object and pack it on-the-fly.

feasible packing strategies. Although these methods have achieved promising
results in 3D-BPP, object stability is not guaranteed. To address these
challenges, we propose an efficient and effective DRL framework [14] [15] [16]
using a highly reliable physics heuristic algorithm for online 3D-BPP. The
main contributions of this paper are as follows.

• We proposed a highly reliable physics heuristic algorithm that guaran-
tees the stability of object placement in complex multi-stack environ-
ments, while retaining as many placement positions as possible.

• We incorporated an object rearrangement process into the proposed
framework which allows the robot manipulator to change the orienta-
tion of the upcoming object. It is also an efficient action that directly
enhances space utilization without requiring additional time costs.

1.2 Relative work

1.2.1 Heuristics in Bin Packing Problem

The bin packing problem is a key challenge in combinatorial optimiza-
tion [17], aiming to arrange multiple objects efficiently within the larger

2

container. However, 3D-BPP become unsolvable within a reasonable time
frame using exact algorithms [18] when involving a large number of objects.
Over the years, various heuristic and meta-heuristic methods have been
developed to address this problem [19] [20] [8] [21]. Heuristic algorithms
critically depend on the sequence of object placement, and current research
often employs meta-heuristic techniques such as simulated annealing [22] and
genetic algorithms [8].

Consequently, if complete information on all objects to be packed is un-
available, the effectiveness of heuristic algorithms drops significantly. More-
over, in real-world logistics warehouse, gathering detailed information about
all objects can be challenging and time-consuming, reducing operational
efficiency. Therefore, We propose using the object rearrangement method to
change the orientation of objects in order to improve bin utilization, under
the constraints of unchangeable order sequence.

1.2.2 DRL in 3D-BPP

DRL combines the decision-making capabilities of reinforcement learning
with the powerful representation learning of deep neural networks. Fur-
thermore, it can be adaptable to changing conditions and provide feasible
solutions with highly efficient [12] [23], where traditional methods may
struggle to find efficient solutions [?]. DRL has recently demonstrated strong
performance across various robotics tasks [24] [25], showcasing its ability to
handle complex spatial and dynamic challenges effectively.

Thus applying DRL to the 3D-BPP could indeed be a highly efficient ap-
proach. For example, Zhao et al. [13] introduced a prediction-and-projection
scheme where the agent first generates a physical stability mask for placement
actions as an auxiliary task, then using this mask to adjust the action
probabilities output by the actor during training. However, DRL models
can suffer from instability and sensitivity to hyperparameters [14], making
them difficult to tune and sometimes resulting in unpredictable performance.
Moreover, most work focuses only on sample constraints, without considering
real-world physical properties of objects, including the object CoM [26] and
its deviation in a complete stack. These factors can result in solutions that are
impractical for real-world applications where physical stability and balance
are essential.

Thus we propose the DRL framework integrated with a physics heuristics.
This not only guarantees the stability of object placement but also enhances
the training efficiency of the model, allowing for faster convergence [27] [28].

3

1.2.3 Stability check in 3D-BPP

Stable stacking is a critical factor when designing an online 3D bin packing
pipeline. Learning the rules of real-world physics is a very difficult process
for DRL [29]. This not only lengthens the training time for the model but
also causes fluctuations in model convergence.

Therefore, for 3D-BPP, it is necessary to design a reliable and efficient
physics heuristics for feasible action detection to quickly rule out incorrect
actions in the current state. Zhao et al. [13] and Yang et al. [11] use the
similar scheme that combines the ratio of overlapping parts between the
placed item and its contact items with a neural network model for prediction.
But this is not a reliable method, since the model is a black box, there
are always parts that are inexplicable and unpredictable. On the other
hand, Wang and Kris [9] proposed a mathematical model that using a linear
programming method solves for the torque balance and force balance of the
object for all contact forces. Although this is a very reliable method,it is too
complex for regular objects and usually takes a long time to evaluate all the
candidates actions.

4

Chapter 2

Method

We describe our method in two parts. First, we present our stability check
method, which is a highlight of our work. Second, we introduce a DRL
framework that integrates physical heuristics and object rearrangement.

2.1 Stability Checking via Physics Heuristics

In our research, we assume that the object i ∈ I for bin packing are rigid
body and have a uniform mass distribution, so that the center of mass (CoM)
is the geometric center of the object. But our method is not limited by the
mass distribution, here just for simplify questions. For uneven objects, we
can use Gao et al. [30] [31] to estimate as close as possible the CoM.

For the current state bin (W,D,H), we generate a bottom-to-top depth
heightmap with a resolution of 0.005, where each voxel represents a 5 mm3

vertical column of 3D space in the agent’s workspace. The object to be placed
i is defined by its dimensions (wi, di, hi). We employ a wi×di sliding window
to traverse the height map to check the stability of each placement.

2.1.1 convexHull-1

Based on physics’ principles, we introduce the convexHull-1 method. The
main idea of convexHull-1 is shown in Fig. 2.1. The left image depicts a
sliding window that matches the size of the incoming object, along with
portions of the scene objects contained within the sliding window. The right
figure shows the zoom-in version of the content inside the sliding window [32].
To determine the stability of the object, we calculate the largest convex hull
of the highest points within the window. Next, we verify whether the center
of the window lies within the convex hull [33]. The object is deemed stable
when positioned at the center of the sliding window if the convex hull includes
the window’s center.

The upward support force, denoted as pif = {p1, p2, ...} is defined as the
set of highest points in the window, obtained by object i under currently

5

Algorithm 2.1 convexHull-α

Input: Bin depth heightmap B, empty map E,objecti (wi, di, hi), bin
height H
Output: Stable action map A
for bx,y ∈ B do
window ← B[x: x + wi][y: y + di]
if window out of boundary or window.max+ hi > H then
Ax,y ← 0
continue

end if
if window.max == 0 then
Ax,y ← 1
continue

end if
Find pf in window
Use E update pf to p′f
center ← Point(wi

2
, di

2
)

hull← convexHull(p′f)
inside← Boolean center.within(hull)
Ax,y ← inside

end for
return A

Algorithm 2.2 Empty map update

Input: Bin depth heightmap B, empty map E, action point(X, Y), object
i = (wi, di, hi)
Output: Updated empty map E
windowB ← B[X : X + wi, Y : Y + di]
windowE ← E[X : X + wi, Y : Y + di]
h← windowB.max
for ex,y in windowE do
windowEx,y ← ex,y + h− windowBx,y

end for
E[X : X + wi, Y : Y + di]← windowE

return E

6

Figure 2.1: The example for convexHull-1.

placement. We utilize OpenCV [34] to calculate the largest convex hull
formed by pf . Then, we evaluate the placement stability by verifying if
the center of the sliding window is within the convex hull or not. During our
experiments, we observed that relying only on a single layer of the convex hull
cannot ensure the stability of object placement. Fig. 2.3 shows an example
using convexHull-1 for stability check and fail.

2.1.2 convexHull-k

Consequently, we extend this method to convexHull-k, which considers
the intersection of convex hull across multiple layers. However, in more
complex scenarios including multiple stacks within the bin, convexHull-k
would underestimate the placement of stability, as shown in Fig. 2.2. The
blue cube represents the upcoming object, while the gray cubes depict the
scenario in the bin. The yellow area shows the layer’s convex hull calculated
by convexHull-1 algorithm. (a),(b) and (c) illustrate the convex hulls of

7

Figure 2.2: The example for convexHull-k

different layers for the upcoming object. Although the intersection of these
convex hulls results in NULL, indicating an unstable placement, in practice,
the placement is stable.

2.1.3 convexHull-α

To address the aforementioned issue, we introduce convexHull-α, for man-
aging multiple stacks of objects in complex environments. Throughout the
object packing procedure, we maintain an empty map with the same size as
the action map. The main concept of covexHull-α is that the supporting force
must be vertical and originate from the ground. Basically, for each position
inside the sliding window, we check the number of wasted voxels along the
z axis. We consider that only no wasted voxels can be the reliable support
force, which corresponds to the empty map value is zero, denoted as p′f .
After each placement, we update the empty map outlines in Algorithm 2.2.
Similarly, we use the new set of points p′f to calculate the convex hull and
determine whether the window’s CoM is within it or not.

The Fig. 2.3 illustrates an example of stability check using convexHull-α.
Multi-layer packing scenarios showcasing the difference between convexHull-
1 and convexHull-α algorithms for checking the stability of the placement.
(1) Both convexHull-1 and convexHull-α consider the arrangement to be
stable. (2) Conversely, convexHull-1 might incorrectly assess the stability
if the incoming object is significantly heavier than the object in the middle
layer, as detailed in (3).Algorithm 2.1 outlines our algorithm in detail.

8

Figure 2.3: Comparison of convexHull-1 and convexHull-α

9

2.2 DRL for Bin Packing

2.2.1 Problem Formulation

Formally, online 3D bin packing involves packing a number of object i ∈ I,
each with arbitrary dimensions (wi, di, hi) and cuboid shapes, into a bin of
arbitrary dimensions (W,D,H). The process is constrained by the visibility
of only the immediately upcoming object could be packed into the bin. Once
the bin is filled or can not pack upcoming object the process will stop.

To solve this task, we formulate it as a Markov Decision Processes
(MDPs) [35], which can be denoted as a tuple M = 〈S,A, P,R, γ〉. Specifi-
cally, we employ two agents with polices πo and πp to independently predict
placement orientation and position.

The whole process is descried as follow: At the time step t, the agent
observes the environment and takes a state representation, denoted as st.
Then the agent πo predicts the action o and pass to agent πp to predict action
p. Execute the action tuple(ot, pt), causing the environment to transition to
st+1, then immediately obtains a reward rt. The process aims to achieve
the maximal cumulative rewards with discount γ, as shown in Eq. (2.1) and
(2.2), by jointly optimizing two policies.

Jπ∗
o

= maxEπo,st,ot=πo(st)[
∑
t

γtrt] (2.1)

Jπ∗
p

= maxEπp,st,pt=πp(st|ot)[
∑
t

γtrt] (2.2)

2.2.2 State Definition

We define state st as the configuration of the bin along with the object that
is about to be packed. Use the depth image of the bin to generate a bottom-
to-top W ×D depth heightmap dht [13]. Following the work conducted by
Yang et al. [11], given the object i with dimensions (wi, di, hi), we create a
three channel map with the dimension W ×D×3. Each channel corresponds
to one of the object’s dimensions and is fully populated with the respective
dimension values. Then combine them as (dhi, w

∗
i , d
∗
i , h
∗
i) to represent the

State.

2.2.3 Action Definition

In this work, we propose to arrange object orientation in order to achieve
better placement. Therefore, the action is defined as the conjunction of

10

Figure 2.4: Six possible orientations of the packing object.

object rearrangement and placement, which is represented by (o, p), where o
represents the target object orientation and p represents a specific position
on top layer of the bin. To simplify the packing procedure, both o and p are
discretized.

As illustrated in Fig. 2.4, there are six different orientations. The number
of positions for possible placement is the same as the number of pixels inside
the heightmap. Given (o, p), the agent firstly uses object rearrangement
operation to achieve the object orientation o, and then place the object to
the position p.

2.2.4 Reward Function

Following the idea mentioned in [13], at the time step t, the immediate reward
is the weighted subtraction of increased utilization space and the wasted
space given by Eq. (2.3) to (2.5). Please note that the wasted space can be
calculated efficiently by comparing the summation of the empty map before
and after the placement. In addition, both α and β are set to be one in our
experiment.

Ri = α · riv − β · riwaste (2.3)

riv =
wi · di · hi
W ·D ·H

(2.4)

riwaste =
viwaste

W ·D ·H
(2.5)

11

Figure 2.5: The pipeline of the DRL framework.

12

2.2.5 Physics Heuristics DRL Framework

Distinct from other works [11], we proposed a two-agents DRL framework
integrated with physics heuristics as shown in Fig. 2.5. Based on Proximal
Policy Optimization (PPO) [36], we develop two actor networks [37]: Actoro
dedicated to predicting the object’s orientation and Actorp to determining
the packing position. Both actor networks takes input as the 4-channels
maps, the output of Actoro is a six-dimensional vector where each element
dedicates one specific object orientation, the output of Actorp is the action
map for placement with the same size as the heightmap.

The training pipeline is as follows: Given the object i and configuration
of bin dhi, firstly, the Phy-Heu module generates stable action maps for all
potential object orientations. Using these stable action maps, we construct
an orientation mask to exclude orientations that do not allow for any feasible
stable placement. Meanwhile, Actoro will predict the probability distribution
of the object orientations. Using the orientation mask and the predicted
distribution of orientations, the orientation is sampled. Next, based on the
sampled orientation, the agent Actorp takes the dhi and shuffled (w∗i , d

∗
i , h
∗
i)

to predict the placement score map. Lastly, we sample the action Pi from the
intersected map of the corresponding stable action map and the predicted
action score map to ensure the placement stability.

13

14

Chapter 3

Robot Experiment

3.1 Simulation experiment

3.1.1 Simulation environment

Our simulation experiments were performed with CoppeliaSim [38] and the
physical engine [39] using Newton.

Figure 3.1: Simulation experiment.

3.1.2 Simulation process

We set up our simulation experiment as shown in Fig. 3.1. We utilize two
vision sensors to capture visual information. One is placed directly above
the Bin, and the other is positioned directly above the upcoming object.
We set the size of the bin to 0.6 m × 0.6 m × 0.6 m. Additionally, we
also visualize the predictions made by the object placement process model,
including orientation prediction, orientation mask, stable action map and
placement score map. The visualization of the prediction process facilitates
our examination of the model’s stability and reliability.

15

To streamline the entire process, we have deleted the conveyor belt and
instead utilized a platform with dimensions of 0.4 m × 0.4 m. Each upcoming
object will appear above the platform, where a vision sensor will observe the
object and capture its (W,D,H) to prepare for subsequent predictions.

3.2 Real Robot Experiment

After completing the training in simulations, we implemented the entire pack-
ing process on the real robot arm. The experimental procedure encompassed
the following steps: hand-eye calibration, target object pose recognition,
target object suction, target object pose adjustment, and target object
placement(planned but not executed due to time and space constraints).

Our experiment setup, as shown in the Fig. 3.2, a robot arm, a robotic
arm controller box, a vision sensor, and a PC. Detailed specifications of these
components are provided in the Table 3.2. Control of the robotic arm and
driving of the model were implemented on a PC using Python, with the
specific environment configurations outlined in the table.

Figure 3.2: Real robot experiment setup.

16

Robot arm uFactory 850
Vision sensor D455i

PC GPU 3090ti

Table 3.1: Real robot experiment setup

System ubuntu20.04
Environment management mini Conda

Python [40] 3.10
openCV [34] 3.4.10
PyTorch [41] 2.5

cuda [42] 12.1
realsense [43] Pyrealsense2

Table 3.2: PC environment setup

3.2.1 Real robot arm connection

The robotic arm we utilize is the uFactory 850, with specific parameters
detailed in the Table 3.3. This robotic arm is connected and controlled
via Ethernet mode. Initially, we connect an Ethernet cable to the robotic
arm’s control box and then manually configure the IPv4 network interface,
as shown in the Fig. 3.3. We set the address to 192.168.100, the Net
mask to 255.255.255.0, the gateway to 192.168.1.1, and finally, the DNS to
192.168.1.1. After completing the configuration, we ping 192.168.1.100 from
the terminal; if data is returned, it indicates successful configuration.

The SDK provided on the official website of this robotic arm is inte-
grated into the ”robot” class, with the motion control interface maintaining
consistent input and output. This facilitates the subsequent use of different
interfaces and classes.

uFactory 850
DoF 6 Axis

Reach 850 mm
Repeatability 0.02 mm
Max Speed 1 m/s

Table 3.3: uFactory 850 parameters.

17

Figure 3.3: Example of Real robot connection.

3.2.2 Hand-eye calibration process

The hand-eye calibration process primarily involves the transformation be-
tween the base coordinates of the robot and the camera coordinates. We
employ the ArUco QR code recognition method [44] for hand-eye cali-
bration [45]. Through the recognition algorithm, ArUco QR codes can
instantaneously provide the position and orientation of the QR code’s center
in the camera coordinate system.

This calibration method has high efficiency, accuracy, and low cost. The
calibration tools used are shown in the Fig. 3.4, including the a vision sensor,
a spirit Level, end-effect tool, ArUco QR codes, and calibration tool(self-
made).

The installation requirements for the vision sensor are as follows:1.The
sensor needs to be installed parallel to the X-axis of the robot arm’s base
coordinate system. 2.Use a spirit level to adjust the vision sensor to a
horizontal position, as shown in the Fig. 3.5.

18

Figure 3.4: Show of calibration tools.

These requirements minimizes deviations caused by camera distortion and
maximizes the accuracy of subsequent calibration. It is important to note
that a USB 3.0 cable should be used for data exchange with the vision sensor
to ensure efficiency.

After installing the visual sensor, print an ArUco QR code and at-
tach it to a horizontal desktop (the experimental desktop should first
be leveled using a level instrument). By using the OpenCV interface
cv2.aruco.detectMarkers(), one can obtain the position and orientation of
the center point of the QR code in the camera coordinate system, as shown
in the Fig. 3.6. Different ID specify different QR codes. The recognition ID
used in the code should match the one used in the experiment.

Our core objective is to obtain the transformation matrix that converts
coordinates from the camera frame to the robot frame. The specific deriva-
tion formula is shown in the Eq. 3.1, 3.2.

eeRArUco =ee Tcam ∗cam RArUco (3.1)

eePArUco =ee Tcam ∗cam PArUco (3.2)

The transformation matrix eeTcam is a 4x4 matrix composed of a rotation
matrix eeRcam and a translation matrix eePcam, as illustrated in the Eq. 3.3.

19

Figure 3.5: Installation requirements for the vision sensor.

eeTcam =

(
eeRcam

eePcam
0 1

)
(3.3)

Based on the prior installation of the vision sensor, we can ascertain the
attitude change from the camera coordinates to the robot’s base coordinates,
which involves rotation around the y axis -90 degree, represented as Ry(−90),
as illustrated in the Eq. 3.4.

Ry(−90) =

−1 0 0
0 1 0
0 0 −1

 (3.4)

However, the unknown component is the translation matrix [x, y, z].
Determining this translation matrix is the focus of our current calibration
process. Firstly, we set a rough and safe value Pe1 to ensure that the
calibration tool does not collide with the table surface. After the robotic
arm operates, the results are obtained as shown in the Fig. 3.7, which reveals
a significant gap between the rough estimates of x, y, z and their true values.

20

Figure 3.6: ArUco QR code detection example.

To achieve more precise calibration, an accurate correction of the z-axis
discrepancy is first conducted. By using a ruler to measure the distance
between the end of the calibrator and the desktop, repeated corrections
are made to the z-value, ensuring safety throughout the process, until the
result as shown in the Fig. 3.8 is achieved. This indicates that the z-value
approaches the true value. After obtaining the true z-value, it facilitates the
calibration of (x, y).

However, the calibration process for (x, y) is not as straightforward as
that for z value. It is based on the derivation of a transformation formula,
as shown in the Fig. 3.9.

Therefore, to correct the values of (x, y), measurements of the calibration
tool and the center of the QR code are required, and these need to be
referenced against the calculation of the transformation matrix. By repeating
the above process, we obtain (x, y) values that converge towards the true
values and achieve the results as shown in the figure Fig. 3.10.The end effector
calibration tool accurately points to the center of the QR code. This indicates
the completion of the calibration process and the result shown in the Eq. 3.5.

21

Figure 3.7: Significant gap between the rough estimates.

eeTcam =


−1 0 0 0.389
0 1 0 0.399
0 0 −1 0.512
0 0 0 1

 (3.5)

To ensure the accuracy of calibration, the calibration target is evenly
positioned at nine different locations relative to the vision sensor. A dataset
comprising translation matrices is obtained from these positions, and the
average of this dataset is then calculated. This method ensures the validity
and authenticity of the data, preventing errors that may arise from a single
or limited number of measurements. Furthermore, it minimizes the impact of
camera distortion. Consequently, the reliability and stability of subsequent
experiments are improved.

22

Figure 3.8: z-value approaches the true value.

3.2.3 Target object recognition

The recognition of target objects comprises two parts, with the first part
focusing on the identification of object pose. Based on real-world scenarios,
such as logistics and transportation, objects are generally manipulated on
the flat surface. Therefore, our experiments only consider the 4D pose of the
objects.

We attach ArUco QR codes to the target objects, ensuring that the
corners align as closely as possible to guarantee the accuracy of the
target object’s pose estimation. Utilizing the OpenCV interface the
cv2.aruco.estimatePoseSingleMarkers() function, we estimate the ArUco
pose, as illustrated in the Fig. 3.11. The figure depicts the target object
along with the ArUco QR code attached to it, while also visualizing the
ArUco coordinates. In this way, we indirectly obtain the pose of the object
(0, 0, θ).

The second part involves the identification of the object’s dimensions
Width, Depth, Height, denoted as (W, D, H). We employed the semantic
segmentation model, Kirillov et al. [46], to segment the target object, which

23

Figure 3.9: Derivation of a transformation formula.

provides the fine-grained mask of the target object.

This mask is a binary array with the same resolution as the input image,
where pixels belonging to the target object are assigned a value of 1, and
those not belonging are assigned a value of 0. By calculating the mean of
the mask, specifically averaging the number of value 1 in each row, we can
estimate object’s width. Similarly, averaging the number of value 1 in each
column allows for the estimation of object’s depth. To estimate height, we
intersect of the mask with a depth image and then compute the average the
depths of the intersecting pixels.

Using these methods, we efficiently and accurately estimate the pose
of the target object (0, 0, θ) and its dimensions (W, D, H), facilitating
subsequent experiments.

3.2.4 Target object suction

Unlike traditional grasping strategies, we employ suction to manipulate
objects. The end effector we use is a suction cup, which enables efficient
handling and grasping of large target objects, especially for those that
exceeds the maximum opening width of the gripper. Given that our practical
applications typically involve factory sorting and delivery sorting, where
objects often have a minimum width of approximately 150 mm, the use of

24

Figure 3.10: x, y, z-value approaches the true value.

large grippers will cost a lot. Therefore, suction cups [47] are highly suitable
for both practical scenarios and experimental implementations.

Based on the object mask obtained from the target object recognition
module, we get the center point Pc(x, y) of the object, by meaning the value 1
position. And determine the depth d of this point using depth images. Thus,
the position for suction is determined as Pc(x, y, d). Combining the position
Pc(x, y, d) with the orientation (0, 0, θ), we convert these into coordinates
relative to the robotic arm’s base using a transformation matrix eeTcam.
These coordinates are then input into the inverse kinematics control interface
of the robotic arm to execute the suction operation.

3.2.5 Target object pose adjustment

Our model adjusts the orientation of objects to enhance the utilization rate
during the packing process. However, in the real world, this is a highly
complex procedure. To accomplish this, it is necessary to employ rational
and efficient motion planning and motion control strategies. The definitions

25

Figure 3.11: Target object along with the ArUco QR code .

of these six orientations are referenced from Fig. 2.4 in the Method model
definition. Pose 1 primarily involves the estimation of the target object’s
pose. Pose 2 to 5 are mainly adjustments and variations based on the
orientation 1, as shown in the Table 3.4. Below, we will elaborate on the
adjustments to the object’s six orientations in detail.

Pose1 allows successful suction based on the target object’s posePc(x, y, d, 0, 0, θ),
as shown in the Fig. 3.12. After suction successfully in Pose1, rotating 90
degrees around the z-axis can get the Pose2.

However, Pose3 and Pose4 cannot be suctioned directly. We calculate the
center point of a side surface based on the pose and dimensions of the target
object, adjust the robotic arm to suction at this center point, and then move
to the zero pose to achieve Pose3. Pose4 is rotating Pose3 90 degrees around
the z-axis, as shown in the Fig. 3.13

Pose5 and Pose6 require more robotic arm control. Similarly, we calculate
the center point of a side surface based on the pose and dimensions of the
target object, adjust the robotic arm to suction at this center point, and

26

Orientation Rotation Dimensions
Pose1 * (W, D, H)
Pose2 Rz(−90) (D, W, H)
Pose3 Rx(−90) (W, H, D)
Pose4 Rx(−90) ∗Rz(−90) (H, W, D)
Pose5 Ry(−90) ∗Rz(−90) (H, D, W)
Pose6 Ry(−90) ∗Rz(−90) (D, H, W)

Table 3.4: Orientation detail for Pose1 ∼ Pose6.

then rotate 90 degrees around the x-axis. Subsequently, the object is placed
on the surface and regrasped at the top center point to achieve Pose5. Pose6
is obtained by rotating Pose5 90 degrees around the z-axis, as shown in the
Fig. 3.14.

Figure 3.12: Real robot suction target object in the Pose1.

27

Figure 3.13: Real robot suction target object in the Pose3 and Pose4.

Figure 3.14: Real robot suction target object in the Pose5 and Pose6.

28

Chapter 4

Result

4.1 Physics Heuristics Validation

We compare the physics heuristic with algorithms convexHull-1 and convexHull-
α on CoppeliaSim. The bin dimensions W = D = H = 0.6m. Objects
are randomly generated with dimensions wi, di, hi ∈ [0.03, 0.3]m. In this
experiment, based on the stable action map computed by convexHull-1 or
convexHull-α, a random position considered to be stable for placement is
selected at each time step. The stability of the bin objects are checked
after each placement. The runtime of the two algorithms and the number of
un-stable placement are reported in Table 4.2. Based on Table 4.2, We find
that convexHull-α significantly surpasses convexHull-1 w.r.t. the accuracy of
stability check. There was only one instance where convexHull-α incorrectly
assessed the stability. We suspect this is due to the stable issue of the physical
engine. In addition, convexHull-1 and convexHull-α have similar runtime
which indicate the efficiency of convexHull-α.
Meanwhile, we also compared our approach with Zhao et al. [48]. Unlike
our proposed method, which only relies on computer vision, Zhao et al. [48]
method need the knowledge of the physical properties of each placed object,
such as the center of mass. This process not only results in slower compu-
tation for the physical analysis algorithm but also demands high precision
from the sensors. Consequently, Zhao et al. [48] cannot guarantee stable
placement, exhibits slow computation, and requires more sensors.

convexHull-1 convexHull-α
Object number 3000 3000

Fall number 153 1
Time cost(s) 4203.3 4452.6
Per cost(s) 1.40 - 1.00 1.48 - 1.00
Fall rate 5.1% 0.03%

Table 4.1: Comparison of convexHull-1 and convexHull-α.

29

Mass information Time complexity Space complexity
Ours No need O(k) O(m2)
[48] Need O(NlogN) O(N)

Table 4.2: Comparison of physics heuristics.

We evaluate and compare the efficiency of algorithms through time
complexity and space complexity. As shown in 4.2, our algorithm has
an highly efficient time complexity, which only depends on the size of the
placed objects. In contrast, Zhao et al. [48] time complexity increases with
the number of placed objects. Regarding space complexity, our algorithm’s
requirement is only related to the size of the bin, where Zhao et al. [48]’s space
complexity is associated with the number of placed objects. Our algorithm
becomes more efficient as the number of objects increases.

4.2 Simulation result

We use RS [13] bin packing dataset to generate upcoming object, in order
to test our model and robot simulation. We have implemented a series
of interfaces using Python to control and manipulate the robot arm in
simulations to complete the entire packing process. These interfaces include:
an inverse kinematics control interface for the robot arm, a vision sensor
conversion interface, the RL model interface, and a transformation interface
for converting image coordinates to robotic coordinates. These interfaces
have been integrated into a Robot class for easy and direct using.

We show some result in the Simulation, as shown in the Fig. 4.1.

4.3 DRL framework result

RS [13] bin packing dataset is leveraged to train and test the proposed DRL
framework. To evaluate the effectiveness of our proposed method, the result
reported in Zhao et al. [13] is our baseline as we share the same setting.
Consistent with previous studies, we employed space utilization (Uti.) as
the metric to evaluate the bin packing policy, where a higher value indicates
better performance. We test on the dataset RS, CUT-1, and CUT-2 [13],
which is summarized in Table 4.3.

The results show that our method achieves higher Uti. with fewer training
epochs. Additionally, we analyzed the RS test results, comparing each test’s

30

Figure 4.1: Simulation experiment result.

RS CUT-1 CUT-2 epoch
Ours 61.2% 63.3% 62.5% 18.6k
[13] 50.5% 60.8% 60.9% 100k

Table 4.3: RL framework comparison and test result.

Uti with the standard deviation of the object volumes in the object sequence.
Specifically, larger standard deviation indicates greater volume difference
among the objects. As shown in Fig. 4.2, we found that the our model
trained on the RS dataset is not affected by the differences in object volume
within the sequence.

31

Figure 4.2: Space utilization of our model independent of the standard
deviation in object volume.

32

Chapter 5

Conclusion

One of the key contributions of this work is proposal a highly reliable
physics heuristic algorithm that ensures the stability of object placement
in complex multi-stack environments. The algorithm generates a bottom-to-
top depth heightmap of the bin and employs a sliding window to traverse the
heightmap, checking the stability of each potential placement position. To
address the limitations of existing convex hull-based methods, we introduce
the convexHull-α algorithm, which considers the intersection of convex hulls
across multiple layers and maintains an empty map to ensure that the
supporting force originates from the ground. Empirical results demonstrate
that convexHull-α significantly outperforms convexHull-1 in terms of sta-
bility check accuracy, with a fall rate of only 0.03% compared to 5.1% for
convexHull-1.

Furthermore, the integration of object rearrangement into the DRL
framework allows the robot manipulator to change the orientation of incom-
ing objects, thereby improving space utilization without incurring additional
time costs. This is achieved by formulating the problem as a Markov
Decision Process (MDP) and employing two independent actor networks
to predict object orientation and placement position, respectively. The
physics heuristic algorithm generates stable action maps for each potential
orientation, guiding the orientation prediction process. Subsequently, the
placement agent network utilizes these stable action maps to determine the
final placement position, ensuring the stability of the packed objects.

The effectiveness of the proposed DRL framework is evaluated through
both simulation and real robot experiments. In simulations, the model
achieves higher space utilization rates compared to baseline methods, requir-
ing fewer training epochs for convergence. This suggests that the integration
of the physics heuristic algorithm not only ensures stability but also improves
the training efficiency of the DRL model. The real robot experiments
further validate the practicality of the proposed approach, demonstrating
the ability to accurately recognize object poses, suction objects, adjust their
orientations.

In conclusion, the strengths of the main arguments presented in this

33

thesis are supported by both theoretical and empirical evidence. The
convexHull-α algorithm, as a novel physics heuristic, provides a reliable
and efficient way to check the stability of object placements in complex
multi-stack environments. The integration of object rearrangement into the
DRL framework enhances space utilization without compromising stability or
increasing time costs. The experimental results, both in simulations and on
a real robot, demonstrate the effectiveness and practicality of the proposed
approach, achieving higher space utilization rates with fewer training epochs
compared to baseline methods.

In the future, we aim to make our physics heuristic algorithm more
accurate by precisely predicting each stable placement position, and to
improve the training efficiency of the DRL model. Additionally, we will
incorporate the method proposed by Gao et al [30] [31] and Li et al [49] to
grasp and pack irregular objects in the real world and attempt to propose a
strategy for packing irregular and uneven objects [50] in complex real-world
environments.

34

References

[1] H. Hu, X. Zhang, X. Yan, L. Wang, and Y. Xu, “Solving a new 3d
bin packing problem with deep reinforcement learning method,” arXiv
preprint arXiv:1708.05930, 2017.

[2] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto, “Optimal packing and
covering in the plane are np-complete,” Information Processing Letters,
vol. 12, no. 3, pp. 133–137, 1981.

[3] S. Martello, D. Pisinger, and D. Vigo, “The three-dimensional bin
packing problem,” Operations Research, vol. 48, no. 2, pp. 256–267,
2000.

[4] T. G. Crainic, G. Perboli, and R. Tadei, “Extreme point-based heuristics
for three-dimensional bin packing,” Informs Journal on computing,
vol. 20, no. 3, pp. 368–384, 2008.

[5] K. Karabulut and M. M. İnceoğlu, “A hybrid genetic algorithm for pack-
ing in 3d with deepest bottom left with fill method,” in International
Conference on Advances in Information Systems. Springer, 2004, pp.
441–450.

[6] C. T. Ha, T. T. Nguyen, L. T. Bui, and R. Wang, “An online packing
heuristic for the three-dimensional container loading problem in dynamic
environments and the physical internet,” in Applications of Evolutionary
Computation: 20th European Conference, EvoApplications 2017, Ams-
terdam, The Netherlands, April 19-21, 2017, Proceedings, Part II 20.
Springer, 2017, pp. 140–155.

[7] E. Hopper and B. C. Turton, “An empirical investigation of meta-
heuristic and heuristic algorithms for a 2d packing problem,” European
Journal of Operational Research, vol. 128, no. 1, pp. 34–57, 2001.

[8] K. Karabulut and M. M. İnceoğlu, “A hybrid genetic algorithm for pack-
ing in 3d with deepest bottom left with fill method,” in International
Conference on Advances in Information Systems. Springer, 2004, pp.
441–450.

35

[9] F. Wang and K. Hauser, “Dense robotic packing of irregular and novel
3d objects,” IEEE Transactions on Robotics, vol. 38, no. 2, pp. 1160–
1173, 2021.

[10] S. Ali, A. G. Ramos, M. A. Carravilla, and J. F. Oliveira, “On-line three-
dimensional packing problems: A review of off-line and on-line solution
approaches,” Computers & Industrial Engineering, vol. 168, p. 108122,
2022.

[11] S. Yang, S. Song, S. Chu, R. Song, J. Cheng, Y. Li, and W. Zhang,
“Heuristics integrated deep reinforcement learning for online 3d bin
packing,” IEEE Transactions on Automation Science and Engineering,
2023.

[12] K. Pertsch, Y. Lee, Y. Wu, and J. J. Lim, “Guided reinforcement
learning with learned skills,” arXiv preprint arXiv:2107.10253, 2021.

[13] H. Zhao, Q. She, C. Zhu, Y. Yang, and K. Xu, “Online 3d bin packing
with constrained deep reinforcement learning,” in AAAI Conference on
Artificial Intelligence, vol. 35, no. 1, 2021, pp. 741–749.

[14] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,
“How to train your robot with deep reinforcement learning: lessons we
have learned,” The International Journal of Robotics Research, vol. 40,
no. 4-5, pp. 698–721, 2021.

[15] H. Nguyen and H. La, “Review of deep reinforcement learning for robot
manipulation,” in 2019 Third IEEE international conference on robotic
computing (IRC). IEEE, 2019, pp. 590–595.

[16] S. Gu, E. Holly, T. P. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation,” arXiv preprint arXiv:1610.00633,
vol. 1, p. 1, 2016.

[17] C. Zhang, Y. Wu, Y. Ma, W. Song, Z. Le, Z. Cao, and J. Zhang,
“A review on learning to solve combinatorial optimisation problems
in manufacturing,” IET Collaborative Intelligent Manufacturing, vol. 5,
no. 1, p. e12072, 2023.

[18] S. Martello and D. Vigo, “Exact solution of the two-dimensional finite
bin packing problem,” Management Science, vol. 44, no. 3, pp. 388–399,
1998.

36

[19] B. S. Baker, E. G. Coffman, Jr, and R. L. Rivest, “Orthogonal packings
in two dimensions,” SIAM Journal on computing, vol. 9, no. 4, pp. 846–
855, 1980.

[20] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L.
Graham, “Worst-case performance bounds for simple one-dimensional
packing algorithms,” SIAM Journal on computing, vol. 3, no. 4, pp.
299–325, 1974.

[21] L. Wang, S. Guo, S. Chen, W. Zhu, and A. Lim, “Two natural
heuristics for 3d packing with practical loading constraints,” in PRICAI
2010: Trends in Artificial Intelligence: 11th Pacific Rim International
Conference on Artificial Intelligence, Proceedings 11. Springer, 2010,
pp. 256–267.

[22] D. Zhang and W. Huang, “A simulated annealing algorithm for the
circles packing problem,” in International Conference on Computational
Science. Springer, 2004, pp. 206–214.

[23] Y. Jiang, Z. Cao, and J. Zhang, “Solving 3d bin packing problem via
multimodal deep reinforcement learning,” 2021.

[24] S. Song, A. Zeng, J. Lee, and T. Funkhouser, “Grasping in the
wild: Learning 6dof closed-loop grasping from low-cost demonstrations,”
IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4978–4985,
2020.

[25] Z. Rao, Y. Wu, Z. Yang, W. Zhang, S. Lu, W. Lu, and Z. Zha, “Visual
navigation with multiple goals based on deep reinforcement learning,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 32,
no. 12, pp. 5445–5455, 2021.

[26] L. Desanghere and J. J. Marotta, “The influence of object shape and
center of mass on grasp and gaze,” Frontiers in psychology, vol. 6, p.
1537, 2015.

[27] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar, “Dexterous
manipulation with deep reinforcement learning: Efficient, general, and
low-cost,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 3651–3657.

[28] C. Tang, B. Abbatematteo, J. Hu, R. Chandra, R. Mart́ın-Mart́ın, and
P. Stone, “Deep reinforcement learning for robotics: A survey of real-
world successes,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 8, 2024.

37

[29] C. Banerjee, K. Nguyen, C. Fookes, and M. Raissi, “A survey on physics
informed reinforcement learning: Review and open problems,” arXiv
preprint arXiv:2309.01909, 2023.

[30] Z. Gao, A. Elibol, and N. Y. Chong, “On the generality and application
of mason’s voting theorem to center of mass estimation for pure transla-
tional motion,” IEEE Transactions on Robotics, vol. 40, pp. 2656–2671,
2024.

[31] ——, “Zero moment two edge pushing of novel objects with center
of mass estimation,” IEEE Transactions on Automation Science and
Engineering, vol. 20, no. 3, pp. 1487–1499, 2023.

[32] V. Braverman, R. Ostrovsky, and C. Zaniolo, “Optimal sampling from
sliding windows,” in Proceedings of the twenty-eighth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, 2009,
pp. 147–156.

[33] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algo-
rithm for convex hulls,” ACM Transactions on Mathematical Software
(TOMS), vol. 22, no. 4, pp. 469–483, 1996.

[34] G. Bradski, “The opencv library,” Dr. Dobb’s Journal of Software Tools,
2000.

[35] M. L. Puterman, “Markov decision processes,” Handbooks in operations
research and management science, vol. 2, pp. 331–434, 1990.

[36] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[37] A. Feriani and E. Hossain, “Single and multi-agent deep reinforcement
learning for ai-enabled wireless networks: A tutorial,” IEEE Communi-
cations Surveys & Tutorials, vol. 23, no. 2, pp. 1226–1252, 2021.

[38] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and
scalable robot simulation framework,” in 2013 IEEE/RSJ international
conference on intelligent robots and systems. IEEE, 2013, pp. 1321–
1326.

[39] J. Hummel, R. Wolff, T. Stein, A. Gerndt, and T. Kuhlen, “An
evaluation of open source physics engines for use in virtual reality assem-
bly simulations,” in Advances in Visual Computing: 8th International

38

Symposium, ISVC 2012, Rethymnon, Crete, Greece, July 16-18, 2012,
Revised Selected Papers, Part II 8. Springer, 2012, pp. 346–357.

[40] G. Van Rossum and F. L. Drake Jr, Python tutorial. Centrum voor
Wiskunde en Informatica Amsterdam, The Netherlands, 1995, vol. 620.

[41] N. Ketkar, J. Moolayil, N. Ketkar, and J. Moolayil, “Introduction
to pytorch,” Deep learning with python: learn best practices of deep
learning models with PyTorch, pp. 27–91, 2021.

[42] J. Sanders, CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley Professional, 2010.

[43] L. Keselman, J. Iselin Woodfill, A. Grunnet-Jepsen, and A. Bhowmik,
“Intel realsense stereoscopic depth cameras,” in Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, 2017,
pp. 1–10.

[44] M. Kalaitzakis, B. Cain, S. Carroll, A. Ambrosi, C. Whitehead, and
N. Vitzilaios, “Fiducial markers for pose estimation: Overview, appli-
cations and experimental comparison of the artag, apriltag, aruco and
stag markers,” Journal of Intelligent & Robotic Systems, vol. 101, pp.
1–26, 2021.

[45] R. Horaud and F. Dornaika, “Hand-eye calibration,” The international
journal of robotics research, vol. 14, no. 3, pp. 195–210, 1995.

[46] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 4015–4026.

[47] H. Pham and Q.-C. Pham, “Critically fast pick-and-place with suction
cups,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 3045–3051.

[48] H. Zhao, C. Zhu, X. Xu, H. Huang, and K. Xu, “Learning practically
feasible policies for online 3d bin packing,” Science China Information
Sciences, vol. 65, no. 1, p. 112105, 2022.

[49] C. Li, P. Zhou, and N. Y. Chong, “Safety-optimized strategy for
grasp detection in high-clutter scenarios,” in 2024 21st International
Conference on Ubiquitous Robots (UR). IEEE, 2024, pp. 192–197.

39

[50] H. Liu, L. Zhou, J. Yang, and J. Zhao, “The 3d bin packing problem for
multiple boxes and irregular items based on deep q-network,” Applied
Intelligence, vol. 53, no. 20, pp. 23 398–23 425, 2023.

40

Publications

[1] Li, C., Zhou, P., Chong, N. Y. ’Safety-optimized Strategy for Grasp
Detection in High-clutter Scenarios’. In 2024 21st International Con-
ference on Ubiquitous Robots (UR) (pp. 192-197). IEEE. 2024, June

[2] Zhou, P., Gao, Z., Li, C., Chong, N. Y. ’An Efficient Deep Reinforce-
ment Learning Model for Online 3D Bin Packing Combining Object
Rearrangement and Stable Placement’. In 2024 24th International
Conference on Control, Automation and Systems (ICCAS) (pp. 964-
969). IEEE. 2024, October

41

42

	Abstract
	Acknowledgment
	List of Figures
	List of Tables
	Contents
	Chapter 1 Introduction
	1.1 Background
	1.2 Relative work
	1.2.1 Heuristics in Bin Packing Problem
	1.2.2 DRL in 3D-BPP
	1.2.3 Stability check in 3D-BPP

	Chapter 2 Method
	2.1 Stability Checking via Physics Heuristics
	2.1.1 convexHull-1
	2.1.2 convexHull-k
	2.1.3 convexHull-

	2.2 DRL for Bin Packing
	2.2.1 Problem Formulation
	2.2.2 State Definition
	2.2.3 Action Definition
	2.2.4 Reward Function
	2.2.5 Physics Heuristics DRL Framework

	Chapter 3 Robot Experiment
	3.1 Simulation experiment
	3.1.1 Simulation environment
	3.1.2 Simulation process

	3.2 Real Robot Experiment
	3.2.1 Real robot arm connection
	3.2.2 Hand-eye calibration process
	3.2.3 Target object recognition
	3.2.4 Target object suction
	3.2.5 Target object pose adjustment

	Chapter 4 Result
	4.1 Physics Heuristics Validation
	4.2 Simulation result
	4.3 DRL framework result

	Chapter 5 Conclusion
	References
	Publications

