JAIST Repository

https://dspace.jaist.ac.jp/

Title SHCRTREAR DY T B A Y 2 — ) 7 AL
Author(s) ok, B

Citation

Issue Date 2025-03

Type Thesis or Dissertation

Text version

author

URL http://hdl.handle.net/10119/19820
Rights

o Supervisor: % {=, el Bl E MR, B (EHRE
Description )

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Distributed Dynamic Scheduling Optimization among Containers
2310175 Yao Yudie

In recent years, the container orchestration system Kubernetes is widely
used to implement services in microservice architectures, but important con-
trol functions, including the scheduler, are concentrated on the master node.
While this design simplifies operation and management, it also brings chal-
lenges to the scalability and fault tolerance of the system. If the scheduler
stops due to failure, it can affect the scheduling of new pods, cluster monitor-
ing, and other critical operations. The Kube-scheduler performs scheduling
by mainly considering CPU and memory resources, which may cause load
imbalance between nodes. In addition, because the Kube-scheduler operates
as a centralized component in the cluster, its failure may have a significant
impact on the scheduling function of the entire cluster.

The purpose of this research is to develop a distributed scheduling sys-
tem based on Deep Reinforcement(DRS), which optimizes the utilization
rate and load balancing of the environment. By distributing the scheduling
components, the entire cluster scheduling function is not affected even if one
component fails.

In this research, I propose a distributed scheduling method using MARL,
where the scheduler learns the resource usage of the nodes, the resource re-
quirements of pods, and the network delay between the nodes, and learns
how to make scheduling decisions based on the needs and priorities of dif-
ferent pods. This allows the scheduler to learn from its own experience and
autonomously adapt to changes in the environment. This reduces the risk
of single points of failure and minimizes the impact of node or component
failures on the entire system, while enabling real-time decision-making by
leveraging local information on each node, achieving optimal resource uti-
lization and even load distribution.

The MARL model design in this proposed method is defined as follows:
The model uses schedulers located on each node as agents. The state space is
defined in three types: local state, global state, and waiting pod information.
Local state includes directly observable information by each agent (CPU uti-
lization, memory utilization, disk I/O information, node health status and
number of currently running pods), while global state represents cluster in-
formation (CPU utilization, memory utilization and disk I/O information).
Waiting pod information contains the CPU and memory resources require-
ments of pods. The reward function is designed to consider both local and
global rewards, evaluated based on resource utilization. The action space
is defined as a discrete space where each agent makes binary decisions on



whether to accept waiting pods for their assigned node. The Deep Q-Network
algorithm is implemented for the agent’s policy.

The proposed distributed scheduler follows a stepped design similar to
the Kubernetes default scheduler. First, in the pre-filter step, each scheduler
examines its node’s resource information and conditions. Next, during the
filter step, the MARL model is implemented where each scheduler determines
whether to accept or reject the pod. If a pod is accepted, the node undergoes
evaluation and receives a score. In the scoring step, agents share their actions
and scores, with the best node selected based on sorted results. Finally, once
the decision is made, the model updates in response to the outcome.

The proposed schedulers share decisions through a distributed leadership
model. When the scheduler initializes, one instance is elected as the leader,
which then establishes heartbeat monitoring and launches a socket server.
The remaining scheduler instances transition into a monitoring role. During
normal operation, all scheduler instances actively monitor pods and generate
scheduling decisions. However, only the leader scheduler has the authority to
receive these decisions, determine the optimal node placement, and execute
pod binding operations. To ensure high availability, non-leader instances
continuously monitor the leader’s health through heartbeat checks. If the
leader becomes unresponsive, the non-leader instances trigger a new leader
election process. The newly elected leader assumes all leadership responsi-
bilities, ensuring uninterrupted system operation.

The verification of this research consists of operational validation and
performance evaluation. For operational validation, I confirmed the startup,
scheduling and failure handling capabilities of the proposed distributed sched-
uler and I also measured computation, communication, and resource over-
heads. The performance evaluation involved deploying 105 pods across three
different types of microservices, testing them under both uniform and random
workload distributions for the resource utilization compared to the DRS.

As a result of my experiments, regarding system stability, the distributed
scheduler successfully maintained cluster stability and scalability during node
additions and failures, effectively addressing the single point of failure issue.
The distributed architecture proved effective, with individual schedulers mak-
ing independent decisions while the leader scheduler successfully aggregated
these for final scheduling. About the performance evaluation results, under
uniform workload distribution, the system achieved superior memory utiliza-
tion and disk I/O stability, while maintaining stable network bandwidth and
CPU utilization. With random workloads, the distributed scheduler demon-
strated better performance through stabilized memory utilization, reduced
network load, and more consistent disk write speeds compared to DRS. The
scheduler also showed efficient resource management by appropriately reduc-



ing resource utilization as tasks completed. Overall, the proposed distributed
scheduler showed marked improvements over previous research, particularly
in stabilizing memory utilization, reducing network load, and optimizing disk
I/O control.

However, due to the short experimental period, I could not comprehen-
sively evaluate the algorithm’s performance and stability during long-term
operation. While my evaluation was conducted on a Kubernetes cluster with
four worker nodes and one master node, real-world environments typically
consist of tens to hundreds of nodes. Therefore, evaluation of scalability
and resource utilization in practical-scale cluster environments is necessary.
Also, the current Python implementation has limitations where only a single
scheduler can receive new pod information when deployed as a DaemonSet
in the Kubernetes cluster environment. A potential solution is migrating
to Go language, which would enable the proposed scheduler to be deployed
as a DaemonSet with guaranteed pod instances on each node through the
Informer feature. Additionally, long-term experiments are needed to verify
algorithm convergence performance and system stability, particularly against
various complex workloads. Finally, the implementation of an automatic de-
ployment mechanism remains a crucial area for future development.



