
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
大規模シミュレーションのためのスマートデバイスアプリケー

ションの構成法

Author(s) 中川, 颯馬

Citation

Issue Date 2025-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/19832

Rights

Description
Supervisor: 篠田 陽一, 先端科学技術研究科, 修士 (情報

科学)



A Structure for Smart Device Applications for Large Scale Simulation

2210126 Soma Nakagawa

In times of disasters or emergencies, the number of people using smart de-
vice applications (App) can increase dramatically. For example, in the case
of massive Nankai Trough earthquake, as many as 8.8 million people are ex-
pected to be affected. If a large number of these people simultaneously use a
disaster-response App, it is essential for App to continue functioning as usual.
To ensure this, performance testing and large-scale deployment simulations
must be conducted in advance. This need is especially critical for mission-
critical App designed for use during disasters. Although existing load testing
tools can be used for large-scale simulations, the loads generated by these
tools are typically based on predefined and static scenarios. This makes it
difficult to replicate the complex conditions of actual usage. By using App
themselves to generate loads, it becomes possible to create more complex sce-
narios that better reflect real-life situations. This approach enables a more
realistic evaluation of App performance under diverse conditions.

Existing methods for simulating large-scale App deployment include ap-
proaches that use physical devices and approaches that use emulators. When
relying on physical devices, either on-premise devices or cloud-based services
can be used. However, this tends to be impractical from a cost or resource
perspective. Although emulators can accommodate larger scale than phys-
ical devices, they require significant overhead to emulate hardware features
such as displays, input devices, and sensors. As a result, simulations on the
order of millions of instances become difficult.

To address these challenges, this research proposes converting an App into
a headless App (vApp). This allows the App to operate without depending
on physical devices or emulators, thereby simplifying large-scale simulation.
One straightforward way to remove the frontend entirely would leave only
the core logic. However, this approach makes it impossible to test user input
logic. Therefore, this study proposes rebuilding the frontend using a design
pattern commonly employed in App with GUI. This allows for generalization
of the elements that need to be rebuilt. MVC (Model-View-Controller) model
is adopted here as an example for frontend rebuilding. During the process of
making App headless, three major points were considered.

The first point involves an automated control mechanism for vApp. Since
vApp has no GUI, existing methods such as touch operations or screen transi-
tions are unusable. Moreover, manual operation is impractical for large-scale
simulations. Consequently, an agent-oriented simulator (Agent) was intro-
duced to simulate user operations and behavior scenarios. This enables vApp
to be controlled automatically.

1



The second point concerns the design of I/O model for vApp. In a large-
scale simulation, each Agent is paired with one vApp. However, since vApp
has no GUI, conventional input and output mechanisms, such as touch op-
erations or screen transitions, cannot be used. To address this limitation,
operations and information must be exchanged through message communi-
cation between Agent and vApp. This communication mechanism is defined
here as“ I/O model”. Two models are proposed to facilitate this inter-
action. The first is vScreen Model, which focuses on screen structure and
transitions. The second is vOps Model, which places more emphasis on the
services provided by App.

The third point addresses a sensor information exchange model. When
App runs on a physical device or emulator, it can directly obtain information
such as GPS data or battery status. However, because a vApp does not run
on an actual device or emulator, these types of sensor information do not
physically exist. To overcome this limitation, this study leverages the fact
that Agent simulates user behavior. Agent pseudo-generates various sensor
data and sends it to the vApp. This mechanism allows vApp to behave as if it
were operating on a physical device. Two models are proposed for exchang-
ing sensor information between the vApp and Agent. One model handles
data asynchronously (Asynchronous Model), while the other exchanges data
synchronously (Synchronous Model).

To verify the effectiveness of the proposed approach, an example App
was implemented as vApp using MVC pattern. Partial rebuilding of GUI
in that vApp resulted in App variant. This made it possible to clarify the
implementation differences and confirm the reproducibility of the method.

A comparative evaluation was then conducted using five different meth-
ods that combine various execution environments, forms of App, and opera-
tion methods. These methods were evaluated based on computing resources,
required time, execution costs, ease of automation, ease of debugging, scal-
ability, fidelity, and implementation overhead. The results show that the
proposed method demonstrates clear advantages in many of these areas. Re-
garding computing resources and scalability, executing lightweight vApp on
general-purpose servers enables simulations on the order of one million in-
stances at reasonable cost and within reasonable time. In terms of execu-
tion costs and time, substantial savings were observed compared to other
methods. Notably, the proposed method achieved approximately twenty-
four times better cost efficiency than emulator-based approaches. Removing
GUI also simplifies automation. Since there is no need to track screen transi-
tions or user input, the control program becomes less complex than existing
automated tools.

On the other hand, there are indications that the method may be inferior

2



in terms of fidelity, as it is difficult to reproduce all user interaction patterns
or device-specific behaviors. Additionally, implementation overhead remains
an issue, particularly due to the need to restore GUI if vApp is converted
back into a fully functional App. Future work includes developing an auto-
matic mechanism for generating vApp from existing App and refining Agent
to simulate more detailed user behaviors. Further research will also involve
conducting large-scale experiments with millions or tens of millions of simu-
lations and clarifying which types of App and requirements are best suited
for this method.

3


