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Abstract

In recent years, expectations for the realization of quantum computers
have increased, and the research on post-quantum cryptography (PQC) has
become active. Accordingly, the National Institute of Standards and Technol-
ogy (NIST) has been working on a standardization project for post-quantum
cryptography. Cryptographic schemes utilizing hash functions have tradi-
tionally been studied and developed with a focus on their security in the
Random Oracle Model (ROM), which considers only classical algorithms.
However, in the post-quantum cryptography, it is common to use the Quan-
tum Random Oracle Model (QROM), which accounts for quantum algo-
rithms that allow superposition queries to the random oracle. The security
evaluation of cryptographic schemes in the QROM is an important topic, as
the understanding of security in this model remains incomplete.

The Fujisaki-Okamoto (FO) transformation is a generic method for con-
verting any weak public-key encryption scheme into an IND-CCA secure
public-key encryption scheme in the random oracle model. There are two ver-
sions of the FO transformation: the PKC version and the CRYPTO version.
While the FO transformation has been extensively studied in the classical
Random Oracle Model, it is not yet fully understood whether similar results
hold in the QROM. In the QROM, the security of the FO transformation
has been established through security proofs in the CRYPTO version and its
improved version. However, the security proof for the PKC version has not
yet been completed.

The reserch in the QROM, properties that could be applied in ROM
cannot be used without proof in QROM. Therefore, a key challenge is to
prove whether the same theorems and properties as in ROM can be applied or
to devise alternative approaches. In the QROM, the challenge was to record
queries to the random oracle, which can be done trivially in the classical
model. However, Zhandry developed in the compressed oracle technique,
which can record queries on the oracle side in the QROM.

Subsequently, Don et al. showed that an upper bound on the compu-
tational error when exchanging the order of a unitary operator and a mea-
surement operator within the compressed oracle. This bound, known as the
commutator bound, showed that in the QROM, the order of computations
in algorithms can be interchanged within a statistical error margin.

From these results, Don et al. constructed a simulator capable of extract-
ing the content of an adversary’s queries to the QROM without the adversary



being aware of it and before all queries are completed. Applying this sim-
ulator, they provided a security proof for the CRYPTO version of the FO
transformation, which converts a PKE with one-way security against CPA
attacks (OW-CPA) into a KEM with indistinguishability security against
CCA attacks (IND-CCA).

However, to the best of our knowledge, there is no existing security proof
for the FO transformation in the PKC version, which converts a PKE with
indistinguishability security against CPA attacks (IND-CPA) into a PKE
with IND-CCA security.

In this paper, we provide a security proof for the FO-PKC version in the
Quantum Random Oracle Model, referencing the proof techniques used by
Don et al.

The key point of this proof lies in the differences between proofs in the
ROM and QROM. In the QROM proof, the order of the steps differs from
that in the ROM proof.

In the ROM, where inputs and outputs are classical bits, it is straightfor-
ward to record the access to the random oracle and extract its contents. As
a result, after providing the adversary with the challenge ciphertext c∗, the
decryption oracle can be replaced with one that extracts results by referenc-
ing the random oracle access. This operation allows the implementation of
a decryption oracle that does not require the secret key. Subsequently, the
proof is completed by bounding the differences introduced by this replace-
ment using the OW-Game.

On the other hand, in the QROM, where superposition inputs are allowed,
recording and extracting query contents requires the use of a compressed
oracle. This necessitates a method for replacing the compressed oracle.

In both classical and quantum proofs, the challenge ciphertext c∗ is gen-
erated during the initial setup of the game. At this point, the random oracle
H is accessed, and its output is used to encrypt c∗. In the classical proof,
the simulation of the decryption oracle is performed first. To follow the same
order in the quantum proof, H must be replaced with a compressed oracle.
However, the compressed oracle must be implemented independently of the
challenge ciphertext c∗. Therefore, it is not possible to conduct the quantum
proof in the same order as the classical proof.

To resolve this issue, the quantum proof replaces H with a different
random oracle H ′. The differences introduced by this replacement can be
bounded using the O2H lemma. Subsequently, this replaced H is further
replaced with a compressed oracle, enabling the challenge ciphertext c∗ and
the compressed oracle to be treated independently. This replacement al-
lows query recording and extraction, eliminating the need for the secret key,
thereby completing the proof.Abstract of this paper
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Future work in this study includes improvements to One Way to Hiding
Lemma (O2H) and to the commutator bound. In the current proof method,
the application of O2H bounds the probability using a square root of the
probability. In the classical model, the probability is bounded by the prob-
ability without the square root, so if the probability can be bounded by the
probability without or close to the square root in the quantum case using
some method, better security evaluation results can be obtained.

Additionally, in this proof, the order of the algorithms in the simulator is
interchanged, and the error term is generated by the number of such swaps
and the commutator bound. Therefore, if the commutator bound can be
bounded to a smaller upper bound or the number of exchanging can be
reduced to a smaller number, the error term will be smaller, and leading to
improved results.
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Chapter 1

Introduction

The Fujisaki-Okamoto (FO) transformation is a generic method for con-
verting any weak public-key encryption scheme into an IND-CCA secure
public-key encryption scheme in the random oracle model. It exists in two
versions: PKC[FO99a] and CRYPTO[FO99b, FO13]. The original proposed
method has its security proven in the classical Random Oracle Model. In
Chapter 4, we will explore the Fujisaki-Okamoto (FO) transformation in de-
tail.

The compressed oracle technique, developed in [Zha19], allows queries to
be recorded on the oracle side in the QROM. Using this technique, Don et al.
showed that a bound on the operator norm of the commutator [OXYD,MDP ]
(Commutator Bound [Thm3.2]) of the unitary operator OXYD, which de-
scribed the evolution of the compressed oracle, and the (purified) measure-
ment operator MDP in the QROM. This result addressed a key challenge
in QROM by showing that the order of computations can be interchanged
within a statistical error margin.

In addition, by applying this method, they constructed a simulator that
can extract the content of an adversary’s queries to the QROM without
noticing the adversary, and before all queries are completed. Using this
simulator, they provided a security proof for the CRYPTO version of the FO
transformation, which converts a PKE with one-way security against CPA
attacks (OW-CPA) into a KEM with indistinguishability security against
CCA attacks (IND-CCA).

However, to the best of our knowledge, there is no existing security proof
for the FO transformation addressed in FO-PKC, which converts a PKE
with indistinguishability security against CPA attacks (IND-CPA) into a
PKE with IND-CCA security. In this paper, we provide a security proof for
the FO-PKC version in the Quantum Random Oracle Model.
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Chapter 2

Preliminaries

2.1 Quantum Computation

In this paper, complex vectors are expressed using Dirac notation. In this
notation, |ψ⟩ represents a column vector. ⟨ψ| represents the conjugate row
vector of |ψ⟩. The symbol † is defined as the conjugate transpose of the
original vector, i.e., ⟨ψ| = |ψ⟩†. We define the inner product in this notation.
The inner product is defined by combining the ⟨| vector and the |⟩ vector
and is written as ⟨ψ| · |ϕ⟩ = ⟨ψ|ϕ⟩. The norm of the vector |ψ⟩ is defined as
|| |ψ⟩ || =

√
⟨ψ|ψ⟩.

The computational basis states |0⟩ and |1⟩ are defined as:

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
(2.1)

A quantum bit (qubit) differs from a classical bit in that its state can be
expressed as a superposition of |0⟩ and |1⟩:

|ψ⟩ = a |0⟩+ b |1⟩ (2.2)

where a, b ∈ C, |a|2 + |b|2 = 1
A set of projection operators {Pi}i satisfies

∑
i

Pi = I. When measuring a

quantum state |ψ⟩, the probability p(m) of obtaining the measurement result
m is given by:

p(m) = ||Pm |ψ⟩ ||2 (2.3)

For example, consider a quantum state |ψ⟩ = a |0⟩ + b |1⟩ measured using
the projection operators P0 = |0⟩ ⟨0| and P1 = |1⟩ ⟨1|. The probabilities of
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obtaining 0 and 1 are:

p(0) = ||P0 |ψ⟩ ||2 = |a|2, p(1) = ||P1 |ψ⟩ ||2 = |b|2. (2.4)

This measurement collapses the internal state from a superposition (where
the output probabilities are |a|2 or |b|2) to a state where the output is de-
terministic (0 or 1 with probability 1). As a result, the internal state after
measurement differs from the pre-measurement state, potentially altering
subsequent outputs depending on whether measurement has occurred. Fur-
thermore, for an operator A ∈ L(H), operatornorm ||A|| is defined as:

||A|| = max
|ϕ⟩
||A |ϕ⟩ || (2.5)

where the max is over all |ϕ⟩ ∈ H with norm 1.

2.2 The compressed oracle

In this papper, we refer to it as X = {0, 1}m, |X| = 2m = M, Y =
{0, 1}n, |Y | = 2n = N .
The definitions and notations in this section are based on references [NC10],
[Zha19] and [CFHL21].

2.2.1 The Fourier basis

The computational basis |j⟩ transformed into the basis |ĵ⟩ as described below
is called the Fourier basis.

Definition 2.2.1 (The Quantum Fourier Transform (QFT)).

|j⟩ → ˆ|j⟩ := 1√
2n

2n−1∑
k=0

ωjk
N |k⟩ (2.6)

where ωN ∈ C is Nth roots of unity. { ˆ|j⟩} is the Fourier basis of {|j⟩}.

2.2.2 The Compressed Oracle

Definition 2.2.2 (Oracle). O is a unitary operator defined as follows:

O : |x⟩ |y⟩ ⊗ |H⟩ → |x⟩ |y +H(x)⟩ ⊗ |H⟩ (2.7)
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Lemma 2.2.3. Considering the Quantum Fourier basis under the above
definition, the following holds:

O : |x⟩ |ŷ⟩ ⊗ |Ĥ⟩ → |x⟩ |ŷ⟩ ⊗Oxŷ |Ĥ⟩
= |x⟩ |ŷ⟩ ⊗ |Ĥ − ŷ · δx⟩

(2.8)

where δx : X → {0, 1} satisfies δx(x) = 1 and δx(x
′) = 0 for all x′ ̸= x. And,

|Ĥ⟩ :=
⊗
x

|Ĥ(x)⟩

|Ĥ − ŷ · δx(x)⟩ := |Ĥ(0)⟩ ⊗ · · · ⊗ | ̂H(M − 1)⟩
(2.9)

Definition 2.2.4 (Compx). The unitary operator Compx, acting on the
corresponding part of x, is defined as follows:

Compx := |⊥⟩ ⟨0̂|+ |0̂⟩ ⟨⊥|+
∑
ẑ ̸=0̂

|ẑ⟩ ⟨ẑ| (2.10)

Definition 2.2.5 (Comp). Comp is a unitary operator defined as follows:

Comp |x⟩ |y⟩ |D⟩ := |x⟩ |y⟩ ⊗ Compx |D⟩ (2.11)

Definition 2.2.6 (Compressed Oracle). OXYD is a unitary operator defined
as follows:

OXYD := Comp ◦O ◦ Comp† (2.12)
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Chapter 3

Preparation for Proof

3.1 Measurement Operator

The definitions and notations in section3.1 to section 3.3 are based on refer-
ences [DFMS22].

Definition 3.1.1. We consider an arbitrary but fixed relation R ⊂ X ×
{0, 1}n. A crucial parameter of the relation R is the number of y’s that fulfill
the relation together with x, maximized over all possible x ∈ X:

ΓR := max
x∈X
|{y ∈ {0, 1}n|(x, y) ∈ R}| (3.1)

Definition 3.1.2 (Projectors Π). Given the relation R, Π are projectors
defined as follows:

Πx
Dx

:=
∑

y s.t (x,y)∈R

|y⟩ ⟨y|Dx

Π∅D := 1D −
∑
x∈X

Πx
Dx

=
⊗
x∈X

Π̄x
Dx

(3.2)

with Π̄x
Dx

:= 1Dx − Πx
Dx

. Here, Πx
Dx

checks whether there exists a pair
(x, y) ∈ R for Dx.

Definition 3.1.3 (Measurement Operator M). M = MR to be given by
the projectors are the measurement defined as follows:

Σx :=
⊗
x′<x

Π̄x′

Dx′
⊗ Πx

Dx

Σ∅ := 1−
∑
x′

Σx′
=

⊗
x′

Π̄x′

Dx′
= Π∅

(3.3)
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where x ranges over all x ∈ X. Here, a measurement outcome x byM means
that register Dx is the first to contain a value y satisfying (x, y) ∈ R . On
the other hand, a outcome ∅ means that no register contains such a value.

Definition 3.1.4 (Purified Measurement MDP ). The purrified measure-
ment MDP =MR

DP ∈ L(HD ⊗HR) is defined as follows by the unitary:

MDP :=
∑

x∈X∪{∅}

Σx ⊗Xx :

|φ⟩D |ω⟩P →
∑

x∈X∪{∅}

Σx |φ⟩D |ω + x⟩P
(3.4)

In both Xx and ω+x, x ∈ X∪{∅} is understood to be encoded as an element
of Z/(|X|+1)Z, dim(HP ) = d := |X|+1, and X ∈ L(HP ) is the generalized
Pauli operator of order d, mapping |ω⟩ to |ω + 1⟩.

3.2 A Commutator Bound

Theorem 3.2.1. (Commutator Bound [DFMS22]) For any relationR ⊂ X×
{0, 1}n and ΓR as defined in Eq(3.1), the purified measurementMDP defined
in Eq(3.4) almost commutes with the oracle unitary OXYD:

||[OXYD,MDP ]|| ≤ 8
√
2ΓR/2n (3.5)

where [A,B] = AB −BA

3.3 The Extractable RO-Simulator S

Definition 3.3.1. For f : X × {0, 1}n → C, Γ(f) and Γ′(f) are defined as
follows:

Γ(f) := max
x,c
|{y|f(x, y) = c}| (3.6)

Γ′(f) := max
x̸=x′,y′

|{y|f(x, y) = f(x′, y′)}| (3.7)

In encryption, f is replaced by Enc
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Definition 3.3.2 (RO-Simulator). The extractable RO-Simulator S is de-
fined as follows:

The extractable RO-Simulator S� �
• Initialization: S prepares its internal register D to be in state
|⊥⟩D := ⊗x |⊥⟩Dx

• S.RO-query: Upon a (quantum)RO-query, with query registers
XY , S applies OXYD to registers XYD.

• S.E-query: Upon a classical extraction-query with input c, S ap-
pliesMR to D and returns the outcome x̂.� �

Theorem 3.3.3. [DFMS22] The extractable RO-simulator S constructed
above, with interface S.RO and S.E, satisfies the following properties.

1. If S.E is unused, S is perfectly indistinguishable from the random oracle
RO.

2.a Any two subsequent independent queries to S.ROcommute. In partic-
ular, two subsequent classical S.RO-queries with the same input x give
identical responses.

2.b Any two subsequent independent queries to S.E commute. In partic-
ular, two subsequent classical S.E-queries with the same input c give
identical responses.

2.c Any two subsequent independent queries to S.E and S.RO is 8
√

2Γ(f)/2n

almost-commute.

3 Any classical query S.RO(x) and any classical query S.E(c) are both
idempotent.

4.a If x̂ = S.E(c) and ĥ = S.RO(x̂) are two subsequent classical queries
then

Pr[f(x̂, ĥ) ̸= t ∧ x̂ ̸= ∅] ≤ Pr[f(x̂, ĥ) ̸= t|x̂ ̸= ∅] ≤ 2 · 2−nΓ(f) (3.8)

4.b If h = S.RO(x) and x̂ = S.E(f(x, h)) are two subsequent classical
queries such that no prior query to S.E has been made, then

Pr[x̂ = ∅] ≤ 2 · 2−n (3.9)
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Proposition 3.3.4. Let R′ ⊆ X ×C be a relation unrelated to R. Consider
a query algorithm A that makes q queries to the S.RO interface of S but no
query to S.E, outputting some c ∈ Cl. For each i, let x̂i then be obtained by
making an additional query to S.E on input ci. Then,

Pr[∃i; (x̂i, ci) ∈ R′] ≤ 128q2 · ΓR/2
n (3.10)

3.4 One Way to Hiding Lemma

This lemma is based on reference [AHU19].

Lemma 3.4.1. (One way to hiding, O2H [AHU19]) Let S ⊆ X be random.
Let G,H : X → Y be a random functions satisfying ∀x /∈ S, G(x) = H(x).
Let z be a random bit string (S,G,H, z may have arbitrary joint distribution
).
Let A be quantum oracle algorithm with query depth q (not necessarily uni-
tary). Let BH be an oracle algorithm that on input z does the following: pick

i
$← {1...q}, run AH(z) until (just before) the i-th query, measure all query

input registers in the computational basis, output the set T of measurement
outcomes. Let

Pleft :=Pr[b = 1 : b← AH(z)]

Pright :=Pr[b = 1 : b← AG(z)]

Pguess :=Pr[S ∩ T ̸= ∅ : T ← BH(z)]

(3.11)

Then

|Pleft − Pright| ≤ 2q
√
Pguess (3.12)

8



Chapter 4

QROM-Security of
Fujisaki-Okamoto
Transformation

4.1 The Fujisaki-Okamoto Transfomation

4.1.1 A public-key encryption scheme

A public-key encryption scheme PKE is defined as follows:

PKE = (KG, Enc,Dec) (4.1)

KG is key generation scheme, generating public key and secret key. Enc
is encryption scheme, using public key. Dec is decryption scheme, using se-
cret key.

4.1.2 The Fujisaki-Okamoto Transfomation

There are two versions of the FO transformation: the PKC version [FO99a]
and the CRYPTO version [FO99b, FO13]. We will refer to these as FO-
PKC and FO-CRYPTO, respectively. (Strictly speaking, the CRYPTO ver-
sion [FO99b] and the journal version [FO13] differ slightly, but we will treat
them as equivalent here.)

The FO-CRYPTO transformation was modified into a KEM (Key En-
capsulation Mechanism) by Victor Shoup, who was an ISO editor at the
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time [Sho01]. We will refer to this modified FO-CRYPTO transformation as
FO-KEM. In ISO18033-2, FO-KEM is named PSEC-KEM.

Subsequently, Hofheinz, Hövelmanns, and Kiltz [HHK17] decomposed
FO-KEM into a combination of the T-transformation and the U-transformation.
Furthermore, they proposed four variations of the U-transformation: U̸⊥, U̸⊥m,
U⊥, and U⊥m. In this classification, FO-KEM corresponds to the transforma-
tion U⊥m ◦ T.

For example, let PKE be a (probabilistic) public-key encryption scheme.
Applying the T-transformation to PKE yields a deterministic public-key en-
cryption scheme dPKE = T(PKE). Applying one of the U-transformations
to dPKE results in a KEM, FO(PKE) = U(dPKE) = U ◦ T(PKE). Based on
the variations of the U-transformation, we can denote the transformations
as FO = U ̸⊥ ◦ T, FO ̸⊥m = U̸⊥m ◦ T,FO⊥ = U⊥ ◦ T, and FO⊥m = U⊥m ◦ T. The
above-mentioned FO-KEM corresponds to FO⊥m. All four transformations
guarantee that if the underlying public-key encryption scheme is OW-CPA
secure, the resulting KEM is IND-CCA secure in the (classical) random or-
acle model.

In the quantum random oracle model, it initially appeared that results
valid in the classical random oracle model would not hold. However, recent
research has shown that similar results can also be achieved in the quantum
random oracle model. For generic transformations like FO Transformation
for public-key encryption (or KEMs), two key elements in the proofs are
the One Way to Hiding (O2H) lemma introduced by Unruh [Unr15] and
the Compressed Oracle technique introduced by Zhandry [Zha19]. The O2H
lemma has been refined since [Unr15], as seen in works like [AHU19, BHH+19,
KSS+20]. Meanwhile, the Compressed Oracle technique was enhanced by
Don et al. [DFMS22] with improved extraction methods.

Regarding the quantum random oracle security of the four FO-KEM
transformations: [BHH+19, KSS+20] proved the security of FO ̸⊥ and FO̸⊥m.
[DFMS22, HHM22] proved the security of FO⊥m.

To prove the security of FO ̸⊥ and FO̸⊥m, the Compressed Oracle technique
is not strictly necessary. In fact, [BHH+19, KSS+20] use the O2H lemma but
do not employ the compressed-oracle technique. On the other hand, proving
the security of FO⊥m seems to require both the Compressed Oracle technique
and the improved extraction methods. Zhandry [Zha19] proved the security
of FO-CRYPTO for public-key encryption schemes (not KEMs). According
to [DFMS22], there is a bug in this proof, but the authors claim that it can
be resolved using their improved extraction techniques. As for the quantum
random oracle security of FO⊥, no references were found in the literature.
However, it is likely that the methods described in [DFMS22, HHM22] can
be used to prove it.
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Table 4.1: A security proof of FO Transformation in the QROM

Transform Type Reference Techniques

FO-CRYPTO PKE [Zha19, DFMS22] O2H, cO tech.

FO̸⊥ KEM [BHH+19, KSS+20] O2H

FO̸⊥m KEM [BHH+19, KSS+20] O2H

FO⊥ KEM ? ?

FO⊥m KEM [DFMS22, HHM22] O2H, cO tech.
FO-PKC PKE This work O2H, cO tech.

4.1.3 Security of Public Key Encryption (PKE)

As shown below, the algorithms for the respective games of IND-CPA (Al-
gorithm 1) and IND-CCA (Algorithm 2). The adversary outputs plain texts
(m0,m1) : (m0 ̸= m1). Finally, the adversary takes ciphertext c∗ and guess
whether it is c∗ of m0 or m1. The specific difference lies in whether the ad-
versary can access the Dec.oracle when producing the output b′ in line 6 of
the both of algorithms.

Algorithm 1 GAME IND-CPA-PKE

1: (pk, sk)← KG

2: (b, r∗)
$← {0, 1} ×R

3: (m0,m1)← A
4: H∗ = H(r∗||mb)
5: c∗ = Encpk(r

∗||mb, H
∗)

6: b′ ← A(pk, c∗)
7: b′ == b

Algorithm 2 GAME IND-CCA-PKE

1: (pk, sk)← KG

2: (b, r∗)
$← {0, 1} ×R

3: (m0,m1)← A
4: H∗ = H(r∗||mb)
5: c∗ = Encpk(r

∗||mb, H
∗)

6: b′ ← ADec(pk, c∗)
7: b′ == b

11



Additionally, the definitions of two conditions required for the IND-CCA
game used at the start of the proof, namely δ-correctness and γ-spreadness,
are also provided. δ-correctness refers to the requirement that the decryption
of a ciphertext, which was generated by encrypting a plaintext, accurately
recovers the original plaintext. The γ-spreadness requires that the ciphertext
has high minimum entropy relative to the average key generation, ensuring
robust randomness.

The definitions and notations in this section are based on references
[DFMS22].

Definition 4.1.1 (δ-correctness). A public-key encryption scheme is δ-
correct if

E
(sk,pk)←KG

[max
m∈M

Pr[Decsk(c) ̸= m : c← Encpk(m))]] ≤ δ (4.2)

where the probability is over the randomness of the encryption.

Definition 4.1.2 (γ-spreadness). A public-key encryption scheme is γ-
spread if

min
m∈M
(sk,pk)

(−logmax
c∈C

Pr[c← Encpk(m)]) ≥ γ
(4.3)

where the probability is over the randomness of the encryption, and the
minimum is over all key pairs that have positive probability of being produced
by KG.

Theorem 4.1.3. An IND-CPA secure PKE is γ-spread where γ ≥ − log ϵind−cpa+
log(poly(k)).

Proof. For an IND-CPA secure, the advantage of adversary is bounded by
a negligible value ϵind−cpa.

ADV[B]IND-CPA
PKE = Pr[b = b∗]− 1

2
≤ ϵIND-CPA (4.4)

And, we consider the adversary with b′ ← A(pk, c∗)(Algorithm 3) against
IND-CPA Game.
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Algorithm 3 Proof. of γ-spread

Input: pk, c∗

Output: b′

1: while i ≤ k do

2: ri
$← R

3: if Encpk(ri;m0) = c∗ or Encpk(ri;m1) = c∗ then
4: return b′ (Encpk(ri;mb′) = c∗)
5: else
6: i = i+ 1
7: end if
8: end while
9: return b′

$← {0, 1}

where while is a polynomial number of iteration. Here

Pr[b = b∗] =2−γ · 2 poly(k) + (1− 2−γ · 2 poly(k)) · 1
2

=2−γ · poly(k) + 1

2

(4.5)

Therefore

2−γ · poly(k) ≤ϵIND-CPA

− log ϵind−cpa + log(poly(k)) ≤γ
(4.6)

□

Next, the theorem regarding the relationship between OW secure and IND
secure is provided below.

Proposition 4.1.4. Let ATK ∈ {CPA,CCA1,CCA2} be the context. If
there exists an adversary B against a public-key encryption scheme PKE,
then there necessarily exists an adversary A with the following relationship
between success probabilities:

ADV[B]OW-ATK
PKE (κ) ≤ ADV[A]IND-ATK

PKE (κ) +
1

|X| (4.7)

In other words, if PKE is IND secure, then it is OW secure.
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4.2 Security of FO-PKC in the QROM

4.2.1 Main Theorem

Theorem 4.2.1. Let PKE be a δ-correct public-key encryption scheme. Let
A be any IND-CCA adversary against FO[PKE, H], making qD ≥ 1 queries
to the decryption oracle and qA queries to H : X → Y , where H is modeled
as random oracles. Then, there exists an IND-CPA adversary B against PKE
with

ADV[A]IND-CCA
FO

≤(1 + qD
qA + qD

)(ADV[B]IND-CPA
PKE + ϵ′) +

qD
qA + qD

· 1

|X|

+
2qA

2

qA + qD

√
ADV[B]IND-CPA

PKE +
1

|X|
+ ϵ′

with ϵ′ = 8qD(2qA + qD)
√
2 · 2−γ + 128qA

2 · δ + 2qD · 2−n

(4.8)

4.2.2 Proof of the Theorem

In the following, we provide a proof of Thm 4.2.1. In performing this proof,
we use a different procedure than the FO transformation of the classical ran-
dom oracle model. The following Steps are used in the proof. In quantum,
the order is changed because it is necessary to apply O2H before deleting the
secret key by extraction.

Classical.� �
1. Replace decryption oracle with the extraction result. This change

would allow decryption oracle to be executed without secret key.
Therefore, the Game turned from IND-CCA to IND-CPA.

2. Bound the probability of a successful attack on Game original and
replacement in Step1 with Game that outputs plain text. It is
classical, so O2H is not necessary.

3. Proof is complete as it was bounded with IND-CPA Game and
OW-CPA Game.� �
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Quantum.� �
1. Replace the original random oracle with another random oracle that

has a different output than the original. Apply O2H to compose
Game to bound the difference between two Games.

2. The random oracle is replaced with compressed oracle. This re-
placement makes the extraction possible, so the information of the
secret key erases.

3. Proof is complete as it was bounded with IND-CPA Game and
OW-CPA Game.� �

Proof. Algorithms 4 to 8 are shown below. These algorithms are divided
by roles into, Game Setup, Main Phase, Random Oracle(RO), Decryption
Oracle(Dec.oracle), and One Way to Hiding(O2H). The corresponding game
number is noted next to each line, and lines without number are common
across all games. These algorithms describe the transformations from Game0
to Game5, starting with the CCA adversary A in Game0 and ending with
the CPA adversary B in Game5.

In this proof, we first fix the generated key pair (sk, pk)← KG and denote
the CCA adversary’s advantage for this pair as ADV[A]IND-CPA

FO . Addition-
ally, since δ-correctness is assumed for the game in this key pair (sk, pk),
let δsk be the maximum probability of a decryption error, and gsk be the
maximum probability of any ciphertext, so that E[δsk] ≤ δ and gsk ≤ 2−γ,
with the expectation over (sk, pk).

Algorithm 4 Game Setup

1: (pk, sk)← KG

2: (b, r∗)
$← {0, 1} ×R

3: H∗ = H(r∗||mb)
4: c∗ = Encpk(r

∗||mb, H
∗)
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Algorithm 5 Main Phase
Input: c∗

1: ADec,H(m0,m1, c
∗)→ b′ /G0

2: ADec,H′
(m0,m1, c

∗)→ b′ /G1
3: ADec,S.RO(m0,m1, c

∗)→ b′ /G2-G5
4: while i ∈ I do
5: r̂i||m̂i ← S.E(ci) /G2
6: end while
7: b′ == b

Algorithm 6 random oracle

Input: (r||m)
Output: H
1: H(r||m) = H /G0
2: H ′(r||m) = H /G1
3: S.RO(r||m) = H /G2-5
4: return H

Algorithm 7 Dec oracle

Input: ci(ci ̸= c∗)
Output: mi

1: ri||mi ← Decsk(ci) /G0-G4
2: S.E(ci) = r̂i||m̂i /G4-G5
3: H = H(ri||mi) /G0
4: H = H ′(ri||mi) /G1
5: H = S.RO(ri||mi) /G2-G3
6: H = S.RO(r̂i||m̂i) /G4-G5
7: if Encpk(ri||mi, H) = ci then
8: return mi /G0-G3
9: else

10: return ⊥ /G0-G3
11: end if
12: if Encpk(r̂i||m̂i, H) = ci then
13: return m̂i /G4-G5
14: else
15: return ⊥ /G4-G5
16: end if
17: r̂i||m̂i ← S.E(ci) /G3
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In Game1 using Lem 3.4.1, a new game is defined. In this game, j random
queries are selected from the adversary’s quantum queries qA ∈ JA and the
classical queries qD ∈ JD made by the Dec.oracle to the random oracle.
These selected queries are measured, and an algorithm MA is considered,
which submits the plaintext r′||m′ derived from the measurement results.

In the middle of the game, the role of outputting the plaintext in MA
changes to EA. It submits the plaintext when referencing Dec.oracle queries,
uses the extracted plaintext r̂||m̂ from a simulator S instead of directly using
the Dec.oracle.

Algorithm 8 O2H
Input: c∗

1: j
$← JA ∪ JD

2: r′||m′ ←MADec,H′

j (c∗) /G1

3: r′||m′ ←MADec,S.RO
j (c∗) /G2-G3

4: r′||m′ ← EADec,S.RO
j (c∗) /G4-G5

5: return r′||m′ == r∗||mb

Game0 Consider the standard IND-CCA game.

Pr[b = b′ in Game0] =
1

2
+ ADV[A]IND-CCA

FO (4.9)

Game1 The random oracle H is replaced with a new random oracle H ′.
The oracle H ′ has the output corresponding to input r∗||mb that differ from
H, while the outputs corresponding to inputs other than r∗||mb remain the
same. Then, the change introduced by the transformation from Game0 to
Game1 is evaluated using O2H, which applicable to quantum queries.

In this case, the random oracle H ′ accepts two of queries, qA quan-
tum queries made by the adversary A and qD classical queries made by the
Dec.oracle. O2H is applied only to the qA quantum queries.

From the above, let PA denote the probability that plaintext r′||m′ is out-
put from the quantum queries made by adversary A such that r′||m′ = r∗||mb,
and PD denote the probability that plaintext r′||m′ is output from the clas-
sical queries made by the Dec oracle to the random oracle. However, PA and
PD are equal because there is one output obtained by measuring each query.
So, we replace both PA and PD with Pϵ

For the evaluation of quantum queries, a new game is prepared in Algo-
rithm 6. Through these operations, the difference in the success probabilities
of attacks in Game0 and Game1 can be bounded by the sum of two proba-
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bilities. Therefore, the following equation is obtained:

|Pr[b = b′ in Game0]− Pr[b = b′ in Game1]|

≤ 2qA
2

qA + qD

√
PA +

qD
qA + qD

PD

=
2qA

2

qA + qD

√
Pϵ +

qD
qA + qD

Pϵ

Pϵ =Pr[r′||m′ = r∗||mb in Game1]

(4.10)

Game2 Next, replace the random oracle H ′ with the random oracle com-
ponent S.RO of the simulator S. The component S.E operates only after
all queries from the adversary have been completed. Therefore, there is no
change due to S.E. Additionally, from the theorem, the adversary cannot
detect the replacement with the simulator S. Hence,

Pr[b = b′ in Game1] = Pr[b = b′ in Game2] (4.11)

Similarly, in Game1 and Game2, the random oracle was replaced from H ′ to
S.RO, but since there is no change in the output, applying O2H to compare
Game0 and Game2 yields the following:

|Pr[b = b′ in Game0]− Pr[b = b′ in Game2]|
=|Pr[b = b′ in Game0]− Pr[b = b′ in Game1]|

≤ 2qA
2

qA + qD

√
Pr[r′||m′ = r∗||mb in Game1]

+
qD

qA + qD
Pr[r′||m′ = r∗||mb in Game1]

=
2qA

2

qA + qD

√
Pr[r′||m′ = r∗||mb in Game2]

+
qD

qA + qD
Pr[r′||m′ = r∗||mb in Game2]

(4.12)

Game3 The S.E prepared after the adversary’s queries is moved to the final
operation of the Dec.oracle. Since this relocation occurs at most qD(qA+ qD)
times, and the error for a single relocation is 8

√
2Γ(f)/2n, and Γ(f)/2n = gsk.

i.e., 8qD(qA+qD)
√

2Γ(f)/2n = 8qD(qA+qD)
√
2 · gsk ≤ 8qD(qA+qD)

√
2 · 2−γ.

Hence,

Pr[b = b′ in Game3] ≥ Pr[b = b′ in Game2]− ϵ1 (4.13)

where, ϵ1 = 8qD(qA + qD)
√
2 · 2−γ.

Furthermore, applying Prop 3.3.4 for R′ := {(r||m, c) : Decsk(c) ̸= r||m}, we
get that the event

P † = [∀i; m̂i = mi ∨ m̂i = ∅] (4.14)
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holds except with probability 128qA
2·ΓR/2

n ≤ 128qA
2·δ =: ϵ2, where ΓR/2

n =
δsk. Thus,

Pr[b = b′ ∧ P † in Game3] ≥ Pr[b = b′ in Game3]− ϵ2 (4.15)

Additionally, if we defined a new event P , P represents the event where S.E
performs a correct extraction.

P = [∀i; m̂i = mi ∨ (m̂i = ∅ ∧ Encpk(r̂i||m̂i;S.RO) ̸= ci)] (4.16)

The difference in probabilities between P and P † is bounded by Thm 3.3.3
4.b with each individual difference limited to 2 · 2−n. Since this event does
not occur even once in qD trials, and considering the first term of the Taylor
expansion, the difference is ultimately bounded by 2qD · 2−n. Therefore, the
following inequality is obtained:

Pr[b = b′ ∧ P in Game3 ≥ Pr[b = b′ ∧ P † in Game3]− ϵ3 (4.17)

where, ϵ3 = 2qD · 2−n.
From (4.13), (4.15) and (4.17), the following equation holds:

Pr[b = b′ ∧ P in Game3] ≥
Pr[b = b′ ∧ P † in Game3]− ϵ3 ≥
Pr[b = b′ in Game3]− ϵ2 − ϵ3 ≥
Pr[b = b′ in Game2]− ϵ1 − ϵ2 − ϵ3

(4.18)

And, regarding the O2H, the probability that [r′||m′ = r∗||mb in Game2]
and [r′||m′ = r∗||mb ∧ P in Game3] exhibit different behaviors is, as in the
previous discussion, bounded by ϵ = ϵ1 + ϵ2 + ϵ3.

Pr[r′||m′ = r∗||mb in Game2]

≤Pr[r′||m′ = r∗||mb in Game3] + ϵ1

≤Pr[r′||m′ = r∗||mb ∧ P in Game3] + ϵ

(4.19)

Game4 The responses in the Dec.oracle are handled using S.E instead of
the Dec function. Considering event P in Game3, the output of S.E corre-
sponding to the input ci is indistinguishable from the Dec function from the
adversary. Therefore,

Pr[b = b′ ∧ P in Game4] = Pr[b = b′ ∧ P in Game3] (4.20)

Similarly, based on the same reason, O2H can be expressed as follows:

Pr[r′||m′ = r∗||mb ∧ P in Game4]

= Pr[r′||m′ = r∗||mb ∧ P in Game3]
(4.21)
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Game5 The Dec.oracle has been completely replaced by the simulator S,
and the adversary can no longer obtain any information about sk from the
Dec.oracle. Thus, the Dec.oracle can be completely removed. As a result,
Game5 can be regarded as an IND-CPA game. The discrepancy between
Game4 and Game5 is ϵ4, which accounts for the removal of all queries from
the Dec function to the random oracle. This can be understood as moving
all queries from Dec to the random oracle to the end of the operations. Since
the maximum number of such queries is qA · qD, the discrepancy is bounded
by 8qA · qD

√
2Γ(f)/2n ≤ 8qA · qD

√
2 · 2−γ =: ϵ4.

Pr[b = b′ ∧ P in Game4]

≤Pr[b = b′ ∧ P in Game5] + ϵ4

≤1

2
+ ADV[B]IND-CPA

PKE + ϵ4

(4.22)

Additionally, by modifying the O2H game in accordance with the changes
in Game 5, the removal of the decryption oracle transforms Game 5 into an
IND-CPA game. Since P can be regarded as equivalent to an OW-CPA game
where it predicts a specific output with differing values, P can be bounded
by the OW-CPA advantage.

Pr[r′||m′ = r∗||mb ∧ P in Game4]

≤Pr[r′||m′ = r∗||mb ∧ P in Game5] + ϵ4

≤ADV[B]OW-CPA
PKE + ϵ4

(4.23)
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Combining Game0 through Game5, the following inequality is obtained:

1

2
+ ADV[A]IND-CCA

FO = Pr[b = b′ in Game0]

≤Pr[b = b′ ∧ P in Game5] + ϵ′ +
2qA

2

qA + qD

√
Pϵ +

qD
qA + qD

Pϵ

≤1

2
+ ADV[B]IND-CPA

PKE + ϵ′ +
2qA

2

qA + qD

√
ADV[B]OW-CPA

PKE + ϵ′

+
qD

qA + qD
(ADV[B]OW-CPA

PKE + ϵ′)

≤1

2
+ ADV[B]IND-CPA

PKE + ϵ′ +
2qA

2

qA + qD

√
ADV[B]IND-CPA

PKE +
1

|X|
+ ϵ′

+
qD

qA + qD
(ADV[B]IND-CPA

PKE +
1

|X|
+ ϵ′)

=
1

2
+ (1 +

qD
qA + qD

)(ADV[B]IND-CPA
PKE + ϵ′) +

qD
qA + qD

· 1

|X|

+
2qA

2

qA + qD

√
ADV[B]IND-CPA

PKE +
1

|X|
+ ϵ′

(4.24)

where ϵ′ = ϵ+ ϵ4. Therefore,

ADV[A]IND-CCA
FO

≤(1 + qD
qA + qD

)(ADV[B]IND-CPA
PKE + ϵ′) +

qD
qA + qD

· 1

|X|

+
2qA

2

qA + qD

√
ADV[B]IND-CPA

PKE +
1

|X|
+ ϵ′

(4.25)

And ϵ′ is as follows:

ϵ′ =8qD(qA + qD)
√
2 · 2−γ + 128qA

2 · δ
+2qD · 2−n + 8qA · qD

√
2 · 2−γ

=8qD(2qA + qD)
√
2 · 2−γ + 128qA

2 · δ + 2qD · 2−n
(4.26)

□
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Chapter 5

Summary

In this paper, we provided a security proof for the FO transformation
in PKC, which converts a PKE with IND-CPA security into a PKE with
IND-CCA security, based on Don et al.’s proof. From this result, it was
showed that the FO transformation, previously considered applicable only
in the classical Random Oracle Model, can also be applied to the Quantum
Random Oracle Model (QROM) using compressed oracle.

Future work in this study includes improvements to One Way to Hiding
Lemma (O2H) and to the commutator bound. In the current proof method,
the application of O2H bounds the probability using a square root of the
probability. In the classical model, the probability is bounded by the prob-
ability without the square root, so if the probability can be bounded by the
probability without or close to the square root in the quantum case using
some method, better security evaluation results can be obtained.

Additionally, in this proof, the order of the algorithms in the simulator is
swapped, and the error term is generated by the number of such swaps and
the commutator bound. Therefore, if the commutator bound can be bounded
to a smaller upper bound or the number of swapping can be reduced to a
smaller number, the error term will be smaller, and leading to improved re-
sults.
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