
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Post Compromise Securityを強化したTreeKEMプロトコ

ルの提案

Author(s) 大鶴, 朋子

Citation

Issue Date 2025-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/19823

Rights

Description
Supervisor: 藤﨑 英一郎, 先端科学技術専攻, 修士 (情報

科学)



Master’s Thesis

An Improved TreeKEM protocol with stronger PCS

Tomoko Otsuru

Supervisor Eiichiro Fujisaki

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)

March, 2025



Abstract

Secure Messaging protocols enable end-to-end secure communication over
untrusted network and server infrastructure. They are used in major appli-
cation services that provide secure message exchange between users, such as
Signal, Facebook Messenger, etc. Their sessions may be long-lived and users
may be offline, so they should guarantee Forward Secrecy (FS) and Post-
compromise Security (PCS). Forward Secrecy satisfies that the past session
keys remain secret even if a user is compromised at some point, while Post-
compromise Security enables a user’s session key to be secure again after
some type of key updates (ideally, after any key update). TreeKEM is a con-
tinuous group key agreement (CGKA) protocol whose security has recently
been analyzed by Alwen et al. (CRYPTO 2018). And it is at the core of
the secure group messaging protocol discussed in the IETF MLS working
group. In this paper, we focus on PCS of TreeKEM and provide better PCS
security to TreeKEM with a simple modification. Our modification makes it
significantly easier for the protocol to recover from a compromise.



Contents

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 4
2.1 Binary trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Pseudorandom Generators . . . . . . . . . . . . . . . . . . . . 4
2.3 Public-key Encryption . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Updatable Public-key Encryption (UPKE) . . . . . . . . . . . 5
2.5 Continuous Group Key Agreement . . . . . . . . . . . . . . . 6

2.5.1 CGKA Security . . . . . . . . . . . . . . . . . . . . . . 6
2.5.2 Forward Secrecy and Post-compromise Security . . . . 12

2.6 Single-Challenge Security to Multi-Challenge Security . . . . . 13

3 TreeKEM with updatablePKE 14
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Rathcet trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 PKI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 TreeKEM with updatablePKE Protocol . . . . . . . . . . . . 17

3.4.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Node-by-node Compromise 20
4.1 Capturing Node key leakage . . . . . . . . . . . . . . . . . . . 20
4.2 PCS for node-by-node compromise . . . . . . . . . . . . . . . 22

5 Our proposal 23
5.1 Add extra key . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Our protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1



6 Security 28
6.1 Secret-Key Encryption (SKE) . . . . . . . . . . . . . . . . . . 28
6.2 Updatable SKE with separate keys (USKE) . . . . . . . . . . 29
6.3 Improved PCS for node-by-node compromise . . . . . . . . . . 31
6.4 Modified CGKA game . . . . . . . . . . . . . . . . . . . . . . 31
6.5 Proof of Security for Our protocol . . . . . . . . . . . . . . . . 33



List of Figures

3.1 Left balanced binary tree . . . . . . . . . . . . . . . . . . . . . 15
3.2 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Representative . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 A node key compromise and subsequent leakage . . . . . . . . 21
4.2 A node key compromise and three groups of users . . . . . . . 21
4.3 Two node keys compromise and three groups of users . . . . . 22

5.1 Our protocol: A node key compromise and subsequent leakage 25
5.2 Our protocol: Compromise of a node key and an extra key . . 25
5.3 Comparison case3: Leakage of a node key and an extra key,

and update of SibSU(v̂) . . . . . . . . . . . . . . . . . . . . . 27

6.1 Conditions for reveal the update secrets and PCS . . . . . . . 31



Chapter 1

Introduction

Secure Messaging protocols enable end-to-end secure communication over
untrusted network and server infrastructure. They are used in major appli-
cation services that provide secure message exchange between users, such as
Signal [1], Facebook Messenger [2] and etc. In 2018, an official working group
was formed at the IETF and MLS was published as RFC 9420 in 2023 [4].
Google and other companies, including AWS, Cisco, Cloudflare, Meta, Wire,
and Matrix, came out in support of MLS [3].

TreeKEM is a continuous group key agreement (CGKA) protocol and
is at the core of the Secure Group Messaging (SGM) protocol in the IETF
MLS working group. Alwen et al. [5] have first analyzed the security of
TreeKEM and are followed by several papers [7, 8, 9, 10]. In [5], they have
claimed that the original TreeKEM does not satisfy forward secrecy (FS) and
proposed a modification that satisfies FS. Their modification is very simple:
They have replaced the public-key encryption used in the original TreeKEM
with updatable public-key encryption (hereafter referred to as TreeKEM with
updatable PKE). As for PCS, [5] has claimed that the original TreeKEM is
sound against the post-compromise attacks. However, their definition of PCS
is not well deployed in the case of TreeKEM because it is defined in a general
CGKA protocol. In TreeKEM, each user keeps plural secrets corresponding
to each node in ”the tree” of TreeKEM, a part of which is used to obtain the
new group session key I. In Alwen’s definition, the key compromise should
always reveal the whole inner states of a compromised user. They do not
consider ”partial reveal”. In this paper, we consider the node-by-node key
compromise, which would be more suitable for TreeKEM. In addition, we
introduce an extra key derived from the root secret. With this modification,
we can significantly increase the case of key updates that the protocol can
recover from compromise.

In Chapter 3, we explain TreeKEM with updatablePKE. In Chapter 4,

1



we describe the details of the node-by-node key compromise. In Chapter 5 we
propose our modified protocol based on Alwen et al.’s protocol (i.e., TreeKEM
with updatablePKE). We introduce a common extra key, k, derived from the
root secret in a simple way.

1.1 Contributions
First, we analyze the security of TreeKEM with updatablePKE [5] in the
context of node-by-node key compromise. We observe that compromising a
single node key can lead to a chain reaction, causing further compromise of
other node keys and update secrets when the compromised node lies on the
update co-path — the sequence of sibling nodes from the update node to the
root. In other words, update secrets I, from which users derive session keys,
remain secure unless the node is part of the update co-path. However, the
tree is potentially unsafe because users retain compromised keys.

Second, we propose an improvement to TreeKEM with updatablePKE.
We introduce a common extra key, k, shared among all users, in a straightfor-
ward manner. In TreeKEM with the updatablePKE protocol, users compute
the node key of a node v in the epoch t based on its value in epoch t − 1,
or the key remains unchanged. This dependency is the root cause of chain
compromise and the retention of compromised keys. In our protocol, users
incorporate k alongside the node key when encrypting or decrypting the path
secrets s, which users use to compute update secrets I, and they update k
in every epoch. Therefore, even if the attacker compromises both a node
key and k, these keys become invalid after any user update, except for users
possessing the sibling of the compromised node. Consequently, our protocol
provides stronger PCS.

1.2 Related Work
Karthikeyan Bhargavan et al. proposed TreeKEM [6] and since then, many
studies have been conducted on this topic [5, 7, 8, 9, 10, 11]. Notably, Joel
Alwen et al.analyzed its security in detail [5]. They precisely analyze the secu-
rity of TreeKEM within the CGKA framework and highlight that TreeKEM
does not provide sufficient forward secrecy (FS). To address this limitation,
they propose a modification to TreeKEM that incorporates updatablePKE,
inspired by the work of Jost et al. [12]. In their revised protocol, the pub-
lic and secret node keys are appropriately updated during encryption and
decryption, respectively. This modification achieves optimal FS, ensuring

2



that after decryption, the node key reveals no information about the original
message.

3



Chapter 2

Preliminaries

This section provides an overview of basic concepts related to binary trees as
well as definitions of pseudorandom generators (PRGs), CPA-secure public-
key encryption, and CGKA scheme as described in [5].

2.1 Binary trees
We denote a binary tree as τ and each node in the tree has either 0 or 2
unique children. The height of τ is defined as the length of the longest path
from the root to any leaf. The node of height 0 is the root, a node with no
children is called a leaf, and all the other nodes are called internal. We call a
tree a full binary tree FTh whose height is h and has 2h leaves. Given two leaf
nodes l and l′ in a tree, let LCA(l, l′) represent their least common ancestor.

2.2 Pseudorandom Generators
A pseudorandom generator is prg : {0, 1}n → {0, 1}m with n < m. prg

(U) for uniformly random U ∈ {0, 1}n is indistinguishable from U ′ for uni-
formly random U ′ ∈ {0, 1}m. The advantage of an attacker at distinguishing
between these two distributions is denoted by Advprgprg (A).

Definition 1 (Pseudorandom Generator) A pseudorandom generator prg
is (t, ε)-secure if for all t-attackers A,

Advprgprg(A) ≤ ε.

4



2.3 Public-key Encryption
Definition 2 (Public-key Encryption) A public-key encryption (PKE)
scheme is a triple of algorithms Π = (PKEG, Enc, Dec) as follows.

• A key generation algorithm PKEG takes a security parameter and outputs
(pk, sk).

• An encryption algorithm Enc is an algorithm that takes a message m
along with a public key pk and outputs a ciphertext c.

• A decryption algorithm Dec is a deterministic algorithm that takes a
ciphertext c along with a secret key sk and outputs a message m.

PKE should satisfy the correctness condition. For any message m,

Pr[(pk, sk)← PKEG; c← Enc(pk,m);m′ ← Dec(sk, c) : m = m′] = 1.

IND-CPA security for PKE. We consider the following security game.

• Compute (pk, sk) ← PKEG and b← {0, 1}

• The adversary A takes pk and outputs (m0,m1)

• The adversary A receives c← Enc(pk, mb)

• b′ ← A (c)

We define that A wins the game if b = b′. The advantage of A is defined by
AdvΠcpa(A).

Definition 3 A public-key encryption scheme Π is (t, ε)-CPA-secure if for
all t-attackers A,

AdvΠcpa(A) ≤ ε

2.4 Updatable Public-key Encryption (UPKE)
Definition 4 (Updatable Public-key Encryption) An updatable public-
key encryption (UPKE) scheme is a tripe of algorithms UPKE =(PKEG, Enc,
Dec) as follows.

• A key generation algorithm PKEG is a probabilistic algorithm that takes
a uniformly random key sk0 and outputs a initial public key pk0 ←
PKEG(sk0).

5



• An encryption algorithm Enc is a probabilistic algorithm that takes a
message m along with a public key pk and outputs a ciphertext c and a
new public key pk′.

• A decryption algorithm Dec takes a ciphertext c along with a secret key
sk and outputs a message m and a new secret key sk′.

IND-CPA security for UPKE. We consider the following security game.

• Pick up sk0 ← {0, 1}κ, and compute pk0 ← PKEG(sk0), and b← {0, 1}.

• The adversary A takes pk0 and for i = 1, ..., q, A outputs mi and re-
ceives (ci, pki, ri) such that (ci, pki)← Enc(pki−1,mi; ri), for uniformly
random ri. Compute (mi, ski)← Dec(ski−1, ci).

• The adversaryA outputs (m∗0,m∗1) and receives (c∗, pk∗)← Enc(pkq,m
∗
b ; rq+1)

and sk∗, (·, sk∗)← Dec(skq, c
∗).

• b′ ← A(pk∗, sk∗, c∗)

We define that A wins the game if b = b′. The advantage of A is defined
by AdvUPKEcpa (A).

Definition 5 An updatable public-key encryption scheme UPKE is (t, ε)-CPA-
secure if for all t-attackers A,

AdvUPKEcpa (A) ≤ ε.

2.5 Continuous Group Key Agreement
2.5.1 CGKA Security
Continuous Group Key Agreement (CGKA) enables group members to con-
tinuously share fresh secret random values, which they use to update their
key material. In this section, we describe the main oracles of the CGKA
security game, following the work of Alwen et al. [5].

Definition 6 (CGKA) CGKA scheme CGKA = (init, create, add, rem,
upd, proc) consists of the following algorithms.

• A initialization algorithm init takes an ID ID and outputs an initial
states γ.

6



• A group creation algorithm create takes a state γ and a list of IDs G
= (ID1,..., IDn), then outputs a new state γ′ and a control message W.

• An add algorithm add takes a state γ and an ID ID′, then outputs a
new state γ′ as well as control messages W and T.

• A remove algorithm rem takes a state γ and an ID ID′ then outputs a
new state γ′ and a control message T.

• An update secret random values algorithm upd takes a state γ then
outputs a new state γ′ and a control message T.

• A process algorithm proc takes a state γ and a control message T, then
outputs a new state γ′ and an update secret I.

In CGKA game, there are group members and the server. Users update
secret random values epoch by epoch. When a user takes an action except for
process, it takes a current state γ and parameters and outputs a new state γ′

and a control message. Control messages are stored in the server and other
users process the messages at any time in order. The oracles are formalized
through the security game described below. The attacker is granted access
to various oracles to control the execution of a CGKA protocol. However,
the attacker’s capabilities and the restrictions on the order in which it may
invoke the oracles are designed based on how a CGKA protocol would be
used within a higher-level protocol. Most importantly, the attacker is not
permitted to modify or inject any control messages.

7



CGKA game

init

b← ${0, 1}
∀ID : γ[ID]← init(ID)
lead[·], I[·],G[·]← ε
ep[·], ctr[·]← 0
D[·]← true

chall[·]← false

pubM [·]← ε

create-group(ID0, ID1, ..., IDn)
t← ep[ID]
reqt = 0
c← ++ ctr[ID0]
(γ[ID0],W )
← create(γ[ID0], ID1, ..., IDn)

fori = 0, ..., n
M [t+ 1, ID0, IDi, c]←W

G[t+ 1, ID, c]← {ID0, ID1, ..., IDn}

reveal(t)

req I[t] /∈ {ε,⊥} ∧ ¬chall[t]
chall← true

return I[t]

chall(t)

req I[t] /∈ {ε,⊥} ∧ ¬chall[t]
I0 ← I[t]
I1 ← K
chall[t]← true

return Ib

add-user(ID, ID′)
t← ep[ID]
reqt > 0 ∧ ID′ /∈ G[t]
c← ++ ctr[ID]
(γ[ID],W, T )← add(γ[ID], ID′)
M [t+ 1, ID, ID′, c]← (W,T )
forĨD ∈ G[t]
M [t+ 1, ID, ĨD, c]← T

G[t+ 1, ID, c]← G[t] ∪ {ID′}

remove-user(ID, ID′)
t← ep[ID]
reqt > 0 ∧ ID′ ∈ G[t]
c← ++ ctr[ID]
(γ[ID], T )← rem(γ[ID], ID′)
forĨD ∈ G[t]
M [t+ 1, ID, ĨD, c]← T

G[t+ 1, ID, c]← G[t] \ {ID′}

send-update(ID)
t← ep[ID]
reqt > 0
c← ++ ctr[ID]
(γ[ID], T )← upd(γ[ID])
forĨD ∈ G[t]
M [t+ 1, ID, ĨD, c]← T

G[t+ 1, ID, c]← G

deliver(t, ID, ID′, c)

req lead[t] ∈ {ε, (ID, c)}
∧(t = ep[ID′] + 1, added(t, ID, ID′, c))

T ←M [t, ID, ID′, c]
(γ[ID′], I)← proc(γ[ID′], T )
if lead[t] = ε
lead[t]← (ID, c)
I[t]← I
G[t]← G[t, ID, c]

else if I ̸= I[t]
win

if rem(t, ID′)
ep[ID′]← −1

else
ep[ID′] + +

ctr[ID′]← 0

corrupt(ID)

return γ[ID]

no-del(ID)
D[ID]← false

Epochs. First, the attacker creates a group with a list of IDs in epoch
1. Thereafter, any group member may add new parties, remove existing
members, or perform an update. The four oracles create-group, add-user,
remove-user, and send-update initiate new epochs, and deliver ensur-
ing that parties transition to the next epoch. If multiple parties attempt
to initiate a new epoch, the attacker selects a single operation to define the
new epoch; the corresponding sender is referred to as the leader of the epoch.

Initialization. The init oracle init sets up the game and initializes all the
parameters to track execution;

• b: A random bit which is used for challenges.

• γ: All user states that include ID of group members, public keys of all
nodes, and secret keys of itself.

8



• lead: The leader of the epoch, whose operation defines the new epoch.
In deliver the attacker determines it and its control message is pro-
cessed by all group users.

• I: The update secret which is labeled at root. It is shared by all group
members and used for key update.

• G: The group members list.

• ep: The epoch in which each user is currently in. Each user advances
to the next epoch through process.

• ctr: The number of new operations which is initiated by a user within
its current epoch, so we call this the local version number. Whenever
a user moves to the next epoch, it resets.

• D: The flag indicates whether the user deletes its values or not. After
no-del user does not delete its old values, instead it replaces them with
new ones.

• chall: The flag indicates whether the attacker is allowed to issue a
challenge for the epoch.

• M : All control messages which are stored in the server.

Leaders and local version number.
Control messages are stored in M with key (t + 1, ID, IDi, ctr[ID]), re-

sponding to the number of the next epoch, the sender, the recipient, and
the local version number of the operation. The leader for epoch t + 1 is the
ID that is designed as the sender of the first control message delivered via
deliver for that epoch. Additionally, the leader also sends a control message
to itself, and the operation is completed when the control message returns
to the leader and is processed in the same way as for all other users.

Group creation. When a user ID is in epoch 0, the oracle create-group
allows ID to create a group with members {ID0, ..., IDn}. User ID calls the
group creation algorithms and sends the resulting welcome messages to all
users, including itself.

Adding and removing users and performing updates. Three oracles add-user,
remove-user, and send-update, call the the corresponding CGKA algo-
rithms, add, rem, and upd respectively, if the req statement is true and send
the resulting control messages to the server.

9



Delivering control messages. The oracle deliver allows users to process
the control messages stored in M . First, the req statement checks that
(1) either there is no leader for epoch t yet or version c of ID is the leader
already and (2) the user ID′ is currently in epoch t − 1 or a newly added
group member. The predicate added is defined by

added(t, ID, ID′, c) := ID′ /∈ G[t− 1] ∧ ID′ ∈ G[t, ID, c].

If there is no leader for epoch t yet, the game selects a leader as explained
above and stored the update secret in I for epoch t. The other case, whenever
users get the update secret by proc, they checke it against I for t ensuring the
correctness. Finally, the epoch counter is updated. If the process removes
the user itself, the epoch counter is set to −1. The predicate removed is
defined as follows

removed(t, ID′) := ID′ ∈ G[t− 1] ∧ ID′ /∈ G[t].

Challenges and reveals. For each epoch, the attacker can call either chall
or reveal. When calling chall(t) for some t, the oracle first checks that t
indeed corresponds to an update epoch and that a leader already exists. The
oracle reveal allows the attacker to know the update secret of an epoch.

Corruptions and deletions. The oracle corrupt(ID) allows the attacker
to learn all the inner states of user ID. The oracle no-del(ID) causes user
ID to stop deleting old secrets values instead updating them with new ones.
When the attacker call corrupt(ID) after no-del(ID), it gets all secret keys
between the epochs.

Avoiding trivial attacks. To prevent the attacker from trivially winning
the CGKA security game such as by challenging an epoch t’s update secret
and leaking some party’s state in epoch t, the predicate safe is evaluated
at the end of the game. This evaluation is performed on the set of queries
q1,...,qq to ensure that the execution was not susceptible to such trivial
attacks. Specifically, the predicate checks whether the attacker could have
directly computed the update secret in the challenge epoch t∗ using the leaked
state of a user ID in some epoch t along with the control messages observed
on the network.

The case is as follows.

1. ID has not performed an update or been removed before the challenge
epoch after corruption.

10



2. ID stopped deleting values at some point up to the challenge epoch and
was corrupted.

The predicate is depicted below. The function q2e(q) returns the epoch
corresponding to query q. Specifically, for q ∈ { corrupt(ID), no-del(ID)
}, if ID is in the group when a user calls q, it returns the value of ep[ID];
otherwise, returns ⊥. For q ∈ {send-update(ID), remove-user(ID, ID′)},
q2e(q) is the epoch for which any user initiates to process the operations. If
q is not processed by any user, it returns ⊥.

11



Safe Predicate

safe(q1,...,qq)
for (i,j) s.t.
qi = corrupt(ID) for some ID and qj = chall (t∗) for some t∗

if q2e (qi) ≤ t∗ and ∄k
s.t. 0 < q2e (qi) < q2e (qk) ≤ t∗

and qk ∈ {send-update(ID), remove-user(∗, ID)}
return 0

if q2e (qi) > t∗ and ∃k
s.t. q2e (qk) ≤ t∗ and qk = no-del (ID)
return 0

return 1

Advantage. The attacker runs in time at most t, makes at most c chal-
lenges and never creates a group with more than n users (hereafter referred
to as a (t, c, n)− attacker) and wins the CGKA security game if it correctly
guesses the random bit b at the end and the safety predicate evaluates to
true. We generally replace the predicate safe for any other predicate P.
The advantage of A with the safety predicate P against a CGKA scheme is
defined by

Adv
CGKA,P
cgka-na(A) :=

∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣
Definition 7 (Non-adaptive CGKA security) A CGKA protocol CGKA
is non-adaptively (t, c, n,P, ε)-secure if for all (t, c, n)-attackers,

Adv
CGKA,P
cgka−na(A) ≤ ε.

With non-adaptive security, an attacker is required to announce all corrup-
tions at the beginning.

2.5.2 Forward Secrecy and Post-compromise Security
CGKA protocols provide forward secrecy and PCS, those are the basic prop-
erties.

Forward Secrecy (FS). It means leakage in the future does not cause leak-
age in the past. If the state of any group member is leaked at some point,
all previous update secrets remain hidden from the attacker.

12



Post-compromise Security (PCS). It means recovery from past leakage. If
the attacker knows the inner state of group members in the past, the update
secrets become secret again after every group user whose state was leaked
performs an update.

2.6 Single-Challenge Security to Multi-Challenge
Security

For CGKA schemes, single-challenge non-adaptive security implies multi-
challenge security, as shown by the following lemma. The proof of lemma 1
is given in [5].

Lemma 1 Single-challenge to multi-challenge
Assume that a CGKA protocol is (t, 1, n, P, ε)-secure. Then, CGKA is also
(t′, c, n, P, ε′)-secure for t′ ≈ t and ε′ = cε.

13



Chapter 3

TreeKEM with updatablePKE

3.1 Overview
In a TreeKEM RT, the group members are arranged in the leaves and all
the nodes have an associated public-key encryption (PKE) pair, pk and sk,
except for the root. Each user knows all secret keys on the nodes from the
leaf to the root (hereafter referred to as direct-path). In order to perform an
update and produce a new update secret I, a user first generates fresh key
pairs on every node of its direct-path. Then, for every node v′, the sibling of
every node on the direct-path, it encrypts path secrets under the public key
of v′. Each user in the subtree of v′ can learn all new path secrets and keys
from the parent of v′ up to the root.

In this chapter, we explain the basic concepts around ratchet trees (RTs)
and TreeKEM with updatablePKE in the same way as Alwen et al. [5]. The
difference from the original TreeKEM is the use of UPKE. The pubic and se-
cret node keys change suitably with encryption and decryption, respectively,
and it provides optimal FS.

3.2 Rathcet trees
An RT in TreeKEM is a left-balanced binary tree (LBBT). An LBBT has
a maximal full binary tree as its left child and an LBBT on the remaining
nodes as its right child.

Definition 8 (Left-Balanced Binary Tree) For n ∈ N, we denote a left-
balanced binary tree with n nodes as LBBTn. It is constructed as follows.

• The tree LBBT1 is a single node.

14



• Let x = mp2(n). mp2(n) is the maximum power of two dividing n.
LBBTn has the full subtree FTx as its left subtree and LBBTn−x as its right
subtree.

The nodes are labeled as follows. Labels are referred to using dot-notation
(e.g., v.pk is v’s public key).

• The root is labeled with an update secret I.

• The internal nodes are labeled by a key pair (pk, sk) for the UPKE
scheme.

• The leaf nodes are labeled as internal nodes, except that they also have
an owner ID.

Figure 3.1: Left balanced binary tree

Direct-path. Direct-path is the path from a node v to the root.
Co-path. Co-path is the sequence of siblings of nodes on the direct-path.
Parent node. v̂ is the parent of a node v.

Resolutions and representatives. Users use the public key of resolutions on the
co-path when they compute the control messages for the subtree users, and
use the secret key of the representative when they decrypt control messages.
Intuitively, the resolution of a node v is the smallest set of non-blank nodes
that covers all leaves in v’s subtree.

15



Definition 9 (Resolution) Let τ be a tree with node set V . The resolution
RES(v) of a node v is defined as follows.

• If v is not blank, then RES (v) = v.

• If v is a blank leaf, then RES (v) = ∅

• Otherwise, RES (v) :=
⋃

v′∈C(v)RES (v′), where C (v) are the children
of v.

Figure 3.2: Resolution

Definition 10 (Representative) Consider two leaf nodes l and l′.
• Assume l′ is non-blank and in the subtree of v′. The representative Rep

(v′, l′) of l′ in the subtree of v′ is the first filled node on the path from
v′ down to l.

• Consider the least common ancestor w = LCA(l, l′) of l and l′. Let v be
the child of w on the direct-path of l, and v′ that on the direct-path of
l′. The Rep (l, l′) of l′ is defined as the representative Rep (v′, l′) of l′
in the subtree of v′.

It is that Rep (v′, l′) ∈ RES (v′).

Subtree Users. We introduce the useful definition of Subtree users.
Definition 11 (Subtree Users) Subtree Users of a node v and its sibling
are as follows.

• SU (v) are users arranged at leaves in the subtree of v.

• SibSU (v) are users arranged at leaves in the subtree of v’s sibling.

16



Figure 3.3: Representative

3.3 PKI
The TreeKEM protocol uses a public-key infrastructure (PKI) where parties
can register ephemeral keys. The MLS documents [4, 13] explicitly describes
how users can generate, authenticate, distribute, and verify each other’s ini-
tialization keys. For simplicity as in [5], this work models the PKI as provid-
ing protocol algorithms and attackers can access to the PKI functionality.
The PKI ensures that every public key is used only once.

• get-pk: Any user ID can request any user’s fresh public key. When ID

calls get-pk (ID′), the PKI generates a fresh pair of keys (pk, sk) and
returns pk to user ID. The PKI also records the triple (pk, sk, ID′) and
passes the information (pk, ID′) to the attacker.

• get-sk: Any user ID′ can request secret keys corresponding to the
public keys of itself. Specifically, when ID′ calls get-sk (pk), if a triple
(pk, sk, ID′) is recorded, the PKI returns sk to ID′.

3.4 TreeKEM with updatablePKE Protocol
In this section, we explain TreeKEM with updatablePKE protocol [5]. It
makes use of a pseudorandom generator prg and a CPA-secure updatable

17



public-key encryption scheme UPKE.

Group creation. It creates a new ratchet tree with user lists G =
(ID1, ..., IDn). First, it creates a new pair of PKE keys (pk0,sk0) and fetches
public keys pk = (pk1, ..., pkn), corresponding to the IDs in G from the PKI.
Then, it makes the welcome message consists of G′ and (pk0, pk).

Adding a group member. When a user ID adds a new group mem-
ber ID′, it first calls get-pk(ID′) and obtains pk′ of ID′ from the PKI. The
welcome message for user ID′ simply consists of a public keys of the current
RT, and the control messages for the remaining group members consist of
the IDs of ID and ID′, and the public key of ID′.

Removing a group member. When a user ID removes user ID′, it first
blanks all the keys on the direct-path of ID′. Then, the leaf node of the user
ID′ is removed from the tree. The control messages consist of the user IDs
of ID and ID′.

Performing an update. When a user ID at leaf node v performs an
update, it computes new pairs of PKE keys on their direct-path and path
secrets as follows.

• Compute path secrets: Consider v0 = v, and v1, ...., vd be the nodes
on the direct-path of the user ID, from bottom to top. The user ID

chooses a uniformly random s0 and it computes

ski ∥ si+1 ← prg(si), for i = 0, ..., d− 1.

• Update RT labels: For i = 0, ..., d−1, the user ID gets pki corresponding
ski from the PKI and updates the label of vi to (pki,ski).

pki ← PKEG(ski)

• Root node: The user ID sets I := sd.

Then, the user ID makes the update messages as follows.

• Encrypt path secrets and update public keys: Consider v′0, ..., v′d−1 be the
nodes on the co-path of the user ID from bottom to top. For i = 1, ..., d,
the user ID encrypts the path secrets si with the public key of every
resolution of its child that is on update co-path. The user ID computes
(cij, pkij)← Enc(v′j.pk, si) and sets the public key of v′j to pkij.

18



• Output the update message: All ciphertexts cij are concatenated to an
overall ciphertext c and all keys pkij are stored in PK. Then, the
user ID outputs the update messages consist of PK, PK, and c, where
PK := (pk0, ..., pkd−1).

Processing control messages. When a user IDj processes a control
message T , it first checks whether T is the output from itself operation. If
so, they simply adopt the corresponding RT in τ ′[·]. When T was the output
from another user, it calls proc and process it as follows, depending on the
type of control message.

• T = (create, G, pk): A user IDj determines its position, j, in the G
list, and calls get-sk(pkj). Then it initializes the RT.

• W = (wel, τ̃): It simply adopts τ̃ as the current RT and calls get-sk
and sets the secret key.

• T = (add, ID, ID′, pk′): A user IDj adds the new user ID′ to the RT and
blank all nodes on the direct-path of user ID′.

• T = (rem, ID, ID′): A user IDj blanks all nodes on the direct-path of
user ID′ and removes the leaf node of ID′ from the RT.

• T = (upd, ID, U): When a user IDj at some leaf l′ receives an update
message, issued by the user ID at leaf v, it processes the update infor-
mation as follows. Consider w := Rep(v, l′). The user IDj uses w.sk
to decrypt cij and obtains si and sk′w. Then it computes the path se-
crets from si to sd and their secret keys. Finally, it overrides the RT
labels by the keys in PK, PK and the secret keys including those of
updatablePKE.

3.4.1 Security
TreeKEM with updatablePKE protocol is non-adaptive security with a safety
predicate safe. The proof of Theorem 1 is given in [5].
Theorem 1 (Non-adaptive security of TreeKEM with updatablePKE)
Assume that

• prg is a (tprg, εprg)-secure pseudo-random generator,

• UPKE is a (tcpa, εcpa)-CPA-secure updatable public-key encryption scheme,
then, TreeKEM with UpdatablePKE is a (t, c, n, safe, ε)-secure CGKA
protocol, ε = 2cn (εprg+εcpa), and t ≈ tprg ≈ tcpa.

19



Chapter 4

Node-by-node Compromise

In this chapter, we analyze the node-by-node compromise and introduce a
modified security game that is better suited for TreeKEM. In this case, the
attacker does not get update secrets, but once the compromised node is on the
update co-path, it triggers a chain reaction, compromising other node keys
and update secrets I. Conversely, if the node is not on the update co-path,
the update secrets remain secure and the attacker can compute update secrets
when it is on the update co-path in the future. In other words, there appears
a dangerous node in the tree when node-by-node compromise. Therefore
we introduce PCS for node-by-node compromise which means recovery from
dangerous keys.

4.1 Capturing Node key leakage
In TreeKEM with updatablePKE, users derive a node key of v in epoch t+1
from the corresponding key in epoch t or the key remains unchanged. When
the attacker leaks vj.sk, it can compute the update secrets I and the node
keys of vj+1, vj+2, ...vd−1, which is the node from vj to root, with any update
of SibSU(vj) until SU (vj) updates. Conversely, with the other users’ update,
update secrets remain secret. However, once SibSU(vj) performs an update,
the attacker can compute update secrets because vj.sk remains unupdated.

To clarify this issue, we first illustrate which secret keys are necessary
for users to compute node keys and update secrets. For example, consider
the security of LBBT4 (Fig.3.1) under the assumption that the attacker leaks
sk11 in epoch t. In Fig.4.1, we depict the operations and the corresponding
secret keys after epoch t. Each arrow indicates that users derive the right-
hand side using the left-hand side and the control message. Consequently,
even though the attacker initially leaks only one node key in epoch t, it can

20



Figure 4.1: A node key compromise and subsequent leakage
Consider the attacker leaks sk11 in LBBT4 (Fig3.1) in epoch t.

Figure 4.2: A node key compromise and three groups of users

compute additional node keys and update secrets in epoch t+ 2 and t+ 3.
Next, we illustrate how specific user updates influence the compromise of

update secrets or the persistence of compromised nodes. When an attacker
leaks a node key, users are categorized into three groups: users whose update
ensures the secrecy of update secrets and the attacker needs another corrup-
tion to get update secrets, whose update leads to reveal update secrets, and
whose update leave the node key unchanged and the attacker can derive the
update secrets once the second group user updates. We refer to these groups
as Key recovery users, Key reveal users, and Keep dangerous users, respec-
tively. Specifically, when the attacker leaks vj.sk, Key recovery users are SU

(vj), while Key reveal users are SibSU(vj) (Fig. 4.2).

Leakage of Multiple Node Keys. When the attacker leaks multiple node
keys, it can compute update secrets with any update of SibSU. The com-
promised node heals when SU of itself performs an update. The tree heals
as a whole when the users have updated all the keys of compromised nodes.

21



Figure 4.3: Two node keys compromise and three groups of users

However, if compromised nodes persist, the attacker can compute the update
secrets again when SibSU of the node performs an update.

4.2 PCS for node-by-node compromise
In the CGKA game, corrupt means that the attacker obtains all the secrets
the users have, including the update secrets. PCS ensures that after every
group user whose state was leaked performs an update, the update secrets be-
come secret again (Sect.2.5.2). However, in the context of the node-by-node
compromise, which is more relevant for TreeKEM, we consider corruption as
the leakage of a node key while the update secrets remain secure. In this
case, corruption results in Key reveal users appearing in the tree instead of
the direct exposure of update secrets. In other words, there is a dangerous
key which allows the attacker to derive update secrets once Key reveal user
performs an update. Therefore, we define PCS for nod-by-node compromise
as follows.

Post-compromise security for node-by-node compromise. After any SU of
every corrupted node performs an update, there are no dangerous keys in
the tree.

22



Chapter 5

Our proposal

As seen above, in TreeKEM with updatablePKE, only the SU of corrupted
user can perform an update and update dangerous keys. Without such recov-
ery, the attacker can compute update secrets, or the tree retains dangerous
keys. In this chapter, we propose a new protocol that allows recovery through
any user updates except Key reveal users.

5.1 Add extra key
We introduce a common extra key, k, which is derived from a pseudorandom
generator prg with sd at the root as its input. In this new protocol, the
attacker can compute the update secrets by combining the node key of vj,
the extra key, and an update of SibSU(vj) in the same epoch. However, since
users update k in every epoch, the protocol ensures that the attacker cannot
exploit the extra key across epochs.

5.2 Our protocol
We introduce a common extra key, k, for all users in a simple way. Whenever
a user ID performs an update, it computes k ← prg(sd). Other operations
are identical to those of TreeKEM with updatablePKE.

Performing an update. A user ID at leaf node v performs an update
as follows.

• Compute path secrets: Consider v0 = v, and v1, ...., vd be the nodes on
the direct-path of the user ID from bottom to top. Direct-path is the

23



path from a node v to the root (in Sect.3.2). The user ID chooses a
uniformly random s0. Then it computes

ski ∥ si+1 ← prg(si), for i = 0, ..., d

• Update RT labels: For i = 0, ..., d − 1, the user ID gets pki from the
PKI and updates the label of vi to (pki,ski).

pki ← PKEG(ski)

• Root node: The user ID computes I := sd+1.

Then, the user ID sends the update messages as follows.

• Encrypt path secrets and update public keys: Consider v′0, ..., v
′
d−1 be

the nodes on the co-path of the user ID from bottom to top. Co-path
is the sequence of siblings of nodes on the direct-path (in sect.3.2). For
i = 1, ..., d, the user ID encrypts path secrets si with the public key of
every resolution of its child that is on update co-path. Resolution is
defined at Def.9.

For every value si and every node vj ∈ RES (v′i−1), the user ID computes

(ctij, pkij)← ENC(vj.pk, k, si; ri),

vj.pk← pkij

• Output the update message: All ciphertexts ctij are concatenated to
an overall ciphertext c and all keys pkij are stored in PK. Then, the
user ID outputs the update message consists of PK, PK, and c, where
PK := (pk0, ..., pkd−1).

• Update an extra key: The user ID replaces k with a new extra key.

k ← skd

24



Figure 5.1: Our protocol: A node key compromise and subsequent leakage
Consider the case of LBBT4 (Fig.3.1) under the assumption that the attacker
leaks the node key of sk11 in epoch t. The update secrets keep secret, even
if the user3 performs an update in epoc t + 2. This is because the update
messages are encrypted both with the node key and the extra key. For the
same reason and through the use of UPKE, sk11 heals by user3’s update in
epoch t+2. In contrast, in TreeKEM with UpdatablePKE, the attacker can
compute the update secrets in epoch t+ 2 (Fig.4.1) .

Figure 5.2: Our protocol: Compromise of a node key and an extra key
The extra key becomes secret again in epoc t + 1 because user5 which is
SibSU(v̂) performs an update. The tree heals as a whole in epoch t + 2 due
to the use of UPKE.

25



5.3 Comparison
In our protocol, for the attacker to get update secrets it must possess the node
key of vj, the extra key, and an update of SibSU(vj) in the same epoch. In
contrast, in previous protocols, the attacker could compute the update secrets
only by obtaining the node key of vj and an update of SibSU(vj) before an
update of SU(vj). To highlight the improvements of our protocol, we present
three comparative examples between the new and previous protocols. The
definitions of SU, SibSU, and v̂ are in Sect.3.2.

case1 When the attacker knows the node key of vj and SibSU(v̂j) performs
an update in epoch t:

• In TreeKEM with updatablePKE, SibSU(v̂j) is Keep dangerous
users and Key revel users remain in epoch t + 1, because the
node key of vj is not on the update co-path and unupdated.

• In our protocol, there are no Key reveal users in epoch t and
t+1. Because an attacker needs a node key and an extra key to
get update secrets.

case2 When the attacker knows the node key of vj and SibSU(vj) performs
an update in epoch t:

• In TreeKEM with UpdatablePKE, SibSU(vj) is Key reveal users
and the attacker can compute the update secrets, because the one
of the path secret, that is on the parent node of vj, is encrypted
with the node key of vj.

• In our protocol, there are no Key reveal users in epoch t and t+1
for the same reason as case1. The difference from case1 is that
the update SibSU(vj) leads no compromised nodes in the tree due
to the use of updatablePKE. This provides a higher level of se-
curity compared to our scenario where no dangerous keys remain
but a compromised key persists. This implies a much stronger
than our PCS (PCS for node-by-node compromise); however, we
leave a detailed exploration of this aspect for future work.

case3 When the attacker knows both the node key of vj and an extra key,
and SibSU(v̂j) performs an update in epoch t:

• In TreeKEM with updatablePKE, SibSU(v̂j) is Keep dangerous
users and Key reveal users remain in epoch t + 1 for the same
reason as in case1.

26



• In our protocol, there are more Key recovery users in epoch t
compared to TreeKEM with updatablePKE because SibSU(v̂) is
a part of them. Because the node key of vj is not on the co-path
but the extra key is updated, the update prevents the attacker
from computing the new extra key and update secrets.

Figure 5.3: Comparison case3: Leakage of a node key and an extra key, and
update of SibSU(v̂)

However, if there is leakage both of the node key and of the extra key,
and SibSU(v) performs an update in the same epoch, there is no difference
between ours and previous protocols.

The first and second cases result from the use of two keys for encryption
and decryption. The attacker cannot compute the update secrets only by
obtaining a node key. The third case is attributed to the extra key, which
users update in every epoch. Even if the the user does not update the node
key via updatablePKE in epoch t, users consistently updates the extra key.
Consequently, there are more Key recovery users in epoch t and no Key reveal
users in epoch t+ 1 in the tree (Fig.5.3).

27



Chapter 6

Security

In our protocol, we introduce an extra key, which we use to encrypt and
decrypt path secrets in addition to node keys. In this chapter, we explain
this scheme, which we refer to as Updatable SKE with Separate Keys.

6.1 Secret-Key Encryption (SKE)
We first recall a secret-key encryption scheme SKE = (E,D) as follows.

• Key Generation: Choose a security parameter κ and pick up a random
secret-key k ← {0, 1}κ.

• An encryption algorithm E is an algorithm that takes a message m ∈
M along with secret key k and outputs a ciphertext c← E(k,m) where
M is a message space.

• A decryption algorithm D is a deterministic algorithm that takes a
ciphertext c along with a secret key k and outputs m = D(k, c).

• A new secret key: k′ ← {0, 1}κ.

SKE should satisfy the correctness condition as follows. For any suffi-
ciently large κ and any message m ∈M,

Pr[k ← {0, 1}κ; c← E(k,m) : D(k, c) = m] = 1.

One-Time CPA security for SKE. We consider the following security
game.

• Choose k ← {0, 1}κ.

28



• The adversary A chooses (m0, m1).

• Choose b← {0, 1}; compute c← E(k,mb), and feed it to A.

• The adversary A finally outputs bit b′ ← A(c).

We define that A wins the game if b = b′. The advantage of A is defined by

Advot-cpa
A,SKE (1

κ) :=

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
Definition 12 A secret-key encryption algorithm SKE is (t, ε)-OT-CPA
secure if for all t-time attackers A,

Advot-cpa
A,SKE (1

κ) ≤ ε.

6.2 Updatable SKE with separate keys (USKE)
We define an updatable secet-key encryption scheme with separate keys USKE
= (KGen, ENC, DEC) as follows.

• A key generation algorithm KGen is a probabilistic algorithm that takes
uniformly random secret keys, sk, k ∈ {0, 1}κ, and outputs (pk, (sk, k)).

• An encryption algorithm ENC is a probabilistic algorithm that takes
a message m ∈ M along with (pk, k) and outputs a ciphertext and a
new partial public-key (ct, pk′)← ENC(pk, k,m) whereM is a message
space (possibly depending on κ).

• A decryption algorithm DEC takes a ciphertext ct along with (sk, k)
and outputs m and an new partial secret-key sk′.

USKE should satisfy the correctness condition. For any sufficiently large κ,
all message m ∈M,

Pr[sk, k ∈ {0, 1}κ; (pk, (sk, k))← KGen(sk, k);

(ct, pk′)← ENC(pk, k,m); (m′, sk′) = DEC(sk, k, ct) : m = m′] = 1.

29



Leak One-Time CPA security for USKE. We consider the following se-
curity game.

• Pick up sk0, k0 ← {0, 1}κ, compute (pk0, (sk0, k0)) ← KGen(sk0, k0),
and b← {0, 1}.

• The adversary A takes pk0 and for i = 1, . . . , q, A outputs mi and
receives (cti, pki, ri) such that (cti, pki) ← ENC(pki−1, ki−1,mi; ri), for
uniformly random (ri, ki).

• For i = 1, . . . , q, compute (mi, ski) = DEC(ski−1, ki−1, cti).

• A requests either ski or ki for each i. Let leaki be ski or ki that A
has requested.

• A({pki}i∈{0,[q]}, {leaki}i∈[q]) outputs (m∗0,m
∗
1).

• (ct∗, pkq+1)← ENC(pkq, kq,m
∗
b ; rq) for uniformly random (rq, kq), (·, skq+1) =

DEC(skq, kq, ct
∗) and kq+1 ← {0, 1}κ.

• A requests either skq+1 or kq+1. Set leakq+1 to be skq+1 or kq+1 that
A has requested.

• b′ ← A(pkq, {leaki}i∈[q+1], ct
∗).

We define that A wins the game if b = b′. The advantage of A is defined by

Advlk-ot-cpa
A,USKE (1κ) :=

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
Definition 13 An updatable secret-key encryption algorithm with separate
keys, USKE, is (t, ε)-LK-OT-CPA secure if for all t-time attackers A,

Advlk-ot-cpa
A,USKE (1κ) ≤ ε.

Constructions of USKE. If UPKE is IND-CPA secure and SKE is OT-CPA
secure, then the following USKE’s are LK-OT-CPA secure.

• (Construction I) Let UPKE = (PKEG, Enc, Dec) be an updatablePKE
scheme and SKE = (E,D) be a secret key encryption scheme with the
common message space M(κ) for every security parameter κ.

• (Construction II) Let UPKE = (PKEG, Enc, Dec) be an updatablePKE
scheme and SKE = (E,D) be a secret key encryption scheme such that
E(Mske(κ)) ⊂ Mupke(κ) where Mske and Mupke denote the message
spaces of SKE and UPKE, respectively.

30



6.3 Improved PCS for node-by-node compro-
mise

As in Sections 5.2 and 5.3, in our protocol, there are more Key recovery
users, whose update ensures the security of update secrets and prohibits
the attacker from learning update secrets without another corruption. This
means that no dangerous keys remain in the tree. Dangerous keys are users
that allow the attacker to derive update secrets once Key reveal user per-
forms an update. We define improved PCS as follows.

Improved Post-compromise Security for node-by-node compromise. Af-
ter any user’s update except for SibSU of compromised node, there is no
dangerous keys in the tree.

Figure 6.1: Conditions for reveal the update secrets and PCS

6.4 Modified CGKA game
We propose a modification to the CGKA security game and improved PCS
to better suit TreeKEM protocols. Specifically, we introduce two new or-
acles, corrupt node and corrupt root, which replace the existing oracle
corrupt [5].

Corruption of Node and Root. The attacker is allowed to learn the cur-
rent state of a node and the root by calling the oracles corrupt node and
corrupt root, respectively. These oracles return the secret key of the node

31



and the extra key.

Avoiding Trivial Attacks and Introducing Improved PCS Predicate. To
ensure that the attacker may not win the modified CGKA security game
with trivial attacks, we propose a modified predicate. As seen above, for the
attacker to compute the update secrets, it must obtain a node key, an extra
key, and an update of SibSU(v) in the same epoch. The specific case is as
follows:

• SibSU(v) performs an update in the same epoch in which the attacker
leaks both the node key of v and the extra key, and SU(v) has not
performed an update, nor have any users been removed before the
challenge epoch.

improved pcs predicate

improved pcs predicate (q1, ...,qq)
for (i, j)
s.t. qi = corrupt node(v)

for some node v and q2e (qi) = t̃,
qj=chall(t∗)

if t̃ < t∗ , ∄k, ∃l, and ∃m
s.t.
t̃ ≤ q2e (qk) < q2e (ql) < t∗

qk = send-update (SU(v̂))
ql = corrupt root
qm = send-update (SibSU(v))
q2e (ql) = q2e (qm) = t̂

if ∄n
s.t.
t̂ ≤ q2e(qn) < t∗

qn ∈ {send-update(SU(v)), remove-user(∗, SU(v))}
return 0

return 1

return ⊥

Our protocol is non-adaptive security with a safety predicate
improved pcs predicate. As the CGKA game, for modified CGKA game
the advantage of A is defined by

32



Adv
CGKA,P
m-cgka-na(A) :=

∣∣∣∣Pr[A wins]− 1

2

∣∣∣∣ .
In this paper, we do not consider a modified predicate for FS. Addressing

FS with the modified predicate will be a topic for future work. However,
it is secure as TreeKEM with updatablePKE because of the property of
modification.

6.5 Proof of Security for Our protocol
This section presents the security result for our protocol and provides a high-
level intuition for the security proof.

Theorem 2 Non-adaptive security of Our protocol for PCS Assume
that

• prg is a (tprg, εprg)-secure pseudo-random generator,

• USKE is a (tcpa, εLK−cpa)-LK-OT-CPA-secure updatable secret-key en-
cryption with separate keys scheme,

then, our protocol is a (t, c, n, P, ε)-secure protocol,
for P = improved pcs predicate, ε = 2cn(εprg + εLK−cpa), and t ≈ tprg ≈
tLK−cpa.

We prove this by hybrid games w.r.t. improved pcs predicate and by con-
sidering an attacker A that makes only a single challenge query. The final
result is obtained by applying Lemma 1 Single to multi (Sect.2.6.).

Before the explanation of games we prove a lemma. Let τ ∗ be the ratchet
tree at challenge epoch t∗.

Lemma 2 Let sk ∈ τ ∗ and sk′ /∈ τ ∗, the attacker does not learn sk along
with sk′.

Proof. We prove this by contradiction. First, let v is the node whose
secret key is sk ∈ τ ∗ and v′ is the node whose secret key is sk′ /∈ τ ∗. Assume
that sk ∈ τ ∗ and sk /∈ τ ∗, but the attacker learns sk along with sk′. It
implies that v′ is in the subtree of v because of RT property and that the
attacker would be able learn the update secret in another epoch using a path
secret that is generated from PRG with an input identical to that of sk. Since

33



we check the predicate P at the end of the game and the value is true, there
is either send-update(SU) or remove-user(∗, SU) before challenge epoch in
that case. It contradicts that sk∗ ∈ τ ∗.

In the following we explain hybrid games. We focus on the case where the
attacker obtains some node keys in τ ∗. The adversary is not allowed to leak
node keys and an extra key that enables the recovery of the update secret in
the challenge epoch, because the predicate P is true. The proof proceeds in
a series of hybrids that replace PRG outputs with random values and fake
ciphertexts in a bottom-up fashion as in [5]. The difference is that we use the
security of LK-OT-CPA-secure USKE and we do not replace PRG output
which corresponds to the keys that the attacker learns. The other case (i.e.,
only the extra key in t∗ is leaked or no keys leaked) are also proved as same
but we replace all PRG outputs. Recall that when a user at a leaf of depth
d performs an an update, it generate the following values for a uniformly
random s0:

s0
prg−−→ (sk0, s1)

prg−−→ (sk1, s2)
prg−−→ ...

prg−−→ (skd, sd+1)

where k = skd is the new extra key and I = sd+1 is the update secret. To
use the CPA security of keys in τ ∗ we argue that the attacker obtains no
information about update secrets. In this case, we assume the attacker ob-
tains node keys or an extra key in each epoch. Therefore, the proof proceeds
in a series of hybrids that fake ciphertexts and replace PRG outputs with
random values in a bottom-up fashion. Using the example shown in Fig.3.1,
the hybrids can be constructed as follows.

• Hc
d : This game is of the original CGKA experiment.

• Hp
d : When a user updates, the output of the first PRG is replaced with

a uniformly random value except that the attacker knows the node
key. That is, instead of computing (sk0, s1)← prg(s0), sk0 and s1 are
simply chosen randomly. The rest of the update is computed normally.
The adversary cannot computationally distinguish this game from the
previous one, thanks to the security of PRG.

• Hc
d−1: Instead of encrypting s1 along with the secret key on the reso-

lution of the co-path nodes and the extra key, the all-zero string is en-
crypted. The adversary cannot computationally distinguish this game
from the previous one, thanks to the security of USKE.

• Hp
d−1: This game is similar to Hp

d . The output of the PRG computation
at depth d − 1 is replaced with uniformly random values except that

34



the attacker knows the node key. That is, instead of applying the
PRG, the values (sk1,s2) are chosen randomly. The adversary cannot
computationally distinguish this game from the previous game, thanks
to the security of PRG.

• Hc
d−2: This game is similar to Hc

d−1. Instead of encrypting s2 along
with the secret keys on the resolutions if the co-path nodes, the all-zero
string is encrypted. The adversary cannot computationally distinguish
this game from the previous game, thanks to the security of USKE.

• Hp
d−2: Similarly to Hp

d−1, the values (sk2, s3) are chosen randomly.

• Hc
d−3: The encryption of sd is replaced by a dummy encryption.

• Hp
d−3: Similarly to Hp

d−1, the values (k, s4) are chosen randomly.

Observe that in Hp
d−3, there are some compromised node keys and an

extra key, but the adversary is not provided with any information about I in
the challenge epoch and its advantage in the final hybrids is 0. The difference
between Hc

i and Hp
i is less than 2i · εprg and also that between Hc

i−1 and Hp
i

is less than 2i · εcpa. Hence the advantage of the original game is less than ε.

35



Bibliography

[1] https://signal.org/docs/

[2] https://about.fb.com/news/2023/12/default-end-to-end-encryption-on-
messenger/

[3] https://www.ietf.org/blog/support-for-mls-2023/

[4] R. Barnes, B. Beurdouche,J. Millican, E. Omara, K. Cohn-Gordon, and
R. Robert The messaging layer security (mls) protocol (2023)

[5] Joel Alwen, Sandro Coretti, Yevgeniy Dodis, Yiannis Tselekounis. Secu-
rity Analysis and Improvements for the IETF MLS Standard for Group
Messaging(2019)

[6] K. Bhargavan, R. Barnes, and E. Rescorla. TreeKEM: Asynchronous
Decentralized Key Management for Large Dynamic Groups. (2018)

[7] Joel Alwen, Margarita Capretto, Miguel Cueto, Chethan Kamath,
Karen Klein,Ilia Markov, Guillermo Pascual-Perez, Krzysztof Pietrzak,
Michael Walter, Michelle Yeo. Keep the Dirt: Tainted TreeKEM, Adap-
tively and Actively Secure Continuous Group Key Agreement (2019)

[8] Joel Alwen, Benedikt Auerbach, Miguel Cueto Noval, Karen Klein,
Guillermo Pascual- Perez, and Krzysztof Pietrzak. DeCAF: Decentral-
izable continuous group key agreement with fast healing (2022)

[9] Joel Alwen, Marta Mularczyk, Yiannis Tselekounis. Fork-Resilient Con-
tinuous Group Key Agreement (2023)

[10] Celine Chevalier, Guirec Lebrun, Ange Martinelli. Quarantined-
TreeKEM: a Continuous Group Key Agreement for MLS, Secure In
Presence of Inactive Users (2023)

[11] Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler. On the Price of
Concurrency in Group Ratcheting Protocols (2020)

36



[12] Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient ratcheting:
Almost-optimal guarantees for secure messaging. In Yuval Ishai and
Vincint Rigimen, editors, EUROCRYPT 2019, Part I, volume 11476
of LNCS, pages 159-188.Springer, Heidelberg, May 2019.

[13] B.Beurdouche, E.Rescorla, E.Omara, S.Inguva, A.Duric The Messaging
Layer Security (MLS) Architecture (2024)

37


