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Chapter 1

Introduction

The subject of this thesis is the finite embeddability property(FEP) of various classes of modal
algebras.

The FEP is a property of a class1 of algebras and implies the well-known finite model
property(FMP), which is often used to prove decidability of modal logics. In fact, the FEP
provides a stronger decidability than the FMP in the following sense: the FEP of a class of
algebras implies decidability of its universal theory while the FMP implies the decidability of
its equational theory. The history of the FEP dates back to the paper by McKinsey[21], where
the FEP for the closure algebras are proved, the paper by McKinsey & Tarski[23], where the
proof of the FEP for Heyting algebras is given.

Modal logics are propositional logics enriched with modal operators such as 2 and 3. As
suggested by the plural, there are various kinds of modal logics according to which conditions
the modal operators meet. Moreover, there are variations as to which are based upon. Namely
we can add, in effect, modal operators to arbitrary logics, classical or non-classical. Actually
we consider modal logics based on classical, intuitionistic, and substructural propositional
logic. We call them normal modal logics, intuitionistic modal logics, modal substructural
logics, respectively.

But why do we consider the FEP, a property of classes of algebras, while working on log-
ics? Generally we have the correspondence between a logic and a class of algebras. The most
famous examples are that between classical logic and boolean algebras, and between intuition-
istic logic and Heyting algebras. This allows us to consider the decidability of (theories of)
a class of algebras when we really want to know the decidability of the corresponding logic.
Modal algebras are generic term denoting algebras that is associated with modal logics. Thus
our aim is to prove decidability of modal logics by showing that the corresponding classes of
algebras has the FEP.

A traditional path to take to prove decidability for modal logics is to prove the FMP, to
prove which a method called filtration is used in turn. But filtration needs Kripke semantics for
the logic under consideration. Unfortunately, in general, Kripke semantics cannot be defined
for substructural logics due to the failure of the duality between ∨ and ∧ (see [32] for details).
Thus decidability was proved exclusively by proof-theoretical method, i.e. by eliminating cut.
Blok and van Alten’s paper[4] blazed a trail for model-theoretical proof. There it is proved
the variety of all (commutative integral) residuated lattices2 has the FEP. In a way this paper
rephrasing the results of Okada and Terui[26] in algebraic terms. The situation can be depicted

1Here the word “class” is used because the collection of algebras might fail to be a set.
2Throughout this thesis we mean commutative integral residuated lattice by residuated lattice.
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Chapter 1. Introduction

Modal substructural logic

Intuitionistic modal logic

Substructural logic

Modal logic

FEP

FMP

Decidability

Blok & van Alten

filtration

Figure 1. A road map to decidability

as in figure 1. The thick arrows are proved in this thesis.
Most of the FEP results so far is for the classes of algebras without modality. Our concern

is to fill this gap, settling the FEP of modal algebras of various kind. We first consider normal
modal algebras, then proceed to intuitionistic modal algebras and residuated lattices with
modality.

The structure of the thesis is as follows: Chapter 2 introduces basic definitions. We review
notions from universal algebra and fix notation. We also recall the definitions of modal and
substructural logics and their semantics. Chapter 3 proves the FEP of some classes of normal
modal algebras. The method used there is an amalgam of two well-known methods/results:
Schütte’s proof of the FMP and Jónsson-Taski’s theorem. The important observation is “if the
FMP of a logic can be proved via Schütte’s method, then the FEP of the corresponding class
of algebras can be proved”. Chapter 4 shows the method of the preceding chapter extends to
classes of intuitionistic modal algebras. In chapter 5, we consider a new modal logic based on
FLew introduced in [31] and prove the FEP for it following Blok and van Alten[4, 1].

2



Chapter 2

Preliminaries

This chapter introduces important notions and notations used throughout the thesis. Main
sources are [28, 6, 3].

2.1 Logic and algebra

In this section we discuss the relation between logics and (classes of) algebras. We first intro-
duce a series of notions, starting from what an algebra is.

Definition 1 An algebra is a tuple A = 〈A, 〈fi : i ∈ I〉〉 where each fi is a function from Aρi to
A and ρi is the arity of fi.

We always use bold face A for algebra and plain A for its base set1. If we want to stress
that the symbol is the function of an algebra A, we write fAi , but we usually drop it. A tuple
〈〈fi : i ∈ I〉, 〈ρi : i ∈ I〉〉, where fi’s are function symbols and ρi’s are corresponding arities, is
called a similarity type or simply a type. A function symbol of arity 0 is called a constant.

An algebra of type F = 〈fi : i ∈ I〉 is called F-algebra, for which we also write 〈A, f〉f∈F.
All the similarity types considered in this thesis revolves around that of boolean algebra:
〈∧, ∨, ′, 0, 1〉.

Definition 2 Let F be a similarity type. Given a set X of variables, we define the set TermF(X)

of terms over X as follows.

◮ Every variable x is a term.

◮ If f ∈ F and ti’s are terms, then f(t1, . . . , tm) is a term, where m is the arity of f.

An equation is an expression of the form s ≈ t.

In this connection remember that we heavily abuse symbols for algebraic purpose, i.e.,
we use the same symbols for algebraic operation and logical connectives. For instance, p∨ q

can be seen as a wff or as a term over the variable set {p,q}.
We need a valuation2 for algebras to be models for logics.

1Aliases: carrier, carrier set, domain.
2aka an assignment.
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Chapter 2. Preliminaries 2.1 Logic and algebra

Definition 3 Fix a similarity type F and a set X of variables. An valuation v on an F-algebra
A is a function from X to A. A valuation is extended to TermF(X) as follows:

v̂(x) = v(x), where x ∈ X,

v̂(c) = cA, where c is a constant

v̂(f(t1, . . . , tm)) = f(v̂(t1), . . . , v̂(vm)).

We can define the truth or validity of a equation in an algebra as we can do for a wff in a
structure.

Definition 4 An equation s ≈ t is said to be true or to hold in A with a valuation v, denoted
A, v |= s ≈ t, if v(s) = v(t). Furthermore s ≈ t is said to be valid in A, denoted A |= s ≈ t, if
A, v |= s ≈ t for all valuation v on A. We also use the notation A |= E meaning that A |= s ≈ t

for all s ≈ t in the set E of equations. If A |= s ≈ t or A |= E, A is a model for, or satisfy s ≈ t

or E, respectively. We write E |= s ≈ t if for every algebra A and every valuation v, A, v |= E

implies A, v |= s ≈ t.

We write Mod(E) for the class of algebras satisfying E. A class K of algebras is said to be
equationally definable if there exists a set E of equations such that Mod(E) = K.

We define several operations that construct a new algebra from old one(s). First we define
what it means that two algebras are similar or even the same.

Definition 5 Suppose A, B are F-algebras. A mapping h : A→ B is a homomorphism if for all
f ∈ F, and all a1, . . . ,an ∈ A (n is the arity of f),

h(fA(a1, . . . ,an)) = fB(h(a1), . . . ,h(an)),

and for any constant c,
h(cA) = cB.

B is said to be a homomorphic image of A if there is a surjective homomorphism from A onto B.

Definition 6 An isomorphism is a bijective homomorphism . We say that two algebras are
isomorphic if there exists an isomorphism between them.

Next construction is to find a “self-contained” smaller structure.

Definition 7 Let A be an F-algebra. If a subset B of A is closed under every operation f ∈ F,
then 〈B, fA↾B〉f∈F is called a subalgebra of A.

We can construct a new algebra by concatenating a series of algebras into one.

Definition 8 Let 〈Ai〉i∈I be a family of algebras. We define the product
∏

i∈I Ai of this
family as the algebra A = 〈A, fA〉f∈F where A =

∏

i∈IAi and the operation fA is defined
componentwise: for 〈a1

i 〉i∈I, . . . , 〈an
i 〉i∈I ∈

∏

i∈IAi, where n is the arity of f,

fA(〈a1
i 〉i∈I, . . . , 〈an

i 〉i∈I) = 〈fAi(a1
i , . . . ,an

i )〉i∈I〉i∈I.

When all the Ai’s are the same, say A, then the product is called a power of A and denoted
AI instead of

∏

i∈IA.

Special interest is paid to those classes of algebras that are closed under the above three
operations.

4



Chapter 2. Preliminaries 2.2 Decidability

Definition 9 A class K of algebras is a variety if it is closed under taking subalgebra, ho-
momorphic images, and products. That is, if B is a subalgebra of A ∈ K, then B ∈ K; if B is a
homomorphic image of A ∈ K, then B ∈ K; if Ai ∈ K for all i ∈ I, then

∏

i∈I Ai ∈ K.

Another characterization is given in classic Birkhoff’s theorem:

Theorem 10 [Birkhoff] A class of algebras is equationally definable if and only if it is a variety.

Now we can state what is exactly meant by “a logic is associated with a class of algebras”.

Definition 11 A logic L is associated with(complete with respect to) a class K of algebras if
the following holds.

A wff α is provable in L ⇔ For arbitrary A ∈ K, A |= α > 1,

where 1 is the constant denoting top element3.

2.2 Decidability

Let us define what it means that a set is decidable. We shall fix a model of computation,
Turing Machines4, and stipulate that the intuitive notion of computability” coincides with the
computability by Turing machines5. In a word, a set is decidable if its membership can be
determined by some Turing machine. The presentation is largely based on [37]. We use the
symbol for the special blank symbol. In fact we never use Turing machine in this thesis, so
that this section can be skipped. We state the definitions for completeness.

Definition 12 A Turing machine is a septuple 〈Q,Σ, Γ , δ,q0,qa,qr〉, where

◮ Q is the finite set of states;

◮ Σ is the finite set of the input alphabet and 6∈ Γ ;

◮ Γ is the finite set of the tape alphabet, where ∈ Σ and Σ ⊆ Γ ;

◮ δ : Q× Γ → Q× Γ × {L,R} is the transition function.

◮ q0 ∈ Q is the start state;

◮ qa ∈ Q is the accept state;

◮ qr ∈ Q is the reject state and qa 6= qr.

A Turing machine M = 〈Q,Σ, Γ , δ,q0,qa,qr〉 works as follows: At first, M is in state q0

and the tape6 contains the input w1 · · ·wn ∈ Σ∗7 on the leftmost n squares and the rest is filed

31 may or may not be in the language. As far as logics under consideration are concerned, it does not matter
much because 0→ 0 is a substitute.

4Turing machine was introduced in [39]. The book by Copeland [9] contains Turing’s original paper besides a
helpful introduction, commentary and corrections to it. It was Church who introduced the term “Turing machine”
in [8]. Several other models of computation were considered around the same time and turned out to be equivalent.
The survey by Gandy [14] provides an enjoyable historical account.

5This is what is called the Church-Turing thesis.
6We consider a tape is infinitely long to the right and divided into squares. If the machine is scanning the

leftmost square and the transition is L, then we assume that it just stays there and does not fall out.
7Σ∗ denotes the set of all the finite strings over Σ.
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Chapter 2. Preliminaries 2.2 Decidability

with blank symbols. M moves according to δ. Suppose, for instance, M is scanning w in state
q and that δ(q,w) = 〈q′,w′,R〉. Then M erases w and writes w′, moves its head to the right,
and changes its state to q′. Similarly for L. It goes on until it will halt (or it may not stop
forever). An input is said to be accepted if the machine halts in state qa, and to be rejected if
the machine halts in state qr.

We now shall be a little more formal. A configuration of a Turing machine at a given
time is a triple consisting of the current state, the current tape contents, and the current head
location. We write uqv to denote the configuration such that the state is q, the contents uv,
and the first symbol of v being scanned. A configuration C1 yields C2 if the Turing machine
can change C1 to C2 legally in a single step.

Let a,b, c ∈ Γ , u, v ∈ Γ∗, and qi,qj ∈ Q. Then a configuration uaqibv yields uqjacv if
δ(qi,b) = 〈qj, c,L〉. For the other case of moving rightward, uaqibv yields uacqjv if δ(qi,b) =

〈qj, c,R〉. Cares must be taken when the machine is at extremes, i.e., it is at the left-hand end
of the tape or scanning leftmost printed square. When it is at the left-hand end,

qibv yields

{

qicv if δ(qi,b) = 〈qj, c,L〉
cqjv if δ(qi,b) = 〈qj, c, 〉

The machine being the right-hand extreme is equivalent to scanning the blank symbol. That
is, uaqi equals to uaqi , which can be coped with in the way described above.

We say a set A is decided by M when both of the following hold8:

a ∈ A iff M accepts a;

and

a 6∈ A iff M rejects a.

Then decidability can be defined.

Definition 13 A set is decidable if it is decided by some Turing machine.

In the following we talk about decidability of a set of equations(theory) or a set of
wffs(logic). To be more explicit as regards the latter, we say that a logic is decidable if we
have a Turing machine that answers “yes” iff a given input is a theorem of the logic. When
we try to implement some machine deciding, say, a set of formulas, we must devise a way of
finitary representation for them. For instance we must finitarily represent an infinite number
of propositional variables. This can be done by using p0,p1,p00,p01, . . . instead of p,q, r, . . ..
Another word for decidable is recursive.

Characteristic of a deciding Turing machine is that it eventually halts on every input.
There exist undecidable sets, as proved by Turing and others, which do not have a machine
deciding their membership. For some sets, however, we sometimes have a machine that “par-
tially” decides them: We may have a machine M for a set A such that

a ∈ A iff M accepts A.

This machine answers “yes” correctly if a ∈ A, but may not halt when a 6∈ A. In this case, we
say M recognizes A and A is recognizable. Of course the crucial point is that such a machine
may not halt. If we give an input to a deciding machine, then we can be sure that it will stop
some day. If the machine running is a recognizer, we may have to wait for eternity with the

8Here we assume A ⊆ Σ+, where Σ is the input alphabet of M.
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Chapter 2. Preliminaries 2.3 Adding modalities

machine buzzing about. To put it another way, recognizing process is that of listing all and
only the elements of the set. If A is recognizable, we have a machine that prints all and only
the members of A. If a ∈ A, then we shall find a in the list some time. But if a 6∈ A, we shall
never find it and be doomed to endless searching till the day we die. Hence recognizable is also
termed recursively enumerable.

To conclude this section, we show the following important theorem concerning decidabil-
ity and recognizability9.

Theorem 14 A set is decidable iff the set and its complement is decidable.

Proof. The direction from left to right is immediate because the complement of a decidable
set is decidable (by considering a machine that “flips” its answer). For the reverse, suppose
we have recognizing machines M1 and M2 for A and its complement A, respectively. Then we
construct a machine deciding A that performs as follows given an input a:

1. simulates M1 on a and M2 on a in parallel10;

2. accepts a if M1 accepts a; rejects a if M2 accepts a.

The correctness of M is easy to see. Moreover, M halts in finitely many steps because M1 or
M2 does by assumption. Thus M decides A. ❏

2.3 Adding modalities

In this section we consider propositional logics with additional unary logical connectives,
called modalities, such as 2 and 3. These modal logics were originally meant to analyze the
notions of necessity and possibility: 2p means “necessarily p holds”, while 3p is “possibly
p holds”. Today various interpretations for 2 and 3 are known, and accordingly there are
a huge number of modal logics. What we introduce here are only standard ones. For more
comprehensive accounts, see [3] or [7].

2.3.1 Modal logics

First we state the syntax of modal logics.

Definition 15

1. Each propositional variable is a wff.

2. If α and β are wffs, so are (α∧β), (α∨β), (α→ β), (¬α), and 2α.

We omit parentheses as appropriate. We abbreviate ¬2¬α to 3α.
The system K is a starting point. The axioms of K are all substitution instances of propo-

sitional tautologies plus
K : 2(p→ q) → (2p→ 2q).

The rules of inference are modus ponens, uniform substitution, and the following necessita-
tion11: infer 2α from α.

We consider extensions of K with combinations of several axioms.

9This seems due to Emil Post[33]. Similar results also by Kleene[18] and by Mostowski[24].
10Say, we simulate each step of M1 and M2 alternatingly.
11Also called generalization.

7



Chapter 2. Preliminaries 2.3 Adding modalities

D: 2α→ 3α

T : 2α→ α;

B: α→ 23α;

4: 2α→ 22α;

5: 3α→ 23α.

The logic obtained from K plus axioms X1,X2, . . . ,Xk is denoted KX1X2 . . . Xk. For example,
adding T and B to K give KTB. Aliases S4 and S5 are used for KT4 and KT5, respectively.

We shall introduce two kinds of semantics for modal logics. One is Kripke(relational) frames
and the other is modal algebras. Here we only describe the former. The latter will be treated in
the next subsection.

Definition 16 A Kripke frame is a pair F = 〈W,R〉 of nonempty set W and a binary relation R
on W.

W is often called the set of possible worlds and R accessibility relation among them. To
get a Kripke model, we need one more component.

Definition 17 A Kripke model is a triple M = 〈W,R,V〉, where 〈W,R〉 is a Kripke frame and
V , called a valuation, is a function from the set of propositional variables to P(W) .

We define the relation “α is true at a in a Kripke model M = 〈W,R,V〉”, symbolized a |= α,
as follows.

a |= p ⇔ a ∈ V(p), p is a propositional variable

a |= α∧β ⇔ a |= α and a |= β

a |= α∨β ⇔ a |= α or a |= β

a |= α→ β ⇔ a 6|= α or a |= β

a |= ¬α ⇔ a 6|= α

a |= 2α ⇔ for any b with aRb,b |= α

If a |= α for any a ∈W and any valuation V of a frame F = 〈W,R〉, then α is called valid in F.
The following correspondence is known between the axioms introduced above and prop-

erties of accessibility relations.

Proposition 18 For arbitrary 〈W,R〉, the following holds.

◮ D is valid in 〈W,R〉 iff ∀x∃yRxy, i.e., R is serial;

◮ T is valid in 〈W,R〉 iff ∀xRxx, i.e., R is reflexive;

◮ B is valid in 〈W,R〉 iff ∀xy(Rxy→ Ryx), i.e., R is symmetric;

◮ 4 is valid in 〈W,R〉 iff ∀xyz(Rxy∧ Ryz→ Rxz), i.e., R is transitive;

◮ 5 is valid in 〈W,R〉 iff ∀xyz(Rxy∧ Rxz→ Ryz), i.e., R is Euclidean.

The following generalization of the above is available (see e.g. p79 of [7]).

Proposition 19 The formula of the form 3
k
2

lp→ 2
m

3
np is valid in 〈W,R〉 iff

∀xyz(Rkxy∧ Rmxz→ ∃u(Rlyu∧ Rnzu)),

where k, l,m,n ∈ N.

The above formula is called Geach formula.

8



Chapter 2. Preliminaries 2.4 Dropping structural rules

2.3.2 Modal algebras

We introduce in this subsection another kind of semantics: algebraic semantics. In a word
algebras for modal logic, which we call modal algebras, are boolean algebras with operators.
We abuse symbols of logical connective for algebraic purpose.

Definition 20 A modal algebra is an algebra A = 〈A, ∧, ∨, ′, 0, 2〉 such that 〈A, ∧, ∨, ′, 0〉 is a
boolean algebra and 2 is a unary operator that satisfies

◮ 21 = 1;

◮ 2(a∧ b) = 2a∧ 2b,

where we abbreviate 0′ to 1.

Obvious analogs of T etc. are as follows. Abuse of notation again. In addition, we are
sadistic to the names of axioms. We mean by T both the syntactic and algebraic version of it.

D: 2α 6 3α

T : 2α 6 α;

B: α 6 23α;

4: 2α 6 22α;

5: 3α 6 23α.

Corresponding algebras are called KT -algebra etc. We can prove completeness with Lindenbaum-
Tarski algebras.

Theorem 21 A formula is provable in a modal logic L iff it is valid in all L-algebras.

2.4 Dropping structural rules

2.4.1 Intuitionistic logic

Intuitionistic logic was originally introduced by L. E. J. Brouwer, who tried to capture math-
ematics as human activity, and later formalized by A. Heyting. A famous characterization of
intuitionistic logic is “classical logic minus the law of the excluded middle”. We introduce it
as a sequent system. A sequent is of the form A1, . . . ,Am ⇒ B, where m > 0 and A1, . . . ,Am,B
are wffs. Roughly this means we can infer B from A1, . . . ,Am. In what follows, capital roman
alphabets A,B, . . . are metavariables for wffs and Greek capitals Γ ,Σ,∆, . . . for sequences of
wffs. When we consider intuitionistic or substructural logics, we put ⊥ into our language and
regard ¬A as the abbreviation of A→ ⊥.

A sequent system LJ for intuitionistic logic constitutes the initial sequents12

◮ A⇒ A

12This system LJ was introduced in [15] together with LK for classical logic. Hence sequent systems are also
called Gentzen-style systems. Another style of formulation, which we shall see later, is Hilbert-style. They consist
of a number of axioms with a few inference rules, while Gentzen-style systems comprises a few axioms and a
number of inference rules.

9



Chapter 2. Preliminaries 2.4 Dropping structural rules

◮ Γ ,⊥,∆⇒ C

and the following rules of inference:
Structural rules

Γ ⇒ A A,∆⇒ C
Cut

Γ ,∆⇒ C

Γ ,A,A,∆⇒ B
Contraction

Γ ,A,∆⇒ B

Γ ,A,B,∆⇒ C
Exchange

Γ ,B,A,∆⇒ C

Γ ⇒ C Weakening
A, Γ ⇒ C

Rules for logical connectives

A, Γ ⇒ B
(⇒→)

Γ ⇒ A→ B

Γ ⇒ A B,∆⇒ C
(→⇒)

A→ B, Γ ,∆⇒ C

Γ ⇒ A (⇒ ∨1)
Γ ⇒ A∨B

Γ ⇒ B (⇒ ∨2)
Γ ⇒ A∨B

A, Γ ⇒ C B, Γ ⇒ C
(∨ ⇒)

A∨B, Γ ⇒ C

Γ ⇒ A Γ ⇒ B (⇒ ∧)
Γ ⇒ A∧B

A, Γ ⇒ C
(∧1⇒)

A∧B, Γ ⇒ C

B, Γ ⇒ C
(∧2⇒)

A∧B, Γ ⇒ C

2.4.2 Substructural logics

In this subsection substructural logics are introduced. If we discard some or all of the three
structural rules except Cut, a substructural logic is obtained. First we throw everything away:
Let FL be the sequent system obtained from deleting all the structural rules from LJ. This
requires additional logical connectives and accordingly structural rules. Its language contains
a new logical connective · called multiplicative conjunction or fusion, \ called right implication,
and / called left implication. For more information, see [29, 32, 11].

Γ ⇒ α Π,β,Σ⇒ δ
(/⇒)

Π,β/α, Γ ,Σ⇒ δ

Γ ,α⇒ β
(⇒ /)

Γ ⇒ β/α

Γ ⇒ α Π,β,Σ⇒ δ
(\ ⇒)

Π,α\β, Γ ,Σ⇒ δ

Γ ,α⇒ β
(⇒ \)

Γ ⇒ α\β

Γ ⇒ A ∆⇒ B (⇒ ·)
Γ ,∆⇒ A ·B

A,B, Γ ⇒ C
(· ⇒)

A ·B, Γ ⇒ C

A slightly different system was introduced in [20], after which the above system is called
Full Lambek calculus, FL in short. We can freely retrieve the three structural rules. We indicate
by subscripts which structural rules were recovered. For example, FLc means that we took
back contraction, and FLec that we have contraction and exchange. FLecw is intuitionistic
logic. What we actually consider (in chapter 5) is FLew. In this system we do not need to
distinguish between \ and /, so we simply write → for implication.

10



Chapter 2. Preliminaries 2.5 The finite embeddability property

2.4.3 Residuated lattices

The class of algebras called residuated lattice is the algebraic counterpart of FLew. Formal
definition is as follows:

Definition 22 A septuple13 M = 〈M, ∧, ∨, ·,→, 0, 1〉 is a residuated lattice14 if

1. 〈M, ∧, ∨, 0, 1〉 is a bounded lattice with the greatest element 1 and the least element 0;

2. 〈M, ·, 1〉 is a commutative monoid;

3. For any x,y ∈M, x · y 6 z iff x 6 y→ z.

The operation → is called the residual of ·. The relation between them (item 3) is called the
law of residuation. Often we use ac as the abbreviation for a · c.

The definitions for these algebras as models is standard. A valuation v on a residuated
lattice M is a mapping from the set of propositional variables to M, which is extended in the
obvious way except

v(⊥) = 0.

A wff A is said to be valid in M if v(A) = 1 for any valuation v on M.
Now we can state the connection between FLew and the variety of residuated lattices:

Proposition 23 A wff A is provable in FLew iff A is valid in any residuated lattice.

We note the following lemma, which will be used in chapter 5.

Lemma 24 In any residuated lattice A, the following hold. Let a,b, c ∈ A.

1. a 6 b implies ac 6 bc;

2. if
∨

i∈I ai exists, then c(
∨

i∈I ai) =
∨

i∈I cai.

Proof. (1) We have bc 6 bc, so that b 6 c → bc. With a 6 b, we have a 6 c → bc, whence
finally ac 6 bc.

(2) Since ai 6 ∨iai, cai 6 c(∨iai) holds for any i by (1); i.e., c(∨iai) is an upper bound
for {cai : i ∈ I}.Now take any upper bound d of {cai : i ∈ I}; that is, cai 6 d for all i. Then
ai 6 c→ d for all i, so that ∨iai 6 c→ d, which implies c(∨iai) 6 d. This shows that c(∨iai)

is inf{cai : i ∈ I} = ∨icai. ❏

2.5 The finite embeddability property

A class K of algebras is said to have the finite embeddability property if every finite partial
subalgebra of a member of K can be embedded into a finite member of K.

Formally, a partial subalgebra B of A is an algebra of the same similarity type as A and
each function fBi is defined as

fBi (b1, . . . ,bk) =

{

fAi (b1, . . . ,bk) if fAi (b1, . . . ,bk) ∈ B

undefined otherwise.

13We use the same symbols ∧, ∨, and · for algebraic purpose.
14Recently a more descriptive name “commutative integral residuated lattice” is preferred.
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In K

A

B

C

B

Figure 2. The FEP in picture

A partial subalgebra B is embedded15 into A if there is an injective function h from B to
A such that if fB(b1, . . . ,bk) is defined, then

h(fB(b1, . . . ,bk)) = fA(h(b1), . . . ,h(bk))

holds for any b1, . . . ,bk ∈ B.
The task of proving the FEP can be illustrated as in figure 2: We are in the class K of

algebras and given a finite partial subalgebra B of an (possibly infinite) algebra A. We need
to find a finite algebra C and embed B into it.

The FEP is a stronger version of a well-known property of the finite model property. We
briefly list the definitions of the FMP and of its variations. Here KF denotes the class of the
finite members of K.

Definition 25 Let K be a class of algebras. We say K has

1. the finite model property(FMP) if KF |= s = t implies K |= s = t for any identity s = t,

2. the strong FMP(SFMP) if KF |= σ implies K |= σ for any quasi-identity σ,

3. the universal FMP(UFMP) if KF |= ϕ implies K |= ϕ for any universal sentence ϕ.

Note that the FEP implies the UFMP, the UFMP implies the SFMP, and the SFMP im-
plies the FMP. We sketch the proof of FEP → UFMP. Suppose K has the FEP and K 6|=

∀x1 · · · xnϕ.Then we have some algebra A and its valuation v such that A, v 6|= ∀x1 · · · xnϕ.
That is, A, v 6|= ϕ[a1, . . . ,an]16 for some a1, . . . ,an ∈ A. Let B be the elements relevant to this
refutation of ∀ϕ: if ψ(x1, . . . , xn) is a subterm of ϕ, then v(ψ[a1, . . . ,an]) ∈ B. Then B forms a
partial subalgebra of A. We can embed B into some finite algebra C ∈ K. Then C 6|= ∀ϕ and
we are done.

Each version of the FMP implies some kind of decidability with increasing strength.

Proposition 26 Let K be a finitely axiomatizable class of algebras. If K has the FMP(SFMP,
UFMP), then its equational (resp. quasi-equational, universal) theory is decidable.

15We can define more generally the notion of embedding between algebras as an injective homomorphism, and
the restriction “if fB(bi) is defined” can be dropped when we consider ordinary (non-partial) algebras.

16ϕ[a1, . . . ,an] denotes the expression resulting from substituting (the constant denoting) ai for xi.

12



Chapter 3

The FEP for normal modal algebras

In this chapter we prove the FEP of various classes of normal modal algebras. The method is
an amalgam of two classic construction: Schütte’s method of proving the FMP and Jónsson-
Tarski’s theorem. In fact we use (an algebraic analog of) Schütte’s method to construct a
Kripke frame from a partial algebra, then embed it into the complex algebra of the constructed
frame.

We review the ways of coming and going between two kinds of semantics and then
summarize two methods to prove the FMP of modal logics: One is the famous filtration method
and the other is less-known method that was originally used by Schütte to prove the FMP
of intuitionistic logic. Then we go on to prove the FEP of the variety of all modal algebras.
Furthermore the FEP of the subvarieties corresponding to KT etc. are investigated.

3.1 Frames and algebras

In this section we collect some facts about the relationship between Kripke frames and modal
algebras. Concretely we describe how to construct a modal algebra from a Kripke frame and
back. This section is extremely indebted to [3]1, or simply a reproduction of it. We hope not
to be sued for any violation of copyright.

First we show the way to go from the world of frames to that of algebras. This construc-
tion is called complex algebra2.

Definition 27 Let F = 〈W,R〉 be a Kripke frame. The complex algebra denoted F+ of F is
the pair 〈P(W), 2+〉, where P(W) is the powerset algebra of W and 2

+ is a modal operator on
P(W) as

2
+X = {x ∈W|∀y ∈W(Rxy⇒ y ∈ X)}.

It is easy to confirm the algebra really is the modal algebra. Next the other way around.
We begin introducing a notion of filter.

Definition 28 A filter of a Boolean algebra A = 〈A, ∨, ∧, ′, 0〉 is a subset F of A such that

1. 0′ = 1 ∈ F;

2. if a,b ∈ F, then a∧ b ∈ F: F is closed under meet;

1There general modal similarity type is investigated, but we confine ourselves to one unary modality case.
2What we define here is called the full complex algebra and complex algebra is any subalgebra thereof. But we

simply drop full and are stick to it.
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Chapter 3. The FEP for normal modal algebras 3.2 The FMP

3. if a ∈ F and a 6 b, then b ∈ F: F is upward closed.

A filter is proper if F 6= A. An ultrafilter is a proper filter satisfying one more condition

4. For every a ∈ A, either a ∈ F or a′ ∈ F.

The collection of all ultrafilters of A is denoted U(A).

We construct a frame upon U(A) from an algebra. This frame is called the ultrafilter frame
of the given algebra.

Definition 29 Let A = 〈A, ∧, ∨, ′, 0, 2〉 be a modal algebra. The ultrafilter frame of A, A+ in
symbol, is the frame 〈U(A),R+〉, where R is a binary relation on U(A) defined as, for X, Y ∈

U(A),
XR+Y iff for all a ∈ A, 2a ∈ X⇒ a ∈ Y.

With these, we can state the following theorem of fundamental importance to our proof
following in later sections.

Theorem 30 [Jónsson-Tarski] Let A be a modal algebra. The function r : A→ P(U(A)) defined

r(a) = {u ∈ U(a)|a ∈ U}

is an embedding of A into (A+)+. The algebra (A+)+ is called the (canonical) embedding algebra
of A and written EmA.

3.2 The FMP

3.2.1 The FMP and decidability

In this subsection we give a brief summary of why we should make such a fuss about the FMP
and the like: Simply put, the FMP implies decidability. Necessarily the proof is all sketchy.
See (again) [3] for more general account.

Definition 31 A logic is finitely axiomatizable if it has a finite axiomatization.

First, the following is a standard observation. Roughly, a proof is a sequence of formu-
lae each of which is an axiom or follows from inference rules and the previously occurring
formula(e). The length of a proof is the number of formulae appearing in it.

Lemma 32 The set of theorems of a finitely axiomatizable logic is recursively enumerable.

Proof. We can list all the proofs one by one, say, according to its length. Namely, we first list
the proofs of length 1 (i.e., axioms), then the proofs of length 2 and so on. We put the last line
of each proof into the list. This way we can list all and only the theorems of a given logic. ❏

Thus a finitely axiomatizable logic is always recognizable. By theorem 14, we have only
to show that its complement, i.e., the set of non-theorems are also recursively enumerable.

Theorem 33 If a finitely axiomatizable logic has the finite model property, then the logic is decidable.

Proof. We prove that the set of non-theorems is recursively enumerable. Then by theorem 14
and the preceding lemma, we have the theorem. To do this, we list all finite Kripke models
according to its size. Since the number of axioms is finite, each model can be checked in
finitely many steps if it is a model of the given logic. We also enumerate formulae and check
if it is falsifiable in the listed models. By assumption there is a finite falsifying model for each
unprovable formula. This means all non-theorems appear in this enumeration. ❏
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Chapter 3. The FEP for normal modal algebras 3.2 The FMP

3.2.2 Filtration

In this subsection we review the classic filtration method3 of proving the FMP. More precisely
we consider a particular kind of filtration called the largest filtration. In the following we
assume Gentzen-style formulation of logics. First we need to construct a Kripke model to
filtrate; We introduce a canonical model of a given modal logic.

Definition 34 Let Φ be the set of all formulae of a logic L and U,V ⊆ Φ. A pair 〈U,V〉
is consistent in L if there exist no formulae A1, . . . ,Am ∈ U and B1, . . . ,Bn ∈ V such that
A1, . . . ,Am ⇒ B1, . . . ,Bn is provable in L. Furthermore 〈U,V〉 is maximally consistent if it is
consistent and U∪ V = Φ.

Every consistent pair is can be extended to maximally consistent one:

Lemma 35 If 〈U,V〉 is consistent, then there exists a maximally consistent 〈U′,V ′〉 such that U ⊆ U′

and V ⊆ V ′.

Now let us define a canonical Kripke model ML = 〈WL,RL, |=L〉 as follows4.

WL = {U ⊆ Φ|〈U,Φ−U〉 is maximally consistent in L}.

URLV ⇔ U2 ⊆ V .

U |=L p ⇔ p ∈ U for each propositional variable p.

Here U2 = {A ∈ Φ : 2A ∈ U}. Note that WL may be infinite in general.
A maximally consistent set is the syntactic counterpart of ultrafilter. The following will

be reminiscent of the definition of an ultrafilter.

Lemma 36 For any U ∈WL, the following holds.

1. If A1, . . . ,Am ∈ U and A1, . . . ,Am ⇒ B is provable in L, then B ∈ U

2. For any formula A, exactly one of A or ¬A is in U.

This lemma propagates in a way over logical connectives. We state this for later compari-
son.

Corollary 37 For any U ∈WL, we have the following.

1. A∧B ∈ U⇔ A ∈ U and B ∈ U;

2. A∨B ∈ U⇔ A ∈ U or B ∈ U;

3. A→ B ∈ U⇔ A 6∈ U or B ∈ U;

4. ¬A ∈ U⇔ A 6∈ U;

5. 2A ∈ U⇔ for any V ∈WL with URV , A ∈ V .

3Historical information on filtration (and canonical models) can be found in pp.159f of [7].
4Here we identify the valuation and its extension.
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Figure 3. Two kinds of semantics

An important property of a canonical model is that the construction gives a right model5.
For instance, a canonical model of KT is a reflexive Kripke model. Another feature is the
following holds in a canonical model:

For any U ∈WL,U |=L A⇔ A ∈ U

Using these, we can prove the completeness of modal logics with respect to Kripke frames
(called Kripke completeness). We say that a sequent X1, . . . ,Xm ⇒ Y1, . . . , Yn is valid in a frame
if X1 ∧ · · ·∧Xm → Y1 ∨ · · ·∨ Yn

6 is valid in the frame.

Theorem 38 A sequent Γ ⇒ ∆ is provable in K iff Γ ⇒ ∆ is valid in all Kripke frames.

Proof. Let Γ ⇒ ∆ is not provable in K. Then 〈Γ ,∆〉 is consistent and hence can be extended
to a maximally consistent pair 〈U,V〉. Suppose Γ = X1, . . . ,Xm and ∆ = Y1, . . . , Yn. By the
property of canonical model,

U |=L Xi and U 6|=L Yj, 1 6 i 6 m and 1 6 j 6 n,

since Xi’s are in U and Yj’s are not in U. Thus we found a countermodel for Γ ⇒ ∆, and
hence it is not valid in all Kripke frames. Usual induction proves the other direction, i.e.,
soundness. ❏

A little digression. As we have just seen, canonical model construction gives a uniform
way to prove Kripke completeness. On the other hand, we have Lindenbaum-Tarski construction
to prove the completeness with respect to algebraic semantics. Moreover, we can go back and
forth between Kripke frames and modal algebras as described in an earlier section. These
facts can be summarized as in 3.

Now we turn to filtration. The idea is to regard two worlds as indistinguishable if the
formulae in Ψ(A) which hold there are the same. This is called a filtration (via Ψ(A)) of a
Kripke model. Filtration can be defined on any Kripke model, but we concentrate on the
filtration of a canonical model.

5This is the case at least when we consider normal modal logics. See section 4.2 of [3].
6If n = 0, then we consider ¬

∧
Xi.
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Let A be a formula, Ψ(A) the set of all subformulae of A. Define ∼ an equivalence relation
on WL as

U ∼ V ⇔ for any formula C ∈ Ψ(A),U |=L C iff V |=L C.

We build a Kripke model on WL/∼, the set of all the equivalence classes of ∼. We write
[U] for the equivalence class of U. Define a relation R+ as

[U]R+[V ] ⇔ for any 2C ∈ Ψ(A),U |=L 2C implies V |=L C.

This is called the largest filtration of R. Further define a valuation |=+ as

[U] |=+ p⇔ U |=L p for any p ∈ Ψ(A)

Important to note is that WL/∼ is finite because Ψ(A) is finite.
We can show by induction that for any wff α

[a] |=+ α⇔ a |=L α.

This provides us the FMP of K.

Theorem 39 A sequent Γ ⇒ ∆ is provable in K iff it is valid in all finite Kripke frames. Namely, K
has the FMP.

Proof. If α is not provable in K, then it is false in the canonical model and so in the filtration
of it. The other direction follows from completeness. ❏

In a similar fashion we can prove completeness and the FMP of the other modal logics
we have introduced.

3.2.3 Schütte’s method

In [36], Schütte introduced a method of proving the FMP of intuitionistic logic (see chapter 4).
In this subsection we introduce the version of the method accommodated to modal logic by
Sato in his dissertation[35]. As we shall see later, almost the same argument as above method
works for the FMP of intuitionistic logic: construct a canonical model and then filtrate it.
While this usual path takes two steps, Schütte’s method directly constructs a finite model of a
given formula in a single step (see figure 4).

The method is a modification of completeness proof using canonical model. There one
defined “maximal consistency” over the set of all formulae. On the other hand, given a wff
A for which we want a falsifying finite model, Schütte’s method defines “maximal Ψ(A)-
consistency” over the set of all subformulae Ψ(A) of A. To put it another way, canonical model
construction uses “global” maximal consistency while Schütte’s method uses “local” maximal
consistency.

Now for the details.

Definition 40 Let Ψ(A) be the set of all subformulae of A. A pair 〈U,V〉 is maximally Ψ(A)-
consistent in L if it is consistent and U∪ V = Ψ(A).

We can get maximal Ψ(A)-consistency from immature pair as maximal consistency:

Lemma 41 Any consistent 〈U,V〉, where U,V ⊆ Ψ(A) can be extended to a maximally Ψ(A)-
consistent ΨU′,V ′ with U ⊆ U′ and V ⊆ V ′.
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Figure 4. Canonical way or a shortcut

Then we define a Kripke model as follows. Note that W0 is finite because Ψ(A) is finite.

W0 = {U ⊆ Ψ(A)|〈U,Ψ(A) −U〉 is maximally Ψ(A)-consistent in L}.

UR0V ⇔ U2 ⊆ V .

U |=0 p ⇔ p ∈ U for each propositional variable p.

Then the following result holds in parallel with corollary 37. Note the restriction of “if
. . . ∈ Ψ(A)”.

Lemma 42 For any U ∈W0, we have the following.

1. if A∧B ∈ Ψ(A), A∧B ∈ U⇔ A ∈ U and B ∈ U;

2. if A∨B ∈ Ψ(A), A∨B ∈ U⇔ A ∈ U or B ∈ U;

3. if A→ B ∈ Ψ(A), A→ B ∈ U⇔ A 6∈ U or B ∈ U;

4. if ¬A ∈ Ψ(A), ¬A ∈ U⇔ A 6∈ U;

5. if 2A ∈ Ψ(A), 2A ∈ U⇔ for any V ∈WL with URV , A ∈ V .

Although we omit the proof again, this lemma enables us to prove, for any α ∈ Ψ(A) and
any U ∈W0,

U |=0 α⇔ α ∈ U.

Now we can give another proof of the FMP by mimicking the completeness proof. Sup-
pose we have a sequent Γ ⇒ ∆ which is not provable in K. Using

∧
i Xi →

∨
j Yj as A, we follow

the above recipe and obtain the Kripke model as described. This model is a finite counter
model for Γ ⇒ ∆.

The advantage of Schütte’s method is of course its immediateness: we get completeness
and the FMP in a single step. As mentioned earlier, there is a close connection between
this method and the usual division of labor of canonical model and filtration. In building
canonical models, we are broad-minded and consider consistent sets over all formula of the
logic. In Schütte’s method, we become a little more thrifty and consider consistent sets over
Ψ(A), which is all and only formulae relevant to the truth value of A. This thrift allows us to
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obtain a finite model at once. Everything has its defects, however. In canonical model, we have
RL once and for all. But if we want to apply Schütte’s method to other modal logics, we have
to tweak the definition of the binary relation R+, reflecting the property (or the properties) of
R in some way or other. The following tweak is known to go well (see [28]). The right-hand
side is the redefined R+:

K,KT U2 ⊆ V ;

S4 U2 ⊆ V2;

KTB U2 ⊆ V and V2 ⊆ U;

S5 U2 = V2.

Compare corollary 37 and lemma 42 again and recall the restriction of “if . . . ∈ Ψ(A)”. Actually
this is the cause of the above disadvantage. In later sections we show that “algebraizing”
Schütte’s method gives the proof of the FEP. There this “if...” restriction also causes irritating
limitations to our method.

3.3 The FEP

3.3.1 Basic

Let K be the class of normal modal algebras, A ∈ K, and B a finite partial subalgebra of A

which contains 0 and 1.

Definition 43 Let U,V subsets of A. The pair 〈U,V〉 is overflowing in A iff there exist
u1, . . . ,um ∈ U and v1, . . . , vn ∈ V such that

u1 ∧ · · ·∧ um 6 v1 ∨ · · ·∨ vn.

Otherwise 〈U,V〉 is saturable in A. Furthermore we say that 〈U,V〉 is B-saturated when 〈U,V〉
is saturable and U∪ V = B, where B ⊆ A.

Lemma 44 Any saturable pair 〈U0,V0〉 with U0,V0 ⊆ B can be extended to the B-saturated pair
〈U,V〉 such that U0 ⊆ U and V0 ⊆ V .

Proof. Let B = {b1, . . . ,bk}. We construct a sequence 〈Um〉(0 6 m 6 k) of subsets of B such
that U0 ⊆ Um for each m. Given a saturable pair 〈Um,Vm〉, we define Um+1 as follows.
First observe that either 〈Um,Vm ∪ {bm+1}〉 or 〈Um ∪ {bm+1},Vm〉 is saturable; for suppose
otherwise, i.e., there exist x1, . . . , xp,y1, . . . ,yq ∈ Um and z1, . . . , zr,w1, . . . ,ws ∈ Vm for which
the following hold.

x1 ∧ · · ·∧ xp 6 z1 ∨ · · ·∨ zm ∨ bm+1

bm+1 ∧ y1 ∧ · · ·∧ yq 6 w1 ∨ · · ·∨ws

Here we can assume bm+1 appears in the above inequalities because z1 ∨ · · · ∨ zm 6
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z1 ∨ · · ·∨ zm ∨ bm+1 and bm+1 ∧ y1 ∧ · · ·∧ yq 6 y1 ∧ · · ·∧ yq. Then we have:

x1 ∧ · · ·∧ xp ∧ y1 ∧ · · ·∧ yq 6 (z1 ∨ · · ·∨ zr ∨ bm+1) ∧ (y1 ∧ · · ·∧ yq)

= ((z1 ∨ · · ·∨ zr) ∧ (y1 ∧ · · ·∧ yq))

∨ (bm+1 ∧ y1 · · ·∧ yq)

6 ((z1 ∨ · · ·∨ zr) ∧ (y1 ∧ · · ·∧ yq))

∨ (w1 · · ·∧ws)

6 (z1 ∨ · · ·∨ zr) ∨ (w1 ∨ · · ·∨ws),

which contradicts the assumption that 〈Um,Vm〉 is saturable.
Now we define Um+1 = Um and Vm+1 = Vm ∪ {bm+1} when 〈Um,Vm ∪ {bm+1}〉 is sat-

urable. Otherwise we define Um+1 = Um ∪ {bm+1} and Vm+1 = Vm. Then put U = Uk and
V = Vk. The pair 〈U,V〉 satisfies the required condition and we are done. ❏

We sometimes say U is B-saturated if 〈U,B − U〉 is B-saturated. From here on we say
simply saturated sets for the sake of brevity. Note this is reasonable because A-saturated set
is just an ultrafilter in A.

We next consider the set MB of all B-saturated sets. That is, we define

MB = {U ⊆ B|〈U,B−U〉 is B-saturated}

Here we always assume that 0, 1 ∈ B. Note 0 6∈ U and 1 ∈ U for any U ∈ MB
7. First we

state some properties of saturated sets. Resemblances to lemma 36, corollary 37, and lemma
42 is obvious.

Lemma 45 The following hold for any U ∈MB.

1. If a1, . . . ,an ∈ U, b ∈ B, and a1 ∧ · · ·∧ an 6 b, then b ∈ U.

2. Exactly one of a and a′ is in U whenever a,a′ ∈ B.

Proof. Let U ∈MB. Suppose to the contrary that we have ai ∈ U for each i, a1 ∧ · · ·∧ an 6 b,
and b 6∈ U. Then b ∈ B − U. Since we have a1 ∧ · · · ∧ an 6 b, 〈U,B − U〉 is overflowing,
contradiction. Thus b ∈ U.

For the latter part, first assume we have a,a′ ∈ U. Then U is overflowing since a∧ a′ 6 0.
Next assume a,a′ 6∈ U, i.e., a,a′ ∈ B−U. Since 1 6 a∨ a′ U is overflowing. ❏

Again we have the following propagation. The notation U2 is the same as before, i.e.,
U2 = {a ∈ B|2a ∈ U}

Corollary 46 For any U ∈MB and a,b ∈ B, the following hold.

1. if a∧ b ∈ B, a∧ b ∈ U iff a ∈ U and b ∈ U.

2. if a∨ b ∈ B, a∨ b ∈ U iff a ∈ U or b ∈ U.

3. if a′ ∈ B, a′ ∈ U iff a 6∈ U.

4. if 2a ∈ B, 2a ∈ U iff for any V ∈ MB, URV implies a ∈ V , where the relation URV on MB is
defined to be U2 ⊆ V .

7We assume a pair is overflowing if either of the component is empty.
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Proof.

1. (⇒)Let a ∧ b ∈ U. Since a∧ b 6 a,b, a,b ∈ U by the previous lemma. (⇐)Suppose
a∧ b 6∈ U. Then a∧ b ∈ B−U. If a and b are both in U, then U is overflowing since
a∧ b 6 a∧ b. Contradiction.

2. (⇒)Suppose a∨ b ∈ U and a,b 6∈ U. Then a,b ∈ B−U, but this contradicts the consis-
tency of U because a∨ b 6 a∨ b. Hence a ∈ U or b ∈ U. (⇐) Let a ∈ U without loss of
generality. Since a 6 a∨ b, a∨ b ∈ U by the above lemma.

3. Obvious from the previous lemma.

4. (⇒) Let 2a ∈ U, which means a ∈ U2. Then a ∈ V for any V with URV by the definition
of R. (⇐)Assume 2a 6∈ U. Then 〈U2, {a}〉 is saturable; otherwise there exist b1, . . . ,bn ∈

U2 such that
b1 ∧ · · ·∧ bk 6 a,

which in turn implies
2b1 ∧ · · ·∧ 2bk 6 2a.

This implies 2a ∈ U by the previous lemma, contradicting our assumption. So we can
extend 〈U2, {a}〉 to 〈U′,V ′〉 such that U′ ∈ MB, U2 ⊆ U′, and a ∈ V ′. Thus we have U′

with a 6∈ U′ and URU′.

❏

We embed B into the power set algebra P(MB) with the modal operator defined as

2X = {U ∈MB| for any V ∈MB, URV implies V ∈ X}.

It is easy to see that 2 is normal on P(MB). Note that MB is finite and so is P(MB).
Let h be the map from B to P(MB) which sends b to {U|b ∈ U ∈MB}.

Theorem 47 The mapping h is an embedding of B into 〈P(MB), 2〉.

Proof. First we show h is injective. Let a and b be two distinct elements of B. Then either
a 66 b or b 66 a. Without loss of generality, we assume a 66 b, so that 〈{a}, {b}〉 is saturable and
so can be extended to 〈U,V〉. Clearly a ∈ U and b 6∈ U, i.e., U ∈ h(a) and U 6∈ h(b). Hence
h(a) 6= h(b) in either case.

Next we prove that h preserves all existing operations. By the previous remark h(0) = ∅

and h(1) = MB. In what follows note that we only consider the operations defined in B.
For meet:

U ∈ h(a∧ b) ⇔ a∧ b ∈ U

⇔ a ∈ U and b ∈ U (by the corollary)

⇔ U ∈ h(a) and U ∈ h(b)

⇔ U ∈ h(a)∩ h(b)

Thus we have h(a∧ b) = h(a)∩ h(b).
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For join:

U ∈ h(a∨ b) ⇔ a∨ b ∈ U

⇔ a ∈ U or b ∈ U (by the corollary)

⇔ U ∈ h(a) or U ∈ (b)

⇔ U ∈ h(a)∪ h(b)

For complement:

U ∈ h(a′) ⇔ a′ ∈ U

⇔ a 6∈ U (by the corollary)

⇔ U 6∈ h(ai)

⇔ U ∈ h(ai)
c (c is set complement)

For box:

U ∈ h(2a) ⇔ 2a ∈ U

⇔ for all V ∈MB, URV ⇒ a ∈ V (by the corollary)

⇔ for all V ∈MB, URV ⇒ V ∈ h(a)

⇔ U ∈ 2h(a)

❏

Hence we have:

Theorem 48 The class of normal modal algebras has the finite embeddability property.

In view of proposition 26, we have the following decidability result.

Corollary 49 The universal theory of normal modal algebras is decidable.

3.3.2 More modal algebras

Our proof above extends to some other modal algebras. There we first construct the set MB

of all saturated sets of a given finite partial algebra B, and then embed B into the powerset
algebra of MB. Our fundamental difference from Jónsson-Tarski’s theorem is that we use
saturated sets in place of ultrafilters while the construction from frames to algebras is the same (see
also next section). The latter means that the powerset algebra is of the appropriate kind once
we get the appropriate frame. Note the property of a saturated set stated in corollary 46 is crucial
in the proof of embedding. Thus the essence of our proof is

1. the set of saturated sets endowed with R comprises an appropriate frame;

2. Corollary 46 holds for R under discussion.

Hence our proofs below only show that R satisfies the necessary property (cf. proposition 18)
if we start from a different modal algebra. As noted earlier, the restriction of “if...” in corollary
46 induces some difficulty in fully applying the method to other modal algebras.

The above covers the cases of KT and K4+ 2
nx→ 2x, besides K, with appropriate closure

under 2.
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Lemma 50 If B is a KT (K4+ 2
nx→ 2x)-algebra, then the constructed algebra is KT (K4+ 2

nx→

2x)-algebra.

Proof. We show that the relation R satisfies the desired property in each case.

KT We need the reflexivity of R, i.e., U2 ⊆ U. If a ∈ U2, then 2a ∈ U. Since 2a 6 a by T ,
a ∈ U by lemma 45. Thus U2 ⊆ U.

K4 + 2
nx→ 2x First of all, we must close B up to n Boxes. Namely, we put 2

na whenever
a ∈ B to get B′, and then close B1 again, and so on. Note this procedure stops in finitely
many steps because with the axioms under consideration, 2

ma = 2
m+1a for any m ∈ N.

So we start “closed” version of B, and construct the frame as in the previous section.
What we want is to prove that8 when we have URV , that is, U2 ⊆ V , we also have Vi’s
such that U2 ⊆ V1,V12 ⊆ V2, · · · ,Vn−12

⊆ Vn = V . Since U2 ⊆ U22 by 4, we have a
sequence of inclusions, U2 ⊆ U

22 , (U
22)2 ⊆ U

23 , · · · , (U
2n−2)2 ⊆ U

2n−1 , (U
2n−1)2 ⊆ U2.

The last inclusion holds due to 2
nx→ 2x. Appending U2 ⊆ V onto the above sequence

shows URn

❏

From lemma 50 we have:

Corollary 51 The varieties corresponding to KT and K4 + 2
nx → 2x have the FEP. Hence the

universal theories of them are decidable.

Tweaks on the definition of R give the FEP for some other modal algebras. When the
definition of R is changed, all that matters is whether or not corollary 46 holds by the argument
above. We state the definition of R with the proof that corollary gets along with the change of
R. Again we need the closure under (appropriate number of) 2 and/or ¬.
KT4(S4) Define URV ⇔ U2 ⊆ V2. Then 〈P(MB), 2〉 satisfies 2X ⊆ 22X. And we need

2a ∈ U iff for any V ∈MB,U2 ⊆ V2 ⇒ a ∈ V .

(⇒) Assume 2a ∈ U and U2 ⊆ V2. Then a ∈ U2, so that a ∈ V2. By T , a ∈ V .
(⇐) We get U′ such that 2a 6∈ U and U2 as in the proof of the corollary. We want URU′,

i.e., U2 ⊆ U′

2
. Suppose a ∈ U2. Then 2a ∈ U, which implies 22a ∈ U. This is equivalent to

2a ∈ U2. Since U2 ⊆ U′, we have 2a ∈ U′, and finally a ∈ U′

2
.

KTB Let URV ⇔ U2 ⊆ V&V2 ⊆ U. For the proof of the corollary, the forward implication is
obvious. We assume 2a 6∈ U and take U′ as above. Since we have U2 ⊆ U′, we prove U′

2
⊆ U.

a ∈ U′

2
⇒ 2a ∈ U′

⇒ ¬2a 6∈ U′

⇒ ¬2a 6∈ U2(U2 ⊆ U′)

⇒ 2¬2a 6∈ U

⇒ ¬2¬2a ∈ U

⇒ a ∈ U(B).

KT5(S5) Let URV ⇔ U2 = V2. The forward implication of the corollary uses T and is easy.
For the converse, we take U′ again and prove U2 = U′

2
. First, we have U2 ⊆ U′

2
because

8cf. proposition 19.
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a ∈ U2 ⇔ 2a ∈ U ⇒ 22a ∈ U ⇔ 2a ∈ U2 ⇒ 2a ∈ U′ ⇒ a ∈ U′

2
. Second, we have a chain of

implications as follows:

a ∈ U′

2
⇒ 2a ∈ U′

⇒ ¬2a 6∈ U′

⇒ 2¬2a 6∈ U′(T)

⇒ ¬2a 6∈ U′

2

⇒ ¬2a 6∈ U2(U2 ⊆ U′

2
)

⇒ 2¬2a 6∈ U2(T)

⇒ ¬2¬2a ∈ U2

⇒ 2a ∈ U2(5)

⇒ a ∈ U2(T).

Thus U′

2
⊆ U2.

These considerations leads to the following result.

Theorem 52 The varieties corresponding to S4, KTB, and S5 have the FEP. Hence the universal
theories of them are decidable.

3.4 Informal discussion

3.4.1 Proof idea

We remark on some ideas behind our proof of the FEP above though they are scattered around
before. As mentioned in the introduction, our proof idea is hybridizing Schütte’s method and
Jónsson-Taski’s theorem. We shall be explicit about this. As discussed earlier, a similar notion
emerges in various disguise, algebraic and syntactic, or global and local. It is something
that we have added members as far as possible in a sense. They can be summarized as in
table 1. The only novel notion is our saturated set. A maximally consistent set in canonical
model construction is a syntactic analog of ultrafilter, or ultrafilter is an algebraic analog
thereof. Then we have remarked that maximally Ψ(A)-consistent set used in Schütte’s proof is
a “localized” version of maximally consistent set. Now it should be clear is that we devised
a notion to fill the gap of the table with saturated set, an algebraic analog of maximally Ψ(A)-
consistent set.

algebraic syntactic

global ultrafilter maximally consistent set
local saturated set maximally Ψ(A)-consistent set

Table 1. Notions of “fat” sets

With these in mind, our proof of the FEP can be depicted as in the figure 5. The upper
path is trodden by Jónsson-Tarski’s theorem. Our path is the lower one. By considering
saturated sets, “local” ultrafilter, we have bound the constructed frame by finite in size. This
is the crucial point and the only difference from Jónsson-Tarski’s theorem. We use saturated
set instead of ultrafilter. Then from frames to algebras we travel in the usual way, i.e., complex
algebra. Also compare the figure 4.
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a formula

a frame

a finite frame

an embedding algebra

a finite embedding
algebra

ultrafilter

saturated set

complex
algebra

Figure 5. Proof idea

To repeat, saturated set is algebraic translation of the notion in Schütte’s method. We
use it instead of ultrafilters in Jónsson-Tarski’s theorem. Then we get the FEP. This makes it
clear what is meant by our proof being the hybrid of Schütte’s method and Jónsson-Tarski’s
theorem. Thus the critical observation below:

If the FMP of a logic can be proved via Schütte’s method, then the FEP of the
corresponding class of algebras can be proved.

However, it is fairly obscure what it means or when it is possible to use Schütte’s method in
proof of the FMP. Below we add some remarks on the relation between the largest filtration9

and Schütte’s proof.

3.4.2 A connection

We discuss the relation between the two constructed finite models: the largest filtration of the
canonical model and the model constructed by Schütte’s method. We present in two ways,
frame-theoretic and algebraic, again and are quite repetitive. First we treat the frame-theoretic
case.

In the definition of the largest filtration observe that

U ∼ V ⇔ for any formula C ∈ Ψ(A),U |=L C iff V |=L C

⇔ for any formula C ∈ Ψ(A),C ∈ U iff C ∈ V

⇔ Ψ(A)∩U = Ψ(A)∩ V .

and that

[U]R+[V ] ⇔ for any 2C ∈ Ψ(A),U |=L 2C implies V |=L C

⇔ for any 2C ∈ Ψ(A), 2C ∈ U implies C ∈ V

⇔ (Ψ(A)∩U)2 ⊆ (Ψ(A)∩ V).

These mean that the largest filtration can be taken as we are in fact restricting our attention to
Ψ(A). This is exactly what we do in Schütte’s method. We prove the following correspondence
between M+ = 〈WL/∼,R+, |=+〉 and M0 = 〈W0,R0, |=0〉.

9This is the filtration we introduced. For other kinds of filtration, consult e.g. [7].
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Lemma 53

1. if U ∈WL, then Ψ(A)∩U ∈W0.

2. if V0 ∈W0, then there exists V ∈WL with V0 = Ψ(A)∩ V .

Proof.

1. Let U ∈WL and suppose to the contrary that Ψ(A)∩U is inconsistent10. Then there
are A1, . . . ,Ak ∈ Ψ(A)∩U and B1, . . . ,Bl ∈ Ψ(A)∩Uc such that A1, . . . ,Ak → B1, . . . ,Bl

is provable. Since Ai’s and Bj’s are in U and Uc respectively, this contradicts the
consistency of U.

2. Let V0 ∈ W0. Regarding V0 as a subset of Φ, we can extend 〈V0,Ψ(A) − V0〉 to
〈V ,Vc〉. Clearly V0 ⊆ Ψ(A)∩ V . Conversely, suppose to the contrary that B ∈ Ψ(A)∩ V

and B 6∈ V0. Then B must be in Ψ(A) −V0. Since Ψ(A) −V0 ⊂ Vc, B ∈ Vc, so that B 6∈ V ,
which gives the desired contradiction.

❏

We now show that M+ and M0 are “isomorphic”, with which we mean the existence of a
p-morphism that is 1-1 and onto. Define a function θ from W/∼ to W0 with θ([U]) = Ψ(A)∩U.
By the remark above, [U]R+[V ] iff (Ψ(A) ∩U)2 ⊆ (Ψ(A) ∩ V), i.e., θ([U])R0θ([V ]). For the other
condition, suppose that θ([U]) ⊆ T0. We want some [V ] with θ([V ]) = T0. By the lemma 53
we have T0 = Ψ(A) ∩ T for some T ∈ WL. Then θ([T ]) = T0 and [U]R+[T ] using the remark
above again. By lemma 53 θ is clearly onto. To prove the injectivity of the function, suppose
[U] 6= [V ]. Then there exists C ∈ Ψ(A) such that U |= C but V 6|= C, that is, C ∈ (U− V)∩Ψ(A) =

(U∩Ψ(A)) − (V ∩Ψ(A)), whence C witnesses the difference of θ([U]) and θ([V ]).
Next we turn to the world of algebras. An algebraic version of the lemma 53 is a straight-

forward translation:

Lemma 54

1. If U is A-saturated, then B∩U is B-saturated.

2. If U0 is B-saturated, then U0 = U∩B for some U ∈MA.

Proof. Just changing the terminology provides the proof.

1. If 〈U,Uc〉 is A-saturated and 〈B ∩U,B ∩Uc〉 is overflowing, there exist u1, . . . ,uk ∈

B∩U and c1, . . . , cm ∈ B∩Uc, for which

b1 ∧ · · ·∧ bk 6 c1 ∧ · · ·∧ cm.

Since bi’s and cj’s are in U and Uc, respectively, the above inequality contradicts the
saturability of U.

2. Given B-saturated U0, extend 〈U0,B − U0〉 to A-saturated pair 〈U,Uc. We want
U0 = U∩B. We have the forward inclusion by construction. To prove the converse, let
b ∈ U∩B and suppose b 6∈ U0. Then b ∈ B−U0 ⊆ Uc, so that b 6∈ U. Contradiction.

❏

10〈Ψ(A)∩U,Ψ(A)∩Uc〉 is inconsistent.
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These lemmas seem to suggest the following11:

If the largest filtration provides the FMP of a logic, then Schütte’s method is appli-
cable to the logic.

This seems to partially answer when it is possible to use Schütte’s method. In employing the
largest filtration, we essentially take back our generosity (of considering “global” maximally
consistent sets) and localizing each maximally consistent set. If this is possible, then we can
be thrift from the beginning and consider only maximally Ψ(A)-consistent sets, as suggested
by the above lemmas.

Summing up, we may have the following series of implication.

the largest filtration → Schütte’s method → the FEP

But again, it is not at all clear about the applicability of the largest filtration. We need a
more general and formal notion of a logic admitting the largest filtration. But for the time being,
we have not fully investigated this direction, nor understood where to go. Some relevant
information can be found pp.142ff of [7].

11The idea is suggested by Dr. Tadeusz Litak when the author presented the contents of this chapter at laboratory
seminar.
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Chapter 4

The FEP for Heyting algebras

The FEP for some intuitionistic algebras (including those enriched with a modality) is investi-
gated in this chapter. Schütte’s method was originally used for intuitionistic logic, so that the
proof seems to work naturally for Heyting algebras. By our argument in the previous chapter,
algebraizing it might be a promising way to the FEP. In fact, it does give a proof of the FEP.
For more details on intuitionistic modal logics, see [27] and [12].

4.1 Heyting algebra

First we consider intuitionistic algebras without modality, i.e., Heyting algebras. In this section
we are to rephrase what was said about modal logics/algebras as appropriate for Heyting
algebras. Things are straightforward and we shall be as taciturn as possible. As for the
presentation of preliminary materials, we deserve to be accused of violating copyright of [7].
Let us start from answering what is Heyting algebra.

4.1.1 Definition

We summarize semantics for intuitionistic logic. Again we introduce Kripke-style and alge-
braic semantics. First let us discuss Kripke semantics. An partially ordered set 〈M,6〉 is a
Kripke frame for intuitionistic logic, called intuitionistic frames. A valuation V is a map from
the set of propositional variables to U(M), where U(M) is the set of all upward closed (with
respect to 6) subsets of M. The relation |= is defined in the similar way as for modal logic
with a little modification on → and ¬.

a |= p ⇔ a ∈ V(p), p is a propositional variable

a |= α∧β ⇔ a |= α and a |= β

a |= α∨β ⇔ a |= α or a |= β

a |= α→ β ⇔ for any b with a 6 b,b 6|= α or b |= β

a |= ¬α ⇔ for any b with a 6 b,b 6|= α

Intuitionistic logic is Kripke-complete as might be expected. We prove it later along with the
FMP.

Theorem 55 A formula is provable in LJ iff it is valid in all intuitionistic frames.

The algebraic counterpart is Heyting algebra. Note we do not include ′ in our language.
We write a′ for a→ 0.
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Definition 56 A sextuple 〈H, ∧, ∨,→, 0, 1〉 is a Heyting algebra if

◮ 〈H, ∧, ∨〉 is a bounded lattice having 0 as the least element and 1 as the greatest.

◮ a∧ c 6 b⇔ c 6 a→ b holds for any a,b, c ∈ H.

Heyting algebra is a simplified version of residuated lattice1. The simplification is · co-
incides with ∧. Notion of validity in algebras is defined as before2. Lindenbaum-Tarski
construction gives completeness:

Theorem 57 A formula A is provable in LJ iff it is valid in all Heyting algebras.

4.1.2 Frames and algebras

We show a way from Heyting algebras to frames and the way back. The notion of filter is the
same in Heyting algebra.

Definition 58 Let A = 〈A, ∧, ∨,→, 0, 1〉 be a Heyting algebra. A set F ⊆ A is a filter in A if

1. 1 ∈ F;

2. if x,y ∈ F, then x∧ y ∈ F;

3. if x ∈ F and x 6 y, then y ∈ F.

We introduce three kinds of filter. A filter F in A is

◮ prime if it is proper and x∨ y ∈ F implies x ∈ F or y ∈ F;

◮ maximal if it is not contained in a proper filter in A other than itself;

◮ ultrafilter if for all a ∈ A, a ∈ F or a→ 0 ∈ F.

In Boolean algebras, these three all coincide. In Heyting algebra, too, the first two notions
coincide. Then we can travel from algebras to frames. Recall that we took all ultrafilters of a
given algebra as the set of possible worlds. We here take all prime filters instead. Hence we
may well call it prime filter frame3.

Definition 59 Let A = 〈A, ∧, ∨,→, 0, 1〉 a finite Heyting algebra. Then 〈F(A),⊆〉 is the prime
filter frame A+ of A, where F(A) is the set of all prime filters of A.

Again we can come back to algebras. The difference from modal case is that we take the
set of upward closed sets instead of powerset.

Definition 60 Let F = 〈W,6〉 be an intuitionistic frame. Define an algebra

F+ = 〈H(W),∩,∪,→, ∅,W〉,

where H(W) is the set of upward closed (with respect to 6) sets4, ∩ and ∪ are the usual
set-theoretic operations, and → is defined, for X, Y ∈ H(W), as

X→ Y = {x ∈W|∀y(x 6 y∧ y ∈ X⇒ y ∈ Y)}.

This algebra is called the dual algebra of F.

1In Heyting algebra, alias pseudo-Boolean algebra, the symbol → is also called pseudo-complementation.
2A slight change is that ¬A as a formula is mapped to v(A) → 0.
3This terminology is not standard.
4H is for hereditary.
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Then we can prove a weaker version of Jónsson-Tarski’s theorem for Heyting algebras.
For proof, see theorem 7.30 of [7].

Theorem 61 Let A be a finite Heyting algebra. The function r : A → H(F(A)) that maps a to
{U ∈ F(A)|a ∈ U} is an embedding from A into (A+)+.

4.1.3 Schütte’s method, original version

Schütte’s method was originally for intuitionistic logic in [36], as mentioned earlier. We briefly
describe it following [28]. The argument is quite similar to that in modal logic.

Fix some formula A of intuitionistic logic and let Ψ(A) be the set of all subformulae of A.
We define 〈U,V〉is a maximally Ψ(A)-consistent in LJ if

A1, . . . ,Am ⇒ B1 ∨ · · ·∨Bn

is not provable in LJ, where U,V ⊆ Ψ(A), U = {A1, . . . ,Am}, and V = {B1, . . . ,Bn}. Note that
we have to juxtapose Bi’s with ∨ between them because the right-hand side of intuitionistic
sequent must be a singleton or empty. As remarked in the modal case, every consistent pair
can be padded to maximally Ψ(A)-consistent one. This time we state formally:

Lemma 62 If 〈U,V〉 is consistent, then a maximally Ψ(A)-consistent pair 〈U′,V ′〉 exists such that
U ⊆ U′ and V ⊆ V ′.

Then parallel to the modal case, we define a intuitionistic model and have the following
lemma.

W0 = {U ⊆ Ψ(A)|〈U,Ψ(A) −U〉 is maximally Ψ(A)-consistent in LJ}.

UR0V ⇔ U ⊆ V .

U |=0 p ⇔ p ∈ U for each propositional variable p.

Lemma 63 For U ∈W0, the following hold.

1. For Ai ∈ U and B ∈ Ψ(A), if A1, . . . ,Am ⇒ B is provable in LJ, then B ∈ U

2. if A∧B ∈ Ψ(A), A∧B ∈ U⇔ A ∈ U and B ∈ U;

3. if A∨B ∈ Ψ(A), A∨B ∈ U⇔ A ∈ U or B ∈ U;

4. if A→ B ∈ Ψ(A), A→ B ∈ U⇔ for all V ∈W0 with URV , A 6∈ U or B ∈ U;

5. if ¬A ∈ Ψ(A), ¬A ∈ U⇔ for any V ∈W0 with URV , A 6∈ U;

This again entails, for any wff A,

U |= A iff B ∈ U.

We give a proof of the FMP of intuitionistic logic with these.

Theorem 64 A sequent Γ ⇒ D is valid in all finite frames iff Γ ⇒ D is provable in LJ

Proof. Suppose Γ ⇒ D is a sequent unprovable in LJ. Take
∧
Γ → D (or ¬

∧
Γ if D is empty) as

A in the above construction. Since A is not provable, so that 〈∅, {A}〉 is consistent. Then lemma
62 provides U ∈W0 with A 6∈ U, i.e., U 6|= A. The constructed model falsify A. ❏
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Chapter 4. The FEP for Heyting algebras 4.1 Heyting algebra

4.1.4 The FEP

A proof of the finite embeddability property of intuitionistic algebra due to McKinsey and
Tarski[23, 22] is well-known5. Here we give another proof of the FEP for intuitionistic algebra.

Let B a finite partial subalgebra of an intuitionistic algebra A and MB the set all saturated
subsets of B as before. The following analog of the corollary 46 holds.

Lemma 65 For any U ∈MB,

1. if a1, . . . ,am ∈ U and b ∈ B, a1 ∧ · · ·∧ am 6 b implies b ∈ U.

2. if a∧ b ∈ B, a∧ b ∈ U iff a ∈ U and b ∈ U.

3. if a∨ b ∈ B, a∨ b ∈ U iff a ∈ U or b ∈ U.

4. if a→ b ∈ B, a→ b ∈ U iff for any V ∈MB, U ⊆ V implies either a 6∈ V or b ∈ V .

This time we have → as primitive, the case of which is added. We provide proof only the
case of →.

Proof. (⇒) Let a → b ∈ U. Suppose U ⊆ V and a ∈ V . Then b ∈ V because a,a → b ∈ V and
a∧ a → b 6 b. Thus a 6∈ V or b ∈ V .(⇐) Assume a → b 6∈ U. Then 〈U ∪ {a}, {b}〉 is saturable.
For if not, there exist ai ∈ U such that

a∧ a1 ∧ · · ·∧ ak 6 b,

which implies
a1 ∧ · · ·∧ ak 6 a→ b.

But this implies a→ b ∈ U, contradicting our assumption. Then saturating 〈U∪ {a}, {b}〉 to get
〈U+,V+〉 gives U+ ∈MB for which U ⊆ U+, a ∈ U+, and b 6∈ U+. ❏

Thus we got an intuitionistic frame and want an algebra. We consider the set H(MB) of
all the upward-closed subsets of MB, that is,

H(MB) = {X ⊆MB|U ∈ X and U ⊆ V imply V ∈ X}

We embed B into H(MB) with the same function h above.
Recall the definition of → in H(MB):

X→ Y = {U ∈MB| for all V ∈MB, if U ⊆ V , then V 6∈ X or V ∈ Y}.

We define U′ as U→ ∅.
Recall that h(b) = {U|b ∈ U ∈ MB}. Joins and meets are preserved as before. For →, we

have

U ∈ h(a→ b) ⇔ for all V ∈MB,U ⊆ V implies a 6∈ V or b ∈ V .

⇔ for all V ∈MB,U ⊆ V implies V 6∈ h(a) or V ∈ h(b)

⇔ U ∈ h(a) → h(b).

Thus we have:

Theorem 66 The variety of Heyting algebras has the FEP. Hence its universal theory is decidable.

5see also [4], where a more general result is given.
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4.2 Enriching with a box

The subject of this section is intuitionistic modal logics. We introduce some modal logics follow-
ing [27]. We apply the method used in the preceding chapter and prove the FEP for some of
these logics. Unfortunately, the proof seems not to work for all the logics under consideration.
In intuitionistic modal logics, 2 and 3 are not dual, i.e., one is not definable from the other.
Here we consider only logics with 2.

We first introduce the syntax of intuitionistic modal logics in Hilbert-style formulation.
In [27], Gentzen-style formulation is also provided. Then we introduce algebraic and Kripke-
style semantics as before and proceed to prove the FEP.

4.2.1 Syntax

L4

L32

L2 L31

L2 ∩ L31 L3

L1 L23

L13

L0

Figure 6. A lattice of intuitionistic
modal logics

Let P be a Hilbert-style formulation of intuitionistic propo-
sitional logic. The intuitionistic modal logic L0 is P with the
following additional axioms and the inference rule:
Axioms:

◮ 2p→ p

◮ 2p→ 22p

◮ 2(p→ q) → (2p→ 2q)

Inference rule:

Necessitation given ϕ, derive 2ϕ.

Clearly S4 = L0 + (p∨ ¬p). Furthermore we consider deco-
rating L0 with the axioms below.

A1 ¬2p→ 2¬2p

A2 (2p→ 2q) → 2(2p→ 2q)

A3 2(2p∨ q) → (2p∨ 2q)

A4 2p∨ 2¬2p

The extensions of L0 with Ai is denoted by Li for i = 1, 2, 3, 4. Moreover the extensions
of L3 with Ai is denoted by L3i for i = 1, 2. Observe that adding Ai to S4 is S5 for any i.The
relationship among them are depicted in 6, which is proved in [27].

4.2.2 Semantics

Again we introduce algebraic and Kripke-style semantics. First comes algebraic ones. An
modal Heyting algebra6 is a pair 〈H, 2〉, where H is a Heyting algebra with the top element 1
and 2 is a unary operation on it satisfying:

◮ 2(a∧ b) = 2a∧ 2b,

6This term sounds somewhat odd but is used to keep uniformity with Heyting algebra. Below we stick to the
more usual term intuitionistic modal algebra. This has yet another pseudonym topological pseudo-Boolean algebra in
[27].
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◮ 2a 6 a,

◮ 22a = 2a,

◮ 21 = 1.

An element a of H is called open if 2a = a. We can characterize Lj’s for j = 1, 2, 3, 31, 32, 4
as follows.

0) Any intuitionistic modal algebra is of type 0

1) An intuitionistic modal algebra is of type 1 if the complement of any open
element in it is also open.

2) An intuitionistic modal algebra is of type 2 if the set of all open elements in it
constitutes a sub-(Heyting) algebra of H.

3) An intuitionistic modal algebra is of type 3 if it satisfies the inequality

2(2a∨ b) 6 2a∨ 2b

3i) An intuitionistic modal algebra is of type 3i (i = 1, 2) if it is both of type 3 and
of type i.

4) An intuitionistic modal algebra is of type 4 if it is of type 2 and the subalgebra
constituted by the set of all open elements is a Boolean algebra.

Lindenbaum-Tarski construction gives:

Theorem 67 A formula is provable in Lj iff it is valid in all intuitionistic modal algebras of type j,
for j = 0, 1, 2, 3, 31, 32, 4.

Next we consider Kripke-type semantics7. A triple 〈M,6,R〉 is an intuitionistic Kripke
frame if

◮ M is a nonempty set with a partial order 6,

◮ R is a reflexive and transitive relation on M such that x 6 y implies xRy for each x,y ∈M.

The truth definition is as follows

a |= p ⇔ b ∈ V(p) for any b s.t.a 6 b, p is a propositional variable

a |= α∧β ⇔ a |= α and a |= β

a |= α∨β ⇔ a |= α or a |= β

a |= α→ β ⇔ for any b with a 6 b,b 6|= α or b |= β

a |= ¬α ⇔ for any b with a 6 b,b 6|= α

a |= 2α ⇔ for any b with aRb,b |= α

We define the types for frames as for algebras:

0) Any frame is of type 0.

7called I models in [27]
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1) An intuitionistic Kripke frame 〈M,6,R〉 is of type 1 if for every x,y ∈ M, xRy
implies the existence of y′ ∈M with x 6 y′ and yRy′.

2) An intuitionistic Kripke frame 〈M,6,R〉 is of type 2 if for every x,y ∈ M, xRy
implies the existence of y′ ∈M with x 6 y′ and y ∼ y′.

3) An intuitionistic Kripke frame 〈M,6,R〉 is of type 3 if for every x,y ∈ M, xRy
implies the existence of x′ ∈M with x ∼ x′ and x′ ∼ y.

3j) An intuitionistic Kripke frame is of type 3j if it is both of type 3 and of type j
for j = 1, 2

4) An intuitionistic Kripke frame is of type 4 if R is symmetric.

Not surprisingly, intuitionistic modal logics are complete with respect to the frames of appro-
priate type. See [27] for proof.

Theorem 68 A formula is provable in Lj iff it is valid in any intuitionistic modal algebra of type j,
for j = 0, 1, 2, 3, 31, 32, 4.

Similar construction gives a way connecting between frames and algebras. See theorems
3.4, 3.5 of [27].

Theorem 69 Let 〈W,6,R〉 be an intuitionistic Kripke frame of type j. Then define an algebra
〈H(W),∩,∪,→, ∅,W, 2〉, where ∩ and ∪ are set-theoretic operations and

◮ H(W) is the set of all those subsets of W that are upward closed with respect to 6;

◮ U→ V = {x ∈W|for any y with x 6 y,y 6∈ U or y ∈ V};

◮ 2U = {a ∈W|for any y with aRb,b ∈ U}.

This algebra is an intuitionistic modal algebra of type j.

Theorem 70 Let 〈H, 2〉 be an intuitionistic modal algebra. Then 〈F(H),⊆,R〉, where ⊆ is usual
inclusion and

◮ F(H) is the set of all prime filters in H

◮ URV is defined to be U2 ⊆ V2, where U2 = {2a|2a ∈ U}.

4.3 The FEP

Now we prove the FEP for L0 and L4. For the others, the method of the previous chapter
seems not to work.

Theorem71 The variety of all intuitionistic modal algebras has the FEP, whence its universal theory
is decidable.

Proof. As before, given a finite partial subalgebra B of an algebra A, let MB be the set of all
saturated sets partially ordered by ⊆. We define R as

URV ⇔ U2 ⊆ V2,
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where U2 = {2a|2a ∈ U}. Then 〈MB,⊆,R〉 is an intuitionistic Kripke frame. We have to check
corollary 46 holds for 2. That is, we have to check, for any 2a ∈ B

2a ∈ U⇔ for any V ∈MB,URV implies a ∈ V .

From left-to-right, suppose 2a ∈ U, i.e., 2a ∈ U2. Then by definition of R, 2a ∈ V2 ⊆ V . Since
V is upward closed and 2a 6 a, a ∈ V . For the converse, assume 2a 6∈ U. Note 〈U2, {a}〉 is
saturable; otherwise there are 2u1, . . . , 2uk ∈ U2 such that

2u1 ∧ · · ·∧ 2uk 6 a,

from which we can infer using 4 and monotone-increasingness of 2,

2u1 ∧ · · ·∧ 2uk 6 2a.

This implies 2a ∈ U to the contrary to our assumption. Thus we can extend 〈U2, {a}〉 to get
the desired U′ with U2 ⊆ (U′)2 and a ∈ U′. ❏

Changing the partial order and the binary relation after [27], we can prove the FEP for L4.

Theorem 72 The variety of intuitionistic modal algebras of type 4 has the FEP. Hence its universal
theory is decidable.

Proof. Let MB as above. Define relations R and 4 on MB by

URV ⇔ U2 = V2,

and
U 4 V ⇔ URV and U ⊆ V .

Then evidently R is symmetric and U 4 V implies URV , so that 〈MB,4,R〉 is an intuitionistic
Kripke frame of type 4. Again, the last thing is to confirm is that the change does not affect
corollary 46:

2a ∈ U⇔ for any V ∈MB,URV implies a ∈ V .

The left-to-right is the same as in the preceding proof. For the reverse direction, Suppose
2a 6∈ U. We show 〈U2, (B \U)2 ∪ {a} is saturable. Evidently the saturation of the pair gives
U′ such that URU′ and a 6∈ U′. Assume to the contrary that there are 2u1, . . . , 2uk ∈ U and
2w1, . . . , 2wl ∈ (B \U)2 s.t.

2u1 ∧ · · ·∧ 2uk 6 2w1 ∨ · · ·∨ 2wl ∨ a,

from which we can derive with 4 and monotonicity of 2

2u1 ∧ · · ·∧ 2uk 6 2(2w1 ∨ · · ·∨ 2wl ∨ a).

Recall that we can use 3, i.e., 2(2a∨ b) 6 2a∨ 2b. Repeated application of 3 gives

2(2w1 ∨ (2w2 ∨ · · ·∨ 2wl ∨ a)) 6 2w1 ∨ 2(2w2 ∨ · · ·∨ 2wl ∨ a)

6 2w1 ∨ 2w2 ∨ 2(2w3 ∨ · · ·∨ 2wl ∨ a)

...

6 2w1 ∨ 2w2 ∨ · · ·∨ 2wl ∨ 2a.

But this means 2a ∈ U together with the inequality above and assumption on wi’s. This gives
the desired contradiction and completes the proof. ❏
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Chapter 5

The FEP for modal residuated
lattices

So far we have been considering logics with full structural rules. In this chapter we turn
our attention to logics obtained by enriching a substructural logic FLew with 2, which was
introduced in [31]1. We prove the FEP for modal residuated residuated lattices, an algebraic
counterpart of S4-like modal substructural logic. The contents of this chapter was presented
at the 39th MLG meeting [2].

We cannot define Kripke models for substructural logics, so that filtration simply fails
us: we have nothing to filtrate. We employ a fairly different construction by Blok and van
Alten[4, 5]2. We recall two relevant theorems from [4].

Theorem 73 [Blok-van Alten] The variety of residuated lattice has the FEP.

This is proved below along with our result. Due to the following result, we have to
consider FLew as the base logic when concerned about the FEP.

Theorem 74 [Blok-van Alten] The variety corresponding to FLe
3 does not have the FEP.

We first introduce our main subject of modal substructural logic and modal residuated
lattice. Then we prove the FEP of the variety of modal residuated lattices. Lastly we mention
some known results in linear logic and their possible relevance to us.

5.1 A modal substructural logic

First we define an S4-like modal logic based on FLew in the obvious way. We define the S4FLew

as FLew augmented with 2 and the following axioms:

◮ 2¬⊥,

◮ 2α ·2β→ 2(α ·β),

◮ 2α→ α,

◮ 2α→ 22α.

1Modal logics over FL is investigated there.
2This is algebraic translation of construction given by Okada and Terui[26].
3called intuitionistic linear algebra in [4].
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Further we add the following rule of inference: From α→ β infer 2α→ 2β.
We define the algebraic semantics obviously as follows.

Definition 75 A pair 〈M, 2〉 is a modal residuated lattice if M is a residuated lattice and 2

satisfies the following:

◮ 1 6 21,

◮ 2x ·2y 6 2(x · y),

◮ 2x 6 x,

◮ 2x 6 22x

◮ if x 6 y, then 2x 6 2y.

5.2 The FEP

5.2.1 Basic class

A natural extension (for the modal operator) of the method used by Blok and van Alten gives
the FEP of the corresponding variety of modal residuated lattices. We repeat the necessary
construction from Blok and van Alten[4] for completeness’ sake. We do not wish to ascribe
each lemma or proposition to Blok and van Alten as should be done because it is rather
cumbersome.

Let B be a finite partial subalgebra of a modal residuated lattice A. We define M to be
the (base set of) submonoid generated by B, i.e., we set M = {b

n1

1 , . . . ,bnk

k : ni < ω}, where
B = {b1, . . . bk}.

We construct the underlying set. For each a ∈M and b ∈ B, define

(a b] = {c ∈M : ac 6 b}

= {c ∈M : c 6 a→ b}

Each (a b] is downward closed, for if d 6 c ∈ (a b] then ad 6 ac and ac 6 b , so that
ad 6 b , hence d ∈ (a b]. We write (1 a] as (a].

Now set
D = {(a b] : a ∈M and b ∈ B}(⊆ P(M))

and then define D as
D = {∩X : X ⊆ D}(⊆ P(M))

Each element of D is a downward closed subset of M and D is closed under intersection.
Note that M ∈ D.

Let us define the closure operator4 C on P(M) associated with D; define C as follows:

C(X) = ∩{Y ∈ D : X ⊆ Y}

Note that C(X) is the smallest element of D that contains X. Thus the following proposition
holds.

Proposition 76 If X ⊆M and Y ∈ D, then X ⊆ Y implies C(X) ⊆ Y.

4See below for the definition and properties.
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Next we define an algebra whose underlying set is D. For X, Y ⊆ M and a ∈ M, put
XY = {ab : a ∈ X and b ∈ Y } and Xa = X{a}.

Let us define an algebra D = 〈D, ∧D, ∨D, ·D,→D, 0D, 1D, 2D〉. For X, Y ⊆ D, Xi ∈ D (i ∈ I)
define5

∧

i∈I

D

Xi =
⋂

i∈I

Xi

∨

i∈I

D

Xi = C(
⋃

i∈I

Y)

X ·D Y = C(XY)

X→D Y = {a ∈M : Xa ⊆ Y}

0D =
⋂
D

1D = M

2
DX = C({a ∈ X|a = 2a})

Now we need to prove three things:

1. D is a modal residuated lattice;

2. we can embed B into D;

3. D is finite.

As a first step to show that D really is a modal residuated lattice, we must show that each
operation on D is well-defined, that is, D is closed under all operations. It is clearly closed
under the operations ∧D, ∨D, ·D, 2

D and contains both 0D and 1D. Thus we must show
closure under →D. For the moment we concentrate on modality-free part of D and show that
it is a residuated lattice, and then go on to show that DD is the legitimate modality, so that D

as a whole is a modal residuated lattice.
First we show the following lemma:

Lemma 77 For X ⊆M and Yi ⊆M, where i ∈ I, X→D
⋂

i∈I Yi =
⋂

i∈I X→D Yi

Proof.

a ∈ X→D
⋂

i∈I

Yi ⇐⇒ Xa ⊆
⋂

i∈I

Yi

⇐⇒ Xa ⊆ Yi for all i ∈ I

⇐⇒ a ∈ X→D Yi for all i ∈ I

⇐⇒ a ∈
⋂

i∈I

X→D Yi

❏

Using this we have the desired closure under →D:

Lemma 78 If X ⊆M and Y ∈ D , then X→D Y ∈ D

5The definition of modality follows [1].
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Proof. Since Y ∈ D, we can write Y =
⋂

(ai  bi], where {(ai  bi]}i∈I ⊆ D. By the preceding
lemma, X →D

⋂
(ai  bi] =

⋂
(X →D (ai  bi]), so that if X →D (ai  bi] ∈ D, then

X→D
⋂

(ai  bi] ∈ D. Then

c ∈ X→D (ai  bi] ⇐⇒ Xc ⊆ (ai  bi]

⇐⇒ xc ∈ (ai  bi] for all x ∈ X

⇐⇒ xcai 6 bi for all x ∈ X

⇐⇒ c 6 xai → bi for all x ∈ X

⇐⇒ c ∈
⋂

x∈X

(xai  bi],

so that X→D (ai  bi] =
⋂

x∈X(xai  bi], which implies X→D (ai  bi] ∈ D as desired. ❏

As another preliminary step, We show that C satisfies the following conditions and hence
is a nucleus operator6.

1. X ⊆ C(X);

2. C(X) = C(C(X));

3. X ⊆ Y implies C(X) ⊆ C(Y);

4. C(X)C(Y) ⊆ C(XY).

It is easy to see the first and third condition hold. The second condition is also easily seen to
follow from proposition 76. We are left to prove the fourth condition, which is stated as the
following lemma:

Lemma 79 For all X, Y ⊆M, C(X)C(Y) ⊆ C(XY)

Proof. First recall that if X ⊆M and Y ∈ D, then X ⊆ Y implies C(X) ⊆ Y.
For X, Y,Z ⊆M, by the definition of →D, we have

XY ⊆ Z ⇐⇒ Xy ⊆ Z for all y ∈ Y

⇐⇒ y ∈ X→D Z for all y ∈ Y

⇐⇒ Y ⊆ X→D Z.

Then
XY ⊆ C(XY) ⇐⇒ Y ⊆ X→D C(XY)

⇐⇒ C(Y) ⊆ X→D C(XY)

⇐⇒ XC(Y) ⊆ C(XY)

⇐⇒ C(Y)X ⊆ C(XY)

⇐⇒ X ⊆ C(Y) →D C(XY)

⇐⇒ C(X) ⊆ C(Y) →D C(XY)

⇐⇒ C(X)C(Y) ⊆ C(XY).

❏

Now we can show that the modality-free part is a residuated lattice in the following two
lemmas.

6This term is from [34]. The first three conditions are the requirements for an operation to be a closure operator.
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Lemma 80 The algebra 〈D, ·D, 1D〉 is a commutative monoid.

Proof. The commutativity of ·D immediately follows from that of the original monoid oper-
ation in A. To show the associativity of ·D, let X, Y,Z ∈ D. Then (X ·D Y) ·D Z = C(C(XY)Z) =

C(C(XY)C(Z)) ⊆ C(C((XY)Z)) = C((XY)Z). As C is a closure operator, C((XY)Z) ⊆ C(C(XY)C(Z)),
whence (X→D Y) →D Z) = C((XY)Z). Similarly X→D (Y →D Z) = C(X(YZ)). The associativity
of ·A implies (XY)Z = X(YZ), so that ·D is associative.

Next let us see that 1D = M is the identity for D. Suppose X is in D. Since X is downward
closed, X ⊇ XM, and conversely X ⊆ XM for 1 is in M. Then X = C(X) = C(XM) = X ·D M,
which shows 1D is the identity for ·D. ❏

Lemma 81 The structure 〈D, ·D,→D, 0D, 1D,⊆〉 is a residuated lattice . Moreover the partial order
⊆ is a complete lattice order with lattice meet ∧D, lattice join ∨D, largest element 1D, and smallest
element 0D.

Proof. We have only to observe that the residuation law holds.

X ·D Y ⊆ Z ⇐⇒ C(XY) ⊆ Z

⇐⇒ XY ⊆ Z by proposition 76 and XY ⊆ C(XY)

⇐⇒ Y ⊆ X→D Z by the previous argument.

It is clear that 1D and 0D are the largest and greatest element, respectively. Lastly, we
prove that A∧D B = B iff B ⊆ A. Suppose B ⊆ A. Then A∧D B = C(A∩ B) = C(B) = B, where
the last equality uses the fact that B ∈ D. Conversely, assume A∧D B = C(A ∩ B) = B. Then
B = C(A∩B) ⊆ C(A) = A. ❏

We turn to the modality and show that 2
DX indeed satisfies the requirement: it is S4-like.

We omit the superscript D for brevity.

Lemma 82 D is a modal residuated lattice.

Proof. With the above lemmas at hand, we only deal with 2
D.

First we clearly have 2X ⊆ 2Y if X ⊆ Y.
Next we show 2M = M. Trivially 2

DM ⊆ M. For the converse, note {a ∈ M|a = 2a}

contains 1 since 21 = 1. Then the downward closure of it contains all the elements of M.
We next show 2X ·2Y ⊆ 2(X · Y). We write X◦ for {a ∈ X|a = 2a}.

2X ·2Y = C(C(X◦)C(Y◦))

⊆ C(C(X◦Y◦))

= C(X◦Y◦)

= C({ab|a ∈ X and a = 2a and b ∈ Y&b = 2b})

⊆ C({ab ∈ C(XY)|ab = 2(ab)})

⊆ C({c ∈ C(XY)|c = 2c}) = 2(X · Y)

The transition from 4th to 5th line holds because {a · b|a ∈ X&a = 2a and b ∈ Y and b = 2b} ⊆

{ab ∈ C(XY)|ab = 2(ab)}. In fact, consider ab in the former set. Then

ab = 2a2b 6 2(ab) 6 ab,

hence ab is in the latter set.
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We turn to prove 2X ⊆ X for any X ∈ D. It is easy to see X◦ ⊆ X. Then proposition 76
provides the inclusion.

Lastly we want 2X ⊆ 22X. Let x ∈ X◦. Then x ∈ C(X◦) and x = 2x. Thus we have

X◦ ⊆ {x ∈ C(X◦)|x = 2x},

from which we can infer by the property of closure operator

2X = C(X◦) ⊆ C({x ∈ C(X◦)|x = 2x}) = 22X,

as desired. ❏

Next we want an embedding from B into D. Exactly the same embedding h : a 7→ (a] =

{b ∈M|b 6 a}7 as in [4] is used.
We show this mapping preserves every operation. Again the modality-free part is a

reproduction from [4].

Lemma 83 The map h : B→ D which sends a to (a] is an embedding of B into D. Furthermore, h
preserves all meets and join that exists in B. In particular, if 0 is the least element of A and 0 ∈ B, then
h(0) = 0D.

Proof. Let a,b ∈ B. Recall that all we have to show is that h preserves all existing operations.

1. Suppose a → b ∈ B. We need to show that h(a → b) = h(a) →D h(b); that is,
{c ∈M : c 6 a→ b} = {c ∈M : (a]c ⊆ (b]}, which can be shown as follows:

c 6 a→ b ⇐⇒ ac 6 b

⇐⇒ ac ∈ (b]

⇐⇒ (a]c ⊆ (b]

⇐⇒ c ∈ (a] →D (b].

The implication from the second line to the third holds for if dc ∈ (a]c, then dc 6 ac ∈
(b], and so dc ∈ (b].

2. As for monoid operation ·, we want to show h(ab) = (ab] = (a] ·D (b] = C((a](b]).
Since ab ∈ (a](b] ⊆ C((a](b]) and C((a](b]) is downward closed, (ab] ⊆ C((a](b]).

Conversely, suppose cd ∈ (a](b]. Then c 6 a and d 6 b, and so cd 6 ab. Hence
cd ∈ (ab] and so (a](b] ⊆ (ab]. Since (a](b] ⊆ M and (ab] ∈ D, C((a](b]) ⊆ (ab]. Thus
(ab] = C((a](b]) = (a] ·D (b].

3. If 1 ∈ B, then (1] = M = 1D by definition.

4. For meet. Let ai ∈ A for i ∈ I and ∧D

i∈Iai exists in A and it is in B. Then

x ∈ (∧i∈Iai] ⇐⇒ x 6 ai for all i ∈ I
⇐⇒ x ∈ (ai] for all i ∈ I
⇐⇒ x ∈ ∩i∈I(ai] = C(∩i∈I(ai]) = ∧D

i∈I(ai] since ∩i∈I (ai] ∈ D,

as desired.

7Caution: this time a ∈ B and b ∈M as opposed to the usage in the definition of (a b].
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5. To prove h preserves join, suppose ai ∈ B for each i ∈ I, ∨i∈Iai exists in A, and
∨i∈Iai ∈ B. We need to show (∨i∈Iai] = ∨D

i∈I(ai] = C(∪i∈I(ai]). Since ai 6 ∨ai,
(ai] ⊆ (∨ai], so that ∪(ai] ⊆ (∨ai]. It then follows C(∪(ai]) ⊆ (∨ai].

For the converse, let C(∪(ai]) = ∩{(c  d] ∈ D : ∪(ai] ⊆ (c  d]} = ∩X. Take any
(c  d] ∈ X. As ai ∈ ∪(ai] ⊆ (c  d] for all i ∈ I, aic 6 d, so that ∨(aic) 6 d. By
lemma 24, c(∨ai) 6 d, which means ∨ai ∈ (c d]. Thus ∨ai ∈

⋂
X = C(∪(ai]).

6. Suppose A has the smallest element 0 and 0 ∈ B. We want h(0) = (0] = 0D. Each set
of the form (c  d] ∈ D is downward closed, so 0 ∈ (c  d], and so 0 ∈ ∩D. Thus
(0] = {0} ⊆ ∩D.

For the reverse inclusion, note (0] is in D, so that ∩D ⊆ (0]. Thus h(0) = (0] =

∩D = 0D.

7. We want to show, for 2a ∈ B, (2a] = 2
D(a]. By definition 2

D(a] = C({b ∈ (a]|b =

2b}) = C({b 6 a|b = 2b}). We show (2a] = C({b 6 a|b = 2b}). To prove the right-
to-left inclusion, take b 6 a with b = 2b. By monotonicity of the original 2, we have
b = 2b 6 2a. This shows {b 6 a|b = 2b} ⊆ (2a]. Since (2a] is in D, C({b 6 a|b =

2b}) ⊆ (2a].

For the left-to-right inclusion, take an arbitrary (c  d] ∈ D that includes {b 6

a|b = 2b}. We want (2a] ⊆ (c  d]. Note that 2a = 22a and that 2a 6 a, whence8

2a is in {b 6 a|b = 2b}. Therefore (2a] ⊆ (c d] because (c d] is downward closed.
Thus (2a] ⊆ C({b 6 a|b = 2b}).

❏

Now we got the algebra D into which we can embed B. The last thing we have to do is
to prove the finiteness of the constructed algebra. Since we start the generated submonoid M,
the proof is exactly the same as in [4]. We reproduce the proof here9.

Lemma 84 If B is finite, the D is also finite.

Proof. Let F(k) be the free commutative monoid on k generators {x1, . . . , xk}. The elements of
F(k) can be regarded as the product xn1

1 · · · · · xnk

k , where ni < ω and x0
j = 1. Define a relation

6F(k) on F(k) by setting xn1

1 · · · · · xnk

k 6F(k) x
m1

1 · · · · · xmk

k ⇐⇒ ni > mi for all i ∈ {1, . . . ,k}. The
relation 6F(k) is a partial order on F(k). Further F(k) is residuated10, where

x
m1

1 · · · · · xmk

k →F(k) x
l1

1 · · · · · xlk

k = x
l ·−m1

1 · · · · · xl ·−mk

k

8More importantly 2a ∈M because we consider 2a that exits in B.
9We summarized preliminary facts about well-quasi-order in appendix A.

10Note that this is not a residuated lattice since it has no lattice operation (though it can be obviously defined).
Here follows the proof that ·− is the residual of ·.

Proof.
x

l1

1
· · · · · xlk

k
·F(k) x

m1

1
· · · · · xmk

k
6 x

n1

1
· · · · · xnk

k

⇔ mi + li > ni for all i ∈ {1, . . . , k}
⇔ li > ni

·−mi

⇔ x
l1

1
· · · · · xlk

k
6 x

m1

1
· · · · · xmk

k
→F(k) x

n1

1
· · · · · xnk

k

❏
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Here ·− is defined on N as

m ·− l =

{

m− l if l 6 m
0 otherwise

Recall that a partially ordered set is well-quasi-ordered if it is well-founded and contains
no infinite antichains. The direct product of two well-quasi-ordered sets is again well-quasi-
ordered (see the appendix A). Since the partially ordered set of natural numbers 〈N,6〉 is
well-ordered, so a fortiori well-quasi-ordered, so is 〈N,6〉k, for any k < ω; In particular it
contains no infinite antichain.

If we write N for the structure 〈N, +, ·−, 0,6〉, then the algebra F(k) is dually isomorphic
to N

k and so dually well-quasi-ordered.
Let B = {b1, . . . ,bk}. The map which takes xi to bi can be extended naturally to a map

h : F(k) → A that preserves the monoid operation11. Recall that M is the submonoid generated
by B, so that the image of h is M.

For each X ⊆ F(k), the set MaxX of maximal elements of X is an antichain. Since the order
on F(k) is a dual well-quasi-order, MaxX is finite. For each b ∈ B let Crit(b) = Maxh−1((b]),
which is finite. Consider Z = ∪b∈B ∪z∈Crit(b) [z). Since [z) is finite for any z ∈ F(k) , and so are
B and Crit(b), it follows that Z is finite.

Let a ∈M and b ∈ B. We show h−1((a  b]) = (Y] for some Y ⊆ Z. Suppose h(y) = a for
y ∈ F(k). Such y exists as a ∈M. Then

x ∈ h−1((a b]) ⇐⇒ h(x) ∈ (a b]

⇐⇒ ah(x) 6 b

⇐⇒ h(y)h(x) 6 b as h(y) = a

⇐⇒ h(yx) 6 b as h preseve ·

⇐⇒ h(yx) ∈ (b]

⇐⇒ yx ∈ h−1((b])

⇐⇒ yx 6F(k) z for some z ∈ Crit(b) = Maxh−1((b])

⇐⇒ x 6F(k) y→F(k) z for some z ∈ Crit(b)

Note that y →F(k) z > z, which implies [y →F(k) z) ⊆ [z). This in turn implies the set
Y = {y →F(k) z : z ∈ Crit(b)} is a subset of Z12. By the argument above, h−1((a  b]) = (Y].
Since Z is finite and h is surjective this shows there can be only finitely many distinct sets of
the form (a b]13. Thus D is finite, and so is D, whence finally D is a finite algebra.

❏

At last we can conclude:

Theorem 85 The variety of modal residuated lattices has the FEP. Hence its universal theory is
decidable.

5.2.2 Open questions

◮ What about K- or KT -like modal substructural logics? That is, do the varieties of KFLew
-

and KTFLew
-algebras have the FEP?

11just put h(xn1

1
· · · · · xnk

k
) = b

n1

1
· · · · · bnk

k
12if y→F(k) z ∈ [z)
13Some more details. Consider the list h((Y1]), . . . ,h((Y2|Z| ]). By the argument above, we have some (Y] for each

(a  b] with h−1((a  b]) = (Y], which means all the sets of the form (a  b] must appear in the list. Then the
number of sets of the form (a b] is finite since the list is finite.
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◮ In another paper by Blok and van Alten[5], the FEP for FLw-algebras is proved. Then
can we prove the FEP for the algebras FLw with S4-like modality?

5.3 Notes

We said in the introduction that modal substructural logics are rarely on serious investigation.
This is far from precise because linear logic[16], which is a family of substructural logics, is
originally endowed with modalities called exponentials.

In this section we discuss some results of Terui[38] that are related to ours in this chapter.
We introduce or restate some linear logics and comments on the construction in the paper.
Since correspondences between linear logics and modal substructural logics are not exact14,
our discussion might be a little informal.

The base modality-free part of intuitionistic linear logic, ILL, is essentially FLe. Several
modalities are the part of linear logic. We confine ourselves to !, which roughly is our 2. The
following is the axioms for !.

Functricity A⊸ B implies !A⊸ !B;
Monoidalness1 !A⊗ !B⊸ !(A⊗B);
Monoidalness2 !1;

Dereliction !A⊸ A;
Digging !A⊸ !!A;

Weakening !A⊸ 1;
Contraction !A⊸ !A⊗ !A.

The operations ⊗ and ⊸ corresponds to our · and →, respectively. The constant 1 is
the top element. With these in mind, Functricity and Monoidalness are easily seen to be the
requirement for a normal modality. Dereliction is T and Digging is 4. Weakening is irrelevant
for us thinking modal logics over FLew.

The crucial difference is Contraction. In algebraic terms, this is 2a 6 (2a)2. In presence
of this, we have dist2: 2(a · b) = 2a2b as follows.

2ab 6 (2ab)2 6 2a2b.

Hence all linear logic can be seen as modal substructural logic with dist215.
Now rough correspondence is summarized in table 216.
Among others, Terui proves the FMP of ILAL or KFLew

+ dist2 in our terminology. As
noted earlier, Blok and van Alten’s construction is an algebraic rephrasing of syntactic con-
struction17 by Okada and Terui[26]. The corresponding construct to our D is phase semantics.
Why cannot we algebraically rephrase the proof of the FMP for ILAL to prove the FEP of

14To say the least, the languages are quite different. The author is not sure if they are the same logics although
clearly they are essentially equivalent.

15The converse seems not to hold. Hence Contraction is stronger that dist2, if we want to be precise. By the way,
2a = 2a2a is equivalent to 2a2b = 2(a∧ b), which is called Exponential Isomorphism in [38].

16The expanded acronyms: ILL=intuitionistic linear logic; IMALL=the multiplicative-additive fragment of intu-
itionistic linear logics; IMAAL=the multiplicative-additive fragment of intuitionistic affine logic; IAL=intuitionistic
affine logic; ILLL=intuitionistic light linear logic; ILAL=intuitionistic light affine logic. Here follow the rules of
thumb for remembering these appalling explosion of logics. When weakening is allowed, linear is replaced with
affine. A logic is light if T (Dereliction) and 4(Digging) are dropped. The adjective multiplicative-additive means
modality-free.

17Is it a coincidence that our proof of the FEP in chapter 3 and 4 is also rephrasing syntactic proof of Schütte?
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Linear logic Modal substructural logic

IMALL FLe

ILL S4FLe
+ dist2

IMAAL FLew

IAL S4FLew
+ dist2

ILLL KFLe
+ dist2

ILAL KFLew
+ dist2

Table 2. A family of linear logics

KFLew
+ dist2? The reason is somewhat obscure, but one obvious obstacle is that Terui’s proof

“wraps” the argument one further step. That is, instead of proving the completeness to finite
phase semantics, Terui uses a notion of generalized phase semantics and prove the FMP with
respect to it. Moreover, in the definition of phase semantics for ILAL, treatment of modality
is different from ours. A light affine phase structure is defined to be a quadruple 〈M,C, f,h〉18,
where (roughly)

◮ M and C can be seen our M and C in the construction;

◮ f is a function from M to {X ∈M|X 6 X ·X};

◮ f is used in order to define !. !X = C(f(X));

◮ h is a function for defining another modality and irrelevant to us.

In a word, our modality is fixed in some way while it is not in phase semantics. How relevant
this is to us is not clear. However, a proper algebraization of Terui’s result could be a first step
toward our open questions in the preceding section.

18See definition 7.32 there.
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Notes on well-quasi-order

In this appendix we collect some definition and fact, all of which revolves around well-quasi-
order. Our treatment is due to [13, 40]. The goal is to prove that N

k is well-quasi-ordered with
the order used in [4], which plays a crucial role in the proof of the finiteness of the constructed
algebra D. First we define quasi-order:

Definition 86 A binary relation R on a set A is a preorder or quasi-order if it is reflexive and
transitive.

We usually write 6 for an order and also write a 6 b as. With 6 fixed, we further define
its strict version < as

a < b iff a 6 b and b 66 a.

We say that a and b are incomparable, denoted a|b in symbols, if a 66 b and b 66 a.

Definition 87 Given a set A and a preorder 6 on it, a sequence 〈ai〉 of elements1 is an
infinite descending chain when ai > ai+1 for all i > 0. A sequence 〈ai〉 is an infinite antichain if
ai|aj for all 0 6 i < j.

Now we can define the notion of well-quasi-order, which is mysteriously ubiquitous in
mathematics.

Definition 88 A preorder 6 on A is a well-quasi-order if A has no infinite descending chain
nor infinite antichain with respect to 6.

We abbreviate well-quasi-order to wqo. Before we go on to the main theorem, we show the
following characterizations of wqo.

Lemma 89 The following are equivalent.

1. 6 is a wqo;

2. For any sequence 〈ai〉 there are natural numbers i, j with i < j such that ai 6 aj
2;

3. Any sequence 〈ai〉 has an infinite subsequence3 〈a′i〉 such that a′i 6 a
′

i+1 for all i > 0.

1Formally a sequence of elements of A is a function from N to A.
2Such a sequence is also called a good sequence.
3Formal definition: A sequence 〈a′i〉 is a infinite subsequence of a sequence 〈ai〉 if there is a strictly increasing

function f from N to N such that a′i = af(i) for all i > 0. It is also written as af(i).
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Proof. Clearly 3 → 2 → 1. We show 1 → 3. Suppose 6 is a wqo and consider a sequence
〈ai〉. Then for each pair 〈i, j〉 ∈ N

2 with i < j, exactly one of ai > aj, ai 6 aj and ai|aj holds.
Note that one of these holds for infinitely many pairs because the number of pairs is infinite.
By our assumption the sequence contains no infinite antichain and no descending chain. This
means neither ai > aj nor ai|aj holds infinitely many times. Thus ai 6 aj must occur for
infinitely many pairs. Then we can construct an infinite nondecreasing subsequence from
those pairs4. ❏

Given two preorders 6A on A and 6B on B, we define a preorder 6 on A×B with

〈a,b〉 6 〈a′,b′〉. iff a 6A a′ and b 6B b
′

We next show that this definition preserves well-quasi-orderedness.

Theorem 90 If 6A and 6B are wqo’s respectively on A and on B, then 6 as defined above is a wqo
on A×B.

Proof. Let 〈〈ai,bi〉〉 be a sequence in A×B. Since 〈ai〉 is a sequence in A, we have an infinite
subsequence 〈af(i)〉 with af(i) 6A af(i+1) for all i > 0. Then we turn our attention to the
sequence 〈bf(i)〉, i.e., the subsequence of 〈bi〉 induced by f. By the preceding lemma, we have
some i, j ∈ N with f(i) < f(j) such that bf(i) 6B bf(j). Then we have 〈af(i),bf(i)〉 6 〈af(j),bf(j)〉,
so that 6 is a wqo once again by the preceding lemma. ❏

An easy induction provides our goal:

Corollary 91 Let 6 be a wqo on N. Then the order 6n induced by 6 on N
k is also a wqo.

Note The names associated with above theorem are Higman[17], Kruskal[19], and Nash-
Williams[25]5.

4This proof implicitly appeals to Ramsey’s theorem. It says that f : [N]2 → {|,6,>} is monochromatic.
5A web crawling says: Higman is a mathematician at Oxford and is now retired. Kruskal is a computer scientist

at Bell Laboratory and (seemingly) actively works on something around multidimensional scaling. Nash-Williams
is a British mathematician who was at Reading in the end of his career. He died some five years ago. In [13], the
above corollary is ascribed to Dickson[10], who is an American mathematician at Chicago around the first half of
the 20th century.
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Notes on literature

We give some comments on the literature.
For algebraic preliminaries, knowing the definitions, which takes off a lot of scare invoked

by those jargon, would almost always suffice in the author’s opinion. An appendix “Algebraic
toolkit” in [3] is valuable for that purpose. For more information on universal algebra, see [6],
which the author has never read it seriously.

Although decidability is a main motivation for this thesis, it is not necessary to know
what is all about, as mentioned in the text. Again the toolkit in [3] would be helpful. For
a detailed introduction, see [37]. On history around the origin of models of computation,
[14] is an interesting survey. Important papers of Turing are collected in [9], with readable
introductions by the editor to each paper. Decidability in relation to the FMP is discussed in
[3].

If you can read Japanese, [28] would be what you should read first. Most of what is
necessary to read this thesis is covered. Among others, the presentation of Schütte’s method
is largely due to this book. It also deals with intuitionistic logic and Heyting algebra.

Intuitionistic modal logics we discussed are from [27]. More comprehensive discussion
from a modern viewpoint can be found in [12] and references therein.

For substructural logics and its algebraic semantics, consult [29, 30]. The former[29] is a
detailed account of the lattice of logics above FLew. The latter contains proof theoretical discus-
sion of various substructural logics and a quick survey of their relationships with residuated
lattices. Novices might want to read [29] first. Modal substructural logics are introduced in
[31].

The deep subject of well-quasi-order is readably summarized in the survey[13] although
it concerns proof theory. Textbook presentation is in [40].
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