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Abstract 
In this thesis, we investigate the computational complexity of the Crush Ice Game, a 

physics-based puzzle game played on a hexagonal grid. We present a formal analysis of 

the game's mechanics, focusing particularly on the interplay between block stability and 

gravitational effects within its hexagonal grid system. The research transforms the 

original multiplayer game into a deterministic single-player decision problem while 

preserving its core mechanical and strategic elements. 

Our contribution is twofold. First, we develop a deterministic algorithm for simulating 

block stability and falling mechanics in a hexagonal grid system, providing a systematic 

method for evaluating game states. This result implies that the block stability problem of 

the crush ice game can be solved in polynomial time. Second, we prove that the crush ice 

puzzle decision problem is NP-complete through a polynomial-time reduction from 

Planar Monotone 3-SAT. This reduction employs a series of carefully designed gadgets—

including variable, clause, and anti-backflow mechanisms—that encode Boolean logic 

within the game's physical constraints.  

The research demonstrates that despite its simple ruleset, the crush ice puzzle exhibits 

significant computational complexity. Our findings contribute to the broader 

understanding of complexity theory in physics-based puzzle games and provide insights 

into the algorithmic challenges of simulating gravity-based mechanics in non-traditional 

grid systems. Additionally, we identify promising directions for future research. 

 

Keywords: computational complexity, NP-completeness, hexagonal grid systems, 

physics-based puzzles  
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Chapter 1   

Introduction 

 Background 

Crush Ice Game is a tabletop game suitable for 2 to 4 players. Due to its varying names 

and themes, it is difficult to ascertain the original inventor and the time of invention. 

Figure 1.1 shows the version released by YOU & I TOYS CO., LTD. in Japan in 2016[1]. 

The name of the game in the paper originates from this version. 

 

 
Figure 1.1: Crush Ice Game released by YOU & I TOYS CO., LTD. in 2016 

(photo by author) 

 

The crush ice game combines strategic depth and interactive fun through its unique 

mechanics. The player’s preparation involves filling the game board with hexagonal ice 

blocks (usually in 2 colors). There are no requirements for the order in which they are 

filled or the color arrangement. Then place a penguin on the central ice block. 

Subsequently, players take turns spinning the roulette. And based on the result of the 

roulette, knock down the corresponding number and color of ice blocks. Once the penguin 

drops, that player fails. Therefore, players must think carefully during each round. Players 

must ensure the stability of the penguins while also trying to affect their opponents as 
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much as possible. This shows the strategic depth and interactive fun of the game. 

The rules of puzzles and board games are complex and diverse. Different rules have 

their own computational complexities. Research related to this began very early, and the 

computational complexity of more and more games has been revealed. Based on this, 

more efficient solving algorithms can be developed. 

However, research on gravity-related games is more focused in the field of video games. 

In the field of board games, research on games that possess gravity elements is still very 

limited. The crush ice game may seem easy to play, but it possesses elements such as 

gravity and a hexagonal board. These elements are not common in traditional board 

games like shogi. From the perspective of computational complexity, it shows potential 

research value. 

 

 Research Purposes 

In this research, we focus on proving the computational complexity of the game under 

specific rule conditions. As well as how to embody the physical characteristics of the 

game through algorithms. 

The original game rules, designed for multiplayer entertainment with random elements 

introduced through roulette spins, present significant challenges for formal analysis[6]. To 

facilitate our theoretical investigation, we have systematically simplified these rules. At 

the same time, preserving the essential mechanical and strategic elements that make the 

game interesting from a computational perspective. Specifically, we have transformed the 

multiplayer gameplay into a deterministic single-player decision problem. This 

transformation allows us to apply formal methods of complexity analysis while 

maintaining the core challenge of managing block stability under gravity. In the following 

text, this single-player version will be referred to as crush ice puzzle. 

Through this research, we aim to contribute not only to the understanding of this 

specific game. As well as to the broader field of computational complexity analysis for 

physics-based puzzle games. The unique combination of hexagonal grid geometry and 

gravity-based mechanics in the crush ice game provides an opportunity to explore 

complexity characteristics that differ from those found in traditional board games and 

typical video game puzzles. 

 

 Organization 

In Chapter 2, we introduced the hexagonal grid system and the modified game rules. 



3 

 

We transformed the game into a decision problem and defined the game stage and 

objectives.  

In Chapter 3, we introduced the physical mechanism for determining whether blocks 

will fall and developed a deterministic algorithm to simulate the reaction of blocks to 

gravity in a hexagonal grid system.  

In Chapter 4, we proved the NP-completeness of the crush ice puzzle problem by 

reducing Planar Monotone 3-SAT to the game. We introduced tools such as variable 

gadgets, clause gadgets, and anti-backflow gadgets.  

In Chapter 5, we summarized the research results, pointed out the computational 

complexity of the crush ice puzzle problem, and looked forward to future research 

directions, such as finding algorithms for minimum stable configurations. 
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Chapter 2   

Preliminaries 

 Hexagonal grid system 

The hexagonal grid system presents unique challenges for computational 

representation and manipulation compared to traditional square grids. While square grids 

naturally align with two primary axes, hexagonal grids require three primary axes for 

comprehensive spatial representation. This section introduces the coordinate systems 

used in our research and their mathematical properties. 

2.1.1 Cube Coordinate System 

The cube coordinate system provides a solution for representing hexagonal grids. It is 

derived by intersecting a three-dimensional cubic lattice with the diagonal plane defined 

by 𝑥 +  𝑦 +  𝑧 =  0 [2]. This approach yields several advantageous properties: 

1. Vector Operations: Standard vector operations from orthogonal coordinate systems 

can be directly applied to cube coordinates. Including coordinate addition, 

subtraction and scalar multiplication, division.  

2. Algorithmic Compatibility: Existing algorithms for distance calculation, rotation, 

reflection, and line drawing from orthogonal coordinate systems can be adapted to 

the cube coordinate system with minimal modification.  

3. Unique Representation: The constraint condition 𝑞 +  𝑟 +  𝑠 =  0 ensures that 

each hexagonal cell has a unique coordinate representation. 

2.1.2 Axial Coordinate System 

The axial coordinate system is a simplified variant of the cube coordinate system that 

reduces memory requirements while maintaining the essential properties[2]. In this system: 

1. Only two coordinates (𝑞, 𝑟) are explicitly stored. 

2. The third coordinate 𝑠 can be derived when needed using the relation 𝑠 =  −𝑞 –  𝑟. 

3. All geometric operations remain valid with appropriate transformations. 

This representation offers a more efficient storage solution while preserving the 

mathematical properties necessary for game mechanics implementation. 
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 Modification of game rules 

The initial game rules were designed for a scenario involving multiple players. Players 

take turns removing ice blocks according to the result of the roulette, while maintaining 

the stability of the penguin. To facilitate computational complexity analysis, we transform 

these rules into a deterministic single-player decision problem. While retaining the basic 

physical mechanisms and strategic elements that make the game challenging. 

In modified version, we have eliminated the turn-based structure and random elements. 

We present the game as a puzzle, where all decisions must be made at the beginning. The 

game board retains a hexagonal grid structure, which creates unique geometric constraints 

for the stability of the ice. Players can still knock down ice blocks. But instead of 

following the instructions of a roulette, they must strategically choose which ice blocks 

to remove in order to achieve specific goals, while preventing the penguin from falling.  

The frame blocks are immutable boundary conditions that provide structural support 

and define the play area. These blocks cannot be knocked down. The penguin blocks 

represent failure conditions—their stability must be maintained at all times in any 

solution. This adds an important constraint to the problem. 

 

 Problem definition 

Our modified formal definition of the game revolves around a decision problem with 

clearly defined inputs and success conditions. Game stage 𝑁  represents the initial 

configuration, including a complete description of the position and type of all blocks. 

This configuration represented by: 

• Ice block set 𝐼 = {(𝑞, 𝑟) ∣ an ice block exists at coordinate (𝑞, 𝑟)}, 

• Immutable frame blocks 𝐹 ⊆ 𝐼, 

• Penguin block position 𝑝 ∈ 𝐼, 

• Target number 𝑘1, 𝑘2 ∈ ℤ+ (𝑘1 < 𝑘2). 

Then the problem can be formally described as a decision problem as follows: 

Input: A game stage 𝑁 (𝐼, 𝐹, 𝑝, 𝑘1, 𝑘2). 

Output: Determine whether there exists a removal sequence 𝑆 ⊆ 𝐼 ∖ (𝐹 ∪ {𝑝})  to 

achieve: 

1. |𝑆|  ≤  𝑘₁ (number of directly removed blocks does not exceed 𝑘₁). 

2. At least 𝑘₂ ice blocks fall in total. 

3. The penguin block remains stable. 

This formulation transforms the original game’s entertainment-focused rules into a 
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well-defined computational problem suitable for complexity analysis. In the following 

text, this definition will also be referred to as crush ice puzzle problem. 
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Chapter 3   

Decision on block falling 

The physical mechanism of falling blocks is an important component of the game’s 

complexity. We have developed a deterministic algorithm to simulate the reaction of 

blocks to gravity in a hexagonal grid system. This algorithm captures the fundamental 

physical principles of the game. 

Every block can maintain contact with six adjacent blocks in the hexagonal grid system. 

These adjacent blocks provide structural support against gravitational force. The spatial 

arrangement and quantity of these supporting blocks determine the stability state of the 

central block. 

By exhausting all possible adjacent scenarios, we can discover the underlying patterns. 

When the number of adjacent blocks is between 4 and 6, as shown in Figure 3.1, the block 

will keep stable. When the number of adjacent blocks is 1, the block will definitely fall. 

 

 

Figure 3.1: Stable structures 

 

When the number of adjacent blocks is 2 or 3, the situation becomes slightly more 

complex. Depending on the arrangement of the adjacent blocks, the block may fall or may 

not fall. When the arrangement of adjacent blocks is as shown in Figure 3.2, the block 

will not fall. However, when the arrangement is as shown in Figure 3.3, the block will 

fall. Stability depends on the specific arrangement of these neighbors. 
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Figure 3.2: Stable situations 

 

 
Figure 3.3: Unstable situations 

 

To systematically determine block stability, we have developed a two-phase algorithm 

that analyzes the local neighborhood of each block. The first phase involves building a 

comprehensive list of neighbors for any given block. This is implemented through the 

build_neighbors function: 

 

Algorithm 1 build_neighbors function 

Input: grid // the game board state 

x, y // coordinates of the target block 

Output: List of Boolean values indicating presence of neighbors 

1  neighbors ← empty list 

2  directions ← [(0,1), (1,0), (0,-1), (-1,0), (1,-1), (-1,1)] 

3  for each (dx, dy) in directions do 

4      if grid[x + dx][y + dy] ≠ EMPTY then 

5          append TRUE to neighbors 

6      else 

7          append FALSE to neighbors 

8  return neighbors 

 

This function examines the six adjacent positions in the hexagonal grid, recording the 

presence or absence of blocks in each position. The directions array defines the relative 

coordinates for each adjacent position, enabling systematic traversal of the neighborhood. 

The second phase analyzes the neighborhood configuration to determine stability. This 
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is implemented in the will_fall function: 

 

Algorithm 2 will_fall function 

Input: grid // the game board state 

x, y // coordinates of the target block 

Output: TRUE or FALSE 

1  neighbors ← BUILD_NEIGHBORS(grid, x, y) 

2  count ← 0 

3  neighbors_extended ← neighbors + [neighbors[0], neighbors[1]] 

4  for each neighbor in neighbors_extended do 

5      if neighbor = FALSE then 

6          count ← count + 1 

7          if count = 3 then 

8              return TRUE 

9      else 

10         count ← 0 

11  return FALSE 

 

This function implements critical stability analysis features. It extends the 

neighborhood configuration to account for cyclic adjacency. It quantifies consecutive 

structural voids. It determines instability through the identification of three consecutive 

unsupported positions. 

Based on the above, when the support density of the blocks is relatively high, that is, 

when there are 4 to 6 adjacent blocks, a stable structure can be maintained and the blocks 

will not fall. Even when the support density is lower, but the arrangement meets specific 

conditions, 2 to 3 adjacent blocks are also sufficient to provide stable support. 

Conversely, there are two forms of unstable configurations. The first is the minimal 

support condition for a single adjacent block. The second is an uneven distribution of 

support, where the positioning of 2 to 3 adjacent blocks is not conducive to gravitational 

support. Thus, the stability of a block under reduced support density depends on the 

spatial arrangement of its neighbors. 

The algorithmic implementation incorporates several computational considerations. 

The neighborhood analysis maintains constant temporal complexity through fixed-size 

examination. The deterministic nature ensures computational consistency across identical 

configurations. The modular structure permits adaptation to modified physical constraints. 

This computational framework for stability determination provides the foundation for 
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analyzing complex game configurations. It enables systematic evaluation of strategic 

possibilities within the crush ice puzzle problem. 
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Chapter 4   

NP-Completeness of Crush Ice Puzzle  

To prove the NP-completeness of Crush Ice Game problem, we provide a polynomial-

time reduction from Planar Monotone 3-SAT to the game. Our reduction demonstrates 

that any instance of Planar Monotone 3-SAT can be transformed into an equivalent 

instance of the game. The existence of a solution is guaranteed if and only if the original 

Planar Monotone 3-SAT formula is satisfiable[4]. This construction relies on gadgets that 

encode Boolean logic within the physical mechanics of the game. 

 Gadgets 

The reduction relies on a series of gadgets: variable, clause, anti-backflow, wire, split 

and parity. Each type of gadget has a specific role in transforming the logical structure of 

Planar Monotone 3-SAT into the physical constraints of the game. 

Variable gadget: The variable gadget is the foundation of Boolean representation. For 

each variable 𝑥𝑖  in the Planar Monotone 3-SAT formula, we construct a device 

consisting of two selected blocks, as shown in Figure 4.1. These two blocks are arranged 

in a vertical configuration. The upper block represents the TRUE assignment of the 

variable, as shown in Figure 4.2, while the lower block represents the FALSE assignment 

as shown in Figure 4.3. 

  

  

Figure 4.1: Variable gadget 
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Figure 4.2: TRUE value input 

 

  

Figure 4.3: FALSE value input 

 

An important feature of this gadget is its block pool. The blocks that belong to the 

block pool are represented in yellow in Figure 4.1. It contains a very large number of 

blocks. They are arranged in such a way that they will only fall when one of the two 

selected blocks is knocked down. The large number of building blocks serves two 

purposes: First, it forces players to make a choice for each variable. If not, it is impossible 

to reach the target 𝑘. Second, it ensures that choosing both TRUE and FALSE for the 

same variable will result in the penguin falling, thereby maintaining logical consistency. 
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The block pool itself adopts a scalable design pattern, allowing it to be extended 

according to specific rules. As shown in Figure 4.4, this is an example of an extension. 

This scalability is crucial for ensuring that we can create pools of any size to meet the 

constraints requirements. The structure of block pool carefully manages the propagation 

of falling blocks, ensuring that they contribute to the target 𝑘 while also preventing any 

unintended effects on other parts of the construction.  

 

 

Figure 4.4: An example of a block pool extension 

 

Clause gadget: The clause gadget implements the logical OR operation within a 3-

SAT clause. Each clause gadget connects to three variable gadgets, corresponding to the 

literals in the clause, as shown in Figure 4.5.  

The clause gadget is designed such that if any of its input literals is satisfied, it triggers 

the falling of another large pool of blocks. Here, the block pool has the same function and 

properties as the block pool in the variable gadget. The internal structure of this clause 

gadget ensures that the satisfaction of any literal is sufficient to release its pool of blocks, 

thereby accurately simulating the OR operation. The truth table of the clause gadget 

shows that it corresponds exactly to the logical OR operation, as shown in Table 4.1. 

Except when all literals are false, any input combination will trigger the blocks in the 

brick pool to fall. 
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Figure 4.5: Clause gadget 

 

x1 x2 x3 Formula Satisfied 

1 1 1 1 

1 1 0 1 

1 0 1 1 

0 1 1 1 

0 0 1 1 

0 1 0 1 

1 0 0 1 

0 0 0 0 

Table 4.1: Truth Table of Clause Gadget 

 

Anti-backflow gadget: The anti-backflow gadget serves as a critical supporting 

structure that maintains the integrity of our logical structure, as shown in Figure 4.6. 

These gadgets are strategically placed in various parts of the structure to ensure that the 

blocks fall and propagate only in the predetermined direction. Without anti-backflow 

protection, the falling of blocks in one part of the structure could trigger unexpected 

effects in other parts, thereby compromising the logical consistency of our reduction. 

The structure of the anti-backflow gadget consists of channel A and channel B. When 



15 

 

the blocks in channel A fall in sequence, a chain reaction will cause the blocks in channel 

B to fall as well. However, when the blocks in channel B fall in reverse, this fall will stop 

at the connection part between the two channels. The block where the fall stops are 

marked in Figure 4.6. The anti-backflow gadget, through this block structure, allows 

signals to propagate in only one direction, effectively realizing a physical diode. 

   

Figure 4.6: Anti-backflow gadget 

 

Other gadgets: In addition to the three main gadgets, there are also some other small 

gadget structures to implement necessary functions. 

As shown in Figure 4.7, the wire gadget demonstrates how the blocks that transmit 

signals are arranged in both longitudinal and lateral directions, as well as how to switch 

between the two directions (i.e., make a turn). 

The split gadget, as shown in Figure 4.8, can enhance the output degree of variable 

gadgets[5]. 
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Figure 4.7: Wire gadget 

 
Figure 4.8: Split gadget 

 

Finally, to accommodate the input of other gadgets, we may need to change the position 

of the signal in the wire[5]. The Parity gadget, as shown in Figure 4.9, can easily achieve 

this purpose. 
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Figure 4.9: Parity gadget 

 

 Reduction from 3-SAT to Crush Ice Puzzle 

With the previously mentioned gadgets, we can complete the proof. 

𝐓𝐡𝐞𝐨𝐫𝐞𝐦 𝟏.  𝐶𝑟𝑢𝑠ℎ 𝑖𝑐𝑒 𝑝𝑢𝑧𝑧𝑙𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 𝑁𝑃 – 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒. 

𝐏𝐫𝐨𝐨𝐟.  

To prove NP-completeness, we demonstrate two properties: 

1. NP Membership: Crush ice puzzle problem∈ NP. 

2. NP-Hardness: Crush ice puzzle problem is NP-hard via a polynomial-time reduction 

from Planar Monotone 3-SAT. 

First, for NP membership, a decision problem belongs to NP if a proposed solution can 

be verified in polynomial time. For the crush ice puzzle, a candidate solution is a subset 

of blocks 𝑆 to be removed. The verification process involves two steps: 

1. Simulate Block Stability: Apply the deterministic algorithm from Chapter 3 to 

check if removing 𝑆 (where |𝑆|  ≤  𝑘₁) causes at least 𝑘₂ ice blocks to fall. 

2. Check Penguin Stability: Ensure no penguin blocks become unstable during the 

simulation. 

Both steps can be executed in polynomial time: The stability-checking algorithm 

(Algorithm 1 and 2) iterates over each block’s neighbors with constant per-block 

operations. For a board of size 𝑛 this requires 𝑂(𝑛) time. The penguin stability check is 

a subset of the simulation and adds no extra complexity. 
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Thus, Crush Ice Puzzle ∈ NP. 

The proof of NP-Hardness is done by a reduction from Planar Monotone 3-SAT. Planar 

Monotone 3-SAT is a special variant of the classical 3-SAT problem. It has been proven 

to be NP-complete[3]. Its characteristic is that while maintaining NP-completeness, it adds 

additional structural constraints[3]. In this variant, the Boolean formula 𝜑 must satisfy 

three key properties: 

1. Monotonicity: Each clause contains either only positive literals or only negative 

literals. For example, (𝑥₁ ∨  𝑥₂ ∨  𝑥₃) and (¬𝑥₁ ∨  ¬𝑥₂ ∨  ¬𝑥₄) are valid clauses, 

while (𝑥₁ ∨  ¬𝑥₂ ∨  𝑥₃) is not permitted. 

2. Planarity: The formula's associated graph 𝐺(𝜑)  must be planar. This graph is 

constructed as follows:  

Each variable 𝑥𝑖 is represented by a rectangle, arranged side by side in the middle; 

each clause is represented by a rectangle; edges connect variables to the clauses in 

which they appear; the graph must be drawable on a plane without any edges crossing. 

3. Bipartite Structure: All positive clauses appear on one side of the variable vertices, 

while all negative clauses appear on the other side, maintaining planarity. 

Figure 4.10 shows an example of a drawing of an instance of a Planar Monotone 3SAT. 

It describes a formula 𝜑(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) = (𝑥1 ∨ 𝑥2 ∨ 𝑥6) ∧ (𝑥2 ∨ 𝑥4 ∨ 𝑥6) ∧

(¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3) ∧ (¬𝑥4 ∨ ¬𝑥5) ∧ (¬𝑥1 ∨ ¬𝑥4 ∨ ¬𝑥6) 

 

 

Figure 4.10: An example of a planar representation of an instance  

of a Planar Monotone 3SAT 

 

The complete reduction transforms a Planar Monotone 3-SAT formula with 𝑛 

variables and 𝑚  clauses into a crush ice puzzle instance through a systematic 

construction process. Each variable in the formula is represented by a variable gadget, 
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and each clause is represented by a clause gadget. The gadgets are interconnected 

according to the logical structure of the formula, with anti-backflow gadgets protecting 

the integrity of the logical relationships. Figure 4.11 shows a corresponding crush ice 

puzzle board. 

 

 

Figure 4.11: A corresponding crush ice puzzle board 

 

Assume that in the previous gadgets, the number of blocks in the block pool is 𝑏. Set 

𝑘₁ =  𝑛 (where 𝑛 is the number of variables) and 𝑘₂ =  𝑏 × (𝑛 +  𝑚) (where 𝑚 is 

the number of clauses). These values enforce the necessary constraints.  The 𝑘₁ 

constraint ensures that the solution must accurately knock down at most one choice block 

from each variable gadget, while 𝑘₂ ensures that all variable and clause block pools must 

fall. This construction ensures that the crush ice puzzle problem has a solution if and only 

if the 𝜑 is satisfiable. 

The correctness of our reduction can be proven from two directions. Firstly, if the 

Planar Monotone 3-SAT formula has a satisfying assignment, we can construct a solution 

to crush ice puzzle problem by knocking down 𝑛 choice blocks corresponding to the 

truth assignment (satisfying 𝑘₁). The satisfaction of each clause ensures that all clause 

gadgets will trigger, causing their block pools to fall along with the variable gadget block 

pools, reaching the target 𝑘₂ =  𝑏 ×  (𝑛 +  𝑚) fallen blocks. 

Conversely, if there exists a solution to crush ice puzzle problem, the 𝑘₁ constraint 

means we can only directly remove 𝑛 blocks. To achieve 𝑘₂ fallen blocks without any 

penguins dropping, these 𝑛  removals must correspond exactly to a valid variable 
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assignment (selecting exactly one ice block from each variable gadget) that satisfies all 

clauses (triggering all clause gadgets). These choices directly correspond to a satisfying 

assignment of the Planar Monotone 3-SAT formula.  

By demonstrating NP membership and NP-hardness, we conclude that the Crush Ice 

Puzzle decision problem is NP-complete.                             ◼  

This result highlights the intrinsic computational complexity of the game, despite its 

simple rule set. 

In addition, by letting 𝑘₁  and 𝑘₂  be appropriately set, we have the following 

corollary: 

𝐂𝐨𝐫𝐨𝐥𝐥𝐚𝐫𝐲 𝟒. 𝟏 𝐶𝑟𝑢𝑠ℎ 𝑖𝑐𝑒 𝑝𝑢𝑧𝑧𝑙𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 𝑁𝑃– 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑖𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑛𝑔𝑢𝑖𝑛𝑠 𝑖𝑠  

𝑧𝑒𝑟𝑜. 

𝐏𝐫𝐨𝐨𝐟.  

To establish the NP-completeness of the crush ice puzzle when the number of penguins 

is zero, we must demonstrate two properties: NP membership and NP-hardness. 

For NP membership, the problem of determining whether a given configuration of the 

crush ice puzzle problem with zero penguins can result in at most 𝑘₁ directly removed 

blocks causing at least 𝑘₂ ice blocks to fall is in NP. This is because, given a candidate 

solution, we can verify in polynomial time whether removing at most 𝑘₁ blocks lead to 

at least 𝑘₂ blocks falling. The verification process involves simulating the block stability 

and falling mechanics using the stability-checking algorithm (Algorithm 1 and 2). Since 

the simulation can be done in polynomial time, the problem is in NP. 

To prove NP-hardness, we can reduce the crush ice puzzle problem, which we have 

already shown to be NP-complete, to the crush ice puzzle problem with zero penguins. 

The key idea is that the presence of penguins in the original problem adds an additional 

constraint (ensuring that no penguin falls), but if we remove this constraint by setting the 

number of penguins to zero, the 𝑘₁  constraint still maintains the problem's 

computational complexity. 

Given an instance of the crush ice puzzle problem with penguins, we can construct an 

equivalent instance of the crush ice puzzle problem with zero penguins by simply 

removing all penguin blocks from the game board. Since the penguin blocks are no longer 

present, the constraint of ensuring that no penguin falls is automatically satisfied. The 

problem then reduces to determining whether there exists a sequence of at most 𝑘₁ block 

removals that causes at least 𝑘₂ ice blocks to fall, which maintains the challenge of the 

original problem through these dual constraints. 

Since the crush ice puzzle problem is NP-complete, and we have shown that it can be 

reduced to the crush ice puzzle problem with zero penguins while preserving the essential 
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complexity through the 𝑘₁ and 𝑘₂ constraints. The crush ice puzzle with zero penguins 

must also be NP-hard. 

By demonstrating both NP membership and NP-hardness, we conclude that the crush 

ice puzzle problem with zero penguins is also NP-complete.                      ◼ 
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Chapter 5   

Conclusion and Future Works 

 Conclusion 

This research contributes to our understanding of the computational complexity of 

physics-based puzzle games through our analysis of the crush ice puzzle. By reducing the 

Planar Monotone 3-SAT, we have proven the NP-completeness of the game under specific 

constraints. Additionally, we have developed algorithmic methods for modeling and 

analyzing the core mechanisms of the game. 

Our research began with the fundamental challenge of simulating the physical process 

of blocks falling in a hexagonal grid system. The developed algorithm provides a 

deterministic framework for analyzing the stability of the blocks. This framework not 

only captures the basic physical dynamics of the game, but also maintains computational 

feasibility. This modeling framework is extendable to other physics-based puzzle games 

featuring hexagonal grids and gravity. 

By demonstrating the NP-completeness through the reduction to Planar Monotone 3-

SAT, the profound computational complexity underlying the seemingly simple rule set of 

the game is revealed. Our construction of the gadget demonstrates how logical constraints 

can be encoded within the physical mechanics of a game. It provides insights that may be 

applicable to the complexity analysis of other games with physical element. 

 

 Future Works 

In addition, our research has identified several noteworthy directions for future 

research. There are three main directions.  

First, development of algorithms for finding minimum stable configurations. The 

minimum stable configuration refers to the minimum number of ice blocks and their 

arrangement required on the board at game stage 𝑁 to ensure that the penguin does not 

fall. A game stage 𝑁, which consists a complete board of any shape. One edge of the 

board is labeled as frame blocks, the rest of the board contains a penguin block placed in 

the center of the board, and the rest of the board is all ice blocks. It is worth noting that 

at this time, there are no empty spaces on the board. 

By observation, a chain of bricks containing penguin bricks tends to be minimal, as 

shown in Figure 5.1. Therefore, the idea of the algorithm is to traverse the bricks along 
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the 3 pairs of penguin bricks in the diagonal direction. According to depth-first 

exploration until the block is frame block. Count the number of ice blocks in the blocks 

that have been traversed, and choose the smallest one, output as minimum. 

However, we have also identified certain specific chessboard configurations for which 

the optimal solution does not fall within these depth-first traversal patterns. This specific 

board configuration and its solution are shown in Figure 5.2. 

 

 

Figure 5.1: Observations on the minimum stable configuration 

 

 

Figure 5.2: Specific board configuration and its solution 

 

Due to the emergence of special cases, the design approach of the algorithm perhaps 

should shift to a breadth-first exploration. It reveals that the relevant algorithms deserve 

more in-depth research. 
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Second, the computational complexity of the crush ice game under its multiplayer rules 

is also worthy of investigation. As a conjecture, if it can be reduced from Quantified 

Boolean Formula (QBF), then it would be possible to prove that the computational 

complexity of its multiplayer variant is PSPACE-complete. 

Third, there is another game worth noting called Beehive Game. Its image is shown in 

Figure 5.3[7]. The rules of Beehive Game are the same as those of Crush Ice Game, with 

the key difference being that the game board is oriented vertically rather than horizontally. 

This distinction significantly alters the impact of gravity on the gameplay process. As a 

result, the computational complexity of the two games may differ. This difference is also 

worthy of further research. 

 

 
Figure 5.3: Beehive Game (photo by author) 
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