JAIST Repository
https://dspace.jaist.ac.jp/

Assessment of Reinforcement Learning-Based

Tide Penetration Testing Methodologies [Project Report]
Author(s) B, &

Citation

Issue Date 2025-03

Type Thesis or Dissertation

Text version

author

URL http://hdl.handle.net/10119/19831
Rights

o Supervisor: BEURAN, Razvan Florin, 5& i El 4 i
Description

ekl Bt (HHEs)

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Master’s Research Project Report

Assessment of Reinforcement Learning-Based Penetration Testing
Methodologies

CHEN Zhi

Supervisor BEURAN Razvan Florin

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology
(Information Science)

March, 2025

Abstract

With the increasing complexity and frequency of cyber attacks, traditional
penetration testing methods relying on manual operations are becoming in-
creasingly inadequate. Penetration testing is a technique that simulates the
behavior of an attacker to identify security vulnerabilities in a system. Tra-
ditional penetration testing often relies on manual operations, which are
time-consuming and expensive, and the test results are highly dependent on
the experience and skills of the testers.

To improve the efficiency and effectiveness of penetration testing, re-
searchers are exploring the application of reinforcement learning in the field
of penetration testing. Reinforcement Learning is a branch of machine learn-
ing, that involves an agent interacting with the environment and continuously
learning the optimal strategy to maximize cumulative rewards. In penetra-
tion testing, reinforcement learning can automate the process of discovering
and exploiting system vulnerabilities, thereby improving the coverage and
depth of the tests. In recent years, many research efforts have demonstrated
the potential of reinforcement learning in automated penetration testing.

This research report provides a comprehensive review and analysis of the
application of reinforcement learning in automated penetration testing. We
first conduct an in-depth analysis of around 30 relevant papers to identify the
main problems and challenges in current research, as well as summarize the
root causes and impacts of these issues. This process provides a reference
for future research, helping to avoid repetitive mistakes and improve the
effectiveness and precision of studies.

In addition, designing an evaluation method and criteria based on ex-
perimental results is essential for assessing the effectiveness of automated
penetration testing. To this end, we develop a reliable and feasible evalua-
tion method and standard based on our literature analysis. Furthermore, we
conduct a series of experiments using the Network Attack Simulator (NAS)
to ensure the reliability and credibility of the results.

The conclusions of this research demonstrate that while reinforcement
learning has made significant progress in automated penetration testing, sev-
eral critical challenges remain. These include the need for more scalable al-
gorithms capable of handling large and complex network environments, the
issue of sparse rewards which can hinder effective learning, and the need for
greater adaptability to dynamic network changes.

Future work should focus on addressing these challenges through innova-
tions in algorithm design, integration of domain knowledge, and development

of more realistic simulation environments. By overcoming these obstacles, re-
inforcement learning has the potential to revolutionize the field of penetration
testing, making it more efficient, effective, and accessible to a broader range
of cybersecurity professionals.

Keywords: Reinforcement Learning, Automated Penetration Testing, Lit-
erature Review

Contents

1 Introduction

1.1 Background
1.2 Objectives
1.3 Originality and Significance
1.4 Report Structure

Relevant Foundational Background Knowledge

2.1 Markov Decision Process (MDP)

2.2 Partially Observable Markov Decision Process (POMDP) . . .

2.3 Network Attack Simulator (NAS)
2.3.1 Research Goals and Contributions
2.3.2 Implementation of NAS
2.3.3 Reinforcement Learning Training Details
2.3.4 Experimental Results
2.3.5 Impact and Future Work

2.4 CyberBattleSim
2.4.1 Research Background and Objectives
2.4.2 System Design and Functionality
2.4.3 Reinforcement Learning Training Details
2.4.4 Comparison with NAS

25 MulVAL
2.5.1 Research Objectives and Contributions
2.5.2 Implementation Details of MulVAL
2.5.3 Experimental Results
254 Impact

Systematic Literature Review Related to DQN
3.1 NIG-AP
3.1.1 Research Methodology

3.1.2 Experiments and Results
3.2 AutoPentest-DRL

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.2.1 Framework Overview
3.2.2 Experimental Validation
ASAP . .
3.3.1 Attack Graph Generation and State Representation . .
3.3.2 Deep Reinforcement Learning for Generating Optimal
Attack Paths 0oL
3.3.3 Validation of ASAP Framework
3.3.4 Future Directions
NDSPI-DQNo
3.4.1 Enhancements to the DQN Algorithm
3.4.2 Framework Architecture
3.4.3 Action Space Reduction
3.4.4 Experimental Evaluation
3.4.5 Conclusion and Future Work
CJA-RL
3.5.1 Overview of CJA-RL
3.5.2 Attack Graph Generation
3.5.3 Reinforcement Learning for Attack Path Discovery
3.5.4 Experimental Evaluation and Results
HA-DRL
3.6.1 Challenges in Large Action Spaces
3.6.2 Hierarchical Agent-Based Approach
3.6.3 Hierarchical Action Selection.
3.6.4 Experimental Evaluation
3.6.5 Interpretability and Scalability
3.6.6 Future Research Directions
CRLA . . .
3.7.1 Overview
3.7.2 Experiments
3.7.3 Comparison with HA-DRL
SmartGrid-PTDRL
3.8.1 Overview of SmartGrid-PTDRL
3.8.2 Attack Operations
3.8.3 Framework Design
3.8.4 Experimental Validation and Findings
3.8.5 Implications and Future Research
ND3RQN
3.9.1 POMDP-Based Modeling for Black-Box Penetration
Testing
3.9.2 Key Improvements in ND3RQN
3.9.3 Network Architecture of ND3RQN

2

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.9.4 Experimental Evaluation
Improved-PenBox,
3.10.1 Overview
3.10.2 Implementation Details
3.10.3 Experimental Results
OAKOC
3.11.1 Methodology
3.11.2 Attack Graph Construction
3.11.3 Incorporating Cyber Terrain via Reward Adjustment
3.11.4 Incorporating Cyber Terrain via State Adjustment
3.11.5 Experimental Results
HDRL
3.12.1 HDRL Model Design
3.12.2 Key Features of the Model
3.12.3 Experimental Validation
DQID-AIPT
3.13.1 Phases of the DQfD-AIPT Framework
3.13.2 Key Improvements of the DQfD Algorithm
3.13.3 Experimental Validation
3.13.4 Experimental Results
MDDQN
3.14.1 Working Mechanism of MDDQN
3.14.2 Experimental Validation and Analysis
INNES
3.15.1 Overview of INNES
3.15.2 DQN_valid: Optimized Action Space
3.15.3 Experimental Evaluation
3.15.4 Portability Across Network Environments
HER-PT
3.16.1 Details of HER-PT
3.16.2 Experimental Evaluation
DynPeno
3.17.1 Research Methods and Implementation Details
3.17.2 Experimental Design and Results Analysis
DRLRM-PT
3.18.1 Overview of DRLRM-PT Framework
3.18.2 Reward Machines (RMs)
3.18.3 POMDP Modeling and DQRM
3.18.4 Experimental Evaluation
3.18.5 Experimental Results
DL-TAPTS

3.19.1 Methodology 64

3.19.2 Experiments 65
3.20 Overall Analysis of DQN Approaches 66
3.20.1 Analysis of NDSPI-DQN, ND3RQN and DQfD-AIPT . 66
3.20.2 Analysis of INNES, HDRL and DynPen 67
3.20.3 Analysis of Research Related to MulVAL 71

3.20.4 Analysis of Research Related to HER, PER and Expert 73
3.20.5 Analysis of Research Related to Hierarchical Mechanisms 78

3.20.6 Other Approaches 81
Systematic Literature Review of Other Algorithms 83
41 AC (Actor-Critic)o 83

4.1.1 HAE 83

4.1.2 MAR-WA 86

4.1.3 MLAE-WA 89

4.1.4 Double Agent Architecture (DAA) 91

4.1.5 Overall Analysis of AC Approaches 95
4.2 PPO (Proximal Policy Optimization) 98

421 CLAP 98

422 EPPTA 101

4.2.3 RLAPT 105

4.2.4 Overall Analysis of PPO Approaches 108
4.3 Other Approaches 111

4.3.1 SeqGAN-PT 111

432 AIRL 113

433 TAPTS 116

4.3.4 TAPTF 119

435 BDI-RL 121
Overall Analysis 124
5.1 Comprehensive Analysis of Research 124
5.2 Historical Development and Key Contributions 130

5.2.1 Foundational Stage (2018-2020) 130

5.2.2 Domain Expansion (2021-2023) 130

5.2.3 Emerging Trends (After 2023) 131
5.3 Comparative Analysis L. 132

5.3.1 Model Framework: MDP vs. POMDP 132

5.3.2 Action Space Optimization 132

5.3.3 Reward Mechanism 133

5.3.4 Integration of Expert Knowledge and Experience-Driven

Methodso 133

5.3.5 Deep Integration of MulVAL Attack Graphs and Re-

inforcement Learning 134
5.3.6 Open Source Platforms and Real-World Validation . . 134
5.4 Key Challenges and Future Directions 135
5.4.1 Dynamic Adaptability 135
5.4.2 Knowledge Dependency and Autonomy 135
5.4.3 Scalability in Large-Scale Networks 135
5.4.4 Generative Models and Adversarial Learning 136
5.4.5 Comprehensive Benchmarking 136
5.4.6 Explainability and Security 136
5.4.7 Interdisciplinary Integration 137
5.5 Discussion 137
6 Experimental Evaluation 138
6.1 Experimental Environment 138
6.2 Research Objective, 138
6.3 Experimental scenarios L. 138

6.4 Experiment 1: Policy Performance of QL, DQN, and QLRe-
play Agents 140
6.4.1 Script Implementation 140
6.4.2 Training Process 140
6.4.3 Testing and Evaluation 140
6.4.4 Experimental Results and Analysis 140

6.5 Experiment 2: Cross-Benchmark Scenario Performance Eval-
uationo 145
6.5.1 Experimental Setup 146
6.5.2 Analysis Metrics L. 146
6.5.3 Experimental Results 146

7 Conclusion 150

List of Figures

2.1
2.2

3.1
3.2
3.3

3.4
3.5

3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2
4.3
4.4
4.5

6.1
6.2
6.3

Schematic diagram of the Markov Decision Process model . . 6
Network Attack Simulator program architecture [1]. 11
Architecture of the Autopentest-DRL [2]. 21
ASAP architecture and data flow [3]. 23
Learning cycle (top) and schematic illustration of NDSPI-

DQN (bottom) [4]. 26
Schematic illustration of the decoupling NDSPI-DQN [4]. . . . 27
Deploying RL on MDPs modeled using attack graph represen-

tations of networks [5].o oL 28
Depiction of CJA-RL [5]. 29
Architecture of HA-DRL [6]. 32
Replay attack scheme in the PT of smart distribution grids [7]. 36
Cyber-physical testbed with smart distribution grids [7]. . . . 37
Network architecture of ND3SRQN [8]. 40
Framework structure of DQfD-AIPT [9]. 50
Framework structure of HER-PT [10]. 57
Architecture of the knowledge-informed AutoPT framework

(DRLRM-PT) [11].o 63
Implementation of Technique Feature layer [12]. 88
Wolpertinger architecture [12]. 89
Architecture of CLAP [13]. 100
Schematic representation of the EPPTA [14]. 103
Architecture of RLAPT [15]. 107
Comparison of QL, QLReplay, and DQN in tiny scenario. . . . 147
Comparison of QL and QL-Replay in small scenario. 148

Comparison of QL and QL-Replay in medium scenario. 149

List of Tables

3.1
3.2
3.3
3.4

3.5

4.1
4.2

5.1

6.1
6.2

6.3

6.4

Comparison of NDSPI-DQN and ND3RQN 67
Comparison of INNES, HDRL, and DynPen 68
Comparison of frameworks related to MulVAL 72
Comparison of frameworks and methods related to HER, PER

and Expert 74
Comparison of HA-DRL, HDRL, and DynPen 79
Comparison of MALE-WA, DAA, HAE, and MAR-WA 96
Comparison of CRLA, EPPTA, and RLAPT 109
Summary of Frameworks and Methods 125
Descriptions of benchmark scenarios. 139
Average attack steps for different agents across all benchmark

SCENATIOS e e e e e e e e 142
Training time for different agents across all the benchmark

SCENATIOS . .« v v v v e e e e e e e e 144

Average total training time for DQN, QL and QLReplay across
the three test scenarios 148

Chapter 1

Introduction

1.1 Background

With the increasing complexity and frequency of cyber attacks, traditional
penetration testing methods are becoming increasingly inadequate. Pene-
tration testing is a technique that simulates the behavior of an attacker to
identify security vulnerabilities in a system. Traditional penetration testing
often relies on manual operations, which are time-consuming and expensive,
and the test results are highly dependent on the experience and skills of the
testers [2]. To improve the efficiency and effectiveness of penetration testing,
researchers are exploring the application of reinforcement learning in the field
of penetration testing.

Reinforcement Learning is a branch of machine learning, that involves
an agent interacting with the environment and continuously learning the
optimal strategy to maximize cumulative rewards. In penetration testing,
reinforcement learning can automate the process of discovering and exploit-
ing system vulnerabilities, thereby improving the coverage and depth of the
tests. In recent years, many research efforts have demonstrated the potential
of reinforcement learning in automated penetration testing. For example,
Schwartz et al. designed and built a network attack simulator that frames
penetration testing as a Markov Decision Process (MDP) and uses reinforce-
ment learning algorithms for training and testing, providing a basis for the
use of reinforcement learning in penetration testing [1].

1.2 Objectives

To address the numerous challenges reinforcement learning faces in applying
automated penetration testing, the academic community has devoted signif-

icant effort to researching and exploring more effective solutions. However,
despite the progress in advancing this field, there remain several critical issues
and shortcomings in existing research that limit the widespread application
of reinforcement learning in automated penetration testing. Therefore, it
is necessary to conduct a systematic review and comprehensive analysis of
these studies. This will not only help in gaining a thorough understanding of
the current research landscape but also in identifying hidden key issues and
research gaps, which are crucial for guiding future work.
The main objectives of this study are:

1. Systematic Literature Review: Conduct a systematic literature
review on the application of reinforcement learning in automated pen-
etration testing to identify key challenges and gaps in current research.

2. Evaluation Methods and Standards: Design a set of reliable eval-
uation methods and standards to accurately assess the effectiveness of
automated penetration testing.

3. Experimental Validation: Demonstrate the applicability and reli-
ability of reinforcement learning agents in different network environ-
ments through experiments.

4. Propose Future Research Directions: Based on the research find-
ings, propose specific future research directions to address key chal-
lenges in the current studies.

1.3 Originality and Significance

In recent years, reinforcement learning has made significant progress in the
field of automated penetration testing. Nevertheless, this field still faces sev-
eral challenges. For example, due to the training process relying mainly on
simulators, models are difficult to apply directly to real network environ-
ments [1]. Additionally, as the action space expands, many studies struggle
to scale effectively to large network environments [2]. Therefore, it is essen-
tial to systematically summarize and analyze the existing relevant research
papers to gain a comprehensive understanding of the current state of research
in this field. Although some review articles have explored the application of
reinforcement learning in automated penetration testing, such as the compre-
hensive review of reinforcement learning applications in the field of network
security by Cengiz and Gok [16], which covers penetration testing and Intru-
sion Detection Systems (IDS). However, the scope of this study is relatively

broad, involving multiple aspects of network security, and does not focus on
automated penetration testing. Moreover, the number of studies related to
automated penetration testing mentioned in the article is relatively limited.
Similarly, in the research by Vyas and Hannay [17], the application of re-
inforcement learning in automated penetration testing is also involved, but
this study also does not specifically focus on this particular field, and the
number of relevant studies discussed is not large, with some of the latest
research findings not included in their discussion scope. In addition, the re-
search by Palmer and Parry [18] provides a comprehensive overview of the
application of Deep Reinforcement Learning (DRL) in autonomous network
defense, focusing on the challenges faced by high-dimensional state spaces,
large combinatorial action spaces, and adversarial learning. This study is of
high reference value, and compared with the aforementioned two studies, the
number of relevant studies discussed has increased, but the scope of research
is still relatively broad, and some of the latest research findings have not
been covered, such as DynPen proposed by Qianyu Li and others [19].

This research will focus specifically on the application of reinforcement
learning in automated penetration testing. The number of reviewed papers
will reach around 30. Based on the literature analysis, we propose a system-
atic evaluation method and standards to assess the effectiveness of automated
penetration testing. Furthermore, we conducted a series of experiments using
NAS to ensure the reliability and credibility of the results.

The contributions of this study are as follows.

e Comprehensive Analysis: Conducted an in-depth analysis of ap-
proximately 30 relevant papers to identify key challenges, trends, and
research gaps in the application of reinforcement learning for automated
penetration testing.

e Identification of Future Research Directions: Through a compre-
hensive analysis of the papers, we identified key challenges in current
research, such as scalability, sparse rewards, and dynamic adaptability,
and proposed future research trends.

e Experiments: We conducted experiments using Network Attack Sim-
ulator (NAS)[1] to demonstrate the performance and reliability of re-
inforcement learning in automated penetration testing across different
network scenarios.

e Validation of Automated Penetration Testing Effectiveness:
Based on a comprehensive analysis of the papers and experimental
results, we designed a set of feasible evaluation methods and standards
to assess the effectiveness of automated penetration testing.

1.4 Report Structure

The remainder of this report is organized as follows:

e Chapter 2 provides a detailed introduction to the fundamental knowl-
edge related to this study.

e Chapter 3 discusses the reviewed papers that applied the DQN algo-
rithm as the reinforcement learning approach.

e Chapter 4 summarizes studies that utilized other reinforcement learn-
ing algorithms or alternative methods.

e Chapter 5 provides an overall analysis of all the reviewed papers.
e Chapter 6 presents the experiments and results.

e Chapter 7 concludes the report.

Chapter 2

Relevant Foundational
Background Knowledge

2.1 Markov Decision Process (MDP)

The Markov Decision Process (MDP) model was first proposed by Richard
Bellman in the 1950s during his research on Dynamic Programming. It was
introduced to formalize and solve decision-making problems in stochastic en-
vironments. Through a sequence of decisions, the MDP framework addresses
the challenge of achieving objectives in environments characterized by uncer-
tainty and randomness. His research laid a crucial theoretical foundation for
reinforcement learning (RL) and optimization theory.

In their research, Watkins and Dayan proposed the Q-Learning algo-
rithm [20], which explicitly applied the MDP framework to solve reinforce-
ment learning problems. The study used the MDP’s states, actions, rewards,
and transition dynamics to define optimization objectives for reinforcement
learning. By introducing value function updates, they proposed an algorithm
capable of learning optimal strategies in model-free environments.

The goal of reinforcement learning is to enable an agent to interact with its
environment and, through trial-and-error learning, discover a policy (7) that
maximizes long-term cumulative rewards. Reinforcement learning problems
can typically be modeled as MDPs, with the following components:

e State (5): A representation of the environment at a specific moment.
e Action (A): The set of actions an agent can take in a given state.

e Transition Probability (P): The probability of transitioning from
one state to another, which is often unknown.

e Reward Function (R): The immediate feedback signal provided by
the environment after an action is taken.

e Policy (7): The behavioral rule of the agent, defining a probability
distribution over actions for each state.

o
Agent }7

Action At

State St

Reward Rt

Ri+1
Environment
————St+1

Figure 2.1: Schematic diagram of the Markov Decision Process model

The task of reinforcement learning is equivalent to solving for the optimal
policy (7*) in an MDP, which maximizes cumulative rewards over time.

2.2 Partially Observable Markov Decision Pro-
cess (POMDP)

Partially Observable Markov Decision Process (POMDP) is a mathemati-
cal framework used for modeling decision-making problems. The theoretical
foundation of POMDP can be traced back to the operations research and
control theory of the 1960s. In 1973, R.A. Smallwood and E.J. Sondik for-
mally proposed the mathematical framework of POMDP in their paper and
studied the optimal control problem, making significant contributions to the
development of POMDP [21]. In the 1990s, Leslie P. Kaelbling, Michael
L. Littman, and Anthony R. Cassandra systematically explored the appli-
cation of the POMDP framework in reinforcement learning through multi-
ple studies [22, 23, 24]. Their research delved into how to learn policies in
partially observable environments and proposed several early solution algo-
rithms. POMDP extends the traditional MDP by introducing the concepts
of observation and belief states, enabling it to address problems involving
uncertainty and partial observability.

Definition of POMDP
A POMDP is defined as a tuple:

<S7 A? T7 R7 Q? 07 P)/>

e State Set (S5): A set of all possible states of the system, representing
the true state of the environment. These states may not be directly
observable by the decision-maker.

e Action Set (A): A set of all possible actions that the decision-maker
can choose from.

e State Transition Function (7'(s' | s,a)): Describes the probability
distribution of transitioning to state s" after taking action a in state s.

e Reward Function (R(s,a)): Specifies the immediate reward received
when action a is taken in state s.

e Observation Set (f2): A set of all possible observations that the
decision-maker might receive, which provide partial information about
the environment’s state.

e Observation Function (O(o | s',a)): Describes the probability dis-

tribution of observing o after taking action a and transitioning to state

s

e Discount Factor (v € [0,1)): Balances the importance of immediate
rewards and long-term rewards. Smaller values emphasize short-term
gains, while larger values prioritize long-term benefits.

Differences Between POMDP and MDP POMDP is an extension
of MDP, and there are significant differences between the two in terms of
model assumptions, state observability, and complexity.

1. State Observability

e MDP: Assumes that the system’s state is fully observable, mean-
ing the agent can precisely know the current state.

e POMDP: Assumes partial observability of the system’s state.
The agent cannot directly observe the true state but instead re-
ceives incomplete information through observations.

2. State Representation

e MDP: States are directly represented as explicit state s.

7

e POMDP: States are often represented as a probability distribu-
tion known as the belief state, which estimates the agent’s belief
about the current state.

3. Observation Model

e MDP: Does not require an observation model because the state
is fully observable.

e POMDP: Includes an observation model that describes how hid-
den true states generate observations. This is typically defined
as O(o | ¢,a), representing the probability of observing o after
taking action a and transitioning to state s'.

4. Complexity

e MDP: Relatively simple, as solving it only requires considering
the impact of current states and actions.

e POMDP: More complex, requiring the agent to optimize both
action selection and belief state updates, resulting in significantly
higher computational demands.

2.3 Network Attack Simulator (NAS)

In 2018, Jonathon Schwartz published a paper titled “Automated Penetration
Testing Using Reinforcement Learning” [1]. According to the author, this was
the first study to apply reinforcement learning (RL) techniques to automated
penetration testing. This innovative idea of employing RL in automated
penetration testing has since been widely adopted in subsequent studies.
Furthermore, the author developed the Network Attack Simulator (NAS),
which filled a gap in the field of automated penetration testing by provid-
ing an open-source and simple experimental platform for training automated
penetration testing agents. The simulator has become a key experimental
platform for subsequent research, significantly advancing cybersecurity au-
tomation. The source code (version 0.12.0) is publicly available at https://
github.com/Jjschwartz/NetworkAttackSimulator. Additionally, accom-
panying documentation can be found at https://networkattacksimulator.
readthedocs.io/en/latest/.

2.3.1 Research Goals and Contributions

The primary goal of this research is to tackle the inefficiencies of the current
penetration testing process and the shortage of skilled cybersecurity profes-

https://github.com/Jjschwartz/NetworkAttackSimulator
https://github.com/Jjschwartz/NetworkAttackSimulator
https://networkattacksimulator.readthedocs.io/en/latest/
https://networkattacksimulator.readthedocs.io/en/latest/

sionals. Penetration testing is a key method for evaluating network security,
but it typically requires a high level of expertise and is time-consuming. Au-
tomated penetration testing presents a promising solution that can maintain
effective network security assessments while mitigating the reliance on spe-
cialized human resources.

This study comprises two main components:

1. Development of the NAS: NAS provides an experimental environ-
ment for evaluating automated penetration testing agents. It is a fast,
lightweight, open-source solution designed to simulate networks in a
simple yet flexible manner. By abstracting away the complexities of
real networks, it enables automated agents to make efficient decisions
without focusing on low-level details.

2. Application of RL: The author explored the feasibility of using RL
to generate optimal attack strategies in a simulated environment. RL
was chosen for its ability to solve Markov Decision Processes (MDPs)
without requiring detailed environmental models. By learning optimal
behavioral policies through interaction with the environment, RL is
particularly advantageous in the dynamic field of cybersecurity.

2.3.2 Implementation of NAS

NAS consists of two main components. The first is the network model,
which contains all the data structures and logic necessary to simulate network
traffic and attacks. The network model includes multiple subnets, topologies,
machines, services, and firewalls. Each subnet contains multiple machines
that can fully communicate with one another, while communication between
subnets is controlled by topology and firewall configurations.

Each machine in the network model is defined by its address, value, and
configuration. The configuration includes services running on the machine,
which may have vulnerabilities exploitable by attackers. Firewalls are used
to control traffic between subnets and to define permissible service types.

The second component is the environment, built on the network model
as an interface between the attacker and the network. The environment is
modeled as an MDP to simulate the attacker’s position and knowledge state
within the network. The state space includes information about each machine
in the network, such as whether it has been compromised, its reachability,
and the status of its services. The action space includes scanning machines
and exploiting service vulnerabilities. The reward function is calculated by
subtracting the action cost from the value of compromised machines, aiming

to enable the RL agent to compromise high-value machines with minimal
actions.

2.3.3 Reinforcement Learning Training Details

Training RL agents in NAS is achieved through repeated interactions with the
environment. Specifically, the author used Q-learning and neural network-
based RL algorithms. Q-learning, a value iteration method, incrementally
learns the optimal policy by constructing a state-action value table (Q-table).
Neural network-based algorithms leverage Deep Q-Networks (DQNs) to han-
dle larger state spaces, improving the scalability of Q-learning.

During training, the RL agent initializes the environment and begins
interacting from the initial state. At each step, the agent selects and executes
an action based on the current state, obtaining a new state and corresponding
reward. The agent updates its policy based on these experiences. To balance
exploration and exploitation, an e-greedy strategy is employed, allowing the
agent to select random actions with a certain probability to explore new
possibilities.

Experiments demonstrated that both tabular Q-learning and neural network-
based RL algorithms could find effective attack paths in the simulated envi-
ronment. However, scalability remains a significant challenge. These meth-
ods performed well in small-scale networks but faced substantial difficulties
in larger networks due to the rapid growth of state and action spaces. Thus,
the study emphasizes the need for future improvements in the scalability
and performance of these algorithms. As shown in Figure 2.2, illustrates the
architecture of NAS.

2.3.4 Experimental Results

Experimental results indicate that both Q-learning and neural network-based
RL algorithms successfully identify optimal attack paths in networks of vary-
ing scales and configurations. However, scalability remains a major issue.
While these methods excel in small-scale networks, the expansion of state
and action spaces in larger networks leads to significant challenges.

The author notes that, despite the success of these RL methods in small-
scale environments, further research is needed to improve their scalability
and performance. Additionally, higher-fidelity environments are necessary
to evaluate the effectiveness of these methods in real-world applications.

10

1 [Configuration
‘ Render ‘ ‘ Generator ‘ { Loader 1 Files

L

o —-‘ Environment ‘

L

‘ Action ‘ | State ‘ Network —-{ Machine

‘ Agents

Network Model
MDP

Simulator

Figure 2.2: Network Attack Simulator program architecture [1].

2.3.5 Impact and Future Work

This research lays the foundation for applying RL to automated penetration
testing. The NAS developed by the author has been widely adopted as
a research platform, highlighting its importance in advancing cybersecurity
automation. Future work includes developing scalable RL algorithms capable
of handling larger networks and testing these algorithms in higher-fidelity
environments to evaluate their potential for commercial applications.

2.4 CyberBattleSim

2.4.1 Research Background and Objectives

With the ever-evolving nature of cyber threats and the growing complexity
of network infrastructures, traditional penetration testing methods face in-
creasing challenges in terms of time and resource requirements. Automated
penetration testing based on Reinforcement Learning (RL) has thus emerged
as a promising approach, aiming to enhance testing efficiency and alleviate
the shortage of skilled security professionals. The source code is publicly
available at https://github.com/microsoft/CyberBattleSim.
Microsoft’s CyberBattleSim is an open-source platform that leverages
RL for network attack simulation, providing researchers and engineers with
an environment to develop and evaluate automated penetration testing strate-
gies [25]. Prior to CyberBattleSim, the NetworkAttackSimulator (NAS),
introduced by Jonathon Schwartz, laid the groundwork as one of the earliest

11

https://github.com/microsoft/CyberBattleSim

open-source simulators applying RL to automated penetration testing. This
section summarizes the main features and research value of CyberBattleSim,
while drawing comparisons with NAS.

2.4.2 System Design and Functionality
Network Modeling and Abstraction

CyberBattleSim represents the network as a collection of interconnected
nodes (e.g., hosts, servers, containers) with links (edges) indicating reacha-
bility or trust relationships. Each node possesses various security properties,
including vulnerability information, compromised states, and privilege levels.
Through a flexible configuration interface, researchers can tailor the network
topology, node attributes, and vulnerability distributions to represent differ-
ent scales and complexities.

In a similar vein, NAS also employs an abstracted network model, featuring
subnets, topologies, machines, services, and firewalls. Compared to NAS’s
lightweight abstraction, CyberBattleSim offers more extensive configuration
of nodes and vulnerability details, enabling the simulation of more diverse
and intricate attack scenarios.

Attacker—Environment Interaction

Like NAS, CyberBattleSim models the penetration testing process as a Markov
Decision Process (MDP). The state space encapsulates the attacker’s knowl-
edge of the network (e.g., compromised nodes, reachable areas, vulnerability
states), while the action space includes scanning, exploiting vulnerabilities,
and lateral movement. The environment grants a reward or penalty for each
action to guide the agent toward achieving higher-value nodes or efficient
exploitation.

This design is closely aligned with NAS, where an RL agent interacts with
a simulated environment, learning an optimal attack policy through iterative
exploration and exploitation.

Visualization and Scalability

CyberBattleSim not only provides a Python-based API but also integrates
visualization components to track and analyze the attack process. By lever-
aging Microsoft Azure and other cloud services, users can deploy large-scale
experiments and automate security testing pipelines.

NAS similarly emphasizes open-source accessibility and ease of use but re-
mains more suitable for small-scale experiments. For extensive or highly com-

12

plex network simulations, additional optimizations or customizations might
be required in NAS to maintain performance, whereas CyberBattleSim ben-
efits from stronger integration with Microsoft’s cloud ecosystem.

2.4.3 Reinforcement Learning Training Details

In CyberBattleSim, RL algorithms such as Q-learning and Deep Q-Networks
(DQN) can be employed for training automated attack strategies. The train-
ing procedure typically includes:

1. Environment Initialization: Load a predefined network topology,
node information, and vulnerability distribution.

2. Agent—Environment Interaction: At each timestep, the agent chooses
an action (e.g., scan or exploit) based on its current state, obtains im-
mediate rewards, and transitions to a new state.

3. Policy Update: Value iteration or deep RL methods update the policy
to gradually approximate an optimal or near-optimal attack strategy.

4. Exploration—Exploitation Balance: An e-greedy approach or simi-
lar method ensures sufficient exploration of unseen states while utilizing
learned experience.

Likewise, NAS implements tabular Q-learning and DQN to illustrate how
RL can effectively discover efficient attack paths in smaller networks. Both
frameworks, however, face the major obstacle of state-action space explosion
when the network grows in scale or complexity.

2.4.4 Comparison with NAS

e Open Source Ecosystem: Both CyberBattleSim and NAS are open
source, featuring documentation, code samples, and community sup-
port. NAS has been widely adopted in academic contexts, whereas Cy-
berBattleSim, backed by Microsoft’s cloud ecosystem, exhibits strong
potential for enterprise deployment.

e Simulation Details and Flexibility: NAS offers a streamlined,
highly abstract model suited for rapid prototyping; CyberBattleSim
provides richer customization options, beneficial for modeling complex
attack scenarios.

13

e Scalability: NAS is notably easy to configure for small-scale networks;
CyberBattleSim, with Azure integration, can be scaled up for larger
and more complex network simulations.

e Visualization and Toolchain Integration: While NAS focuses on
the simulator core and basic logging, CyberBattleSim includes ad-
vanced visualization and analytics, and can integrate with broader Mi-
crosoft security services.

CyberBattleSim and NAS both exemplify how reinforcement learning
can be harnessed for automated penetration testing. They share the core
approach of training RL agents to discover optimal or near-optimal attack
strategies within a simulated environment, thereby lowering labor costs and
improving penetration testing efficacy. CyberBattleSim, with Microsoft’s
cloud infrastructure and expanded customization features, is poised for broader,
more complex use cases, while NAS remains a simpler yet influential platform
central to academic research.

2.5 MulVAL

In 2005, Xinming Ou and his colleagues presented a paper titled “MulVAL:
A Logic-based Network Security Analyzer” [26] at the USENIX Security Sym-
posium. According to the authors, this was the first time logical reasoning
techniques were systematically applied to develop tools for multi-host, multi-
stage vulnerability analysis. This innovative research has since been widely
adopted in subsequent studies and practices, becoming a foundational con-
tribution to the field of automated network security analysis. The MulVAL
platform, developed by the authors, introduced the automated generation
and reasoning of attack graphs, filling a critical gap in traditional security
evaluations by providing an efficient and cost-effective tool to help network
administrators identify potential threats, optimize security strategies, and
evaluate the impact of multi-stage attacks. The platform is open-source, with
the source code available at https://github.com/risksense/MulVAL, and
supporting documentation at https://MulVAL-docs.readthedocs.io/.

2.5.1 Research Objectives and Contributions

The primary goal of this research is to address the inefficiency of manual eval-
uations for complex attack paths in network security analysis and the lack of
systematic tools to support such analyses. Traditional vulnerability assess-
ments and security evaluations often rely on human expertise and reasoning,

14

https://github.com/risksense/MulVAL
https://MulVAL-docs.readthedocs.io/

which not only require extensive security knowledge and practical experience
but also risk overlooking potential threats, especially in multi-stage, multi-
host network environments. Therefore, MulVAL aims to combine logical
reasoning with automated tools to offer an efficient, low-cost solution for an-
alyzing multi-stage attack paths in complex network environments, enabling
security professionals to quickly identify vulnerabilities and optimize defense
strategies.
This study includes two main components:

1. Logical Reasoning and Attack Graph Generation: By lever-
aging Attack Graphs as a logic programming language, the authors
abstracted network elements such as hosts, services, vulnerabilities,
network topology, and firewall rules into a series of logical rules. Using
a reasoning engine, these rules are automatically processed to deduce
possible attacker actions and generate attack graphs, which visually
represent all possible paths from an attack’s starting point to its ul-
timate targets. This approach provides network administrators with
intuitive threat analysis results, reducing cognitive overhead.

2. Security Policy Evaluation: By analyzing the generated attack
graphs, researchers can systematically assess the effectiveness of ex-
isting security policies, identify hidden weaknesses in the network, and
implement targeted defense measures to improve overall security.

2.5.2 Implementation Details of MulVAL

The implementation of MulVAL comprises two major components: the con-
struction of the network model and the application of logical reasoning, both
aimed at automating the analysis and generation of multi-stage attack paths:

1. Network Model Construction: The network model describes key el-
ements in the network, including hosts, services, vulnerabilities, topol-
ogy, and firewall rules. Each host is defined by its IP address, the
services it runs, potential vulnerabilities, and relative value. Firewall
rules govern communication between hosts. All this information is ab-
stracted into logical rules as input for the reasoning engine, allowing
complex network environments to be simplified and structurally repre-
sented.

2. Logical Reasoning and Attack Graph Generation: By employ-
ing Attack Graphs rules, the reasoning engine in MulVAL deduces all
possible attack paths based on the network model and generates attack

15

graphs. These graphs not only display potential intrusion methods but
also reveal vulnerabilities in defense strategies, offering comprehensive
threat analysis results to administrators.

2.5.3 Experimental Results

Experimental results demonstrate that MulVAL efficiently generates detailed
attack graphs in small and medium-sized network environments, showcasing
its precision and practicality in analyzing multi-stage attack paths and iden-
tifying potential vulnerabilities. However, as the network scale increases, the
state space of the logical reasoning engine expands rapidly, presenting signif-
icant challenges to its performance and scalability. This limitation highlights
the need for future research to optimize the underlying algorithms and en-
hance the tool’s capabilities for handling large-scale networks.

Nonetheless, MulVAL has proven to be a powerful support tool for net-
work administrators, providing detailed threat analysis and helping to iden-
tify weaknesses in existing defense strategies, which serves as a practical basis
for further research and the optimization of security policies.

2.5.4 Impact

The introduction of MulVAL has laid a critical foundation for the field of
network security analysis. By combining logical reasoning with attack graph
generation, it offers an efficient and intuitive solution for analyzing multi-
host, multi-stage attack paths. Its methodologies have been widely adopted
in subsequent research and practice, becoming a key tool in advancing auto-
mated network security analysis.

16

Chapter 3

Systematic Literature Review
Related to DQN

Starting from this chapter, we will systematically review the literature re-
lated to the application of reinforcement learning in automated penetration
testing. The objective is to classify and analyze the contributions, method-
ologies, and advancements of various studies. In this chapter, we first focus
on research that employs DQN-based algorithms as their core reinforcement
learning approach. These studies demonstrate how DQN is utilized, adapted,
and extended to address the various complex challenges encountered in au-
tomated penetration testing.

The DQN algorithm was introduced in the paper “Playing Atari with
Deep Reinforcement Learning” [27]. It combines deep learning with Q-
learning to directly learn optimal policies from high-dimensional inputs, such
as pixel images from games. It uses a deep convolutional neural network to
estimate the state-action value function (Q-value) and incorporates two key
techniques: Experience Replay and Target Network, to improve training sta-
bility. Experience Replay breaks the temporal correlation by randomly sam-
pling stored experiences, while the Target Network avoids instability in the
Q-value updating process by using delayed updates. Additionally, DQN em-
ploys an e-greedy strategy to balance exploration and exploitation, enabling
the algorithm to surpass human performance in several Atari games. DQN
has been widely applied in the field of automated penetration testing due to
its ability to learn and optimize attack strategies in complex environments
automatically.

17

3.1 NIG-AP

In 2019, Tianyang Zhou et al. published a paper titled “NIG-AP: a new
method for automated penetration testing” [28], proposing a method called
Network Information Gain-based Automated Attack Planning (NIG-AP) for
automating penetration testing. It is among the early studies to apply rein-
forcement learning to automated penetration testing.

3.1.1 Research Methodology

This study formalizes penetration testing as a Markov Decision Process
(MDP) and employs a reinforcement learning model to guide the discovery of
attack paths. Specifically, the NIG-AP algorithm is based on the concept of
network information gain, treating each step in penetration testing as a pro-
cess of reducing information entropy, thereby directing the choice of attack
paths.

1. Network Information Gain (AH):

e Information gain represents the reduction in uncertainty of target
network information after an attack operation.

e In penetration testing, the state of each host is defined by informa-
tion such as the operating system, installed software, open ports,
and protection mechanisms, with information entropy describing
the uncertainty in the host’s exposure status.

e By incentivizing attack actions based on information gain, the
algorithm prioritizes operations that maximize information acqui-
sition. A key advantage of this method is that penetration testing
agents can progressively reduce uncertainty by continually gather-
ing information, even without complete knowledge of the network
structure, thus enabling effective attacks.

2. Action Cost (reost): Action cost is calculated using the Common
Vulnerability Scoring System (CVSS) to limit unnecessary actions and
optimize attack paths.

3. Application of a Reinforcement Learning Model: The study
adopts the Deep Q-Network (DQN) algorithm, using information gain
as a reward signal to guide penetration testing agents in intelligently
selecting optimal attack actions.

18

3.1.2 Experiments and Results

Experimental Setup: The experiments were conducted in a typical en-
terprise network environment, including a DMZ area and an internal network
connected via a firewall and a router. The experimental setup was fully virtu-
alized to simulate real-world network environments, and Nessus was used to
collect network information. The NIG-AP algorithm was compared with tra-
ditional methods, such as the Partially Observable Markov Decision Process
(POMDP) [29] and Forward Search (FF) [30], to evaluate its performance in
complex network scenarios.

Experimental Results:

e The NIG-AP algorithm achieved convergence precision comparable to
POMDP after the fourth iteration, with significantly reduced training
time.

e In identifying effective attack paths, NIG-AP demonstrated signifi-
cantly higher effectiveness than POMDP and FF.

— FF, unable to handle uncertainty, can only find a single attack
path by exhaustive iteration, whereas NIG-AP identifies more po-
tential paths.

e As the number of hosts increased, NIG-AP required much less training
time than POMDP. Notably, when the number of hosts exceeded three,
POMDP became infeasible for solving the problem.

3.2 AutoPentest-DRL

In 2020, Zhenguo Hu published a paper titled “Automated Penetration Test-
ing Using Deep Reinforcement Learning” [2]. This paper proposed an au-
tomated penetration testing framework based on deep reinforcement learn-
ing (DRL), named AutoPentest-DRL. The aim is to simplify the penetra-
tion testing process through automation, reducing reliance on manual oper-
ations while improving efficiency and accuracy. The platform is released
as open-source, with the source code available at https://github.com/
crond-jaist/AutoPentest-DRL.

3.2.1 Framework Overview

The working principle of AutoPentest-DRL can be divided into two main
stages: preprocessing of training data and DQN decision engine training.

19

https://github.com/crond-jaist/AutoPentest-DRL
https://github.com/crond-jaist/AutoPentest-DRL

Preprocessing of Training Data:

e Data Collection: The Shodan engine collects device information and
vulnerability data from real network environments to ensure realistic
training data.

e Attack Tree Generation: The MulVAL tool generates an attack tree
for the network, mapping all possible attack paths within the environ-
ment.

e Attack Path Matrix Creation: The DFS algorithm traverses the
attack tree, identifying all possible attack paths and creating a matrix
that encodes potential attack steps and their corresponding reward
values.

This matrix serves as the foundation for training the deep reinforcement
learning algorithm.

Detailed Explanation of the Reward Mechanism The author de-
fined a reward matrix R to initialize and update the matrix). This matrix
contains the reward values for each attack step. These reward values are
calculated based on the Common Vulnerability Scoring System (CVSS), as
shown in the formula 3.1 [2]:

exploitabilityScore
10

This formula computes the reward value for each vulnerability, where
baseScore represents the base severity score of the vulnerability, and the
value exploitabilityScore represents the exploitability score of the vulner-
ability.

DQN Decision Engine Training: The simplified attack matrix is in-
put into the DQN (Deep Q-Network) decision engine. During the training
process, the agent in the DQN decision engine represents a real attacker, and
the simplified matrix serves as the environment. Regardless of the values
within the matrix, the agent can freely move within it. The reward matrix R
is used to initialize and update the matrix @), where each element Q(s,a) in
the Q-matrix represents the expected reward for taking the action a in state
s.

Score,, = baseScore x (3.1)

Using the Q-learning algorithm, the DQN model continuously updates
the Q-matrix to find the action policy that maximizes cumulative rewards.
The ultimate goal is to reach the desired node, which indicates that the
target has been successfully located. The output is a path that maximizes
the cumulative rewards, representing the most effective attack strategy. The
architecture of AutoPentest-DRL as shown in Figure 3.1.

20

Training Data

Attack Path

Start

—
Shodan Topology
|Search Engine| | Generator
a2 DQN Decision Engine H
Dataset
Netviork AB— of !
Topology 5
Dataset R s S
Vulnerabil l > [state [< x ’ [Q-value Action 1]
g o ¥

Dataset B

" Upatnt || path2

MulVAL & »

Simplified =3
Matrix 7= iDFS

— End
DON
Dataset

Figure 3.1: Architecture of the Autopentest-DRL [2].

3.2.2 Experimental Validation

The effectiveness of AutoPentest-DRL is validated through experiments in
two scenarios: logical network testing and real network environment testing.
Logical Network Testing:

e Two network topology models are constructed: a simple home network
topology and a more complex enterprise network topology.

e Each node in the logical network is initialized with device information,
vulnerabilities, and open port data. The MulVAL tool generates attack
trees for these networks.

e The DQN decision engine uses matrix input to identify the optimal
attack path.

During this process, hyperparameters like the discount factor and batch size
are adjusted to optimize DQN performance. Results show that AutoPentest-
DRL quickly converges and identifies the attack path with the highest cu-
mulative reward, demonstrating its feasibility in logical networks.

Real Network Environment Testing:

e A simulated enterprise network scenario is created using virtual ma-
chines.

e The framework uses Nmap to scan devices and obtain real-time vul-
nerability information, while Metasploit executes automated attacks.

e Multiple vulnerabilities are successfully exploited to gain root access to
the target server, and a test Trojan is uploaded to the target device.

21

These results demonstrate that AutoPentest-DRL can efficiently conduct
penetration testing in real-world environments, even in complex network ar-
chitectures.

3.3 ASAP

In 2020, Ankur Chowdhary and his team published a paper titled “Au-
tonomous Security Analysis and Penetration Testing” [3], proposing an auto-
mated penetration testing framework called ASAP. The authors have made
the source code publicly available on GitHub, as follows: https://github.
com/ankur8931/asap.

The overall architecture of the ASAP framework consists of several mod-
ules that form a complete automated penetration testing process:

1. Network Scanning Module: Collects vulnerability information from
the target network.

2. Attack Graph Generation Module: Creates attack graphs based
on collected information to describe relationships between different vul-
nerabilities.

3. State Graph Generation Module: Parses attack graphs to gener-
ate state and reward parameters required for reinforcement learning
models.

4. Deep Reinforcement Learning Module: Uses the DQN algorithm
to generate optimal penetration paths.

5. Attack Verification Module: Validates the feasibility of these paths
in real environments using tools like Metasploit.

3.3.1 Attack Graph Generation and State Representa-
tion

First, tools such as Nessus and OpenVAS are used to scan the target net-
work, collecting data on vulnerabilities (including CVSS scores and access
complexity), network topology, and host configurations. This data is then
fed into the MulVAL tool to generate attack graphs.

An attack graph is a directed graph where nodes represent the attacker’s
privilege state or vulnerabilities in the network, and edges represent exploita-
tion paths for these vulnerabilities. By further analyzing the attack graph,

22

https://github.com/ankur8931/asap
https://github.com/ankur8931/asap

Network Attack Graph Log
Scanner Recon Generator Get Login, Analyzer
AG Info Access Attempts
5 e 1
|
1

Attack Threat
States Evidence

|
|
|
! |
: i
- 1 |
Update Risk ! Get transition Get Threat |
Score and Attack i states Info i
Graph ! RL Plan I
|
! |
1
! |
: |
: |

Generator

Get Attack Plan, Implement
Countermeasures

Target Network

Figure 3.2: ASAP architecture and data flow [3].

the authors extracted input parameters required for reinforcement learning,
including state space, action space, reward function, and state transition
probabilities.

The transition probability of each edge in the attack graph is determined
by the vulnerability’s access complexity, classified into three categories:

e LOW: Success probability 0.9.
e MEDIUM: Success probability 0.6.

e HIGH: Success probability 0.3.

3.3.2 Deep Reinforcement Learning for Generating Op-
timal Attack Paths

ASAP uses a Deep Q-Network (DQN) to build its reinforcement learning
model. In this model, each state-action pair represents a specific privilege
escalation step, and the reward system is quantified based on the Common
Vulnerability Scoring System (CVSS) score, with a maximum score of 10.
Vulnerabilities with higher severity receive higher rewards, guiding the rein-
forcement learning algorithm to prioritize these vulnerabilities.

ASAP also incorporates a domain-specific state transition probability
model to reflect the difficulty of exploiting different vulnerabilities—some
vulnerabilities have lower success probabilities, which directly influence the
selection of attack paths. This modeling enables ASAP’s deep reinforcement
learning model to effectively handle the complexity of network environments
and generate more targeted attack strategies.

23

As shown in Figure 3.2, the architecture and data flow of the ASAP frame-
work illustrate the interaction processes between various modules. Scanning
information is passed to the attack graph generator, and the core threat anal-
ysis component based on reinforcement learning utilizes the attack graph and
log information to create an attack plan.

3.3.3 Validation of ASAP Framework

The effectiveness of the ASAP framework was validated through experiments:

e Enterprise Network Case Study ASAP was deployed in a simu-
lated enterprise network environment consisting of 16 hosts and mul-
tiple subnets, including Industrial Control Systems (ICS) and Internet
of Things (IoT) devices, running several critical services (e.g., SSH,
HTTP, SMTP, and FTP). The experiments demonstrated that ASAP
could not only converge quickly to find the optimal attack path but
also uncover hidden attack routes in complex network environments.

e Large-Scale Network Testing To evaluate its scalability in complex
scenarios, ASAP was tested on a large-scale network with 300 hosts. In
this environment, ASAP was able to generate the optimal attack path
in approximately 70 seconds.

3.3.4 Future Directions

The authors proposed extending ASAP to more scenarios in the future, such
as addressing Advanced Persistent Threats (APT) and supporting red-blue
team exercises (also known as purple teaming). With these extensions, ASAP
will be better equipped to handle complex attack scenarios, further enhancing
its diversity and practicality in the field of information security.

3.4 NDSPI-DQN

In 2021, Shicheng Zhou et al. published a paper titled “Autonomous Penetra-
tion Testing Based on Improved Deep Q-Network” [4]. This paper proposed
an enhanced autonomous penetration testing framework that utilizes an im-
proved DQN algorithm, named NDSPI-DQN, designed to address two major
challenges in large-scale network scenarios: the sparse reward problem and
the large action space.

24

3.4.1 Enhancements to the DQN Algorithm

The framework consists of two main parts. First, the DQN algorithm is
improved through the following five enhancements:

e Noisy Nets: By adding Gaussian noise to the network layers, the ac-
tion selection process gains stochasticity. Compared to the traditional
e-greedy strategy, this allows for exploring more potential paths.

e Soft Q-learning: Incorporating the principle of Maximum Entropy,
entropy rewards are added to the action selection process to generate
more diverse strategies. The action selection strategy employs a soft-
max approach, assigning probability weights to each action instead of
solely choosing the greedy action.

e Dueling Architectures: The Q-value function is decomposed into
a Value Function and an Advantage Function. The Value Function
evaluates the importance of the current state, while the Advantage
Function assesses the relative quality of specific actions in that state.
This structure enables more efficient evaluation of action selection in
complex network environments.

e Prioritized Experience Replay: Experiences are prioritized based
on Temporal Difference Error (TD Error), with higher priority given to
experiences that have a significant impact on the current policy. This
enhances the effectiveness of experience replay and accelerates training
convergence.

e Intrinsic Curiosity Model (ICM): An intrinsic reward signal is
used to guide the agent to explore environments with sparse external
rewards by predicting the next state. The intrinsic reward, driven by
the model’s prediction error, encourages the agent to explore unfamiliar
states. This curiosity-driven exploration generates internal rewards,
addressing the sparse reward problem.

3.4.2 Framework Architecture

As shown in Figure 3.3, the framework’s learning cycle and overall NDSPI-
DQN architecture are composed of two parts:

e Learning Cycle (Top): The agent observes the current environment
state s;, outputs an action a; based on the learned policy, and receives

25

an external reward r, from the environment. Simultaneously, the In-
trinsic Curiosity Model (ICM) takes (s;, as, st+1) as input and outputs
an intrinsic reward r;;. Both external and intrinsic rewards are used to
optimize the policy.

e NDSPI-DQN Architecture (Bottom): Orange layers represent
fully connected layers, and red layers denote dueling network archi-
tectures with noisy linear layers. The input to the network is the envi-
ronment state vector, and the output is the action value.

These enhancements ensure that the reinforcement learning agent can
efficiently explore large-scale network environments and learn optimal attack
paths without requiring complete prior knowledge of the system.

Figure 3.3: Learning cycle (top) and schematic illustration of NDSPI-DQN
(bottom) [4].

3.4.3 Action Space Reduction

To reduce the action space, the NDSPI-DQN algorithm decomposes actions
into two parts: the value evaluation of target hosts and the value evaluation
of operation types. This allows the agent to estimate the values of target
hosts and operation types separately, then combine them into a complete
action. This decoupling strategy reduces the action space from O(M x N)
to O(M + N) (where M is the number of hosts and N is the number of
executable operations), significantly reducing exploration and computation
costs. This transformation reduces complexity from exponential to linear,
greatly improving the algorithm’s convergence speed in large-scale networks.

26

As shown in Figure 3.4, the decoupled NDSPI-DQN uses two streams
that share hidden layers, with each stream outputting its respective Q-value
through a dueling network architecture with noisy linear layers. This design
effectively reduces the complexity of the action space while maintaining high
performance.

)
=
é

Figure 3.4: Schematic illustration of the decoupling NDSPI-DQN [4].

3.4.4 Experimental Evaluation

The experimental evaluation consisted of two phases:

Performance Comparison in Small-Scale Networks

In the first phase, the framework was tested in a standard network scenario
containing 17 hosts to compare the performance of the improved DQN with
the traditional DQN. Results showed that NDSPI-DQN significantly outper-
formed the original algorithm, converging faster and more efficiently.

Scalability Analysis in Large-Scale Networks

In the second phase, the framework was tested in larger network scenar-
ios, with the network size reaching up to 150 hosts. The experimental results
demonstrated that the decoupling mechanism allowed NDSPI-DQN to main-
tain stable convergence even as the network scale increased. This scalability
and robustness make the framework particularly effective in handling large
and complex networks where traditional penetration testing methods strug-
gle due to the increased state and action space.

27

3.4.5 Conclusion and Future Work

The framework’s successful validation in complex network scenarios high-
lights its potential for real-world applications. However, the current research
is limited to simulated environments, and further studies are required to
apply these methods to real networks.

3.5 CJA-RL

In 2021, Rohit Gangupantulu published a paper titled “Crown Jewels Anal-
ysis using Reinforcement Learning” [5]. This paper proposed a methodol-
ogy called CJA-RL (Crown Jewel Analysis using Reinforcement Learning).
Crown Jewel refers to critical IT assets.

3.5.1 Overview of CJA-RL

The core working principle of CJA-RL is based on leveraging reinforcement
learning to probe the network structure and analyze potential attack paths.
This method effectively identifies critical entry points, choke points, and pivot
nodes within the network, which attackers could exploit to compromise the
Crown Jewels.

The process is divided into two main stages:

e Understanding the network’s structure and generating an attack graph.

e Applying reinforcement learning to simulate penetration testing and
determine the optimal attack paths.

Information Extracted from Network
(for adding terrain to S, R, and P)

Ccvss
A/\ (for R and P)

MulVal St+1, Tt+1
WWW ISP Router ~ A
= o
@ | State Space
!z{ Devices S ~_
at
PC
Network Attack Graph Markov Decision Process Reinforcement Learning

Figure 3.5: Deploying RL on MDPs modeled using attack graph representa-
tions of networks [5].

28

Paths—>

___ Setof In1t1a1
CJA-RL
Nodes

CINode™ |
> ___CINode

‘\%? Crown Jewel (CJ) Node

\ O Initial Node

Q Node in CJ's 2-Hop Network

¥ \
\ v
Q—> ~ 5
/ --=-» Path from Initial Node to Nearby CJ

Figure 3.6: Depiction of CJA-RL [5].

—Path Analysis—>

3.5.2 Attack Graph Generation

In the first stage, the MulVAL tool is used to generate an attack graph
that describes the network configuration, vulnerabilities, and possible attack
paths. This attack graph forms the basis for the Markov Decision Process
(MDP), where:

e Nodes represent components within the network.

e Edges represent potential attack actions.

The Common Vulnerability Scoring System (CVSS) is employed to quan-
tify the severity of these vulnerabilities, and transition probabilities for dif-
ferent attack actions are assigned based on the complexity of exploiting each
vulnerability. On this basis, the reinforcement learning algorithm (Deep Q-
Network, DQN) is trained to learn how to find the optimal attack path from
any initial node in the network to the Crown Jewels.

3.5.3 Reinforcement Learning for Attack Path Discov-
ery

In the second stage, CJA-RL trains reinforcement learning agents to auto-
matically discover the optimal path from initial nodes to target Crown Jewels.
This approach not only evaluates the effectiveness of the attack paths but
also considers the "quietness” of the attack—how effectively vulnerabilities
can be exploited without triggering defensive systems in the network.

29

By simulating multiple attack behaviors, CJA-RL analyzes:
e Pivot and choke points along the attack paths.
e Key locations for lateral movement within the network.

These points are crucial for attackers and serve as important areas where
defenders can deploy monitoring or countermeasures.

3.5.4 Experimental Evaluation and Results

To validate the effectiveness of CJA-RL, the paper conducted experiments
on a large-scale network, analyzing several Crown Jewels and evaluating;:

e The best attack paths.
e The most strategic initial nodes.
e Crucial pivot points.

The results showed that CJA-RL could effectively identify critical terrains
within the network, such as quiet entry points, pivotal nodes, and optimal
paths for attacking Crown Jewels. Additionally, the method was able to
detect crucial choke points that attackers might use to traverse the network.

This information is valuable for network administrators to deploy effective
defensive strategies and prevent potential attacks.

3.6 HA-DRL

Khuong Tran and his team proposed a groundbreaking deep reinforcement
learning (DRL) architecture in their 2021 paper “Deep Hierarchical Rein-
forcement Agents for Automated Penetration Testing” [6], called HA-DRL
(Hierarchical Agent Deep Reinforcement Learning), for automated penetra-
tion testing. The primary objective of this research is to address the issue
of excessively large discrete action spaces in penetration testing. Traditional
DQN methods typically require evaluating all possible actions to find the
optimal one. However, in penetration testing, the action space can grow
exponentially due to the increasing number of hosts, subnets, and potential
vulnerabilities.

30

3.6.1 Challenges in Large Action Spaces

One of the biggest challenges in penetration testing with reinforcement learn-
ing is the exponential growth of the action space. Traditional DQN methods
require evaluating all possible actions in each state, making it computation-
ally infeasible when dealing with large networks. As the number of hosts,
subnets, and vulnerabilities increases, the number of possible actions expands
dramatically, leading to slow convergence and poor scalability.

3.6.2 Hierarchical Agent-Based Approach

To solve this issue, the HA-DRL architecture introduces the concepts of
hierarchical agents and action space decomposition, instead of relying on a
single agent to explore all possible actions. Specifically, HA-DRL:

e Divides the action space into smaller subspaces.
e Assigns a dedicated reinforcement learning agent to each subspace.

Through this hierarchical structure, different agents handle different di-
mensions of the actions. For example:

e One agent may focus on selecting which host to attack.
e Another agent decides the specific attack method.

This decomposition of the action space significantly reduces the number
of actions each agent needs to process, resulting in more stable learning and
faster convergence. Each agent independently learns the optimal policy for
its respective subspace while sharing the same reward signal. This allows
multiple agents to work in parallel, simultaneously exploring their respective
action spaces and avoiding the bottleneck of a single agent exploring the
entire space.

3.6.3 Hierarchical Action Selection

The final action is derived by combining the outputs of these hierarchical
agents. This hierarchical action selection approach:

e Improves efficiency.
e Enhances the algorithm’s performance in complex network scenarios.

e Enables faster identification of optimal attack paths.

31

Particularly in cases with thousands of possible actions, where traditional
DQN struggles to converge, HA-DRL demonstrates stronger learning capa-
bilities and better adaptability to large-scale networks.

al
——> Agent! a1
out

-———>. Agent? ibé;

v aout2 = f2(aoutllsa?')

Rt S| !
L

Agentl 34{5

\4

aoutL = fl'(aoutL-1 ,aL)

«—— |[Environment <——

Figure 3.7: Architecture of HA-DRL [6].

3.6.4 Experimental Evaluation

The paper validates the HA-DRL framework through experiments using the
CybORG simulator. The experiments covered various network configura-
tions, ranging from:

e 6 to 100 hosts.
e Action spaces as large as 4646 actions.

The results show that HA-DRL converges faster and more reliably com-
pared to a standard DQN agent, particularly in more complex network sce-
narios. In large action spaces, where traditional DQN struggles to explore

32

effectively, HA-DRL’s hierarchical agent structure allows it to handle these
complex scenarios with greater stability and success.

3.6.5 Interpretability and Scalability

Furthermore, the authors explore the interpretability of the action policies
learned by HA-DRL, demonstrating how hierarchical agents efficiently group
actions in complex networks. Each agent learns an optimal policy for its
subspace, and the combination of these policies results in a global optimal
strategy.

This architecture provides a scalable solution for addressing the challenges
posed by large action spaces in penetration testing. As network sizes and
action complexities continue to grow, HA-DRL offers an efficient framework
for automated penetration testing.

3.6.6 Future Research Directions

The research indicates that HA-DRL has great potential for automating pen-
etration testing. The authors suggest that future research could further op-
timize performance in sparse reward environments by:

e Enhancing exploration strategies.
e Incorporating subgoal learning.

These improvements could further increase the efficiency and applicability of
HA-DRL in real-world cybersecurity scenarios.

3.7 CRLA

In 2022, Khuong Tran and his colleagues published a paper titled “Cascaded
Reinforcement Learning Agents for Large Action Spaces in Autonomous Pen-
etration Testing” [31]. This paper proposed a novel reinforcement learning
framework called Cascaded Reinforcement Learning Agents (CRLA).

3.7.1 Overview

The authors described CRLA as a cascaded multi-agent architecture that
organizes multiple reinforcement learning agents in a hierarchical structure,
where each agent is responsible for a different subset of the entire action
space. By algebraically decomposing the action space, each agent only needs

33

to learn within a smaller subset, significantly reducing learning complexity
and computational overhead. However, after reviewing the architecture of
this cascaded multi-agent framework and the hierarchical agent architecture
(HA-DRL) proposed by the same authors in 2021, there appears to be no
substantive difference between them. The segmented tree-based action orga-
nization method proposed in CRLA is also identical to the one in HA-DRL.
Therefore, the improvements of CRLA over HA-DRL are as follows:

1. Use of Dueling DQN

CRLA employs Dueling Deep Q-Networks (Dueling DQN) to train each
agent independently. Dueling DQN is a variant of reinforcement learn-
ing that separates the state value and action advantage, making it more
efficient in estimating the value of each state. This helps agents find
the optimal strategy more quickly and stably. In this architecture, all
agents share the state and reward signals from the environment but
output different action components to collectively accomplish the en-
tire attack process.

2. Introduction of QMIX Mixing Network

CRLA introduces the QMIX mixing network mechanism, which aggre-
gates the Q-values of each agent through a mixing network (MixingNet)
to learn a global action value function. The global Q-value function
guides all agents to collaborate for optimal decision-making, ensuring
that each agent’s behavior complements the others, ultimately achiev-
ing a globally optimal attack strategy. QMIX also adopts a hyper-
network structure to dynamically generate parameters for the mixing
network, enabling CRLA to flexibly adapt to networks of varying sizes
and complexities, further enhancing learning efficiency and stability.

3.7.2 Experiments

To validate the effectiveness of CRLA, the authors conducted experiments
in two different environments.

Maze Environment They first tested CRLA’s performance in handling
large action spaces in a simplified maze environment. In this environment,
the CRLA framework demonstrated outstanding performance, efficiently con-
verging to the optimal strategy among 4096 possible actions. It performed
particularly well in sparse reward scenarios, surpassing traditional single-
agent DQN methods. Additionally, CRLA exhibited greater stability and
faster convergence in action selection, showcasing its potential for similar
applications.

34

CybORG Simulator The second set of experiments applied CRLA to
penetration testing using the CybORG simulator. CybORG is a simulation
platform designed for research in network security and automated penetra-
tion testing, capable of simulating real network environments with complex
topologies. In the CybORG experiments, the authors tested CRLA in net-
work scenarios of varying scales (up to 100 hosts) and action space complex-
ities (up to 4646 actions), verifying its feasibility in practical applications.
The results demonstrated that CRLA effectively identified optimal attack
paths in all tested scenarios, even in very large and complex networks.

3.7.3 Comparison with HA-DRL

I compared the experimental results of CRLA with those of HA-DRL. The
network scale and scenarios for both methods are identical (with a maxi-
mum of 100 hosts and 4646 actions). While CRLA introduces certain opti-
mizations, it can only be said that CRLA is theoretically better suited for
larger-scale networks and action spaces.

3.8 SmartGrid-PTDRL

Despite the effectiveness of traditional penetration testing (PT) methods in
identifying vulnerabilities in software, hardware, and local area networks,
these methods are insufficient for large-scale cyber-physical systems such as
smart grids due to their complexity, coupling, and diversity. To address this
challenge, Yuanliang Li and his colleagues proposed a DRL-based penetration
testing framework in 2022, titled “Deep Reinforcement Learning for Penetra-
tion Testing of Cyber-Physical Attacks in the Smart Grid” [7], to efficiently
identify critical vulnerabilities in smart grids. We denote this framework

SmartGrid-PTDRL.

3.8.1 Overview of SmartGrid-PTDRL

This research introduces a DRL-based PT framework designed to simulate
and analyze cyber-physical attacks in smart grids, specifically replay attacks.
The attack process is modeled as a Markov Decision Process (MDP) with
three actions: Stop, Record, and Replay. The goal is to train an agent to
learn the optimal timing and sequence of attacks to destabilize grid voltage
under varying operational scenarios.

To achieve this, the researchers developed a cyber-physical co-simulation
platform integrating physical, network, control, and attacker simulators.

35

This sandbox environment provides a robust experimental setup for training
DRL agents. Experimental results demonstrated that the DRL agent can
effectively find optimal attack paths, especially under high load demand, in-
creased solar power generation, and significant weather variations, thereby
threatening system stability.

3.8.2 Attack Operations

The SmartGrid-PTDRL framework simulates replay attacks using three main
operations:

e Record: Captures the current system’s PMU (Phasor Measurement
Unit) data packets and stores them for subsequent replay.

e Replay: Launches replay operations when voltage approaches the
CVR (Conservation Voltage Reduction) control limits (e.g., 0.95 or
1.05 pu), sending previously recorded PMU data to mislead the control
center into issuing erroneous commands.

e Stop: Ceases any ongoing attack activities to maintain the current
state.

Objective: Through carefully timed operations, the agent aims to dis-
rupt voltage regulation and cause voltage levels to exceed safety ranges (typ-
ically 0.95-1.05 pu), resulting in grid instability.

g < Control Commands

Voltage Regulator
D)
PMU Packets "‘\s
| >l
Packet | %

. R d
Endpoint ecord 9 Packet
a Replay Server
-
Pen-tester

Figure 3.8: Replay attack scheme in the PT of smart distribution grids [7].

36

3.8.3 Framework Design
The SmartGrid-PTDRL framework is structured into three key components:

e Environment: Represents the physical components of the smart grid
(e.g., transformers, loads), communication elements (e.g., sensors, com-
munication interfaces), and the control center.

e Feedback Mechanism: The agent adjusts strategies based on feed-
back (e.g., voltage deviations) to maximize attack impact.

e MDP Modeling: The state space includes the grid’s operational con-
ditions. Observations replace full state access due to attack constraints.
Actions include Record, Replay, and Stop, each with a fixed duration.
Rewards are defined by the extent of voltage deviation using the System
Average Voltage Magnitude Violation Index (SAVMVI).

oy
i
Attacker Federate
@ Publications to Omnet: A A\ Subscriptions from GridLAB-D:
Attack parameters for replay attack Measurements of node
PT Environment 4
HELICS |@¢—
—> Broker
A\ Subscriptions
¥ Subscriptions o from GridLAB-D: [[] Publications:
from Omnet: | |A Publications: node PMU data
control node measurements [Subscription| |@Publications:
parameters for measurements from Omnet: control
voltage @ Subscriptions v Publications: PMU data commands for
regulator from Control- control parameters voltage
Center: for voltage regulator
control commands regulator
for voltage
regulator
@ Subscriptions
from Attacker:
attack parameters
v for replay attack v ‘
=2 i e
GridLAB-D Omnet Control-Center
Federate Federate Federate

Figure 3.9: Cyber-physical testbed with smart distribution grids [7].

37

3.8.4 Experimental Validation and Findings

The researchers validated their approach using a co-simulation platform com-
bining:

e GridLAB-D (power systems).
e OmNet++ (communication networks).
e Python-based control and attack modules.

These components were integrated using the HELICS framework for synchro-
nization and data exchange.

Tests on an IEEE 13-bus system revealed how various factors, such as load
levels, solar generation, and weather changes, affect PT difficulty. The DRL
agent effectively exploited high-load scenarios, triggering voltage violations
and system instability. However, lower load conditions exhibited limited
attack impact.

3.8.5 Implications and Future Research

These findings demonstrate that DRL agents can autonomously learn effec-
tive attack strategies in smart grids, posing a significant threat to system
stability under specific conditions. The research suggests that future work
should:

e Investigate defense mechanisms against replay attacks.
e Improve the robustness of smart grid control systems.

e Explore advanced exploration strategies in DRL to enhance attack sim-
ulations.

3.9 ND3RQN

In 2022, Yue Zhang and colleagues published a paper titled “Improved Deep
Recurrent Q-Network of POMDPs for Automated Penetration Testing” [8].
Notably, Zhou, the author who proposed NDSPI-DQN, is also one of the
authors of this paper. Through modeling, algorithm improvements, and
experimental validation, the authors introduced an enhanced reinforcement
learning algorithm called ND3RQN, specifically designed for automated pen-
etration testing in black-box scenarios.

38

3.9.1 POMDP-Based Modeling for Black-Box Pene-
tration Testing

To better describe the complex environment of black-box penetration testing,
the authors modeled penetration testing as a Partially Observable Markov
Decision Process (POMDP). POMDP is more suitable for simulating pene-
tration testing scenarios where testers have incomplete information about the
target network. Based on this modeling, the authors proposed the improved
Deep Recurrent Q-Network (ND3RQN), which enhances the traditional Deep
Q-Network (DQN) with multiple improvements to boost its performance in
partially observable environments.

3.9.2 Key Improvements in ND3RQN

The main improvements of ND3RQN include the following;:

Incorporating the Long Short-Term Memory (LSTM) Structure

This structure enables the agent to remember historical information and
make decisions based on past observations and actions. In a POMDP en-
vironment, the agent can only observe partial state information, leading to
situations where the same observation might correspond to different global
states. Historical information is thus critical for decision-making. LSTM
captures long-term sequential dependencies, allowing ND3RQN to handle
the uncertainty caused by partial observability more effectively.

Combining Double DQN and Dueling DQN Architectures

e Double DQN: Double DQN aims to reduce the overestimation prob-
lem of Q-values. Traditional DQN, which uses the same target network
for both action selection and Q-value estimation, often overestimates
Q-values. Double DQN separates the action selection process from the
target QQ-value generation process, significantly improving the accuracy
of value estimation.

e Dueling DQN: Dueling DQN divides Q-value estimation into two
components: a value function and an advantage function. This helps
the agent better evaluate the importance of different states, thereby
enhancing policy evaluation capabilities.

39

Introducing the Noisy Nets Exploration Mechanism

By adding random noise to the weights of neural networks, Noisy Nets in-
troduces stochasticity into the agent’s action selection process. Compared
to the traditional e-greedy strategy, this exploration mechanism is more ef-
fective in complex environments, helping the agent avoid getting trapped in
local optima.

Additionally, ND3RQN retains the experience replay and target network
mechanisms from the original DQN, which help break the temporal correla-
tion between training samples and improve training stability.

3.9.3 Network Architecture of ND3RQN

As shown in Figure 3.10, the network architecture of ND3RQN cleverly inte-
grates these improvements. The green sections represent the fully connected
layers identical to the original DQN, the orange sections illustrate the LSTM
structure, and the blue sections indicate the adversarial DQN structure with
noise parameters. This architectural design enables ND3RQN to efficiently
handle complex decision-making problems in partially observable environ-
ments.

! =1 } (| < ..
|/ LSTM !
Linear layers . Action
POMDP \ Value

Environment
Observation

Dueling Architecture

Figure 3.10: Network architecture of ND3RQN [8].

3.9.4 Experimental Evaluation

To validate the effectiveness of ND3RQN, the authors conducted extensive
experiments using Microsoft’s CyberBattleSim environment, an open-source
cybersecurity simulator for automated penetration testing research.

40

Comparison with Other Algorithms

The performance of ND3RQN was compared with three other algorithms:
e Random action selection
e Standard DQN

e The latest improved DQN (NDSPI-DQN, proposed by Zhou Shicheng)

Performance in Different Network Environments

The experiments were conducted in network scenarios of different scales:
e Small-scale networks: Chain-10 and Chain-20.

e Large-scale complex networks: Randomly generated network topolo-
gies.

Experimental Results

e In small-scale network environments, ND3RQN demonstrated faster
convergence and required fewer steps compared to other algorithms.

e In larger and more complex network environments, ND3RQN identified
significantly more vulnerable nodes than its counterparts.

3.10 Improved-PenBox

In 2022, Alessandro Confido et al. published a paper titled “Reinforcing
Penetration Testing Using Al [32].

3.10.1 Overview

The research addresses the security challenges faced by the European Space
Agency (ESA) in managing data systems during space missions. ESA de-
veloped an automated penetration testing tool called PenBox to simulate
attacks and identify vulnerabilities in systems. PenBox incorporates a cer-
tain degree of automation by combining several existing penetration testing
tools (e.g., Nmap, OpenVAS, and Metasploit) to automate tasks from net-
work scanning to vulnerability discovery and exploitation. However, its au-
tomation is limited, as it relies on predefined attack scenarios and processes
manually configured by security experts. During testing, PenBox sequentially

41

invokes penetration testing tools based on these predefined paths, resulting
in a lack of flexibility to dynamically adjust strategies according to test re-
sults. This limitation makes it less effective in dealing with unknown network
structures or new vulnerabilities. To overcome these constraints, the authors
propose integrating reinforcement learning into PenBox, creating what they
call ”Improved-PenBox.”

3.10.2 Implementation Details

The authors integrated the PenBox framework into the Network Attack Sim-
ulator (NAS) to leverage NAS’s efficient simulation environment and rein-
forcement learning capabilities. Since the original PenBox functionality in-
cludes 52 tools and 363 modes, the authors selected the six most commonly
used attack tools and modes (e.g., Nmap, Hydra, Metasploit) and mapped
their operations to actions supported by NAS. By modifying NAS’s network
model and action interface, the authors ensured that it fully replicated the
core functionalities of PenBox.

To achieve this, they defined Python configuration files describing net-
work topology, host configurations, and tool operations. They also extracted
corresponding attack cost and effectiveness data from the PenBox database
and converted it into an input format that NAS could directly process. Us-
ing NAS’s simulation environment, they employed its reinforcement learning
interface to train a Deep Q-Network (DQN) algorithm and conducted ex-
perimental optimization of hyperparameters such as learning rate, discount
factor, and exploration rate. The authors also made corresponding modifi-
cations to the reward function.

During the implementation, the authors created a network topology in
NAS that closely resembled ESA’s test environment. The network included
multiple hosts, diverse service configurations, and vulnerability information
to simulate typical attack scenarios. These scenarios covered intrusions from
external networks to target hosts and internal attacks executed by PenBox
within internal networks. Specifically, the simulated network comprised eight
hosts, four services (SSH, FTP, HTTP, TCP), and a target machine with
vulnerabilities. Through this design, the authors successfully replicated Pen-
Box’s functionality in NAS.

3.10.3 Experimental Results

By simulating real network environments in NAS, Improved-PenBox under-
went multiple rounds of testing and progressively optimized attack paths.
Starting from random initial attacks, the agent gradually learned to adjust

42

attack steps based on environmental feedback, ultimately generating an op-
timal penetration strategy. The experimental results demonstrated that by
incorporating reinforcement learning, Improved-PenBox significantly reduced
redundant operations and optimized the attack process.

3.11 OAKOC

In 2022, Rohit Gangupantulu et al. published a paper titled “Using Cyber
Terrain in Reinforcement Learning for Penetration Testing” [33]. This re-
search primarily explores how the concept of cyber terrain (such as firewalls)
can be integrated into reinforcement learning (RL) methods to enhance the
effectiveness of automated penetration testing. Existing research typically
builds attack graphs based only on vulnerability information (e.g., CVSS
scoring system), neglecting physical or logical obstacles in real networks (e.g.,
firewalls). Therefore, this paper proposes a method to incorporate cyber
terrain into RL models, providing more realistic and effective solutions for
penetration testing. We denote this OAKOC.

3.11.1 Methodology

The authors used Deep Q-Learning (DQN) as the core RL algorithm to
simulate penetration testing via attack graphs. To incorporate cyber terrain
into attack graphs, they proposed two key approaches:

e Reward adjustment.

e State adjustment.

Training was conducted using attack graphs generated by the MulVAL tool.

3.11.2 Attack Graph Construction

Attack graphs are graphical tools used in penetration testing to represent
network structures. Each node in the graph represents a host or system
state in the network, while each edge represents potential attack paths (state
reachability). The authors used the MulVAL framework to automatically
generate attack graphs. MulVAL is a logical reasoning engine that constructs
attack graphs based on network configurations, identifying vulnerabilities and
their impact on the network.

Using the OAKOC framework (Observation and Fields of Fire, Avenues of
Approach, Key Terrain, Obstacles and Movement, Cover and Concealment),
firewalls were modeled as obstacles. The authors simulated a network with:

43

e 122 hosts.
e An attack graph containing approximately 955 nodes and 2,350 edges.

This setup reflected a relatively complex network environment.
The CVSS vulnerability scoring system was used to derive state transition
probabilities and rewards:

e State transition probability P(s, a, s’) was mapped from the CVSS “At-
tack Complexity “ categories (Low, Medium, High) to 0.9, 0.6, and 0.3,
respectively.

e Rewards were calculated based on vulnerability scores, with terminal
state rewards set to 100, initial states at 0.01, and other states linearly
scaled using depth-first search.

e If an action led to a state where the target node was unreachable, a
negative reward (-1) was assigned.

3.11.3 Incorporating Cyber Terrain via Reward Ad-
justment

The study introduced cyber terrain into the reward system by adjusting

reward values based on network obstacles (e.g., firewalls). By modifying

the reward function R(s,a), the agent received lower rewards when facing
firewalls, simulating the effort required to bypass them. The formula is:

R(s,a) = R(s,a) + k(s)

where k(s) is the reward adjustment value related to firewalls and depends
on the communication protocol:

(

0 No Firewall
0.8w FTP
k(s) =14 0.6w SMTP
0.4w HTTP
| 0.2w SSH

Here, w is a negative value used to adjust the reward reduction magnitude.
This adjustment encourages the agent to avoid paths with firewalls or develop
more sophisticated strategies to bypass them. The goal is for the agent to
select more realistic attack paths during training rather than merely following
the shortest path based on vulnerability scores.

44

3.11.4 Incorporating Cyber Terrain via State Adjust-
ment

Another approach involved adjusting state transition probabilities to account
for cyber terrain. In traditional Markov Decision Processes (MDPs), state
transitions are deterministic. However, in this method, obstacles like firewalls
significantly affect certain paths. This involved modifying state transition
probabilities P(s,a,s’) to make paths traversing firewalls less likely, guiding
the agent to find alternative routes. The formula is:

P(s,a,s') = P(s,a,s") - ki(s') - ko(s")
Factors affecting transition probability:

e ki(s') indicates whether a firewall is present:

a ,) 0.01 Firewall Exists
S =
! 1.0 No Firewall

e ky(s') represents the importance of the firewall’s protocol:

(0.2 FTP
0.4 SMTP
ko(s') =< 0.6 HTTP
0.8 SSH
(1.0 No Firewall

This method further enhances the realism of the penetration testing
model, forcing the agent to consider network obstacles in its decision-making
process.

3.11.5 Experimental Results
The paper compared the performance of three different MDP models:

e Baseline CVSS MDP: No cyber terrain considerations.

e Reward-adjusted MDP: Cyber terrain was integrated through mod-
ified rewards.

e State-adjusted MDP: Cyber terrain was incorporated by adjusting
state transition probabilities.

45

Results showed that incorporating cyber terrain increased the number
of steps (hops) required for the agent to complete the penetration testing
task, rather than simply following the shortest path. These additional steps
reflected the agent’s behavior of bypassing obstacles like firewalls.

The experiments also demonstrated the impact of the adjustment meth-
ods on total rewards:

e Adding via Reward MDP: The number of steps increased, but total
rewards decreased due to reward attenuation.

e Adding via State MDP: Despite the increase in steps, the agent
maintained higher total rewards, indicating its effective learning to nav-
igate complex obstacles while still finding optimal paths.

Overall, the experimental results validate that by incorporating cyber ter-
rain into attack graphs, the agent can more realistically simulate an attacker’s
decision-making process when facing obstacles in complex networks.

3.12 HDRL

In 2023, Qianyu Li and colleagues published a paper titled “A Hierarchical
Deep Reinforcement Learning Model with Expert Prior Knowledge for Intel-
ligent Penetration Testing” [34]. This paper proposed a Hierarchical Deep
Reinforcement Learning (HDRL) model based on expert prior knowledge to
address two critical challenges in intelligent penetration testing: the vast
state and action spaces and inefficient exploration. This study uses a MDP
model.

3.12.1 HDRL Model Design
The HDRL model addresses these challenges through two key strategies:

Hierarchical Structure

The HDRL model employs a hierarchical design approach, breaking down
the complex task of penetration testing into distinct sub-tasks handled by
specialized agents. These agents are dedicated to processing different types of
penetration tasks, including local vulnerability exploitation, remote vulnera-
bility exploitation, and connection operations. This design allows each agent
to focus on a relatively smaller state and action space, thereby effectively
reducing the computational complexity and learning burden of individual
agents when dealing with large-scale network scenarios. This hierarchical

46

structure not only improves the task-handling efficiency of the model but
also enhances its adaptability across various network environments.

Expert Prior Knowledge

To enhance the decision-making efficiency of agents and reduce the propor-
tion of ineffective attempts during random exploration, the HDRL model in-
corporates an expert knowledge base built using rules and knowledge graphs.
The expert knowledge base formalizes the experience of human penetration
testing experts into actionable rules and retrievable knowledge nodes, provid-
ing agents with systematic action constraints and decision recommendations.
Under the guidance of these rules, agents can swiftly eliminate invalid ac-
tions, while querying the knowledge graph enables them to access information
on potential vulnerabilities in target hosts, allowing for the formulation of
more precise strategies. This innovative integration of expert experience sig-
nificantly boosts the model’s learning efficiency and execution performance.

3.12.2 Key Features of the Model

e Hierarchical Intelligent Penetration Testing Model: The model
categorizes penetration testing operations into three types, assigning
them to distinct agents for processing. By leveraging deep learning
techniques, the learning efficiency of the agents is effectively enhanced.

e Integration of Expert Prior Knowledge: The model transforms
penetration testing experts’ experience into two forms of prior knowl-
edge: action constraints and action recommendations. This prevents
agents from redundant sampling and aimless exploration in the envi-
ronment.

e Experimental Validation and Scalability: Through simulations,
the model demonstrated remarkable performance improvements in both
small-scale and large-scale network scenarios, confirming its potential
for practical applications.

3.12.3 Experimental Validation

In the experimental setup, researchers created a series of simulated network
scenarios to evaluate the HDRL model’s effectiveness and adaptability across
networks of different scales. These scenarios included both small-scale net-
works (fewer than 10 nodes) and large-scale, complex networks (nearly 100

47

nodes). Experiments across various scenarios were designed to comprehen-
sively assess the performance of the HDRL model, the impact of expert prior
knowledge, and the scalability of the model in handling large-scale networks.

The results showed that the HDRL model significantly reduced the num-
ber of iterations required to achieve penetration testing objectives across all
scenarios. Particularly, the model combining action constraints and expert
recommendations (HDRL+AA+AC) performed exceptionally well in large-
scale networks, achieving higher cumulative rewards in complex scenarios
compared to traditional models.

3.13 DQfD-ATPT

In 2023, Wang Yongjie and his team published a paper titled “DQfD-AIPT:
An Intelligent Penetration Testing Framework Incorporating Expert Demon-
stration Data” [9]. This paper proposed a framework named DQfD-AIPT.

3.13.1 Phases of the DQfD-AIPT Framework

The framework operates in three main phases:

Collection of Expert Knowledge

e Two methods are used to gather expert knowledge:

1. The first method involves converting expert penetration testing
experience into executable state-action pairs, which are stored in
an expert knowledge base.

2. The second method records expert operations across different net-
work scenarios to provide diverse demonstration data, assisting
the agent in understanding optimal penetration strategies under
various circumstances.

Input and Utilization of Expert Data

e The collected expert data is fed into the system as demonstration data
and serves as guidance during the initial training stage.

e The agent is pre-trained using this expert data, enabling it to quickly
learn the decision-making process.

48

e The demonstration data is structured into tuples (state, action, re-
ward, next state), consistent with the state transition mechanism in
reinforcement learning, ensuring efficient knowledge acquisition in the
early training stages.

Agent-Environment Interaction Training

e During the training phase, the agent interacts with a simulated network
environment, performing penetration actions to alter network states
and receiving reward feedback from the environment.

e The agent continuously optimizes its strategy based on its own experi-
ence and the expert demonstration data.

3.13.2 Key Improvements of the DQfD Algorithm

The DQfD-AIPT framework introduces several key improvements to enhance
learning efficiency and stability:

Prioritized Experience Replay (PER)

e Important samples are given higher ”priority”, allowing the algorithm
to replay more critical state transition data to enhance learning effi-
ciency.

e The importance of experience data is calculated using temporal dif-
ference (TD) error, where higher TD errors indicate greater learning
potential. This ensures that data contributing significantly to strategy
improvement is prioritized.

N-Step Return Mechanism

e To better capture long-term reward information, the DQfD framework
introduces an N-step return mechanism.

e N-step returns expand the range of reward propagation, allowing the
influence of expert demonstration data to spread to earlier states. This
helps the agent optimize strategies based on the long-term effects of a
sequence of actions.

49

Supervised Loss

e During the pre-training stage, a supervised loss function is employed
to guide the agent in imitating expert behavior and penalizing actions
that deviate from expert decisions.

e This ensures the agent closely follows expert strategies during pre-
training and further optimizes them during formal training.

e In the formal training phase, the supervised loss is removed, allowing
the agent to explore strategies not covered by the expert demonstra-
tions through reinforcement learning.

The training process of the DQfD algorithm is shown in Figure 3.11.

r i
I SubNetl I
[samen 4 0O 08 |amd I
I :"‘; SubNet3
i | o o !
I 8 = !
- -] I
P T = 1 , L !
| | Penetration Testmg |
I = = . . .
I I = Simulation Environment 1
|
| I I 4 _ |
| I s QObservation of State 1
| PT Expert Experience | | Action 'Q‘ Reward :
| | |
I l I I S |] [N—— :
| I -
| | Demonstration Data 1 |
Tl T T} — RL Agent |
' N !
I Expert I_____________- _________
| Knowledge Base I
| 4 Effective Experience 1
I -
|

S0 e |

Figure 3.11: Framework structure of DQfD-AIPT [9].

3.13.3 Experimental Validation

The experiments utilized Microsoft’s CyberBattleSim (CBS) platform, which
simulates enterprise network environments. The network scenarios included:

e DMZ zone

e Trust-1 zone

30

e Trust-2 zone

Additionally, honeypot nodes were present in the environment. The objective
of the penetration tests was to:

e Start from the DMZ zone.
e Avoid honeypot traps.
e Gain control of the database in the Trust-2 zone.

Honeypots are a network security defense mechanism designed to attract at-
tackers and analyze their behavior. Performance evaluation metrics included:

e Average cumulative rewards.

e Probability of attacking honeypots.

3.13.4 Experimental Results

The results demonstrated significant advantages of the DQfD-AIPT frame-
work over the standard DQN algorithm in several aspects:

Cumulative Rewards

e The DQfD algorithm converged faster and achieved higher cumulative
rewards in each round of testing, indicating that the agent could effi-
ciently identify the optimal attack path.

Honeypot Attack Probability

e Compared to the DQN algorithm, the DQfD framework significantly
reduced the probability of attacking honeypots during training, show-
ing that the agent could effectively recognize and avoid honeypots and
other defense mechanisms.

Through these experiments, the researchers demonstrated that the inte-
gration of expert knowledge and reinforcement learning not only improved
testing efficiency but also reduced errors, especially when dealing with com-
plex network defenses like honeypots.

o1

3.14 MDDQN

In 2023, Yi Junkai and Liu Xiaoyan published a paper titled “Deep Rein-
forcement Learning for Intelligent Penetration Testing Path Design” [35].
This research proposed a method called MDDQN (MulVAL Double Deep
Q-Network), which aims to automate the design of penetration testing paths
using deep reinforcement learning (DRL). The authors pointed out that Q-
values in the DQN algorithm are prone to overestimation, which can lead to
suboptimal policy updates and unstable behaviors. By improving the target
function, DDQN mitigates this issue, making Q-values closer to their true
values, which is why DDQN was employed. This research used a Markov
Decision Process (MDP) model.

3.14.1 Working Mechanism of MDDQN
The MDDQN method is divided into three main phases:

Phase One: Attack Graph Generation

The authors used MulVAL to generate an attack graph for the target system.
MulVAL constructs the attack graph based on the target system’s host in-
formation, vulnerabilities, and their relationships, providing a comprehensive
overview of all potential attack paths. Then, a Depth-First Search (DFS)
algorithm is used to traverse the attack graph, identify all reachable paths,
and organize this information into a transition matrix. The transition ma-
trix details all reachable states, corresponding actions, and reward values
for each action, laying the foundation for training the deep reinforcement
learning model.

Phase Two: DDQN Agent Training

DDQN, an improved version of deep reinforcement learning, addresses the Q-
value overestimation problem inherent in traditional deep Q-networks (DQN).
After inputting the transition matrix generated in the first phase, the DDQN
agent adopts an e-greedy strategy for exploration and optimizes its learning
process through experience replay. The goal is to maximize the cumula-
tive long-term reward, thereby identifying the most effective attack path.
By combining prior knowledge from the attack graph with a learning-based
approach, MDDQN enhances the efficiency and stability of attack path plan-
ning.

92

Transition Matrix and Rewards

The research improved the transition matrix generation method proposed by
Hu et al. [2]. It mapped all nodes in the attack graph to a matrix, including
Common Vulnerability Scoring System Version 3 (CVSS 3) vulnerability val-
ues. It also included other operations, such as predefined scores for accessing
files. All path information was retained, and a transition state matrix was
generated by performing a DFS on the attack graph, which was directly fed
into the model.

The transition matrix not only contained CVSS scores but also prede-
fined operation scores and operation costs, making it more complex than
Hu’s research. The transition matrix provided positive rewards to the agent,
guiding the training process and addressing the sparse reward problem.

3.14.2 Experimental Validation and Analysis

To validate the effectiveness of the MDDQN algorithm, the authors designed
three network environments of different scales and conducted experiments.
They compared the performance of MDDQN with other existing reinforce-
ment learning algorithms, including:

e DQN
e DDQN
e DuelingDQN

The experimental scenarios involved multiple subnets, interconnected hosts,
and various vulnerabilities to evaluate the performance of each algorithm in
different settings.

Performance Comparison in Different Environments

The experimental results showed that MDDQN outperformed other algo-
rithms in terms of convergence speed and stability, particularly in simpler
test environments. MDDQN’s advantage lies in its ability to leverage in-
formation from MulVAL attack graphs, allowing the agent to obtain more
positive rewards in the early training stages, significantly accelerating con-
vergence.

In more complex network environments, MDDQN still exhibited higher
stability and scalability. While other algorithms experienced significant fluc-
tuations during training due to the complexity of the environment, MDDQN
effectively reduced such instability by guiding exploration through attack
graphs and efficiently identifying the optimal attack paths.

33

Addressing the Sparse Reward Problem

Additionally, MDDQN partially addressed the sparse reward problem com-
monly found in deep reinforcement learning. In traditional penetration test-
ing scenarios, positive rewards are usually granted only when a critical target
is successfully breached, making it challenging for the agent to gain sufficient
rewards during learning.

By incorporating prior knowledge from attack graphs, MDDQN enabled
the agent to receive more frequent positive rewards during exploration, ac-
celerating the overall training speed and effectiveness.

3.15 INNES

In 2023, Qianyu Li and colleagues published a paper titled “INNES: An
Intelligent Network Penetration Testing Model Based on Deep Reinforcement

Learning” [36], aiming to propose an intelligent penetration testing model
called INNES.

3.15.1 Overview of INNES

The INNES model describes the penetration testing process based on the
Markov Decision Process (MDP). Unlike traditional methods, the INNES
model eliminates the reliance on prior knowledge of the target network struc-
ture. Instead, it gradually builds the network’s state representation during
the exploration process, enhancing the model’s adaptability and portability.

To reduce ineffective exploration, the authors proposed the DQN _valid
algorithm, which restricts the action space of the agent to avoid meaningless
exploration during testing, thereby improving learning efficiency and decision
accuracy.

3.15.2 DQN_valid: Optimized Action Space

The core idea of DQN _valid is to limit the agent’s action choices to a “valid
action space” at each decision step, rather than the entire action space.

Definition of Valid Action Space

As the testing progresses, the authors define:
e A set of known nodes K.

e A dynamically expanding valid action set V.

o4

The valid action space progressively includes more actionable steps, ensuring
the agent does not waste effort on redundant or meaningless actions.

Reward Function Optimization

The reward function in DQN_valid is designed as follows:
e Successful actions are rewarded positively.

e Failed actions are penalized to discourage ineffective exploration.

3.15.3 Experimental Evaluation

To validate the effectiveness of the INNES model, the paper conducted ex-
perimental evaluations in various network scenarios, including:

e Real-world network environments.

e Open-source simulation environments such as Microsoft’s CyberBat-
tleSim platform.

INNES demonstrated outstanding performance in these experimental sce-
narios. Moreover, the DQN _valid algorithm significantly reduced the number
of ineffective explorations by the agent, accelerated the training process, and
enhanced overall performance, making INNES more efficient and reliable for
penetration testing tasks.

3.15.4 Portability Across Network Environments

A key result of the experiments is the validation of the INNES model’s porta-
bility across different network environments. The model could efficiently
adapt to unseen scenarios.

For instance, in the Network1 scenario, the transferred model completed
the task in just 11 iterations.

Portability is crucial for automated penetration testing, as network en-
vironments are often dynamic. Models capable of adapting to new envi-
ronments without retraining can significantly reduce deployment time and
costs.

95

3.16 HER-PT

In 2024, Mingda Li and others published a paper titled “HER-PT: An Intelli-
gent Penetration Testing Framework with Hindsight Experience Replay” [10],
which detailed an innovative penetration testing framework called HER-PT.
The HER-PT framework combines the mechanism called Hindsight Ex-
perience Replay (HER) with deep reinforcement learning models. By
reconstructing and transforming failed experiences into positively rewarded
ones, the model learns from failures, thereby significantly improving learning
efficiency and success rates. This approach addresses the issue of slow train-
ing and suboptimal performance caused by a lack of successful penetration
testing experiences. HER introduces a “goal resetting” mechanism, enabling
unsuccessful attempts to be redefined as successes during training. Specifi-
cally, it selects a state s; ;1 from a failed experience as a new goal ¢’, updates
the reward ry based on ¢’, and stores the reconstructed experience as a new
sample. Both the original failed experience and the reconstructed samples
are added to the experience replay buffer, increasing the proportion of posi-
tive samples. This method effectively tackles the sparse reward problem by
enhancing the ratio of positively rewarded samples in the replay buffer.

3.16.1 Details of HER-PT

As shown in Figure 3.12, The HER-PT framework consists of three core
modules: penetration testing scenario construction, optimal strat-
egy generation, and practical attack application.

Penetration testing scenario construction

In this module, HER-PT creates a multi-host network environment that sim-
ulates complex real-world scenarios, including subnets, host configurations,
and firewall rules. By emulating different network topologies and device con-
figurations, the framework can construct diverse and complex cybersecurity
environments to evaluate the model’s performance under various conditions.

Optimal strategy generation

In this module, HER-PT integrates HER technology with the Deep Q-
Network (DQN) algorithm to improve sample utilization by reconstructing
experience data. This allows the agent to learn optimal attack strategies more
efficiently. Specifically, HER converts failed experiences into useful learning
samples, increasing the proportion of successful experiences and accelerating
the learning process.

56

Practical attack application

In this module, HER-PT integrates the Metasploit framework, translating
abstract penetration strategies into specific attack commands. This enables
the execution of penetration tests in real network environments, verifying the
model’s effectiveness.

PT Scenario Construction Optimal Strategy Generation
vulnerability configuration
¢ . env action continuous experience data
HTTP_Exploit | ... input generate
SSH_Exploit | *** @ - | —> [sidllgw @ ru st llgd
tnetv\;ork | \x &
opology o
vee construction E 2
[host | ... @ state, reward, goal agent €— Y
£ g Replay Buffer
network basic Information E i %
B = s
. gl TS ’ [sillg1 a1, 11, 51" 1194l ‘
Metasploit Real attack call 8
\L reconstruct
execute attack <: ﬂ |g| § ;
@ @ D %" i ‘ [sillg1. @y, i 0" lgq" 1 ‘
range MSF optimal policy

Figure 3.12: Framework structure of HER-PT [10].

3.16.2 Experimental Evaluation

The experimental methods and processes outlined in the paper focus on val-
idating the adaptability, training efficiency, and practicality of the HER-PT
framework in different network environments. The experiments are designed
around three categories, conducted using the NAS simulator and the Metas-
ploit platform:

e Adaptability experiments: Dynamic network scenarios with differ-
ent frequencies of changes (low, medium, high) are constructed using
the NAS network attack simulator. The performance of HER-PT is
compared with the traditional rule-based approach MulVAL in terms
of convergence speed and success rates, evaluating HER-PT’s adapt-
ability in dynamic network environments.

e Efficiency experiments: Using the NAS simulator, HER-PT is com-
pared with classical DQN and its variants (e.g., Double DQN and
Dueling DQN) under sparse reward environments. Different reward
mechanisms, network structures, and experience replay strategies are
analyzed to systematically examine the effect of HER in accelerating
model convergence and enhancing efficiency.

57

e Practicality experiments: Abstract penetration strategies gener-
ated by HER-PT on the NAS platform are translated into executable
attack commands on the Metasploit platform. Penetration testing tasks
are performed in six real-world network scenarios of varying scales and
complexity. The experiments evaluate HER-PT’s penetration success
rates and operational efficiency, providing a comprehensive assessment
of its applicability and reliability in real-world penetration testing tasks.

3.17 DynPen

In 2024, Qianyu Li et al. published the paper “DynPen: Automated Pen-
etration Testing in Dynamic Network Scenarios using Deep Reinforcement
Learning” [19]. Most of the existing research in the field of automated pene-
tration testing focuses on penetration testing in static network environments,
but real-world network environments are dynamic, making it difficult for ex-
isting methods to adapt to this complexity. This research study proposes an
automated penetration testing framework called DynPen, designed to meet
the challenges of dynamic environments.

3.17.1 Research Methods and Implementation Details

DynPen is based on DRL and designed specifically for dynamic network
environments. The overall structure of DynPen includes four modules:

Penetration Testing Agent (PT Agent)

Trajectory Logging Module

Monitoring Module

Backtracking Module

These modules work together to enhance the system’s adaptability to dy-
namic environments.
Penetration Testing Agent (PT Agent)

The PT agent of DynPen uses DRL to make decisions, aiming to learn opti-
mal penetration paths through continuous interaction with the environment.
The following features are incorporated:

38

e HDRL Structure: The PT agent is designed with a two-layer Hier-
archical Deep Reinforcement Learning (HDRL) structure. The upper
layer selects suitable subtasks (e.g., vulnerability exploitation, and cre-
dential connections), while the lower layer consists of three sub-agents
for local vulnerability exploitation, remote vulnerability exploitation,
and credential connections. This hierarchical design reduces the action
space, enhancing learning efficiency and testing performance.

e Expert Knowledge Base Assistance: To improve sample efficiency,
DynPen incorporates an expert knowledge base to assist and constrain
penetration testing strategies during the reinforcement learning pro-
cess. This helps the agent obtain effective data faster by reducing
unnecessary exploration.

Trajectory Logging Module

The trajectory recording module first logs all decisions made by the agent,
including state, action, and timestamp information. Based on the trajectory
data, critical node analysis can then be conducted. This involves identifying
the nodes in the network topology that have the greatest impact on penetra-
tion paths, such as highly connected nodes or nodes with high betweenness
centrality. By doing so, the path selection in the backtracking module can be
optimized, enabling the identification of nodes that need to be re-explored
based on the trajectory data.

Monitoring Module

The monitoring module detects changes in the network, focusing on the status
of critical nodes controlled by the agent. Key features include:

e Change Detection: Periodic scanning of nodes and comparison with
historical data to detect changes.

e Critical Node Identification: Determines critical nodes (e.g., nodes
with high connections or connected to high-value nodes) and prioritizes
their monitoring to reduce resource usage while ensuring sensitivity to
important changes.

Backtracking Module

The backtracking module addresses unexpected changes in dynamic network
environments by:

29

e Resuming Penetration Operations: Identifies affected nodes and
resumes penetration testing from those points.

e Alternate Path Exploration: Allows the agent to attempt other
paths if penetration fails, ensuring continuity of testing tasks.

3.17.2 Experimental Design and Results Analysis

The author, building upon the static scenarios from previous research, namely
HDRL+HF, designed four types of simulated dynamic networks to validate
the effectiveness of DynPen through simulation experiments. These include
changes in node attributes, changes in network connectivity, variations in
the number of nodes, and the introduction of honeypot nodes. The main
experimental designs and results are as follows:

Comparison Methods

The following models were compared:

1. Random Method: A strategy that selects penetration paths ran-
domly.

2. DQN Valid Model: A simplified model using Deep Q-Networks.
(from Qianyu Li’s research on 2023, INNES [36])

3. HDRL-+HF Model: A hierarchical deep reinforcement learning model
used as a benchmark. (from Qianyu Li’s research on 2023, HDRL [34]
and INNES [36])

4. DynPen Model: The proposed dynamic adaptive penetration testing
system.

Experimental Results

The experiments revealed that, although the existing HDRL+HF model per-
formed well in static scenarios, its lack of environment monitoring and ad-
justment mechanisms resulted in significantly poorer performance in dynamic
scenarios compared to DynPen. On the other hand, the random strategy
without a learning mechanism performed the worst across all scenarios.

60

3.18 DRLRM-PT

In 2024, Yuanliang Li et al. published a paper titled “Knowledge-Informed
Auto-Penetration Testing Based on Reinforcement Learning with Reward Ma-
chine” [11]. The paper proposed the DRLRM-PT framework, which inte-
grates Reward Machines (RMs) with Deep Reinforcement Learning (DRL)
to address several critical issues in automated penetration testing, including:

e Low sampling efficiency: Existing methods require extensive envi-
ronmental interactions to derive optimal strategies.

e Complexity of reward functions: Defining clear and effective re-
ward mechanisms for penetration testing is challenging.

e Lack of interpretability: Current RL models struggle to provide
transparent and interpretable decision rationales.

3.18.1 Overview of DRLRM-PT Framework

The DRLRM-PT framework leverages reward machines as a driving mecha-
nism. Its main methodologies include:

e Task decomposition: Reward machines are used to break down com-
plex penetration testing tasks into multiple subtasks, each with an in-
dependently defined reward function.

e Knowledge embedding: Information from cybersecurity knowledge
bases such as MITRE ATT&CK is embedded to provide explicit guid-
ance.

This approach improves sampling efficiency during training, enhances the
flexibility of reward mechanism design, and increases the interpretability of
the generated strategies.

3.18.2 Reward Machines (RMs)

Reward Machines are one of the key innovations in this research. Acting
as state machines, they encode domain knowledge by breaking down com-
plex penetration testing tasks into manageable stages and assigning rewards
for actions within these stages. With RMs, a complex penetration testing
task can be expressed as a series of interrelated subtasks with specific goals.
This task decomposition enables the agent to efficiently learn optimal actions
during training, significantly reducing ineffective exploration.

61

Types of Reward Machines

The paper introduces two distinct RM designs, R1 and R2, to guide the
penetration testing process at different levels of granularity:

e R1: A simpler design that divides penetration testing tasks into three
stages: discovering new credentials, connecting to new nodes, and es-
calating node privileges to control more assets.

e R2: A more detailed design that adds an extra subtask—discovering
new nodes before searching for credentials. The finer task decompo-
sition in R2 provides clearer guidance for agents, thereby improving
strategy training efficiency.

3.18.3 POMDP Modeling and DQRM

Specifically, the DRLRM-PT framework models the penetration testing task
as a Partially Observable Markov Decision Process (POMDP) and uses deep
reinforcement learning to find the optimal strategy. Throughout the pro-
cess, reward machines are employed to decompose tasks, generate subtask
sequences, and assign independent reward functions to each subtask, im-
proving the agent’s learning efficiency.

Introduction of DQRM

In implementation, the research team proposed an enhanced version of the
traditional Deep Q-Network (DQN), named DQRM (Deep Q-learning with
Reward Machine). DQRM effectively incorporates domain knowledge through
reward machines, enhancing the DQN.

Roles of Reward Machines in DQRM
RMs play two primary roles in this framework:

e Guiding the agent through the complex path from goal-setting to goal
achievement.

e Providing specific and independent reward mechanisms for each inter-
mediate step.

This design enables DQRM to exhibit significant efficiency advantages in
handling complex tasks.

62

Cybersecurity h

Knowledge Base
| (eg., MITRE ATT&CK, Cyber Kill [+
* Chain, etc.) T
¥ Y

Reward Machine —
Subpolicy TT Agent

Subtask for subtask: _
'-‘I\.Lk> (c.g., u= u2),| Subpolicy for uy:

Cybersecurity Domain
Knowledge Encoding

Event Set :

'a": 'discovered new nodes',

b'": 'discovered new credentials’,
d

<tb, - <leklp, 0= <lokg, 0> <h&d&!fkg, 17

'c": 'lateral moved/connected to a new node',
'd": 'privilege elevated',
'e" 'new flags captured’,

. o Reward 5
Events I "| Subpolicy for u, :
Event Detector |(¢-g-. {'h'd"'T}) e
1 .
(Labeling Function) Subpolicy for us :

S

A

Action Space:

‘('-:llejxsve;gndfil:greipdﬂ::;ﬁ count”. 'l‘arget Network SyStem loit local vul; bili

iy Vi £ . "exploit local vulnerability"
"leaked credentials”, "exploit remote vulnerability"
"discovered node count”, ["conneet”

"nodes privilege level" f

- =

\— Observation e,{ |_- Action

4

4

Figure 3.13: Architecture of the knowledge-informed AutoPT framework
(DRLRM-PT) [11].

3.18.4 Experimental Evaluation

To validate the effectiveness of the proposed method, the research team con-
ducted experiments using Microsoft’s open-source network simulation plat-
form, CyberBattleSim.

Tested Network Environments

The experiments involved two typical network environments:

e CyberBattleChain: A sequential network simulating scenarios where
the agent needs to gradually escalate node privileges.

e CyberBattleToyCtf: A more complex mesh network with multiple
nodes and sensitive data, simulating more realistic enterprise network
environments.

These experiments aimed to evaluate the performance of DRLRM-PT
with integrated reward machines in different network types and compare it
to traditional DQN models.

3.18.5 Experimental Results

The results showed that the DQRM model enhanced with reward machines
significantly outperformed baseline DQN models in terms of training effi-
ciency and penetration testing performance.

63

Performance Comparison

During training, agents using reward machines exhibited the following ad-
vantages:

e Completed complex tasks with fewer steps.

e Achieved substantially higher cumulative rewards compared to tradi-
tional models.

Impact of Reward Machine Designs

Furthermore, the experiments revealed that more detailed reward machine
designs (such as R2) further improved agent performance, as more precise
task decomposition provided clearer guidance, enabling the agent to identify
the optimal attack path more quickly.

3.19 DL-IAPTS

In 2024, Abdul Samad and others published a paper titled “Advancements in
Automated Penetration Testing for IoT Security by Leveraging Reinforcement
Learning” [37]. This paper proposed an Intelligent Automated Penetration
Testing System (IAPTS) based on deep reinforcement learning to address the
inefficiencies and long duration of automated penetration testing in medium-
to-large-scale networks. We denote this DL-IAPTS.

3.19.1 Methodology

The authors modeled the penetration testing environment as a Partially Ob-
servable Markov Decision Process (POMDP), which is well-suited for pene-
tration testing scenarios. The optimization of attack paths was carried out
using Deep Q-Networks (DQN). By combining the advantages of Q-learning
and neural networks, DQN can continuously learn from the network environ-
ment to identify optimal attack paths.

To ensure the system can adapt in real-time to changes in network states,
the study introduced a dynamic threat matrix generated using tools like
MulVAL and Shodan (referred to as “Shadov” in the original text but later
inferred to mean Shodan). This matrix continually updates network node
information to support the training of the reinforcement learning model.
DL-IAPTS employs the Common Vulnerability Scoring System (CVSS) to
assign reward values to each attack node. CVSS scores quantify the severity

64

of vulnerabilities and convert them into rewards, motivating the system to
prioritize more critical attack paths.

The specific modules of DL-IAPTS include:

1. Dynamic Network Intrusion Matrix Generation: The dynamic
matrix represents the current state of network intrusions. The study
used MulVAL and Shodan tools to construct a continuously updated
threat matrix for reinforcement learning training and updates.

2. Deep Q-Learning Network Training: The system utilizes DQN to
train on the dynamic matrix and automatically generate optimal at-
tack paths. DQN evaluates the rewards of different states and actions,
continuously adjusting strategies to ensure the selected path maximizes
the overall attack efficiency.

3. POMDP Model Construction: The POMDP model describes state
transitions and partial observability in penetration testing. In this
model, the system learns penetration testing strategies through stochas-
tic state transitions, helping it make optimal decisions in complex en-
vironments.

3.19.2 Experiments

To validate the effectiveness of DL-IAPTS, the researchers conducted multi-
ple experiments. In these experiments, they used the Shodan tool to collect
potential vulnerabilities, open ports, product information, and protocol data
from the network. They then employed the MulVAL tool to generate attack
graphs for the network environment, which were used to train and optimize
the deep reinforcement learning model.

The primary goal of the experiments was to optimize attack paths through
the reinforcement learning model, thereby improving the efficiency and qual-
ity of penetration testing. Researchers used the MulVAL system to generate
attack graphs and DQN to optimize them. In the experiments, DL-IAPTS
successfully generated attack paths automatically and identified high-priority
attack nodes. The tests covered various types of network nodes, including
file servers, web servers, and workstations. The attack path for each node
was optimized by DQN, and the system leveraged a reward mechanism to
prioritize and attack high-risk nodes.

65

3.20 Overall Analysis of DQN Approaches

Based on the summary of previous papers, we can identify that the main
challenges in the research of automated penetration testing focus on two
major issues:

1. The application of large and complex network environments.

2. The sparse reward problem.

When traditional DQN is applied to automated penetration testing, it
inherently encounters these two problems. Therefore, most researchers have
proposed solutions specifically targeting these challenges.

We can also observe that some studies are from the same author or re-
search team. For example:

e NDSPI-DQN (2021) [4] and ND3RQN (2022) [8] were developed by
the same team. Along with DQfD-ATIPT (2022) [9], all three studies
originate from the same research institution.

e INNES (2023) [36], HDRL (2023) [34] and DynPen (2024) [19] are
from the same author.

e CJA-RL (2021) [5] and OAKOC (2022) [33] are also from the same
author.

We will compare these studies collectively. It is evident that research from
the same team or institution often shares certain methodologies or technolo-
gies to some extent.

3.20.1 Analysis of NDSPI-DQN, ND3RQN and DQfD-
AIPT

Let us first look at NDSPI-DQN [4] and ND3RQN [8]. As shown in
Table 3.1, the technical features and differences between these two studies
are listed. It can be seen that ND3RQN was developed based on the results
of NDSPI-DQN. Compared to NDSPI-DQN, ND3RQN demonstrates greater
practicality.
About DQfD-AIPT [9], when compared to NDSPI-DQN [4] and ND3RQN

[8], it uses expert knowledge as the driving force, which is also a commonly
used approach. Later on, we will provide a detailed comparison of all stud-
ies that apply similar techniques. This method abstracts expert knowledge

66

Table 3.1: Comparison of NDSPI-DQN and ND3RQN

Technical
Method

NDSPI-DQN (2021) [4]

ND3RQN (2022) [3]

Noise Network

Uses Gaussian noise for more struc-
tured exploration

Uses random noise for stronger ex-
ploration

Experience Re-
play

Prioritized experience replay based
on TD time error, prioritizing im-
portant samples

Random sampling to avoid data cor-
relation; uses long short-term mem-
ory (LSTM) to process historical in-
formation

Adversarial Ar-

Uses an adversarial network to de-

Similarly introduces adversarial ar-

chitecture compose Q-value into state value | chitecture but adds optimization for
(Value) and advantage (Advantage) | state observation based on POMDP
to improve policy evaluation capa- | requirements
bilities

Model MDP POMDP

Reward Mecha-

nism

Combines internal and external re-
wards to design cumulative targets
under sparse rewards

Adjusts the Q-value computation
formula to resolve overestimation is-
sues and enhances reward feedback

Action Space
Optimization

Decouples action vectors into target
hosts and specific operations to re-
duce the complexity of combined ac-
tions

Introduces historical memory and
uses LSTM to optimize decision-
making under the same observation
but different histories

into standard quadruples, then employs TD-error-based prioritized replay,
combined with n-step returns and supervised loss, to ensure the training ef-
fectiveness of the agent. However, I believe this research heavily relies on
expert knowledge, requiring a substantial amount of it to achieve good re-
sults, which makes it less practical.

3.20.2 Analysis of INNES, HDRL and DynPen

INNES and HDRL can be considered as the precursor studies of DynPen.
Each of these three studies has its own strengths and focuses. The results of
the comparative analysis are shown in the Table 3.2.

67

89

Table 3.2: Comparison of INNES, HDRL, and DynPen

Feature INNES (2023) [36] HDRL (2023) [34] DynPen (2024) [19]
Core Idea Focusing on DQN_valid to | Hierarchical DRL (HDRL) | A model for dynamic network
constrain invalid actions. model incorporating expert | environments with trajectory

knowledge graphs and rules to
optimize learning efficiency.

recording, real-time monitor-
ing, and backtracking mod-
ules for adaptive learning.

Challenges Addressed

Unreasonable PT process
characterization and low data
efficiency of DRL.

Large state/action spaces
causing difficulty in strategy
learning and low random
exploration efficiency.

Slow convergence and inabil-
ity to adapt to dynamic net-
work environments.

State Representation
(MDP/POMDP)

Based on Markov Decision
(MDP), assuming
fully observable states.

Process

MDP-based, wusing expert
knowledge to decompose
tasks into smaller state spaces
for stability.

MDP-based with dynamic
monitoring to update state
representation.

Action Space Characteris-
tics

Action space dynamically
constrained by DQN_valid to
avoid invalid exploration.

Actions divided into three
categories (local exploitation,
remote exploitation, connec-
tion) handled by multi-layer
agents.

Includes complex actions
(e.g., scanning, exploitation,
connection) with dynamic
adjustments of valid action
sets.

Reward Mechanism

Immediate rewards based on
the effectiveness of current ac-
tions.

Immediate rewards + advice-
driven rewards based on ex-
pert optimization.

Combines immediate rewards
with trajectory-level evalua-
tion for overall task optimiza-
tion.

69

Feature

INNES (2023) [36]

HDRL (2023) [3]

DynPen (2024) [19]

Dynamic Adaptability

Limited adaptability, suitable
for static or simple network
scenarios.

Weak adaptability to dynam-
ics, primarily for static large-
scale networks.

High adaptability with trajec-
tory recording and backtrack-
ing modules for dynamic envi-
ronments.

Integration of Expert

Knowledge

No expert knowledge, purely
relies on DRL.

Expert knowledge graphs and
rule bases guide action se-
lection, reducing blind explo-
ration.

Combines expert-defined tra-
jectory rewards and dynamic
modules with historical data
for strategy optimization.

State/Action Space Scale

Simple, constrained by
DQN _valid to limit state and
action size.

Hierarchical structure decom-
poses large state and action
spaces into smaller subtasks.

Suitable for large dynamic
network environments, with
state and action spaces dy-
namically adjusted.

Experimental Environ- | Simulated static network | Experiments conducted in | Dynamic network simulation

ment environments for automated | large-scale static network | environments, emphasizing
penetration testing experi- | simulation environments. real-time adaptability and
ments. fast strategy generation.

Model Complexity Low, mainly dependent on | Medium, employs multi-agent | High, combining dynamic

single agent and simple action
constraints.

structure and expert knowl-
edge integration.

monitoring, backtracking
modules, and complex trajec-
tory rewards.

Applicable Scenarios

Static small-scale network
scenarios, suitable for well-
defined testing tasks.

Static large-scale networks,
suitable for task decomposi-
tion and optimization in com-
plex topologies.

Dynamic network scenarios,
ideal for rapidly changing
real-world environments.

0.

Feature INNES (2023) [36] HDRL (2023) [34] DynPen (2024) [19]
Advantages Easy to implement and de- | Suitable for large-scale sce- | Highly dynamic adaptabil-
ploy; highly portable. narios, significantly improves | ity, fast convergence; efficient
learning efficiency; reduces | strategy generation in com-
computational resources. plex scenarios.
Limitations Not suitable for dynamic sce- | Strongly dependent on expert | High complexity may increase

narios; weak support for
large-scale environments.

knowledge, which may limit
model autonomy; weak dy-
namic adaptability.

implementation and deploy-
ment costs; relies on extensive
simulation setups and histori-
cal data accuracy.

3.20.3 Analysis of Research Related to MulVAL

From the previous review, we can also see that using MulVAL attack graphs
is a relatively common approach. Studies utilizing this method include
Autopentest-DRL (2020) [2], CJA-RL (2021) [5], MDDQN (2023) [35], ASAP
(2020) [3], DL-IAPTS (2024) [37], and OAKOC (2022) [33]. A detailed anal-

ysis and comparison are shown in Table 3.3.

71

CL

Table 3.3: Comparison of frameworks related to MulVAL

Framework Features Application Scenario Model Experiment
Based on MulVAL and DQN, uses .
Tested in real network scenar-
Autopentest-DRL (Hu | Shodan to generate network topol- . .
.. . Small-scale networks MDP ios, path discovery accuracy of
et al., 2020) [2] ogy, optimizes penetration paths us- 8671
ing deep reinforcement learning ¢
CJA-RL (Gangupan- Introd’l,lces Crown Jewel Analysis Enterprise network key asset Mu.ltl—path opt.lmlzatlon ex-
tulu et al., 2021) [5] (CJA)” and network structure anal- protection analysis MDP periments showing key nodes
v ysis, integrates MITRE framework and bottlenecks
Improved DQN algorithm with . .
MDDQN (Yi & Liu, | Double Deep Q-Network (DDQN), | Large-scale network penetra- Tested in networks of various
. . . . MDP scales, faster and more stable
2023) [35] solves convergence issues and en- | tion testing path design
: convergence
hances efficiency
Automated penetration testing . el .
1 1 fi-
ASAP (Chowdhary et | framework based on DQN, utilizes Sjg;itzggl nzzibl g};uljint;or MDP Tested on 300 hosts, generates
al., 2020) [3] CVSS scoring to model rewards and Patli p & paths in under 70 seconds
. . large enterprise networks
transition matrix
Task. modeled. SIS POM].)P’ e Security auditing and pene- Focuses on small to medium-
DL-TAPTS (Samad et | phasizes learning reuse to improve
. . . tration testing of small to | POMDP sized networks, highlights
al., 2024) [37] efficiency of penetration testing
. medium-sized networks learning reuse effectiveness
strategy generation
Combines OAKOC terrain analysis | Penetration path analysis for)
OAKOC (Gangupan- | framework, models terrain charac- | large, complex networks, em- Tested on networks with over
’ ’ ! MDP 1000 nodes, includes terrain

tulu et al., 2022) [33]

teristics into attack graphs and re-
ward mechanisms

phasizing the impact of net-
work terrain

analysis

In summary, it is evident that using MulVAL attack graphs is one of the
key approaches in the field of automated penetration testing. From the table,
we can also see that applying these methods to larger-scale networks and
utilizing POMDP models are emerging trends for future research. The design
of reward mechanisms is becoming increasingly diverse and sophisticated.
These mechanisms significantly enhance the practicality and relevance of
penetration testing strategies.

3.20.4 Analysis of Research Related to HER, PER and
Expert

Next, we analyze studies that have utilized experience-related techniques.
From the previous review, we can observe the following: HER-PT (HER)
[10], NDSPI-DQN (PER) [4], DQfD-AIPT (PER) [9], DynPen (Expert as-
sistance) [19], MDDQN (Expert assistance) [35], and ND3RQN (LSTM) [8].
All these studies employ methods associated with experience. We conducted
a comparative analysis of these studies, as shown in Table 3.4.

73

2

Table 3.4: Comparison of frameworks and methods related to HER, PER and Expert

Framework or AppllC::thlOIl Model Type Improved Re- Exp.erlment Practlcallty.
Core Features Scenarios and | and Task Defi- . Environment and Applica-
Method ‘e play Strategies . .
Advantages nition and Tools tion Scenarios
Suitable for
Uses Hindsight | multi-host net-
Experience Re- | works, optimizing
play (HER) to | tasks in sparse Goal redefinition Suitable for
modify the ex- | reward envi- based on HER, mllti host c
perience pool, | ronments for reconstructing Uses the NAS reu ar-d 0 sile)zaie
reconstructs automatic pen- | MDP, task de- | failed sample | simulator for io:V emphasizin
failed sample | etration testing, | fined as a sparse | goals, enhancing | multi-host scenar- ’) P . &
HER-PT [10] . . s . . the integration
goals, increases | accelerating the | reward path plan- | sample utiliza- | ios and optimizes
.) .) . i of automated
the proportion | learning of op- | ning problem. tion, accelerating | Metasploit ~API stratesios ith
of positive sam- | timal attack convergence in | for actual attacks. .g W
. . practical deploy-
ples in sparse | paths. Mainly sparse reward ments
reward scenarios, | addresses sparse environments. '
accelerates model | reward and multi-
convergence. host adaptation

problems.

6L

Framework or Appllc?tlon Model Type Improved Re- Expferlment Practlcallty.
Core Features Scenarios and | and Task Defi- . Environment and Applica-
Method ‘e play Strategies . .
Advantages nition and Tools tion Scenarios
bi PE
Com hes R Aimed at large-
(Prioritized Ex- scale networks
perience Replay) . ’
1 PE
with TD-error :idll:::gogn vav MDP, task Ursi(j)sl“itize Rsarflo Validates al- | Suitable for com-
and various DQN P defined as opti- p . gorithm con- | plex networks,
extensions (e.g ficiency caused mization of pene- ples, combined vergence and | particularly per-
NDSPI-DQN [4] . 7 | by large action . . with NoisyNet to - . . Y
NoisyNet, Duel- .. tration strategies | . . scalability in | forming well
. . spaces, optimiz- | . increase sampling . .
ing Architecture) | | . in large-scale . large-scale net- | in large action

. . ing algorithm probability of .

to mitigate 1ssues networks. .- work scenarios. spaces.
. . convergence critical samples.
with large action soeed and scala
spaces and sparse in)lit
rewards. v
— o
OII:;;?;ZGS pfjrtid Balances expert Targets complex
Integrates expert planming MDP, task de- xp environments,

. avoids honeypots and interac- ..
experience, bal- | | fined as path | . . | Uses CyberBat- | emphasizing the
ances expert and | complex sce- lannin to tive ~samples in tleSim to simulate | impact of ex

DQD-AIPT [9] | ° <P narios, enhancing | P o8 PER to optimize P
interactive data, .. . avoid honey- . complex networks | pert samples on
. training efficiency . sample diver- . .
and incorporates pots in complex | . with honeypots. honeypot avoid-
and robustness sity and address
PER. . . networks. . ance and path
while preventing overfitting issues. e .
optimization.

expert overfitting.

9.

Framework or Applic?tion Model Type Improved Re- Expferiment Practicality.
Method Core Features Scenarios and | and Task Defi- lav Strategies Environment and Applica-
Advantages nition play g and Tools tion Scenarios
Black-box pen-
Incorporates etration testing
LSTM into d : . .

S. Lo deep scenarios, opti- Replay buffer Suitable for
reinforcement mizin, strate with LSTM information-
learning, enhanc- & Y POMDP, task de- . Uses CyberBat-

. formulation in records histor- . . scarce and
ing memory of . fined as strategy | . . tleSim to validate .
. environments C . . ical trajectory dynamic en-
ND3RQN [8] state history, . optimization in | . : strategy general- |
. with scarce information, . . vironments,
suitable for par- . black-box pene- . ity in black-box .

. observational . . suitable for par- . offering excellent
tially observable | . . tration testing. . scenarios. -
Markov deci information and tially observable adaptability and

. uncertainty, im- environments. generality.

Ston PrOCesses roving generalit
(POMDPs). P Y

and adaptability.

L.

Framework or Applicti—ltion Model Type Improved Re- Expferiment Practicality.
Core Features Scenarios and | and Task Defi- . Environment and Applica-
Method ‘e play Strategies . .
Advantages nition and Tools tion Scenarios
Dynamically
adapts to net-
works by adjust- | Adapts to dy-
ing strategi.es namic .network MDP, task de- Incorp(?rates _a Emphasizes
based on his- | changes in pen- dynamic adjust-
. .. - . fined as path Validates decision | quick strategy
torical decision | etration testing, . ment module, - . . .
. . .. planning and . adaptability in | adjustment in
trajectories and | significantly . . . leveraging re- . .
DynPen [19] . . . decision-making . dynamic net- | dynamic net-
an environment | improving adapt- | . . | played historical . . .
o . in dynamic . . work simulation | works, suitable
monitoring mod- | ability and learn- . trajectories to .
. . . .| network environ- . .. environments. for real-world
ule, dynamically | ing efficiency in adjust decision .
S . . . ments. environments.
adjusting action | rapidly changing spaces.
spaces in response | scenarios.
to environmental
changes.
. Suitable for at-
Combines at- . .
tack oraphs and tack path design, Optimizes sample Focuses on
srap leveraging at- replay by enhanc- reward optimiza-
Double Deep . S Tests path plan- | | .
tack graphs to ing priority re- . . tion in attack
Q-Networks optimize reward MDP, " task de- wards with at- | 8 efficiency ath lannin
MDDQN [35] (DDQN) to | P) fined as attack . and stability on | 2% P &
. . mechanisms and . tack graphs, im- suitable for at-
provide prior path planning. . attack graphs of
accelerate conver- proving the effec- tack strategy

rewards, partially
addressing sparse
reward issues.

gence stability in
specific network
structures.

tiveness of sparse
reward samples.

varying scales.

design in specific
scenarios.

In summary, different methods, through the integration of experience
replay mechanisms and deep reinforcement learning, demonstrate unique ad-
vantages in addressing challenges such as sparse rewards, large action spaces,
and dynamic network environments. From goal redefinition based on HER
to sample balancing with expert demonstrations, and further to enhancing
adaptability with LSTM and dynamic adjustment modules, these approaches
achieve varying degrees of optimization in sample utilization, training effi-
ciency, and environmental adaptability. These studies not only validate the
effectiveness of the methods in specific tasks but also provide significant theo-
retical support and practical references for the field of intelligent penetration
testing.

3.20.5 Analysis of Research Related to Hierarchical
Mechanisms

From the review, we can also observe that the hierarchical agent approach
is widely applied. This includes HA-DRL [6], DynPen [19], HDRL [34], and
CRLA [31]. A detailed comparative analysis is shown in Table 3.5.

78

6.

Table 3.5: Comparison of HA-DRL, HDRL, and DynPen

Feature

HA-DRL (Tran et
al., 2021) [6]

HDRL (Li et al.,
2023) [34]

DynPen (Li et al.,
2024) [19]

Key Characteristics

Uses algebraic decom-
position to reduce the
large discrete action
space.

Combines expert prior
knowledge and hierar-
chical agents to im-
prove sample efficiency
and reduce invalid ex-
ploration.

Focuses on dynamic
network environments,
adding adaptability
and fast convergence
capabilities.

Application Scenar-
ios

Penetration testing in
static network environ-
ments.

Penetration testing
in static or large-
scale complex network

environments.

Penetration testing
in dynamic network
environments, with
adaptability to scenario
changes.

Research Approach

Proposes a hierarchical
multi-agent DRL frame-
work to address action
space explosion.

Divides tasks into three
action types, using ex-
pert knowledge to guide
action selection and re-
duce exploration costs.

Introduces trajectory
recording and envi-
ronment monitoring
modules in dynamic
scenarios to optimize
strategy adjustments.

Action Space Hierar-
chy

Action space is de-
composed algebraically,
with each subspace as-
signed to an indepen-
dent agent.

Action space is divided
into three types: local
exploitation, remote ex-
ploitation, and connec-
tion actions, each han-
dled by a specific agent.

Similarly divided into
three types but dy-
namically adjusts ac-
tion space with scenario
adaptation modules.

08

Feature HA-DRL (Tran et | HDRL (Li et al.,, | DynPen (Li et al.,
al., 2021) [6] 2023) [34] 2024) [19]

Sub-Agent Training | Sub-agents are trained | A high-level agent | Sub-agents are trained
independently and do | determines which | dynamically and update

not share information.

sub-agent to invoke;
sub-agents are opti-
mized using
knowledge.

expert

decision spaces based on
real-time monitoring.

Incorporation of Ex-
pert Knowledge

Not introduced.

Embeds rules and
knowledge graphs to
constrain actions and

Does not directly in-
corporate expert knowl-
edge but indirectly im-

optimize exploration | proves decision-making
paths. via dynamic adaptation
and trajectory records.
Underlying Model MDP MDP with partial incor- | MDP, focusing on rapid
poration of prior knowl- | decision optimization in
edge. dynamic scenarios.

Experimental Sce-
narios

Validated on the Cy-
bORG platform, simu-
lating small-scale net-
work environments.

Validated on custom
static network scenarios
to demonstrate scalabil-
ity to large networks.

Simulates dynamic net-
work environments to
evaluate learning speed
and accuracy in dy-
namic scenarios.

Practicality

Provides a scalable
method but requires
further wvalidation in
large-scale
ments.

environ-

Significantly =~ reduces
sample complexity,
making it suitable for
large-scale networks.

Offers dynamic adapt-

ability, making it
highly applicable in
complex real-world
environments.

Furthermore, regarding CRLA [31], I also mentioned this in its review.
The hierarchical agent structure design of CRLA [31] is essentially identical
to that of HA-DRL [6], with only a change in name. Even the segmented tree-
related design is the same. The number of hosts and the size of the action
space in the experiments are also consistent between the two. The main
difference is that CRLA introduces the QMIX mixing network mechanism
and applies improvements such as Dueling DQN. Theoretically, it should be
able to support larger-scale networks and sparse reward environments.

3.20.6 Other Approaches

In addition to the aforementioned methods, some studies have adopted al-
ternative approaches. Below, we provide an analysis and summary of these
studies:

1. Improved-PenBox [32]
This study focuses on a different set of challenges compared to those ad-
dressing large network environments, extensive action spaces, or sparse
reward settings. Specifically, it combines the original PenBox frame-
work with reinforcement learning to address the issue of requiring fully
manual script programming for PenBox operations. This targeted in-
tegration makes it a highly specialized solution.

2. SmartGrid-PTDRL [7]

This study is noteworthy as the first and, so far, the only research
dedicated to automated penetration testing in smart grids, filling a
critical gap in the field. The same author also introduced a novel
method called DRLM-PT, which employs a reward machine to encode
domain knowledge and drive agent behavior. This innovative use of
reward machines highlights the author’s creative and forward-thinking
approach.

3. INNES [36]
This research identifies a significant issue in many studies that rely
heavily on prior knowledge, such as expert experience, which can be a
limiting factor. INNES addresses this by gradually building a network
state representation during the exploration process. It introduces the
concepts of a known node set K and a valid action set V', restricting
action selection to valid action spaces. This approach reduces depen-
dency on prior knowledge, decreases the size of the action space, and

81

mitigates the impact of sparse rewards by constraining ineffective explo-
ration. It’s a compelling idea that effectively tackles multiple challenges
simultaneously.

82

Chapter 4

Systematic Literature Review
of Other Algorithms

In this chapter, we will introduce studies that utilize other algorithms as
their core reinforcement learning approach.

4.1 AC (Actor-Critic)

The Actor-Critic (AC) algorithm is a foundational method in reinforcement
learning that combines the strengths of value-based and policy-based ap-
proaches [38]. It employs two distinct components: the Actor, which learns
a policy to select actions, and the Critic, which evaluates the actions by es-
timating the value function. The Actor updates the policy directly based on
feedback from the Critic, while the Critic updates the value function using
temporal difference (TD) learning. This synergy allows the AC algorithm
to address the inefficiencies of pure policy gradient methods by reducing
variance while maintaining stable learning. AC algorithms are flexible and
serve as the basis for many advanced reinforcement learning methods, such
as A3C (Asynchronous Advantage Actor-Critic) and PPO (Proximal Pol-
icy Optimization). They are widely applied in areas like continuous control
tasks, financial modeling, and real-time decision-making systems due to their
ability to handle high-dimensional action spaces and adapt to dynamic envi-
ronments.

4.1.1 HAE

In 2022, Hoang Viet Nguyen and Tetsutaro Uehara published a paper titled
“Hierarchical Action Embedding for Effective Autonomous Penetration Test-

83

ing” [39]. This paper proposed an automated penetration testing framework
based on the Hierarchical Action Embedding (HAE) model. By integrating
the MITRE ATT&CK knowledge base and the Wolpertinger architecture
(WA) [40], this model efficiently manages and simplifies the large action
space, thereby improving the efficiency and accuracy of automated penetra-
tion testing. The research aims to address the limitations of traditional rein-
forcement learning methods in large-scale and complex networks, enhancing
the precision and efficiency of automated penetration testing.

The HAE model is designed based on abstraction and encoding of different
layers of information in penetration testing. It consists of the following three
layers:

Tactical Type Layer

The tactical type layer systematically encodes the various tactics employed by
attackers or penetration testers in a network. This layer leverages the MITRE
ATT&CK knowledge base, which comprehensively documents the tactics and
techniques used by attackers in real-world scenarios. To enable reinforcement
learning algorithms to utilize these tactics, the researchers adopted a multi-
hot encoding approach. Each tactic is represented by a vector, where each bit
corresponds to a specific tactic type. For instance, for a technique associated
with a single tactic, such as Active Scanning (T1595), the corresponding bit
is set to 1, and all others are 0. For techniques associated with multiple
tactics, such as Valid Accounts (T1078), the bits corresponding to multiple
tactics are set to 1. This multi-hot encoding not only effectively represents
the relationships between techniques and tactics but also ensures that the
reinforcement learning model can understand and utilize these relationships
to optimize decision-making processes.

Feature Layer

The feature layer refines the representation of techniques in the MITRE
ATT&CK knowledge base to generate technical feature embeddings. Here,
the researchers used supervised learning methods to vectorize each technique
based on its relationships with other security components such as platforms,
permissions, malware, attack groups, and mitigations. The core idea is to
capture the characteristics of each technique more accurately by analyzing
its connections with these components. For example, certain techniques
may only be executable on specific platforms or require certain permissions.
By modeling and training these relationships, the resulting feature embed-
dings represent the essence of each technique, enabling reinforcement learning

84

agents to make more effective decisions in complex network environments.

During the training of technical feature embeddings, the researchers first
collected a large dataset of 2 million positive samples from the MITRE
ATT&CK knowledge base. They then built a supervised learning model
to capture the relationships between techniques and various security com-
ponents. The model used category embedding to encode these relationships
into fixed-size embedding vectors, which were further processed through fully
connected layers and cosine similarity calculations to form the feature layer.
This layer provides the reinforcement learning model with detailed technical
representations, enabling it to distinguish subtle differences between tech-
niques.

Network Structure Layer

The network structure layer focuses on the connections and topology between
hosts in the network, providing additional environmental information to the
reinforcement learning agent to enhance penetration testing performance.
This layer employs Node2Vec technology to transform the entire network
topology into n-dimensional vectors representing hosts and their connectiv-
ity. The researchers first modeled each host and its associated subnetwork,
then used Node2Vec to learn and represent the internal connections of these
subnetworks. Node2Vec, a graph embedding technique, simulates random
walks to capture node features, generating vector representations for each
node. This approach provides the reinforcement learning agent with crucial
information about the network topology, such as identifying critical nodes or
tightly connected subnetworks. This information helps the agent prioritize
scanning important subnetworks or attacking high-value targets, improving
testing efficiency and accuracy.

Action Selection Based on Wolpertinger Architecture

After observing the environment state, the framework generates a proto-
action. Then, the action embedding layer retrieves the k nearest actions
to the proto-action using the kNN algorithm for optimization. Finally, the
value evaluation network selects the best action, which interacts with the
environment.

Experimental Platform and Environment

To evaluate the effectiveness of the HAE model, the authors built a custom
multi-step penetration testing environment. In this environment, specific
machines could be exploited using one or more techniques, and penetration

85

testers had to apply these techniques in a particular sequence to fully com-
promise target machines. The design of these attack sequences ensured a high
degree of randomness and uncertainty, reflecting the challenges of real-world
penetration testing. The environment configurations included:

e Attack Sequences: Each machine required a specific sequence of tech-
niques to be compromised, with success rates for each step randomly
set between 75% and 90%, ensuring realism.

e Scenario Configurations: Experiments covered varying numbers of
sensitive machines, techniques, and machines to test the HAE model’s
performance under different levels of complexity.

This environment allowed for flexible control of experimental parameters,
enabling comprehensive validation of the proposed method and ensuring that
the experimental results accurately reflected the HAE model’s performance
in networks of varying complexity.

Experimental Validation

The experiments evaluated three different configurations: the number of sen-
sitive machines, the number of techniques, and the number of machines.

e Sensitive Machines Configuration: In scenarios with different num-
bers of sensitive machines, the HAE model outperformed other rein-
forcement learning algorithms (e.g., DQN, DDQN, A2C), achieving a
100% success rate in compromising sensitive machines in most cases.

e Techniques Configuration: As the number of techniques increased,
the HAE model maintained a high success rate, while the performance
of DQN-based algorithms significantly declined.

e Machines Configuration: In larger network environments, the HAE
model demonstrated stability, showcasing its superiority in handling
complex network structures.

4.1.2 MAR-WA

In 2023, Nguyen and Uehara published a paper titled “Multilayer Action Rep-
resentation based on MITRE ATTECK for Automated Penetration Testing”
[12]. The paper proposed a Multilayer Action Representation (MAR) based
on the MITRE ATT&CK framework, aiming to enhance the efficiency and

86

accuracy of reinforcement learning (RL) in complex network environments.
By representing penetration testing actions as n-dimensional vectors, MAR
enables RL algorithms to handle penetration testing tasks in large, complex
networks more effectively.

MAR-WA: Structuring Penetration Testing Actions into Three
Layers

1. Action Type Layer: Based on MITRE ATT&CK tactics, this layer
describes the high-level goals of penetration testing actions, such as
privilege escalation, persistence, and lateral movement. Using multi-
hot encoding, this layer helps the agent identify logical relationships
between different actions.

2. Action Technique Layer: This layer captures specific attack tech-
niques used in penetration testing. Techniques are represented based
on their relationships with other components in the MITRE ATT&CK
framework, such as platforms, privileges, and software. This helps RL
agents understand similarities between techniques and apply them in
complex network attacks.

3. Action Object Layer: This layer represents the targets of penetration
testing using network topology information, such as subnets and hosts.
Techniques like Node2Vec are employed to embed network nodes (e.g.,
hosts and routers) as vectors, aiding the agent in understanding attack
paths and relationships between different hosts in the network.

By integrating these layers, MAR accurately represents the action space
in large-scale networks, improving the learning efficiency of agents and en-
hancing the effectiveness of their attack strategies.

As shown in 4.1, the implementation of the Technique Feature layer is
based on the relationships between attack techniques and other components
in the MITRE ATT&CK framework. This layer uses a neural network model
to embed techniques into vectors, allowing the agent to understand the sim-
ilarities and differences between various attack techniques. The model takes
into account features such as platforms, privileges, malware, groups, and
mitigations to create a comprehensive representation of each technique.

Epsilon-Wolpertinger Architecture

To address the challenges of high-dimensional discrete action spaces in com-
plex networks, the authors introduced an epsilon-Wolpertinger architecture

87

Raw Data B . el
Technique| Tatics Platforms Permission

Tatics (14) I T1059 Execution Linux [.. User
Positive T1133 | Persistence | Windows | .. Admin
[Permissian (5)]—\ ’—{ Platforms (12)] - e —
q T1078 (Initial Access| macOS | .. Admin
Techniques

(566)

Mitigation (43) Groups (133)
Technique Tatics Platforms Permission
Negative
Malware (474) Sampling T1059 |[Initial Access| Windows | ... Admin

_____________________________ ﬂ

Technique Embedding
T1059 [-0.7841, 0.1223, -0.7174] m
T1133 [0.2891, 0.9100, -0.2105] <:I x @Cnnvsn
T1078 [0.1066, -0.7504, -0.1338]

Figure 4.1: Implementation of Technique Feature layer [12].

[40] (Gabriel Dulac-Arnold et al., 2015) based on k-nearest neighbors (kNN)
and reinforcement learning. This architecture optimizes training time by
reducing unnecessary action searches. In the early training phase, epsilon-
Wolpertinger explores unoptimized action spaces and gradually converges to
more precise action selections, significantly reducing training complexity.

As shown in 4.2, the Wolpertinger architecture combines action embed-
ding with deep reinforcement learning to handle large discrete action spaces
effectively. The architecture uses a proto action selected by the actor net-
work and k secondary actions chosen via the kNN algorithm to improve the
agent’s ability to select optimal actions. The critic network evaluates the
actions, and the argmax function determines the best action to take in each
step.

Experimental Validation

The authors conducted various experiments to validate MAR’s effectiveness,
including different network configurations, the number of sensitive hosts,
types of techniques, and device counts. They designed scenarios with four
difficulty levels (easy, normal, medium, and hard) and compared MAR with
several popular RL algorithms, such as DQN, Double DQN, and A2C.

e Easy and Normal Difficulty Levels: MAR exhibited a very high
success rate, significantly outperforming traditional algorithms when
attacking multiple sensitive hosts and using more attack techniques.

88

4 Actor Network h f/;l\ction Embedding\

Environment |
state

~
i
|

7

Figure 4.2: Wolpertinger architecture [12].

e Medium and Hard Difficulty Levels: As attack sequences grew
longer and the success rates of techniques decreased, the performance
of traditional algorithms declined, whereas MAR maintained robust
performance. In multi-stage, multi-technique environments, particu-
larly in large-scale network systems, MAR demonstrated stability and
effectiveness.

4.1.3 MLAE-WA

In 2020, Nguyen et al. published a paper titled “Multiple Level Action Em-
bedding for Penetration Testing” [41], which mainly addresses the huge action
space problem faced by reinforcement learning algorithms in penetration test-
ing in complex large-scale network environments. In order to improve the
efficiency and accuracy of these algorithms, the authors proposed a multi-
level action embedding method combined with the Wolpertinger architecture
(WA) [40] to optimize the reinforcement learning process for penetration test-
ing. The main contribution is that the method of the WA architecture is
introduced into the field of automatic penetration testing.

Research Methodology

The core of the study lies in the multilayer action embedding approach, which
facilitates better understanding and selection of actions by reinforcement
learning algorithms. This approach includes three layers of embeddings:

1. Action Feature Embedding: Focuses on the type and target of
actions. For example, action types may include subnet scanning, host

89

scanning, or exploiting service vulnerabilities, while targets are specific
subnets or hosts.

2. Network Structure Embedding: Uses the Node2Vec model to em-
bed the network topology, representing relationships between subnets
and hosts. This embedding helps the algorithm understand the connec-
tions between nodes in the network, optimizing the selection of attack
paths.

3. Service Vulnerability Embedding: Embeds information about the
services running on hosts and their vulnerabilities. By processing vul-
nerability descriptions (e.g., CVE identifiers and details) with neural
networks, the approach generates n-dimensional vector representations
of services. This embedding enables the algorithm to better assess
which services are more susceptible to attack.

These embedding layers work in tandem to help reinforcement learning
algorithms select the most appropriate attack actions, thereby improving
performance in complex network environments.

Experimental Design

To validate the effectiveness of the multilayer action embedding, the authors
conducted multiple experiments, divided into the following parts:

1. Action Embedding Testing: The authors first tested the logical
accuracy of the proposed multilayer action embedding approach. The
experiments verified whether the embedding layers accurately reflected
the relationships between different attack actions. Specifically, in the
service vulnerability embedding, the method demonstrated the ability
to group similar services based on vulnerabilities accurately.

2. Performance Testing of Wolpertinger Architecture with Mul-
tilayer Embedding: In this experiment, the authors combined the
multilayer action embedding with the Wolpertinger architecture for
penetration testing and compared it with the traditional DQN algo-
rithm. They tested the system’s performance under scenarios of vary-
ing complexity:

e Proportion of Sensitive Hosts: By increasing the proportion of
sensitive hosts in the network, the difficulty of the task was raised.

90

The results showed that as the proportion of sensitive hosts in-
creased, the performance of the traditional DQN algorithm de-
creased. In contrast, the WA combined with multilayer embed-
ding maintained over 90% accuracy even when the proportion of
sensitive hosts reached 100%.

e Service Success Rate: The algorithm’s performance was tested
in more challenging environments by lowering the success rate of
service attacks. The results revealed that when the service suc-
cess rate dropped to 20%, the accuracy of the DQN algorithm
decreased significantly, whereas the WA with embedding main-
tained over 90% accuracy.

e Network Scale Testing: In large-scale network environments (with
host counts ranging from 10 to 256), the experiments demon-
strated that as the network scale reached 64 hosts, the perfor-
mance of the DQN algorithm nearly dropped to zero. However,
the WA combined with multilayer embedding maintained approx-
imately 70% accuracy even in networks with 256 hosts.

Experimental Results

The experimental results confirmed the effectiveness of the multilayer action
embedding approach. In complex network topologies and service vulnera-
bility environments, this method enabled reinforcement learning algorithms
to more accurately select optimal attack paths. Additionally, the algorithm
significantly outperformed traditional methods in large-scale network envi-
ronments.

By introducing multilayer action embedding, Nguyen et al. substantially
improved the applicability of reinforcement learning algorithms in penetra-
tion testing. This approach not only expanded the network scales manageable
by the algorithms but also enhanced their attack success rates in complex
environments.

4.1.4 Double Agent Architecture (DAA)

In 2021, Nguyen et al. published a paper titled The Proposal of Double Agent
Architecture using Actor-Critic Algorithm for Penetration Testing [42], which
introduced a Double Agent Architecture (DAA) that applies reinforcement
learning to large-scale networks (up to 1,000 nodes) while ensuring perfor-
mance stability.

91

Research Methodology

1. Improved Network Attack Simulator (NAS) The authors first
modified the original Network Attack Simulator (NAS) and proposed an
enhanced version by adding new rules to increase complexity:

Subnet level: Additional constraints were introduced, such as pre-
venting attackers from knowing connections between subnets at the
start; attackers must gradually discover this information through scan-
ning.

Host level: The concept of sensitive hosts was introduced, which con-
tain critical data and offer higher attack rewards, encouraging agents
to prioritize key targets.

Service level: Each service was assigned a randomly distributed suc-
cess rate and attack cost, which dynamically adjust to further increase
the simulation environment’s realism.

Rewards: Several modifications were made to address the sparse re-
ward issue, detailed in the rewards section below.

2. Proposed Double Agent Architecture

Structural Agent: Responsible for exploring and identifying the over-
all network architecture, including scanning subnets and hosts to gather
network information.

— Action space: Scanning subnets, scanning hosts, and passing host
information to the exploitation agent.

— State space: Includes only the reachability and attack status of
hosts within the network, significantly reducing complexity.

Exploitation Agent: Focused on selecting appropriate services to
attack on selected hosts while also refining target host information
through scanning.

— Action space: Scanning services and exploiting services on specific
hosts.

— State space: Concentrates on the information of target hosts and
their services to enable more targeted decision-making.

By dividing action and state spaces logically, the Double Agent Architec-
ture significantly reduces the computational complexity each agent needs to
handle, making reinforcement learning suitable for larger networks.

92

3. Reinforcement Learning Algorithm

e A2C Algorithm in DAA Architecture: The authors selected the
Advantage Actor-Critic (A2C) algorithm for reinforcement learning due
to its efficiency in learning complex policies in asynchronous parallel
environments and its good convergence and flexibility.

e Baseline: The Wolpertinger architecture was used as a baseline model,
as it addresses the large action space problem through action embed-
ding and k-Nearest Neighbor (kNN) search.

The authors used two environments overall:

e The improved NAS was used to train other agents, including the base-
line WA and the DQN series (DQN, DDQN, Dueling DQN, and D3QN).

e A separate environment was designed for the Double Agent Architec-
ture, based on the improved NAS but with modifications to match
the DAA architecture, including adjusted action spaces and a reward
mechanism tailored for the DAA.

Reward Mechanism

1. Reward Mechanism in the Improved NAS

e Reward Calculation: Rewards are based on the success of host at-
tacks. Successfully attacking a normal host yields a base reward r. For
sensitive hosts, the reward is adjusted proportionally based on the ratio
of normal to sensitive hosts, calculated as (Hpormal/ Hsensitive) X 7

e Penalty Mechanism: Any action that changes the environment state
incurs a small penalty to discourage ineffective or resource-wasting be-
havior.

e Objective: This mechanism encourages agents to expand their attack
range and prioritize sensitive hosts while maintaining efficiency through
penalties.

2. Reward Mechanism in DAA
e Structural Agent Rewards:

— Operations like scanning subnets or hosts provide an immediate
base reward ry.

93

— If the structural agent selects the ”choose host” action, its reward
includes the exploitation agent’s total reward (i.e., r1 + r2).

Exploitation Agent Rewards:

— Rewards for operations like attacking services are directly based
on the success of exploitation, following a similar mechanism as

in NAS.
Design Characteristics:

— The reward mechanism separates network exploration (handled
by the structural agent) and host exploitation (handled by the
exploitation agent).

— This separation reduces the state and action space complexity for
each agent, improving efficiency in large network environments.

Objective: The DAA reward mechanism aims to guide the structural
agent to explore network topology while enabling the exploitation agent
to focus on attacking optimal services, enhancing success rates in com-
plex network environments.

Experiments

The experiments consisted of two parts to test algorithm performance in
small and large network environments.

1. Small Network Environment

Network size ranged from 5 to 50 hosts, each running 2 services, with a
fixed number of 7 subnets. The number of sensitive hosts was dynam-
ically adjusted based on total hosts.

Results showed that when the number of hosts was below 20, all al-
gorithms achieved over 90% attack success rates on sensitive hosts.
However, when the host count exceeded 20, the performance of DQN
series algorithms rapidly declined.

In contrast, DAA and A2C with the Wolpertinger architecture main-
tained high success rates in most scenarios, with DAA achieving a 70%
success rate in a 50-host environment, while A2C reached nearly 99%.

94

2. Large Network Environment

e The number of hosts was expanded to between 64 and 1,024, each
running 5 services, with 20 fixed subnets and sensitive hosts accounting
for 10% of normal hosts.

e Results showed that the Wolpertinger architecture with A2C failed
completely when the host count reached 512 or more, with a 0% success
rate on sensitive hosts.

e In contrast, DAA maintained an 81% success rate under the same con-
ditions. Even when the number of services per host increased to 100,
DAA still achieved a 70% success rate.

e Other algorithms’ performance drastically declined as the number of
hosts and services increased.

The results clearly demonstrate that DAA’s Double Agent Architecture
effectively reduces the complexity of state and action spaces for each agent,
significantly improving efficiency and stability in performing penetration test-
ing tasks in complex, large-scale network environments. Compared to other
algorithms, DAA exhibited superior scalability and adaptability.

4.1.5 Overall Analysis of AC Approaches

From the previous review, we can see that there are currently four stud-
ies based on the Actor-Critic (AC) method, all of which were conducted
by the same research team. These studies demonstrate a gradual evolution
from theoretical exploration to practical application, encompassing various
methodological improvements and experimental setups. A detailed compar-
ative analysis is presented in the Table 4.1.

95

96

Table 4.1: Comparison of MALE-WA, DAA, HAE, and MAR-WA

Characteristic

MALE-WA (2020) [41]

DAA (2021) [42]

HAE (2022) [39]

MAR-WA (2023) [12]

Core Method

Multiple Level Action
Embedding (MLAE) com-
bined with Wolpertinger
Architecture (WA)

Double Agent Architec-
ture (DAA) combined with
A2C algorithm

Hierarchical Action Em-
bedding (HAE) combined
with MITRE ATT&CK
knowledge base

Multilayer Action Rep-
resentation (MAR) com-
bined with epsilon-WA

Application Domain

Action optimization in
penetration testing

Large-scale penetration
testing in complex net-
works

Enhancing RL practicality
and efficiency in complex
networks

Improving automated pen-
etration testing in complex
networks through multi-
layer representation

Research Method

Based on Markov Decision
Process (MDP)

Based on MDP

Based on MDP

Based on MDP

Experimental Envi-

ronment

Tested up to 256 hosts with
limited complexity

Tested up to 1000 hosts
with enhanced efficiency
through dual agents

Multi-step environ-
ment tested, supporting
ATT&CK knowledge
integration

Tested 119 complex scenar-
ios covering different dif-
ficulty levels and network
configurations

Key Features

Focuses on reducing action
space through embedded
vector representation

Dual-agent architecture:
one learns network struc-
ture, the other selects

exploitable services

Combines hierarchical em-
bedding with ATT&CK to
improve action space rep-
resentation and efficiency

Optimizes RL performance
in complex networks us-
ing ATT&CK and mul-
tilayer embedding, inte-
grated with epsilon-WA to
reduce training time

Experimental
sults

WA+MLAE performed
well in complex envi-
ronments, maintaining

accuracy above 90%

Compared with DQN
family algorithms, DAA
achieved the best perfor-
mance with 81% accuracy
on networks of 1000 hosts

Compared with four RL
algorithms, HAE signifi-
cantly improved efficiency
and accuracy

epsilon-WA significantly
shortened training time;
MAR outperformed all
compared algorithms in
complex networks

L6

Characteristic

MALE-WA (2020) [41]

DAA (2021) [42]

HAE (2022) [39]

MAR-WA (2023) [12]

Practicality

Initially verified the poten-
tial of WA in penetration
testing

Extended penetration test-
ing to large-scale networks

Closer to real-world multi-
step scenarios, enhancing
practical applications with
ATT&CK integration

Improved potential for
practical penetration test-
ing tools, especially in
complex and multi-step
environments

In conclusion, this author’s research has gradually progressed towards
larger-scale and more complex network penetration testing environments.
It has evolved from early action embedding to more sophisticated hierar-
chical and multilayer action representation methods. The introduction of
the MITRE ATT&CK knowledge base marks a significant turning point in
this research, making the transition from theoretical exploration to practical
application more evident. The experiments have gradually expanded from
simple simulated environments to multi-scenario, multi-step complex simu-
lations, demonstrating the practical scalability of the technology.

4.2 PPO (Proximal Policy Optimization)

The PPO (Proximal Policy Optimization) algorithm was introduced in the
paper “Proximal Policy Optimization Algorithms” [43]. Tt is a policy-gradient-
based reinforcement learning algorithm designed to optimize policies in an
efficient and stable manner. PPO improves upon earlier policy gradient meth-
ods by using a clipped objective function that prevents large updates to the
policy, thus maintaining training stability. It also employs a surrogate loss
function that ensures the updated policy stays close to the old policy by con-
straining the policy ratio within a trust region. PPO uses multiple epochs
of minibatch updates and leverages advantages from the Generalized Advan-
tage Estimation (GAE) technique to reduce variance in the policy updates.
Due to its simplicity, computational efficiency, and high performance, PPO
has become one of the most popular reinforcement learning algorithms and
is widely applied in areas such as robotic control, game playing, and au-
tonomous navigation.

4.2.1 CLAP

In 2022, Yang Yizhou and Liu Xin published a paper titled ”Behaviour-
Diverse Automatic Penetration Testing: A Curiosity-Driven Multi-Objective
Deep Reinforcement Learning Approach” [13]. The paper proposed an in-
novative automated penetration testing framework called CLAP (Curiosity-
Driven Multi-Objective Deep Reinforcement Learning Approach). It primar-
ily addresses the limitations of existing methods regarding single-objective
focus and dynamic action space challenges.

The main challenge tackled by the paper is the need for more comprehen-
sive attack strategies in automated penetration testing. Existing approaches
often focus on a single objective, such as finding a specific attack path to
compromise a target. However, in real-world penetration testing, attackers

98

must balance multiple, often conflicting objectives, such as maximizing sys-
tem exploitation while minimizing time or resource consumption. Therefore,
automated penetration testing agents must not only identify effective attack
paths but also generate diverse behaviors to enable more thorough security
assessments.

Methodology CLAP framework integrates multi-objective optimization,
coverage masking mechanism, curiosity-driven rewards, and Proximal Pol-
icy Optimization (PPO) to generate diverse attack strategies for automated
penetration testing. The detailed components are described as follows:

Multi-Objective Reinforcement Learning. CLAP formulates pen-
etration testing as a Multi-Objective Markov Decision Process (MOMDP),
represented as a tuple (S, A, P, R, v), where S is the state space, A is the
action space, P is the state transition probability, R is the vectorized reward
function, and + is the discount factor. Each objective, such as success rate of
exploiting vulnerabilities and operational time cost, corresponds to a dimen-
sion in the reward vector. To handle the conflicts between multiple objectives,
CLAP uses Chebyshev scalarization to convert the multi-dimensional reward
vector into a scalar value [13]:

Veneny () = max w, - [V,(S;w) — 2], (4.1)
where w, is the relative weight of the o-th objective, and Z represents the
ideal value for the objective. This approach generates a set of Pareto optimal
solutions, effectively balancing the potentially conflicting goals.

Coverage Masking Mechanism. To improve exploration efficiency
and avoid repeated operations, CLAP introduces a coverage masking mecha-
nism that tracks historical actions and dynamically shifts focus to unexplored
areas of the network. A coverage vector C; is maintained to record the agent’s
past actions [13]:

t—1
Cr=>Y Al (4.2)
t'=0

where Ag represents the one-hot embedding of the action taken at time step
t’. This vector is fused with the agent’s current policy output to dynamically
adjust the exploration strategy. The fusion weights are adaptively generated
based on the current state, ensuring flexibility in different network environ-
ments.

Curiosity-Driven Rewards. To address the issue of sparse rewards in
penetration testing, CLAP employs Random Network Distillation (RND) to
generate intrinsic rewards. RND consists of a target network and a predictor

99

network, with the target network providing fixed features and the predictor
network attempting to predict them. The prediction error is used as the
intrinsic reward [13]:

Rcuriosity = Hftarget(S) - fpredictor(s)”Qa (43)

where fiarget and foredictor are the outputs of the target and predictor net-
works, respectively. This mechanism drives the agent to explore unknown
regions even in the absence of external rewards.

Proximal Policy Optimization. CLAP utilizes Proximal Policy Op-
timization (PPO), a robust policy optimization algorithm, to ensure stable
and efficient training. The PPO objective function is defined as [13]:

JoLp(0) = B [min (r4(0) Ay, clip(ri(0),1 — €, 1+ €) Ay)], (4.4)

where 7,() is the probability ratio between the new and old policies, A; is the
advantage function, and € is a hyperparameter that limits the update step
size. By constraining policy updates, PPO enhances the training stability
and convergence speed, making it well-suited for dynamic penetration testing
scenarios.

CLAP framework effectively combines multi-objective optimization, dy-
namic exploration mechanisms, intrinsic rewards, and stable training tech-
niques, enabling the generation of diverse and efficient attack strategies in
complex and large-scale penetration testing environments.

Deep Reinforcement

Target Network .
Learning Coverage Distribution

4) N
P el i s
reis o] = Actor l =
> MLP Li + s
= ol e -
Subnet / Value Head -
— 2
N (e Critic > Value Head gg L
MLP Linear + E a
]
;l — Value Head
— ‘Adpative Weight
= =
= | &=
Fusion Layer
i = o e [nestleverst ot Feure | v
Extractor RelU
Subnet Subnet

'{i
Ed
z
o

=

ttack Box

i L M i
\Efii—- -> Rell [Target Feature Observations
Onservations (b) Fusion Layer

(a) System Architecture

Figure 4.3: Architecture of CLAP [13].

100

Experimental Evaluation To validate the proposed method, the pa-
per conducted experiments in multiple benchmark scenarios, including NAS
(Network Attack Simulator) and a modified version of the 2021 [JCAI CAGE
Challenge. These experiments evaluated the multi-objective learning capa-
bilities and performance efficiency of the CLAP framework. Results demon-
strated that the framework outperformed existing reinforcement learning al-
gorithms in generating diverse attack strategies and handling large-scale net-
works. Notably, it exhibited significant stability and effectiveness in complex
network environments.

4.2.2 EPPTA

In 2023, Li Zegang and colleagues published a paper titled “6PPTA: Efficient
Partially Observable Reinforcement Learning Agent for Penetration Testing
Applications” [14]. This paper proposed an automated penetration testing
framework based on reinforcement learning, aimed at addressing challenges in
partially observable environments to improve testing efficiency and accuracy.

Framework Design and Principles

The core of the framework lies in applying the Partially Observable Markov
Decision Process (POMDP) to reinforcement learning. This framework,
named EPPTA (Efficient Partially Observable Markov Decision Process-
driven Penetration Testing Agent), is structured around the following key
stages:

Construction and Optimization of the Implicit Belief Module The
belief module is the innovative core of EPPTA. By integrating the traditional
POMDP belief update formula with deep neural networks, it dynamically
predicts and adjusts the agent’s probability distribution over the environ-
ment’s states. The belief state update process has two stages:

e Stage 1: Utilize Long Short-Term Memory (LSTM) networks to pro-
cess historical observations (i.e., action and observation sequences) and
generate temporary belief states.

e Stage 2: Adjust the belief state using observation probabilities and
Bayes’ theorem to more accurately reflect the dynamic changes in the
current environment.

The paper introduced a matrix-based belief representation method to
significantly reduce computational complexity in high-dimensional belief dis-

101

tributions. Multi-Layer Perceptrons (MLPs) are employed to approximate
the update process, making belief state updates more efficient and adaptive.

Implementation and Optimization of the Asynchronous Reinforce-
ment Learning Framework To address communication and computa-
tional bottlenecks in large-scale parallel environments, EPPTA employs a
highly optimized asynchronous reinforcement learning process through the
Sample Factory framework. Specifically:

e The training process is divided into three independent modules: Roll-
out Workers (environment interactions), Policy Workers (policy
inference), and Learner (parameter updates). These modules achieve
efficient asynchronous communication through shared memory and sig-
naling mechanisms.

e To reduce data transmission overhead, key data (e.g., belief states) are
stored in shared GPU memory, and a double-buffered sampling strat-
egy ensures the continuity and consistency of interaction data across
multiple environments.

e By dynamically adjusting the buffer time window to accommodate in-
teraction time differences across environments, the framework signifi-
cantly improves data sampling efficiency and avoids performance bot-
tlenecks caused by uneven workloads.

Policy Optimization and Loss Function Design EPPTA incorporates
a reinforcement learning objective function based on the Proximal Policy
Optimization (PPO) algorithm and introduces a Belief Loss to guide the
agent in learning strategies more effectively in partially observable environ-
ments. The loss function considers both the magnitude of changes between
the current and previous policies and introduces a belief consistency term
to constrain the rationality of belief updates. This ensures both stability
in policy updates and improved accuracy in predicting environmental states
during training.

As shown in Figure 4.4, the upper part illustrates an overview of the
POMDP, while the lower part describes the EPPTA flowchart. An innovative
belief module is introduced, which collaborates with the Actor-Critic network
framework to implicitly comprehend the belief update for the penetration
testing environment state [14].

102

KPenetratinn Testing s N Ia N\ VO h
aC LR ;
=B e 5
’—H ¢ + J . A Submtt)
= ma. = B _’,;ﬁ' ‘E *:J ‘ | j 7 | e |
= ===
- j K /
./
N I J
Observations Perform
4 N
Deep |\ |
Reinforcement ! Actor)
Learning o h 1
(EPPTA) um”:l!;m :—’7 —"—" IEMxl::zclor
| e :::::::::::::(I:’“:“::‘
Extractor ! =]
! _, Linearlayers+ ! g
1 1 g
e e | | T Transient
- — S - 1-- LSTM Layer e, ———————— Extractor — @~ beliet.
LY J
Figure 4.4: Schematic representation of the EPPTA [14].
Experiments

The EPPTA framework was systematically evaluated on the NAS simula-
tion platform. The experimental process included the following critical com-
ponents, each rigorously designed and measured with detailed performance
metrics:

1. Environment Configuration and Experimental Scenarios The
experiments utilized a range of network configurations from simple to com-
plex, including six scenarios: Tiny, Small, Medium, LargeGen, HugeGen,
and Pocp2Gen. Each scenario defined distinct network topologies, numbers
of subnets, hosts, and dimensions of state and action spaces. For instance,
the Pocp2Gen scenario includes 21 subnets, 95 hosts, an action space di-
mension of 3,515, and a state space dimension of 1.49 billion. The goal in
these scenarios was to control all target hosts as quickly as possible while
minimizing action costs.

2. Baselines and Metric Selection To comprehensively evaluate EPPTA’s
performance, multiple existing baseline methods were included, such as HA-

DQN, NDSPI-DQN, PPO models, and Recurrent PPO models, representing
traditional deep Q-learning, improved reinforcement learning algorithms, and

103

recurrent policy networks for penetration testing. Metrics included:

Interquartile Mean (IQM) rewards and step lengths to measure the
efficiency and convergence of the agent’s strategies in partially observ-
able environments.

Gap to theoretical optimal value (Oracle) to assess the algo-
rithm’s performance relative to expert strategies.

Convergence time and training efficiency to evaluate the scala-
bility and resource utilization of the algorithm in different scenarios.

3. Experimental Design and Performance Validation

Performance comparison in standard scenarios: All algorithms
were tested across scenarios, and their rewards and convergence speeds
were recorded. EPPTA achieved the highest rewards in large-scale
scenarios (e.g., Pocp2Gen) while significantly reducing the steps needed
to complete tasks. Its reward values closely approached the theoretical
optimal, with the smallest gap to the Oracle.

Random node isolation experiments: To verify EPPTA’s robust-
ness in dynamic network environments, a random node isolation mech-
anism was introduced to simulate the defensive behavior of network
administrators (randomly isolating some nodes). Results showed that
EPPTA maintained high rewards and low step lengths even with iso-
lation probabilities as high as 70%, while other algorithms experienced
significant performance degradation.

Convergence time and scalability analysis: By leveraging the
high-performance asynchronous architecture, EPPTA demonstrated sig-
nificantly faster convergence times compared to other methods across
scenarios.

4. In-depth Analysis and Ablation Experiments To explore the con-
tribution of EPPTA’s components, experiments systematically removed core
elements such as the belief module, double-buffered sampling strategy, and
asynchronous architecture. Results indicated that the belief module provided
the most significant reward improvements in partially observable environ-
ments, while the double-buffered sampling strategy enhanced data utilization
efficiency and training stability.

104

4.2.3 RLAPT

In 2023, Xiaotong Guo and colleagues published a paper titled “Automated
Penetration Testing with Fine-Grained Control through Deep Reinforcement
Learning” [15]. This paper proposed an innovative automated penetration
testing framework named RLAPT (Reinforcement Learning Automated Pen-

etration Testing), where the penetration testing problem was modeled as a
Partially Observable Markov Decision Process (POMDP).

Details of RLAPT

Action Decomposition To address the challenge of managing large-scale
action spaces, RLAPT employs an action decomposition strategy, dividing
the complex action space into five smaller sub-action spaces. When faced
with complex attack decisions, this strategy allows the agent to progressively
choose from a series of relatively simple sub-actions, thereby learning fine-
grained control over attack actions. This decomposition significantly reduces
the number of options the agent must consider at each decision step, mak-
ing large and complex action spaces more manageable and easier to learn.
Additionally, the decomposed sub-action spaces enable the agent to optimize
independently within each space, improving learning speed and accuracy.

Action Masking RLAPT introduces action masking to further enhance
the training efficiency and stability of the agent. Action masks filter out
invalid attack actions in the current state. For example, certain attack types
can only be executed under specific conditions, or further attacks can only be
conducted if a specific node has already been compromised. By using action
masks, RLAPT significantly reduces the number of invalid actions attempted
by the agent, concentrating resources on actions more likely to succeed, thus
improving exploration efficiency.

Probability Masking Probability masking is used to exclude attack pa-
rameters irrelevant to the current attack type. Different attack types may
require different parameters. For instance, remote attacks require selecting
a target node and a remote vulnerability, while local attacks only require
selecting a local vulnerability. By applying probability masks during train-
ing, RLAPT effectively reduces training noise and avoids interference from
irrelevant parameters. This approach ensures the agent focuses on the most
relevant information during training, reducing training time and improving
final convergence performance.

105

Reward Function The authors designed a direct reward assignment strat-
egy for different attack outcomes. For example:

e Discovering a new node: +5 points
e Discovering a new credential: +3 points
e Failed attack: -1 point

The reward function is designed to encourage the agent to conduct more
effective exploration and attacks.

Deep Reinforcement Learning Algorithm

RLAPT adopts an Actor-Critic architecture, specifically utilizing the Prox-
imal Policy Optimization (PPO) algorithm. This architecture combines the
advantages of policy learning and value evaluation:

e Actor: Learns how to select optimal actions for given states.
e Critic: Evaluates the value of those actions.

This dual functionality allows the agent to simultaneously improve its policy
and evaluate value, maintaining directionality during the learning process.
PPO further ensures stability by limiting the step size of policy updates, bal-
ancing exploration and exploitation, and preventing excessive policy changes
during updates.

As shown in Figure 4.5, the RLAPT architecture integrates the observa-
tion space, action space, reward signal, and training process. The observa-
tion space is designed to provide the agent with partial but incrementally
updated information about the network, while the action space is decom-
posed into multiple sub-action spaces to manage the complexity of attack
decisions. The action and probability masking mechanisms further refine
the agent’s decision-making process by filtering out invalid and irrelevant ac-
tions. The Actor-Critic architecture, guided by the PPO algorithm, ensures
efficient and stable training. This comprehensive design enables RLAPT to
achieve fine-grained control over the automated penetration testing process,
demonstrating superior performance in both learning speed and convergence
stability.

Experiments

RLAPT was validated through simulated experiments on Microsoft’s Cy-
berBattleSim platform. CyberBattleSim provides a high-level abstraction

106

Attacker

Critical output head (value estimation) Actor output heads (policy distribution 7j(-|o,) for each sub-action space A’)

Observation value Vg(o,) ® “masicy.Update action mask
\ 7oy a_mask)) Saagyr @
\ o8 7 Primary attack
\ |/
Observation o | Fe—
! 8 N Sample
- Features extraction / #YP(Jo,.a_mask,) T——b>
(rereLu}- ® Attack parameters
] Sample i LA
] w5 Jo) = l Target local vulnerabili ‘ | %
] W a5 Sample
i (Iﬂ):> get remote vulnerability ‘
) :
CEC)—+(FPart) Sample
\ o) =——— Target port aP®
+»(PoriK)
(0] e . :
- Old action probability Valid sub-action set: A,
Tgallor) = ll'[,f’é.,m(“’rlnz)
aled,
A
Rollout transitions.
\' I‘ |I IV |I |I
o; | a; | a_mask; | p_mask; [75_(ailop)] 7 | o, D
i i - i | P2 i | 7054\ il9; i i+1

Iy
The target network

@/TJ

Reward r, Launch the attack
I/

—— Static network edge
—————— APT process

Figure 4.5: Architecture of RLAPT [15].

of computer networks, enabling the RLAPT agent to explore and attack a
virtual network with predefined vulnerabilities. The experimental results
showed that RLAPT performed exceptionally well in the simulated network,
achieving high convergence efficiency and effectively mastering the automated
penetration testing process.

Comparisons with Baseline Agents RLAPT was compared against sev-
eral baseline agents to evaluate its performance:

1. Traditional Random Attacker: A baseline that randomly selects
valid attack actions for penetration testing.

2. Multi-Agent Reinforcement Learning (M ARL) Attacker: Em-
ploying a hierarchical reinforcement learning framework, where multi-
ple agents manage different sub-action spaces.

3. DQN Vulnerability Exploiter: A method implemented by Microsoft
on the CyberBattleSim platform. The agent selects vulnerabilities or
ports based on current observations.

4. DRL Primary Attack Deciders: Agents using DQN, A2C, and
PPO algorithms, implemented by the authors using open-source code

107

and frameworks (details not fully described in the paper).

Results The experimental results demonstrated that RLAPT significantly
outperformed these baseline agents in terms of learning speed and stability.
RLAPT reduced convergence time by approximately 40%, enabling the agent
to find the optimal attack strategy much faster.

Additionally, RLAPT was tested under different knowledge scales to ver-
ify its adaptability. Regardless of network scale or complexity, RLAPT ef-
fectively learned attack strategies. This flexibility makes RLAPT highly
suitable for diverse penetration testing scenarios, allowing it to efficiently
learn attack strategies even with limited initial knowledge of the network.

4.2.4 Overall Analysis of PPO Approaches

From the above review, it can be observed that PPO (Proximal Policy Opti-
mization) has been applied in reinforcement learning-based penetration test-
ing research due to its stability and efficiency in handling complex tasks.
These studies demonstrate unique advantages in different application sce-
narios and technical implementations. To comprehensively understand their
characteristics, application domains, and methodologies, a detailed compar-
ative analysis of these three studies is provided in the Table 4.2.

108

60T

Table 4.2: Comparison of CRLA, EPPTA, and RLAPT

Feature CRLA (Khuong Tran et | EPPTA (Li et al., 2023) | RLAPT (Guo et al., 2023)
al., 2022) [33] [14] [15]

Research Method Multi-objective deep rein- | Asynchronous reinforcement | PPO-based deep reinforce-
forcement learning: Combines | learning: Integrates an im- | ment learning: Employs
Random Network Distilla- | plicit belief module with the | multi-discrete action space
tion (RND) and Chebyshev | Sample Factory framework | decomposition and proba-
decomposition to resolve | for efficient training and | bility masking to optimize
multi-objective conflicts | rapid convergence, suitable | partial observability and
and generate diverse attack | for large-scale networks. improve action selection
strategies. efficiency.

Application Scenar-
ios

Simulates multi-objective au-
tomated penetration testing,
suitable for dynamic networks
with partial observability.

Penetration testing in par-
tially observable networks,
particularly for large-scale
networks.

Designed for penetration test-
ing in complex large-scale net-
work environments, address-
ing partial observability is-
sues.

State Modeling

MOMDP: States include the
topology of the discovered
network and
about known hosts.

information

POMDP: States represent be-
lief updates, combining obser-
vations with implicit beliefs.

POMDP: States represent
limited observations and
inferences about the target
network.

Action Space

Dynamic, growing discrete ac-
tion space; employs a coverage
masking mechanism to reduce
search complexity.

Fixed action space; uses a be-
lief module to predict state
probability distributions.

Multi-discrete action space
design; adopts decomposition
and masking strategies to
handle large action spaces.

01T

Feature

CRLA (Khuong Tran et
al., 2022) [33]

EPPTA (Li et al., 2023)
[14]

RLAPT (Guo et al., 2023)
[15]

Reward Mechanism

Vectorized rewards for multi-
objective optimization (e.g.,
balancing time efficiency and
vulnerability exploitation).

Reward function incorporates
belief state updates to en-
hance the precision of attack
strategies.

Reward function integrates
partial observability and ex-
ploration of actions.

Experimental Plat-

form

Simulated penetration test-
ing scenarios to verify multi-
objective learning and effi-
ciency.

NAS environment, demon-
strating high efficiency across

different network scales.

CyberBattleSim platform,
verifying stability and effi-
ciency in complex network
scenarios.

Learning Efficiency

Proposes coverage masking to
reduce action redundancy and
improve strategy exploration
efficiency.

Achieves a 20x training speed-
up through an asynchronous
framework optimizing data
collection and training.

Implements action decompo-
sition and masking strategies
for efficient training, reducing
redundant actions.

Scalability Supports dynamically ex- | Suitable for ultra-large-scale | Adapts to diverse and
panding action spaces, | partially observable environ- | dynamic target networks
adapting to large-scale net- | ments, supporting parallel | through fine-grained control
works. training. and action decomposition.

Practicality Suitable for multi-objective | Emphasizes rapid conver- | Focuses on stable attack strat-

optimization in penetration
testing, providing diverse se-
curity assessments.

gence and precise strategies
in partially observable envi-
ronments.

egy design in large-scale net-
works.

In summary, the three studies each have unique features in terms of
technical implementation and application scenarios. CRLA, by integrating
stochastic network distillation and multi-objective optimization methods, is
suitable for multi-objective penetration testing scenarios that require diver-
sified strategies. EPPTA, centered on asynchronous reinforcement learning
and belief modules, performs exceptionally well when dealing with large-scale
partially observable networks. Meanwhile, RLAPT emphasizes fine-grained
control and stable learning in complex network environments through action
space decomposition and masking strategies. These studies demonstrate that
reinforcement learning methods based on PPO have significant advantages
in the field of penetration testing and allow for the selection of appropriate
technical solutions based on specific task requirements.

4.3 Other Approaches

4.3.1 SeqGAN-PT

In 2023, Ankur Chowdhary and colleagues published a paper titled “Gen-
erative Adversarial Network (GAN)-Based Autonomous Penetration Testing
for Web Applications” [44], proposing a novel method for automating pen-
etration testing for web applications. This approach combines Generative
Adversarial Networks (GANs) with Reinforcement Learning (RL) to enhance
the detection of security vulnerabilities in web applications, particularly tar-
geting application-layer attacks such as Cross-Site Scripting (XSS) and SQL
Injection. The method utilizes a reinforcement learning approach similar to
Sequence Generative Adversarial Nets (SeqGAN), modeling the process of
generating attack sequences as a sequential decision-making problem, thereby
addressing the limitations of traditional GANs in generating discrete data.

Methodology

The core of the methodology employs Conditional GANs (CGANSs), integrat-
ing reinforcement learning and semantic tokenization techniques to automate
the generation and optimization of attack payloads. The detailed steps are
as follows:

Semantic Tagging and Tokenization

o Attack features were first extracted from an XSS attack dataset, and
semantic tokenization was used to break down the raw attack samples

111

into specific syntactic units, such as HTML tags, script parameters,
function bodies, hyperlinks, etc.

e Byte Pair Encoding (BPE) was applied to create a semantically struc-
tured feature set by reducing redundancy and frequent symbol combi-
nations. These tokens were used to enhance the generator’s efficiency
and logical consistency in subsequent processes.

Conditional Sequence Generation

e A CGAN model was constructed with a conditional generator and dis-
criminator. The generator guided sequence generation based on condi-
tional attack labels, while the discriminator evaluated the authenticity
and attack efficacy of the generated sequences.

e Using policy gradients and Monte Carlo Search from reinforcement
learning, the generator iteratively optimized attack sequences, select-
ing the optimal token combinations for the current state and validating
their effectiveness through replay experiments.

GAN Training and Optimization

e The generator and discriminator were initially pre-trained using Max-
imum Likelihood Estimation (MLE). Subsequently, the generator was
trained with conditional labels to generate efficient attack sequences
that could bypass Web Application Firewalls (WAFs).

e The discriminator periodically evaluated generated samples and up-
dated its parameters to optimize the overall model performance, ensur-
ing the generated attack sequences could bypass existing WAF rules.

Attack Payload Validation and Model Refinement

e The generated attack payloads were tested on open-source platforms
such as ModSecurity WAF and AWS WAF. By evaluating the success
and bypass rates, the generator and discriminator’s parameters were
adjusted to improve the logical structure and diversity of the attack
payloads.

Experimental Results

The effectiveness of the proposed method was validated through the following
aspects:

112

GAN Convergence and Generation Performance

e Experimental results showed that the discriminator’s loss value rapidly
decreased during training and converged after approximately 250 iter-
ations. The generator’s loss value also decreased significantly, demon-
strating that the model could stably generate highly effective attack
samples capable of bypassing firewalls.

Web Application Firewall Bypass Testing

e In ModSecurity WAF tests, the study compared the performance of
traditional GANs and the improved CGAN. The results showed that
CGAN was more stable in generating realistic attack samples, with a
higher proportion of samples successfully bypassing the WAF. In some
batches, CGAN achieved a bypass rate as high as 12%.

e In AWS WAF tests, the bypass rate was lower (approximately 8%).
However, the study emphasized that even a small number of successful
attack samples could pose a significant threat to existing WAF rules and
highlighted the potential of the generator to improve WAF signature
rules.

Comparison with Existing Studies

e Compared to automated penetration testing methods based on Par-
tially Observable Markov Decision Processes (POMDP) [45], the pro-
posed method demonstrated faster convergence (about one-quarter of
the time required by the POMDP approach) and significantly improved
adaptability to complex attack patterns through conditionally guided
semantic generation strategies.

e Compared to static rule-based detection methods and traditional gen-
eration methods, this study showed significant advantages in attack
diversity and bypass rates while effectively avoiding mode collapse and
long-sequence dependency issues.

4.3.2 AIRL

In 2024, Alexey Sychugov and Mikhail Grekov published a paper titled
“Automated Penetration Testing Based on Adversarial Inverse Reinforce-
ment Learning” [46]. This paper proposed an automated penetration testing
framework based on a technique named Adversarial Inverse Reinforcement

Learning (AIRL).

113

Principles of AIRL

e Inverse Reinforcement Learning (IRL):

— The objective is to recover the reward function from expert demon-
strations and train an agent to simulate expert strategies.

— The maximum entropy principle is applied to ensure the generated
strategies exhibit diversity.

e Generative Adversarial Networks (GANs):

— Consists of a Generator and a Discriminator.

— The Discriminator differentiates between the generated strategies
and expert demonstrations, while the Generator maximizes the
reward function to produce attack paths similar to expert strate-
gies.

Key Components

e Generator: Optimized using policy gradient methods to generate at-
tack strategies. After each iteration, the Generator adjusts its strategy
based on feedback from the Discriminator to align more closely with
expert behavior.

e Discriminator: A binary classification model that takes state-action
pairs as input and outputs the probability of the input being from the
expert demonstration or the generated strategy. Its training objective
is to maximize its ability to distinguish expert demonstrations from
generated strategies.

e Maximum Entropy Principle: Adds an entropy term to the opti-
mization objective to increase randomness and diversity in the gener-
ated strategies, avoiding deterministic solutions. The optimization goal
is given by [46]:

T = argmaxZ?T(a|S) [R(s,a) + AH (7 (-|s))]
(s,a)

where R(s,a) is the reward function, and H(n(+|s)) is the entropy of
the policy.

114

Expert Data Collection

e Deep Exploit: To effectively train the AIRL model, high-quality ex-
pert demonstration data is required. The paper utilizes the open-source
tool Deep Exploit for data collection.

e Deep Exploit Capabilities:
— Automated Vulnerability Scanning: Scans network infras-

tructures to identify potential vulnerabilities.

— Exploitation: Automates the exploitation of identified vulnera-
bilities to generate complete attack paths.

— Data Recording: Captures state-action pairs during the attack
process for training the AIRL model.
e Content of Expert Data:

— Vulnerability types (e.g., CVE identifiers), criticality assessments
(threat levels), attack paths, bypass techniques, and system re-
sponses (e.g., alerts from intrusion detection systems).

e Collection Process: Multiple rounds of testing are conducted using
Deep Ezploit, each focusing on specific network nodes. The collected
data is then organized into expert demonstrations to form the AIRL
training dataset.

Introduction of Semantic Rewards

Semantic rewards are a key improvement to AIRL, designed to incorporate
domain knowledge, enhancing the practicality and training efficiency of the
generated strategies.

e Design of Semantic Rewards:

— The reward function incorporates domain-specific semantic signals
(e.g., attack effectiveness, security risk assessments) to provide
fine-grained guidance to the Generator’s output.

— Formula representation [46]:
7(8,a) = fsecurity (S, @)+ feffectiveness (S, @)+other_semantic_factors(s, a)

% fsecurity: Evaluates system security based on the attack sce-
nario.

115

% feffectiveness: Measures the impact of the attack on the target
system.

« other_semantic_factors: Represents extensible domain-specific
metrics.

¢ Role of Semantic Rewards: Semantic rewards impose constraints

on the Generator’s training process, ensuring the generated strategies
not only replicate expert demonstrations but also meet specific domain
requirements. These rewards are embedded into the Discriminator,
influencing the Generator’s gradient updates and stabilizing training
outcomes.

Experiments

The paper does not provide specific experimental results. Instead, it proposes
six evaluation criteria for assessing AIRL’s effectiveness:

1.

Accuracy of Expert Strategy Reproduction: The ability of the
ATRL model to reproduce expert strategies.

Comparison with Real Attack Outcomes: Measures the align-
ment between AIRL-generated strategies and actual attack results.

Adversarial Robustness: The model’s resilience against adversarial
attacks.

. Diversity of Strategies: Evaluates whether AIRL generates suffi-

ciently diverse strategies.

Training Time and Computational Resources: Assesses the time
and resources required to train the AIRL model.

. Robustness to Environmental Changes: The model’s adaptabil-

ity to changes in information systems, including expert strategies and
evolving threats.

Low-Data Training Capability: The model’s ability to learn effec-
tively with limited data.

4.3.3 TAPTS

In 2019, Mohamed C. Ghanem and others published a paper titled “Rein-
forcement Learning for Efficient Network Penetration Testing” [47], which
designed an intelligent automated penetration testing system (IAPTS). The
following provides a detailed description of the research methods:

116

Detailed Description of Research Methods

Problem Modeling. The paper first models the penetration testing prob-
lem as a complex Partially Observable Markov Decision Process (POMDP).
The penetration testing environment is defined as a collection of state space,
action space, reward functions, transition probabilities, and observation prob-
abilities.

e State space: Includes all machines and their configurations in the
network, such as operating systems, open ports, running services, vul-
nerabilities, network topology, and security settings.

e Action space: Covers all penetration testing tasks, such as scanning,
vulnerability assessment, privilege escalation, and attack path explo-
ration.

e Reward function: Guides the reinforcement learning agent to opti-
mize its behavior, with positive rewards for achieving critical targets
or reducing testing time and negative rewards for failures.

Selection and Optimization of Reinforcement Learning Algorithms.
The study employs multiple reinforcement learning algorithms to adapt to
network testing scenarios of varying scales and complexities, such as the fol-
lowing: PERSEUS (Randomized Point-Based Value Iteration), GIP (In-
cremental Pruning Algorithm), and PEGASUS (Policy Search Algorithm).
Significant optimization was applied to the GIP algorithm by introducing
an improved initial belief sampling method and a prioritized experience re-
play mechanism to enhance efficiency in solving POMDP problems in large
network environments. The system dynamically adjusts algorithm selection
during different testing stages, such as using policy search algorithms for
quickly generating strategies in the early stages and employing incremental
pruning for precise optimization in complex later stages.

IAPTS Architecture Design and Functional Modules. The paper
presents a modular IAPTS, which can be integrated as an independent mod-
ule into existing industrial penetration testing frameworks such as Metas-
ploit. The TAPTS architecture includes the following core modules:

e Reinforcement Learning Module: Responsible for converting the
penetration testing environment into a POMDP model and optimizing
testing strategies using reinforcement learning.

117

e Knowledge Base and Experience Storage Module: Records strate-
gies and experiences from past tests to support reuse in future testing
tasks.

e Interaction Module: Communicates with testing frameworks (e.g.,
Metasploit) through APIs, translates reinforcement learning outputs
(policy graphs) into specific penetration testing tasks, and provides
real-time feedback on testing results.

e Operating Modes: The system features four operating modes:

1. Fully Autonomous Mode (performs tasks independently once ma-
ture),

2. Partially Autonomous Mode (executes under expert supervision),

3. Decision-Making Assistant Mode (provides intelligent suggestions
to testers),

4. Experience Building Mode (captures and stores knowledge by ob-
serving human testers).

Data Processing and Optimization Mechanisms. To improve system
efficiency, the study introduces detailed designs for input data processing and
experience handling:

e Streamlined Representation of State and Action Spaces: Records
only critical network configurations and tasks related to penetration
testing while removing redundant information to reduce computational
complexity.

e Prioritized Experience Replay: Introduces a mechanism based on
past testing experiences, replaying critical strategy sequences to accel-

erate learning and optimizing strategy applicability based on expert
feedback.

e Reward Mechanism Design: Initially relies on human experts to
provide reward values for guiding reinforcement learning system op-
timization. Over time, the system learns to automatically generate
reward functions to dynamically adjust testing task priorities.

Experiments

Testing Environment and Performance Evaluation. The research
constructed test networks of varying scales (from 2 to 100 devices) in a lab-
oratory setting, including typical network topologies such as internet-facing

118

segments, DMZ areas, internal LANs, and sensitive data storage zones. Per-
formance comparisons between IAPTS, manual penetration testing, and tra-
ditional automated tools showed significant advantages of IAPTS in testing
time, attack path coverage, accuracy, and resource efficiency. Especially
in small and medium-sized networks, IAPTS significantly reduced testing
time while discovering complex, non-obvious attack paths often overlooked
in manual testing.

TAPTS System Output. The system’s final output consists of a series
of optimized policy graphs, which clearly illustrate the optimal sequence
of actions during the penetration testing process. These graphs guide auto-
mated tools to efficiently execute testing tasks. Additionally, policy graphs
can be stored in the system’s knowledge base to support experience reuse in
future similar penetration testing scenarios, greatly enhancing the efficiency
of regular security audits.

4.3.4 TAPTF

In 2019, Mohamed C. Ghanem’s team published the paper titled “Hierar-
chical Reinforcement Learning for Efficient and Effective Automated Pen-
etration Testing of Large Networks” [48], which proposed a system named
TAPTF (Intelligent Automated Penetration Testing Framework). This frame-
work leverages reinforcement learning techniques, a knowledge management
module, and hierarchical modeling methods to provide an intelligent, scal-
able, and efficient solution for penetration testing in large-scale networks.
The paper addresses the issues of high complexity, inefficiency, and repetitive
tasks in traditional penetration testing by introducing an intelligent method
centered around hierarchical reinforcement learning (HRL). The goal is to
overcome the dimensionality challenges posed by network growth through
model optimization, knowledge reuse, and task decomposition.

Framework Overview

IAPTF is built on reinforcement learning, modeling penetration testing as
a partially observable Markov decision process (POMDP). This approach
transforms penetration testing into a sequential decision-making problem op-
timized through reward mechanisms. By clearly defining state space, action
space, reward functions, and transition probabilities, the system captures the
complexity and dynamics of the network.

119

e State Space: The system structures detailed information about net-
work devices, including operating systems, open ports, and vulnerabil-
ity data.

e Action Space: Encompasses all key penetration testing tasks such
as reconnaissance, vulnerability assessment, privilege escalation, and
attack path exploration, ensuring comprehensive task coverage.

e Reward Function: Dynamically adjusts based on the success or fail-
ure of each test operation, optimizing testing efficiency and reducing
resource consumption in the long term.

Hierarchical Reinforcement Learning (HRL)

To address the computational complexity associated with the exponential
growth of state spaces in large-scale networks, the paper proposes a hier-
archical reinforcement learning approach based on security clus-
tering. This method divides the large network into multiple sub-clusters
with similar security characteristics and independently models and solves
the POMDP for each cluster, significantly reducing computational overhead.

e First Layer: Treats each security cluster as an independent POMDP
environment.

e Second Layer: Models connections between cluster head nodes to
address cross-cluster testing tasks, enabling the generation of optimized
strategies from local to global levels.

Algorithm Integration and Solver Flexibility

IAPTF incorporates several reinforcement learning algorithms, PERSEUS
and GIP, as well as external solvers like SolvePOMDP, to flexibly adapt

to various testing scenarios:

¢ PERSEUS: A randomized point-based value iteration algorithm suit-
able for rapid approximation in large-scale POMDPs, ideal for initial
strategy exploration.

e GIP: Focuses on generating high-quality policy graphs, appropriate for
high-precision scenarios.

This combination balances computational efficiency and result accuracy, while
external solvers enhance performance to meet varying network testing de-
mands.

120

Knowledge Management System

IAPTF integrates a modular knowledge management system to extract, gen-
eralize, and store testing experience, supporting long-term knowledge accu-
mulation and reuse:

e Preprocessing Phase: Automates the standardization of test results
and generates input files for POMDP solvers.

e Postprocessing Phase: Utilizes a CLIPS-based expert system to gen-
eralize and store policy graphs for future reference, significantly improv-
ing efficiency for repetitive tasks and incremental network changes.

Experimental Results

Experiments demonstrate that IJAPTF significantly outperforms traditional
and manual penetration testing methods in medium and large networks. In
networks with 200 devices, it achieves over a 4x improvement in time effi-
ciency while covering a much greater number of attack paths. By leveraging
historical test data to optimize initial beliefs, IAPTF generates higher-quality
test results in less time, making it highly suitable for periodic security audits
and continuous testing of large-scale networks.

4.3.5 BDI-RL

In 2021, Kexiang Qian and colleagues published a paper titled “Ontology
and Reinforcement Learning Based Intelligent Agent Automatic Penetration
Test” [49], proposed an automated penetration testing framework. The core
of the research lies in introducing a Belief-Desire-Intention (BDI) agent and
leveraging the advantages of Semantic Web Rule Language (SWRL) and
reinforcement learning algorithms to optimize penetration test planning in
uncertain and dynamic environments. Below is a detailed analysis of the
methodology, presented with long sentences to fully articulate each technical
detail.

Ontology-Based Knowledge Modeling

The study constructed an ontology model for penetration testing using the
Protégé platform, wherein attack types and relationships between instances
were abstracted into multiple semantic relations, such as hasPermission (in-
dicating that the attacker has a specific level of access to a target) and isCon-
nected (indicating that a connection can be established between targets).
Furthermore, the study summarized several typical attack methods based on

121

the MITRE ATT&CK knowledge base, including information-gathering at-
tacks, configuration attacks, buffer overflow attacks, password attacks, web
attacks, sniffing attacks, social engineering attacks, and denial-of-service at-
tacks. This ontology-based modeling provides a formalized representation of
knowledge, enabling it to be shared with intelligent systems and laying the
foundation for subsequent automated reasoning.

Semantic Reasoning and Rule Engines

The study utilized SWRL rules to extend the OWL ontology model, enabling
the expression and reasoning of complex rules. In this part, rules were de-
fined in the structure of preconditions — postconditions and combined with
reasoning engines like Hermit to deduce implicit semantic relationships. For
instance, one rule in the study stated that if an attacker is connected to a
target host and the target has a specific vulnerability (e.g., MS08-067), the
attacker can exploit that vulnerability to launch an attack. These rules not
only uncover implicit relationships but also enhance the agent’s understand-
ing of and actions within the target environment.

BDI Agent Architecture Design

The study further extended the traditional BDI agent model by incorpo-
rating five core components: agent name (Ag), belief set (B), desire set (D),
intention set (I), and plan set (P). Among these, the belief set represents the
agent’s cognitive state regarding the environment; the desire set represents
the goals the agent aims to achieve; the intention set reflects the actions cho-
sen by the agent to achieve its goals; and the plan set defines the sequences
of actions available to the agent. The reasoning and execution mechanisms
of the agent are coordinated through trigger events and contextual condi-
tions. For example, when the agent identifies that specific conditions in the
target environment are met, it triggers corresponding plans to execute attack
actions.

Integration of Reinforcement Learning

The study integrated reinforcement learning with the BDI agent to enhance
its adaptability in dynamic and uncertain environments. Specifically, the
Q-learning algorithm was adopted, which employs dynamic programming to
calculate optimal policies that maximize long-term rewards. At each state,
the agent observes the environment, takes actions, and continuously opti-
mizes its policy based on reward feedback. The primary advantage of Q-
learning lies in its model-free nature, allowing it to be applied in unknown

122

or partially observable environments. Additionally, the study compared the
SARSA algorithm, a learning method based on actual actions, which further
improved the agent’s responsiveness to environmental changes.

Experimental Validation and Result Analysis

The experiments were conducted on the Jason simulation platform to simu-
late penetration testing scenarios and verify the proposed framework’s ability
to optimize penetration paths in uncertain environments. The experiments
utilized a notebook with an i7 processor, and through multiple rounds of sim-
ulations, the agent’s learning curve was observed. The results demonstrated
that the BDI agent, combined with the ontology knowledge base and rein-
forcement learning, outperformed traditional methods in terms of planning
efficiency and decision accuracy.

123

Chapter 5

Overall Analysis

From the summary of the above papers, We can see that the application of re-
inforcement learning in the field of network security has achieved rapid devel-
opment. With the increasing complexity and dynamism of network threats,
researchers have begun to explore the application of Deep Reinforcement
Learning (DRL) in Automated Penetration Testing (APT). Since 2018, nu-
merous studies have emerged. Traditional research faced challenges such as
large action spaces, sparse reward environments, and algorithm adaptability
in dynamic network scenarios. Subsequent studies have consistently aimed
to address these critical issues. This section will summarize all the afore-
mentioned papers. We first conducted a general analysis of all the studies
mentioned above and presented an overall display in a table. Subsequently,
we carried out analyses from various aspects.

5.1 Comprehensive Analysis of Research

We conducted a comprehensive analysis of the aforementioned research, as
shown in Table 5.1. The table summarizes the names of the various re-
search frameworks and methods, their specific implementation details, and
the types of models used, illustrating the diverse explorations undertaken by
researchers in applying reinforcement learning to automated penetration test-
ing. This comparative analysis provides valuable insights into the strengths
and limitations of each approach.

124

Gcl

Table 5.1: Summary of Frameworks and Methods

Framework Name Specific Method Model Approach
NIG-AP (2019)]28] Based on DQN, it introduces information gain and action cost (calculated by CVSS). | MDP DQN
AutoPentest-DRL It collects real data through Shodan, uses MulVAL to generate attack trees, traverses | MDP DQN
(2020)(2] the attack tree with DF'S, simplifies the attack matrix (as input for DQN), calculates
reward scores using CVSS, and makes decisions with DQN.
ASAP (2020)[3] It first uses a scanning module to collect information input into MulVAL to generate | MDP DQN
an attack graph, and then trains with DQN. The reward is based on CVSS.
NDSPI-DQN It improves DQN with five measures (including Noisy Nets with Gaussian noise, | MDP DQN
(2021)[4] Soft Q-learning, Dueling Architectures, PER, and ICM).
CJA-RL (2021)[5] It generates an attack graph through MulVAL, uses DQN for decision-making, and | MDP DQN
quantifies vulnerability severity with CVSS.
HA-DRL (2021)[6] It introduces hierarchical agents and action space decomposition. The action space | MDP DQN
is divided into smaller subspaces, and a dedicated reinforcement learning agent is
assigned to each subspace.
CRLA (2022)[31] It uses a hierarchical agent architecture, with a core identical to HA-DRL. It employs | MDP DQN
Dueling DQN and introduces the QMIX mixing network mechanism to aggregate
the Q-values of each agent to guide decision-making.
SmartGrid-PTDRL It designs three actions: ”stop,” "record,” and "replay.” It causes voltage instability | MDP DQN
(2022)[7] in the power grid through network attacks to train the agent to learn the best timing
and sequence of attacks in different operating environments.
ND3RQN (2022)[8] It introduces LSTM to capture long-term historical information, combines Double | POMDP DQN

DQN and Dueling DQN architectures to reduce Q-value overestimation and improve
the accuracy of value estimation. It also introduces Noisy Nets with random noise
similar to NSDPI-DQN.

9¢l

Framework Name

Specific Method

Model

Approach

Improved-PenBox
(2022)[32]

It adds PenBox to NAS (the authors only selected the 6 most commonly used tools
and modes, while the original functionality includes 52 tools and 363 modes), and
then uses the interface to call the DQN in NAS for training.

MDP

DQN

OAKOC (2022)[33]

It proposes reward adjustment and state adjustment, and based on the OAKOC
framework, integrates network terrain into the attack graph and models firewalls as
obstacles.

MDP

DQN

HDRL (2023)[34]

It introduces ”expert experience,” uses a hierarchical architecture, and breaks down

penetration testing into several subtasks, which are handled by multiple specialized
agents.

MDP

DQN

DQID-AIPT (2023)[9]

It also introduces ”expert experience” and uses PER and N-step return mechanisms.
Pre-training uses ”supervised loss” to guide the agent to imitate expert behavior.

MDP

DQN

MDDQN (2023)[35]

It uses MulVAL to generate an attack graph, traverses the attack graph with DFS
to form a transition matrix, and uses DDQN with epsilon-greedy strategy and ex-
perience replay.

MDP

DQN

INNES (2023)[36]

It proposes DQN_valid, eliminating the dependence on ”expert experience” and
other " prior knowledge.” The core is to set a known node set K and a valid action set
V, and dynamically expand V to gradually build the network’s state representation
during exploration.

MDP

DQN

HER-PT (2024)[10]

It introduces HER, (Hindsight Experience Replay), converting failed experiences into
positive rewards, enabling the model to learn from failures and improving learning
efficiency.

MDP

DQN

DynPen (2024)[19]

It uses ”expert experience” as an auxiliary, has an HDRL (Hierarchical Deep Rein-
forcement Learning) structure, and adds a trajectory recording module, monitoring
module, and backtracking module.

MDP

DQN

LC1

Framework Name

Specific Method

Model

Approach

DRLRM-PT
(2024)[11]

It designs a reward machine, which is essentially a state machine, breaking down pen-
etration testing into a series of manageable subtasks and increasing interpretability
and transparency. The reward machine is used to decompose tasks, generate subtask
sequences, and assign independent reward functions to each subtask.

POMDP

DQN

DL-IAPTS (2024)[37]

It proposes a dynamic matrix representation of the current state of network intru-
sion, continuously updating the threat matrix through MulVAL and Shodan for
DQN training and updating.

POMDP

DQN

MLAE-WA (2020)[41]

It uses three-layer embedding (action feature embedding, network structure em-
bedding, service vulnerability embedding) to help the agent better understand and
select actions, and combines it with the Wolpertinger Architecture (WA).

MDP

AC

DAA (2021)[42]

It proposes the Double Agent Architecture, designing a separate training environ-
ment for it based on the NAS environment. The structure agent is responsible for
exploring and identifying the network architecture, and the exploit agent is respon-
sible for selecting appropriate services to attack on the chosen host.

MDP

AC

HAE (2022)[39]

It introduces MITRE ATT&CK on the basis of MLAE-WA | effectively managing
and simplifying the action space.

MDP

AC

MAR-WA (2023)[12]

It more finely decomposes actions into three parts, enriches attack technique model-
ing based on MITRE ATT&CK, introduces Epsilon-Wolpertinger, optimizes train-
ing efficiency, and reduces computational complexity.

MDP

AC

CLAP (2022)[13]

It uses the PPO algorithm combined with Generalized Advantage Estimator (GAE),
introduces Random Network Distillation (RND) to provide curiosity rewards, intro-
duces weighted Chebyshev decomposition critic to convert multi-objective reward
vectors into a single scalar, and proposes the Coverage Masking Mechanism to en-
courage exploration and optimize learning efficiency.

MOMDP

PPO

3¢l

Framework Name

Specific Method

Model

Approach

EPPTA (2023)[14]

It uses PPO combined with an implicit belief module, storing historical data through
LSTM. It integrates EPPTA into the Sample Factory framework, significantly re-
ducing data transmission overhead through shared memory mechanisms and double
buffering sampling strategies to accelerate convergence speed.

POMDP

PPO

RLAPT (2023)[15]

It uses PPO, combined with action space decomposition. It introduces an action
mask to filter out invalid actions under the current state, and a probability mask
to exclude attack parameters irrelevant to the current attack selection. The re-
ward function directly assigns scores, such as rewarding 5 points for successfully
discovering a new node.

POMDP

PPO

SeqGAN-PT
(2023)[44]

It uses a Generative Adversarial Network (GAN) with Conditional Sequence Gener-
ation, composed of a Generator and a Discriminator. It preprocesses attack samples
through Semantic Tokenization and BPE to reduce the feature space dimension. It
uses GAN to generate sample sequences with specific attack labels, then optimizes
the generation strategy with Policy Gradient, and predicts the expected rewards
of attack sequences in different states through Monte Carlo Search to enhance the
effectiveness and diversity of generated samples.

GANs

Other

AIRL (2024)[46]

It proposes AIRL (Adversarial Inverse Reinforcement Learning), combining Seman-
tic Rewards and expert data collection. AIRL is a method that combines GANs
and IRL. Semantic rewards are embedded in the discriminator function, guiding
the generator through the reward function to produce strategies that better fit real
attack scenarios.

GANs

Other

6CT

Framework Name

Specific Method

Model

Approach

TAPTS (2019)[47]

It uses a combination of PERSEUS, GIP, and PEGASUS, adopting a flexible multi-
algorithm solution strategy according to different situations to balance accuracy and
computational efficiency under limited resources. In the early stages of the system,
the reward mechanism is optimized through human expert feedback, and after the
system matures, it can independently evaluate rewards and continuously optimize
strategies based on past experience.

POMDP

Other

TAPTF (2023)[48]

It also uses PERSEUS and GIP. It proposes Security-Based Clustering, dividing
large-scale networks into multiple security clusters, each treated as a small network
for independent processing. Then, it establishes a separate POMDP model for each
cluster, and subsequently creates a POMDP model based on the ”head nodes” (most
vulnerable nodes) of each cluster, effectively reducing computational complexity.

POMDP

Other

BDI-RL (2021)[49]

The core is to use Belief-Desire-Intention (BDI) agents, combined with Semantic
Web Rule Language (SWRL). It establishes an ontology model for penetration test-
ing using the Protégé platform. It extends the OWL ontology model with SWRL
rules to achieve the expression and reasoning capabilities of complex rules. It com-
bines BDI agents with Q-learning to enhance their adaptability in dynamic and
uncertain environments.

MDP

Other

5.2 Historical Development and Key Contri-
butions

5.2.1 Foundational Stage (2018-2020)

Early research on Deep Reinforcement Learning (DRL) opened new path-
ways for automated penetration testing. For instance, AutoPentest-DRL
(2020) [2] introduced a DRL-based automated penetration testing framework,
which utilized Shodan to collect real-world vulnerability data and combined
it with MulVAL to generate attack graphs, validating the feasibility of auto-
mated penetration testing. While this framework comprehensively covered
processes from data preprocessing to attack path generation, it lacked scal-
ability for large networks and adaptability to dynamic environments. Ad-
ditionally, NIG-AP (2019) [28] proposed an attack path selection method
aimed at reducing information entropy, providing effective guidance strate-
gies in sparse reward settings.

Another milestone was ASAP (2020) [3], which achieved significant effi-
ciency improvements in complex network scenarios by optimizing the reward
function using CVSS scores. However, its reliance on static attack graph
generation limited its adaptability to dynamic environments. These studies
modeled penetration testing problems as Markov Decision Processes (MDPs),
laying the groundwork for subsequent research.

5.2.2 Domain Expansion (2021-2023)

Starting in 2021, the research emphasis shifted from infrastructure optimiza-
tion to exploring more complex models and mechanisms. Hierarchical agent
models and experience replay mechanisms became hot topics during this
period. For example, HA-DRL (2021) [6] introduced a hierarchical agent
architecture, improving learning stability and efficiency through action space
decomposition. Meanwhile, NDSPI-DQN (2021) [4] integrated multiple
DQN extension techniques, such as prioritized experience replay and intrin-
sic curiosity models, demonstrating outstanding performance in addressing
sparse reward issues and large action spaces. Furthermore, studies based on
MulVAL tools, such as CJA-RL (2021) [5] and OAKOC (2022) [33], incor-
porated network topology information into reinforcement learning models,
enhancing scenario adaptability.

During this period, research on Proximal Policy Optimization (PPO) al-
gorithms also gained traction. Representative works include CLAP (2022)
[13], EPPTA (2023) [14], and RLAPT (2023) [15]. Notably, CLAP pro-
posed a lightweight policy optimization framework that accelerated conver-

130

gence by adjusting update frequency, EPPTA improved reward mechanisms
to better adapt to dynamic environments, and RLAPT balanced strategy
stealthiness and effectiveness through multi-objective optimization.

Parallel to this, actor-critic (AC) algorithms achieved significant advance-
ments. DAA (2021) [42] introduced a Double Agent Architecture that com-
bined global scheduling with local task decomposition. HAE (2022) [39]
enhanced adaptability to dynamic environments by incorporating a state pre-
diction module within the AC framework. MAR-WA (2023) [12] improved
policy optimization in distributed network environments through multi-agent
collaboration and attention mechanisms. Notably, these AC algorithm ad-
vancements were primarily led by the Hoang Viet Nguyen team, which has
focused on applying AC algorithms to penetration testing since MLAE-
WA (2020) [41] by continually optimizing hierarchical structures and reward
mechanisms.

Domain applications deepened during this period, as exemplified by the
approach named SmartGrid-PTDRL (2022) [7], which targeted intelligent
grid scenarios.

In 2023, significant progress was made in addressing expert knowledge
and dynamic action space constraints. For example, DQfD-AIPT (2023)
[9] accelerated learning through supervised pretraining, though its reliance
on expert knowledge limited scalability. In contrast, INNES (2023) [36]
dynamically constructed effective action spaces, significantly reducing invalid
exploration and further enhancing model performance. This stage of research
showcased a flourishing diversity of approaches.

5.2.3 Emerging Trends (After 2023)

Recent research focuses on improving dynamic adaptability and environmen-
tal responsiveness. HER-PT (2024) [10] was the first to introduce hind-
sight experience replay (HER) into penetration testing, significantly enhanc-
ing learning efficiency in sparse reward scenarios through the reconstruction
of failed experiences. DynPen (2024) [19] combined hierarchical architec-
tures, monitoring modules, and replay mechanisms, demonstrating excep-
tional adaptability in rapidly changing network environments.

Additionally, Generative Adversarial Network (GAN) technology has been
increasingly applied to optimize attack path generation. For instance, AIRL
(2024) [46] and SeqGAN-PT (2023) [44] leveraged adversarial learning to
optimize strategies, overcoming computational efficiency bottlenecks in tra-
ditional MDP models and opening new research directions for penetration
testing.

131

5.3 Comparative Analysis

5.3.1 Model Framework: MDP vs. POMDP

In the early stages of automated penetration testing research, Markov De-
cision Processes (MDPs) were the mainstream choice due to their assump-
tion of fully observable states. For example, AutoPentest-DRL (2020) [2]
and NDSPI-DQN (2021) [4] simplified the description of network states to
quickly plan optimal attack paths. However, as the complexity and dynam-
ics of real-world network environments became apparent, Partially Observ-
able Markov Decision Processes (POMDPs) gained prominence. POMDPs
align better with practical penetration testing scenarios. Models such as
ND3RQN (2022) [8], DRLRM-PT (2024) [11], and DL-TAPTS (2024)
[37] incorporated LSTMs, reward machines, and dynamic threat matrices,
enabling agents to make more precise decisions under incomplete informa-
tion.

However, the transition from MDPs to POMDPs is not straightforward.
The introduction of POMDPs increases the complexity of algorithm design,
requiring mechanisms such as memory structures (e.g., LSTMs) to capture
historical information or the integration of domain knowledge (e.g., MITRE
ATT&CK knowledge base) to optimize reward design and improve learning
efficiency. Moreover, strategy generation under partially observable states in
POMDP models demands greater robustness and adaptability.

5.3.2 Action Space Optimization

As network scales grow, the explosive increase in action space becomes a ma-
jor challenge for Deep Reinforcement Learning (DRL) in penetration testing.
Hierarchical methods and dynamic action constraint techniques provide ef-
fective solutions to this problem. Hierarchical methods, such as HA-DRL
(2021) [6] and DynPen (2024) [19], decompose actions into global and
local subtasks, segmenting the action space into manageable subsets. For in-
stance, DynPen (2024) [19] introduces an upper-level agent to handle global
task scheduling, while lower-level agents manage subtasks such as vulnera-
bility exploitation and credential connection, significantly reducing action
complexity.

On the other hand, dynamic action constraint techniques, such as INNES
(2023) [36] and DQN_valid, dynamically adjust action sets to further op-
timize resource allocation. INNES (2023) [36] proposed a method for con-
structing effective action subsets, reducing meaningless exploration and en-
hancing applicability in large-scale scenarios. However, these methods often

132

require additional modules (e.g., monitoring and replay modules in DynPen
(2024) [19]) or rely on prior knowledge bases (e.g., expert knowledge bases),
which improve efficiency at the cost of increased system complexity.

5.3.3 Reward Mechanism

The sparse reward problem has been a bottleneck for reinforcement learning
in penetration testing, especially in dynamic and complex network environ-
ments. This issue has persisted since early studies like NAS (2018) [1] and
AutoPentest-DRL (2020) [2]. Traditional approaches typically designed
rewards based on final goals or single rewards, such as node exploitation
success. However, such simplistic mechanisms struggle in complex environ-
ments. To address this, many studies have optimized reward mechanisms
through hindsight experience replay and task decomposition. For instance,
HER-PT (2024) [10] introduced a ”goal resetting” method that reconstructs
failed experiences into positive rewards, increasing the proportion of positive
samples and addressing the sparse reward problem. DRLRM-PT (2024)
[11] utilized reward machines to decompose tasks, designing independent re-
ward functions for each subtask to enhance training efficiency and improve
the interpretability of generated strategies.

Moreover, improvements to reward mechanisms based on MulVAL attack
graphs have drawn attention. For example, ASAP (2020) [3] embedded
CVSS scores into attack graph nodes to optimize reward functions, while
MDDQN (2023) [35] leveraged an extended state transition matrix to alle-
viate the sparse reward issue significantly.

5.3.4 Integration of Expert Knowledge and Experience-
Driven Methods

Expert knowledge and experience in replay techniques have been widely ap-
plied in reinforcement learning for penetration testing. For example, DQfD-
ATIPT (2023) [9] and HER-PT (2024) [10] leveraged expert knowledge to
rapidly improve initial policy efficiency. However, overreliance on expert
knowledge may limit the model’s adaptability to diverse scenarios. To miti-
gate this, INNES (2023) [36] proposed reducing dependency on prior knowl-
edge by dynamically constructing state representations, while also combining
dynamic action constraint techniques to enhance model robustness.

It is worth noting that the integration of hierarchical agents with ex-
pert knowledge is becoming a trend. For example, DynPen (2024) [19]
utilized a Hierarchical Deep Reinforcement Learning (HDRL) architecture

133

to decompose tasks and incorporated expert knowledge bases for guidance,
significantly improving learning efficiency and the reliability of strategy gen-
eration.

5.3.5 Deep Integration of MulVAL Attack Graphs and
Reinforcement Learning

Attack graphs generated by MulVAL provide critical prior knowledge for
penetration testing, but their deep integration with reinforcement learning
models remains a key challenge. For instance, ASAP (2020) [3] optimized
reward functions using CVSS scores embedded in attack graph nodes, while
MDDQN (2023) [35] extended state transition matrices to enhance path
selection accuracy. Additionally, DL-IAPTS (2024) [37] employed dynamic
threat matrices, combining MulVAL and Shodan tools to generate real-time
updated attack graphs, greatly enhancing the model’s adaptability to dy-
namic networks. DRLRM-PT (2024) [11] went further by decomposing
tasks through reward machines, embedding attack graph information into
subtask sequence reward design, achieving efficient and interpretable strat-
egy generation.

5.3.6 Open Source Platforms and Real-World Valida-
tion

Although simulation environments provide standardized testing for auto-
mated penetration testing, many studies have attempted to combine real-
world scenarios for validation. For example, HER-PT (2024) [10] validated
its performance in dynamic network scenarios on the NAS platform and
further tested its transferability in real network environments. Improved-
PenBox (2022) [32] simulated real attacks in the network environment of
the European Space Agency (ESA), demonstrating the adaptability and fea-
sibility of its model. Additionallyy, DRLRM-PT (2024) [11] verified the
effectiveness of reward machines through CyberBattleSim and tested the im-
pact of different reward designs on performance.

By combining simulation and real-world data, such as DL-IAPTS (2024)
[37], which leveraged Shodan to collect real-world network information and
incorporated it into simulation environments to construct semi-realistic test
scenarios, this approach further enhances the credibility of experimental re-
sults.

134

5.4 Key Challenges and Future Directions

5.4.1 Dynamic Adaptability

Current models like DynPen (2024) [19] demonstrate certain advantages in
dynamic network environments, but they suffer from high resource consump-
tion and computational complexity, particularly when dealing with frequently
changing network topologies. The real-time responsiveness of such models re-
mains insufficient. Future research could focus on developing lighter-weight
dynamic frameworks, such as integrating event-triggered mechanisms with
deep reinforcement learning-based dynamic strategies to reduce resource con-
sumption and optimize response speed. Additionally, multi-level dynamic
scheduling strategies can be explored, leveraging intelligent task decomposi-
tion and distributed processing to improve efficiency.

5.4.2 Knowledge Dependency and Autonomy

Current methods partially rely on expert knowledge, such as predefined vul-
nerability databases. For example, DQfD-AIPT (2023) [9], DynPen (2024)
[19], and ATIRL (2024) [46] have all applied ”expert experience”. However,
overreliance on these external knowledge sources may limit the scalability and
autonomy of models. Future approaches could integrate generative Al and
adaptive learning technologies to dynamically generate attack graphs or infer
unknown vulnerability states, gradually reducing dependency on fixed knowl-
edge bases. Enhancing agents’ ability to learn in unsupervised environments
and utilizing knowledge transfer techniques for cross-scenario adaptation are
promising directions.

5.4.3 Scalability in Large-Scale Networks

Existing methods face computational bottlenecks and challenges in distributed
learning when addressing large-scale network scenarios. For instance, in
complex networks with thousands of nodes, traditional hierarchical mod-
eling methods struggle with parallel processing and dynamic load balancing.
For example, NDSPI-DQN (2021) [4], HA-DRL (2021) [6], and CRLA
(2022) [31] all exhibit this issue. Future research could explore the com-
bination of Graph Neural Networks (GNNs) and reinforcement learning to
handle complex network structures. Moreover, leveraging cloud computing
and edge computing technologies may enable distributed parallel learning in
large-scale networks.

135

5.4.4 Generative Models and Adversarial Learning

Generative Adversarial Network (GAN) technologies, such as SeqGAN-
PT [44] and AIRL [46] have shown initial potential, but their application
to multi-agent collaborative learning and adversarial environments remains
underdeveloped. Future research could further explore GAN applications
in complex attack scenarios, such as adversarial training, dynamic honey-
pot defense generation, and multi-agent cooperative strategy optimization.
These advancements could redefine the field of automated network security,
particularly in proactive defense and adaptive security applications.

5.4.5 Comprehensive Benchmarking

Building standardized and comprehensive testing benchmarks is essential to
advance research. Although experimental platforms such as NAS (2019) [1]
and Microsoft’s CyberBattleSim (2020) [25] already exist, future bench-
marking platforms should include the following based on specific needs:

e Dynamically evolving real-world network topologies with high-frequency
changes in nodes and connections.

e Diverse threat scenarios, such as zero-day vulnerability attacks and
multi-stage attack chains.

e Dynamic attack-defense games incorporating honeypot technology, proac-
tive defense, and real-time monitoring.

Openly shared simulation platforms and standardized datasets could not only
improve comparability in research but also accelerate the practical applica-
tion of new technologies.

5.4.6 Explainability and Security

As reinforcement learning algorithms are increasingly applied in penetration
testing, their explainability and the credibility of results become critical chal-
lenges. For instance, current DRL models lack intuitive explanation mech-
anisms when generating attack strategies, making it difficult for network
administrators to understand optimization decisions. The reward machine
proposed in DRLRM-PT (2024) [11] provides us with a new solution di-
rection. Future research could incorporate tools like reward machines to
introduce rule-based model interpretation frameworks, enhancing robustness
against adversarial environments and ensuring greater reliability and security
in real-world applications.

136

5.4.7 Interdisciplinary Integration

With the growing complexity of network environments, no single technology
can address all challenges. Future research directions could incorporate in-
terdisciplinary knowledge, such as game theory from economics to optimize
attack-defense strategies, sociology, and behavioral science to simulate at-
tacker behavior, or IoT and industrial control system (ICS) data to enhance
agents’ adaptability to real-world scenarios. For example, SmartGrid-
PTDRL (2022) [7] focuses on cyber-physical scenarios, implying that using
IoT or industrial control system data can improve an agent’s adaptability to
real-world environments.

5.5 Discussion

Reflecting on research progress from 2018 to 2024, significant advancements
have been made in addressing the complexity and dynamism of network
threats. From early experimental frameworks based on Markov Decision Pro-
cesses (MDPs) to the introduction of Partially Observable Markov Decision
Processes (POMDPs), researchers have tackled challenges like action space
explosion, sparse rewards, and dynamic network adaptability through inno-
vative algorithm architectures, dynamic adaptation mechanisms, and domain
knowledge integration. These advancements have not only achieved theoret-
ical breakthroughs but also demonstrated exceptional practical potential in
diverse application scenarios.

Looking forward, integrating adversarial learning techniques with GANs
and reinforcement learning, leveraging GNNs for large-scale network opti-
mization are expected to reshape the research landscape of automated pen-
etration testing. Furthermore, optimizing real-time response mechanisms
in dynamic environments, deep interdisciplinary knowledge integration, and
establishing standardized testing benchmarks will enhance scalability and
practical application value in this field. This research direction will not only
continue to drive advancements in cybersecurity technologies but also provide
robust support for building safer and smarter future networks.

137

Chapter 6

Experimental Evaluation

6.1 Experimental Environment

All experiments in this study were conducted on a MacBook Air equipped
with a 1.6 GHz dual-core Intel Core i5 processor and 16 GB of DDR3 RAM.
The experimental platform utilized was NAS (2019) [1], a simulation en-
vironment specifically designed for cybersecurity research. NAS was chosen
because it provides standardized network environments and attack scenarios,
ensuring the reproducibility and comparability of experimental results.

6.2 Research Objective

This study aims to conduct a comprehensive evaluation of the effectiveness of
automated penetration testing through a systematic comparison and analysis
of various reinforcement learning (RL) algorithms. By empirically assessing
the performance of different RL agents in diverse penetration testing scenar-
ios, this research seeks to establish a set of quantitative metrics and method-
ological guidelines for evaluating the efficiency and reliability of automated
penetration testing approaches.

6.3 Experimental scenarios

There are 9 benchmark scenarios in NAS. Their descriptions are shown in
Table 6.1.

138

6€T

Scenario Subnets | Hosts | OS Count | Service Count | Process Count | Exploit Count | Privilege Escalation Count | Description

tiny 3 3 1 1 1 1 1 Minimal configuration with
a single OS, service, process,
and exploit

tiny-small 4 5 2 3 2 3 2 A configuration between
tiny and small

tiny-hard 3 3 2 3 2 3 2 A more challenging tiny
configuration

small 4 8 2 3 2 3 2 Standard public network
configuration

small-linear 6 8 2 3 2 3 2 Linear topology; the two
middle subnets are not di-
rectly connected

small-honeypot 4 8 2 3 2 3 2 Contains a honeypot host
(located at subnet 3,2)

medium 5 16 2 5 3 5 3 Public subnet configuration

medium-single-site 1 16 2 5 3 5 3 A single subnet with a vul-
nerable host

medium-multi-site 6 16 2 3 5 3 Main site with multiple re-

mote sites across different
subnets

Table 6.1: Descriptions of benchmark scenarios

6.4 Experiment 1: Policy Performance of QL,
DQN, and QLReplay Agents

6.4.1 Script Implementation

Training and policy execution scripts were developed for the QL Agent and
QL Replay Agent, based on the existing implementation of the DQN (Deep
Q-Network) agent.

6.4.2 Training Process

Across all benchmark scenarios provided by NAS:
e Default parameter settings were used.
e Each agent was trained for 7,000 episodes per scenario.
e The best-performing policy model during training was saved.
Rationale for Selection:
e Training for 7,000 episodes ensures sufficient learning and convergence.
e Saving the best-performing policy reflects the optimal performance of

the algorithms.

6.4.3 Testing and Evaluation

To assess the stability and effectiveness of the trained policies:
e Each saved optimal policy was tested for 100 episodes.
e Key performance metrics were collected:

— Attack Success Rate: Evaluates the reliability of the policy.
— Steps Measures the efficiency of the policy.

6.4.4 Experimental Results and Analysis
Attack Efficiency Evaluation

From the attack step data (Table 6.2), the following key findings can be
drawn:

140

The QL algorithm performs best in the tiny-small scenario (steps:
9.89), while DQN achieves the lowest step count in the tiny-hard sce-
nario (steps: 7.16), but fails to complete a large number of scenarios
(marked as N/A), indicating insufficient generalization ability.

QLReplay demonstrates advantages in complex scenarios. For exam-
ple, in the medium-multi-site scenario, it completes the attack in 18.77
steps, significantly outperforming random attacks (1023.19) and brute-
force methods (426.32).

Among baseline algorithms, brute-force performs relatively best in the
small-linear scenario (steps: 249.28), but its overall efficiency remains
1-2 orders of magnitude lower than QLReplay.

Random attacks perform the worst across all scenarios, validating the
necessity of optimizing attack strategies using intelligent algorithms.

141

44!

Table 6.2: Average attack steps for different agents across all benchmark scenarios

Benchmark Scenarios

Agent

Tiny Tiny-Small Tiny-Hard Small Small-Linear Small-Honeypot Medium Medium-Single-Site Medium-Multi-Site
DQN 7.16 N/A 6.18 N/A N/A N/A N/A N/A N/A
QL 9.89 17.05 6.96 106.68(81/100)229.28 20.67 26.59 12.45 45.83
QLReplay 7.82 11.7 7.14 19.18 20.7 14.19 30.15 164.73(44/100)* 18.77
Bruteforce 61.4 176 73.22 249.28 346.73 232 773.08 210.48 426.32
Random 110.53 299.63 149.37 473.06 526.91 481.09 1332.97 636.31 1023.19

Values in parentheses indicate success count/total attempts (e.g., 106.68 (81/100)).
“N/A” denotes scenarios where the algorithm failed to complete training.
All values represent attack steps (lower is better); training performed over 7000 episodes.

Training Time Efficiency

From the training time data (Table 6.3), the following observations can be
made:

e The QL algorithm has a significant advantage in terms of time ef-
ficiency. For example, in the medium scenario, its training time is

11,788.94 seconds, only 7.5% of QLReplay’s time (157,456.7 seconds).

e QLReplay takes up to 666,677.48 seconds in the medium-multi-site sce-
nario, indicating that its computational complexity increases exponen-
tially with scenario complexity.

e DQN achieves relatively short training times in simple scenarios (e.g.,
tiny, 804.99 seconds), but fails to complete training in complex scenar-
ios (marked as N/A), suggesting that its network structure may not be
well-suited for complex penetration testing tasks.

143

44!

Table 6.3: Training time for different agents across all the benchmark scenarios

Agent Benchmark Scenarios

Tiny Tiny-Small Tiny-Hard Small Small-Linear Small-Honeypot Medium Medium-Single-Site Medium-Multi-Site
DQN 804.99 N/A 359.77 N/A N/A N/A N/A N/A N/A
QL 75.71 196.96 64.57 494.57 692.48 555.59 11788.94 7907.85 8002.37
QLReplay 1197.32 3364.86 1201.3 32323.14 42077.57 24402.87 157456.7 184575.22 666677.48

“N/A” denotes scenarios where the algorithm failed to complete training.

All values represent training time in seconds; training performed over 7000

episodes.

Comprehensive Performance Evaluation

Based on Pareto frontier analysis, the following conclusions can be drawn:

e For time-sensitive tasks, QL is the optimal choice. In the small-honeypot
scenario, it achieves an optimal balance between attack steps (29.28)
and training time (555.59 seconds).

e For tasks prioritizing success rate, QLReplay is preferable. In the
medium-single-site scenario, it completes 44 out of 100 attacks in 164.73
steps. Although it takes a long time (184,575.22 seconds), its success
rate is significantly higher than that of random algorithms (0/100), and
it achieves a 100% success rate in other scenarios.

e DQN performs reasonably well in simple scenarios, but its failure rate
(N/A marks accounting for 85.7%) suggests the need for improvements
in network structure design.

Validation of Method Effectiveness

The experimental results validate the core hypotheses of this study:

e Effectiveness of the quantitative evaluation system: The dual-
dimension evaluation (steps-time) effectively distinguishes algorithm
characteristics (QL prioritizes efficiency, QLReplay prioritizes effective-
ness).

e Differentiability of benchmark scenarios: The step standard de-
viation across the nine scenario types reaches 382.5 (for random algo-
rithms), demonstrating the complexity of the test set.

e Practicality of the framework: In the medium-multi-site scenario,
QLReplay achieves an attack step count of 18.77, only 4.4% of brute-
force attacks, proving the potential of reinforcement learning in auto-
mated penetration testing.

6.5 Experiment 2: Cross-Benchmark Scenario
Performance Evaluation

To evaluate the scalability and robustness of the agents, additional exper-

iments were conducted in three benchmark scenarios: Tiny, Small, and
Medium.

145

6.5.1 Experimental Setup

e For each benchmark scenario:

— Tiny: 1,500 episodes
— Small: 3,500 episodes
— Medium: 8,000 episodes

e Each agent (QL, QLReplay, DQN) was run 10 times with default pa-
rameters and random seeds.

e The return values from each run were averaged, and episode-return
curves were plotted to compare agent performance and convergence
speed.

e Random Agent and Brute Force Agent were tested, each for 10 runs.
Their average results were used as baselines, marked as horizontal lines
in the curves.

6.5.2 Analysis Metrics

e Convergence Speed: Measured by comparing the speed at which
each agent achieved stable performance with increasing episodes.

e Baseline Comparison: Performance thresholds referenced from Ran-
dom Agent and Brute Force Agent results.

e Total Training Time: Indicates the trade-off between algorithm ef-
ficiency and practical applicability.

6.5.3 Experimental Results
Episode-Return Performance

Figures 6.1, 6.2 and 6.3 are for the Tiny, Small, and Medium benchmark
scenarios, and are used to illustrate the comparative performance of QL,
QLReplay, and DQN agents. The key observations are as follows:

e Tiny Scenario: QLReplay demonstrates a significantly faster conver-
gence compared to QL, achieving near-optimal returns within the first
300 episodes. In contrast, DQN exhibits slightly slower convergence,
stabilizing after 400 episodes. Despite initial fluctuations, QLReplay
consistently maintains higher returns.

146

Comparison of DQN, QL, and QLReplay - tiny

—— QL
—o— QLReplay
—e— DQN

180

160

120 4

100 -

T T T T T T T T
0 200 400 600 800 1000 1200 1400
Episode

Figure 6.1: Comparison of QL, QLReplay, and DQN in tiny scenario.

e Small Scenario: The performance gap between QL and QLReplay
becomes more apparent in this scenario. QLReplay reaches conver-
gence earlier and stabilizes at higher returns compared to QL. Notably,
DQN does not produce usable results in this scenario due to excessive
computational requirements.

e Medium Scenario: QLReplay maintains its superior performance in
larger-scale environments, achieving stable returns significantly faster
than QL. DQN remains infeasible for this scale, highlighting the com-
putational limitations of the approach.

Total Training Time

The average training time (in seconds) for each agent across 10 runs is sum-
marized in Table 6.4. Key observations are as follows:

e Tiny Scenario: QLReplay requires roughly 10x the training time of
QL but delivers substantially improved performance and faster conver-
gence.

e Small Scenario: The gap in training time widens, with QLReplay
requiring approximately 25x the time of QL. However, the faster con-
vergence and higher stability may justify the trade-off in larger envi-
ronments.

147

Comparison of QL and QLReplay - small

e | 7

u
=]

- QL
—8— QLReplay

T T T T T T T T
] 500 1000 1500 2000 2500 3000 3500
Episode

Figure 6.2: Comparison of QL and QL-Replay in small scenario.

e Medium Scenario: The computational cost of QLReplay escalates
dramatically, requiring over 83,000 seconds on average. However, QL
remains computationally affordable while still achieving acceptable per-
formance.

Table 6.4: Average total training time for DQN, QL and QLReplay across
the three test scenarios

Agent Tiny Small Medium
DQN 861.44 s N/A N/A
QL 13.76 s 330.07s 1908.92 s

QL-Replay 135.79s 8280.30s 83817.82 s

Discussion

e Trade-Off Analysis: While QLReplay demonstrates superior per-
formance in return and convergence speed, the trade-off is its signif-
icantly higher computational cost. This makes it suitable for appli-
cations where performance is critical and computational resources are
ample.

e Scalability: QLReplay showcases robustness across all scenarios, in-
cluding the large-scale Medium environment. In contrast, DQN is

148

Return

Comparison of QL and QLReplay - Medium

175

150

125 \

&

11

100

75

%

25

'TWEE—-

Ind

- QL
1 —@— QLReplay
T

=)

H]

T
0

1000

2000

4000
Episode

6000

7000

8000

Figure 6.3: Comparison of QL and QL-Replay in medium scenario.

limited by its computational demands, and QL struggles to maintain
competitive returns in larger environments.

e Practical Implications: The results highlight the importance of bal-
ancing computational cost and performance requirements when select-
ing an agent for real-world applications.

149

Chapter 7

Conclusion

This research report has provided a comprehensive and detailed overview
of the application of reinforcement learning in automated penetration test-
ing. Through a systematic literature review and analysis of over 30 relevant
papers, we have identified key contributions, methodologies, and advance-
ments in this field. Our analysis reveals that while reinforcement learning
has shown great promise in improving the efficiency and effectiveness of pen-
etration testing, several critical challenges remain. These challenges include
the need for more scalable algorithms capable of handling large and complex
network environments, the issue of sparse rewards which can hinder effective
learning, and the need for greater adaptability to dynamic network changes.

e Scalability: Current algorithms often struggle with large-scale net-
works due to the exponential growth of state and action spaces. Fu-
ture research should focus on developing more efficient and scalable
algorithms, such as those leveraging Graph Neural Networks (GNNs)
to handle complex network structures.

e Sparse Rewards: The issue of sparse rewards remains a significant
challenge, as it can hinder effective learning in reinforcement learning
models. Future work should explore methods to address this issue, such
as incorporating intrinsic motivation or designing more sophisticated
reward mechanisms.

e Dynamic Adaptability: Networks are dynamic and constantly chang-
ing, requiring algorithms to adapt quickly to new conditions. Future
research should aim to develop algorithms that can dynamically adjust
to changes in network topology and security policies.

In addition, a series of experiments were conducted with QL, QLReplay,
and DQN agents across nine benchmark scenarios provided by NAS. The ex-

150

perimental results further validate the effectiveness of different reinforcement
learning algorithms in various penetration testing scenarios. We have demon-
strated that while some algorithms perform well in small-scale networks, they
face significant difficulties in larger networks due to the rapid growth of state
and action spaces. This highlights the need for future research to focus on
developing more efficient and scalable algorithms. Additionally, our experi-
ments have shown the importance of balancing computational cost and per-
formance requirements when selecting an agent for real-world applications.

e Algorithm Performance: QLReplay demonstrated superior perfor-
mance in complex scenarios, achieving significantly fewer attack steps
compared to other algorithms. However, it requires much longer train-
ing times, making it less suitable for time-sensitive tasks.

e Training Efficiency: QL showed a significant advantage in training
time, making it a suitable choice for scenarios where computational
resources are limited. However, its performance in larger networks was
less competitive.

e Practical Implications: The results highlight the importance of bal-
ancing computational cost and performance requirements when select-
ing an agent for real-world applications. For instance, QLReplay is
ideal for scenarios where high performance is critical, while QL is more
suitable for time-sensitive tasks.

Future research directions should focus on addressing the identified chal-
lenges through innovations in algorithm design, integration of domain knowl-
edge, and development of more realistic simulation environments. For exam-
ple, the use of Graph Neural Networks (GNNs) and Generative Adversar-
ial Networks (GANs) could help address scalability and adaptability issues.
Furthermore, the integration of large language models (LLMs) could enhance
the ability of agents to learn and adapt in dynamic environments. Establish-
ing comprehensive benchmarking platforms and improving the explainability
and security of reinforcement learning models are also crucial for advancing
this field. In summary, this research highlights the potential of reinforce-
ment learning in automated penetration testing and provides a foundation
for future work. By addressing the identified challenges and exploring new
research directions, we can continue to drive advancements in cybersecurity
technologies and contribute to the development of safer and more intelligent
network systems.

NOTE: Generative Al technologies were used in this thesis for LaTeX
formatting and translation.

151

References

1]

2]

[7]

8]

J. Schwartz and H. Kurniawati, “Autonomous penetration testing using
reinforcement learning,” arXiv preprint arXiv:1905.05965, 2019.

Z. Hu, R. Beuran, and Y. Tan, “Automated penetration testing using
deep reinforcement learning,” in 2020 IEEE European Symposium on
Security and Privacy Workshops (EuroS&/PW). 1EEE, 2020, pp. 2-10.

A. Chowdhary, D. Huang, J. S. Mahendran, D. Romo, Y. Deng, and
A. Sabur, “Autonomous security analysis and penetration testing,” in
2020 16th International Conference on Mobility, Sensing and Network-
ing (MSN). 1EEE, 2020, pp. 508-515.

S. Zhou, J. Liu, D. Hou, X. Zhong, and Y. Zhang, “Autonomous pen-
etration testing based on improved deep g-network,” Applied Sciences,
vol. 11, no. 19, p. 8823, 2021.

R. Gangupantulu, T. Cody, A. Rahma, C. Redino, R. Clark, and
P. Park, “Crown jewels analysis using reinforcement learning with attack
graphs,” in 2021 IEEE Symposium Series on. Computational Intelligence
(SSCI). 1EEE, 2021, pp. 1-6.

K. Tran, A. Akella, M. Standen, J. Kim, D. Bowman, T. Richer, and
C.-T. Lin, “Deep hierarchical reinforcement agents for automated pen-
etration testing,” arXiv preprint arXiw:2109.06449, 2021.

Y. Li, J. Yan, and M. Naili, “Deep reinforcement learning for pene-
tration testing of cyber-physical attacks in the smart grid,” in 2022
International Joint Conference on Neural Networks (IJCNN). IEEE,
2022, pp. 01-09.

Y. Zhang, J. Liu, S. Zhou, D. Hou, X. Zhong, and C. Lu, “Improved
deep recurrent g-network of pomdps for automated penetration testing,”
Applied Sciences, vol. 12, no. 20, p. 10339, 2022.

152

[9]

[10]

[11]

[12]

[13]

[16]

[17]

Y. Wang, Y. Li, X. Xiong, J. Zhang, Q. Yao, and C. Shen, “Dqfd-
aipt: An intelligent penetration testing framework incorporating expert

demonstration data,” Security and Communication Networks, vol. 2023,
no. 1, p. 5834434, 2023.

M. Li, T. Chen, H. Yan, T. Zhu, and M. Lv, “Her-pt: An intelligent pen-
etration testing framework with hindsight experience replay,” Awailable
at SSRN 4932007, 2024.

Y. Li, H. Dai, and J. Yan, “Knowledge-informed auto-penetration
testing based on reinforcement learning with reward machine,” arXiv
preprint arXiv:2405.15908, 2024.

H. V. Nguyen and T. Uehara, “Multilayer action representation based
on mitre att&ck for automated penetration testing,” Journal of Infor-
mation Processing, vol. 31, pp. 562-577, 2023.

Y. Yang and X. Liu, “Behaviour-diverse automatic penetration test-
ing: A curiosity-driven multi-objective deep reinforcement learning ap-
proach,” arXiv preprint arXiw:2202.10630, 2022.

Z. Li, Q. Zhang, and G. Yang, “Eppta: Efficient partially observable
reinforcement learning agent for penetration testing applications,” FEn-
gineering Reports, p. e12818, 2023.

X. Guo, J. Ren, J. Zheng, J. Liao, C. Sun, H. Zhu, T. Song, S. Wang,
and W. Wang, “Automated penetration testing with fine-grained control
through deep reinforcement learning,” Journal of Communications and
Information Networks, vol. 8, no. 3, pp. 212-220, 2023.

E. Cengiz and M. Gok, “Reinforcement learning applications in cyber
security: A review,” Sakarya University Journal of Science, vol. 27,
no. 2, pp. 481-503, 2023.

G. Palmer, C. Parry, D. J. Harrold, and C. Willis, “Deep reinforcement
learning for autonomous cyber operations: A survey,” arXiv preprint
arXiw:2510.07745, 2023.

S. Vyas, J. Hannay, A. Bolton, and P. P. Burnap, “Automated cyber
defence: A review,” arXiv preprint arXiv:2303.04926, 2023.

Q. Li, R. Wang, D. Li, F. Shi, M. Zhang, and A. Chattopadhyay, “Dyn-
pen: Automated penetration testing in dynamic network scenarios us-
ing deep reinforcement learning,” IEEE Transactions on Information
Forensics and Security, 2024.

153

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp.
279-292, 1992.

R. D. Smallwood and E. J. Sondik, “The optimal control of partially
observable markov processes over a finite horizon,” Operations research,
vol. 21, no. 5, pp. 1071-1088, 1973.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial intelligence,
vol. 101, no. 1-2, pp. 99-134, 1998.

M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies
for partially observable environments: Scaling up,” in Machine Learning
Proceedings 1995. Elsevier, 1995, pp. 362-370.

A. R. Cassandra, L. P. Kaelbling, and M. L. Littman, “Acting optimally
in partially observable stochastic domains,” in Aaai, vol. 94, 1994, pp.
1023-1028.

M. D. R. Team, “Cyberbattlesim,” https://github.com/microsoft/
cyberbattlesim, 2021.

X. Ou, S. Govindavajhala, A. W. Appel et al., “Mulval: A logic-based
network security analyzer.” in USENIX security symposium, vol. 8. Bal-
timore, MD, 2005, pp. 113-128.

V. Mnih, “Playing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

T.-y. Zhou, Y.-c. Zang, J.-h. Zhu, and Q.-x. Wang, “Nig-ap: A new
method for automated penetration testing,” Frontiers of Information
Technology € Electronic Engineering, vol. 20, no. 9, pp. 1277-1288, 2019.

H. Kurniawati, D. Hsu, and W. S. Lee, “Sarsop: Efficient point-based
pomdp planning by approximating optimally reachable belief spaces,”
2009.

D. C. Baulcombe, “Fast forward genetics based on virus-induced gene
silencing,” Current opinion in plant biology, vol. 2, no. 2, pp. 109-113,
1999.

K. Tran, M. Standen, J. Kim, D. Bowman, T. Richer, A. Akella, and C.-
T. Lin, “Cascaded reinforcement learning agents for large action spaces
in autonomous penetration testing,” Applied Sciences, vol. 12, no. 21,
p. 11265, 2022.

154

https://github.com/microsoft/cyberbattlesim
https://github.com/microsoft/cyberbattlesim

32]

[33]

[34]

[41]

A. Confido, E. V. Ntagiou, and M. Wallum, “Reinforcing penetration
testing using ai,” in 2022 IEEE Aerospace Conference (AERQO). TEEE,
2022, pp. 1-15.

R. Gangupantulu, T. Cody, P. Park, A. Rahman, L. Eisenbeiser,
D. Radke, R. Clark, and C. Redino, “Using cyber terrain in reinforce-
ment learning for penetration testing,” in 2022 IEEE International Con-
ference on Omni-layer Intelligent Systems (COINS). 1EEE, 2022, pp.
1-8.

Q. Li, M. Zhang, Y. Shen, R. Wang, M. Hu, Y. Li, and H. Hao, “A hier-
archical deep reinforcement learning model with expert prior knowledge
for intelligent penetration testing,” Computers € Security, vol. 132, p.
103358, 2023.

J. Yi and X. Liu, “Deep reinforcement learning for intelligent penetra-
tion testing path design,” Applied Sciences, vol. 13, no. 16, p. 9467,
2023.

Q. Li, M. Hu, H. Hao, M. Zhang, and Y. Li, “Innes: An intelligent net-
work penetration testing model based on deep reinforcement learning,”
Applied Intelligence, vol. 53, no. 22, pp. 27110-27 127, 2023.

A. Samad, S. Altaf, and M. J. Arshad, “Advancements in automated
penetration testing for iot security by leveraging reinforcement learn-
ing,” evaluation, vol. 8, p. 9, 2024.

R. S. Sutton, “Reinforcement learning: An introduction,” A Bradford
Book, 2018.

H. V. Nguyen and T. Uehara, “Hierarchical action embedding for effec-
tive autonomous penetration testing,” in 2022 IEEFE 22nd International
Conference on Software Quality, Reliability, and Security Companion

(QRS-C). IEEE, 2022, pp. 152-157.

G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap,
J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin, “Deep re-
inforcement learning in large discrete action spaces,” arXiv preprint
arXiv:1512.07679, 2015.

H. V. Nguyen, H. N. Nguyen, and T. Uehara, “Multiple level action em-
bedding for penetration testing,” in Proceedings of the 4th International
Conference on Future Networks and Distributed Systems, 2020, pp. 1-9.

155

[42]

[43]

[44]

[47]

[48]

[49]

H. V. Nguyen, S. Teerakanok, A. Inomata, and T. Uehara, “The pro-
posal of double agent architecture using actor-critic algorithm for pen-
etration testing.” in ICISSP, 2021, pp. 440-449.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

A. Chowdhary, K. Jha, and M. Zhao, “Generative adversarial network
(gan)-based autonomous penetration testing for web applications,” Sen-
sors, vol. 23, no. 18, p. 8014, 2023.

J. Schwartz, H. Kurniawati, and E. El-Mahassni, “Pomdp+ information-
decay: Incorporating defender’s behaviour in autonomous penetration
testing,” in Proceedings of the International Conference on Automated
Planning and Scheduling, vol. 30, 2020, pp. 235-243.

A. Sychugov and M. Grekov, “Automated penetration testing based on
adversarial inverse reinforcement learning,” in 2024 International Rus-
sian Smart Industry Conference (SmartIndustryCon). 1EEE, 2024, pp.
373-377.

M. C. Ghanem and T. M. Chen, “Reinforcement learning for efficient
network penetration testing,” Information, vol. 11, no. 1, p. 6, 2019.

M. C. Ghanem, T. M. Chen, and E. G. Nepomuceno, “Hierarchical
reinforcement learning for efficient and effective automated penetration
testing of large networks,” Journal of Intelligent Information Systems,
vol. 60, no. 2, pp. 281-303, 2023.

K. Qian, D. Zhang, P. Zhang, Z. Zhou, X. Chen, and S. Duan, “Ontology
and reinforcement learning based intelligent agent automatic penetra-
tion test,” in 2021 IEEFE International Conference on Artificial Intelli-
gence and Computer Applications (ICAICA). TEEE, 2021, pp. 556-561.

156

	Introduction
	Background
	Objectives
	Originality and Significance
	Report Structure

	Relevant Foundational Background Knowledge
	Markov Decision Process (MDP)
	Partially Observable Markov Decision Process (POMDP)
	Network Attack Simulator (NAS)
	Research Goals and Contributions
	Implementation of NAS
	Reinforcement Learning Training Details
	Experimental Results
	Impact and Future Work

	CyberBattleSim
	Research Background and Objectives
	System Design and Functionality
	Reinforcement Learning Training Details
	Comparison with NAS

	MulVAL
	Research Objectives and Contributions
	Implementation Details of MulVAL
	Experimental Results
	Impact

	Systematic Literature Review Related to DQN
	NIG-AP
	Research Methodology
	Experiments and Results

	AutoPentest-DRL
	Framework Overview
	Experimental Validation

	ASAP
	Attack Graph Generation and State Representation
	Deep Reinforcement Learning for Generating Optimal Attack Paths
	Validation of ASAP Framework
	Future Directions

	NDSPI-DQN
	Enhancements to the DQN Algorithm
	Framework Architecture
	Action Space Reduction
	Experimental Evaluation
	Conclusion and Future Work

	CJA-RL
	Overview of CJA-RL
	Attack Graph Generation
	Reinforcement Learning for Attack Path Discovery
	Experimental Evaluation and Results

	HA-DRL
	Challenges in Large Action Spaces
	Hierarchical Agent-Based Approach
	Hierarchical Action Selection
	Experimental Evaluation
	Interpretability and Scalability
	Future Research Directions

	CRLA
	Overview
	Experiments
	Comparison with HA-DRL

	SmartGrid-PTDRL
	Overview of SmartGrid-PTDRL
	Attack Operations
	Framework Design
	Experimental Validation and Findings
	Implications and Future Research

	ND3RQN
	POMDP-Based Modeling for Black-Box Penetration Testing
	Key Improvements in ND3RQN
	Network Architecture of ND3RQN
	Experimental Evaluation

	Improved-PenBox
	Overview
	Implementation Details
	Experimental Results

	OAKOC
	Methodology
	Attack Graph Construction
	Incorporating Cyber Terrain via Reward Adjustment
	Incorporating Cyber Terrain via State Adjustment
	Experimental Results

	HDRL
	HDRL Model Design
	Key Features of the Model
	Experimental Validation

	DQfD-AIPT
	Phases of the DQfD-AIPT Framework
	Key Improvements of the DQfD Algorithm
	Experimental Validation
	Experimental Results

	MDDQN
	Working Mechanism of MDDQN
	Experimental Validation and Analysis

	INNES
	Overview of INNES
	DQN_valid: Optimized Action Space
	Experimental Evaluation
	Portability Across Network Environments

	HER-PT
	Details of HER-PT
	Experimental Evaluation

	DynPen
	Research Methods and Implementation Details
	Experimental Design and Results Analysis

	DRLRM-PT
	Overview of DRLRM-PT Framework
	Reward Machines (RMs)
	POMDP Modeling and DQRM
	Experimental Evaluation
	Experimental Results

	DL-IAPTS
	Methodology
	Experiments

	Overall Analysis of DQN Approaches
	Analysis of NDSPI-DQN, ND3RQN and DQfD-AIPT
	Analysis of INNES, HDRL and DynPen
	Analysis of Research Related to MulVAL
	Analysis of Research Related to HER, PER and Expert
	Analysis of Research Related to Hierarchical Mechanisms
	Other Approaches

	Systematic Literature Review of Other Algorithms
	AC (Actor-Critic)
	HAE
	MAR-WA
	MLAE-WA
	Double Agent Architecture (DAA)
	Overall Analysis of AC Approaches

	PPO (Proximal Policy Optimization)
	CLAP
	EPPTA
	RLAPT
	Overall Analysis of PPO Approaches

	Other Approaches
	SeqGAN-PT
	AIRL
	IAPTS
	IAPTF
	BDI-RL

	Overall Analysis
	Comprehensive Analysis of Research
	Historical Development and Key Contributions
	Foundational Stage (2018–2020)
	Domain Expansion (2021–2023)
	Emerging Trends (After 2023)

	Comparative Analysis
	Model Framework: MDP vs. POMDP
	Action Space Optimization
	Reward Mechanism
	Integration of Expert Knowledge and Experience-Driven Methods
	Deep Integration of MulVAL Attack Graphs and Reinforcement Learning
	Open Source Platforms and Real-World Validation

	Key Challenges and Future Directions
	Dynamic Adaptability
	Knowledge Dependency and Autonomy
	Scalability in Large-Scale Networks
	Generative Models and Adversarial Learning
	Comprehensive Benchmarking
	Explainability and Security
	Interdisciplinary Integration

	Discussion

	Experimental Evaluation
	Experimental Environment
	Research Objective
	Experimental scenarios
	Experiment 1: Policy Performance of QL, DQN, and QLReplay Agents
	Script Implementation
	Training Process
	Testing and Evaluation
	Experimental Results and Analysis

	Experiment 2: Cross-Benchmark Scenario Performance Evaluation
	Experimental Setup
	Analysis Metrics
	Experimental Results

	Conclusion

