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Abstract 

Background  
The fashion industry offers a compelling research scope with the evolution of artificial intelligence (AI) driving profound 
transformations in Industry 4.0 and 5.0 contexts. This is because of its mass production and its significant sustainability 
issues and challenges. This rapid advancement of AI in the traditional apparel manufacturing sector is accelerating 
innovation and transformation, as AI applications have been increasingly integrated into the industry in recent years. 
China’s apparel industry is the world’s largest apparel producer, which is predominantly composed of micro (fewer than 
20 employees), small (21-300 employees), and medium-sized (301-1000 employees) enterprises (MSMEs). These 
MSMEs face challenges posed by AI-integrated technologies, particularly in adapting to digital transformation with 
limited resources and talents. At the same time, the Chinese government has introduced numerous policies to foster the 
application of AI in transforming traditional manufacturing in different areas of industry.  
Rationale and Gaps 
However, the favorable technological, industrial, and Chinese AI policy context has not attracted scholars’ research 
interest in the Chinese apparel manufacturing sectors. While China has made outstanding achievements in applying AI in 
the apparel manufacturing sectors, the adoption of AI by traditional apparel manufacturers has progressed slowly. 
Therefore, it is necessary to investigate the factors that drive or hinder AI adoption. Among the 41 studies selected on 
technology adoption in manufacturing sectors from the Scopus database using preferred reporting items for systematic 
reviews and meta-analysis protocol, the study focused on a specific manufacturing sector with evidence from China is 
still relatively rare, with limited studies focus on specific manufacturing, and only one, focuses on MSMEs (Gap 1). 
Second, current studies have not examined the correlations between AI adoption and open innovation toward these 
emerging technologies applied to Chinese apparel manufacturing sectors through knowledge/resource-based views (Gap 
2). Third, current research overlooks how apparel manufacturing companies collaborate with the government and 
universities to develop an innovation ecosystem considering the China’s institution regulations and policy context (Gap 
3). 
Research Objectives  
Therefore, this thesis’s main research objective (MRO) aims to develop a framework for propositions for micro, small, 
and medium-sized Chinese apparel manufacturing’s innovation ecosystem. Accordingly, this thesis comprises two sub-
research objectives (SROs). SRO 1 provides the initial exploratory correlations between AI adoption and open 
innovation from apparel manufacturing MSMEs managers’ perspectives, identifying knowledge absorptive capacity 
(KACAP)’s significant impacts through an integrated and extended technology acceptance model (TAM) and 
technological, organizational, and environmental (TOE) framework; SRO 2 aims to ground the required AI capabilities 
and barriers to adopting AI in Chinese apparel manufacturers, subsequently through coding the diverse perspectives 
from managers of the apparel industry, university staffs and leaders of apparel associations, thereby developing a novel 
triple-layer framework of AI-enabled innovation ecosystem, thus generating the conceptual propositions. This 
demonstrates a significant connection between SRO 1 and SRO 2, which achieves the MRO.  
Design/Methodology/Approach 
Two studies fulfill the two SROs. Study 1 (to achieve SRO 1) predominantly utilized a quantitative research approach, 
leveraging Partial Least Squares-Structural Equation Modeling (PLS-SEM) to empirically validate the antecedents of AI 
adoption and its consequential effects on knowledge absorptive capacity and open innovation capability. It collected 269 
apparel MSMEs’ top managers from June to August 2024. Through the rigorous statistical analysis of a substantial dataset, 
this study examined the causal relationships underpinning AI adoption and these critical innovation-related constructs, 
thereby furnishing robust empirical evidence that substantiates the proposed hypotheses. Study 2 (to achieve SRO2) 
adopted a qualitative research approach grounded in the principles of grounded theory to explore the intricate processes 
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through which organizations architect an AI-driven innovation ecosystem from two required AI capabilities and three 
barriers to adopting AI. Through semi-structured interviews with 15 participants and another five for data saturations 
conducted from June to October 2024, this study constructed an interpretive framework and propositions that explain the 
specific mechanisms and pathways through which AI catalyzes the development of innovation ecosystems within 
organizational settings.  
Findings 
The results of Study 1 show that the TAM-TOE structural model explains 60.7% of the variance in AI adoption, 47.4% 
in KACAP, and 55.4% in open innovation, which suggests the good explanatory, and all these Q2 values indicate a large 
predictive accuracy threshold. Drawing on the proposed model, the study has identified technological (e.g., perceived 
usefulness) and environmental factors (e.g., competitive pressure, market uncertainty, and government support and policy) 
that significantly impact AI adoption. Meanwhile, organizational factors (e.g., organizational readiness) directly impact 
KACAP, and environmental factors (competitive pressure, supplier involvement, and market uncertainty) directly impact 
open innovation. Subsequently, the AI construct having a significant influence on MSMEs’ open innovation through 
KACAP. Based on the preliminary results of Study 1, Study 2 adopted a grounded theory approach to qualitatively analyze 
interviews with representatives from enterprises, universities, and apparel associations to obtain the required AI 
capabilities and barriers to adopting AI. Through systematic coding and comparison, the study selected a coding 
framework to align the 13 propositions with the theoretical framework, ultimately forming a novel AI-enabled Triple 
Layer Innovation Ecosystem Framework. This framework reflects the dynamic interplay between external knowledge 
absorption and the firm’s internal innovation capacity, highlighting the collaborative roles of different stakeholders in 
driving AI adoption and open innovation, thereby achieving the MRO of the thesis.  
Research Significance 
Theoretically, the research developed a novel extended TAM-TOE framework that integrates AI adoption with open 
innovation and KACAP in the Chinese apparel manufacturing industry. This fills existing theoretical gaps by linking AI 
technology to organizational innovation processes and demonstrating the mediating influence of KACAP. Also, the 
proposed model provides a foundation for future research exploring the intersection of AI and innovation in similar 
industries. By categorizing key required AI capabilities in the Chinese apparel manufacturing sector and the factors 
hindering their AI adoption, this study also provides a theoretical lens in a novel theoretical triple-layer framework for 
innovation ecosystems to understand how open innovation within the apparel industry, universities, associations, and 
government entities collaborate to leverage AI technologies for mutual benefit. 

Practically, the research provides insights for apparel manufacturers seeking to adopt AI technologies to foster open 
innovation. By identifying the key factors affecting AI adoption and highlighting the importance of KACAP, the study 
offers enterprises 13 propositions for integrating AI into their innovation processes. This will enhance their ability to 
produce small-batch, highly personalized products and increase their competitiveness in a rapidly evolving market. 
Furthermore, the framework developed offers guidance on how traditional businesses improve collaboration with 
universities, associations, and government agencies to co-create values in the AI-enabled innovation ecosystem. 
Simultaneously, the research outcomes provide the innovation path for university talent cultivation in the AI-driven 
innovation context. 

Policy-related, the research informs policymakers by unveiling the mechanisms through which AI can promote 
collaboration between enterprises, academic institutions, and government bodies. Policymakers can use the findings to 
develop strategies that encourage the integration of AI into industry and innovation systems, contributing to the broader 
goal of sustainable economic development in the Chinese apparel manufacturing sector, concreting, and practical policy 
measures for apparel industrial transformation and upgrading.  

Keywords:  Artificial Intelligence adoption; Open innovation; Innovation ecosystems; Knowledge absorptive capacity; 
Chinese apparel manufacturing micro, small and medium-sized enterprises
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1. Introduction 

This chapter describes the research context and theoretical background, supported by rationales. The 

research gap, therefore, is identified, and the main research objective (MRO) and two sub-research 

objectives (SROs) are outlined within the scope of the research, emphasizing its significance. The 

chapter concludes with the thesis structure and a summary. A flowchart of Chapter 1 is shown in Figure 

1.1. 

 
Figure 1.1 Flow Chart of Chapter 1 

1.1. Research Context  

1.1.1. Evolution of AI: From The 1940s to the 2020s  

The evolution of artificial intelligence (AI) represents one of the most compelling narratives in the history 

of technology. Different perspectives on the criteria for classifying the phase of AI evolution have been 

debated. A technical report by the Joint Research Centre (JRC) (Delipetrev et al., 2020) presented AI’s 

three key periods: AI foundations (1950s-1970s), symbolic AI (1970s-1990s), and machine learning and 

deep learning (1990s-2020s). Lu (2019) defined the AI period as the initial phase (1956-1980), the 

industrial phase (1980-2000), and the explosion phase (2000-present). Russell and Norvig (2016, pp.17-

27) specified eight stages: “the inception of AI (1943–1956)”, “early enthusiasm, great expectations 

(1952-1969), “a dose of reality (1966–1973), “Expert systems (1969-1986)”, “the return of neural 

networks (1986-present)”, “probabilistic reasoning and machine learning (1987-present)”, “big data 

(2001-present)”, and “deep learning (2011-present)”. 

Despite varying perspectives on the delineation of AI development stages, it is widely 

acknowledged that the inception of AI can be traced back to the 1956 Dartmouth Conference, during 

which AI was formally named, and missions were established (Delipetrev et al., 2020). This conference 

laid the foundational starting point for AI (Y. Lu, 2019). After the conference, McCarthy (1960) first 

proposed the “LISt processor” programming system, which became the primary language for AI research, 

particularly in symbolic processing and manipulation, inaugurating the era of symbolic AI. Thus, this 

period was also called the symbolic AI period. In fact, before AI existed, Alan Turing had been thinking 

about using machines to simulate the human brain through the Turing test, the first experiment proposed 

to measure machine intelligence in 1950 (Delipetrev et al., 2020). Newell and Simon (1956) began the 

logic theorist, an early AI program designed to prove mathematical theorems using symbolic logic and 
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heuristic search methods. They subsequently developed a series of influential AI projects and ideas, 

including General Problem Solver, Soar, and their unified theories of cognition (Radanliev, 2024). This 

work demonstrated the feasibility of using computers to perform tasks requiring symbolic reasoning and 

problem-solving, laying the groundwork for future AI and cognitive science research. However, the 

development of AI encountered its first winter in the 1970s due to the “impossible-to-overcome 

technological barriers,” resulting in a sharp decrease in AI-related activities in both industry and 

academia (Delipetrev et al., 2020, p. 8).  

The second phase of AI development went to connectionist from 1990 to the present, which was 

also a data-driven AI period, with machine learning and deep learning emerging (Delipetrev et al., 2020; 

B. Zhang et al., 2023). Meanwhile, AI experienced its second winter at the end of the 1980s, although 

the AI industry gained significant economic growth from 1980 to 1988, with hundreds of companies 

investing in building expert systems. This was partly because the reasoning methods used by these 

systems collapsed when faced with uncertainty and partly because the systems could not learn from 

experience (Russell & Norvig, 2016). The second AI winter marks the end of the symbolic AI period 

(Delipetrev et al., 2020). This period was also classified by shallow machine learning models (1990s) 

and deep learning into two phases (2000s-present) (Y. Lu, 2019), and the development of machine 

learning led to the development of deep learning and the spring of the 2010s.  

Thus, the third wave of AI might be marked by the introduction of deep learning from the 2010s to 

the present (Hinton et al., 2006; Shao et al., 2022), where AI has exceeded human performance (Russell 

& Norvig, 2016), such as generative adversarial networks for speech recognition, music, and visual 

processing (Goodfellow et al., 2014), deep reinforcement learning in game playing (Mnih et al., 2015), 

transformer algorithms in machine translation (Vaswani et al., 2017), etc. These performances present 

the prosperity of AI in the state-of-art period. Based on the previous narratives, the key milestones of AI 

development from the 1950s to the present might be quickly understood in the history of AI in Figure 

1.2. 

 
Figure 1.2  The Evolution of AI from the 1950s to the Present (Source: the Author) 

 



 3 

The four AI phases progressed from its inception period to symbolic systems, to connectionist 

systems, and to current data-driven machine learning and deep learning, where intelligent systems 

integrate various cutting-edge technologies, such as artificial neural networks, blockchain, digital twins, 

the Internet of things, big data analytics, decision support systems, robotic process automation, etc. Each 

stage of advancement has significantly expanded AI capabilities and applications, driving profound 

transformations in Industry 4.0. The following section specifically introduces the applications of AI in 

Industry 4.0.  

1.1.2. AI-integrated Technologies in the Fashion Industry 4.0 and 5.0. 

The Industry 4.0 plan was first proposed by the German government in 2011, which is related to the 

fourth industrial revolution in the manufacturing paradigm to be competitive through the potential digital 

technologies (Bertola & Teunissen, 2018; R. C. Oliveira et al., 2022). The initial conceptualization of 

the Industry 4.0 paradigm emphasized “smart manufacturing,” positioning the factory as the central focus 

and envisioning its transformation through digitalization (Bertola & Teunissen, 2018). The early 

paradigm is founded on integrating physical and digital realms, where advanced robotic automation is 

orchestrated by a suite of technologies (Bertola & Teunissen, 2018). These technologies are associated 

with AI-integrated technologies, such as cloud computing, Internet of Things, big data analytics, decision 

support systems, robotic process automation, blockchain, etc., as previously introduced in the recent 

phase of AI evolution. However, innovations and digital networks have accelerated the first wave of 

Industry 4.0, demonstrating that integrating machines, humans, resources, and stakeholders across supply 

chains, retail channels, and end customers can create a complex, interconnected ecosystem, enhancing 

decision-making processes by aligning them with market and user demands (Bertola & Teunissen, 2018). 

In addition, manufacturing environments are evolving to be more dynamic and interconnected while also 

becoming inherently more complex due to increased interdependencies, uncertainties, and the generation 

of vast amounts of data within these settings (Spahiu et al., 2021). Thus, Industry 4.0 requires a systemic 

approach encompassing the entire ecosystem around the factory, integrating all upstream and 

downstream processes. This comprehensive integration enhances manufacturing efficiency within 

Industry 4.0 and extends its transformative potential to economies and societies, underscoring its role as 

a critical element of national strength (Arenal et al., 2020).  

The concept of Industry 5.0 was formally introduced by the European Commission (2021), which 

emphasizes a human-centric, sustainable, and resilient approach to industrial development. It builds on 

Industry 4.0 by focusing on technological and economic growth and on even broader societal goals, 

including environmental sustainability and worker well-being. This Industry 5.0 vision leans toward a 

human-centered human-machine symbiosis during manufacturing to achieve sustainable development 

and become a robust and resilient provider of future industrial ecosystems. Therefore, in the context of 

the AI era, Industry 5.0 also entails the incorporation of AI into human operations to enhance human 

capacity, highlighting the “harmony of machines, humans, values, tasks, and finally, knowledge and 

skills” (Leng et al., 2022, p. 283).  
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Fashion provides a compelling research background for Industry 4.0 and Industry 5.0 across several 

dimensions. First, evidence from The State of Fashion (2017) suggests that “if it were ranked alongside 

individual countries’ gross domestic product, the global fashion industry would represent the seventh-

largest economy in the world” (Akram et al., 2022; McKinsey & Company, 2017, P. 6). Despite the 

economic disruption in the fashion industry during the Covid-19 pandemic period, it simultaneously 

spurred the adoption of new technologies, propelling the industry towards innovative business models. 

For example, apparel manufacturers were required to invest in automated sewing, knitting, and post-

production logistics to accommodate small-batch production in the post-pandemic (BOF & McKinsey, 

2023). According to BOF& McKinsey (2024), generative AI that employs generative adversarial 

network as one of its implementation methods and frameworks to produce realistic data can add value 

across the fashion value chain. Second, it is one of the significant industries influenced by the constant 

change induced by Industry 4.0-enabled technologies (Nouinou et al., 2023). As per the previous reports 

by the State of Fashion 2017-2024 (BOF& McKinsey), the fashion industry is characterized by intricate 

supply chains involving multiple stages, such as raw material procurement, design, production, logistics, 

and retail. Therefore, Industry 4.0 technologies, including Internet of Things, Big Data Analytics, 

blockchain, and AI, can enhance supply chains’ transparency and efficiency (Ebinger & Omondi, 2020) 

and solve sustainable issues, such as fabric waste and consumption, supplier selection, customer 

satisfaction, etc. (Dey et al., 2023; Ebinger & Omondi, 2020; M. Gupta & Jauhar, 2023; M. M. Khan et 

al., 2023; Zekhnini et al., 2023). Third, the fashion industry is one of the most sustainable problem 

manufacturing industries that generates a large environmental impact because of consuming substantial 

energy, water, and other natural resources (Khairul Akter et al., 2022), which is also the mission that 

Industry 5.0’s highlights.  

In fact, AI has been rapidly invading the fashion industry, with the most emerging forms already 

making their way into it in recent years (Banerjee et al., 2021). This invasion of AI into the fashion sector 

is accelerating, with the latest and most innovative AI applications already being integrated into the 

industry over the past few years. The scope of potential applications of AI in the fashion industry has 

been widely applied in GAN in fashion design (Ak et al., 2020; Luce, 2018; Q. Wu et al., 2021; H. Yan, 

Zhang, Liu, et al., 2023; H. Yan, Zhang, Shi, et al., 2023), robotic process automation in apparel 

manufacturing (Babu et al., 2022; Dal Forno et al., 2023; Herm et al., 2023), AI-based decision support 

systems in sustainable clothing supply chain management (SCM) (Belhadi et al., 2022; González 

Rodríguez et al., 2020; A. M. Pereira et al., 2022), etc. These evolving AI technologies are 

revolutionizing traditional fashion paradigms from design and manufacturing to retail and customer 

engagement, driving further innovation and transformation across the industry (Adekunle, 2024; David 

Iyanuoluwa Ajiga et al., 2024; Silvestri, 2020).  
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1.1.3. AI Applied in Chinese Traditional Apparel Manufacturing  

1.1.3.1. China Government Promotes AI Applied into Manufacturing-Policy Context 

AI plays a pivotal role in fostering technological innovation within low-tech industries and propelling 

the digital transformation of traditional manufacturing sectors, with the evidence previously mentioned 

by Liu et al. (2020). The traditional apparel manufacturing industry is characterized by its extensive scale 

yet low technological sophistication because it is described by others as low-skilled and labor-intensive 

(Goedhuys et al., 2014; Hansen & Winther, 2015; Piana & Tagliari Brustolin, 2023). Thus, the innovation 

process of apparel sectors stands to benefit significantly from strategically developed and applied AI 

initiatives. Moreover, innovation development always needs a national strategy to support technology 

innovation and growth from policies (Lundvall, 2007). Therefore, it is important to consider how policy 

context can play an active role in researching and developing AI in innovation for industries, which is in 

line with the previous section mentioned that AI has been an element of national strength driven by 

Industry 4.0 (Arenal et al., 2020). As one of the apparel manufacturing countries, China must devise 

comprehensive AI development and application strategies to enhance knowledge creation and promote 

technology spillover effects, elevating technological innovation’s national level and scale (Liu et al., 

2020). Based on the database of PKULAW (www. pkulaw.com, accessed on 13 July 2023), China has 

released 982 plans, laws, and policy documents to promote AI development in various areas. These 

policy documents and reports provide informative content on AI research’s development and future 

directions. 

Figure 1.3 depicts that China’s national AI policies remain a growth trend from 2017 to 2022. The 

X-axis represents the policy issuance time, while the Y-axis represents the number of policies. There is 

a total of 39 policies in 2017. These policy developments signaled China’s strategic commitment to 

positioning AI as a leading force in a new wave of technological transformations. This phase signifies a 

crucial step in setting the desired objectives. The policy entitled “Next Generation Artificial Intelligence 

Development Plan” (State Council, 2017) establishes the goal of China is becoming a global leader in 

AI by 2030. In 2018 and 2019, of which 125 policies were issued, focusing on stimulating demand for 

AI technologies. The policy approach during this stage was characterized as the “demand side” since AI 

development policy transitioned into a highly practical phase (C. Yang & Huang, 2022). The Ministry 

of Industry and Information Technology (MIIT) General Office released “Action Plan for Integrating 

Artificial Intelligence into the Real Economy” in 2018, aiming to drive digital transformation and 

enhance productivity. Pilot projects in these sectors showcased the value of AI in industrial upgrading. 

“China’s AI Open Innovation Platform Initiative” issued by Ministry of Science and Technology (MOST) 

in 2019, promoted the development of open-source AI platforms and encouraged collaboration between 

Chinese enterprises, research institutions, and global partners to foster innovation through shared 

resources. From 2020 to 2021, 127 policies in this phase aimed to enhance AI-related resources and 

infrastructure supply. While there was a decrease in the number of policies issued in 2020 due to the 

COVID-19 pandemic, this disrupted environment accelerated China’s government’s release of the 
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deployment of AI in healthcare, logistics, and other emergency response sectors. In 2021, there was a 

boost in increasing AI policies released. The MOST issued six supportive regional AI pilot zones, 

enhancing collaborations with universities to promote the integration of disciplines and expedite the 

training of graduate students in AI. This shift implies that AI policy instruments have transitioned to a 

“supply side” approach, which includes a focus on “cultivating talents” (Qu & Kim, 2022). The year 

2022 is the new supply side, issuing 99 policies in this phase, likely including novel AI policy approaches. 

This year, the Ministry of Science and Technology (MOST) and six other stakeholders jointly issued the 

“Guiding Opinions on Accelerating Scene Innovation to Promote High-quality Economic Development 

with High-level Application of Artificial Intelligence”. This signifies that the Chinese government is 

inclined to invest more in AI adoption for scene innovations, a part of the “supply side” approach. 

Furthermore, 18 competition notices were released for AI application innovations. These policies were 

expected to attract more AI talents and indirectly strengthen the path of industrial innovation for AI. 

Appendix A (a) and Appendix A(b) list China’s national and regional AI policy authorities with the 

number of issued policies.  

 
Figure 1.3 The Trends of China’s AI Policy Issuing (Source: Qu et al., 2023) 

There are few AI policies associated with apparel manufacturing industry during the period between 

2017 and 2022; however, the Chinese government has introduced corresponding policies for intelligent 

manufacturing industrialization after 2022. For example, the MIIT Union Regulation (2023) No. 258 

released the AI policy titled “Accelerating the Transformation and Upgrading of Traditional 

Manufacturing Industry Guidance”, which highlights that the Chinese government tends to accelerate 

the comprehensive empowerment of digital technology and intelligent manufacturing. Based on this 

stimulation of deep fusions of intelligent technologies and the real economy, it is imperative to foster the 

initiation and pilot testing of intelligent upgrades, digital conversion, and network connectivity within 

SMEs to enhance the digital transformation of these entities. In particular, this policy document 

underscores that the textile and apparel manufacturing industry serves as a vital basis for supporting the 

development of the national economy and meeting the essential needs of the people’s livelihoods. The 

latest policy was released on 22 January 2024; the executive meeting of The State Council studied and 
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deployed related work to promote new industrialization enabled by AI. The meeting stressed that it is 

necessary to coordinate high-quality development and high-level security, take the deep integration of 

AI and manufacturing as the main line, take intelligent manufacturing as the main direction, and take 

scene application as the impetus, accelerate the intelligent upgrading of key industries, vigorously 

develop intelligent products, enable high-level industrial manufacturing systems, and accelerate the 

formation of new quality productivity. China endeavors to provide strong support for building a strong 

manufacturing country, a strong network country, and a digital China. 

1.1.3.2. The State of Arts of AI-Integrated Technologies in Chinese Apparel Manufacturing  

China’s strategic AI initiatives, notably the 2017 “New Generation Artificial Intelligence Development 

Plan,” aimed to position China as a global AI innovation hub by 2030, further propelled the digital 

transformation occurring within the AI adoption in the fashion industry. As China’s government has 

released fruitful AI policies that leaned toward manufacturing, AI has been applied in many fields of 

apparel manufacturing in China, such as Unicom Digital Science Platform (UDCP), Style3D 

(www.linctex.com/), Huawei Cloud (https://www.huaweicloud.com/), FeiLiu Tech Smart Sew 

(www.heydaizi.com), Alibaba’s Xiniu Manufacturing (https://www.xiniuim.com/) etc. These AI 

technologies and platforms have brought benefits to the traditional apparel manufacturing industry 

upgrading, but are disrupting traditional manufacturing in the fashion industry, reflecting in sustainable 

production (Matin et al., 2023; Ramos et al., 2023), technological innovation (Liu et al., 2020) and SCM 

(Qu & Kim, 2024a), and human-machine interactions (Kaasinen et al., 2022; J. Yang et al., 2022). For 

example, IoT sensors and AI algorithms enhance production speed, product lifecycle management, 

preventive maintenance, and recycling operations in the textile and apparel manufacturing industry, 

enabling efficient up-cycling and flaw reduction through advanced data tracking and predictive 

capabilities (Matin et al., 2023). Employing a back-propagation artificial neural network (ANN) to 

predict the anthropometric data essential for pattern-cutting in optimizing apparel production processes, 

offering a precise alternative to traditional methods (Y. Huang et al., 2024). AI-powered decision support 

systems are adopted to enhance supply chain resilience (SCR) by enabling better anticipation of 

disruptions, improving decision-making processes, and optimizing operational efficiency (Dey et al., 

2023). AI adoption in SCs, which creates the most value in the manufacturing industry, is critical in 

improving SCM in dynamic environments (Helo & Hao, 2022). 

1.1.3.3. Distinct Characteristics of the Apparel Manufacturing Sector 

The apparel manufacturing sector exhibits unique characteristics that differentiate it from other industries. 

First, the sector is highly dynamic and trend-sensitive, driven by rapid fashion and consumer preference 

changes (Trieu, 2024). This industry demands a production system that can quickly adapt to changing 

trends and handle diverse, small-scale orders with high customization. Second, apparel represents a 

“buyer-driven value chain” (Staritz& Frederick, 2014, p.211), common in labor-intensive and consumer 

goods industries. This labor-intensive nature of apparel manufacturing relies heavily on manual skills, 

particularly in tasks like sewing and finishing. Also, such buyer-driven value chains are defined by 
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globally dispersed production networks coordinated by lead firms controlling high-value-added activities, 

such as design, branding, and marketing, while outsourcing the manufacturing process to a network of 

suppliers (Gereffi& Memedovic, 2003). Third, the apparel manufacturing heavily relies on human labor. 

For example, many core processes in the apparel manufacturing industry, such as cutting, sewing and 

weaving, and quality inspection, are challenging to fully automate, particularly for diverse, small-batch, 

and customized orders. As a result, manual operations remain the primary production method. These low 

added value of individual apparel products, combined with intense market competition and price 

sensitivity, compels manufacturers to reduce labor costs to maintain profit margins. Furthermore, the 

apparel industry is driven by rapidly changing fashion trends, requiring highly flexible production 

systems to adapt to diverse and small-scale orders quickly; thus, manual labor is better suited for swiftly 

adjusting production processes to meet these demands. Apparel production involves handling flexible 

materials such as fabrics and trimmings, which also demand a high level of manual dexterity and skill 

from experienced workers. Finally, the apparel industry features a complex supply chain structure, where 

the buyer-driven nature of the value chain leads to outsourcing production tasks to countries with lower 

labor costs. As one of the world’s largest apparel manufacturers, China exemplifies this structure and 

often determines the dynamics of global apparel sourcing, supported by a robust domestic supply of raw 

materials and an ample low-cost labor force (Lu & Karpova, 2011). Its dominant position is supported 

by its extensive production capacity, established industrial clusters, and comprehensive supplier 

networks that span various stages of the value chain, from textile sourcing to garment production (Qu 

&Kim, 2024a).  

While China has made outstanding achievements in applying AI in the apparel manufacturing 

sectors, the industry’s reliance on low-cost labor and fragmented supply chains shapes its specific 

challenges and opportunities for AI adoption. AI adoption by traditional apparel manufacturers has still 

proceeded slowly in China because the effectiveness of technological innovations is fundamentally 

reliant upon their acceptance and utilization by the designated user (apparel workers and managers) base 

(Park et al., 2009). As such, Chinese apparel manufacturing encounters the challenges that AI adopts in 

six aspects. First, the issues with the usage of AI tools may hinder employees’ acceptance due to their 

low learning ability and educational level (Venkatesh, 2022). Second, adopting AI may raise concerns 

about unemployment among apparel production workers due to labor replacement by AI (Chiarini et al., 

2023), and the labor-intensive nature of apparel manufacturing relies heavily on manual skills, which are 

less automated compared to other industries with more streamlined processes. The fashion industry is 

characterized by intensive labor with low production costs (Jin, 2004), and China has traditionally relied 

on its advantage of cheap labor; however, with AI technology, this low-cost labor advantage is being 

eroded. AI technology and automation equipment replace low-skilled jobs, which could lead to 

significant unemployment (Mabungela, 2023; Mukherjee, 2022; Wadley, 2021), especially in a country 

like China that depends heavily on labor-intensive production. Third, from organizational perspectives, 

limited digital skills and resources (knowledge), lack of funds, lack of the technical foundation and 

experience to transition and adapt to the application of AI technology quickly (Giri et al., 2019). this also 

causes a large number of low-skilled workers to need retraining to adapt to the new technological 
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environment, which poses a significant challenge for China given its large population and limited 

education and training resources (Chiarini et al., 2023). Fourth, 92% apparel manufacturers are micro 

(fewer than 20 employees), small (21-300 employees) and medium (301-1000 employees)-sized 

enterprises (MSMEs) (China national textile and apparel council, as of 2022) defined by the China 

Ministry of Industry and Information Technology (2011) No. 300. These traditional apparel MSMEs 

have limited digital skills and resources (knowledge), lack of funds, the technical foundation and 

experience to transition and adapt to the application of AI technology quickly (Giri et al., 2019). Fifth, 

Chinese apparel industry has become the world’s largest manufacturer and exporter since 1993, which 

occupies an important economic position in China’s industrialization process (Ruan et al., 2022). 

However, many Chinese apparel manufacturing enterprises continue to rely on traditional production 

models and lack the technical foundation and experience required to transition to and adopt AI 

technology effectively (Giri et al., 2019). These enterprises face significant resistance to technological 

updates and industrial upgrading due to the complexity of their operations, which makes it challenging 

to coordinate activities and integrate advanced technologies like AI across the supply chain. Last, as 

other countries actively adopt AI technology, Chinese apparel manufacturing enterprises face greater 

international competitive pressure to adopt AI (Z. Guan et al., 2019). Thus, given the above, a thorough 

study of organizational AI adoption from both individual and organizational actors’ perspectives, 

emphasizing Chinese apparel manufacturers, is crucial. 

1.2. Theoretical Background 

1.2.1. Technology Adoption in Manufacturing Sectors  

Shedding light on the theoretical lens, the research on technology adoption mainly includes the Theory 

of Reasoned Action (TRA) (Fishbein & Ajzen, 1975), the Technology Acceptance Model (TAM) (Davis, 

1989), Technology-Organization-Environment (TOE) framework (Tornatzky et al., 1990), the Theory of 

Planned Behaviour (TPB) (Ajzen, 1991), Diffusion of Innovation (DOI) (Rogers, 1995), the Unified 

Theory of Acceptance and Use of Technology (UTAUT) (Venkatesh et al., 2003), and the extended TAM 

2 (Venkatesh & Davis, 2000), and UTAUT 2 (Venkatesh et al., 2012). Except for the DOI and TOE 

frameworks, these theories and models have predominantly analyzed user adoption behavior from an 

individual perspective, concentrating on technology rather than organizational dimensions (Dobre, 2022). 

For example, the TAM is used to understand the individual factors influencing the behavioral intention 

to use technology, measured from two determinants in their adoption behavior: perceived usefulness (PU) 

and perceived ease of use (PEOU).  

However, the TOE framework ({Citation}Tornatzky and Fleischer (1990) suggests the factors 

affecting the implementation of technological innovation in an organizational context (AL-khatib, 2023; 

Chittipaka et al., 2023; Kinkel et al., 2022; Zhong & Moon, 2023). It is often used with a resource-based 

view (RBV) (Barney, 1991) in several studies (Fernando et al., 2021; Maroufkhani, Tseng, et al., 2020; 

Maroufkhani, Wan Ismail, et al., 2020; Wang & Su, 2021) to examine the relationship between 

technology adoption and organizational performances where technology is seen as a resource or a 
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capability in manufacturing firms and is considered an intangible resource (Barney, 2014; Maroufkhani, 

Tseng, et al., 2020). Also, several studies incorporate DOI theory that emphasizes technology diffusion 

and the process of diffusing technology adoption throughout the firm into the TOE framework to 

illuminate the diffusion of intra-firm innovation (Amini & Javid, 2023; Correia Simões et al., 2020; 

Maroufkhani, Tseng, et al., 2020; Oliveira et al., 2014). In manufacturing sectors, the studies in 

technology adoption lean toward TOE with TAM to understand the technology adoption factors in SMEs 

in developing countries (Chatterjee et al., 2021; Forootani et al., 2022; Gangwar et al., 2015; Legesse et 

al., 2024; Patil et al., 2023; Sharma et al., 2020; Tasnim et al., 2023) as a hybrid framework to 

comprehensively understand the mechanisms of AI acceptance from both individual and organizational 

focus. Another frequently used with the TOE framework is institutional theory (Berger & Luckmann, 

1967). Information technology adoption is the most frequently applied area for institutional theory to as 

organizational factors impact information technology adoption behavior (Bag et al., 2021; Li et al., 2021). 

It is often used in TOE framework to underline the external environmental factors (Lutfi, 2020; Lutfi et 

al., 2022; Malik et al., 2021; Mujalli & Almgrashi, 2020; Oliveira & Martins, 2011).  

Considering the organizational perspectives, AI-based innovation management requires substantial 

technical and organizational changes to cope with the associated challenges of firm size (Füller et al., 

2022). A firm size refers to “the number of employees of the organization”(Rogers, 1995). Prior research 

has shown that firms of different sizes, types, and ages have different motivations and ways to engage 

with innovation (Belhadi et al., 2024). For example, SMEs adopting AI can create opportunities and 

improve manufacturing capacity and profits, meanwhile facing challenges in adopting, adapting, 

modifying, implementing, and developing new AI-based capabilities for innovation (Mariani et al., 2023). 

MSMEs with limited resources look upon AI as a tool for accelerating their growth (Kumar et al., 2024; 

Sharma et al., 2022). Furthermore, business scope in the manufacturing sector, such as the types of 

industries, range of products, geographic areas where the business operates, and target customer 

segments (Belhadi et al., 2024; Lee et al., 2015), could have different attitudes towards adopting AI for 

different innovation purposes (Mariani et al., 2023). Given this evidence, individual factors with firm-

level driving AI adoption have been presented concerning AI adoption (Badghish & Soomro, 2024; 

Baroni et al., 2022; Cao et al., 2021; Chatterjee et al., 2021; Choung et al., 2023; Gangwar et al., 2015; 

Qin et al., 2020). This also provides the theoretical grounds for selecting apparel manufacturing regarding 

firm sizes and business scope as the thesis case. Table 1.1 summarizes the existing technology adoption 

using TOE applied in the manufacturing sector studies from the Scopus database. The studies are selected 

based on a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol 

(Busalim et al., 2022; Moher et al., 2010) (see Figure 1. 4).  
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Figure 1.4 Data sampling process based on the PRISMA protocol. 
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Table 1.1 Selected technology adoption studies in manufacturing sector (Source: Scopus database, N=41) 

Technology Adoption Model Specific Manufacturing Firm size Firm Country Source Frequency 

DOI-TOE NA SMEs Malaysia Amini & Javid, 2023) 3 

DOI-TOE NA NA Portugal Oliveira et al., 2014 

DOI-TOE NA NA NA Correia Simões et al., 2020 
RBV-TOE NA SMEs Iran Maroufkhani et al., 2020 3 

RBV-TOE NA NA China Wang and Su, 2021 

RBV-TOE NA SMEs Malaysia Fernando et al., 2020 

RBV-TOE-DOI NA SMEs Iran Maroufkhani, Tseng, et al., 2020 1 

TAM-TOE NA NA India Gangwar et al., 2015 10 

TAM-TOE NA NA China Cao et al., 2020 

TAM-TOE NA NA India Gangwar& Date, 2016  

TAM-TOE NA NA India Patil et al., 2023  

TAM-TOE NA SMEs India Chatterjee et al., 2021  

TAM-TOE NA NA Ethiopian Legesse et al., 2024  

TAM-TOE Automobile component LMs India Kamble et al., 2021  

TAM-TOE NA SMEs Bangladesh Tasnim et al., 2023  

TAM-TOE NA SMEs Iran Forootani et al., 2022  

TAM-TOE NA NA India Sharma et al., 2020  

TOE NA SMEs India Badghish & Soomro, 2024 24 

TOE NA NA China Guan et al., 2023  

TOE NA NA India Pillai et al., 2022  

TOE NA NA Middle East Ronaghi, 2023  

TOE NA SMEs Iran Maroufkhani et al., 2023  
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TOE NA NA China Xing et al., 2023  

TOE NA NA NA Kinkel et al., 2022  

TOE NA NA German Zhuankhan et al., 2023  

TOE NA NA China Zhou& Zheng, 2023  

TOE NA SMEs Europe and the UK Marrucci   

TOE Food SMEs China Shen et al., 2023  

TOE NA SMEs Egypt Aboelmaged, 2018  

TOE NA NA NA Aboelmaged, 2014  
TOE NA SMEs Malaysia Baig et al., 2023  

TOE NA NA Vietnamese Hue, 2019  

TOE NA NA the UK Kalaitzi& Tsolakis, 2022  

TOE NA NA Inida Angwar, 2018  

TOE NA NA China Yeh& Chen, 2018  

TOE NA SMEs India Sivathanu, 2019  

TOE NA SMEs Malaysia Ghani et al., 2022  

TOE NA SMEs Inida Kumar, 2023  

TOE NA SMEs Nigeria Usman et al., 2019  

TOE Food NA Thailand Opasvitayarux et al., 2022  

Legend: NA=Not Available; DOI=Diffusion of Innovation; RBV= Resource-Based View; TAM=Technology Acceptance Model; TOE=Technology-Organization-
Environment; SMEs= Small and Medium-sized Enterprises 
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1.2.2. Open Innovation Ecosystem  

The open innovation concept has emerged as the distributed innovation process, which is based on the 

efficient knowledge flows with the help of managed across the operational gates and is grounded in the 

significance of collaborative networks in the modern practices of innovation (Chesbrough et al., 2014; 

Vlaisavljevic et al., 2020). The present-day open innovation models have moved from the conventional 

company in-house Research & Development to the hybrid approach that unites both the internal and the 

external sources, so that the companies can take advantage of external ideas, technologies and expertise 

(Radziwon & Bogers, 2019). This change is in line with the innovation ecosystem model, which locates 

firms within constantly changing networks of interdependent actors who evolve collectively to meet the 

changing market requirements (Adner, 2006; Adner & Kapoor, 2010). In open innovation ecosystems, 

different stakeholders, e.g., suppliers, customers, competitors, and research institution, can be seen as 

key drivers of knowledge sharing and talents co-innovation (Adner & Kapoor, 2010). Also, due to the 

purposeful inflow and outflow of knowledge in the open innovation ecosystem, open innovation support 

this ecosystem model by allowing companies to integrate external resources and share unused knowledge 

with third parties (Chesbrough, 2003; Chesbrough & Bogers, 2014). In line with the resource-based view 

(RBV) and knowledge-based view (KBV) (Barney, 1991; 1995), open innovation explains how firms 

leverage external knowledge as a critical resource to enhance their competitive advantage. However, the 

open innovation ecosystem that makes collaboration and openness the main highlight also suggests that 

more research is needed to find the conditions that will allow open innovation to be sustained within an 

ecosystem context (Bogers et al., 2019). 

Further, the Triple Helix (TH) model (Etzkowitz & Leydesdorff, 1995) which is about the near and 

affectionate interaction among universities, industry, and governments coincides with the open 

innovation ecosystems stressing the collaborations and the opening up in order to promote innovation 

(Vlaisavljevic et al., 2020). The TH model brings about a situation that is favorable to open innovation 

by being a conduit through which knowledge flows and technology transfer could be achieved 

(Leydesdorff, 2012), facilitating dynamic co-evolution, and helping the formation and commercialization 

of innovations (Bogers et al., 2017; Adner & Kapoor, 2010, cited in Vlaisavljevic et al., 2020). 

1.3. Research Gaps 

The previous sections depict the scenario of AI in the Chinese apparel manufacturing industry in the 

context of Industry 4.0 and 5.0, the status quo and challenges of AI adoption with a comprehensive 

industrial and theoretical background. While AI-integrated technologies significantly impact technology 

innovation in manufacturing, which disrupts the traditional apparel manufacturing sector, given that 

apparel manufacturing sectors are one of the most significant low-tech industries, existing gaps need to 

be identified on the research agenda.  

First, the favorable technological, industrial, and Chinese AI policy context has not attracted 

scholars’ research interest in technology adoption in Chinese apparel manufacturing sectors based on the 
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theoretical model and theories as previously mentioned (Gap 1). Among the 41 studies selected on 

technology adoption in manufacturing sectors from the Scopus database using preferred reporting items 

for systematic reviews and meta-analysis (PRISMA) protocol, there are three aspects identifying the first 

research gap. 1) The study focused on specific manufacturing sector is still relatively rare, expect for two 

studies in the food industry (Opasvitayarux et al., 2022; Shen et al., 2003) and one in automobile 

component industry (Kamble et al., 2021). 2) Almost half of studies focuses on small and medium-sized 

manufacturing firms and only one focuses on large and medium-sized one (e.g., Kamble et al., 2021). 3) 

While China has provided extensive AI policies regarding AI-enabled traditional manufacturing industry 

upgrading since 2022, there is limited research on AI adoption in China’s manufacturing sectors (e.g., 

Cao et al., 2020; Guan et al., 2023; Shen et al., 2023; Wang & Su, 2021; Xing et al., 2023; Yeh & Chen, 

2018; Zhou & Zheng, 2023). 

Second, the existing studies have not examined or investigated to what extent AI adoption drives 

open innovation in Chinese apparel manufacturing sectors from RBV and KBV perspectives (Gap 2). 

As the labor-intensive market experiences a shift from China to Southeast Asia, such as Indonesia, 

Vietnam, and Cambodia, apparel manufacturing has to face this pressure from the increasing labor costs 

and competition. These nations continue to develop their manufacturing capabilities and offer a viable 

alternative to Chinese production; the competitive landscape has thus shifted, requiring Chinese apparel 

manufacturers to adapt to enhance their open innovation to remain competitive. This adaptation involves 

relocating production with new customers and suppliers, collaborating with external partners to adopt 

new technologies, and extending the resources to universities (Enkel et al., 2009; Laursen & Salter, 2006; 

Lichtenthaler & Lichtenthaler, 2009). The adoption of AI in apparel manufacturing can be 

comprehensively understood through the lens of the RBV and KBV for several reasons. First, RBV posits 

that a firm’s competitive advantage stems from its possession of unique, heterogeneous, and scarce 

resources that are difficult to imitate or substitute (D. Chen et al., 2022; Hossain et al., 2022; Mikalef & 

Gupta, 2021). Thus, AI technologies represent such valuable resources through data analysis, predictive 

modeling, and automation capabilities, facilitating innovation processes in manufacturing processes. 

Second, the successful integration and application of AI technologies exemplify a firm’s dynamic 

capabilities, allowing for the continuous reconfiguration of resources to adapt to external changes 

(Chatterjee et al., 2021; Hossain et al., 2022; Schoemaker et al., 2018). This integration necessitates the 

effective amalgamation of AI with existing resources, such as production equipment, data systems, and 

workforce skills, to harness its potential fully. Thus, AI adoption and corporate open innovation need to 

consider RBV, emphasizing the cruciality of a firm’s resources to influence its open innovation (M. A. 

Hossain et al., 2022). Third, KBV can be seen as an outgrowth or extension of the RBV as it focuses on 

knowledge as the most strategically important resource of any size of organization (Cooper et al., 2023; 

Kogut & Zander, 1992; Pereira & Bamel, 2021). Adopting AI involves significant knowledge absorption, 

enhancing the firm’s technical expertise and innovation capacity. Furthermore, KBV is a critical 

mechanism for realizing, using, and maintaining AI resources, facilitating their subsequent adoption 

(Chowdhury et al., 2022). Combined with the previous RBV stressed, both the KBV and RBV emphasize 

the importance of possessing unique, difficult-to-imitate resources as the foundation of a firm’s 
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competitive advantage. While the RBV focuses broadly on various valuable resources, including tangible 

and intangible assets, the KBV focuses on knowledge as a critical intangible resource (Pereira & Bamel, 

2021). These knowledge-based resources are a subset of the broader category of unique, heterogeneous, 

and scarce resources emphasized by RBV (D. Chen et al., 2022). Therefore, integrating these 

perspectives provides a comprehensive understanding that a firm’s competitive advantage is derived 

from its unique knowledge base and overall resource heterogeneity and scarcity. 
Furthermore, current research overlooks how apparel manufacturing companies collaborate with 

the government and universities to build an innovation ecosystem (Gap 3). AI accelerates traditional 

apparel manufacturing innovation processes, underscoring the necessity for organizations to integrate, 

build, and reconfigure both internal and external competencies to adapt to rapidly changing environments. 

Also, China’s central government provides favorable economic and regulatory conditions on acting as 

an investor and as a provider of key data for companies experiencing advantageous conditions, with 

policies systematically disseminated down to autonomous regions and research institutions (Arenal et al., 

2020). Following the policy guidelines, the main Chinese universities are launching educational 

programs and research opportunities in AI. Therefore, it is significant to identify “the main aspects related 

to the flows of skills, knowledge and funding and the interactions among them” (Arenal et al., 2020). As 

previously mentioned, the TH model (Etzkowitz & Leydesdorff, 1995) aligns with the open innovation 

ecosystem by emphasizing the role of close, collaborative networks among the three actors (i.e., 

companies, knowledge-generating institutes and government) in fostering innovation. However, despite 

the critical importance of collaboration among government, universities, and enterprises in constructing 

innovation ecosystems, there is currently a lack of research on the specific operational models and 

effectiveness of these cooperative mechanisms. In particular, there is a deficiency in systematic studies 

and practical case analyses on orchestrating resources from each party and clearly defining their 

respective roles and responsibilities. In addition, most studies on innovation ecosystems tend to be 

generalized, with few focusing on specific industries, requiring more specialized research is needed on 

industry-specific innovation models, technological requirements, and market dynamics. 

1.4. Research Objectives and Questions 

Based on the identified research gaps, this thesis’s Major Research Objective (MRO) aims to develop a 

framework for propositions for micro, small and medium-sized Chinese apparel manufacturing’s 

innovation ecosystem. Accordingly, this thesis comprises two SROs.  

SRO 1 aims to examine the antecedents of AI adoption, thus driving open innovation in Chinese 

apparel manufacturers, emphasizing the significant mediating role of knowledge absorptive capacity 

(KACAP) from the KBV perspective in innovation processes in Chinese apparel manufacturing. It also 

addresses two sub-research questions (SRQs): 

SRQ1: What factors affect AI adoption, knowledge absorptive capacity (KACAP), and open innovation 

in Chinese apparel manufacturing?  
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SRQ2: What is the role of KACAP in the linkage between AI adoption and organizational open 

innovation? 

According to the results of SRO 1, SRO 2 aims to ground the required AI capabilities and barriers 

to adopting AI in Chinese apparel manufacturers. The study addresses three SRQs: 

SRQ3: What are the emerging concepts of AI capabilities needed?  

SRQ4: What are the emerging concepts of challenges that hinder AI adoption in China’s manufacturing 

sector?  

 Based on the above SROs and respective SRQs, to achieve the MRO, the MRQ is: How can we 

develop an AI-enabled innovation ecosystem to explain how enterprises, universities, and governments 

enhance collaboration in China’s manufacturing sectors? 

In summary of the significant relationships between SRO1, SRO2, and the MRO, SRO 1 aims to 

identify the relationship between AI adoption and open innovation, providing a theoretical framework 

and preliminary empirical evidence. SRO 2 further aims to explore the specific AI capabilities enterprises 

require and the barriers to AI adoption, offering mechanism for strengthening open innovation through 

the collaborations between enterprises universities, and governments. By integrating theoretical and 

practical perspectives, these two studies (to achieve SRO1 and SRO2) collectively achieve the MRO of 

developing an AI-driven innovation ecosystem framework for Chinese apparel MSMEs. Figure 1.4 

depicts attaining the MRO through the SRO 1 and the SRO 2.  

 
Figure 1.5 Relationship of the Main Research Objective (MRO) and Sub-Research Objectives (SROs) 

 

1.5. Research Approach and Boundaries 

As the research thesis consists of two studies with different SROs, two research approaches are 

constructed for the scope of the thesis (Figure 1.5). In Study 1, technology adoption is a well-established 

domain in the literature, utilizing various theories to explore AI adoption. The approach addressing SRO 

1 builds on the KBV theory applied to apparel manufacturing firms for open innovation and incorporates 

the TAM (Davis, 1989) and TOE framework (Tornatzky et al., 1990). This model tests associated 

hypotheses through quantitatively collected survey data. In Study 2, based on the antecedents of AI 

adoption and open innovation consequences, the research conducts qualitative semi-structured interviews 

by grounding deep insights concerning particular AI capabilities in their practical work and the factors 
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that hinder adopting AI. Thereafter, a framework and propositions are developed to address MRO, 

interpreting how collaborative actors leverage resources (AI) and institutions (AI policy support) in 

activities. Combining quantitative and qualitative methods enables this research to overcome the 

limitations of each approach when used alone, potentially leading to a more substantial research thesis 

(Clark et al., 2021). The research paradigms and the rationale behind selecting a mixed-quantitative and 

qualitative approach are provided in Chapter 3.  

To complete the quest for these research objectives, this paragraph provides the research scope that 

describes the scope of this thesis, including its inclusions and exclusions. Study 1 initially focuses on the 

antecedents of AI adoption, mediators, and the consequences to open innovation, enabling firms’ open 

innovation ecosystem. Further, Study 2 focuses on the organization as a reference unit, with 

manufacturing sectors evaluated in China having extensive AI policy interventions in implementing 

digital transformation. In addition, Chinese apparel manufacturing is specified as the focus of this 

research in that the most labor-intensive and significant sustainable issues emerged in garment 

production and manufacturing processes. Therefore, AI adoption can be applied to possess the capability 

of enabling an open innovation ecosystem with interactive attributes in governments, industries, and 

universities. Study 1 limits to consequences, as they are only applicable to China. Study 2 is limited to 

categorizing AI capabilities and the barriers to adopting AI in Chinese apparel manufacturing from the 

perspectives of governments, enterprises, and universities, as this grounded data further supplemented 

Study 1’s results. This research’s interest is in supporting AI adoption, which could enhance firms’ open 

innovation through KBV perspectives, thereby developing a theoretical framework in Chinese apparel 

manufacturing’s AI-enabled innovation ecosystem.   
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Figure 1.6 Research Approach and Boundary of the Two SROs 

1.6. Research Significance 

Based on the research objectives of two studies, this thesis contributes to building an AI-enabled 

innovation ecosystem for apparel manufacturing firms by orchestrating existing theories and generating 

theoretical frameworks, as mentioned before. Thus, the thesis provides theoretical, practical, and policy-

related significance. 

Theoretically, the research builds a novel theoretical framework that integrates AI adoption with 

open innovation and KBV perspectives in Chinese apparel manufacturing industry. By employing 

grounded theory, the study offers new perspectives on the role of AI in enhancing collaboration among 

industries, academia, and government bodies within an innovation ecosystem. This fills existing 

theoretical gaps by linking AI technology to organizational innovation processes. The framework 

developed provides a foundation for future research exploring the intersection of AI and innovation in 

similar industries. 

Practically, the research provides insights for apparel manufacturers seeking to adopt AI 

technologies to foster open innovation. By identifying the key factors affecting AI adoption and 

highlighting the importance of KBV, the study offers enterprises a roadmap for integrating AI into their 

innovation processes. This will enhance their ability to produce small-batch, highly personalized 

products and increase their competitiveness in a rapidly evolving market. Furthermore, through a deep 

understanding what AI capabilities the Chinese manufacturing demands to enable apparel productions, 

and what the factors hinder Chinese MSMEs to adopt AI, the grounded framework developed offers 

guidance on how traditional businesses improve collaboration with universities, associations, and 
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government agencies to co-create values in the AI-enabled innovation ecosystem. Simultaneously, the 

research outcomes contribute to providing the innovation path for talents cultivations. 

Policy-related, the research informs policymakers by unveiling the mechanisms through which AI 

can promote collaboration between enterprises, academic institutions, and government bodies. 

Policymakers can use the findings to develop strategies that encourage the integration of AI into industry 

and innovation systems, contributing to the broader goal of sustainable economic development in 

Chinese apparel manufacturing sector, concreting, and practical policy measures for apparel industrial 

transformation and upgrading. 

This thesis is set against AI innovation and Industry 4.0 and 5.0 in China. In this disruptive context, 

it examines how the traditional apparel manufacturing industry leverages AI for human-machine 

interactions and industry, university and government collaboration. By conducting a quantitative survey 

in Study 1, this research deductively constructs a hypothetical reflective model using a PLS-SEM to 

identify the correlations between the antecedent impact of AI adoption, the mediation of KACAP, and 

the consequence of open innovations. These quantitative findings from Study 1 serve as a critical 

empirical base for the subsequent Study 2, which delves deeper into how KACAP enhances the 

construction of AI-driven innovation ecosystems. Study 2 inductively extracted categories and concepts 

from diverse perspectives of apparel manufacturers, institutional professors, and apparel association 

leaders. Using grounded theory, this thesis developed a novel theoretical framework, integrating industry 

(firms, suppliers, and customers), universities (specialized instructors and students), and government 

(central government, local governments, and industry associations) interactions to synthesize the 

dynamic innovation ecosystem. This valuable guidance can inform policymakers, industry experts, and 

academic institutions or universities, fostering stakeholder orchestration with AI-driven value creation 

in the innovation process by the cooperative mechanisms’ specific operational models and effectiveness. 

1.7. Thesis Structure  

Followed by Chapter 1, this thesis is structured into six subsequent chapters, as detailed below. 

Chapter 2 (Literature Review) reviews extensive literature, consisting of literature review for Study 

1 and Study 2. It focuses on conducting a literature review to provide a theoretical lens for understanding 

AI’s capabilities toward open innovation in addressing SRO 1. The literature review for Study 1 leads to 

the proposed conceptual model that explores the antecedents of AI adoption that drive apparel 

manufacturing firms’ open innovation, as outlined in this chapter. This provides a guideline for 

developing the conceptual model, assessing the relationships between its latent variables, and 

establishing the rationale of the hypotheses for SRO 1. The literature review for Study 2 draws on the 

definitions of innovation ecosystem and its associated theoretical lenses, i.e., open innovation ecosystems 

and the TH model, to construct theories for addressing SRO 2.  

Chapter 3 (Methodology) presents a research onion (Saunders et al., 2016) that lays out research 

philosophies, design, approaches, strategies, time horizons, and data collection and analysis techniques 
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for addressing the research questions. It also describes ethical considerations before data collection 

procedures. 

Chapter 4 (Analysis and Results of Study 1 identifies the correlations between AI adoption and 

open innovation, emphasizing the significant role of KACAP as a mediating linkage between AI adoption 

and open innovation. The measurement and the structural models are analyzed in detail. This chapter 

addresses SRO 1. 

Chapter 5 (Findings of Study 2 ) conducts grounded theory, confirming the conceptual proposing 

propositions from stakeholders’ perspectives by conducting coding processes to categorize the two 

specific required AI capabilities and three main dimenssions of barriers to adopting AI. This addresses 

SRO 2, and provides theoretical lenses for clarifying how to develop an AI-enabled innovation ecosystem 

through interactions among government, industry, universities, and associations while unveiling 

fundamental mechanisms and pathways in this process.  

Chapter 6 (Discussions and Valuable Contributions) integrates the findings of Study 1 and Study 

2, explaining and discussing the hypothesized model, thereby supporting establishing an AI-driven 

innovation ecosystem through grounded theoretical data analysis. More importantly, this chapter 

provides a theoretical lens to academia and practical implementation for Chinese apparel manufacturers. 

These are the novelties and originalities of the thesis for valuable contributions. The findings and the 

MRO are synthesized in the last.  

Chapter 7 (Conclusion, Limitations and Future Research, and Highlights) summarizes the thesis’s 

conclusion, the key findings, limitations and future research, and highlights. 

1.8. Chapter Summary  

Chapter 1 provides an overview of this thesis, including the research context that delivers a 

comprehensive background on the disruption in the Chinese apparel manufacturing sector. It highlights 

the research rationales, emphasizing the need for organizations to navigate the uncertain and competitive 

environment shaping traditional enterprises’ transformation. The theoretical background identifies 

research gaps and establishes the research objectives. A concise explanation of the research approach is 

presented alongside the delineation of research boundaries defining the scope of this thesis. The chapter 

concludes by introducing the subsequent chapters. The next chapter will deliver the literature review 

related to the theoretical foundations of Study 1 and Study 2. 
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2. Literature Review  

2.1. Introduction 

This chapter first focuses on conducting a literature review to understand AI’s capabilities toward open 

innovation and AI adoption in addressing SRO 1. The literature review for Study 1 leads to the proposed 

conceptual model that explores the antecedents of AI adoption that drive apparel manufacturing firms’ 

open innovation, as outlined in this chapter. Based on AI capabilities and innovation background, relying 

on an organizational perspective, this chapter further presents the literature review on AI capabilities-

enabled innovation ecosystems, further addressing SRO 2, thereby developing a framework for practical 

implementations to achieve the MRO. Therefore, as shown in Figure 2.1, this chapter is structured 

initially in section 2.2 (Literature review for Study 1), which presents a theoretical foundation of AI 

adoption that drives open innovation with an extended TAM-TOE structural model. Then, this chapter 

reviews the literature on innovation ecosystems in section 2.3 (Literature review for Study 2). Section 

2.4 synthesizes the reviewed literature, followed by the chapter summary in section 2.5.  

 

Figure 2.1 Flow Chart of Chapter 2 

2.2. Literature Review and Conceptual Model for Study 1 

2.2.1. AI Capabilities  

The prior introduction has described how AI has evolved over several decades. However, there is still a 

lack of comprehensive understanding of the capabilities that AI enables, leading to a lack of definition 

to ground empirical studies on AI capability. It is widely recognized as being fundamentally derived 

from its enabling technological competencies (Chan et al., 2020; Kassa et al., 2023; Manis & 

Madhavaram, 2023; Sigov et al., 2022; Sjödin et al., 2023; Tariq, 2023; Teece, 2018; Wu et al., 2021). 

Among the literature, a sample understanding of the enabling roles of AI capability is that a technology-

level capability executes tasks and resolves problems that typically require human intelligence (Wu et 

al., 2021). Wu et al. (2021) define four levels of AI capabilities: 1) Data collection and transmission 

capabilities that transfer the collected data within and between product modules, such as sensors and 

information communication technologies; 2) Bridging capabilities that connect end users through cloud 

technology; 3)Algorithms capabilities that use machine learning, deep learning, big data analytics, and 

artificial neural network to perform specific business tasks; 4) Applications capabilities that realize 

mature technological convergences between Internet of things and robots to provide innovative products. 

These AI techniques were depicted in the previous introduction section. Mikalef and Gupta (2021, p. 3), 

grounded on a series of prior definitions, initially define the meaning of AI capability and subsequently 

conceptualize AI capability as “the ability of a firm to select, orchestrate, and leverage its AI-specific 
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resources”. This definition articulates AI capability from a resource-built perspective, incorporating three 

components: tangible resources (data, technology, and basic resources), human resources (technical skills 

and business skills), and intangible resources (inter-departmental coordination, organizational change 

capacity, and risk proclivity). Within this definition, resources are a prerequisite for using AI to achieve 

organizational performance (Mikalef & Gupta, 2021; Van Noordt & Tangi, 2023). Akter et al. (2023) 

systematically reviewed 33 papers on AI in the service innovation capability from market, infrastructure, 

and management capability parameters. The market capability focuses on the market demand, using AI 

to predict and satisfy customers and the industry’s requirements (Akter et al., 2023). This capability 

parameter is also defined as integrating AI to enhance network resource integration by leveraging 

organizational resources. Infrastructure capability emphasizes an organizational capability that enables 

AI-powered service delivery within a social-technical space and first mentions AI ecosystem capability 

encompassing high-speed computing, comprehensive data management, advanced cloud computing, 

innovative service platforms, and “dynamic capabilities such as sensing and innovation capabilities” to 

ensure technological and evolutionary fitness (Akter et al., 2023, p. 10). The understanding of 

management capability consists of AI ethics, orientation, and organizational learning, which provides 

organizations with propositions about effective governance, improvement, and innovation in knowledge 

development utilizing AI technologies (Akter et al., 2023). Another parameter of AI capability stems 

from human decision-making, which three levels possibly replace and complement the human brain 

(Haefner et al., 2021). Table 2.1 categorizes the constructs and characteristics of AI’s capabilities from 

the previously mentioned studies (Akter et al., 2023; Haefner et al., 2021; Mikalef & Gupta, 2021; Sjödin 

et al., 2021; M. Wu et al., 2021) for the detailed understanding.  

Accordingly, given the existing literature on AI capabilities, this thesis refers to AI capability as: 

An organization’s innovative and practical ability to utilize, reorganize, and orchestrate internal 

and external resources driven by industry needs and technological advancements. Under the supervision 

of organizational governance and in compliance with ethical standards, this capability automates tasks 

and enables human decision-making through AI-integrated technologies to create business value.   
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Table 2.1 Construction of AI capabilities in application areas 
AI 

capabilities 
Understanding Constructs Characteristics Author 

and year 
 

Information 
processing 
capabilities. 

The ability of AI systems to 
replace and complement 
human decision making.  

Exploiting level (support 
not fully replacing humans)  

Identify more information than develop ideas, overcome cognitive information 
processing constraints, and data processing.  

(Haefner et 
al., 2021) 

 

Expanding level (in tandem 
with humans)  

Recognize more problems, opportunities, and threats, and identify and evaluate 
ideas or support humans in developing more innovative ideas and solutions.  

  

Exploring level (replace 
humans to a certain extent.  

Explore new avenues in the innovation process, generate new ideas, and explore 
new ways of defining problems and way of addressing problems.  

  

Resource-built 
capabilities. 

The ability of a firm to select, 
orchestrate, and leverage its 
AI-specific resources. 

Tangible resources Data, technology and basic resources. (Mikalef & 
Gupta, 
2021, p. 4) 

 

Human resources Technical skills and business skills.  

Intangible resources Inter-departmental coordination, organizational change capacity, and risk 
propensity. 

 

Market 
capability. 

The market-oriented capability 
that understands customers’ 
demands and industry 
requirements integrates 
organizational resources by AI.  

Customer orientation  Using AI processes to understand customers’ demands, and transform them in 
marketing initiatives. 

(Akter et 
al., 2023) 

 

Industry orientation Using AI to understand the requirements of the industry.    
Cross-functional 
integration 

Using AI to integrate organizational resources in enhancing networking and 
integration.  

  

Infrastructure 
capability. 

The organizational capability 
to enable AI-powered service 
delivery within a socio-
technical space.  

Data capability Data-driven business environment to facilitate decision support systems and 
foster value creation. 

(Akter et 
al., 2023) 

 

 Model development 
capability 

The comprehensive process of creating, training, and refining machine learning 
models to perform specific tasks or solve particular problems. 

  

  AI ecosystem capability Encompasses high-speed computing, comprehensive data management, 
advanced cloud computing, innovative service platforms, and dynamic 
capabilities to ensure technological and evolutionary fitness. 
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Table 2.1. Cont. 

AI 
Capabilities 

Understanding Constructs Characteristics Author and 
year 

 

Management 
capability. 

The comprehensive ability of an 
organization to effectively govern 
and utilize AI technologies. 

AI ethics The psychological, social, environmental and political impacts of AI.    
AI orientation Market-orientated AI to satisfy customers’ demands through ML and DL.   

Organizational 
learning 

Organizations build a robust knowledge base and gain insights, leading to 
continuous improvement and innovation in the process of knowledge 
development. 

  

The 
implementation 
and scalability.  

The ability that leverages AI within 
the core processes of the business 
model. 

Data pipeline  Monitoring the industrial environment by collecting data and insights from 
various sources and then organizing and presenting the gathered information 
in a systematic manner. 

(Sjödin et al., 
2021) 

 

  Algorithm 
development  

Predicting the future state or actions of the business through development of 
algorithms. 

  

  AI democratization 
capabilities 

Making AI accessible to the entire organization and demonstrating its 
potential. 

  

Technology-
level 
capabilities. 
 

AI technologies possess the 
collective abilities and potential to 
perform tasks and solve problems 
that typically require human 
intelligence. 

Data collection and 
transmission 

The capability to leverage technologies that collect data from the physical 
world or transfer data within and between product modules, e.g., sensors and 
information communication technologies.  

(M. Wu et al., 
2021) 

 

Bridging The ability to connect (disparate) end-users with AI products and 
services/products, e.g., cloud technology. 

  

 Algorithms The ability to use AI techniques and algorithms to perform specific business 
tasks, e.g., ML, DL, BDA, ANNs, etc. 

  

  Applications The capability to realize mature technological convergences between AI 
and/or other technologies to provide innovative products, e.g., IoT and robots. 
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2.2.2. AI Adoption 

2.2.2.1. Technology Acceptance Model 

The original technology acceptance model (TAM) was introduced by Davis (1989), who adapted it from 

TRA, specifically meant to explain computer usage behavior (Davis et al., 1989). It has been confirmed 

as an essential theoretical framework for describing and predicting attitudes toward technology 

acceptance and behavioral intentions. In this model (Figure 3.4), the external factors are mediated by 

perceived usefulness and perceived ease of use to drive attitude, thereby driving intention, which leads 

to the actual use (Davis, 1989). Many quantitative studies employ the TAM as a primary theory. Some 

research has applied the TAM in AI-related applications. For example, Choung et al. (2023) extended 

the TAM with trust in AI to empirically examine the influence of trust on usage intention. The model 

explained the 52% variance for four factors loading onto the usage intention of AI voice assistants: 

perceived usefulness, perceived ease of use, trust perception, and attitude (Choung et al., 2023). Pillai et 

al. (2020) revealed that the perceived usefulness and perceived ease of use of AI-powered automated 

retail stores were affected by consumers’ innovativeness and optimism. Also, they are along with other 

determinants such as perceived enjoyment, customization, and interactivity, are significant predictors of 

consumers’ shopping intention. 

 
Figure 2.2 Technology Acceptance Model (TAM) (Source: Davis, 1989, p. 985). 

TAM is also applied to adopting AI-integrated technologies research along with other theories. S.-

F. Wang & Chen (2024) integrated the TAM and TPB behavioral measurement model, incorporating 

designers’ characteristics, revealing that designer trust is the primary factor influencing their behavioral 

choices. Sohn and Kwon (2020) integrated TAM with TPB, UTAUT, and the Value-based Adoption 

Model (VAM) to investigate AI-based intelligent product adoption. The finding reveals that perceived 

usefulness and perceived ease of use significantly affected BI with an explained variance of 63%; TPB 

showed that attitude, perceived behavioral control, and subjective norms significantly affected BI and 

that TPB explained 66.8% of the variance, and both UTUAT and VAM explained that the model was 

higher than 70 % in BI affected by respective factors (Sohn & Kwon, 2020). Patil et al. (2023) employed 

TAM and TOE models to identify the adoption intention of IoT-based intelligent manufacturing systems. 

They identified technological (perceived ease of use) and environmental (competitive pressure) factors 
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that influence micro, small, and medium enterprises (MSMEs) intentions to adopt intelligent 

manufacturing systems (SMS) enabled by the IoT. A 58% variance in IoT-based SMS adoption intention 

was explained (Patil et al., 2023). They complement the original TAM model when considering the 

organizational perspective of technology adoption rather than just the individual adopter perspective 

(Dobre, 2022). Chatterjee et al. (2021) integrated TAM and TOE to evaluate AI adoption, revealing that 

the model explains the 71% variance of AI adoption, with the main driver roles of perceived usefulness 

and perceived ease of use in the intention to adopt AI. 

2.2.2.2. Technological, Organizational, and Environment (TOE) Framework   

Diffusion of innovation (DOI) is a groundbreaking theory that has since become a cornerstone in 

innovation adoption research (Roger, 2014). This theory posits that the acceptance of an innovation is a 

gradual process in which the adoption rate is influenced by “the perceived relative advantage”, 

“compatibility”, “trialability”, “observability”, and “lower complexity” of the innovation, all 

contributing to its eventual acceptance (Dobre, 2022; Rogers, 2003). Inspired by DOI in technology 

adoption, Tornatzky and Fleischer (1990) identified relative advantage, compatibility, and complexity 

support Rogers’ innovation adoption model. Compared to the DOI theory, the TOE framework offers a 

more decisive advantage in analyzing external environmental factors influencing the adoption of 

technology (AL-khatib, 2023). It is a theory that “supports the evaluation of innovation adoption from 

both the individual and organizational perspectives” on technology adoption at organizational resources 

and environments “within internal and external networks” (Dobre, 2022, p. 73), rather than the previous 

models’ solely individual perspectives, such as users and consumers. 

Figure 2.3 depicts the construction of the TOE framework. The three attributes of the TOE 

framework influencing adopting and implementing technological innovations are: (1) Technological 

context describes internal and external technologies available for possible adoption to a firm (Amini & 

Javid, 2023; T. Oliveira & Martins, 2011). (2) Organizational context involves the characteristics of such 

organizations, including formal and informal linking structures, communication processes among 

employees, competencies, firm size, and organizational slack (Näslund & Naslund, 1964; Stenberg & 

Nilsson, 2020). (3) Environmental context refers to external forces, such as industry characteristics and 

market structures, technology support infrastructure, competitors, and government regulations (Oliveira 

& Martins, 2011). The TOE framework encompasses a range of context-specific factors designed to aid 

in the comprehensive evaluation and understanding of technology adoption processes. We reviewed 

diverse studies on selecting factors in the ongoing study of AI-integrated technology adoption, utilizing 

the TOE framework, as detailed below.  

Polisetty et al. (2023) employed the TOE framework at an organizational level to examine how AI 

enablers and AI readiness influence the competitive advantage with due acceptance of AI practices 

through gathering from 866 employees (managers) of SMEs. The antecedents behind AI adoption 

readiness and competitive advantage relations are TOE factors. They selected and extended the original 

factors identified by Tornatzky and Fleischer (1990) and redefined the selected predictors based on the 
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Figure 2.3 Technology, Organizational, and Environment (TOE) Framework (Source: Tornatzky & 

Fleischer, 1990, p. 153) 

TOE framework, which are technological factors (AI compatibility, perceived benefits), organizational 

factors (role clarity and perceived trust), and environmental factors (data governance and data quality). 

They conducted a mixed approach, finding that AI compatibility, perceived trust, data governance, and 

data quality influence AI adoption readiness. This model explains 41% of the variance in AI adoption 

readiness and 51% in the effect of AI adoption readiness on competitive advantage. However, this study 

has not considered the industry sectors, geographic location, and firm size. In addition, the TOE focuses 

on both organizational and individual respects. The study of Polisetty et al. (2023) focuses on the 

organizational-level factors, but employee attitudes and perceptions about AI from individual-level 

factors have not been identified.  

 Badghish and Soomro (2024) used the TOE framework, identifying that relative advantage, 

compatibility, sustainable human capital, market and customer demand, and government support affect 

the adoption of AI by SMEs. Similar to Polisetty et al.(2023)’s model, they employed TOE as the 

antecedent of AI adoption toward sustainable business performance. They focus on the readiness of TOE, 

reflecting cost, relative advantage, complexity & compatibility as technological readiness, organizational 

support, sustainable human capital as organizational readiness, market and customer demand, and 

government support as external environmental readiness. Their conceptual model explains the 72.7% 

variance in AI adoption and 67.8% and 69.6% in economic and operational performance, respectively. 

Findings reveal that economic, infrastructure, and knowledge internal barriers are the main obstacles to 

deploying the “Four Smarts”, while external barriers do not pose challenges in the deployment phase. 

Aniceski et al. (2024) use the TOE framework to investigate the relationship between the 

implemented I4.0 technologies associated with the “Four Smarts” and the presence of internal and 

external barriers to distinct outcomes pursued by companies. This study has examined the barriers to 

industry 4.0 technology adoption, thus understanding how to achieve resilience and human-centric 

approaches and sustainable outcomes towards Industry 5.0. The technological dimension is related to the 

functionality, complexity, and compatibility with existing systems. In their work, the adoption of 

Industry 4.0 technologies is associated with smart products, manufacturing, supply chain, and working-
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led companies. Then, they defined internal barriers as an organizational dimension, where a lack of 

infrastructure and knowledge, economic aspects, and cultural factors associated with deploying Industry 

4.0 technologies. Last, the external barriers are considered as an environmental dimension, from the 

aspects of technical norms, lack of partnerships and support, and lack of infrastructure and skills. The 

effects of all three dimensions were investigated on the benefits of Industry 4.0 technologies adopted 

from the environmental and social aspects, operational performance, and innovation capacity. The model 

has two large effect sizes of independent variables toward benefits.: 44% variance in smart products to 

technological dimensions and 54% variance in smart manufacturing for organizational dimension. 

However, this study has yet to investigate how to overcome the barriers of the smarts. Also, it lacks the 

investigation of human-centric systems towards possible barriers in the context of Industry 5.0.  

AL-khatib (2023) uses the TOE framework to investigate Gen-AI adoption in Jordan’s retailing 

industry. The research reveals that relative advantage, top management support, organizational readiness, 

and customer pressures influence Gen-AI adoption, while complexity negatively influences it. This 

research also demonstrates the positive impact of Gen-AI on both exploratory and exploitative innovation, 

which contributes to presenting new paths in this relationship. 

Maroufkhani et al. (2023) investigated 171 Iranian SME manufacturing firms to determine the 

influence of TOE factors on Big Data Analytics (BDA) adoption. The model explained the 65.8% 

variance in BDA adoption, revealing that compatibility, competitiveness, and organizational readiness 

impact BDA adoption, and top management support mediates this. Environmental factors moderate the 

impacts of compatibility and organizational readiness on top management support. This study highlights 

the mediating role of top management support between the linkage of technological and organizational 

factors and BDA adoption and the moderating role of the environmental factors on the effects of 

technological and organizational factors on top management support. Maroufkhani and co-authors 

employed RBV and TOE to identify BDA adoption and SMEs’ financial and market performance 

(Maroufkhani, Wan Ismail, et al., 2020a). Specifically, TOE defines the antecedents of BDA, and 

grounding in RBA theory, BDA mediates the TOE variables and firm performance. This model explains 

the 69.4% variance in BDA adoption, 68% in financial performance, and 58.2% in market performance. 

Drawing on the DOI and RBV theories, Maroufkhani, Tseng, et al.(2020) propose a conceptual model 

with a wide range of TOE factors that have influenced technology adoption. Complexity, uncertainty and 

insecurity, trialability, observability, top management support, organizational readiness, and external 

support have been confirmed to affect BDA adoption significantly. This model explains the 78.3% 

variance in BDA adoption. 

2.2.2.3. Constructs of TOE and Integrated TAM-TOE in AI adoption Studies in Manufacturing 
Sectors  

To provide the theoretical foundations for addressing Study 1’s research questions, this part of the 

literature review critically evaluates 10 key peer-reviewed empirical journal articles from Scopus 

database on the predictors of AI adoption in manufacturing based on the TOE, and the integrated TAM 

and TOE, as shown in Table 2.3 and Table 2.4. Blockchain technology, robots, cloud computing, and 
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IoT are increasingly integrated with AI technologies (Kurni et al., 2022; Kuznetsov et al., 2024; Qu & 

Kim, 2024b), and thus, these studies have focused on empirical research around the factors that influence 

the adoption of AI-integrated technologies using the TOE framework, and the integrated TAM-TOE 

framework (Gangwar et al., 2015; Guan et al., 2023; Kamble et al., 2021; Legesse et al., 2024; Patil et 

al., 2023; Pillai et al., 2022; Tasnim et al., 2023). For example, influential research on AI adoption in 

Chatterjee et al. (2021) integrated TOE with TAM to explore the applicability of Industry 4.0 and how 

socioenvironmental and technological factors influence the adoption of AI-embedded technology by 

digital manufacturing and production organizations. They embedded perceived usefulness and perceived 

ease of use as the intermediating technological factors linking organizational and environmental 

antecedents and consequences of the intention to adopt AI. The mediating effect of perceived usefulness 

and perceived ease of use has been presented in many research that employs the TAM-TOE model, such 

as Gangwar et al. (2015), Kamble et al. (2021), Legesse et al. (2024), Patil et al. (2023), and Tasnim et 

al. (2023). Other antecedents of TOE are explained in detail as follows. 

Organizational competency (OCM) is associated with employees’ skills, knowledge, and 

capabilities, which explains that employees capable of using technology enhance the manufacturing 

organization’s competency, thereby improving performance (Chatterjee et al., 2021). It is often similar 

to organizational readiness (ORE) defined from the perspective of organizational resources (i.e., 

technological and financial) for adopting new technologies (Iacovou et al., 1995a). In addition, previous 

content has stated that managing AI-based innovation necessitates substantial technical and 

organizational adjustments, particularly to address the challenges arising from the firm size (Füller et al., 

2022). Therefore, the role of firm size is a key aspect of organizational readiness, which has been 

presented in the studies of Guan (2023) and Chatterjee et al. (2021). Chatterjee et al. (2021) amalgamate 

firm size with organizational readiness, whereas Guan (2023) and other authors defined it as a stand-

alone concept (Kinkel et al., 2022). However, the studies confirm that firm size does not significantly 

impact dependent variables (Cao et al., 2021; Hsu & Lin, 2018; Iacovou et al., 1995). 

Organizational complexity (OCX) is closely associated with the lens of TAM (Chatterjee, Rana, 

Dwivedi, et al., 2021). It is “the perceived degree of difficulty of understanding and using a system” 

(Sonnenwald et al., 2001, cited Chatterjee et al., 2021; Gangwar et al., 2015, p. 113). As the complexity 

appears in internal organizations, it is demonstrated to negatively influence perceived and usefulness and 

perceived ease of usefulness by many prior studies (Chatterjee, Rana, Dwivedi, et al., 2021; Gangwar et 

al., 2015; Kamble et al., 2021; Tasnim et al., 2023). Some authors defined the term complexity in a 

tangible object, such as new system (Gangwar et al., 2015) or product complexity (W. Guan et al., 2023; 

Kinkel et al., 2022). However, their alignment is consistent in the view that complexity negatively 

impacts individuals’ intentions to use AI.   
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Table 2.2 Hypothetical predictors driving AI technologies adoption based on TAM-TOE in manufacturing from peer-reviewed journal articles. 

Theory Source Consequence 

Antecedent 

Technological  Organizational Environmental 

PU PEOU RAD OCM OCX ORE T&E OCO TMSU COA PSU GSP CP 

TAM-
TOE 

(Chatterjee, et 
al., 2021) 

Intention to adopt AI x x   x x x   x   x x     

(Gangwar et al., 
2015) 

Cloud computing 
adoption intention  

x x x x x   x x x x       

(Kamble et al., 
2021) 

Blockchain adoption x x x   x x x x x   x   x 

(Legesse et al., 
2024) 

Intention to adopt 
blockchain 

x x x           x     x   

(Patil et al., 
2023) 

IoT adoption x x             x     x x 

(Tasnim et al., 
2023) 

Intention to adopt 
blockchain 

x x x   x x x   x         

Legend: TAM= Technology Acceptance Model; TOE=Technology-Organization-Environment; PU=perceived usefulness; PEOU=perceived ease of use; RAD=relative 

advantage; OCM=organizational competency; OCX=organizational complexity; ORE=organizational readiness; T&E=training and education; OCO=organizational 

compatibility; TMSU= top management support; COA=competitive advantage; PSU=partner support; GSP=government support and policy; CP=competitive pressure.  
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Table 2.3 Hypothetical predictors driving AI technologies adoption based on TOE in manufacturing from peer-reviewed journal articles. 

Theory Source Consequence 
Antecedent 

Technological Organizational Environmental 

RAD 

¥ 

OCX ORE OCO COA PSU FS GSP PCX CP MU 
TOE (Badghish & 

Soomro, 2024) 
AI adoption x x x         x       

(Kinkel et al., 
2022) 

AI adoption         x   x   x     

(W. Guan et 
al., 2023) 

Intention to adopt 
blockchain 

    x     x x   x x x 

(Pillai et al., 
2022) 

Intention to adopt AI-
powered robot 

    x x               

Legend: TOE=Technology-Organization-Environment; RAD=relative advantage; OCX=organizational complexity; ORE=organizational readiness; OCO=organizational 
compatibility; COA=competitive advantage; PSU=partner support; FS=firm size; GSP=government support and policy; PCX= product complexity; CP=competitive pressure; 
MU= market uncertainty 
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Rogers (2014) and Géczy et al. (2012) define organizational compatibility (OCO) as the degree to 

which an innovation is perceived as consistent with the existing values, past experiences, and needs of 

adopters and which is that of potential users. It is also an internal organizational issue and is associated 

with these characteristics of a manufacturing organization that are reconcilable with AI, which can be 

found in four studies (Chatterjee, Rana, Dwivedi, et al., 2021; Gangwar et al., 2015; Kamble et al., 2021; 

Pillai et al., 2022). However, the TAM-TOE model suggests that compatibility positively affects 

perceived usefulness but not perceived ease of use (Chatterjee, Rana, Dwivedi, et al., 2021), further 

indicating that the determinant of compatibility with old production systems impacts potential users’ 

demands, thereby influencing AI adoption.  

Top management support (TMSU) provides facilitating conditions that are the employees’ 

perception stimulated by organizations, of which the necessary technical and organizational capacity and 

infrastructure for them to be able to adopt new technologies (Badghish & Soomro, 2024). Tasnim et al. 

(2023) find top management support significant for enhancing the perceived usefulness of this 

technology among employees, then drive the organizations to adopt new technology by taking risks for 

adopting blockchain technology and providing resources, consistent with the studies of Gangwar et al. 

(2015), Kamble et al.( 2021) and Legesse et al. (2024). Therefore, employees’ perceived usefulness and 

perceived ease of use mediate the impacts of top management support on technology adoption. According 

to this perspective, “technological adoption is generally carried out using a top-down approach” 

(Gangwar et al., 2015, p. 122). On a different approach, Patil et al. (2023), although they also conduct a 

hybrid TAM-TOE model, find that perceived usefulness and perceived ease of use positively influence 

technology adoption so that top management would support technology implementation.  

This support by top management in internal organizations is also reflected by training and education 

(T&E) in several studies. For example, Tasnim et al. (2023) find that the fear of the complexity of 

technology can be reduced by anticipating proper training and education, and technical knowledge to the 

employees, further implying that blockchain adoption requires top management support. Badghish and 

Soomro (2024) emphasize the importance of sustainable human resource (SHR) policies in facilitating 

the changes that become pivotal for AI adoption. SHR practices encompass various sustainable activities 

aimed at mitigating the skill gap by implementing employee development initiatives, training programs, 

and reward systems that promote work-life balance and enhance employee well-being, all to facilitate 

the adoption of new digital technologies. Training and education antecedent representing the 

organizational factor was found to positively influence perceived usefulness and perceived ease of use 

by Kamble et al. (2021). The finding suggests that as employees gain more technical knowledge about 

deploying blockchain technology, organizations find utilizing blockchain in the supply chain easier and 

are more convinced of its usefulness (Kamble et al., 2021). This is consistent with the study of cloud 

computing adoption by Gangwar et al. (2015).  

Competitive advantage (COA) is applied to AI adoption, allowing for better production and 

benefiting organizations (Rogers, 2014). It is associated with unique resources and capabilities and is 

ahead of competitors (Dobre, 2022). AI’s competitive advantages were represented in its capabilities, as 

previously outlined. AI’s enabling roles in innovation will help organizations gain competitive 
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advantages. In the TAM-TOE framework, competitive advantages indirectly affect the intention to use 

AI through perceived usefulness and perceived ease of use (Chatterjee et al., 2021; Gangwar et al., 2015); 

therefore, employees perceive the usefulness of AI and the ease of use of AI could help organizations 

gain competitive advantages.  

Yang (2015) highlights that the drive to gain competitive advantages is a key pressure for adopting 

innovative technology. This means firms experience substantial competitive pressure (CP), which 

incentivizes the adoption of innovative technologies to maintain a favorable position. Competitive 

pressure refers to the degree of pressure a firm has from competitors within the industry, which directly 

influences AI adoption in the manufacturing sector. These findings support the literature from other 

studies (W. Guan et al., 2023; Kamble et al., 2021). However, in a TAM-TOE model, competitive 

pressure indirectly influences AI adoption through perceived usefulness (Patil et al., 2023; Tasnim et al., 

2023). This is partially in line with the results from employees’ perspectives.   

Relative advantage (RA), as applied to adopting AI-related technologies, such as blockchain, allows 

for “improved transparency, enhanced traceability, increased reliability, and potential gains in efficiency” 

(Kamble et al., 2024; Legesse et al., 2024, p. 9). Cloud computing leads to “greater efficiency of internal 

processes, increased employee productivity, improved customer service, reduced inventory costs, and 

improved coordination with trading partners” (Gangwar et al., 2015, p. 121). Similarly, adopting AI 

integrated with the existing technologies in manufacturing organizations has advantages over other 

technologies, such as enhancing product efficiency (Kumar et al., 2022), enabling sustainable supply 

chains (Dey et al., 2023; Kamble et al., 2022), supporting decision-making (Hao & Demir, 2023), 

reducing supply chain disruption (Kuźnar & Lorenc, 2023), etc. Therefore, understanding these 

advantages relative to existing systems strengthens relationships with customers and business partners 

and helps better management (Gangwar et al., 2015). Prior studies based on the TAM-TOE model have 

demonstrated that relative advantage directly impacts perceived usefulness and perceived ease of use, 

which are two mediating variables between relative advantage and AI adoption in manufacturing 

organizations (Gangwar et al., 2015; Kamble et al., 2021; Legesse et al., 2024; Patil et al., 2023). This 

means if employees believe the new systems bring advantages related to the existing production systems, 

they are more likely to perceive it as useful (enhancing work efficiency and performance) and easy to 

use (simple to operate and learn).  

Partner support (PSU) and government support and policy (GSP) are external environmental factors 

that impact technology adoption in organizations. Partner support acts as an external agent to help an 

organization develop the knowledge repository of employees from knowledge-based view perspectives 

(Chatterjee, Rana, Dwivedi, et al., 2021). Government support and policy entails the provision of 

assistance or enabling conditions to organizations to facilitate the adoption or implementation of 

technology diffusion within the firm (Badghish & Soomro, 2024), which encompasses regulations, 

incentives, and measures for promoting AI for innovation in industries (Qu et al., 2023). As the 

theoretical background mentioned, it is related to INT that is often employed as an environmental factor 

in the TOE framework (Lutfi, 2020; Lutfi et al., 2022; Malik et al., 2021; Mujalli & Almgrashi, 2020; 

Oliveira & Martins, 2011). Due to the limited resources, SMEs need additional resources and government 
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support, such as monetary incentives or government subsidies and making credit available from 

commercial banks, facilitating SMEs for implementing technological innovations (Badghish & Soomro, 

2024). This is consistent with the study of Legesse et al. (2024) and Patil et al. (2023).  

Market uncertainty (MU) refers to the constantly changing state of a highly unpredictable and 

complex environment, including unstable customer demands and becoming more sophisticated (W. Guan 

et al., 2023). In this dynamic and challenging business environment characterized by high market 

uncertainty, the impact of business strategy on manufacturing performance may decline (Handoyo et al., 

2023). This environmental uncertainty reflects “the degree to which it is difficult to predict the nature of 

an environment and the consequences of environmental changes” (Lu et al., 2021 cited Hashem & 

Aboelmaged, 2023, p. 4577). Scholars assert that companies operating under high environmental 

uncertainty are motivated to adopt innovative corporate-level practices, enabling them to respond swiftly 

to ecological changes, such as the Internet of Things (Arnold and Voigt, 2019). SCM is a significant task 

in manufacturing as it involves planning, sourcing, making, delivering, and returning processes. Recent 

studies on logistics have highlighted that market uncertainty drives manufacturing organizations to adopt 

AI-related technologies to build resilience supply chains (Al-Banna et al., 2023; Arranz et al., 2023; 

Belhadi et al., 2022; Dey et al., 2023) 

2.2.2.4. Selection of Hypothetical Constructs based on TAM-TOE  

In examining AI adoption within Chinese apparel manufacturing industry, this study incorporates 

perceived usefulness, perceived ease of use, organizational complexity, organizational readiness, 

competitive pressure, supplier involvement, market uncertainty and government support and polices as 

essential constructs within the TAM-TOE framework. The integration of TAM with TOE provides a 

robust theoretical foundation for analyzing the interplay of technological, organizational, and 

environmental factors driving AI adoption in this sector. Perceived usefulness and perceived ease of use, 

core tenets of TAM, have demonstrated mediating roles in technology acceptance, representing the extent 

to which AI is perceived as advantageous and manageable by users. In the context of Chinese apparel 

manufacturing, perceived usefulness and perceived ease of use are particularly relevant, as they align 

with the industry’s need for efficient and intuitive technologies that enhance productivity. 

Organizational complexity and organizational readiness are integral to the TOE framework, 

capturing internal dimensions that shape AI adoption within manufacturing firms. As previously 

explained, organizational complexity refers to the structural and operational challenges that may inhibit 

the straightforward implementation of AI, while organizational readiness reflects the availability of 

resources and infrastructure necessary for successful adoption. These organizational factors are critical 

in Chinese apparel sector, where rapid technological advances necessitate firms to carefully assess their 

internal capacities for integrating AI. 

The environmental dimension of the TAM-TOE model is addressed through constructs such as 

competitive pressure, supplier involvement, market uncertainty, and government support. Competitive 

pressure and supplier involvement underscore the role of external stakeholders and market forces that 

propel organizations towards adopting AI to maintain competitiveness (Jöhnk, 2021; T. Oliveira & 
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Martins, 2011). Supplier involvement (SIV) is associated with partnership support as several studies 

employed (Chatterjee et al., 2021; Kamble et al., 2021; W. Guan et al., 2023). Market uncertainty, 

characterized by fluctuating demand and supply chain disruptions, further drives firms to seek adaptable, 

AI-enabled solutions. Government support and policies are particularly salient in the Chinese context, as 

policy directives and incentives play a pivotal role in facilitating technology diffusion within industries.  

By integrating these constructs, this model allows for a nuanced examination of the factors 

influencing AI adoption in Chinese apparel manufacturing sector, balancing internal organizational 

attributes with external pressures and regulatory influences that collectively impact the adoption 

landscape. 

2.2.3. Extending TAM-TOE to Open Innovation Consequences 

2.2.3.1. AI’s Enabling Roles in Innovation 
The initial section of the Chapter provides the umbrella of AI capability that provokes an understanding 
of its nature. This understanding facilitates AI’s enabling roles in innovation processes to create 
maximum value and gain profits (Teece, 2018). Innovation has been fundamental to human striving 
throughout history, and since the Industrial Revolution, there have been clear periods of intensive activity 
(Millar, 2012). Innovation is defined as the result of a cumulative process in which existing knowledge 
is combined in new ways into something novel and useful (Sternberg and O’Hara, 1999, p.251 cited 
Bahoo et al., 2023; Arthur, 2007; Basalla, 1988, cited Grashof & Kopka, 2023). The notion of innovation 
also encompasses technological changes(Schumpeter, 1911, 1934 cited Carayannis, 2013), strategic 
paradigms (Sundbo, 1991), the exploitation of “idea generation” to “produce new products, processes, 
services and business practices” (Pittaway et al., 2004, p. 144; Sarooghi et al., 2015), and creative-
innovation link (Sarooghi et al., 2015). However, these innovation concepts have yet to notice that 
emerging technologies drive scholars to revisit innovation and classify the types of innovation. The 
unaddressed gaps are unsurprising, given that the research field was not yet mature at the time. In the 
digitalized world, innovation is a transformative change ranging from incremental to radical in firms 
(Bahoo et al., 2023), and AI drives this radical transformation (Grashof & Kopka, 2023). The application 
of AI is expected to enable new opportunities for innovation management and reshape innovation 
practice in organizations (Füller et al., 2022), and therefore, increasing cases demonstrate that AI has 
been adopted in different innovation activities (Davenport & Ronanki, 2018). For example, Mariani et 
al. (2023, p. 18) have identified the outcomes of AI adoption for three major categories of innovation 
that are “economic outcomes (performance, effectiveness, efficiency), competitive and organizational 
outcomes (competitive advantage, organizational capabilities), and innovation outcomes (development 
of patents; development of new technology; product, process and business model innovation)”. 
Furthermore, they expand the types of innovation consequences to the scopes of “product innovation, 
process innovation, business model innovation, incremental innovation, radical innovation, digital 
innovation, social innovation, sustainable innovation, open innovation, service innovation, disruptive 
innovation, market innovation, and organizational innovation” to identify AI’s enabling antecedents 
(Mariani et al., 2023, p. 11). They elaborate on how AI capability enables innovation activities, especially 
in proposing a future research direction on AI-enabled sustainable development goals of the innovation 
consequence. This demonstrates that AI is driving innovation in all aspects, both macro and micro. 
Therefore, following the antecedents and consequences of AI’s enabling roles, 12 groups of AI 
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antecedents and innovation consequences in six types of innovations are categorized from the selected 
12 studies, as this thesis focused in Table 2.4. These 12 studies were selected based on their relevance 
to AI-enabled innovation, the diversity of innovation types they represent, and their empirical evidence 
supporting AI’s impact on organizational innovation. Priority was given to studies with rigorous 
methodologies and those published in high-impact journals from the Scopus database, ensuring a 
comprehensive and reliable basis. 
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Table 2.4 AI’s Enabling Roles in Innovation 
AI capability Types of 

innovation 
Through… 
(Antecedents) 

For… 
(Consequences)   

Author and year 

Infrastructure 
capability. 

Technologic
al innovation 

“accelerating knowledge-creating and 
technology spillover, improving the capability 
of learning and absorption, increasing R&D 
and talent investment…” 

promoting technological innovation. (Liu et al., 2020) 

The technology-
level capabilities. 
 

enhancing machine autonomy, optimizing 
control transfer, increasing acceptance and 
trust, clarifying the roles of human employees, 
and developing measures to improve human-
computer interaction (HCI) 

improving operational efficiency and decision-making 
quality and promoting social sustainability. 

(Klumpp & Zijm, 
2019) 

Information 
processing 

Corporate 
innovation  

“supporting creativity and out-of-box 
thinking…” 

the idea generation stage of corporate innovation. (Bahoo et al., 2023) 

The implementation 
and scalability. 

“effective search for new opportunities and 
solutions…” 

idea development in corporate radical innovation. (Eggers and Kaplan, 
2009, cited Bahoo et 
al., 2023) 

“evaluating and implementing the best 
opportunity or solution to the problem…” 

idea evaluation and implementation of corporate 
innovation. 

(Bahoo et al., 2023) 

Resource-built 
capabilities 

Radical 
innovation 

“the application-related AI knowledge  the increase of radical innovation. (Grashof & Kopka, 
2023) 

the technique-related AI knowledge…” the decrease of radical innovation.  
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Table 2.4. Cont. 

AI capability Types of 
innovation 

Through… 
(Antecedents) 

For… 
(Consequences)   

Author and year 

Information 
processing 
capabilities. 

Open 
innovation 
 

“providing ample opportunities for enabling 
effective knowledge sharing among 
organizations…” 

fostering the initiation, development, and realization stages 
of open innovation.  

(Broekhuizen et al., 
2023) 

The implementation 
and scalability. 

 “automating the identification and evaluation 
of external ideas and technologies…” 

enhancing the efficiency of the inbound open innovation 
process. 

(Bahoo et al., 2023; 
Sahoo et al., 2024) 

Resource-built 
capabilities 

 “examining an organization’s internal 
resources and capabilities…” 

identifying potential areas of collaboration with external 
partners, allowing organizations to develop more targeted 
and effective outbound open innovation strategies. 

(Cui et al., 2022; 
Sahoo et al., 2024) 

  big data analysis and text mining techniques 
of AI 

identifying potential partners for open innovation. (Yoon & Song, 
2014) 

The implementation 
and scalability. 

 “access to new ideas, knowledge, and 
expertise…”  

competitive advantages in the marketplace thereby 
culminating in higher business performance. 

(Sahoo et al., 2024) 

Information 
processing 
capabilities. 

Knowledge 
innovation 

“intelligence from data collection to 
feedback, monitoring, evaluation, analysis, 
prediction, and decision-making…” 

promoting the transformation of knowledge acquisition and 
innovation, knowledge sharing, and knowledge creation 
from tacit knowledge to explicit knowledge.  

(Bai & Li, 2020) 

The technology-
level capabilities. 
 

Product 
innovation 
(tangible: 
good; 
intangible: 
service) 

“using autonomous conversational 
interfaces…” 

improving customer service. (Correani et al., 
2020; Gama & 
Magistretti, 2023) 
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2.2.3.2. AI Enables Open Innovation 

The Definitions of Open Innovation 

Chesbrough (2003, p43) first defined the definitions of open innovation as “... valuable ideas can 

come from inside or outside the company and can go to market from inside or outside the company as 

well”, and later supplements to “. . . the use of purposive inflows and outflows of knowledge to accelerate 

internal innovation and expand the markets for external use of innovation, respectively” (Chesbrough et 

al., 2006, cited Gassmann et al., 2010, p. 213). These definitions highlight the significance of knowledge 

sources and better explain that open innovation provides a framework for utilizing external and internal 

knowledge, technology, and resources to accelerate internal innovation and expand markets for external 

innovation. The evidence of Kuzior (2023) supports this perspective. Kuzior (2023) finds that absorptive 

capacity has a significant, inverted U-shaped impact on new product development and that the interplay 

between external knowledge sources and a firm’s absorptive capacity initially hinders, but ultimately 

enhances, innovation after surpassing a high level. In addition, Kuzior (2023) emphasizes that while a 

strong absorptive capacity can lead to organizational inertia, thereby reducing innovation, it is crucial to 

identify and understand the distinct effects of various external knowledge sources on innovation, as these 

effects vary with the level of internal knowledge. 

Gassmann and Enkel (2004, p. 2) define open innovation as “the company needs to open up its solid 

boundaries to let valuable knowledge flow in from the outside to create opportunities for co-operative 

innovation processes with partners, customers and/or suppliers”. This definition highlights an 

understanding of an innovation ecosystem where the emphasis is on collaboration with partners, 

customers, and suppliers, as well as the interdependent relationships within the innovation ecosystem 

(Granstrand & Holgersson, 2020). By opening up its boundaries, a company can share knowledge and 

collaborate with external partners, customers, and suppliers, forming a mutually beneficial innovation 

network. All participants contribute to the innovation process within this ecosystem by leveraging their 

unique expertise and resources, further accelerating technological advancements and market innovation. 

Enkel et al. (2009) further emphasize the necessity of understanding how and where open 

innovation can add value in knowledge-intensive processes, using three firm’s process perspectives: 1) 

the outside-in process, 2) the inside-out process, and 3) the coupled process. The outside-in process 

increases a company’s innovativeness (Laursen and Salter, 2006; Lettl et al., 2006; Piller and Walcher, 

2006, cited Enkel et al., 2009), revealing that the significance of enriching a firm’s knowledge base by 

integrating external resources such as customers, suppliers, and competitors to enhance the company’s 

innovative capabilities (Enkel et al., 2009). The inside-out process emphasizes that companies generate 

profits by externalizing their knowledge and innovations through market commercialization, licensing, 

and technology transfer, particularly highlighting the use of these strategies by large multinationals and 

the growing awareness of corporate venturing and cross-industry innovation (Enkel et al., 2009). The 

third coupled process highlights the importance of co-creation in the open innovation literature, which 

“strongly focuses on peer production through communities, consumers, lead users, universities or 

research organizations, and partners from other industries” (Enkel et al., 2009, p. 313). 
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 Motivated by the paradigm of open innovation in industrial applications, Obradović et al. (2021) 

synthesized 239 articles within manufacturing research and assessed open innovation research streams, 

highlighting the necessity for further explorations of open innovation perspectives. Their findings 

suggest that manufacturing firms need to consider sustainable activities, especially in addressing the 

environmental and social issues throughout the supply chain. The study of Obradović et al. (2021) 

particularly states Industry 4.0 technologies adoption and open innovation regarding knowledge 

exchange and technology transfer among partners. 

Lichtenthaler (2008, pp. 148–149) defined an open innovation approach as “systematically relying 

on a firm’s dynamic capabilities of internally and externally carrying out the major technology 

management tasks, i.e., technology acquisition and technology exploitation, along the innovation 

process”. Thus, open innovation processes involve a wide range of internal and external technology 

sources and a wide range of internal and external technology commercialization channels” (Lichtenthaler, 

2008, pp. 148–149). Thus, in a technologically advanced environment, firms need to reach out to sources 

of scientific knowledge to access highly novel insights and enhance their innovation performance 

(Gassmann et al., 2010). 

Hung and Chiang (2010) highlight that open innovation enhances as a factor of radical innovation 

(Gassmann et al., 2010). As previously outlined, AI’s enabling roles in radical innovation are reflected 

in the application toward the increase of radical innovation, and the technique-related AI knowledge 

leads to the decrease of radical innovation, which is from an RBV perspective (Grashof & Kopka, 2023). 

Thus, numerous studies have systematically explored the correlations between open innovation and AI 

capability, revealing significant effects between AI and open innovation in organizations. 

The latest research by Enkel et al. (2020) revisits the exploration of open innovation in the digital 

era. “The digital era provides new enabling factors for generating, sharing, retrieving, and storing data, 

information, or knowledge that could dramatically impact how organizations manage their boundaries” 

(Enkel et al., 2020, p. 162). The previous section has provided evidence of emerging technologies, such 

as AI’s enabling roles in innovation, which aligns with Enkel et al.’s (2020) concern. As a result, 

organizations need to develop new strategies for managing the entire ecosystem, where they work 

alongside complementary partners to jointly innovate and create achievable solutions through their 

collaboration (Chesbrough et al., 2014; Enkel et al., 2020). Under this research motivation, the study of 

Enkel and his co-authors informs a research agenda on establishing a co-innovating ecosystem, and it 

proposes the “importance of alliances, innovation ecosystems, and the triple helix (TH) in the digital age” 

(Enkel et al., 2020, p. 162). However, this proposition critiques the previously mentioned outside-in 

process, where firms focus on collecting ideas from customers and suppliers. In contrast, the inside-out 

portion of open innovation remains unused (Enkel et al., 2009). Hence, companies will attract new 

partners from within and outside the industry who possess valuable knowledge and capabilities, forming 

long-term collaborations across various stages of the innovation process by leveraging a portfolio of 

activities, including the outside-in integration of external knowledge and co-creation with partners, to 

drive innovation (West & Bogers, 2014, cited Enkel et al., 2020). 
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The above contributions to open innovation provide the paradigm by presenting future research 

directions from individual challenges (micro) to applications of open innovation at an industry or national 

level) (macro) (Obradović et al., 2021). Overall, these scholars demonstrated that it is important to study 

drivers and roles in open innovation in a manufacturing context, thus reiterating the necessity of our 

study. Therefore, the following section expands previous AI’s enabling roles in open innovation to 

specific literature in the manufacturing sector.  

The Roles of AI Capabilities in Open Innovation 

AI capabilities-enabled open innovation is an important way for manufacturing enterprises to gain 

competitive advantages in the digital economy (L. Wu et al., 2022), thus driving scholars to revisit open 

innovation from a traditionalist enterprise to a visionary enterprise (Enkel et al., 2020). Digital 

transformations in manufacturing systems confer advantages for enhancing competitiveness and ensuring 

the survival of companies by reducing operating costs, improving quality, and fostering innovation, 

falling within the overarching umbrella of Industry 4.0 (Goecks et al., 2024). An AI-powered digital 

transformation (Gołąb-Andrzejak, 2023; Z. Huang et al., 2021), its enabling roles have been identified 

in open innovation, particularly in the aspects of “providing ample opportunities for enabling effective 

knowledge sharing among organizations,” thus fostering the initiation, development, and realization 

stages of open innovation (Broekhuizen et al., 2023), “automating the identification and evaluation of 

external ideas and technologies thus enhancing the efficiency of the inbound open innovation process 

(Bahoo et al., 2023; Sahoo et al., 2024), “examining an organization’s internal resources and capabilities 

to identify potential areas of collaboration with external partners, allowing organizations” to develop 

more targeted and effective outbound open innovation strategies (Cui et al., 2022; Sahoo et al., 2024), 

“access to new ideas, knowledge, and expertise” to gain competitive advantages in the marketplace thus 

culminating in higher business performance (Sahoo et al., 2024). Table 2.5 shows the enabling roles of 

four AI’ capabilities in open innovation from antecedents and consequences.  
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Table 2.5 AI’s enabling roles in open innovation 
AI capability Through… 

(Antecedents) 
For… 
(Consequences)   

Source 

Information processing capabilities. 
(Haefner et al., 2021)  
 

“providing ample opportunities for enabling effective 
knowledge sharing among organizations…” 

fostering the initiation, development, and 
realization stages of open innovation.  

(Broekhuizen et 
al., 2023) 

Data analysis and insight generation; support for 
collaboration and innovation 

Provides data-driven insights for decision-making, 
enhances the screening of innovative ideas, and 
supports the selection of high-quality ideas for open 
innovation projects 

(Sahoo et al., 
2024) 

Technology-level capabilities 
(Wu et al., 2021) 
 

Automation and efficiency improvements; alignment 
with social and technical structures 

Increases operational efficiency, frees up employee 
time for strategic innovation, and enables optimal 
human-AI collaboration, which strengthens internal 
and external partnerships essential for open 
innovation 

(Sahoo et al., 
2024) 

The implementation and scalability. 
(Sjödin et al., 2021) 
 

“automating the identification and evaluation of 
external ideas and technologies…” 

enhancing the efficiency of the inbound open 
innovation process. 

(Bahoo et al., 
2023; Sahoo et 
al., 2024) “access to new ideas, knowledge, and expertise…”  competitive advantages in the marketplace thereby 

culminating in higher business performance. 
Resource-built capabilities 
(Mikalef & Gupta, 2021) 
 

“examining an organization’s internal resources and 
capabilities…” 

identifying potential areas of collaboration with 
external partners, allowing organizations to 
develop more targeted and effective outbound open 
innovation strategies. 

Cui et al., 2022; 
Sahoo et al., 
2024) 
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2.2.4. KACAP from RBV and KBV 

RBV was rooted in economic insights from Penrose (1959) and Richardson (1972), expanded and refined 

by Barney (1991) and Conner (1991), then it is widely applied across business and management (Bals & 

Rosca, 2022). Wernerfelt (1984) initially introduced the RBV of firms. The fundamental issue of interest 

in management studies focuses on understanding how firms can leverage internal resources and 

capabilities to achieve sustained competitive advantage (Barney, 1991; Teece et al., 1997), with a focus 

on the economic performance of the focal firm and its shareholders (Bals and Rosca, 2022). The RBV 

posits that “resources and capabilities are simultaneously valuable, rare, imperfectly imitable, and non-

substitutable” (Easterby‐Smith & Prieto, 2008, p. 236). RBV offered resources and capabilities proven 

in prior studies, such as tangible and intangible resources (Hunt & Davis, 2012; Jawed & Siddiqui, 2019; 

Khattak & Ullah, 2021), resource advantages (Hunt & Davis, 2008, 2012), and dynamic capabilities 

(Eisenhardt & Martin, 2000; Y. Lin & Wu, 2014; Teece et al., 1997). As previously mentioned, several 

studies employ RBV to in technology adoption studies (Bag et al., 2021; Maroufkhani et al., 2020; 

Maroufkhani, Tseng, et al., 2020; Pillai et al., 2022). RBV is suitable in acknowledging firm 

technological activities through the theoretical standpoints of organizational resources and capabilities 

(Ramdani and Kawalek, 2007). It is aligned with the study of Maroufkhani et al. (2020), drawing on 

RBV and capability building view to examine the effect of BDA adoption on SMEs’ performance. 

The KBV of a firm originated from RBV (Grant, 2015). KBV highlights the importance of 

knowledge management in organizational innovation as it constitutes “the most strategically important 

of the firm’s resources” (Grant, 1996, p. 110). Prior studies defined KBV from various key themes, 

including the distinction between knowledge and information (Aamodt & Nygård, 1995; Nonaka, 1994), 

explicit and tacit knowledge(Grant, 1996; Nonaka, 1994, 1998; Nonaka et al., 2006; Nonaka & Takeuchi, 

1995), knowledge creation and transfer (Grant, 1996; Levitt & March 1988), knowledge conversion 

mechanism (Nonaka, 1994), building organizational capability (Levitt & March, 1988), organizational 

learning (Abbasi, 2015; Levitt & March, 1988), and absorptive capacity (ACAP) (Cohen & Levinthal, 

1990; Grant, 1996). 

KACAP stems from ACAP (Zahra & George, 2002). ACAP was first introduced by Cohen and 

Levinthal (1990, p. 128), which refers to “the ability of a firm to recognize the value of new, external 

information, assimilate it, and apply it to commercial ends”, including identifying valuable external 

knowledge, effectively absorbing it, and transforming it into innovative outcomes or improvements to 

existing processes within the organization.” This definition highlights the process of acquiring and 

exploiting externally generated knowledge (Camisón & Forés, 2010). Zahra and George (2002, p. 198) 

ground the concept that ACAP is “a set of organizational routines and strategic processes by which firms 

acquire, assimilate, transform, and exploit knowledge for the purpose of value creation”. Compared with 

the study of Cohen and Levinthal (1990), this definition emphasizes dynamic capabilities geared toward 

strategic change and flexibility wherein firms create and exploit new knowledge by transforming 

acquired knowledge and sustaining competitive advantage by managing external knowledge, highlight 

the importance of external knowledge (Camisón & Forés, 2010; Zahra & George, 2002). Thus, based on 
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the ACAP’s definitions, the KACAP can be understood that a firm’s external KACAP involves the usage 

of mechanisms through which knowledge outside the firm is identified, acquired, assimilated, 

transformed and applied (Camisón & Forés, 2011).  
Recently, there has been an increasing consensus about integrating firm innovation and KBV 

perspectives, suggesting that KACAP significantly impacts firm innovation performance. Given the 

research context of Industry 4.0 and 5.0, it becomes essential to understand how KBV influences firm 

innovation, which involves examining the extent to which the knowledge resources of advanced 

technologies drive firm performance from both individual and organizational perspectives. Therefore, 

firm innovation performance is defined here as “the results of transforming existing applications, 

products, and services and/or developing new ones” from technology-enabled perspectives (Benitez et 

al., 2022, p. 6). Many prior studies have investigated the direct or mediate effect of KACAP toward firm 

innovation performance at a firm level. For example, in line with the study of Wang et al. (2017), the 

work of Duan et al. (2020) empirically shows that ACAP mediates the impacts of organizational slacks 

on innovation performance in Chinese high-tech manufacturing firms. Abou-Foul et al. (2023) 

investigate AI capabilities and servitization innovation performance from 185 manufacturing firms in the 

US and EU, highlighting the positive moderating roles of KACAP in their relationships. Khan & Tao 

(2022) reveal a positive relationship between the KACAP, agility, and firm innovation performance 

mediated by big data analytics and digital platform capabilities from 325 manufacturing firms in Pakistan. 

From a cognitive perspective, Usai (2021) emphasizes that new avenues for innovation processes 

necessitate specialized absorptive capacities for acquiring the necessary information/knowledge 

facilitated by technological advancements.  

2.2.5. Hypotheses Development and the Conceptual Model of Study 1 

This part delves into the constructs of the proposed model (Figure 2.4), starting with the foundational 

elements of technological, organizational, and environmental factors and then depicting the main drives 

of AI adoption toward open innovation through the mediators of knowledge absorptive capacity. The 

following subparagraphs will provide a detailed explanation of all variables, with the related emerging 

hypotheses outlined in Table 2.6. More in-depth assessments and measurements at the item level of each 

latent construct are provided in the next chapter. 
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Figure 2.4 Research Model of Study 1 
Legend: PU=perceived usefulness; PEOU=perceived ease of use; OCX=organizational complexity; 
ORE=organizational readiness; CP=competitive pressure. SIV=supplier involvement; GSP=government 
support and policy; AIA=AI adoption; KACAP=knowledge absorptive capacity; OI=open innovation 

 
Table 2.6 Hypothesis Summary 

Hypothesis  Independent 

variable 

Dependent variable Explanation 

H1 Perceived 
usefulness 

AI adoption Perceived usefulness will positively 
influence AI adoption. 

H2 Perceived ease 
of use 

AI adoption Perceived ease of use will positively 
influence AI adoption. 

H3a Organizational 
complexity 

AI adoption Organizational complexity will negatively 
influence AI adoption. 

H3b Organizational 
complexity 

Knowledge 
absorptive capability 

Organizational complexity will negatively 
influence knowledge absorptive capability. 

H4a Organizational 
readiness  

AI adoption Organizational readiness will positively 
influence AI adoption. 

H4b Organizational 
readiness 

Knowledge 
absorptive capability 

Organizational readiness will positively 
influence knowledge absorptive capability. 
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Table 2.6 Cont. 

Hypothesis  Independent 
variable 

Dependent variable Explanation 

H5a Competitive 
pressure 

AI adoption Competitive pressure will positively impact 
AI adoption. 

H5b Competitive 
pressure 

Open innovation Competitive pressure will positively impact 
open adoption. 

H6a Supplier 
involvement 

AI adoption Supplier involvement will positively 
influence AI adoption. 

H6b Supplier 
involvement 

Open innovation Supplier involvement will positively 
influence open innovation. 

H7a Market 
uncertainty 

AI adoption Market uncertainty will positively influence 
AI adoption. 

H7b Market 
uncertainty 

Open innovation Market uncertainty will positively influence 
open innovation. 

H8a Government 
support and 
policy 

AI adoption Government support and policy will 
positively influence AI adoption. 

H8b Government 
support and 
policy 

Open innovation Government support and policy will 
positively influence open innovation. 

H9 AI adoption Knowledge 
absorptive capacity 

AI adoption will positively influence 
knowledge absorptive capacity.  
 

H10 Knowledge 
absorptive 
capacity 

Open innovation Knowledge absorptive capacity will 
positively influence Open innovation. 
 

H11 AI adoption Open innovation AI adoption will positively influence Open 
innovation. 
 

H12   Knowledge absorptive capacity will 
positively mediate AI adoption and open 
innovation. 
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2.2.5.1. Technological Antecedents from TAM 

Perceived Usefulness and Perceived Ease of Use are the two main drivers in TAM that can explain a 

firm’s AI adoption (Davis,1989). Perceived usefulness refers to “the degree to which a person believes 

that using a particular system would enhance his or her job performance” (Davis, 1989, p. 320). This 

belief is a subjective norm within the firm’s context, and a linear relationship between usefulness and 

intention has been demonstrated in Chatterjee et al.’s (2021) study. The predictors of perceived 

usefulness, such as “subjective norms, image, job relevance, output quality, and result demonstrability”, 

prompted to construe that individuals form perceptions of a system’s usefulness, in part, by cognitively 

comparing the system’s capabilities with the requirements of their job tasks (Venkatesh & Bala, 2008, p. 

276; Venkatesh & Davis, 2000). It is therefore perceived that a sense of usefulness would lead an 

individual to intend to use a new technology (Chatterjee, Rana, Dwivedi, et al., 2021). Perceived ease of 

use is defined as “the degree to which a person believes that using a particular system would be free of 

effort” (Davis, 1989, p. 320; Venkatesh et al., 2003, p. 451), which predicts users’ intention to use a new 

system or technology. It includes the concepts of self-efficacy, perception of external control, anxiety, 

playfulness, enjoyment, and objective usability, which present individual traits and emotions (Venkatesh 

& Bala, 2008). However, Venkatesh and Bala (2008) suggest that these determinants of perceived ease 

of use will not influence perceived usefulness in explaining the different concepts and determinants. 

Perceived ease of use is primarily determined by individual factors such as control beliefs, intrinsic 

motivation (e.g., playfulness), and emotions (e.g., anxiety), affecting how easily or difficult a user finds 

a system to use. However, these factors do not directly contribute to the actual utility or effectiveness of 

the system in improving job performance, which is what perceived usefulness measures. Thus, while a 

system may be easy to use, this does not necessarily mean it will enhance job performance or have 

significant utility. Given this view, our conceptual model has not considered the effect of perceived ease 

of use on perceived usefulness. 

Zain (2005) examined the influence of information technology acceptance on organizational 

performance in terms of how the acceptance of technology contributes to a firm’s ability to be an agile 

competitor. Employing the TAM, the result shows that perceived usefulness and perceived ease of use 

are the main determinators of manufacturing managers’ attitudes toward using, thus significantly 

impacting organizational agility. Na et al.(2022) compared cross-national attitudes on AI adoption to 

understand how organizations accept technologies from employees’ attitudes. Therefore, when studying 

organizational decisions in technology adoption, it is required that organizations consider individual use 

perception. Consequently, employees’ perceptions toward AI-integrated technologies are expected to 

assist organizations in making adoption decisions. Thus, this study proposes the following hypothesis: 

H1: Perceived usefulness will positively influence AI adoption.  

H2: Perceived ease of use will positively influence AI adoption. 
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2.2.5.2. Organizational Antecedents  

Organizational complexity is derived from the definition of complexity that refers to the “degree to which 

an innovation is perceived as relatively difficult to understand and use”, which is lead to be a barrier to 

adoption (Roger, 2003, p. 257). Thus, it has a negative impact on technology adoption (Horani et al., 

2023). This means that if the complexity of technology increases, the employees may perceive difficulty 

with ease of use. Various studies have demonstrated complexity as a determinant of technological 

antecedents when referencing AI’s complexity attribute (Badghish & Soomro, 2024; W. Guan et al., 

2023; Horani et al., 2023; Kinkel et al., 2022). However, the complexity of AI is an internal 

organizational issue (Chatterjee, Rana, Dwivedi, et al., 2021) in that AI is rarely characterized as easy to 

deploy or use, with non-technical challenges, such as a lack of top management support, which can 

emerge both during and after implementation (Jöhnk et al., 2021). Moreover, if an organization’s system 

is complex, employees may encounter difficulties in using new technology integrated into this complex 

system, which can hinder their ability to perceive the usefulness of the new system (Sonnenwald et al., 

2001). From the employees’ perspectives, organizational complexity is posited to the following 

hypothesis: 

H3a: Organizational complexity will negatively influence AI adoption.   

In addition, complexity in organization studies refers to an organization’s structural complexity 

where the degree of differentiation exists (Ali et al., 2018; Robbins, 1990, cited as in Ali et al., 2018). 

This understanding highlights the effect of complexity on the extent and intensity of knowledge within 

organizations (Kim, 1980), which provides subsequent research on the complexity’s role in facilitating 

the flow of development thanks to prior knowledge supporting the new knowledge absorption (Cohen & 

Levinthal, 1990). Previous studies have investigated the relationships between complexity (advanced 

technology (Winkelbach & Walter, 2015) and internal organizational structure (Ali et al., 2018)) and 

knowledge ACAP. Thus, from the perspectives on knowledge management in organizations, the 

hypothesis is:  

H3b: Organizational complexity will negatively influence knowledge absorptive capacity.  

The understanding of Organizational Readiness comes from various literature. Lacovou (1995) 

defined organizational readiness as the accessibility of the required organizational resources for adoption, 

including firms’ financial and technological resources. Technical resources include both tangible and 

intangible assets (Horani et al., 2023). Tangible assets represent a firm’s cooperative resources for 

ensuring a scalable and flexible foundation for business applications (Aboelmaged, 2014). Intangible 

assets include “application processes, collaboration strategies, IT development plans, and the technical 

knowledge/skills that can successfully incorporate new technologies” (Garrison et al., 2015, as cited in 

Horani et al., 2023, p. 7). Financial resources are crucial to cover ongoing expenses during technology 

implementation and usage (Kuan and Chau, 2001). These resources have been suggested to be considered 

by the organization’s size, which directly determines the organization’s readiness to adopt innovative 

technology (Rogers, 2003). For example, small organizations tend to lack capital, talent, and 

technological resources, thus lacking the ability to receive all strategic benefits of the technology, 

whereas larger organizations rely on more technical and financial resources to adopt it (Aboelmaged, 



 50 

2014). Chatterjee et al. (2021) further support this and emphasize that adopting AI is impacted by the 

specific size and the availability of the organization’s resources in their studies. Thus, a higher level of 

organizational readiness in large firms indicates adequate resources and a higher intention to adopt AI. 

These studies also subscribe to Rogers’s view (2003). Besides, Hossain et al. (2024) argue that some 

typical industries in emerging economies also impact the adoption of advanced technologies. Machado 

et al. (2021) described readiness as the ability to adjust to digital transformation when digitalization 

appears in an organization. Digital organizational readiness is defined by Lokuge et al. (2019, p. 446) 

“as an organization’s assessment of its state of being prepared for effective production or adoption, 

assimilation and exploitation of digital technologies for innovation.” As AI is classified as digital 

technology, Jöhnk et al. (2021) apply digital readiness to understand the precursors of AI adoption. Thus, 

in terms of AI-involved organizational readiness, in addition to the financial and technological resources, 

the management commitment that describes organizations’ willingness and support for innovation 

initiatives (Cao et al., 2021; Hashem & Aboelmaged, 2023) is a key attribute to building digital readiness 

for AI adoption. This internal environment for the readiness of new knowledge assimilation and 

acquisitions in organizations indirectly influences the development of its absorptive capacity (Van den 

Bosch et al., 1999, as cited in Vega‐Jurado et al., 2008). Thus, this study proposes the following 

hypothesis: 

H4a: Organizational readiness will positively influence AI adoption.  

H4b: Organizational readiness will positively influence knowledge absorptive capacity. 

2.2.5.3. Environmental Antecedents  

Competitive Pressure was accepted as an external environmental aspect affecting managers’ decisions 

(Gutierrez et al., 2015; Sayginer & Ercan, 2020), especially in SMEs in which AI adoption can be 

attributed to the SMEs’ desire for competitiveness and survival in the industry 4.0 (Ghobakhloo, 2019). 

The definition of competitive pressure is “the degree of pressure felt by the firm from competitors within 

the industry” (T. Oliveira & Martins, 2010, p. 1341). The present study refers to the extent to which 

manufacturing firms perceive themselves as threatened by their counterparts within apparel industries. It 

can be explained by how pressure factors influence AI use and adoption by their competitors. This threat 

includes customer unloyalty and market share loss (Ghobakhloo, 2019). Also, the most referred to 

competitive pressure’s definitions as the motivation of innovation diffusion and adoption by the threat 

of losing competitive advantage (Aboelmaged, 2014; Z. Yang et al., 2015). Thus, when considering that 

manufacturing digitalization may strengthen their competitive position and assist them in achieving 

superior firm performance, the competitive pressure affects technology adoption (Ghobakhloo, 2019). 

Additionally, the potential benefits of digitalization, including enhanced operational efficiency and 

stronger market positioning, further reinforce the need for AI adoption. Thus, competitive pressure 

compels firms to adopt AI as a defensive strategy and encourages proactive innovation to maintain and 

strengthen their competitive edge in a rapidly evolving business landscape, which enhance an 

organization’s open innovation. According to the understanding of competitive pressure in the AI age, 

this study proposes the following hypotheses: 
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H5a: Competitive pressure will positively impact AI adoption.   

H5b: Competitive pressure will positively impact open innovation.   

Supplier Involvement has been suggested as an external environmental factor (Jöhnk, 2021; T. 

Oliveira & Martins, 2011). Thus, when referencing the adoption of technology that involves the 

participation of multiple business partners, it is limited to focus on intra-organizational or employee 

perception factors (W. Guan et al., 2023). The factor of supplier involvement presents how suppliers 

engage with downstream organizations to develop competitive advantages in the local and global 

marketplace in the completed supply chain processes (Hashem & Aboelmaged, 2023; Rahman et al., 

2022). This collaboration, in some studies, regarded as relationships between organizations with their 

partners, stakeholders, suppliers, or customers (W. Guan et al., 2023; Hradecky, 2022; Lokuge et al., 

2019; T. Oliveira & Martins, 2010) plays a crucial role in enhancing agile SCM, as it enables firms to 

quickly address supply chain issues and implement necessary changes promptly (Hashem & Aboelmaged, 

2023). The determinant of supplier involvement or partnership in AI adoption has been demonstrated in 

prior studies. Chatterjee et al. (2021) demonstrate partnership support can help to generate the innovation 

performance of an organization through knowledge exchange, highlighting that partner support would 

help share knowledge, and this would enrich the ability of employees to adopt any innovative technology, 

thus positively impacting AI adoption in the manufacturing sector. Horani et al. (2023) indicate that AI 

suppliers are expected to engage in an effective and efficient partnership to strengthen firms’ competitive 

advantage. In AI fields, extensive research focuses on AI’s roles in SCM, including supplier selection 

for sustainability (Cannas et al., 2023; Dey et al., 2023; Kassa et al., 2023; Qu & Kim, 2024b; R. Sharma 

et al., 2022). Guan (2023) considered supply chain-related determinants that influence blockchain 

technology adoption, as blockchain deployment requires multiple supply chain partners’ participation to 

assure transparency. These findings are consistent with previous studies (H. Chen et al., 2021; Horani et 

al., 2023). Similarly, apparel manufacturing requires establishing ecosystems with suppliers and 

suppliers’ suppliers (Huan et al., 2004), including textile and raw material suppliers, the facilitators of 

AI-based production systems, and AI vendors (Horani et al., 2023); therefore, it is indispensable to take 

supplier involvement determinants in AI adoption in the present study.  

Meanwhile, suppliers’ early integration into the innovation process can significantly increase 

innovation performance in most industries (Hagedoorn, 1993, 2002). As discussed above, partnership 

support can help generate an organization’s innovation performance through knowledge exchange. Back 

to the previous literature review, open innovation provides a framework for utilizing external and internal 

knowledge, technology, and resources to accelerate internal innovation and expand markets for external 

innovation. This is consistent with the explanation of partner support, which helps knowledge sharing 

between suppliers and related stakeholders, enhancing firm open innovation. The definition of open 

innovation defined by Gassmann and Enkel (2004, p. 2) as “the company needs to open up its solid 

boundaries to let valuable knowledge flow in from the outside to create opportunities for co-operative 

innovation processes with partners, customers and/or suppliers”. Consequently, this study proposes the 

following hypotheses: 
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H6a: Supplier involvement will positively influence AI adoption. 

H6b: Supplier involvement will positively influence open innovation.  

Market Uncertainty adapted from environmental uncertainty, which was defined by Duncan (1972) 

“as the shortage of information on the events and actions taking place in the business environment and/or 

the impossibility of predicting external changes and their impact on organizational decisions” (Duncan, 

1972; López-Gamero et al., 2011, p. 428). This uncertainty in the external environment stems from a 

lack of sufficient knowledge about environmental dynamics and the inability of managers to predict 

future developments (Hashem & Aboelmaged, 2023). For example, managers may feel uncertain about 

the direction of future technologies (López-Gamero et al., 2011) and market (Hashem & Aboelmaged, 

2023). On the other hand, this unpredictability, in turn, prompts a firm to make changes to grasp 

competitive opportunities (López-Gamero et al., 2011). As is known, the destroyed global production 

and business practices have increased the uncertainty of MSMEs’ production and operation due to the 

COVID-19 pandemic, which led to the interruption of supply chains in manufacturing (X. Lu et al., 2022). 

In this context, firms start to find ways to cope with unstable customer demands and high market 

uncertainty (W. Guan et al., 2023). As previously defined, AI has information processing capabilities in 

knowledge innovation through leveraging data monitoring, evaluation, analysis, prediction, and 

decision-making (Bai & Li, 2020); thus many prior studies focus on AI’s roles in manufacturing supply 

chain processes, especially in forecasting market trends and predicting uncertain customer demand for 

control disruption (Brau et al., 2023; Cannas et al., 2023; Chakraborty, Hoque, and Kabir 2020, as cited 

in Dey et al., 2023; Lima-Junior & Carpinetti, 2019; Ismagiloiva et al., 2020 as cited in Mukherjee, 2022; 

Perano et al., 2023). Therefore, AI allows firms to reduce demand uncertainty and enhances their 

knowledge regarding the actual level of demand (Horani et al., 2023). Based on the previous discussion, 

the proposed hypotheses are: 

H7a: Market uncertainty will positively influence AI adoption.  

H7b: Market uncertainty will positively influence open innovation. 

Government support and policy refers to “assistance or facilitating conditions provided to the 

employees or organization to transform or implement technology diffusion within the firm” (Badghish 

& Soomro, 2024, p. 6). Governments have supported adopting new technology through directed 

incentives, manifested in policy documents and regulations, such as providing monetary incentives, 

scientific resources, pilot projects, handbooks, and training programs. Prior studies state that facilitating 

conditions offered by government support have been identified as driving factors for firms to adopt new 

technology and innovation (Jun et al., 2019). Legesse et al. (2024) validated the government support and 

policies to perceived ease of use to suggest that government initiatives and policies can influence 

individuals’ perception of how easy it is to use blockchain technology. Badghish and Soomro (2024) 

examine that government support and policies significantly impacts AI adoption. Patil et al. (2023) argue 

that government policies will create a favorable predisposition toward the usefulness of IoT technology, 

thereby enhancing firm growth. However, some research considers government intervention as an 
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external pressure, especially in the aspects of regulation initiatives, such as environmental regulatory 

pressure that pushes firms to adopt green innovation (Jun et al., 2019). Moreover, in sustainable 

manufacturing, due to the government and public pressure, manufacturers have more recently started 

taking initiatives regarding sustainable SCM, it remains difficult for SMEs to compete in the market 

while also adopting green innovation due to time and resource constraints (Cordeiro & Vieira, 2012). 

Thus, they need AI-integrated technologies to tackle sustainable issues in environments (Akbari & 

Hopkins, 2022; Allahham et al., 2023; Bag & Pretorius, 2022; Dadi et al., 2021; Javaid et al., 2022; S. 

Kumar & Barua, 2022; S. Sharma et al., 2021; Tang et al., 2023; Vernier et al., 2021), economics 

(Bodendorf et al., 2022; Lechner & Reimann, 2020; Z.-J. Wang et al., 2023), and society (B. Gupta et 

al., 2008; S. Gupta et al., 2023; Jararweh et al., 2023). From this point of view, appropriate government 

policies and regulations (especially those related to privacy, security, and data access) that provide a 

supportive environment for AI adoption can help keep the AI ecosystem growing (Horani et al., 2023). 

Thus, the developed hypotheses are: 

H8a: Government support and policy will positively influence AI adoption. 

H8b: Government support and policy will positively influence open innovation. 

2.2.6. AI Adoption, Knowledge Absorptive Capacity (KACAP), and Open Innovation (OI)  

Based on the understanding of various literature steam on ACAP, KACAP aligns with the theory of KBV, 

as previously mentioned. From the perspective of the KBV, knowledge is a crucial input and a significant 

source of value in manufacturing (Chatterjee et al., 2021; Legesse et al., 2024; Tasnim et al., 2023). 

Building on this perspective, ACAP is a critical mechanism enabling firms to leverage their knowledge-

based resources effectively, ensuring that external knowledge contributes meaningfully to their 

innovation outcomes (Moilanen et al., 2014; Zahra & George, 2002). Back to the highlights of open 

innovation theory previously reviewed, open innovation is the process based on the intentional 

management of knowledge flows across organizational boundaries (Chesbrough & Bogers, 2014, as cited 

in Arias-Pérez & Huynh, 2023), which provides a framework for utilizing external and internal 

knowledge, technology, and resources to accelerate internal and external innovation. Thus, ACAP would 

leverage purposive inflows and outflows of knowledge to achieve innovation performance.  

Thus, as AI-integrated technologies are technical assets of organizational knowledge-based 

resources, prior studies have focused on the role of digital skills and the design of appropriate indicators 

to measure companies’ absorptive capacity to adopt AI (Kinkel et al., 2022) and how AI adoption 

influences ACAP and, thus, innovations (Kastelli et al., 2024). The previously defined innovation types 

include open innovation as AI-enabled antecedents (Mariani et al., 2023); thus, this study attempts to 

investigate the impact of AI adoption on open innovation, the effect of AI adoption on KACAP, and 

KACAP’s impacts on open innovations. More importantly, as the KACAP has the leverage to accelerate 

AI knowledge resources in the process of open innovation (Adamides & Karacapilidis, 2020; Tallarico 

et al., 2024), it is essential to identify the KACAP’s effects between AI adoption and open innovation.  

Therefore, the proposed hypotheses are: 

H9: AI adoption will positively influence knowledge absorptive capacity.  
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H10: Knowledge absorptive capacity will positively influence open innovation. 

H11: AI adoption will positively influence open innovation. 

H12: Knowledge absorptive capacity will positively mediate AI adoption and open innovation. 

2.3. Literature Review for Study 2 

2.3.1. Innovation Ecosystem  

Innovation ecosystems, typically involving strategy, innovation, and entrepreneurship, have 

become a focal point during the last two decades (Adner, 2006; Adner & Kapoor, 2010; Gomes et al., 

2018; Granstrand & Holgersson, 2020). There has been much debate on its definitions in academia; 

furthermore, it has had different meanings and purposes in various contexts. The concept of innovation 

ecosystems as distinct from the ecosystem is increasingly used to address endeavors for joint value 

creation (Pushpananthan & Elmquist, 2022). From a business ecosystem perspective, Moore (1993, p. 

76) proposes that innovation drives companies “cooperatively and competitively to support new products, 

satisfy customer needs, and eventually incorporate the next round of innovations”. Autio and Thomas 

(2014) define an innovation ecosystem as a network combining production with side participants 

connected to a focal firm or a platform and capturing new value through innovation. Granstrand and 

Holgersson (2020) identify 21 definitions of innovation ecosystems through a systematic review of 120 

publications and find that the four most common components occurring in definitions are actors, 

collaboration, activities, and institutions. In contrast, other scholars have also highlighted both the 

importance of collaboration and competing actors (Dedehayir et al., 2018; Li-Ying et al., 2022; Mercan 

& Gökta, 2011; Rohrbeck et al., 2009) as well as the importance of artifacts (Curley & Donnellan, n.d.; 

Li-Ying et al., 2022; Pipek et al., 2012). Moreover, fewer mentions of the components of technologies 

and products as artifacts exist in many definitions; therefore, Granstrand and Holgersson (2020. p3) 

proposed a new and holistic definition of an innovation ecosystem that consists of “actors, activities, and 

artifacts, and the institutions and relations”, which include “products and services, tangible and intangible 

resources, technological and non-technological resources, and other types of system inputs and outputs, 

including innovations”. This definition is aligned with Chesbrough (2003)’s open innovation theory, 

highlighting the importance of external knowledge flows, where firms leverage ideas and technologies 

from outside sources to enhance their internal innovation capabilities with the collaboration with 

stakeholders. As we hypothesized that AI adoption drives open innovation in Study 1, the understanding 

of how firms leverage AI to build an innovation ecosystem from open innovation perspectives is crucial. 

Thus, in the thesis, Granstrand and Holgersson’s definition of innovation ecosystem is employed as the 

grounded AI-enabled innovation ecosystem theory. Also, Granstrand and Holgersson (2020) found that 

the most common elements in the definitions of innovation ecosystems are actors, collaboration, 

activities, and institutions, aligning well with the principles of open innovation. Other scholars have 

emphasized the dual nature of collaboration and competition within open innovation ecosystems 

(Dedehayir et al., 2018; Rohrbeck et al., 2009), as well as the importance of artifacts, or tangible assets, 

within these ecosystems (Curley & Donnellan, n.d.; Pipek et al., 2012). In this context, open innovation 
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ecosystems are defined not only by their participants and collaborative activities but also by the 

interactions and institutional structures that support knowledge sharing and co-creation. In such 

ecosystems, organizations actively seek knowledge and technology from external sources, such as other 

firms, research institutions, and public entities, integrating these resources to create new products and 

services. This approach aligns with the RBV and KBV, which suggest that a firm’s competitive 

advantage arises from its unique resources and knowledge. Within open innovation ecosystems, RBV 

and KBV frameworks help explain how firms leverage external knowledge as a critical resource to 

enhance their competitive advantage. Furthermore, dynamic capabilities (DC) theory complements this 

perspective by highlighting a firm’s ability to adapt and reconfigure resources in response to 

environmental changes, essential for effectively integrating external knowledge within an open 

innovation ecosystem. As well as the concept of knowledge-based dynamic capabilities (KBDC), an 

extension of DC and KBV, underscores the importance of knowledge acquisition, integration, and 

transformation in rapidly changing environments (Denford, 2013). In the context of open innovation 

ecosystems, KBDC provides insight into how firms dynamically adapt their knowledge processes to 

maximize the value of both internal and external knowledge resources (Teece, 1997; Zhen et al., 2011). 

This framework is particularly relevant in Industry 4.0 and 5.0, where manufacturing organizations 

leverage AI and other advanced technologies to facilitate knowledge sharing, enhance collaboration, and 

foster innovation within the ecosystem. Based on these understandable concepts of open innovation 

ecosystem, the integration of RBV, KBV, DC, and KBDC provides a comprehensive theoretical 

foundation for analyzing open innovation ecosystems, particularly in manufacturing sectors transitioning 

to Industry 4.0 and 5.0. These findings underscore the importance of ecosystem-level knowledge 

exchange and creating a learning environment that enhances firms’ dynamic capabilities, strengthening 

the innovation ecosystem as a whole. These theories also collectively support an understanding of how 

firms strategically harness external knowledge and adapt dynamically to changes within the ecosystem, 

thereby creating a robust framework for joint value creation. This theoretical foundation not only enriches 

the analysis of open innovation ecosystems but also reinforces the constructs of Study 1 and Study 2 by 

providing a systematic framework for knowledge-related factors. 

2.3.2. Revisiting AI Capabilities and Open Innovation Ecosystem  

Open innovation, in turn, plays a pivotal role in fostering a vibrant national innovation ecosystem (Ahn 

et al., 2020). Therefore, establishing an AI-enabled open innovation ecosystem requires an integrated 

approach, drawing from AI capabilities, RBV and KBV, ACAP, combinative capacity, and knowledge-

based capability to gain competitive advantages and enhance innovation performance 

AI capabilities have been found to be related to open innovation (Sahoo et al., 2024), and open innovation 

is one of the core factors establishing a vibrant national innovation ecosystem (Ahn et al., 2020). Thus, 

building an AI-enabled open innovation ecosystem needs to cover a holistic view from the previous 

dimensional theories, such as AI capabilities, RBV and KBV, ACAP and combinative capacity, and 

knowledge-based capability, thus gaining competitive advantages and increasing innovation 

performance, but not limit to it, in dynamic environments. Some studies on AI capabilities and 
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organizational performance are available from a RBV. For example, Mikalef and Gupta (2021) grounded 

AI capability definitions and empirically supported a tangible and intangible resource-based AI 

capability results in increased organizational creativity and performance. Chen et al. (2022) applied RBV 

to e-commerce firms and demonstrated AI capabilities indirectly affect firm performance through 

creativity, AI management, and AI-driven decision-making. However, open innovation ecosystems are 

networks of organizations that work together to create new products, services, or applications based on 

the increasing digitalization of society and economy (Kuzior et al., 2023), although organizations are 

actively engaging in innovation activities using their AI capabilities to ensure that they continue to thrive 

in an increasingly volatile and saturated industry (Magas & Kiritsis, 2022; Petrescu, Krishen, Kachen, & 

Gironda, 2022, cited Sahoo et al., 2024). Thus, these ecosystems are defined by their openness, which 

allows organizations to tap into a variety of resources to achieve their goals, including tangible and 

intangible (Kuzior et al., 2023). On the other hand, open innovation relies on ecosystems to generate 

value within and between value chains, highlighting a close link between the digital tools that drive 

innovation and the innovation strategies companies employ (Kuzior et al., 2023). Essentially, digital 

technologies form the backbone of today’s innovation ecosystem.   

2.3.3. TH in Innovation Ecosystems 

As previously mentioned, Enkel and his co-authors propose to establish a co-innovating ecosystem where 

partners outside the industry co-create values from external knowledge to drive innovation in the digital 

age, thus requiring a framework of triple helix (TH) (Enkel et al., 2009, 2020) because innovation is 

increasingly based upon university- industry- government interactions (Etzkowitz, 2003). In this 

theoretical lens, there is an increasing focus on the TH model in innovation ecosystem studies (Etzkowitz 

and Leydesdorff, 2000, as cited in Arenal et al., 2020), which is widely adopted for the environment and 

characterizing the relationships among the main stakeholders of the innovation ecosystem (Chinta and 

Sussan, 2018; Pique et al., 2018, as cited in Arenal et al., 2020). The TH model as a “descriptive and 

prescriptive model” (Heaton et al., 2019, p. 922) was first proposed for the university-industry-

government relationship by (Etzkowitz & Leydesdorff, 1995) and aims to highlight how the interaction 

between the three key institutions of university, industry, and government evolves in the process of 

knowledge-based innovation.  

2.3.3.1. The Roles of University-Industry Linkages based on TH  

The concepts of ecosystems come into being in universities (Adner, 2006; Arenal et al., 2020). 

Universities act as one kind of innovation stakeholder and follow the paradigm of open “science” (Becker 

& Eube, 2018; Frenkel & Maital, 2014). Also, universities, as external resources, contribute knowledge 

to building open innovation ecosystems for industries. Prior studies emphasized universities’ innovation 

contributions exist in entrepreneurial universities (Audretsch, 2014). The entrepreneurial university 

maintains its traditional academic roles of social reproduction and knowledge extension while expanding 

its new roles in promoting innovation (Etzkowitz, 2003). This emphasizes the university’s role as an 

entrepreneur in society based on the organizing principle of the TH (Etzkowitz, 2003). 
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University-industry linkages, where academic institutions collaborate with industry to address 

challenges and drive innovation, play a crucial role in a knowledge-based economy by transferring 

technological knowledge to firms, thereby fostering innovation, entrepreneurship, and economic growth 

(Hailu, 2024). Hailu (2024) highlights several aspects. First, these linkages enable universities to align 

their research and educational programs with the needs of the industry, and second, the collaborative 

approach through fostering technological innovation enables universities to contribute to advancing 

technology and scientific infrastructure, which in turn supports economic growth. According to TH 

systems, co-creating an innovation ecosystem requires an exchange of knowledge and the ability to 

connect all the actors involved, and each role of each institution contributes its competencies to each 

other, thus stimulating open innovation (Neves et al., 2021). Extensive research on the significance of 

both linkages using the TH model to emphasize and analyze each role in these interactions. For example, 

Cai and Liu (2015) emphasize the third role of universities in university-industry-government as having 

a synergistic effect. This is consistent with the studies of Heaton et al. (2019), Li & Chu (2022), and 

Zhang et al. (2019). (Etzkowitz, 2003, p. 303) points out that TH is dynamic in that “the university, 

industry, and government are conceptualized as intertwined spirals with different relations to each other 

in the classic innovation regimes”. This implies that in a laissez-faire TH regime, industry leads with 

academia and government in supporting roles, whereas in a statist regime, the government takes the lead, 

guiding both academia and industry (Etzkowitz, 2003). Noya et al. (2023) found that the collaboration 

between government, large companies, and universities within the TH ecosystem significantly enhances 

SME performance, and the SME community strategically facilitates the impact of TH interventions on 

SME performance by its mediating roles in the relationships. Qu and Kim(2022) applied the theory of 

dynamic capabilities to “organizations-universities” (Frank, 2009, p. 1) in their study to understand that 

the core idea of the theories of dynamic capabilities echoes the need to explain the value capture within 

an ecosystem better from university-lead perspectives.  

2.3.3.2. Government Interventions for University-Industry Linkage based on TH 

The concept of government interventions originates from institutional theory, which suggests that 

institutional pressures, like coercive legal mandates from institutional environments, have a greater 

impact on shaping a firm’s formal structures than market forces (Joo et al., 2018). However, a new 

relationship paradigm between government and industry intervention associated with knowledge is TH 

(De Lima Figueiredo et al., 2023). Recent studies have recognized that the government’s role in the TH 

model extends beyond merely being a funder or enforcer; it now actively promotes regulations, programs, 

and actions and participates in various stages of the university-industry-government (Guerrero & Urbano, 

2017).  

Prior studies have demonstrated the roles of government interventions based on the TH model. An 

example is the research on the evolution of university-industry collaboration (UIC) policies in Japan 

from the mid-1990s to the present and analyze of their role in shaping Japan’s innovation ecosystem 

(Ranga et al., 2017). They attempt to identify that entrepreneurial culture, intermediator between 

universities and industries, and ACAP are the factors in lagging the US. Therefore, there is a need for 
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government policies with a broader global outlook that strongly support partnerships with leading 

international actors, while universities, companies, and the government collaborate to enhance 

innovation networks by involving more local entrepreneurs in education, research, and business plans, 

and by consolidating their entrepreneurial focus (Ranga et al., 2017). Noya et al. (2023) argue that the 

government’s role as a regulator and facilitator is crucial in emerging economies for building a triple 

helix innovation ecosystem, where the commitment of government officials through policies and funding 

support significantly influences its dynamics. Guerrero and Urbano (2017) provide a better 

understanding of the influence of TH stakeholders on the entrepreneurial innovation performance of 

enterprises located in emerging economies from diverse perspectives and research fields, including 

knowledge-based open innovation and entrepreneurship). 

2.3.3.3. Triple Helix in AI Innovation Ecosystems 

The studies applied TH to focus on universities, industry, and government in the age of AI, presenting 

technological knowledge as a role in their interactions and breaking the balance of the three agents. Under 

the national government interventions through AI policies, the roles of universities, enterprises, and even 

the national and regional governments are dynamic. Therefore, the TH model is not necessarily enough 

for research on the AI innovation ecosystem, especially in some statist regimes where the government 

takes the lead, guiding both academia and industry (Etzkowitz, 2003). Given that the key areas for AI 

development are China, the United States, and the European Union (Jacobides et al., 2021), several 

studies focus on TH in these countries’ innovation ecosystems. The study of Jacobides et al. (2021) used 

China as a case study to analyze how China’s political context contributes to the vibrancy of AI 

ecosystems. In China, the government encourages tech giants to create AI libraries and platforms to 

strengthen ecosystem partnerships and provide SMEs with affordable access to AI technology (Jacobides 

et al., 2021). This closer collaboration between government and business enables Chinese tech companies 

to lead ecosystem development across various industrial sectors, supporting their transformation through 

AI. Arenal et al. (2020) developed an asymmetric triple helix (ATH) model for the AI ecosystem in 

China from the country and industry levels based on Cai and Liu’s (2015) TH model, which focuses on 

capturing a regional innovation system. Their framework emphasizes the central position of governments 

but leaves more room for regional and local governments to conduct their policy experiments (Arenal et 

al., 2020). Arenal et al. (2020) re-examined the types of companies and highlighted the role of 

universities in producing new knowledge and training people. Unlike the TH model, in which 

government intervention comes after the initial university-industry collaborations, in the ATH model, 

the central government draws up a strategic plan and pools a range of resources to support AI 

development across the country before AI clusters begin to emerge on their own (Arenal et al., 2020). 

2.4. Summary of the Reviewed Literature  

The above literature thoroughly reviews the theories, concepts, and key models and frameworks related 

to this thesis. While the prior research has contributed to empirical discoveries or grounded theories in 
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each, no study holistically orchestrated some overlapped concepts in different perspectives and domains, 

such as AI capabilities and enabling roles, AI adoption and KBV, open innovation, knowledge 

management, and innovation ecosystems, and all of these throughout TH in the age of AI. Therefore, the 

gaps in the current research need to be addressed; this also provides more room for re-examining their 

associations and revisiting these theories and models. Figure 2.5 depicts the synthesized research 

framework through reviewing the literature.  

 While the prior research has contributed to empirical discoveries or grounded theories in each, no 

study holistically orchestrated some overlapped concepts in different perspectives and domains, such as 

AI adoption and KBV, open innovation and KACAP, knowledge management, and innovation 

ecosystems, and all of these throughout TH in the age of AI. Therefore, the gaps in the current research 

need to be addressed; this also provides more room for re-examining their associations and revisiting 

these theories and models. 

 
Figure 2.5 The Current Theoretical Lens in the Thesis 

The reviewed literature highlights that, despite firms acknowledging AI’s capabilities, the factors 

driving its adoption and its outcomes have yet to be thoroughly examined. The reviewed literature 

indicates that although firms are aware of AI’s capabilities, the antecedents of AI adoption and 

consequences have not been fully explored, with several research gaps and unanswered research 

questions identified, which is not surprising, given that the research field is not yet mature. Moreover, 

the factors contributing to converting AI adoption into open innovation are not comprehensively 

identified. Studies have suggested that identifying the antecedents of AI adoption from the perspective 

of integrating the TOE model (Davis, 1989; Venkatesh, 2022; Venkatesh & Davis, 2000) is perceived to 

be helpful, as this model has been applied successfully in organizational and environmental contexts with 

a focus on technological issues (Brem et al., 2023; Chatterjee, Rana, Dwivedi, et al., 2021; Z. Yang et 

al., 2015). Studies have also emphasized the TOE framework’s role in identifying the determinants of 

the AI adoption focus in the context of organizations. These studies reordered the TAM and TOE 

framework’s constructs and variables. However, the studies that employed the hybrid TAM and TOE 

framework have not extended to other latent constructs associated or expanded with them. For example, 
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while Chatterjee et al. (2021) employed TAM (PU and PEOU) as technological factors mediating 

organizational factors and intention to adopt AI, an environmental factor of government interventions is 

missing. The study of Chatterjee et al. (2021) focuses on Indian manufacturing, but they have not 

deployed the construction of government and policy support in their proposed TAM-TOE model because 

India is one of the AI-developing countries with the comprehensive support of AI policies (Chatterjee, 

2020; Rizvi et al., 2021). The same limitation exists in the study of Kamble et al. (2021).  

Several studies focus on AI-integrated technologies, such as blockchain and IoT in manufacturing 

using a hybrid TAM and TOE (Kamble et al., 2021; Legesse et al., 2024; Patil et al., 2023; Tasnim et al., 

2023). However, they have yet to focus on the ACAP of these emerging technologies entering 

organizations. While organizational readiness was used to measure the manager’s perception of his 

organization’s competency to adopt the technology, the criterion is mainly focused on financial readiness 

organizational readiness (Kamble et al., 2021). They have yet to mention organizational absorptive 

capacities, which is consistent with Legesse et al. (2024), Patil et al. (2023), and Tasnim et al. (2023). In 

addition, as the research focuses on manufacturing sectors, most research specifies the contribution to 

supply chains and SCM (W. Guan et al., 2023; Kinkel et al., 2022; Legesse et al., 2024; Patil et al., 2023; 

Pillai et al., 2022; Tasnim et al., 2023). Nevertheless, they have not considered suppliers’ involvement 

as an external environmental factor to determine the adoption intentions, except the study of Tasnim et 

al. (2023), Pillai et al. (2022), and Guan et al. (2023). 

Following the above limitations in current studies, our thesis will fill the gaps in the aspects of 

determinants toward AI adoption from the hybrid TAM-TOE. In addition, AI adoption and 

organizational open innovation have an interactive relationship. Some debate exists in the current studies 

on whether AI adoption influences open innovation or whether open innovation impacts AI adoption. 

According to previously introduced AI capabilities, comprehensive studies have demonstrated AI 

enables open innovation in organizations through advanced AI techniques (Bahoo et al., 2023; 

Broekhuizen et al., 2023; Cui et al., 2022; Sahoo et al., 2024). This positive impact may manifest in 

enhanced resource integration capabilities, improved innovation efficiency, and accelerated innovation 

processes. By adopting AI technologies, organizations can better leverage external knowledge and 

technological resources, fostering continuous innovation practices. However, from open innovation 

theory, very little research defined open innovation’s impacts on the adoption of AI. The study of 

Obradović et al. (2021) and Lepore et al. (2023) has mentioned the effect of open innovation on the 

adoption of Industry 4.0 technologies, but many prior studies have demonstrated open innovation has a 

positive influence on organizational performance (Greco et al., 2016; Oltra et al., 2018; Rumanti et al., 

2023; Singh et al., 2021; Wang et al., 2021). Therefore, we assert that if open innovation positively 

impacts on organizational performance, this success may encourage the company to adopt AI technology 

more actively. By enhancing their resource integration capabilities and innovation momentum through 

open innovation, firms are more likely to incorporate AI technology into their innovation systems, 

thereby further strengthening their competitive advantages. Thus, this thesis will combine the debates 

and fill the gap in interactive relations in Study 1, initially attempting to empirically define the inter-

effect between AI adoption and open innovation.  
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In addition to the above theoretical gaps, a limited number of factors have yet to be deployed to the 

specific domain, such as the apparel manufacturing sector. As prior introduced, the Chinese apparel 

manufacturing sector faces many challenges in the labor market shift, increasing workforce reduction 

due to the COVID-19 pandemic (Leal Filho et al., 2023; Tan et al., 2022). Also, the traditional apparel 

manufacturing environment has experienced a drastic reduction that warrants intelligence for obtaining 

sustainable production and manufacturing systems befitting this status and phenomenon. The survival of 

apparel manufacturers relies on steady and substantial global orders and qualified production makers, 

such as sewing makers and pattern cutters, and, more importantly, a favorable environment and strong 

decision-making organizations. As mentioned above, AI-embedded technology, such as robot-assisted 

making and fabrication and big data analytics for digital manufacturing, have revolutionized apparel 

production processes instead of a partial workforce (Giri et al., 2019). These AI-embedded technologies 

have facilitated manufacturing process systems for developing intelligent, agile, and eco-friendly 

production ecosystems (Chaudhuri et al., 2022; Giri et al., 2019). Existing literature on digital 

transformation in open innovation in the manufacturing sector shows limited research scope in China’s 

manufacturing sector, let alone the apparel industry. China posits a leadership position in AI development 

(Arenal et al., 2020; Barton et al., 2017), but there is minimal research on how China’s government, 

universities, and apparel manufacturing firms can co-create values in AI ecosystems. Also, the origins of 

this research idea of building AI-enabled innovation ecosystems stem from the researcher’s genuine 

interest in how Chinese apparel manufacturing leverages AI capabilities to build an innovation ecosystem. 

However, prior studies have not grounded the definitions of AI capabilities in innovation ecosystems 

parameters and the apparel manufacturing sector with specific propositions and a theoretical framework. 

Thus, based on the results of Study 1, Study 2 conducts ground theory to build an AI-enabled innovation 

ecosystem to propose propositions and a theoretical framework for open innovation and AI adoption in 

Study 2. 

Regarding methodological gaps, the reviewed literature uses quantitative methods for AI adoption-

related studies using a cross-sectional method and primary survey. In contrast, both qualitative and 

quantitative methods are employed for open innovation-related studies using a longitude method and 

secondary panel data. This thesis employs a quantitative method, using PLS-SEM analysis in Study 1, 

and qualitative ground theories, using coding analysis in Study 2.  

2.5. Chapter Summary 

This chapter initially presented the construction of AI capabilities in application areas and their enabling 

roles in different innovation types. It then introduced the theoretical lens and hypotheses derived from 

the proposed conceptual model, focusing on factors influencing the adoption of AI-integrated 

technologies to foster open innovation in Chinese manufacturing firms. The integration of TAM and 

TOE has been applied in numerous studies cited in this thesis, providing valuable strategic insights into 

how manufacturing firms’ choices regarding AI adoption drive open innovation within their business 

landscape. Moreover, the KBV is a crucial theory running through TOE, AI adoption, and open 
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innovation constructs, as the roles of knowledge management in this mechanism cannot be ignored. 

Therefore, to study the antecedents of AI adoption, thus driving open innovation based on the TAM-

TOE framework, the KBV was considered suitable as the core theory for examining this research 

correlation within the Chinese apparel manufacturing sector. 

This approach has ensured that the research provides a solid background on adopting technology 

that drives firms’ open innovation in Study 1. The result is a structural equation model (SEM) developed 

based on previous technology adoption frameworks, incorporating constructs that best represent AI 

adoption. The research model, along with its latent constructs and relevant relationships, has been 

formulated to establish the foundation for the next stage of the thesis, where the methodology for concept 

validation will be detailed in the following chapter. The reviewed literature for Study 2 proposed open 

innovation from something-based perspectives, such as RBV, KBV, innovation ecosystems, and TH, 

which inform the MRO of studying AI-enabled innovation ecosystems from these dimensional concepts. 

These theoretical lenses of AI-integrated technologies adoption, open innovation, and innovation 

ecosystems literature have been analyzed to uncover contributions and limitations, leading to the 

identification of the research gap that serves as the core focus of this study. 
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3. Methodology 

3.1. Introduction 

As defined by Collis and Hussey (1997), methodology refers to the approach to the research process, 

from the theory of how research should be undertaken to data collection and analysis. This chapter 

provides comprehensive research approaches to address research questions derived from Study 1 and 

Study 2, thereby fulfilling the MRO and SROs. To achieve the MRO of developing AI-enabled 

innovation ecosystems with propositions for Chinese apparel manufacturing industry, Study 1 was 

designed as a quantitative investigation to fulfill SRO 1, which aims to examine the antecedents of AI 

adoption and their impact on KACAP and open innovation in Chinese apparel manufacturing firms. By 

adopting a positivist paradigm and a deductive approach, Study 1 examined a structured model using the 

integrated TAM-TOE framework and positioned KACAP as a critical mediator, providing empirical 

insights into how technological, organizational, and environmental factors drive AI adoption and enable 

open innovation. This quantitative foundation is essential for establishing statistically significant 

relationships that confirm the framework’s relevance within the apparel industry context. Building on 

the quantitative findings of Study 1, Study 2 adopted a qualitative, inductive approach to achieve SRO 

2, which focused on categorizing and specifying the required AI capabilities in apparel production 

innovation processes, and the challenges and barriers to adoption AI, thereby developing a theoretical 

framework and generating propositions to explain how Chinese apparel manufacturing enhance internal 

organizational resources and external collaborations with universities, associations, and government. 

Through grounded theory, Study 2 explored deeper dimensions of AI-driven collaboration by analyzing 

interview data from key stakeholders. This qualitative approach complements the quantitative insights 

of Study 1 by providing context-specific insights, thus forming a comprehensive understanding of how 

AI adoption interacts with organizational and external resources to drive innovation. The two studies 

create a synergistic research design, where Study 1 provides empirical validation for foundational 

constructs, and Study 2 offers a theoretical lens to broaden the findings and contextualize them within a 

collaborative innovation ecosystem. By integrating these approaches, the research ensures that both the 

main and specific research objectives are thoroughly addressed, offering a robust framework for AI-

enabled innovation in the apparel manufacturing sector. 

Section 3.2 presents the corresponding methodological research procedures based on Saunders et 

al. (2015, p.164) “research onion”, providing together with the rationale for the research philosophy and 

approaches of this thesis. This guidance aims to support the processes for validating the conceptual model 

introduced earlier. Section 3.3 outlines the research design, including methodology choices, strategies, 

and time horizons. Sections 3.4 and 3.5 describe the data collection and procedure in Study 1 and Study 

2, respectively. Section 3.6 covers the ethical considerations, and Section 3.7 summarizes the logic of 

the two studies. Figure 3.1 shows the flow chart of Chapter 4. 
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Figure 3.1 Flow Chart of Chapter 3 

3.2. Research Philosophy and Approach  

Developing and presenting an idea requires systematic measurement and analysis of inputs, which are 

gathered as data (Dobre, 2022). The selection of research methods is guided by their relevance to the 

knowledge being generated and the steps involved in its development (Saunders et al., 2015). The 

research paradigm plays a crucial role in shaping the approach and determining the appropriate 

methodology. To ensure alignment with the objectives of this thesis, various research philosophies and 

approaches were critically evaluated, leading to the adoption of the most effective method for achieving 

the desired outcomes. Thus, the following paragraph first peels away the outer two layers of the research 

‘onion’, which are research philosophies and approaches. 

3.2.1. Research Philosophy 

The research philosophy contains essential assumptions about how the researcher views the world 

(Saunders et al., 2015). These assumptions help clarify the research questions, choose research strategies, 

and conduct the whole research process coherently (Easterby-Smith et al., 2002; Saunders et al., 2009; 

Blaikie, 2000). The research philosophy of this thesis encompasses ontology and epistemology (Saunders 

et al., 2015), each of which is examined below to provide distinct insights into the nature of reality, the 

concept of knowledge, and the methods for acquiring empirical evidence.  

Ontology concerns the nature of reality and includes objectivism and subjectivism (Bell et al., 2022; 

Bhattacherjee, 2012; Saunders et al., 2016). Objectivism is an ontological stance claiming that social 

phenomena and their meanings exist independently of the individuals involved (Bell et al., 2022); in 

contrast, subjectivism asserts that social reality is shaped by individual perceptions and subsequent 

actions of social actors (Saunders et al., 2015). Subjectivism embraces constructionism (Bell et al., 2022; 

Clark et al., 2021; Saunders et al., 2016). It is vital to identify that Study 1 is dominated by objectivism 

because understanding the meanings individuals attach to social phenomena, such as the objects of 

organizations and management. Study 2 employs constructionism, asserting that social reality is 

constructed through human interaction and social processes. It emphasizes that reality is not an objective, 

independent entity but is continuously constructed and reconstructed by social actors through shared 

understanding and practices (Clark et al., 2021; Saunders et al., 2016). 



 65 

Epistemology concerns “assumptions about knowledge, what constitutes acceptable, valid and 

legitimate knowledge, and how we can communicate knowledge to others” (Burrell and Morgan 1979, 

as cited in Saunders et al., 2015, p. 127), and is the relationship between reality and the people (Carson 

et al., 2001; Perry et al., 1999). Saunders et al. (2015) suggested three primary positions: positivism, 

realism, and interpretivism. The focus of positivism on what is “posited” highlights its commitment to a 

strictly scientific method aimed at producing pure data and facts, free from human interpretation or bias.  

(Saunders et al., 2015). This requires researchers to apply natural sciences methods to study the social 

world (Dobre, 2022). Thus, researchers explain and predict organizational behavior and events by 

looking for causal relationships from data that can be observable and measurable facts (Primecz, 2020; 

Saunders et al., 2016). Saunders et al. (2015) suggest positivist researchers use existing theories to 

develop hypotheses, emphasizing quantifiable observations that lend themselves to statistical analysis. 

However, positivism has its critics. These critics contend that positivism excessively prioritizes 

objectivity and quantitative data, thereby overlooking the intricate complexity and diversity of social 

phenomena and how social context profoundly shapes and influences these phenomena (Orlikowski & 

Baroudi, 1990). Critical realism explains what we see and experience regarding the underlying structures 

of reality that shape observable events. Different from positivism, critical realism emphasizes uncovering 

the deeper structures and mechanisms that shape observable phenomena (Saunders et al., 2015). Thus, it 

advocates moving beyond surface-level empirical data in research to explore deeper realities, revealing 

the true nature and complexity of things (Bhattacherjee, 2012). However, it has critiques for “neglecting 

other factors equally important in social relationships, such as gender and race, thus critical realism being 

viewed as limited to the way the world is sensed as opposed to how it is” (Orlikowski and Baroudi, 1991 

as cited in Dobre, 2022, p. 112). In contrast to positivism, interpretivism posits that social reality is 

constructed through human interactions and subjective experiences, necessitating a focus on individuals’ 

subjective experiences, cultural contexts, and social environments when studying social phenomena 

(Saunders et al., 2015). Within the interpretive framework, researchers typically employ qualitative 

methods, such as in-depth interviews, observations, and case studies, to comprehend individuals’ 

behaviors, beliefs, and values. This methodological approach contends that social phenomena cannot be 

fully understood through objective data alone; instead, it requires interpreting and understanding 

participants’ subjective meanings to uncover the deeper layers of social reality. Therefore, interpretive 

research aims to create new, richer understandings and interpretations of social worlds and contexts, for 

example, by looking at organizations from the perspectives of different groups of people so that they 

could arguably be seen as experiencing different workplace realities (Saunders et al., 2016).   

Therefore, according to these positions suggested by Saunders et al. (2015), Study 1 selects 

positivism, which facilitate the validation of independent research findings and enhance the 

understanding of research phenomena by conducting hypothesis testing. Study 2 adopts interpretivism, 

emphasizing the differences between conducting research among people (Bell et al., 2022). Interpretive 

researchers use qualitative data to understand how social reality is constructed by people interacting with 

others (Hackley, 2003).   
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3.2.2. Research Approaches 

The second layer of the “onion” is “approaches to theory development” (Saunders et al., 2016, p. 164).  

Different perspectives link theory and research, with the main approaches represented by the deductive, 

inductive, and abductive approaches (Bell et al., 2022; Bhattacherjee, 2012; Saunders et al., 2016). A 

deductive approach uses data to test theory with various statistical analyses, thereby validating the 

hypotheses made (Bell et al., 2022). However, it may incorporate an inductive approach, using data to 

develop theory (Saunders et al., 2016). An inductive approach is driven by the gap of knowledge, thus 

requiring the accumulation of facts and data that lead to generating and building theory where “data 

collection is used to explore a phenomenon, identify themes and patterns and create a conceptual 

framework” (Saunders et al., 2016, p. 145). Similarly, as deduction often entails an element of induction, 

the inductive process likely involves some deduction, such as grounded theory (Bell et al., 2022). Thus, 

selecting which approaches in research needs to consider each binding principle as none of both is 

exhaustive (Dobre, 2022). The third approach is the abductive approach, where theory generation or 

modification incorporates existing theory where appropriate to build new theory or modify existing 

theory (Saunders et al., 2016). This approach highlights that generating or modifying theory must rely 

on the existing theories, and the modified frameworks must be tested through additional data collection 

(Saunders et al., 2016). 

Based on the evaluations of research approaches to theory development, Study 1 follows a deductive 

approach, utilizing statistical analysis to empirically test the proposed hypotheses (Bell et al., 2019). It 

addresses SRQ 1 and SRQ 2, building upon previously validated theoretical concepts through hypothesis 

testing. Study 2 adopts an inductive approach, in which the researcher generates theories and gains 

insights to create new conceptual possibilities (Saunders et al., 2016), thus addressing SRQ 3 and SRQ 

4.   

3.3. Formulating Research Design 

The previous section peels away the research philosophy and approaches, which are two outer layers of 

the “onion” to theory development and influence the research design (Saunders et al., 2015). Thus, 

building on the determined ontological objectivist perspective and epistemological positivist approach 

(Study 1), as well as the ontological constructivist perspective with epistemological interpretivism and 

inductive reasoning (Study 2), this section delves into three additional layers: methodological choice, 

research strategy, and time horizon. Thus, following the determined ontological objectivist perspective 

with epistemological positivist direction, a deductive approach (Study 1), and an ontological 

constructivist perspective with epistemological interpretivism and an inductive approach (Study 2), this 

section further uncovers the following three layers: methodological choice, research strategy, and time 

horizon for this research.  
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3.3.1. Methodological Choices 

The third layer of the “onion” contains two main methodological choices: quantitative and qualitative 

research (Saunders et al., 2015). Quantitative research typically employs a deductive approach focused 

on theory testing, aligning with the practices and norms of the natural scientific model and positivism, 

and perceives social reality as an external, objective entity (Bell et al., 2022; Clark et al., 2021; Saunders 

et al., 2016). Qualitative research usually emphasizes words and images rather than quantification, which 

typically adopts an inductive approach to theory and research focused on theory generation, rejects the 

norms of the natural scientific model and positivism in favor of understanding how individuals interpret 

their social world and view social reality as a dynamic, emergent property shaped by individual creation 

(Bell et al., 2022; Clark et al., 2021; Saunders et al., 2016).  

However, in business and management research, researchers tend to combine both elements 

(Saunders et al., 2016). Thus, except quantitative or qualitative in one research, a mixed method is 

defined as “the branch of multiple methods research that combines quantitative and qualitative data 

collection techniques and analytical procedures” (Saunders et al., 2016, p. 169). This thesis adopts 

“double-phase research design”; specifically, it is a “sequential explanatory research design” 

(quantitative followed by qualitative) (Saunders et al., 2016, p. 170), as Study 1 adopts quantitative 

research, and Study 2 adopts qualitative research in this thesis. The quantitative results of Study 1 provide 

an empirical basis for qualitative research in Study 2. A quantitative research design may use a single 

data collection technique, such as a questionnaire or a corresponding quantitative analytical procedure. 

In contrast, data collection is non-standardized in a qualitative research design.  

3.3.2. Research Strategies 

Research strategy is “the methodological link between philosophy and subsequent choice of methods to 

collect and analyze data” (Denzin and Lincoln 2011, as cited in Saunders et al., 2015, p. 177). The “onion” 

illustrates eight elements in the “strategy layer”: experiment, survey, archival research, case study, 

ethnography, action, grounded theory, and narrative inquiry (Saunders et al., 2016, p. 164). In general, 

this thesis adopts a case study of Chinese apparel manufacturing sector, but specifically, it employs 

survey and grounded theory strategies for quantitative and qualitative research, respectively, since the 

survey strategy is usually associated with a deductive research approach and grounded theory is 

particularly well suited to organizational research, associated with an inductive research approach with 

theorizing process, and a theoretical framework is generated and built (Bell et al., 2022; Saunders et al., 

2016). The detailed research procedures of both strategies in Study 1 and Study 2 are presented in Section 

4.4.  

3.3.3. Time Horizon 

Due to time constraints, this thesis reserved a case study strategy within a cross-sectional research design, 

collecting data at a single time (Clark et al., 2021). Although it often employs the survey strategy to 

describe the incidence of a phenomenon, many case studies are based on interviews conducted over a 

short period (Saunders et al., 2016).  
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3.4. Data Collections Procedure and Analysis in Study 1 

This section peels away the last layer of the “onion,” which focuses on the specific data collection and 

analysis procedures (Saunders et al., 2016). To clearly describe the different procedures of Study 1and 

Study 2, following the sequential explanatory research design, i.e., quantitative followed by qualitative, 

the following paragraph first presents Study1’s quantitative data collection and analysis procedure, 

followed by Study 2’s qualitative data collection and analysis procedure in section 1.5. 

Survey strategies using questionnaires are cost-effective for collecting standardized quantitative 

data from large populations, enabling easy comparison and analysis using descriptive and inferential 

statistics (Saunders et al., 2015). Thus, this thesis employs a questionnaire for data collection and 

questions derived from prior research on TAM-TOE antecedents that influence the adoption of AI-

integrated technologies, thus driving open innovation. Prior studies employed questionnaires to validate 

models on TAM-TOE framework for AI-integrated technologies adoption, such as IoT-based smart 

manufacturing systems (Patil et al., 2023), AI-based manufacturing and production system (Chatterjee, 

Rana, Dwivedi, et al., 2021), blockchain (Kamble et al., 2021; Legesse et al., 2024; Tasnim et al., 2023). 

Therefore, Study 1 decides to employ the questionnaire as the most appropriate technique for data 

collection. 

3.4.1. Designing the Questionnaire Survey Instruments 

Questionnaires tend to be used for descriptive or explanatory research (Saunders et al., 2015). 

Explanatory research is usually deductive, using data to test a theory or theories to examine and explain 

cause-and-effect relationships (Saunders et al., 2016). Therefore, Study 1 decided to adopt explanatory 

research, as it aimed to examine and explain relationships between antecedents of the adoption of AI-

integrated technologies and its impacts on open innovation. Study 1’s questionnaire (see Appendix B) 

was carefully designed to minimize respondent confusion, bias, and hesitancy in completing the survey. 

To achieve this, the questions were organized into two sections that align with the structure of the model, 

guiding respondents smoothly from one section to the next, thereby increasing their awareness as they 

progressed through the survey. A Participant Information Sheet was provided before answering questions. 

It presents the scope of the research, followed by a request to the respondents to confirm their consent to 

participate (Dobre, 2022). The first section is associated with questions on demographics, addressing the 

firm age, size, annual sales, production capacity, production types, and customer regions.  

Also, explanatory research requires the researcher to review the literature carefully, discuss ideas 

widely, and conceptualize research before designing the questionnaire (Ghauri &Gronhaug, 2005; 

Saunders et al., 2015). Thus, the questionnaire survey instrument must be developed based on the support 

of the theory. To develop the survey, an appropriate measurement scale was created to assess the 

constructs identified in Chapter 4. Further steps were taken to carefully select and structure the wording 

of the questions, determine their sequencing, specify the expected response format, and incorporate the 

measurement of additional variables into the survey instrument (Dobre, 2022).  
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To create a measuring scale, constructs must first be identified and then translated into measurable 

variables through specific items (Bhattacherjee, 2012). To confirm the suitability of the selected 

constructs and items for this thesis research model, additional evaluation was performed by reviewing 

prior literature and existing questions from previous studies, with proper citations included as necessary,  

where “the corresponding construct and items have been initially used” (Bell et al., 2022, p. 886). For 

double-confirmed and careful selection and inclusion, the measurement scale and questionnaire 

construction were initially reviewed by two experts experienced in knowledge science and apparel 

production in the AI area. Subsequently, the questionnaire was designed using all the items representing 

the constructs selected in Study 1’s measurement instrument (see Table 3.1).  

Table 3.1 The measurement instrument and sources 

Construct No. Indicator Indicator Description Reference 

Perceived 

Usefulness  

(PU) 

1 pu_1 Using AI-based manufacturing and 

production systems can enhance work 

efficiency.  

(Davis, 1989; 

Venkatesh & 

Davis, 2000) 

2 pu_2 Using AI-based manufacturing and 

production systems can improve the quality 

of task completion. 

3 pu_3 Using AI-based manufacturing and 

production systems can increase 

productivity. 

 

4 pu_4 Using AI-based manufacturing and 

production systems can save a significant 

amount of time. 

 

5 pu_5 AI can provide valuable decision support 

for our organization. 

 

Perceived Ease 

of Use 

(PEOU) 

6 peou_1 An AI operation process is easy to 

understand. 

(Davis, 1989; 

G. C. Moore 

& Benbasat, 

1991) 

7 peou_2 The time required to learn AI is reasonable. 

8 peou_3 Our employees can easily operate an AI-

based manufacturing and production 

system. 

9 peou_4 Our employees can quickly learn about the 

usage of AI in their work processes. 

 

Organizational 

Complexity 

(OCX) 

10 ocx_1 Integrating AI technology with the existing 

legacy system is difficult for our 

organization. 

(Chatterjee et 

al., 2021; 

Rogers, 2003) 

11 ocx_2 Resistance to change is high regarding 

migrating from the legacy system to an AI-
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based manufacturing and production 

system. 

Organizational 

Readiness 

(ORE) 

12 ore_1 Our company has complete infrastructure 

to develop AI in manufacturing and 

production processes. 

(Chatterjee, 

Rana, 

Dwivedi, et 

al., 2021; 

Iacovou et al., 

1995a; 

Rogers, 1995) 

13 ore_2 Our employees have the necessary skills 

and knowledge to use the AI-based system.  

14 ore_3 Our management has a high level of support 

for AI in manufacturing and production 

systems. 

Competitive 

Pressure 

 (CP) 

15 cp_1 Using an AI-based manufacturing and 

production system will bring a competitive 

advantage to our organization. 

(Chatterjee et 

al., 2023; 

Gutierrez et 

al., 2015) 16 cp_2 The apparel industry has increasingly 

applied an AI-based manufacturing and 

production system. 

17 cp_3 I am aware that many firms are moving 

towards AI-based manufacturing and 

production. 

Supplier 

Involvemen 

(SIV)t  

18 siv_1 SP2-Our suppliers provide satisfying 

products and services.  

(Islami, 2023; 

Lemke et al., 

2003) 19 siv_2 SP3- Our suppliers respond quickly to our 

demands. 

20 siv_3 SP4- We have close relationships with our 

suppliers.  

Market 

Uncertainty 

(MU) 

21 mu_1 Our market demand frequently experiences 

significant changes. 

(Chau & Tam, 

1997) 

22 mu_2 Our customers’ needs are variable and 

unpredictable. 

 

23 mu_3 The pace of technological development in 

our industry is very fast. 

 

24 mu_4 The emergence of new technologies has a 

significant and unpredictable impact on our 

industry. 

 

Government 

Support and 

Policy  

25 gsp_1 The AI-related policies and regulations is 

important for apparel manufacturing 

transformation. 

(Edquist & 

Hommen, 

2000) 



 71 

(GSP) 26 gsp_2 The government provides adequate 

financial support for developing and 

applying AI-integrated technology to my 

company. 

 

 27 gsp_3 The government’s support and help are 

very important when applying AI 

technologies. 

 

AI Adoption 

(AIA) 

28 aia_1 We plan to adopt AI technology for 

manufacturing and production. 

(Akhtar, 

2020; Davis, 

1989; Rogers, 

1995; Yang et 

al., 2021) 

29 aia_2 We plan to adopt AI technology to solve 

problems in SCM.  

30 aia_3 We plan to adopt AI technology to reduce 

risks in our manufacturing and production 

processes. 

31 aia_4 We plan to adopt AI technology to be agile 

in an uncertain environment. 

Knowledge 

Absorptive 

Capacity 

(KACAP) 

32 kacap_1 Our company can effectively identify and 

acquire important new knowledge and 

information within and outside the industry 

to support the application of AI technology. 

(Cohen & 

Levinthal, 

1990; 

Denford, 

2013b; 

Jiménez-

Barrionuevo 

et al., 2011; 

Verona & 

Ravasi, 2003) 

(Nonaka & 

Takeuchi, 

1995); (Grant, 

1996; Verona 

& Ravasi, 

2003) 

33 kacap_2 We actively acquire knowledge from 

external sources and integrate it with 

internal knowledge. 

34 kacap_3 Our company can understand and analyze 

the acquired knowledge and information 

within and outside the industry, ensuring 

compatibility with existing knowledge. 

35 kacap_4 We provide sufficient technical training for 

our employees to help them absorb and 

apply AI technology. 

Open Innovation 

(OI) 

36 oi_1 Our company culture encourages 

knowledge sharing. 

(Enkel et al., 

2009; Laursen 

& Salter, 

2006; 

Lichtenthaler 

& 

37 oi_2 Our company extends sources with our 

customers. 

38 oi_3 Our company extends sources with our 

suppliers.  



 72 

39 oi_4 Our company extends sources with 

institutions or universities. 

Lichtenthaler, 

2009) 

40 oi_5 Our collaboration with external partners 

facilitates the adoption of new 

technologies. 

3.4.2. Response Format 

The questionnaire included structured closed questions to ensure that the collected data is in a format 

that allows future analysis (Dobre, 2022). According to Bhattacherjee (2012), responses to structured 

survey questions are captured using one of the following response formats: dichotomous, nominal, 

ordinal, interval-level, and continuous response. The designed questions of the questionnaire were 

structured to include nominal, ordinal, and interval-level response formats among those available in the 

literature, as described below. 

Nominal response refers to selecting options in a measurement tool that belong to different 

categories, with no inherent order or numerical relationship between these categorical variables, such as 

the industry types, business types, etc. (Bhattacherjee, 2012). This survey includes two nominal 

responses where respondents are presented with unordered options, such as: What is your firm’s business 

type: OEM/ODM/OBM, and What is your primary market or markets: Asia- Japan, Korean /Asia-

Singapore/Europe/North America- Canada/North America- the U.S. / China domestic. The two nominal 

questions in the survey aim to categorize and group the companies in the sample. This categorization 

facilitates a deeper analysis of the sample composition, providing a foundation for subsequent research 

or data analysis, particularly for potential future grouping or comparisons between different categories. 

The survey also included four ordinal questions, such as the firm’s age in years: “0-5/6-10 /11-15/15+”, 

and the years the managers own the company: “0 <5years 0 6-10years 0 11-15years 0 >15years”, but the 

intervals between them are not equal, aiming to encourage actual answers from respondents by the 

anonymity of their feedback. The ordinal question allows the researcher to categorize and rank data, 

facilitate group comparisons, and simplify complex information for more accessible analysis and 

interpretation (Bhattacherjee, 2012). The third type of response format is the interval-level response 

using a five-point Likert scale (Bell et al., 2022; Bhattacherjee, 2012; Saunders et al., 2016), which is 

more likely to reflect respondents’ actual subjective evaluation of a usability questionnaire item 

(Taherdoost, 2019). Thus, the constructs’ measurement was carried out using the five-point Likert scale: 

“1= strongly disagree, 2= disagree, 3= neutral, 4= agree, and 5= strongly agree”, which usually comprises 

a series of statements (known as items) that focus on an issue or theme. Each item describes the 

relationships between the constructs and their corresponding indicators based on the measurement 

models in Partial least squares-Structural Equation Modeling (PLS-SEM), which is primarily used to 

develop theories in exploratory research (Hair et al., 2017). 
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3.4.3. Sampling Procedure 

3.4.3.1. Target Respondents Identification 

Based on SRO 1 focused on examining the antecedents of AI adoption, thus driving open innovation in 

Chinese apparel manufacturing sector, emphasizing the significant mediating role of knowledge 

absorptive capacity (KACAP) in innovation processes, the target respondents of Study 1 were identified 

as top managers in Chinese apparel manufacturing firms. 

There were 170 thousand apparel and textile manufacturers in China as of January 2022 (China 

Textile Industry Federation). While conducting the literature review, which led to the conceptual model 

in Chapter 2, it has been noticed that most of the studies frequently focus on the manufacturing sector 

(Bag et al., 2021; Chatterjee, Rana, Dwivedi, et al., 2021; Kamble et al., 2021; J. M. Kim & Park, 2024; 

Kinkel et al., 2022; Maroufkhani et al., 2023; Maroufkhani, Wan Ismail, et al., 2020a, 2020b; Patil et al., 

2023; Pillai et al., 2022; Ronaghi, 2023). However, prior research has hardly studied apparel 

manufacturing, which provides a gap in the focused industrial samples. Therefore, to ensure a broad 

possible representation of apparel industries in Study 1 and to maximize the number of respondents, the 

survey did not impose any limitations on the firm size or location in China. The research is set such that 

the sample is representative of the apparel manufacturing sector in China.  

3.4.3.2. Sampling Frame 

The sampling frame is “an accessible section of the target population (usually a list with contact 

information) from where a sample can be drawn” (Bhattacherjee, 2012, p. 66). The source of Study 1 

comes from the China National Garment Association (CNGA) databases (https://www.cnga.org.cn/), 

which lists the association members’ addresses, websites, e-mail addresses, firm age, number of 

employees, and business types. However, these association members include not only the manufacturing 

sector but also design and retail. These findings challenge quickly reaching a sufficient number of 

respondents to secure the minimum required responses. In addition, the member directory covers only 

subscribers who pay to be listed; the sample will, therefore, be biased toward businesses that have chosen 

to subscribe (Saunders et al., 2016). Furthermore, the database information might be outdated soon 

(Saunders et al., 2016). Considering the above issue, the organizations with garment production 

businesses presented with the updated associate member list have been selected as the sampling frame. 

In addition, the source of the Alibaba Group database (https://www.alibaba.com) was targeted, which 

lists the firm profile. 

3.4.3.3. Sampling Techniques 

Probability sampling and non-probability techniques are grouped in the sampling techniques 

(Bhattacherjee, 2012). Probability sampling involves the random selection of samples, ensuring that each 

unit in the population has a known, non-zero chance of being selected to obtain a representative sample 

that allows for generalization to the entire population (Bhattacherjee, 2012). Non-probability sampling 

is a sampling technique in which some units of the population have zero chance of selection or where 

https://www.cnga.org.cn/
https://www.alibaba.com/
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the probability of selection cannot be accurately determined, including convenience sampling (easily 

accessible to respondents), quota sampling (the proportion of respondents in each subgroup should match 

that of the population), expert sampling (judge mental sampling), and snowball sampling where 

researchers rely on the initial respondents to recruit additional participants from their social networks 

(Bhattacherjee, 2012, pp. 69-70). Studies in the technology adoption literature often employ quota 

sampling, utilizing demographic information obtained through trade associations (Cao et al., 2021; 

Gangwar et al., 2015). While quota sampling is non-probabilistic, it ensures that specific demographic 

groups are represented, though it does not provide every member an equal chance of selection. In Study 

1, a quota sampling technique was employed to select specific manufacturers, and a simple random 

sampling technique was then applied to ensure representativeness among apparel manufacturing 

companies in China. Table 3.2 shows the proportion of geographic locations (industry cluster) (J. Wu et 

al., 2018), firm size (Standards of National Bureau of Statistics, 2017), and production types in the CNGA 

database. It is necessary to explain that in terms of firm size, this study initially employed quota sampling 

with a target distribution of 92% MSMEs and 8% large enterprises. However, due to the small proportion 

of large enterprises and the challenges in obtaining responses, the sampling design was adjusted to focus 

exclusively on MSMEs. This change in sampling strategy is acknowledged as a necessary adaptation to 

the data collection process and is discussed further in the limitations section.  

Table 3.2 Quota Sampling Criteria (Source from the CNGA WeChat Mini App, as of 2024, May) 
Criteria Quota Characteristics 
Industry Cluster (Geographic 
Location) 

    
Yangtze River Delta 42% Major apparel manufacturing hub in China. 
Pearl River Delta 31% Key export-oriented manufacturing region. 
North China 12% Traditional industrial area with declining but still significant 

production. 
Western China 15% Developing region with increasing investment. 

Firm Size (China national textile 
and apparel council, as of 2022) 

   Upper-scale and lower- scale (/www.cntac.org.cn). 

Large (>1000 employees) 
(>1000employees) 

8% High production capacity, significant market influence. 
Micro Small Medium (<1000 
employees) 

92% Flexibility and adaptability in market changes. 

Business Type 
  

OEM (Original Equipment 
Manufacturer) 

25% Major production model, primarily focused on 
manufacturing for other brands 

ODM (Original Design 
Manufacturer) 

40% Companies that design and manufacture products, typically 
for other brands 

OBM (Original Brand 
Manufacturer) 

35% Companies that design, manufacture, and sell their own 
brand products 
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3.4.3.4. Sample Size 

The sample size indicates the number of elements to be included in the study, ensuring that it is 

sufficiently large to meet the requirements of the statistic (Dobre, 2022; Saunders et al., 2016). The small 

sample sizes used in existing quantitative studies on technology adoption, Partial Least Square Structural 

Equation Modelling (PLS-SEM), is recommended for use, especially when the research involves a 

complex conceptual model with many constructs and a large number of items (Hair et al., 2017, as cited 

in Dobre, 2022). Several methods are used to calculate the minimum sample size, including the 10 times 

rule and the statistical power of the estimates (Hair, 2017). The 10 times rule requires the maximum 

number of arrowheads pointing at a latent variable anywhere in the PLS path model, but this rule offers 

a rough guideline (Hair et al., 2022). To determine the scientifically appropriate sample size, this study 

utilized G*Power software, setting the power at 0.8 and the effect size f2 at 0.15 (medium effect). Based 

on these parameters and considering eight constructs in the model, the required total sample size was 

calculated to be 109. However, the minimum sample size resulting from these calculations may still be 

too small (Kock & Hadaya, 2018, as cited in Hair et al., 2022). Thus, based on Kock and Hadaya (2018), 

Hair et al. (2022) recommend the “ ‘inverse square root method’, which considers the probability that 

the ratio of a path coefficient and its standard error will be greater than the critical value of a test statistic 

for a specific significance level” (Hair et al., 2022, p. 54). As the example shown (Hair et al., 2022, p. 

54), assuming a significance level of 5% and a minimum path coefficient of 0.2, the minimum sample 

size is 155. Therefore, after conducting the pilot testing, the study 1 sample size is 269, which satisfies 

the “10 times rule”, the “statistical power of the estimates,” and the “inverse square root method” (Hair 

et al., 2022).  

3.4.4. Pilot Testing 

The questionnaire of Study 1 should be pilot-tested before distributing (Bell et al., 2022; Saunders et al., 

2016) with respondents to ensure that respondents have had no problems understanding or answering 

questions and have followed all instructions correctly and the minimum number for the pilot is 10 (Fink 

2013, as cited in Saunders et al., 2015). Therefore, this study initially conducted expert validation by two 

academics specialized in knowledge science and intelligent design and production management to help 

establish content validity and make necessary amendments before pilot testing (Saunders et al., 2015). 

The questionnaire was also validated through a WeChat group to assess its content and the time needed 

for completion. A pre-test was conducted to evaluate the questions’ content and sequence, addressing 

any unclear or ambiguous statements. Also, to ensure the reliability of the measurement model, the 

questionnaire was again piloted with 23 managers with expertise in apparel manufacturing production 

management to ensure they understood the measures and what technologies integrated with AI-integrated 

technologies would be applied in apparel manufacturing. This prior test assessed the constructs’ 

consistency by computing Cronbach’s alpha (α), composite reliability (rho_a), and average variance 

extracted (AVE) for each construct.  
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3.4.5. Data Collection 

Ethical research protocol approval was obtained prior to data collection. Considering that the data 

collection procedure of Study Two has yet to be explained, the ethical considerations are presented in 

section 4.10, which comprises the two studies.  

After confirming the minimum sample size, the first step was to conduct the survey distribution. As 

the designed questionnaire is a self-completion questionnaire usually completed by the respondents, this 

survey can be distributed to respondents through the Internet (Internet questionnaire), a web browser 

using a hyperlink (Web questionnaire), a mobile questionnaire using a QR (quick response) code 

(Saunders et al., 2015), and email (Bell et al., 2022). Respondents have been reached through online 

surveys through email (Cao et al., 2021) and web questionnaire (Kinkel et al., 2022)and offline through 

mail or telephone (Gangwar et al., 2015; T. Oliveira & Martins, 2010) in technology adoption studies, 

and both (Chatterjee, Rana, Dwivedi, et al., 2021). Bhattacherjee (2012) recommends that more than one 

data collection method be used to reach the minimum sample size in a practical timeframe (Dobre, 2022). 

Therefore, for the cost-effectiveness of the collection, this study used direct phone calls and an online 

website to distribute the survey and access the maximized size of the samples. 

All participants in this study provided informed consent before their inclusion. To ensure that they 

were adequately informed about the research purpose and intent and that their anonymity was respected 

(Bell et al., 2019), informed consent was written on the first page of the questionnaire, and prospective 

respondents were informed that the aim of this study was purely academic. They were assured that their 

anonymity and confidentiality would be strictly preserved, and they were asked to respond within eight 

weeks of receiving the messages. Also, to ensure that top managers from the apparel manufacturing 

industry understand the meaning of AI, as referenced in the questionnaire, a definition of AI tools was 

provided in Chinese on the first page of the questionnaire.  

The office phone number is listed in the China National Garment Association database. However, 

the managers’ contacts are not shown, and the firm’s receptionists refused to answer the questionnaire, 

resulting in only 19 responses out of 358 manufacturing firms accepting the survey by direct phone. The 

researcher is a Dalian Textile and Apparel Association member, so accessing Dalian’s apparel 

manufacturing firm is relatively easy. Thus, 13 responses accepted the survey through WeChat. However, 

one location’s sample cannot be satisfied with probabilistic sampling techniques; therefore, the 

researcher decided to collect the rest of the data through “the services of a third-party agency” (Dobre, 

2022, p. 170). The researchers commissioned Beijing Fengling Digital Intelligence Information 

Technology Co., LTD (https://www.powercx.com/) to collect data from Alibaba Group’s database of 

apparel manufacturing members. Also, a cover letter (Appendix E) has been provided to this third-party 

agency to ensure that the participants to whom they are distributed are aware of the research content, 

including detailed research purposes, researchers, and corresponding academic information. 

Subsequently, 47 questions were distributed to managers with expertise in production management 

to gain feedback. From Jun to August 2024, 269 responses were received after three follow-ups, which 

met the minimum sample size requirement of 155, as discussed above.  

https://www.powercx.com/
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3.4.6. Statistical Data Analysis 

Partial least squares-SEM (PLS-SEM) is primarily used to develop theories in exploratory research, 

which is suitable for the large and complex research model (Hair et al., 2017). It has often been used in 

many technology adoption studies (Cao et al., 2021; Chatterjee, Rana, Dwivedi, et al., 2021; T. Oliveira 

& Martins, 2010). This study employed this method and tested the hypotheses empirically using 

SmartPLS4 software, Vision 4.1.0.3. The integrated TOE-TAM framework comprises complex 

interrelationships among eight independent variables and 40 indicators. Thus, it is appropriate that PLS-

SEM is employed to validate the research model. 

The PLS-SEM is preferred over other structural equation modeling, such as CB-SEM (Covariance-

Based Structural Equation Modeling), as it eliminates the “imposed distributions of data” (Hair et al., 

2022, cited as in Dobre, 2022, p. 149). In addition, PLS-SEM does not require data to meet normal 

distribution assumptions, making it advantageous for handling non-normally distributed data (Hair et al., 

2022). Moreover, it is particularly suitable for analyzing small sample sizes and non-normally distributed 

data (Hair et al., 2022). Thus, in this study, the PLS-SEM was employed to test theoretical frameworks 

with complex structural models through the SmartPLS 4.0 software version 4.1.0.3. 

3.4.7. Preliminary Data Assessment 

It is crucial to examine the data before initiating the analysis (Hair et al., 2022). The consistency and 

accuracy of the outcomes rely on the integrity of the data. When using multivariate approaches, these 

methods depend on specific premises and are highly sensitive to anomalies and incomplete data. This 

study employs PLS-SEM, which does not necessitate concern for data normality. However, Hair et al. 

(2022) suggest performing a Kolmogorov-Smirnov test to ascertain whether any variables deviate from 

a normal distribution, thereby supporting the findings of this research. 

This study uses a quota sampling technique with a probabilistic approach inside the target 

population segment (Dobre, 2022). “The most important aspect of a probability sample is that it 

represents the target population”(Saunders et al., 2016, p. 281). Although the researcher initially received 

19 responses out of 358 apparel manufacturing firms from the CNGA database through direct phone calls 

and an additional 13 respondents from apparel manufacturing firms located in the Dalian area, the third-

party agency assisted in collecting the rest of the samples from Alibaba Group (acquired by Ant Group). 

Thus, the sample can be regarded as a representative sample representing the target population (Saunders 

et al., 2016). The third-party agency collected the remaining 237 responses with 237 tokens, which 

ensured that each sample response was validated. However, research studies suffer in quality because of 

missing data that could yield biased conclusions (Hair et al., 2022) (Dobre, 2022). There is no missing 

data because even in the case of self-completion questionnaires, the answer website has set mandatory 

questions. Otherwise, the answer paper cannot be completed. The answers in this survey have also been 

checked for trends and suspicious patterns (Hair et al., 2022) and for the same reason, there is no 

suspicious response (Dobre, 2022).  

As the measurement instrument uses a Likert scale to measure variables that are more likely to be 

detected, outlier analysis is recommended to remove data deviations that could manifest as an extreme 
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value for one or several variables that alter the statistics, leading to an inaccurate analysis outcome (Bell 

et al., 2022; Saunders et al., 2016). Given this context, it is recommended to use SPSS to calculate the z-

scores for each variable, and outliers were identified according to the criteria of eliminating observation 

if their corresponding z-scores are outside the +/-3.29 interval and as well out of the verification of the 

corresponding plots (Dobre, 2022). However, Pallant (2020, as cited in Dobre, 2022) suggested no 

significant differences in the variable’s indicator values or path coefficients variables have been noticed. 

Therefore, the researcher kept all the respondents’ answers in the dataset.  

PLS-SEM does not make distributional assumptions, as it is a non-parametric statistical method; 

however, it is recommended that a Kolmogorov-Smirnov test be conducted to identify which variables 

are out of a normal distribution, in support of an accurate statistical analysis that should support the 

outcomes of this research. Thus, each variable’s kurtosis and skewness have been evaluated (Mardia, 

1970; Romeu and Ozturk, 1993). Given that there are no values higher than +/- 2 for either skewness and 

kurtosis in the data set, this indicates that kurtosis and skewness statistics tests perform well (Mardia, 

1970) with good statistical power for testing for multivariate normality. As such, the data set is included 

in the statistical analysis (Dobre, 2022). 

Armstrong and Overton (1977) suggest that in cases where late respondents resemble those who 

did not respond, the last 25% of respondents should be compared with the first 75%. However, this 

assumption does not hold true for non-probability samples, as the final quarter may not have replied 

despite receiving follow-up reminders. In the present study, data collection was carried out by an external 

agency, which prevented late responses and facilitated the testing of nonresponse bias.  

The partial correlation procedure was used to examine the potential common method bias, followed 

by Simmering et al. (2015). It uses a marker variable theoretically unrelated to at least one of the key 

constructs in the questionnaire for “priori justification for predicting a zero correlation” (Lindell & 

Whitney, 2001, p. 115). In this study, the demographics of respondents are not theoretically related to 

the proposed model constructs; therefore, these parts of information can be seen as marker variables. 

Thus, the result of the partial correlation procedure indicated no significant changes in any of the study 

correlations, suggesting that common method bias was not a severe problem in this study.  

3.4.8. Evaluating the Measurement Model and the Structural Model 

According to Hair et al. (2022), model estimation generates empirical values that reflect the relationships 

between indicators and constructs in the measurement models and between constructs in the structural 

model. These estimates allow us to assess the quality of the measures and determine whether the model 

effectively explains and predicts the constructs of interest. Chapter 3 has indicated that the measurement 

model is reflective, i.e., the specified indicators represent the effects of the underlying latent variables; 

therefore, the researcher evaluated indicator reliability, internal consistency reliability (Cronbach’s alpha, 

composite reliability, reliability coefficient), convergent reliability (average variance extracted), and 

discriminant validity (HTMT and Fornell-Larcker) according to Hair et al.’s (2022) Confirmatory 

Composite Analysis (CCA) process (see Table 3.3). 
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If the measurement model criteria are met, the model evaluation continues by assessing whether the 

structural model provides satisfactory results in explaining and predicting the target constructs (Hair et 

al., 2022). Table 3.4 illustrates the criteria of each structural model assessment, including collinearity 

assessment, significance and relevance of path coefficients, model explanatory power (R2), and 

predictive power (PLSpredict procedure) (Hair et al., 2022) (see Table 3.4).   

Table 3.3 The measurement model evaluation (Source; Hair et al., 2022) 

Criteria Explanation 

Indicator Reliability Indicator reliability refers to the correlation between each observed 

variable (indicator) and its corresponding latent variable. It is 

typically assessed using the outer loading values, with a 

recommended threshold of greater than 0.7, indicating that the 

indicator reliably measures the construct. 

Internal Consistency Reliability  Internal consistency reliability evaluates the correlation among 

indicators within a latent variable. Traditionally measured by 

Cronbach’s Alpha, and Composite Reliability (CR). Cronbach’s 

Alpha values between 0.6 and 0.7 are acceptable in exploratory 

research, while CR values should also be above 0.7. The reliability 

coefficient rho_A is suggested as a balanced measure between the 

two. 

Convergent Reliability Convergent validity assesses whether multiple indicators of a 

latent variable are theoretically measuring the same 

construct. It is typically measured by the Average Variance 

Extracted (AVE). An AVE value of 0.5 or higher indicates 

that the construct explains at least 50% of the variance of its 

indicators. 

Discriminant Validity Discriminant validity examines whether a latent variable is 

distinct from other latent variables. It is usually assessed using 

the Fornell-Larcker criterion, cross-loadings, and the 

Heterotrait-Monotrait Ratio (HTMT). The Fornell-Larcker 

criterion requires that the square root of the AVE of a latent 

variable should be greater than its correlations with all other 

latent variables. HTMT is considered a more robust method, 

with values below 0.90 (or 0.85) indicating good discriminant 

validity. 
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Table 3.4 The structural model evaluation (Source; Hair et al., 2022) 

Criteria Explanation 

Collinearity  Collinearity is when two or more predictor variables in a model are 

highly correlated, leading to redundancy. In PLS-SEM, collinearity 

is assessed using the Variance Inflation Factor (VIF). 

Recommended Range: VIF values should ideally be below 3.3, with 

values above 5 indicating problematic levels of collinearity. 

Significance and relevance of 

path coefficients, 

 This criterion assesses whether the relationships (path coefficients) 

between constructs are statistically significant and relevant. 

Significance is typically evaluated using t-values, with a threshold 

of t > 1.96 for a 5% significance level (p < 0.05). Relevance is 

assessed by the magnitude of the path coefficients, with values 

around 0.10 indicating a small effect, around 0.30 indicating a 

medium effect, and above 0.50 indicating a large effect. 

Model explanatory power in 

sample model fit (R2) 

R² (coefficient of determination) indicates the proportion of 

variance in the dependent variable explained by the model’s 

independent variables. Recommended Range: R² values can 

vary based on the field, but generally, 0.25 indicates weak, 

0.40 moderate, and 0.60 substantial explanatory power. 

Predictive power (PLSpredict 

procedure) 

The predictive power is evaluated using the PLSPredict 

procedure to assess how well the model predicts the outcomes 

for new cases (out-of-sample). Recommended Range: The 

goal is to have Q² predict values greater than 0 and as close to 

1, indicating high predictive accuracy for new data. Also, the 

PLS-SEM model should have a lower Root Mean Squared 

Error (RMSE) than the linear regression model (LM) to 

demonstrate predictive relevance. 

3.4.9. Measurement and Structural Model Evaluation in Mediation Analysis  

Mediation occurs when a third construct, known as a mediator, intervenes in the relationship between 

two other constructs (Dobre, 2022). Specifically, in the PLS path model, variations in the exogenous 

construct trigger changes in the mediator construct, impacting the endogenous construct. (Hair et al., 

2022, cited in Dobre, 2022). Thus, the mediator construct plays a crucial role in shaping the relationship 

between two constructs by revealing the underlying mechanism or process through which the influence 

occurs, thereby enhancing the understanding of the direct relationship and how it changes in the 

mediator’s presence. The bootstrapping method enables the evaluation of relationships between variables 

with mediating effects (Hair et al., 2022). A bootstrapping procedure (5000 resamples) from PLS-SEM 

was employed to derive a distribution of the HTMT statistic, as recommended in the reviewed studies 
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(Cao et al., 2021; Chatterjee, Rana, Dwivedi, et al., 2021). This study employed a segmentation method 

to test hypothesis H11 (refer to Chapter 2, section 2.2.6), examining the impact of AI adoption as the 

independent variable on the dependent variable, while also assessing the mediating role of KACAP in 

the relationship between AI adoption and open innovation.  

3.5. Grounded Theory Methods for Data Collections Procedure and Analysis in Study 2 

Study 2 followed the principles of Grounded Theory (GT). The qualitative grounded theory of Study 2 

aims to theorize an AI-enabled open innovation framework and subsequent propositions. GT refers to 

the discovery of theory from data and the inductive development of theory through qualitative analysis 

of data (Glaser & Strauss, 2017; Greguletz et al., 2019; Saunders et al., 2016). This definition focuses on 

the GT process, but according to (Chamberlain-Salun et al., 2020, as cited in Lawler, 2023, p. 36), it is 

“the product of a constructed understanding of the world that forms and refines during the phases of 

analysis (GT process), which ultimately resolves as a substantive theory (GT product)”. Thus, GT 

consists of “duality” with both a process and a product (Lawler, 2023, p.36). 

Thus, the purpose of employing a GT is to address SRO 2. Since data analysis is central to GT, this 

section proposes a systematic approach to concept development, focusing on data collection from 

interviews, which includes sampling, pilot testing, interviewing, transcribing, coding procedures, data 

analysis, and conceptual framework development. This approach emphasizes an interpretive rather than 

a logico-deductive process (Suddaby, 2006). Derived from Bryant (2019), Bryant and Charmaz (2008), 

and Glaser and Strauss (2017), Figure 3.2 presents the core activities of GT and the theory construction 

process. These activities indicate that the core GT practices are both cyclic and frequently simultaneous 

rather than sequential, involving concurrently collecting, constant comparison, memo-writing, 

theoretical sensitivity, and coding data and analysis until the researcher concludes that they have reached 

a state where all threads of analysis have been identified (Birks & Mills, 2015; Bryant, 2019; Bryant & 

Charmaz, 2008; Glaser & Strauss, 2017; Lawler, 2023). However, it is worth noting that Glaser and 

Strauss’s original idea—that categories would naturally emerge from data through constant comparison 

by theoretically sensitive researchers—proved challenging in practice, leading to multiple refinements 

and the introduction of complex concepts like theoretical coding in the development of GT (Bryant & 

Charmaz, 2008), which is introduced in Section 3.5.3. Bryant and Charmaz (2008) suggest conducting a 

literature review for orientation in the theoretical construction process; thus, the previous literature on 

innovation ecosystems guides the completed GT in theory building. The previous literature, particularly 

Granstrand and Holgersson (2020, p.3), has provided a clear definition of the innovation ecosystem, 

which this study adopts as the theoretical foundation for AI-enabled innovation ecosystems.  

The theory-building process (see Figure 3.2) can be extended to any data (Bryant & Charmaz, 

2008), such as secondary data, observations, and interviews (Makri & Neely, 2021). Interviews aim to 

collect data for the researcher to “probe deeply to uncover new clues, open up new dimensions of a 

problem and to secure vivid, accurate inclusive accounts that are based on personal experience” (Burgess, 

1982, p. 107). Interviews are a critical method for gathering valid and reliable data, as emphasized by 
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Kahn and Cannell (1957, p.318), who define an interview as “a purpose discussion between two or more 

people.” This method allows researchers to collect data directly relevant to their research questions and 

objectives (Saunders et al., 2016). Interviews can be categorized as standardized or non-standardized, 

with the latter being particularly useful in qualitative research designs like GT. The non-standardized 

interviews include structured, semi-structured, and unstructured (in-depth interviews) (Saunders et al., 

2016). Makri and Neely (2021) summarized these interviews for different use purposes. For example, 

structured interviews are often used in surveys like questionnaires (Leavy, 2014, as cited in Makri& 

Neely, 2021). Unstructured interviews are recommended for fieldwork or ethnography research, where 

participants are expected to discuss the topic without pre-identified questions (Jamshed, 2014, as cited 

in Makri& Neely, 2021). Although there is a pre-identified guide in semi-structured interviews, the 

researcher can flexibly improve their open-ended questions or change direction as new themes emerge 

and the research progresses (Jamshed, 2014, as cited in Makri& Neely, 2021). 

 
Figure 3.2 Grounded Theory Procedural Framework and Core Activities (Source: Birks & Mills, 2015;  

Bryant, 2019; Bryant & Charmaz, 2008; Glaser & Strauss, 2017; Lawler, 2023) 

Thus, a semi-structured interview method was employed due to its several advantages. First, this 

study is exploratory in nature, focusing on understanding the current context and discovering new 

concepts, aiming to explore how to build an innovation ecosystem for apparel manufacturing. Second, 

semi-structured interviews facilitate in-depth exploration by encouraging participants to elaborate on or 

expand their responses (Saunders et al., 2016). Third, the flexibility of semi-structured interviews allows 

the researcher to adjust the order and logic of questions based on the interviewees’ responses while 

remaining within the scope of the original theme (Saunders et al., 2016). Given that Study 1 has already 
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established key themes by identifying the extent to which AI adoption drives open innovation through 

KACAP, semi-structured interviews are an essential tool for gathering further exploratory qualitative 

data, especially in research designs that adopt an inductive approach like GT (Saunders et al., 2016). 

These interviews allow for an open-ended exploration of the research topic, critical for developing new 

theories grounded in empirical data (Brinkmann & Kvale, 2015). This approach supports inductive 

reasoning, where the researcher constructs theories based on collected data rather than testing predefined 

hypotheses. Subsequently, the sampling, pilot testing, and interviewing actions are described in the 

following sub-sections.  

3.5.1. Sampling Techniques 

“Most qualitative research entails purposive sampling of some kind” (Bell et al., 2022, p. 1236). As 

previously presented, purposive sampling is a type of non-probability sampling where participants are 

selected not through randomization (Clark et al., 2021). Thus, at the initial stage of participant selection, 

purposive sampling was employed, targeting individuals from the apparel industry, universities, and 

associations who could provide rich information to address the research questions and reveal the essence 

of the phenomenon (Bryant & Charmaz, 2008). However, since managers in the apparel manufacturing 

industry are a specific and hard-to-reach professional group, snowball sampling was used through 

introductions by apparel associations to expand the participant pool. Snowball sampling is also often 

recommended when networks of individuals are the focus of attention (Coleman, 1958, as cited in Clark 

et al., 2021). Theoretical sampling is another type of GT, where participants are selected according to the 

descriptive needs of the emerging concepts and theory (Bryant & Charmaz, 2008). It is “the process of 

data collection for generating theory whereby the analyst jointly collects, codes, and analyzes this data 

and decides what data to collect next and where to find them, in order to develop his theory as it emerges” 

(Glaser and Strauss, 1967, p.45, as cited in Clark et al., 2021). In this study, as preliminary data analysis 

and theoretical concepts began to emerge during the research process, theoretical sampling was applied, 

guiding the selection of participants from the Yangtze River Delta, Pearl River Delta, and North regions 

to develop the theory further.  

This study is purposive sampling research with theoretical sampling and snowball sampling because 

the targeted interview participants, such as organizations and people (or whatever the unit of analysis is) 

within sites, are selected because of their relevance to the research questions, thus theorizing from the 

collected qualitative data (Bell et al., 2022). 

3.5.2. Interviewing Action Procedures 

Brinkmann and Kvale (2015) outline that an interview investigation consists of seven stages: thematizing, 

designing, interviewing, transcribing, analyzing, verifying, and reporting. Following their guidelines, the 

first step of thematizing involves formulating research purposes and questions and providing theoretical 

clarification of the theme under investigation, which is crucial for ensuring that the interview remains 

focused and relevant. An interview question can be evaluated concerning both a thematic (producing 
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knowledge) and a dynamic dimension (the interpersonal relationship in the interview). Brinkmann and 

Kvale (2015, p. 157) emphasize that “a good interview question should contribute thematically to 

knowledge production and dynamically to promoting a good interview interaction”. Thus, the interview 

questions were derived from research purposes and questions with the both dimensions.  

Study 2 consists of three research questions: 1) What are the emerging concepts of AI capabilities that 

Chinese manufacturing firms need? 2) What are the emerging concepts of challenges of AI adoption in 

China’s manufacturing sector? 3) 3): How to build an AI-enabled innovation ecosystem to explain the 

mechanisms through which enterprises, universities, associations, and government leverage AI to 

enhance their collaboration in China’s manufacturing sectors? 

Thus, when designing the interview, it is necessary to develop an interview guide that ensures the 

questions revolve around the research questions while maintaining flexibility to accommodate the 

characteristics of semi-structured interviews. Since the target interviewees are associated with the fashion 

industry, education, and associations, each group of interviewees was provided with the research purpose 

and corresponding interview questions (Appendix D).  

Before the formal interview, the researcher conducted pilot interviews of three interviewees in the 

apparel industry, universities, and associations as soon as the supervisor approved the interview 

guidelines. With the help of them, the guidelines could be adjusted. Subsequently, a total of 15 

interviewees participated in the interview (Table 3.5). The participants included eight apparel 

manufacturing managers and their suppliers and customers in top leadership positions at large enterprises 

and MSMEs across China’s three apparel industry clusters: the Yangtze River Delta (advanced), the 

Pearl River Delta (advanced), and North China (traditional); five scholars engaged in teaching and 

research at universities or institutions; and two leaders serving as deputies of apparel associations. These 

interviewees were contacted through the researcher’s present colleagues, previous colleagues in fashion 

firms, and the deputies of DTAA through the private networks or, in a secondary phase, via other 

interviewees’ networks (i.e., snowball sampling) (Greguletz et al., 2019). All interviewees had over ten 

years of experience in the fashion industry and academy. Six interviews ranged from approximately 40 

to 80 minutes and were conducted through face-to-face meetings at different places, such as offices and 

cafes. Nine interviews were conducted by phone and lasted 20-50 minutes, aligning with most semi-

structured interview time durations (Lin, 2018).  Interviewees’ names were kept anonymous due to pre-

interview agreements of anonymity. All participants in this study provided informed consent before being 

interviewed and were offered the purpose of the research to ensure all the interviewees consented to the 

procedures (Appendix D). The interviews were conducted by a single researcher between June and 

September 2024. All interviews were audio recorded in Chinese, transcribing in a total of 99,448 Chinese 

characters. Given that the original data was in Chinese, the researcher translated key quotations into 

English during the coding process. Yangtze River Delta (YRD) (advanced), Pearl River Delta (PRD) 

(advanced), and North China (traditional) 
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Table 3.5  Preliminary Interviewee Informants 
Interviewee 
ID. # (actors) 

Organizational 
Affiliations 

Positions Working 
Experience 

Firm 
Location 

A1 Associations Secretary-general 16-20 years North 

A2 Director 16-20 years North 
I1 Industries Production manager >20 years North 
I2 OEM business manager 10-15 years North 
I3 Fabric supplier  16-20 years YRD 
I4 ODM business manager 10-15 years PRD 
I5 Customer (retail) 10-15 years PRD 
I6 ODM business manager 10-15 years North 
I7 Customer (retail) 16-20 years North 
I8 OBM business manager 16-20 years North 
U1 Universities Dean/Professor >20 years North 
U2 Professor >20 years North 
U3 Dean/Professor 16-20 years YRD 
U4 Specialized Course 

Instructor 
10-15 years North 

U5 Specialized Course 
Instructor 

10-15 years YRD 

Legend: A=Association; I=Industry; U=University; YRD= Yangtze River Delta; PRD= Pearl River Delta; OEM = 

Original Equipment Manufacturers; ODM= Original Design Manufacturers; OBM=Original Brand Manufacturers 

3.5.3. Coding for Data Analysis 

Several scholars have defined coding. For example, Charmaz (2006) defined coding as the process 

whereby researchers define what the data are about, and it is the first step in data analysis. Köhler et al., 

(2022) state that coding means labeling and systematizing data with systematic, simplified, and 

repeatable characteristics (Köhler et al., 2022). It is the first step for the researchers to move beyond 

tangible data to make analytic interpretations (Holton, 2007; Corbin, 2008; Boeije, 2009; Saldana, 2009, 

cited Liamputtong, 2009), and it is used in projects allows researchers to understand more about iterating 

as a part of the analytical process (Locke, et al., 2020). It can help researchers give meaning to the raw 

data, make the data understandable (Elliott, 2018), and enrich the ideas and theories by engaging more 

with the data (Locke et al., 2022). Thus, it is a core process in classic GT methodology (Holton, 2007). 

There are two streams of coding methods in GT methods. Saunders (2015) mentioned one is from Strauss 

and Corbin (1998), and the other one is from Charmaz (2006), which advocates theory building from 

different coding procedures. The data was manually coded using NVivo (Version 15.0.0) software, 

employing Strauss and Corbin’s (1998) open, axial, and selective coding in three levels: setting nodes, 

encoding with software, and validity test.  

Therefore, the first step in data analysis was an open coding analysis. It involves breaking down, 

comparing, conceptualizing, and categorizing the collected data using either words informed by the 

language of actors in the field (referred to as “in vivo codes”) or notions derived from sociological 

terminology (which Glaser calls “sociological constructs”) (Bryant & Charmaz, 2008). It also involves 
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deconstructing a large volume of data according to specific principles, assigning concepts to the data, 

and then recombining it in a new way (Chen, 2000; Bryant & Charmaz, 2008). Open coding in Study 2 

aims to identify similar or related types from the collected the raw interview transcripts, assign names to 

the types, and determine the concepts and dimensions of these types. According to Chen (2000), open 

coding involves three steps: (1) Conceptualization—extracting content from the raw data, breaking it 

down into independent sentences, and identifying coding elements from these sentences, thereby 

transforming colloquial language into refined language and forming preliminary concepts; (2) Concept 

Classification—optimizing, analyzing, and selecting concepts, grouping similar concepts, analyzing the 

connections between terms, and forming conceptual clusters that belong to the same category; (3) 

Categorization—further abstracting and naming the conceptual clusters. This study used NVivo (Version 

15.0.0) for line-by-line reading and manual coding for every piece of transcript, highlighting phrases and 

passages related to the overarching what AI capabilities firm needs (SRQ3) and barriers to adoption AI 

(SQ4), thereby constructing an open innovation ecosystem through collaborations with stakeholders to 

absorb knowledge in innovation activities in China’s government’s supportive policies (MRQ). By 

coding the common words, phrases, terms, and labels mentioned by respondents, we set first-order 

categories of nodes that reflect the views of the respondents in their own words, and encode with the 

NVivo (Version 15.0.0) software. 

The second step is axial coding analysis, aiming to “produce concepts that seem to fit the data,” the 

“axial coding” phase is a more advanced stage of open coding (Strauss, 1987, p. 28, as cited in Bryant & 

Charmaz, 2008, p. 201), occurring in coding paradigms. It involves an in-depth analysis of a single 

category to further examine the first-order open nodes to detect links and patterns among them. It serves 

as the central axis for further coding and category development, potentially evolving into the core 

category of the emerging theory (Bryant & Charmaz, 2008). This iterative process yielded second-order 

themes that represent theoretically distinct concepts created by combining first-order nodes (Sjödin et al., 

2021). These themes relate to the required AI capabilities and specific barriers to adopting AI in real-

world project scenarios within apparel manufacturing. In accordance with validity considerations raised 

in the literature, the themes were further refined using insights from the literature and data from 

interviews (Kumar, et al., 1993, as cited in Sjödin et al., 2021). This step was further resulted in a list of 

coding labels and categories as the software shown to thoroughly discuss the data structure, and each 

concept should be explained from the understanding of interview  

The last step is selected coding analysis, involving the generation of aggregate dimensions that 

represented a higher level of abstraction in the coding. As the process continues, with the main concern 

being continually processed or resolved, the core concept becomes the focus of further selective data 

collection and coding efforts (Bryant & Charmaz, 2008). Here, we used insights from the literature to 

form theoretically sound dimensions relating to capabilities and barriers to adoption. Thus, the aggregate 

dimensions built on the first-order categories and second-order themes to present a theoretically and 

practically grounded categorization.  
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3.5.4. Saturation in Qualitative Research 

In GT, the emphasis is on achieving saturation, where sampling continues until conceptual 

categories and their relationships are thoroughly developed (Clark et al., 2021). It originated from the 

theoretical sampling process, which is part of the GT method of qualitative research (Nelson, 2017). 

Glaser and Strauss (1967, p. 45) define theoretical sampling as “the process of data collection for 

generating theory whereby the analyst jointly collects, codes and analyzes his data and then decides what 

data to collect next and where to find them, in order to develop his theory as it emerges”. In the words 

of Glaser and Strauss (1967, p. 61) “‘Saturation’ means that no additional data are being found whereby 

the sociologist can develop properties of the category. As the similar instances over and over again, the 

researcher becomes empirically confident that a category is saturated”. Therefore, the validity of the 

research is ensured through the test of theoretical saturation (Nelson, 2017), as failing to achieve data 

saturation can negatively affect the research’s quality and compromise content validity (Fusch and Ness, 

2015, as cited in Nelson, 2017). In the study, after interviewing 15 participants and completing the three 

stages of coding (open, axial, and selective coding), an additional 5 interviews were conducted through 

a semi-structured phone interview to examine theoretical saturation (Table 3.6). Similarly, all the five 

interviews were conducted by phone and lasted approximately 30-60 minutes. Interviewees’ names were 

kept anonymous and each provided informed consent. The interviews were conducted by a single 

researcher in October 2024. All interviews were audio recorded in Chinese, transcribing in a total of 

42853 Chinese characters.  

Table 3.6 The Interviewee Informants for Saturation Examination 
Interviewee 
ID. # (actors) 

Organizational 
Affiliations 

Positions Working 
Experience 

Locations 

I9 Industries  ODM business manager 10-15 years North 
I10 OEM production manager >20 years YDT 
I11 OBM CEO >20 years YDT 
U6 Universities  Specialized Course 

Instructor 
10-15 years North 

U7 Specialized Course 
Instructor 

10-15 years North 

Legend: A=Association; I=Industry; U=University; YRD= Yangtze River Delta; PRD= Pearl River Delta; OEM = 

Original Equipment Manufacturers; ODM= Original Design Manufacturers; OBM=Original Brand Manufacturers 

3.6. Ethical Considerations 

Ethics refers to the behavior that is related to the rights of participants, the question about how the 

research is formulated, designed, gained access, collected, processed, and stored, and the impact of 

results or conclusion from the research (Easterby-Smith et al., 2002; Gill et al., 2010; Saunders et al., 

2009; Collis & Hussey, 1997). Ethical considerations were made throughout the process, involving 

privacy, voluntary nature, consent, deception, confidentiality, anonymity, embarrassment, stress, harm, 

discomfort, pain, objectivity, and quality of research in light of the principle and procedure statement.  
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This thesis focuses on the antecedents of AI-integrated technologies, thereby driving open 

innovation in the apparel manufacturing sector without threats to the researcher or the respondents. 

However, ethical issues must be considered in this research, such that the credibility of the researcher 

and the represented research institution’s credibility and reputation are maintained (Dobre, 2022). Thus, 

an ethical research protocol approval was obtained before data collection. Also, before conducting the 

survey and interview with the participants, “informed consent forms” were provided (Bryman, 2008) 

(see Appendix C and Appendix D). In this thesis, when approaching potential participants, the aim of 

the research was given first, as well as the explanation of complete information about participation rights 

and the use of data (Saunders et al., 2006). Furthermore, informed consent should be obtained from every 

participant, and no stress was given (Saunders et al., 2009; Collis & Hussey, 1997). The survey was 

conducted through an online questionnaire platform, with the informed consent form embedded at the 

beginning of the home page. Thus, no physical informed consent was obtained, but completing the 

questionnaire implies informed consent. Meanwhile, confidentiality and anonymity have been addressed 

in the previous data collection sections of Study 1 and Study 2. 

A complete set of information on researchers and institutions was provided, and respondents could 

withdraw from the survey at any time. They were assured of confidentiality and anonymity, with all 

results adhering to ethical standards (Bhattacherjee, 2012). Audio records of semi-structured interviews 

were securely stored, and personal data was used solely for academic purposes, ensuring honest 

presentation of findings. 

3.7. Chapter Summary 

This chapter discusses the research philosophy according to the research “onion” (Saunders et al., 2016). 

As shown in Figure 4.2, this thesis employs a systematic research paradigm, design, and data collection 

and analysis procedures to explore the AI-integrated technologies applied in apparel manufacturing firms 

comprehensively and to what extent and how they drive organizations’ open innovation to achieve the 

thesis’ MRO: building AI-enabled innovation ecosystems for Chinese apparel manufacturing. SRO 1 

aims to examine the antecedents of AI adoption, thus driving knowledge KACAP and open innovation 

in Chinese apparel manufacturing firm. SRO 2 aims to theorize frameworks and propositions by 

categorizing how AI drives organizations’ open innovation to build innovation ecosystems through 

enhancing internal organizational resources and external collaborations with actors from universities and 

associations. SRO 1 provides a causal relationship by what and why questions, which provides a 

foundation for grounded theory to address SRO 2, demonstrating the close relationships between both. 

Consequently, this thesis comprises two studies to achieve the MRO (see Figure 4.3). 

Study 1 (to achieve SRO 1) predominantly utilized a quantitative research approach, leveraging 

PLS-SEM to empirically validate the antecedents of AI adoption and its consequential effects on 

knowledge absorptive capacity and open innovation capability. Through the rigorous statistical analysis 

of a substantial dataset, this study examined the causal relationships underpinning AI adoption and these 
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critical innovation-related constructs, thereby furnishing robust empirical evidence that substantiates the 

proposed hypotheses. 

Study 2 (to achieve SRO 2) adopted a qualitative research approach, grounded in the principles of 

grounded theory, to explore the intricate processes through which organizations architect an AI-driven 

open innovation ecosystem. By conducting semi-structured interviews, this study constructed an 

interpretive framework that explicate the specific mechanisms and pathways through which AI catalyzes 

the development of innovation ecosystems within organizational settings. 

Thus, Study 1 has a strong relationship with Study 2. The empirical insights of Study 1 serve as a 

foundational basis for the theoretical framework developed in Study 2, enhancing its credibility and 

generalizability. Vice versa, the qualitative inquiry of Study 2 provides a rich, theoretical context that 

deepens the understanding of the causal relationships identified in Study 1. The subsequent chapters 

separately present the results of these methods in the two studies.  
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Figure 3.3 Frameworks of Methodology 
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4. Results of Study 1 and Analysis 

4.1. Introduction 

The results of Study 1 will be presented in this chapter according to the research methods in Chapter 3. 

This study focuses on the managers in the apparel manufacturing industry, utilizing the “key informants” 

approach (Klein et al., 2024). As key decision-makers or managers within their organizations, these 

respondents provide valuable insights into the impact of AI technologies on traditional industries. The 

research sample consists of owners and managers with decision-making authority, reflecting the current 

state of technology adoption in the apparel manufacturing sector and how these technologies influence 

both internal and external knowledge resources absorption, ultimately affecting the firms’ open 

innovation practices. This chapter is structured in a series of subsections, beginning with the introduction. 

Section 4.2 then outlines the outcomes of the pre-test and the pilot study. In Section 4.3, the focus shifts 

to AI adoption and open innovation, presenting initial data analysis, summary statistics, and PLS-SEM 

modeling in its respective subsections. The chapter's final thoughts are discussed in Section 4.4. Figure 

4.1 depicts the order of these sections. 

 
Figure 4.1 Research Flow of Chapter 4 

4.2. Pilot Testing Phase  

Two specialists in intelligent design and production management, whose research concentrates on AI 

adoption, implementation, and utilization, have conducted a preliminary evaluation of the survey for the 

conceptual model. In addition, the survey was pretested by 23 apparel firm owners and managers in OBM, 

OEM, and ODM manufacturing using the same sampling frame as the previous chapter. The feedback 

revealed that pre-test participants were able to finish the survey in 8 to 15 minutes, deeming the survey 

length appropriate. Respondents also indicated that they comprehended the research's aim, which is to 

explore the adoption of AI-integrated technologies to enhance both current and future business 

performance. All the pilot participants have confirmed that they understood the term AI-integrated 

technology scopes and how they perform in apparel production areas. The feedback similarly appreciated 

the responses given, as participants maintained a neutral position when they could not relate the question 

to their specific situations. 
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The pilot study gathered 23 responses, and the analysis of Cronbach’s alpha for each construct 

demonstrated satisfactory reliability, with all values exceeding 0.7. (Table 4.1). The pilot study results 

were conducted, and the scale’s reliability was initially tested, so it was decided that the survey for the 

main study should be proceeded with. However, given the small sample size used in the pilot study, the 

data should be preliminary tested once a complete number of answers is collected. Thus, the following 

section will conduct a preliminary data analysis after collecting the full samples. 

In the analysis, the reverse-coded items have been properly recoded, ensuring that all items are now 

aligned in the same direction as the construct. This adjustment ensures accurate calculation of descriptive 

statistics, such as the mean and standard deviation, and prevents any potential distortion in validity or 

reliability assessments due to inconsistent item coding. 
Table 4.1 Construct reliability and validity for the pilot study 

Constructs Abb. Cronbach’s 

alpha  

Composite 

reliability 

(rho_a)  

Average 

variance 

extracted (AVE)  
Perceived Usefulness  PU 0.867 0.935 0.709 
Perceived Ease of Use  PEOU 0.876 0.901 0.729 
Organizational Complexity  OCX 0.848 0.945 0.758 
Organizational Readiness  ORE 0.885 0.885 0.814 
Competitive Pressure  CP 0.872 0.885 0.725 
Supplier Involvement  SIV 0.877 0.912 0.803 
Market Uncertainty  MU 0.758 0.774 0.582 
Government Support and 

Policy  

GSP 0.816 0.817 0.731 
AI Adoption  AIA 0.909 0.909 0.787 
Knowledge Absorptive 

Capability  

KACAP 0.832 0.852 0.678 
Open Innovation  OI 0.829 0.863 0.600 

4.3. Preliminary Data Analysis  

4.3.1. Outliers 

The outliers have been assessed concerning the z-score criterion of +/- 3.29 (Dobre, 2022) through SPSS 

(Table 4.2), and the author has not considered these outliers being removed from the data set because 

there were no significant differences in the variable’s indicator values or path coefficients variables have 

been noticed through “5% trimmed mean test” even though the pruning method was applied to reduce 

the impact of outliers, the overall distribution of the data was not significantly affected, and the original 

mean is very close to the pruned mean (Pallant, 2020). Therefore, all the respondents’ answers in the 

dataset were kept. As per Table 4.3, the outliers initially considered for removal had minimal differences 

between the mean and the 5% trimmed mean. Therefore, the researcher has decided to retain them in the 

data set. This is aligned with the decision of Dobre (2022). 
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Table 4.2 Construct items’ highest and lowest standard scores 

Construct Item Minimum Maximum Recommended Action 
PU Zscore(pu_1) -2.818 1.324 Retain  

Zscore(pu_2) -3.702 1.315 Discard  
Zscore(pu_3) -3.928 1.214 Discard  
Zscore(pu_4) -2.611 1.145 Retain  
Zscore(pu_5) -2.944 1.377 Retain 

PEOU Zscore(peou_1) -3.523 1.579 Discard  
Zscore(peou_2) -3.797 1.537 Discard  
Zscore(peou_3) -3.062 1.308 Retain  
Zscore(peou_4) -3.270 1.336 Retain 

OCX Zscore(ocx_1) -1.660 2.633 Retain  
Zscore(ocx_2) -1.521 2.665 Retain 

ORE Zscore(ore_1) -3.044 1.443 Retain  
Zscore(ore_2) -3.216 1.337 Retain  
Zscore(ore_3) -3.551 1.292 Discard 

CP Zscore(cp_1) -3.842 1.169 Discard  
Zscore(cp_2) -3.739 1.303 Discard  
Zscore(cp_3) -3.933 1.410 Discard 

SIV Zscore(siv_1) -2.939 1.437 Retain  
Zscore(siv_2) -2.504 1.338 Retain  
Zscore(siv_3) -2.900 1.235 Retain 

MU Zscore(mu_1) -3.740 1.446 Discard  
Zscore(mu_2) -3.030 1.288 Retain  
Zscore(mu_3) -3.783 1.255 Discard  
Zscore(mu_4) -3.470 1.292 Discard 

GSP Zscore(gsp_1) -3.889 1.504 Discard  
Zscore(gsp_2) -3.430 1.388 Discard  
Zscore(gsp_3) -3.905 1.232 Discard 

AIA Zscore(aia_1) -4.205 1.353 Discard  
Zscore(aia_2) -2.377 1.305 Retain  
Zscore(aia_3) -3.630 1.198 Discard  
Zscore(aia_4) -2.667 1.386 Retain 

KACAP Zscore(kacap_1) -3.828 1.406 Discard  
Zscore(kacap_2) -3.945 1.283 Discard  
Zscore(kacap_3) -3.882 1.250 Discard  
Zscore(kacap_4) -4.061 1.307 Discard 

OI Zscore(oi_1) -4.034 1.171 Discard  
Zscore(oi_2) -4.128 1.315 Discard  
Zscore(oi_3) -4.050 1.271 Discard  
Zscore(oi_4) -3.216 1.337 Retain  
Zscore(oi_5) -4.051 1.194 Discard 

Legend: PU=perceived usefulness; PEOU=perceived ease of use; OCX=organizational complexity; 
ORE=organizational readiness; CP=competitive pressure. SIV=supplier involvement; GSP=government 
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support and policy; AIA=AI adoption; KACAP=knowledge absorptive capacity; OI=open innovation 

Table 4.3 Outliers - Items Means and 5% Trimmed Means Comparison 

Construct Item Mean  5% Trimmed 

mean 

Absolute 

difference  

Decision 

PU Zscore(pu_2) 3.95 4.00 0.050 Retain  
Zscore(pu_3) 4.06 4.10 0.040 Retain 

PEOU Zscore(peou_1) 3.76 3.80 0.040 Retain  
Zscore(peou_2) 3.85 3.86 0.010 Retain 

ORE Zscore(ore_3) 3.93 3.98 0.050 Retain 
CP Zscore(cp_1) 4.07 4.12 0.050 Retain  

Zscore(cp_2) 3.97 4.00 0.030 Retain  
Zscore(cp_3) 3.94 3.98 0.040 Retain 

MU Zscore(mu_1) 3.88 3.93 0.050 Retain  
Zscore(mu_3) 4.00 4.05 0.050 Retain  
Zscore(mu_4) 3.91 3.97 0.060 Retain 

GSP Zscore(gsp_1) 3.88 3.90 0.020 Retain  
Zscore(gsp_2) 3.85 3.89 0.040 Retain  
Zscore(gsp_3) 4.04 4.09 0.050 Retain 

AIA Zscore(aia_1) 4.03 4.05 0.020 Retain  
Zscore(aia_3) 4.01 4.05 0.040 Retain 

KACAP Zscore(kacap_1) 3.93 3.97 0.040 Retain  
Zscore(kacap_2) 4.02 4.06 0.040 Retain  
Zscore(kacap_3) 4.03 4.06 0.030 Retain  
Zscore(kacap_4) 4.03 4.07 0.040 Retain 

OI Zscore(oi_1) 4.10 4.15 0.050 Retain  
Zscore(oi_2) 4.03 4.07 0.040 Retain  
Zscore(oi_3) 4.04 4.07 0.030 Retain  
Zscore(oi_5) 4.09 4.12 0.030 Retain 

Legend: PU=perceived usefulness; PEOU=perceived ease of use; OCX=organizational complexity; 
ORE=organizational readiness; CP=competitive pressure. SIV=supplier involvement; GSP=government 
support and policy; AIA=AI adoption; KACAP=knowledge absorptive capacity; OI=open innovation 

4.3.2. Normality 

According to Hair et al. (2022), the Kolmogorov-Smirnov test was recommended in SPSS to assess the 

normality of the dataset, with significant results observed for all statistics (Table 4.4), suggesting that 

none of the items adhered to a normal distribution. However, the values of kurtosis and skewness for all 

items fell within the acceptable range of +/-2 (Hair et al., 2010). As a result, all items were retained for 

further analysis, as Partial Least Squares Structural Equation Modeling (PLS-SEM) was chosen as the 

method for statistical analysis. 
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Table 4.4 Normality Assessment 

 Mean Std. 
Deviation 

Skewness  Kurtosis  Kolmogorov-
Smirnova  Statistic Statistic Statistic Std. 

Error 

Statistic Std. 

Error 

Statistic Sig. 
pu_1 4.04 0.72 -0.48 0.15 0.18 0.30 0.29 0.00 
pu_2 3.95 0.80 -0.63 0.15 0.44 0.30 0.29 0.00 
pu_3 4.06 0.78 -0.77 0.15 1.11 0.30 0.28 0.00 
pu_4 4.09 0.80 -0.60 0.15 -0.10 0.30 0.25 0.00 
pu_5 3.72 0.93 -0.54 0.15 0.13 0.30 0.25 0.00 
peou_1 3.76 0.78 -0.44 0.15 0.45 0.30 0.29 0.00 
peou_2 3.85 0.75 -0.22 0.15 0.01 0.30 0.27 0.00 
peou_3 3.80 0.92 -0.54 0.15 -0.30 0.30 0.28 0.00 
peou_4 3.84 0.87 -0.41 0.15 -0.29 0.30 0.25 0.00 
ocx_1 2.55 0.93 0.30 0.15 -0.56 0.30 0.26 0.00 
ocx_2 2.45 0.96 0.56 0.15 0.06 0.30 0.26 0.00 
ore_1 3.71 0.89 -0.52 0.15 0.04 0.30 0.27 0.00 
ore_2 3.83 0.88 -0.65 0.15 0.34 0.30 0.28 0.00 
ore_3 3.93 0.83 -0.52 0.15 0.23 0.30 0.25 0.00 
cp_1 4.07 0.80 -0.74 0.15 0.82 0.30 0.26 0.00 
cp_2 3.97 0.79 -0.44 0.15 0.01 0.30 0.26 0.00 
cp_3 3.94 0.75 -0.50 0.15 0.51 0.30 0.29 0.00 
siv_1 4.01 0.69 -0.44 0.15 0.42 0.30 0.31 0.00 
siv_2 3.96 0.78 -0.30 0.15 -0.46 0.30 0.26 0.00 
siv_3 4.10 0.73 -0.40 0.15 -0.29 0.30 0.26 0.00 
mu_1 3.88 0.77 -0.54 0.15 0.46 0.30 0.30 0.00 
mu_2 3.81 0.93 -0.54 0.15 -0.22 0.30 0.26 0.00 
mu_3 4.00 0.79 -0.59 0.15 0.33 0.30 0.27 0.00 
mu_4 3.91 0.84 -0.79 0.15 0.89 0.30 0.30 0.00 
gsp_1 3.88 0.74 -0.37 0.15 0.31 0.30 0.29 0.00 
gsp_2 3.85 0.83 -0.54 0.15 0.49 0.30 0.26 0.00 
gsp_3 4.04 0.78 -0.69 0.15 0.65 0.30 0.28 0.00 
aia_1 4.03 0.72 -0.40 0.15 0.36 0.30 0.27 0.00 
aia_2 3.94 0.82 -0.47 0.15 -0.21 0.30 0.27 0.00 
aia_3 4.01 0.83 -0.53 0.15 -0.07 0.30 0.24 0.00 
aia_4 3.97 0.74 -0.52 0.15 0.28 0.30 0.30 0.00 
kacap_1 3.93 0.76 -0.58 0.15 0.59 0.30 0.30 0.00 
kacap_2 4.02 0.77 -0.69 0.15 1.05 0.30 0.28 0.00 
kacap_3 4.03 0.78 -0.52 0.15 0.20 0.30 0.26 0.00 
kacap_4 4.03 0.75 -0.75 0.15 1.14 0.30 0.31 0.00 
oi_1 4.10 0.77 -0.72 0.15 0.71 0.30 0.27 0.00 
oi_2 4.03 0.74 -0.62 0.15 0.85 0.30 0.29 0.00 
oi_3 4.04 0.75 -0.50 0.15 0.31 0.30 0.26 0.00 
oi_4 3.83 0.88 -0.55 0.15 0.19 0.30 0.26 0.00 
oi_5 4.09 0.76 -0.56 0.15 0.28 0.30 0.25 0.00 
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4.4. Descriptive Statistic Analysis  

4.4.1. Firm Demographics 

The findings on the firm demographics, as shared by the respondents, are summarized in Table 4.5. 

According to the quota sampling method, and measured with employees, all responses were from micro, 

small, and medium-sized enterprises (MSMEs), with a higher number of small and medium-sized firms 

(74.3%, 15.6%) answering the survey than micro-sized managers (10%).  

Table 4.5 Firm Demographics (N=269) 

Variable  Group  Frequency  % 
Firm size Micro 27 10%  

Small  42 16%  
Medium 200 74% 

Firm age <6year 52 19%  
6-10year 72 27%  
11-15year 63 23%  
>15year 82 31% 

Business type Single 187 70%  
OEM 49 26%  
ODM 76 41%  
OBM 62 33%  
Multiple 82 30%  
OEM &ODM 19 23%  
OEM &OBM 7 9%  
ODM&OBM 35 43%  
OEM &ODM&OBM 21 25% 

Industry clusters Northern 61 23%  
Western 52 19%  
Yangtze River Delta 87 32%  
Pearl River Delta 69 26% 

Legend: OEM = Original Equipment Manufacturers; ODM= Original Design Manufacturers; OBM=Original Brand 

Manufacturers 

Regarding the firm age, approximately one-third of manufacturing firms (31%) are over 15 years old. 

27% of firms were established between six and ten years, followed by 11-15 years (23%) and below six 

years (19%). 

As for represented business types in the sample, a single type (OEMs, ODMs, or OBMs) of the 

three accounts for 70%, over one-third of the multiple types (two or three included) (30%). Among the 

firms in single business type (70%), the highest proportion is ODM firms, accounting for 40.6%, 

followed by OBMs and OEMs, which take 33% and 26%, respectively. Regarding those firms that 

possess both or all business types, the number of OEMs with OBMs takes the minimum proportion (9%). 

In contrast, the number of firms with business types of ODMs and OBMs takes the highest percentage 
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(43%). The rest of the firms with OEMs and ODMs and the complete covering types of business signifies 

the middle ones, accounting for 23% and 26%, respectively.  

As the initial 32 respondents’ firm profiles show that the firm location from the CNGA and DTAA 

database, and the third agency provided the IP of respondents, all the firm location information was 

collected, showing that the Yangtze River Delta and Pearl River Delta have the most respondents and 

the former takes almost one-third proportion (32%). The latter number of firms is close to the Northern 

traditional apparel manufacturing clusters (23%), accounting for 26%. The Western apparel industry 

cluster shows the minimum number of firms (19%).  

4.4.2. Variables Descriptive Statistics  

The descriptive statistics evaluated the average and the variability for the observed variables, including 

both items and constructs, as shown in Table 4.6. The findings of the study are provided for the entire 

sample. Regarding constructs, respondents strongly agreed with supplier involvement (SIV: 4.025) and 

open innovation (OI: 4.019). The variability for these constructs is greatest for supplier involvement 

(SIV: 0.585) and least for open innovation (OI: 0.571). Constructs that respondents lean towards 

agreements are knowledge absorptive capacity (KACAP: 3.999), competitive pressure (CP: 3.993), AI 

adoption (AIA: 3.986), perceived usefulness (PU:3.972), government support and policy (GSP: 3.924), 

market uncertainty (MU: 3.902), organizational readiness (ORE: 3.824), and perceived ease of use 

(PEOU: 3.813). The variability for these constructs is greatest for organizational readiness (ORE: 0.709) 

and least for knowledge absorptive capacity (KACAP: 0.572). One construct that respondents lean 

towards disagreements is organizational complexity (OCX: 2.500), and the standard distribution for this 

construct is 0.831, which is the highest among all of the constructs. 

4.5. Structural Equation Modelling   

The preceding section outlined the initial analysis of the dataset, and the descriptive statistics provided a 

comprehensive understanding of the sample’s responses to the items and constructs. This section details 

the findings from applying the PLS-SEM technique, which was employed to assess the empirical 

validation of the research model. The Kolmogorov-Smirnov test (p<0.001) revealed that the data did not 

conform to a normal distribution, thus validating the appropriateness of using PLS-SEM (Hair et al., 

2022). PLS-SEM consists of two stages for evaluating the research model (Hair et al., 2022), including 

the assessment of the measurement model, also known as the outer model, and the evaluation of the 

structural model, referred to as the inner model (Hair et al., 2022).The measurement model assesses the 

construct validity and reliability of the indicators, and the structural model examines the hypothesized 

causal relationships between latent variables (Hair et al., 2022). 
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Table 4.6 Variables Descriptive Statistics (N=269) 

Construct Indicators Minimum 

(Strongly 

Disagree) 

Maximum 

(Strongly 

agree) 

Mean Std. 

Deviation 

Mean Std. 

Deviation 

PU pu_1 2 5 4.04 0.724 3.972 0.590 
pu_2 1 5 3.95 0.797 
pu_3 1 5 4.06 0.778 
pu_4 2 5 4.09 0.799 
pu_5 1 5 3.72 0.926 

PEOU peou_1 1 5 3.76 0.784 3.813 0.632 
peou_2 1 5 3.85 0.750 
peou_3 1 5 3.80 0.915 
peou_4 1 5 3.84 0.868 

OCX ocx_1 1 5 2.55 0.932 2.500 0.831 
ocx_2 1 5 2.45 0.955 

ORE ore_1 1 5 3.71 0.891 3.824 0.709 
ore_2 1 5 3.83 0.878 
ore_3 1 5 3.93 0.826 

CP cp_1 1 5 4.07 0.798 3.993 0.619 
cp_2 1 5 3.97 0.793 
cp_3 1 5 3.94 0.749 

SIV siv_1 2 5 4.01 0.686 4.025 0.585 
siv_2 2 5 3.96 0.781 
siv_3 2 5 4.10 0.726 

MU mu_1 1 5 3.88 0.771 3.902 0.612 
mu_2 1 5 3.81 0.926 
mu_3 1 5 4.00 0.794 
mu_4 1 5 3.91 0.840 

GSP gsp_1 1 5 3.88 0.742 3.924 0.624 
gsp_2 1 5 3.85 0.830 
gsp_3 1 5 4.04 0.779 

AIA aia_1 1 5 4.03 0.720 3.986 0.577 
aia_2 2 5 3.94 0.815 
aia_3 1 5 4.01 0.829 
aia_4 2 5 3.97 0.740 

KACAP kacap_1 1 5 3.93 0.764 3.999 0.572 
kacap_2 1 5 4.02 0.765 
kacap_3 1 5 4.03 0.779 
kacap_4 1 5 4.03 0.745 

OI oi_1 1 5 4.1 0.769 4.019 0.571 
oi_2 1 5 4.03 0.735 
oi_3 1 5 4.04 0.752 
oi_4 1 5 3.83 0.878 
oi_5 1 5 4.09 0.763 

Legend: PU=perceived usefulness; PEOU=perceived ease of use; OCX=organizational complexity; 
ORE=organizational readiness; CP=competitive pressure. SIV=supplier involvement; GSP=government 
support and policy; AIA=AI adoption; KACAP=knowledge absorptive capacity; OI=open innovation 
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4.5.1. Measurement Model 

As previously presented in the criteria recommended by Hair et al. (2022), the measurement model results 

include convergent validity (Table 4.7), such as outer loadings, indicator reliability, and average variance 

extracted (AVE), internal consistency reliability (Table 4.8), such as construct reliability and validity, 

and discriminant validity (Tables 4.9 and 4.10). A summary of the measurement model’s results is 

presented in Table 4.11. 

4.5.1.1. Convergent Validity 

The first step in reflective measurement model assessment involves examining the outer loadings of the 

indicators (Hair et al., 2022). Hair et al. (2022) state that the outer loadings should be 0.708 or higher, 

but 0.70 is considered close enough to 0.708 to be acceptable. However, these indicators were retained 

considering some indicators’ (between 0.40 and 0.7) contribution to the content validity (mu_2:0.666, 

oi_4:0.653, pu_5: 0.670). These indicators were then conducted for internal consistency reliability and 

convergent validity (Hair et al., 2022). As the construct measures met the recommended thresholds, all 

indicators were retained. As shown in Table 4.7, the convergent validity of all the measurement models 

has been achieved, as the indicator reliability has been established, with the indicators’ outer loadings 

meeting the required minimum threshold. Furthermore, the AVE values of all constructs are well above 

0.50, confirming satisfactory convergent validity.  

4.5.1.2. Internal Consistency 

The second step is to evaluate internal consistency reliability (Hair et al., 2022). The ρA reliability metric 

usually lies between Cronbach’s alpha and the composite reliability and is therefore considered a good 

compromise between these two measures (Hair et al., 2022). Table 4.8 shows that both Cronbach’s Alpha 

and the Composite Reliability (ρ_A) are above the 0.70 threshold, indicating that all construct measures 

exhibit high internal consistency reliability. Hair et al. (2022, p.151) state, “reliability values higher than 

0.95 are not desirable”, and the results show that both Cronbach’s Alpha and the Composite Reliability 

(ρ_A) are below 0.95, signifying the internal consistency is satisfied.
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Table 4.7 Results of Convergent Validity 

Construct Indicators Outer Loadings Indicator reliability AVE 
PU pu_1 0.796 0.634 0.543 

pu_2 0.729 0.531  
pu_3 0.769 0.591  
pu_4 0.713 0.508  
pu_5 0.670 0.449  

PEOU peou_1 0.804 0.646 0.578 
peou_2 0.729 0.531  
peou_3 0.734 0.539  
peou_4 0.771 0.594  

OCX ocx_1 0.834 0.696 0.771 
ocx_2 0.919 0.845  

ORE ore_1 0.810 0.656 0.67 
ore_2 0.798 0.637  
ore_3 0.845 0.714  

CP cp_1 0.762 0.581 0.63 
cp_2 0.816 0.666  
cp_3 0.802 0.643  

SIV siv_1 0.807 0.651 0.64 
siv_2 0.795 0.632  
siv_3 0.799 0.638  

MU mu_1 0.750 0.563 0.536 
mu_2 0.666 0.444  
mu_3 0.781 0.610  
mu_4 0.726 0.527  

GSP gsp_1 0.809 0.654 0.635 
gsp_2 0.750 0.563  
gsp_3 0.829 0.687  

AIA aia_1 0.780 0.608 0.552 
aia_2 0.713 0.508  
aia_3 0.745 0.555  
aia_4 0.734 0.539  

KACAP kacap_1 0.775 0.601 0.56 
kacap_2 0.727 0.529  
kacap_3 0.742 0.551  
kacap_4 0.749 0.561  

OI oi_1 0.759 0.576 0.541 
oi_2 0.780 0.608  
oi_3 0.718 0.516  
oi_4 0.653 0.426  
oi_5 0.760 0.578  

Legend: PU=perceived usefulness; PEOU=perceived ease of use; OCX=organizational complexity; 
ORE=organizational readiness; CP=competitive pressure. SIV=supplier involvement; GSP=government 
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support and policy; AIA=AI adoption; KACAP=knowledge absorptive capacity; OI=open innovation 

Table 4.8 Results of Internal Consistency 

Latent 

Variables 

Indicators Cronbach's 

alpha 

Composite 

reliability (rho_a) 

Composite 

reliability (rho_c) PU pu_1 0.788 0.793 0.855 
pu_2 
pu_3 
pu_4 
pu_5 

PEOU peou_1 0.757 0.761 0.845 
peou_2 
peou_3 
peou_4 

OCX ocx_1 0.710 0.766 0.870 
ocx_2 

ORE ore_1 0.754 0.762 0.859 
ore_2 
ore_3 

CP cp_1 0.706 0.708 0.836 
cp_2 
cp_3 

SIV siv_1 0.719 0.719 0.842 
siv_2 
siv_3 

MU mu_1 0.716 0.733 0.821 
mu_2 
mu_3 
mu_4 

GSP gsp_1 0.712 0.718 0.839 
gsp_2 
gsp_3 

AIA aia_1 0.731 0.736 0.831 
aia_2 
aia_3 
aia_4 

KACAP kacap_1 0.739 0.741 0.836 
kacap_2 
kacap_3 
kacap_4 

OI oi_1 0.787 0.793 0.854 
oi_2 
oi_3 
oi_4 
oi_5 
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Legend: PU=perceived usefulness; PEOU=perceived ease of use; OCX=organizational complexity; 
ORE=organizational readiness; CP=competitive pressure. SIV=supplier involvement; GSP=government 
support and policy; AIA=AI adoption; KACAP=knowledge absorptive capacity; OI=open innovation 

4.5.1.3. Discriminant Validity, Correlations, and AVE 

The evaluation of the measurement model was concluded with an assessment of discriminant validity. 

This assessment determines whether a construct is separate and unique from other constructs (Hair et al., 

2022), following the Fornell-Larcker Criterion, suggesting that the constructs discriminate well because 

the square root of the AVE of each reflective construct is larger than the correlations with the remaining 

constructs (see Table 4.9). To supplement the Fornell-Larcker Criterion, a heterotraitmonotrait (HTMT) 

correlational ratio test was performed (Henseler et al., 2015). Table 4.10 shows that all the values of the 

constructs are lower than the suggested threshold value of 0.85 except competitive pressure (CP:0.880), 

which is acceptable for conceptually similar constructs (Hair et al., 2022). This indicates that the 

correlations between different constructs are relatively low, meaning each construct has a distinct concept, 

demonstrating high discriminant validity among the various constructs (Cao et al., 2021). Table 4.11 

summarizes the results of the measurement model.  

4.5.2. Structural Model 

The last step is to assess the structural model using the bootstrapping routine. As a component of the 

structural model evaluation, all required procedures (Hair et al., 2022) were performed. The model was 

analyzed for multicollinearity, the significance and relevance of path coefficients, the model's 

explanatory capability through in-sample fit (R2) and out-of-sample fit (Q2), along with an evaluation of 

its predictive ability using PLSpredict (Hair et al., 2022). The final stage of the structural model evaluation 

involved comparing different models (Hair et al., 2022). 
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Table 4.9 Discriminant Validity (Fornell- Lacker ratios) 

 AIA CP GSP KACAP MU OI OCX ORE PU PEOU SIV 

AIA 0.743           
CP 0.641 0.794          
GSP  0.599 0.440 0.797         
KACAP 0.598 0.565 0.541 0.749        
MU 0.590 0.531 0.515 0.451 0.732       
OI 0.602 0.587 0.547 0.631 0.532 0.735      
OCX -0.152 -0.165 -0.119 -0.020 -0.182 -0.071 0.878     
ORE 0.458 0.433 0.524 0.573 0.310 0.448 -0.032 0.818    
PU 0.642 0.587 0.533 0.508 0.498 0.560 -0.055 0.509 0.737   
PEOU 0.548 0.503 0.545 0.512 0.466 0.474 -0.074 0.622 0.559 0.760  
SIV 0.532 0.571 0.473 0.586 0.459 0.587 -0.147 0.444 0.520 0.507 0.800 

 

Table 4.10 Discriminant Validity (HTMT ratios) 

 AIA CP GSP KACAP MU OI OCX ORE PU PEOU SIV 

AIA             
CP 0.886           
GSP  0.827 0.622          
KACAP 0.807 0.781 0.747         
MU 0.795 0.735 0.707 0.603        
OI 0.785 0.785 0.726 0.824 0.684       
OCX 0.200 0.227 0.188 0.082 0.272 0.098      
ORE 0.607 0.582 0.716 0.758 0.405 0.584 0.079     
PU 0.837 0.784 0.706 0.662 0.642 0.702 0.097 0.656    
PEOU 0.731 0.688 0.742 0.682 0.609 0.622 0.101 0.836 0.720   
SIV 0.729 0.801 0.662 0.801 0.620 0.771 0.205 0.591 0.690 0.687  
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Table 4.11 Results summary for measurement models (N=269)   
Convergent validity Internal Consistency 

Reliability 
Discriminant 
Validity 
HTMT<0.90? 

Construct Indicator 
  
 

Outer 
Loadings  
>0.7 

Indicator 
Reliability 
>0.5 

AVE 
 
>0.5 

Cronbach’
s Alpha 
>0.7 

Composite 
Reliability 
(rho_a)>0.7 

PU pu_1 0.796 0.634 0.578 0.757 0.761  
pu_2 0.729 0.531  
pu_3 0.769 0.591 Yes 
pu_4 0.713 0.508  
pu_5 0.670 0.449  

PEOU peou_1 0.804 0.646 0.543 0.788 0.793 Yes 
peou_2 0.729 0.531 
peou_3 0.734 0.539 
peou_4 0.771 0.594 

OCX ocx_1 0.834 0.696 0.771 0.710 0.766 Yes 
ocx_2 0.919 0.845 

ORE ore_1 0.810 0.656 0.67 0.754 0.762  
ore_2 0.798 0.637 Yes 
ore_3 0.845 0.714  

CP cp_1 0.762 0.581 0.63 0.706 0.708  
cp_2 0.816 0.666 Yes 
cp_3 0.802 0.643  

SIV siv_1 0.807 0.651 0.64 0.719 0.719  
siv_2 0.795 0.632 Yes 
siv_3 0.799 0.638  

MU mu_1 0.750 0.563 0.536 0.716 0.733 Yes 
mu_2 0.666 0.444 
mu_3 0.781 0.610 
mu_4 0.726 0.527 

GSP gsp_1 0.809 0.654 0.635 0.712 0.718  
gsp_2 0.750 0.563 Yes 
gsp_3 0.829 0.687  

AIA aia_1 0.780 0.608 0.552 0.731 0.736 Yes 
aia_2 0.713 0.508 
aia_3 0.745 0.555 
aia_4 0.734 0.539 

KACAP kacap_1 0.775 0.601 0.56 0.739 0.741 Yes 
kacap_2 0.727 0.529 
kacap_3 0.742 0.551 
kacap_4 0.749 0.561 

OI oi_1 0.759 0.576 0.541 0.787 0.793 Yes 
oi_2 0.780 0.608 
oi_3 0.718 0.516 
oi_4 0.653 0.426 
oi_5 0.760 0.578 
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Legend: PU=perceived usefulness; PEOU=perceived ease of use; OCX=organizational complexity; 
ORE=organizational readiness; CP=competitive pressure. SIV=supplier involvement; GSP=government 
support and policy; AIA=AI adoption; KACAP=knowledge absorptive capacity; OI=open innovation 

4.5.2.1. Multicollinearity Assessment 

First, the potential collinearity issues need to be examined to ensure that the estimated path coefficients 

are not biased. The results from running the PLS-SEM algorithm show that the VIF values (see Table 

4.12) of all combinations of endogenous constructs (represented by the columns) and corresponding 

predictor constructs (represented by the rows) are lower than the conservative threshold of 3.0. Therefore, 

there are no collinearity issues, satisfying the criteria in place (Hair et al., 2022). 

4.5.2.2. Significance and Relevance of Path Coefficients 

The significance and relevance of the path coefficients (Hair et al., 2022) pertain to the assessment of 

how endogenous constructs are related to exogenous ones within the structural model. The bootstrapping 

method enables the evaluation of the proposed relationships between constructs. It tests the significance 

of the path coefficients by calculating the t-values and p-values within the structural model. A 

relationship is deemed significant when the t-statistic exceeds the critical threshold. Figure 4.2 illustrates 

the estimated magnitudes of the path coefficients, while Table 4.13 presents the significant findings for 

these coefficients. The critical values for two-tailed tests are 1.65 at a 10% significance level (p < 0.10), 

1.96 at a 5% significance level (p < 0.05), and 2.57 at a 1% significance level (p < 0.01). It should be 

noted that when assuming a 5% significance level, the p-value must be lower than 0.05 to conclude that 

the relationship under investigation is statistically significant at the 5% level (Hair et al., 2022). 
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Figure 4.2 Structural Model Path Coefficients 

Legend: PU=perceived usefulness; PEOU=perceived ease of use; OCX=organizational complexity; 
ORE=organizational readiness; CP=competitive pressure. SIV=supplier involvement; GSP=government 
support and policy; AIA=AI adoption; KACAP=knowledge absorptive capacity; OI=open innovation 
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Table 4.12 Item multicollinearity assessment:VIF 

Indicator VIF 
aia_1 1.406 
aia_2 1.348 
aia_3 1.392 
aia_4 1.355 
cp_1 1.317 
cp_2 1.434 
cp_3 1.402 
gsp_1 1.416 
gsp_2 1.319 
gsp_3 1.487 
kacap_1 1.433 
kacap_2 1.364 
kacap_3 1.389 
kacap_4 1.391 
mu_1 1.413 
mu_2 1.371 
mu_3 1.347 
mu_4 1.378 
ocx_1 1.435 
ocx_2 1.435 
oi_1 1.603 
oi_2 1.643 
oi_3 1.495 
oi_4 1.334 
oi_5 1.61 
ore_1 1.584 
ore_2 1.439 
ore_3 1.553 
peou_1 1.552 
peou_2 1.326 
peou_3 1.498 
peou_4 1.606 
pu_1 1.755 
pu_2 1.462 
pu_3 1.541 
pu_4 1.481 
pu_5 1.311 
siv_1 1.438 
siv_2 1.395 
siv_3 1.397 
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Table 4.13 Relevant Constructs for the Structural Model 

Hypothesis Path Path 

 (β) 

T  

statistics 

P 

values 

Significance 

(p<0.05)? 

H1 PU -> AIA 0.228 3.319*** 0.001 Yes 
H2 PEOU -> AIA 0.068 1.033ns 0.302 No 
H3a OCX -> AIA -0.029 0.825ns 0.409 No 
H3b OCX -> KACAP 0.059 1.374ns 0.169 No 
H4a ORE -> AIA 0.003 0.046ns 0.964 No 
H4b ORE -> KACAP 0.375 4.610*** 0.000 Yes 
H5a CP -> AIA 0.255 4.211*** 0.000 Yes 
H5b CP -> OI 0.150 2.245** 0.025 Yes 
H6a SIV -> AIA 0.049 0.799ns 0.425 No 
H6b SIV -> OI 0.177 2.570*** 0.010 Yes 
H7a MU -> AIA 0.172 2.897*** 0.004 Yes 
H7b MU -> OI 0.127 2.333** 0.020 Yes 
H8a GSP -> AIA 0.212 3.257*** 0.001 Yes 
H8b GSP -> OI 0.133 1.595ns 0.111 No 
H9 AIA -> KACAP 0.435 5.443*** 0.000 Yes 
H10 KACAP -> OI 0.248 3.122*** 0.002 Yes 
H11 AIA -> OI 0.108 1.152ns 0.250 No 

Note: t-values for two-tailed test: ***t-value 2.58 (Sig. level = 1%), **1.96 (sig. level = 5%) (Hair et al., 

2022). 

H1 proposes that perceived usefulness positively affects AI adoption, supported by the statistically 

significant effect, with a path coefficient of 0.228 (p<0.001). H2 posits that perceived ease of use 

positively influences AI adoption, but it is rejected since this effect is not statistically significant. H3a 

and H3b suggest organizational complexity negatively influences AI adoption and KACAP but is 

rejected as the linkages’ path coefficients are nonsignificant (H3a=0.825ns, H3b=1.374ns). H4a suggests 

that organizational readiness positively influences AI adoption, but it is also rejected as the effect is not 

statistically significant, with a path coefficient of 0.046ns. However, Organizational readiness has a 

positive influence on KACAP, which support H4b, with path coefficients of 0.375 (t=4.610, p =0.000). 

The fifth group of hypotheses (H5a and H5b), addressing the positive association of the competitive 

pressure with the AI adoption and open innovation, is confirmed (H5a: β=0.225, t=4.211, p=0.000; H5b: 

β=0.150, t=2.245, p=0.025). H6a posits that supplier involvement positively impacts AI adoption, but 

this is rejected because the effect is not statistically significant (0.799ns). In contrast, H6b posits that 

supplier involvement positively open innovation with statistical significance (β=0.177, t=2.570, 

p=0.010). Both H7a and H7b have significant effects on AI adoption and open innovation, with path 

coefficients of 0.172 (p< 0.001) and 0.127 (p<0.05). H8a signifies a positive impact between government 

support and policies and AI adoption (β=0.212, t=3.257, p=0.001), but the positive effect of government 

support and policies on open innovation is rejected because the impact is not statistically significant 

(1.595ns). As for the ninth hypothesis (H9), AI adoption is also confirmed (β=0.435, t=5.443, p=0.000) 
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of having a positive association with the apparel manufacturing firm’s KACAP. H10 also supports the 

statistically significant effects of KACAP on open innovation, with a positive association confirmed 

(β=0.248, t=3.122, p=0.002). The last significance and relevance of the path coefficient is H11, showing 

a nonsignificant effect of AI adoption on open innovation. 

4.5.2.3. Explanatory Power 

The explanatory power of the model, as shown in Table 4.14, was analyzed using the coefficient of 

determination (R²). This metric measures how much variance in the dependent (endogenous) construct 

can be explained by the independent (exogenous) constructs (Hair et al., 2022). The analysis revealed 

that the structural model accounted for 60.7% of the variance in AI adoption (t=16.562, p<0.001), 47.4% 

in KACAP (t=8.894, p<0.001), and 55.4% in open innovation (t=10.154, p<0.001). R² values are 

interpreted based on established thresholds: 0.60 or higher indicates strong explanatory power, 0.33 is 

moderate, and 0.19 is weak (Min et al., 2020). Furthermore, the Q² values, which assess the model’s 

predictive relevance, consistently exceeded the benchmark of 0.5, confirming the model’s substantial 

predictive accuracy (Hair et al., 2019). 

Table 4.14 Structural model – coefficient of determination (R2) 

 R-square T statistics (|O/STDEV|) P values 
AIA 0.607 16.562 0.000 
KACAP 0.474 8.894 0.000 
OI 0.554 10.154 0.000 

4.5.2.4. Predictive Power  

The Q² statistic measures the extent to which the model can predict variance in the constructs it examines, 

offering valuable insights into its predictive performance (Hair et al., 2022). In PLS-SEM, Stone-

Geisser’s Q² statistic is commonly applied to evaluate out-of-sample predictive power, though its 

applicability is somewhat constrained by the choice of dependent variables. Table 4.15 highlights the 

predictive accuracy of the model, with AI adoption showing the highest Q² value (0.568), followed by 

open innovation (0.491) and KACAP (0.456). These results underscore the model’s strong predictive 

capabilities, particularly in explaining AI adoption, a pivotal construct within the framework. 

Table 4.15 Model Predictive Accuracy – Q2 Value 

 Q²predict  RMSE MAE 
AIA 0.568 0.664 0.515 
KACAP 0.456 0.745 0.534 
OI 0.491 0.719 0.532 

For further evaluating the structural model’s predictive power, Shmueli et al. (2016, as cited in Hair 

et al., 2022) created PLSpredict as an improved method with 10 folds and 10 repetitions, i.e., k and r were 
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set to 10 each, which is a primary approach to evaluate the predictive power of a PLS path model (Hair 

eta al., 2022). The PLSpredict results (Table 4.16) are presented in the context of AI adoption, KACAP, 

and open innovation. The proposed model satisfies the PLSpredict prerequisite condition where the Q2 

prediction should be >0 for all the indicators, and thus, the PLSpredict method can be used.  

The next step is to assess the model PLS-RMSE results against the naïve benchmark, i.e., linear 

regression model (LM) (Dobre, 2022). Hair et al. (2022, p. 214) highlight that “If all indicators in the 

PLS-SEM analysis have lower RMSE (or MAE) values compared to the “naïve LM benchmark”, the 

model has high predictive power”. As Table 4.16 shows, the PLSpredict results indicate that the model of 

the study has very high predictive power, given that for the dependent variables, all their corresponding 

items have the root mean squared error (RMSE) values lower than the naïve benchmark, described as the 

outcome of a LM.  

Table 4.16 Model Predictive Power – PLSpredict 

 

Q²predict 

>0 PLS-SEM_RMSE  LM_RMSE  

Predictive 

Power (<0) 
aia_1 0.384 0.566 0.621 -0.055 
aia_2 0.230 0.717 0.766 -0.049 
aia_3 0.314 0.688 0.738 -0.050 
aia_4 0.309 0.616 0.659 -0.043 
kacap_1 0.307 0.637 0.660 -0.023 
kacap_2 0.227 0.674 0.728 -0.054 
kacap_3 0.223 0.688 0.746 -0.058 
kacap_4 0.259 0.643 0.688 -0.045 
oi_1 0.303 0.643 0.663 -0.020 
oi_2 0.314 0.610 0.653 -0.043 
oi_3 0.206 0.671 0.712 -0.041 
oi_4 0.203 0.786 0.790 -0.004 
oi_5 0.288 0.645 0.689 -0.044 

4.5.3. Measurement and Structural Model Evaluation in Mediation Analysis Structural Model 

Evaluating mediations in the model should be assessed by considering all standard model evaluation 

criteria, such as convergent validity, discriminant validity, reliability, multicollinearity, explanatory 

power, and predictive power, resulting in incorrect implications regarding the mediation (Hair et al., 

2022). As these relevant assessment criteria for measurement and structural model have been evaluated 

and met previously, the mediator analysis follows. 

The mediation effect is associated with the intervention of the variable mediator in the relationship 

between two variables (Dobre, 2022). Hair et al. (2022) characterized several types of mediating effects. 

The first group consists of direct-only nonmediation (the direct effect is significant but the indirect effect 

is not), and no-effect nonmediation (neither the direct nor the indirect effect are significant), and the 

second group encompasses of complementary mediation, i.e. partial mediation (the indirect effect and 

the direct effect are both significant and point in the same direction), competitive mediation, i.e. 

suppressor variable (the indirect effect and the direct effect are both significant but point in opposite 
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directions), and indirect-only mediation, i.e. full mediation (the indirect effect is significant but the direct 

effect is not). Table 4.17 presents all specific indirect mediating effects using the SmartPLS 

bootstrapping outputs, and Table 4.18, where the author compares direct and indirect effects to classify 

the mediating impact in the model.  

Table 4.17 Significance Analysis of the Specific Indirect Effects  
Specific 
Indirect effects 
T statistics  

P values Significance 
(p<0.05)?  

PU -> AIA -> KACAP 2.901*** 0.004 Yes 
PU -> AIA -> OI 0.986 0.324 No 

PU -> AIA -> KACAP -> OI 1.846 0.065 No 
PEOU -> AIA -> KACAP 0.978 0.328 No 

PEOU -> AIA -> OI 0.711 0.477 No 

PEOU -> AIA -> KACAP -> OI 0.814 0.416 No 

OCX -> AIA -> KACAP 0.815 0.415 No 

OCX -> AIA -> OI 0.538 0.591 No 
OCX -> KACAP -> OI 1.230 0.219 No 

OCX -> AIA -> KACAP -> OI 0.706 0.480 No 

ORE -> AIA -> KACAP 0.044 0.965 No 

ORE -> AIA -> OI 0.036 0.971 No 

ORE -> KACAP -> OI 3.10*** 0.002 Yes 
ORE -> AIA -> KACAP -> OI 0.039 0.969 No 

CP -> AIA -> KACAP 3.479*** 0.001 Yes 

CP -> AIA -> OI 1.107 0.268 No 

CP -> AIA -> KACAP -> OI 1.940 0.052 No 
SIV -> AIA -> KACAP 0.766 0.444 No 

SIV -> AIA -> OI 0.562 0.574 No 

SIV -> AIA -> KACAP -> OI 0.679 0.497 No 

MU -> AIA -> KACAP 2.593** 0.010 Yes 

MU -> AIA -> OI 1.009 0.313 No 
MU -> AIA -> KACAP -> OI 1.727 0.084 No 

GSP -> AIA -> KACAP 2.615*** 0.009 Yes 

GSP -> AIA -> OI 1.039 0.299 No 

GSP -> AIA -> KACAP -> OI 1.705 0.088  No 

AIA -> KACAP -> OI 2.258** 0.024 Yes 
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Table 4.18 Types of Mediating Effects 

Path Direct 

effects 

T statistics 

Significance 

(p<0.05)? 

Indirect 

effects 

T statistics  

Significance 

(p<0.05)?  

Types of 

mediating 

effects 
OCX -> KACAP 1.374ns No 

  
No-effect 

nonmediation OCX -> AIA -> 

KACAP 

  
0.815 No 

ORE -> KACAP 4.610*** Yes 
  

Direct-only 

nonmediation ORE -> AIA -> 

KACAP 

  
0.044 No 

CP -> OI 2.245** Yes 
  

Direct-only 

nonmediation CP -> AIA -> OI 
  

1.107 No 
CP -> AIA -> 

KACAP -> OI 

  
1.940 No 

SIV -> OI 2.570** Yes 
  

Direct-only 

nonmediation SIV -> AIA -> OI 
  

0.562 No 
SIV -> AIA -> 

KACAP -> OI 

  
0.679 No 

MU -> OI 2.333** Yes 
  

Direct-only 

nonmediation MU -> AIA -> OI 
  

1.009 No 
MU -> AIA -> 

KACAP -> OI 

  
1.727 No 

GSP -> OI 1.595ns No 
  

No-effect 

nonmediation GSP -> AIA -> OI 
  

1.039 No 
GSP -> AIA -> 

KACAP -> OI 

  
1.705 No 

AIA -> OI 1.152ns No 
  

Indirectly-only 

mediation, i.e., 

Full mediation  

AIA -> KACAP -> 

OI 

  
2.258** Yes 

Note: t-values for two-tailed test: ***t-value 2.58 (Sig. level = 1%), **1.96 (sig. level = 5%) ns =Not 

Significant (Hair et al., 2022). 

As can be seen, AI adoption and KACAP are considered as two mediators. AI adoption mediates 

perceived usefulness and KACAP suggests a significance (t=2.901, p=0.004), as well as the exogenous 

variable CP (t=3.479, p=0.001), MU (t=2.593, p=0.010), and GSP (t=2.615, p=0.009) to the endogenous 

variable KACAP. However, there is no direct paths between these exogenous variables and KACAP, 

indicating the nonmediation effect. In addition, when examining the mediating role of AI Adoption, the 

results showing on the table 5.18 indicates that the direct effects that organizational readiness has on 

KACAP are significant (t=4.610, p=0.000), but its indirect effects on KACAP via merely AI adoption is 

not significant, and therefore, the type of mediating effects is found to be directly-only nonmediation. 

Similar results of direct-only nonmediation are observed in other relationships. For example, while the 
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direct effects of competitive pressure on open innovation are significant, the indirect effects via AI 

adoption alone (CP → AIA → OI) or through the sequential mediation of AI adoption and KACAP (CP 

→ AIA → KACAP → OI) are not statistically significant. A comparable trend is evident in the 

relationship between supplier involvement and open innovation. The direct effects of supplier 

involvement on open innovation remain significant, whereas the indirect effects through either AI 

adoption (SIV → AIA → OI) or the combined mediation of AI adoption and KACAP (SIV → AIA → 

KACAP → OI) do not achieve significance. Similarly, for market uncertainty and open innovation, the 

direct effects are significant, but the mediating roles of AI adoption and the sequential pathway involving 

both AI adoption and KACAP are not supported by the data. These findings suggest that while direct 

effects from competitive pressure, supplier involvement, and market uncertainty to open innovation are 

present, the mediating influence of AI adoption, whether independently or in combination with KACAP, 

does not significantly contribute to explaining these relationships. 

The second mediating significance of KACAP between organizational readiness and open 

innovation is also a nonmediation effect. In this structural model, the hypothesized mediator variable in 

this thesis model is KACAP, supporting H12 that assesses that KACAP has a positive effect with 

significance between AI adoption and open innovation. This result explains Hair et al. (2022)’s states 

that when a change occurs in the exogenous variable (AI adoption), it leads to a shift in the mediator 

(KACAP), which subsequently affects the endogenous variable (open innovation). As shown in Table 

5.18, the direct effects that AI adoption has on open innovation are statistically nonsignificant, but its 

indirect effects on open innovation via merely KACAP is significant. Accordingly, this type of mediating 

effect is found to be indirect-only mediation or full mediation. 

4.6. Summary of Chapter 

This chapter outlines the survey results collected from apparel manufacturing owners and managers in 

China, focusing on the factors influencing AI adoption and its role in driving open innovation. It begins 

with the results of the pilot testing, followed by an analysis of the survey data. The findings include 

descriptive statistics, with the remainder of the chapter dedicated to PLS-SEM analysis. Using the 

methodology outlined by Hair et al. (2022), the results for both the measurement model and structural 

model were presented. 

The primary findings of study 1 are that the knowledge absorptive capacity (KACAP) has a 

significant mediating role in firm open innovation. This suggests that in the context of Industry 4.0, which 

drives China’s traditional apparel manufacturing digitalization, firms leverage AI-integrated technology 

that was significantly influenced by TAM and TOE factors to enhance firms’ open innovation through 

improving their KACAP for surviving in this unpredicted market. However, these antecedents of AI 

adoption in firms have identified that all internal organizational factors (organizational complexity and 

organizational readiness) insignificantly impact AI adoption. In contrast, most external environmental 

factors (competitive pressure, market uncertainty, and government support and policy) have been found 
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to affect AI adoption, either on open innovation significantly. These results are discussed in detail in 

Chapter 6.
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5. Findings of Study 2 and Analysis 

5.1. Introduction  

This study applies grounded theory to conduct a qualitative data analysis through three steps: open coding, 

axial coding, and selective coding. In this study, interviews were independently coded twice by following 

a one-third proportion. Without influencing each other, the researcher first independently analyzed the 

interview transcripts, selected sentences closely related to the research questions for conceptualization, 

and categorized the concepts, further forming broader categories. Finally, the researcher compared their 

respective coding results, identifying both the similarities and differences between the two independent 

coding rounds. The identical coding content was adopted, while the differences were reviewed, deeply 

considered, and compared. This process allowed for the categorization and integration of the coding, the 

refinement of theoretical logic, and the gradual formation of the writing framework, as previously 

mentioned in Chapter3. This coding scheme is consistent with several studies (Campbell et al., 2013; 

Chen, 2000), and any concepts that appeared less than twice and could not be categorized were eliminated 

during this process. Section 5.2 presents the results of data structure by coding steps. Section 5.3 and 5.4 

presents the analysis of two parts of the data. Section 5.5 summarizes the chapter. The flow chart of 

Chapter 5 is presented in Figure 5.1. 

 
Figure 5.1 Flow Chart of Chapter 5 

5.2. Results of Data Structure 

Figure. 5.2, and 5.3 illustrate the completed data structure that resulted from the data analysis, which is 

based on the open coding, axial coding, and selected coding results. As a final selected coding step, we 

theorized about the logic and linkages across aggregate dimensions, second-order themes, and first-order 

categories. Because we sought to address what AI capabilities the Chinese manufacturing firms required 

are developed and the challenges when adopting AI in manufacturing and production processes, and how 

to build an innovation ecosystem where the collaborated actors leverage resources in activities based on 

China’s institutional (policies and standards) context, we contrasted lines of insight from the interviews. 

The initial results of study 2 were presented to two key informants to validate the results through analysis. 

Constant comparison and memo writing were conducted during the processes, and data saturation was 

examined as relevant after the first follow-up (Birks & Mills, 2015; Bryant, 2019; Bryant & Charmaz, 

2008; Foley et al., 2021; Makri & Neely, 2021; Orlikowski & Baroudi, 1990).  
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Figure 5.2  Data Structure-AI capabilities  

 
Figure 5.3 Data Structure-Barriers to AI adoption 
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Drawing on empirical data from 15 interviews, we identified and conceptualized core AI capabilities in 

apparel manufacturing practices, incorporating insights not only from managers, suppliers, and 

customers, but also from educators and apparel association leaders with expertise in the fashion industry. 

While foundational AI capabilities have been established in previous literature, our findings focus on 

unexplored capabilities, addressing gaps in AI applications within apparel production processes. To 

identify AI capabilities for apparel production, we focused initially on interview questions about current 

issues in traditional apparel production, then expanded to include AI technology awareness and the role 

of AI in addressing these issues, thereby exploring barriers and challenges to AI adoption. We present 

our findings and analysis in two parts, one relating to AI capabilities (Table 5.1), and the other dealing 

with the barriers to AI adoptions (Table 5.2). Following the presentation of findings, Chapter 6 will 

theorize the AI-enabled innovation ecosystem framework based on the two layers of results in this 

chapter. 

5.3. Required AI Capabilities  

The analysis of this section uncovers two interconnected AI-driven priorities that the apparel 
manufacturing industry in China must develop to fully leverage AI: adaptive production capability, and 
augmented human-AI collaboration capability. 

5.3.1. Adaptive Production Capability 

Adaptive production capabilities suggest that flexible production features are the basis of the integration 

of AI. These features enable manufacturers to meet the varying needs of small-batch production, fast 

order execution, and fluctuations in customer preferences. They also would allow companies to augment 

their flexibility by synchronizing production schedules, human resources, and outputs with customer-

specific requirements in an elaborate yet streamlined way. AI in Chinese apparel manufacturing is in its 

infancy (Liu et al., 2020). Thus, the required capabilities initially focus on practical production capability, 

including flexible order scheduling, efficiency, and quality control. This demonstrates a distinct but 

interrelated set of needs, with the industry respondents’ importance and level of demand linked to the 

frequency that the specific need was supported. The analysis of these frequencies to establish their 

implications for adaptive production and the relationships amongst these mechanisms is thus the focus 

of this section. 

Table 5.1 shows order management and short lead time, small-batch quick turnaround have a 

frequency of five, making them the most frequently mentioned needs within flexible order scheduling. 

This finding shows that flexible order handling and fast response to small batch demand are the primary 

status quo that MSMEs have faced recently. Especially in the post-COVID-19 period, due to the factors 

of mass clothing consumption downgrade, the customer order characteristics of downstream clothing 

brands have become small and complex to meet the needs of personalized consumers in this period.
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Table 5.1  Results of Required AI Capabilities of Apparel Manufacturing Sectors 
Selected coding Axial coding Open coding (18 nodes) Frequency Quotations 

Adaptive 
production 
capability 

Flexible 
order 
scheduling  

Order management 5 In production, AI can predict my needs, such as how many linings and trimming 
materials I require and their quantities when orders come in.(I8) 

Precision forecasting and 
real-time response 

2 Manual order dispatching, for example, in my case as a central hub, not all incoming 
goods can be sent to every customer daily. Suppose today there are 50 customer orders 
to be shipped, and among them, 10 are key customers whose products can all be sent 
out, while the products for another 10 key customers are incomplete. (I5) 

Dynamic priority adjustment 
and flexible response 
capabilities 

4 For trench coats or jackets, only basic parameters like shoulder width and length are 
needed, and minor adjustments can be made. Machines can achieve this functionality. 
Since I handle small-batch orders, if today’s customer orders a long, loose trench coat 
but tomorrow needs a cinched waist style, that’s definitely not feasible. (I6) 

Self-adjust to adapt 
customers’ shift 

2 We continuously adjust ourselves based on customer needs. (I6) 

Short lead time, small-batch 
quick turnaround 

5 Many SMEs face customer groups requiring small-batch, fast-response orders with 
very high design demands, making it difficult to meet such needs. (I4) 

Production 
efficiency 
and quality 
control 

Increase work efficiency 7 A cutting machine can handle over 100 complex pieces a day, while manually cutting 
10 sets a day is already impressive. This has significantly improved efficiency. (I1) 

Tolerance recognition and 
flexible quality control 

2 This means the machine is too precise. In reality, some error is acceptable, but AI 
machines might eliminate all errors. Whether we’re making fabrics or clothes, 
achieving zero error is impossible. (I3) 

Fabric and trimmings 
selection 

5 For lining and trimming materials, every task involves different selections. We need 
to choose from thousands of options based on customer preferences and create 
combinations. Each clip holds various materials, and each selection has similar 
underlying issues. (I4) 
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Augmented 
human-AI 
collaboration 
capability 

AI-human 
co-work 

Human precision 
augmentation and error 
compensation 

2 In practical operations, since humans are still involved, errors are inevitable 
advanced equipment struggles to accomplish due to fabric characteristics, but our 
workers can achieve it, outperforming the machines. (I2) 

Pattern cutting capabilities 
replace human beings 

4 Typically, a pattern maker takes a full day to finish a set of samples, including revisions. 
For tailored pieces, it takes at least 4-6 hours after taking measurements. Automating 
sample creation and pattern cutting significantly speeds up the process. (I1) 

Complex process engaged 
with human being 

4 The customer categories involve deep-level raw material development, including 
chemical and structural types, and require a large number of operators. (I2) 

Sewing machines need to be 
operated by human being 
with automatic machines 

9 While certain processes can intermittently or fully automate in mature workflows, 
human supervision is ultimately still required. (I6) 

Revise patterns for complex 
garment design 

2 For knitting, many patterns require adjustments upon arrival at the factory, and 
further modifications are needed for unreasonable designs. (A2) 

AI-
sustainable 
supply chain 
management 

Outsourcing different 
suppliers 

3 I need to locate “satellite factories”, each with its own strengths. (I6) 

Green manufacturing 2 They are now undergoing green upgrades, increasingly meeting the needs of 
customers and end-users. (I7) 

Save labor cost 5 In manufacturing, AI replaces manual labor and reduces costs. (I3) 
Big data 
training and 
analytics 

Data analytics 4 The template library contains 100 patterns, which can be used for machine learning 
and algorithm. Once key parameters like shoulder width and waist circumference are 
input, the angle can be directly cut, and sewing naturally follows. (I6) 

Assist apparel workers 
understand technical 
specifications 

3 Now, how to explain the most cost-intensive areas to them using the simplest and most 
understandable language is a challenge. (I2) 
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In a global fashion market where customization and rapid responses are essential for 

competitiveness (Masson et al., 2007), these two mechanisms are closely linked: effective scheduling 

enables manufacturers to manage resources optimally, supporting the capacity to meet short lead times. 

Quick turnaround for small-batch orders would be challenging without flexible order scheduling, 

especially when customer preferences shift frequently. For instance, respondent I8 highlighted the crucial 

role of predictive AI in flexible scheduling. 

“In production, AI can predict my needs, such as how many linings and trimming materials I 

require and their quantities when orders come in”. 

This capability allows manufacturers to proactively prepare resources and materials based on 

anticipated needs, thus setting the stage for faster response times. Additionally, the emphasis on quick 

turnaround is underscored by another respondent who explained, “Many SMEs face customer groups 

requiring small-batch, fast-response orders with very high design demands, making it difficult to meet 

such needs” (I4). This statement underscores how vital rapid response is to meet the specific, often 

complex demands of small-batch orders. Therefore, by enabling predictive scheduling, AI supports the 

capacity to meet rapid turnaround demands, ensuring manufacturers can fulfill customized orders 

efficiently, even as customer requirements shift. This dynamic interaction between scheduling and 

turnaround time forms the foundation for adaptive production in a highly variable apparel market.  

Supporting these primary mechanisms are additional, closely related functions, including the nodes 

of dynamic priority adjustment and flexible response (frequency: 4), precision forecasting and real-time 

response (frequency: 2), and self-adjustment to adapt to customers’ shifts (frequency: 2). Each of these 

mechanisms further enhances adaptive production by allowing manufacturers to make real-time 

adjustments as customer needs evolve. For instance, dynamic priority adjustment enables manufacturers 

to handle varying order specifications, such as respondent I6’s scenario where AI systems facilitate 

flexibility by adjusting garment styles:  

“For trench coats or jackets, only basic parameters like shoulder width and length are needed, and 

minor adjustments can be made… if today’s customer orders a long, loose trench coat but tomorrow 

needs a cinched waist style, that’s definitely not feasible without AI”.  

This flexible response aligns with and supports the primary scheduling and turnaround functions by 

ensuring that production remains adaptable to last-minute design changes without disrupting workflow. 

Another key aspect of adaptive production capability in Chinese apparel manufacturing industry is 

production efficiency and quality control, where AI plays a pivotal role in optimizing work efficiency, 

ensuring quality, and managing the complexity of material selection.  

The most frequently mentioned need within this capability is increasing work efficiency, which 

appears with a frequency of seven. This high frequency underscores the industry’s prioritization of 

automation to boost productivity. For example, respondent11 emphasized the impact of AI-driven cutting 

machines:  
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“A cutting machine can handle over 100 complex pieces a day, while manually cutting 10 sets a 

day is already impressive. This has significantly improved efficiency”.  

This quotation highlights how AI enables manufacturers to significantly enhance output, achieving 

levels of efficiency that would be impossible with manual labor alone. In an industry where rapid 

production cycles are essential, AI’s contribution to improving work efficiency is fundamental to achieve 

business performance and maintaining competitiveness (Đorđević, et al., 2024). Complementing 

efficiency is the need for tolerance recognition and flexible quality control. Although less frequently 

mentioned (Frequency:2), this mechanism addresses a critical challenge in apparel production in 

balancing precision with practical flexibility. Respondent 13 explained,  

“This means the machine is too precise. In reality, some error is acceptable, but AI machines might 

eliminate all errors. Whether we’re making fabrics or clothes, achieving zero error is impossible”.  

This perspective underscores the importance of flexible quality control systems that can 

accommodate slight imperfections, as complete elimination of error is neither feasible nor necessary. By 

providing adjustable quality parameters, AI allows manufacturers to meet quality standards without 

compromising on efficiency, aligning production outcomes with realistic expectations. 

Furthermore, fabric and trimmings selection, cited with a frequency of five, illustrating the 

complexity of managing materials to meet diverse customer preferences. As respondent I4 noted that, 

“For lining and trimming materials, every task involves different selections. We need to choose 

from thousands of options based on customer preferences and create combinations”.  

This points to the need for AI systems capable of navigating vast material options, automating the 

selection process, and recommending combinations based on past preferences or design requirements. 

The ability to streamline fabric and trimming selection is particularly valuable for small-batch production, 

where customer-specific customization is paramount. 

As the analysis of the first required AI capability shows, Chinese apparel manufacturers expect AI 

to enable them to streamline production, ensure quality, and manage material complexities in a highly 

variable and demanding environment. By improving work efficiency, balancing precision with flexibility, 

and optimizing material selection, AI empowers apparel manufacturers to achieve adaptive, responsive 

production that aligns with industry demands for speed, quality, and customization. 

 

5.3.2. Augmented Human-AI Collaboration Capability 

The augmented human-AI collaboration capability is another key capability demanded in the apparel 

manufacturing industry, focusing on co-work between AI and human experts, which is the focal point of 

Industry 5.0. Unlike fully autonomous systems, this capability emphasizes a collaborative model in 

which AI empowers human workers to improve efficiency, maintain quality, and manage complex 

processes. This collaboration is essential in the apparel manufacturing industry, where specific tasks still 

require human supervision, flexibility, and skill, such as pattern cutting and sewing. In this capability, 
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the mechanism for AI humans to work together is fundamental and includes several key requirements. 

“Automatic sewing machine also needs workers to operate” at the highest frequency, a total of nine times, 

indicates that automation equipment and human operating experience of this ability is required. This 

reflects the industry’s recognition of the limitations of AI in dealing with complex material properties 

that require human touch and supervision. For example, respondent 16 stressed, “While certain processes 

can intermittently or fully automate in mature workflows, human supervision is still required.” This 

statement emphasizes that whilst AI can simplify many facets of production, activities including stitching 

still need people who are independent enough to be able to figure out the variations in the material 

qualities and examine other details of the product to confirm that it meets the standards of the quality. 

Looking into this necessity of human assistance indicates that AI is not the one which takes over the 

occupation of skillful human beings but improves it instead through doing the main operations and 

leaving the employees with the more sensitive parts of the production process. 

The pattern-cutting capabilities to replace human beings also play a significant role, with a 

frequency of four, underscoring how AI is used to automate pattern-cutting measurement. This 

automation significantly reduces the time required for tasks traditionally handled by skilled pattern 

makers. Respondent I1 noted,  

“Typically, a pattern maker takes a full day to finish a set of samples, including revisions. For 

tailored pieces, it takes at least 4-6 hours after taking measurements. Automating sample creation and 

pattern cutting significantly speeds up the process”. By automating this process, AI frees human workers 

to engage in higher-value tasks that require creative input, creating more efficient and balanced 

workflows. 

Complex process engagement with human involvement, with a frequency of four, further 

underscores the importance of human oversight in tasks that AI alone cannot manage due to their 

complexity. This sub-mechanism addresses tasks involving specialized material properties and 

customization, where human judgment remains indispensable. As one respondent mentioned,  

“The customer categories involve deep-level raw material development, including chemical and 

structural types, and require a large number of operators” (I2). This statement reflects that while AI can 

automate certain standardized processes, it lacks the adaptability required for tasks that demand a 

nuanced understanding of materials. This highlights a key limitation of AI and reinforces the role of 

human-AI collaboration in handling tasks where adaptability and expertise are critical, further proving 

that AI's role is primarily supportive in such contexts. 

Beyond direct production tasks, AI-sustainable supply chain management is another important 

mechanism within this capability, focusing on AI’s role in reducing costs and promoting environmentally 

sustainable practices in supply chain management. This capability has been reviewed through many 

studies (Qu and Kim, 2024); however, apparel manufacturing’s sustainable supply chain capability has 

not been fully explored. The node entitled “save labor cost”, with a frequency of five, reflects the 
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economic benefits of using AI to handle labor-intensive, repetitive tasks. For example, the respondent I3 

stated,  

“In manufacturing, AI replaces manual labor and reduces costs”, highlighting how AI-driven 

automation can lower production costs by reducing dependence on manual labor for repetitive tasks. This 

cost-saving measure is particularly valuable for small and medium-sized enterprises that operates with 

limited budgets and must optimize resources.  

AI also plays a crucial role in supplier sourcing as part of sustainable SCM (Qu &Kim, 2024). The 

manufacturer can use the AI of the supplier selection tool to optimize the outsourcing strategies through 

the selection of those suppliers who meet the sustainability criteria and the environmental regulations. 

For instance, respondent I6 mentioned that “I need to locate ‘satellite factories’, each with its own 

strengths.” AI helps locate “satellite factories”, contributing to a more adaptive and resilient supply chain. 

While supplier sourcing did not emerge as the most frequently coded mechanism, it remains an integral 

component of AI-powered supply chain optimization, supporting businesses in managing sustainability 

across production networks. Moreover, green manufacturing, cited with a frequency of two, shows an 

emerging focus on sustainable practices within the industry. As one participant noted,  

“They are now undergoing green upgrades, increasingly meeting the needs of customers and end-

users” (I7), suggesting that AI supports sustainable practices by optimizing resource use and reducing 

waste, aligning production with broader environmental goals. 

Lastly, the node “big data training and analytics is a vital mechanism within this capability”, 

enabling data-driven decision-making that enhances production planning and quality control. Data 

analytics, with a frequency of four, underscores the importance of analyzing large datasets to optimize 

operations. A respondent illustrated this by stating, 

 “The template library contains 100 patterns, which can be used for machine learning and 

computation. Once key parameters like shoulder width and waist circumference are input, the angle can 

be directly cut, and sewing naturally follows” (I6). By leveraging data analytics, AI helps standardize 

certain production elements, ensuring consistency across orders and reducing variability. This capability 

not only guarantees quality control but it properly integrates demand forecasting, allowing the 

manufacturers to provide and utilize resources more efficiently. 

Ultimately, the principle of human-AI cooperation is at the forefront of the apparel manufacturing 

industry, which is the advantageous implementation of AI in conjunction with human labor, rather than 

the latter being the target of a replacement. By automating routine tasks, AI enables workers to focus on 

complex, skill-intensive processes. Furthermore, AI-human co-work and sustainable sustainable SCM 

ensure that AI supports productivity while maintaining the craftsmanship and adaptability essential to 

the industry. This capability complements other adaptive capabilities, collectively forming a 

comprehensive framework that allows manufacturers to leverage AI’s strengths while preserving the 

crucial human elements of the apparel production process. 
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5.4. Factors Hinder AI Adoption 

5.4.1. Industry Factors 

Table 5.2 shows that the industry factors present systemic barriers to AI adoption in the apparel 

manufacturing industry, rooted in the sector’s unique characteristics and structural limitations, such as 

technical, financial, managerial, workforce, customer-related, and market-oriented. The complexity of 

garment production emerges as a central theme, with technical constraints such as design variability and 

material diversity posing significant obstacles. With 13 mentions, “complexity of garment design” 

highlights the rigidity of current AI manufacturing systems, which excel in standardized tasks but 

struggle with intricate designs requiring creativity and customization. The Respondent I4 posited: 

“They are limited to certain categories, such as knitwear, denim, or down jackets. These products are 

relatively simple and easy to operate”. This underscores AI’s inability to accommodate the demands of 

high-complexity garments, particularly those requiring layered construction, delicate materials, or unique 

customers’ technological specifications. Such limitations reduce the applicability of AI systems to only 

a subset of production tasks for simple garment styles and requirements, such as T-shirts or suits and 

blazers, restricting their broader adoption. 

The second axial category is economic constraints that exacerbate these technical challenges. 

Among these, high costs for MSMEs, mentioned 8 times, stand out as a critical barrier, particularly for 

micro and small-sized ones that dominate the sector.  

As the I3 respondent noted, “For small businesses like ours, it’s difficult to compete because the 

cost is too high” (I3). The financial burden of acquiring and maintaining AI systems often outweighs 

their perceived benefits, especially in an industry where profit margins are narrow. This is compounded 

by low profitability and uncertain return of invest (ROI), mentioned 3 and 4 times, respectively. As 

another respondent observed,  

“The issue of whether the return on investment can be achieved is real, as most people are unwilling 

to buy machines like ours, or even a 3D software solution” (I6). This financial uncertainty discourages 

manufacturers from investing in AI, creating a reinforcing cycle where limited adoption reduces the 

opportunities to realize AI’s potential cost-saving and efficiency benefits (Chen, et al, 2022). 

Managerial challenges further impede progress. With 12 mentions, the “unawareness of AI among 

top managers” highlights a pervasive knowledge gap that delays decision-making and stifles innovation. 

One participant stated,  

“Many of our companies have not reached the management level required; they don’t understand 

how to use AI or even its potential” (I4). This lack of awareness is closely tied to a perception of AI’s 

irrelevance, with managers skeptical of its applicability to their specific operations. Without targeted 

education and clear demonstrations of AI’s benefits, this decision-making lag will persist, particularly in 

risk-averse organizations. 
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Table 5.2 Results of Barriers to AI Adoption 
Selected coding Axial coding Open coding  

(33 nodes) 
Frequency Quotations 

Industry Factors Garment 
complexity 
constraints 

Material waste risk in 
quality inspection 

2 In fact, artificial intelligence has this capability; it can perform inspections, specifically in 
terms of quality control. (I3) 

Complexity of garment 
design 

13 They are limited to certain categories, such as knitwear, denim, or down jackets. These 
products are relatively simple and easy to operate. (I4) 

Complex specifications 2 This is because clothing involves raw materials, designs, and production methods, all of 
which are highly variable. (I2) 

Insufficient 
budget 

Insufficient economic 
foundation  

7 Currently, the main challenge for small and medium-sized enterprises is a lack of funds. (I4) 

High cost for MSMEs  8 There is also a lot of outsourcing. For example, Hengli Group, a Fortune 500 company, 
requires many talents and operates across multiple industries. For small businesses like ours, 
it’s difficult to compete because the cost is too high. (I3) 

Low return of invest for 
MSMEs 

4 The issue of whether the return on investment can be achieved is real, as most people are 
unwilling to buy machines like ours, or even a 3D software solution.(I6) 

Low profit  3 Currently, profits are low. This year, domestic factories are generally struggling to turn a 
profit and are cutting expenses. (I4) 

Technological cost 3 If you want to lead them in intelligent upgrades, I think we can provide significant guidance 
in terms of mindset, but they definitely cannot afford the equipment. (I1) 

Top 
management 
decision lag 

Unusefulness to adopt 
AI 

2 First, you need to look at whether artificial intelligence involves equipment or software. We 
must identify where it can be applied. If we find it applicable, we will test it immediately to 
see if it works for us. If it does, we’ll adopt it right away. (I8) 
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Top managers’ 
unawareness of AI 

12 Many of our companies have not reached the management level required; they don’t 
understand how to use it. (A2) 

Workforce 
readiness 

Worker faces 
population ageing 

7 With the 70s generation retiring, even fewer from the ’80s generation are entering the 
industry.  You must adopt intelligent solutions. (I4) 

Low educational level 
of apparel workers 

6 Due to workers’ skill levels and knowledge reserves, memory errors are frequent, and work 
progress is slow. (I1) 

Psychological factors to 
adopt AI for innovation 

2 Manufacturing needs to address this issue. However, solving it feels extremely difficult and 
out of reach because our supply chain is very long. (I4) 

Aversion to skilled 
labor jobs 

7 During a meeting, the person in charge asked about issue, and I replied that there was a 
shortage of workers, which they couldn’t solve. Although I didn’t ask directly, I wondered in 
my heart: when government officials or academic investigators conduct research, are they 
genuinely useful? When I ask if they’d send their own children to technical schools and 
endure the social gap, they don’t dare answer. (I6) 

Self-
Involution  

Competitive pressure to 
adopt AI 

7 I don’t think this can be called a consumer group; it is caused by peer competition. It’s all 
due to intense internal competition. (I4) 

Price competition 3 Taobao has now introduced a price comparison system that offers many similar products at 
the time of payment. This mechanism disrupts the market; the Red Ocean strategy relies on 
price competition and somewhat undermines healthy market development. (I4) 

Future AI trend to 
adopt AI 

2 If someone truly wants to follow the path of artificial intelligence, or if the entire industry, 
society, and all sectors take AI as the driving force and ultimate goal, AI will definitely be 
indispensable in the future. Only with such confidence can this path be truly pursued. (U4) 

Peer influence to adopt 
AI 

2 For example, we haven’t had much exposure to artificial intelligence, but over time, through 
some friends, like our suppliers and customers who often talk to me about AI, we are 
gradually able to accept it. (I3) 
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Requirements 
of customer 

Customers focus on the 
quality of garments not 
the technology they 
used 

5 They don’t care whether your work is produced intelligently or manually; as long as the 
quality is good, that’s enough. (I11) 

Customer requirements 
are complexed 

2 Customers care about your craftsmanship, sewing details, and whether the patterns fit their 
body shapes. Even if the 3D modeling is done well, it’s not very applicable to them because 
they might be B-end customers whose needs haven’t reached that level yet. So, it remains a 
conceptual tool. (I6) 

Complicated 
Management 

Complex supply chain 
management 

3 We are just one part of the supply chain, which is very long. You should explore further 
upstream. (I6) 

Management process is 
too complicated to 
adopt AI 

3 Streamlining the process is indeed very difficult. (I6) 

Market 
uncertainty 

The demand of labor 
force is increasing 

3 As orders continuously expand, the demand for people increases. (I1) 

Market shift  8 Our difficulty lies in the sharp decrease in the number of stores, which leads to fewer 
customers. Consequently, we produce far fewer products and don’t need to do much. (I7) 

University 
Factors 

Lack of 
disciplinary 
graduates 

University cannot 
cultivate talents 
industry required 

5 This doesn’t quite align with us because we focus more on specialties. If schools don’t offer 
these specialties, such as sportswear and performance fabrics, very few students can adapt. 
(I8) 

Talent requirement 4 The kind of talent you just mentioned is indeed what’s needed. System development and 
subsequent maintenance require skilled professionals. (A1) 
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Students do not have 
access to intelligent 
equipment 

3 If manufacturing truly transitions to being technology-driven, it will likely attract more 
scientific and technical talent and expose them to advanced technology and equipment. This 
could change their mindset and also guide employment trends. (U4) 

Lack of AI talents for 
the new emerging AI 
department 

9 If AI is introduced, it could also attract highly knowledgeable talent into traditional 
industries. High-performance equipment can disrupt and transform traditional industries. We 
don’t just need people skilled in making clothes but also engineers, those in industrial 
engineering, and professionals skilled in software system development. (I3) 

Lack AI talents in 
fashion specialties 

5 These enterprises and schools are still mainly focused on designers and pattern makers, but 
pattern design is becoming less common and is mostly design-oriented. When it comes to AI, 
I have had limited exposure to places like Dalian University of Technology. (A1) 

Lack of technological 
employees 

2 In reality, we lack industrial workers rather than technical or managerial talent. While there’s 
a shortage of those as well, with proper training, they can adapt to this level. But the 
fundamental issue lies in the competitiveness of the industry itself. (A2) 

Lack of disciplinary 
talents in the fashion 
manufacturing sectors 

2 Natural fabrics with enzymes involve chemical knowledge and even food science. If you’re 
solely trained in fashion, you might know nothing about this. Fabrics are composed of 
chemical materials, making the field of fashion inherently interdisciplinary. (I2) 

Awareness of 
talent 
cultivation 

Teachers’ educational 
value 

5 Not knowing how to use it is secondary; many students have already started teaching 
themselves. If students are learning and using it, but as a teacher, you don’t know how or 
don’t understand it, then you’re really not fit to be a teacher, right (U3) 

The direction of student 
cultivation does not 
satisfy AI requirements 

8 The knowledge taught in schools is essentially useless for our companies. (I1) 
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Knowledge level gaps 15 For industrial transformation, the most important thing is the completeness of university 
teachers’ knowledge frameworks. They need to have a comprehensive understanding of the 
industry, including in-depth knowledge of tools, to perfectly integrate those tools into 
different fields of work. This is crucial. (U1) 

Teachers’ awareness 3 If university teachers lack foresight and don’t believe artificial intelligence will bring 
changes, they will eventually be eliminated in the teaching process.  (U4) 

Constraint knowledge 
of both educators and 
students 

11 This is especially true for art teachers, who believe that design should focus on students’ 
originality, while technology is secondary. However, with the rapid development of artificial 
intelligence, we must take it seriously. If not, we’ll truly be left behind. (U2) 

Passively accept 
knowledge in 
universities 

2 He is inherently self-driven, creative, proactive, and dynamic, rather than passive. However, 
he is constrained by the framework of the talent cultivation system within the school. For 
instance, the limitations of the curriculum might prevent him from exploring another field he 
is curious about. There might not be such a program, or as you mentioned earlier, there might 
not be the faculty resources to teach him what he wants to learn. I feel that, in fact, there isn't 
any university or educational institution today that can fully cover the most advanced and 
current developments in the world (I2) 

Lack of meaningful 
university-industry 
collaboration 

5 The association is also exploring university-enterprise collaboration. From what I know, 
collaboration in Dalian mainly focuses on product development and lacks technological 
influence. (A2) 

Government 
Factors 

Government 
support 

Regional policy 
distribution through 
association sectors 

9 They have such associations, but they mostly exist to fulfill policy-related tasks and address 
very few actual problems. (I5) 

Lack of association 
support effectiveness 

2 Other than informing me about Dalian Fashion Week or asking about exhibition fees, there’s 
practically nothing else. (I7) 
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Rely on the government 
support 

5 If the government had supportive policies, many things would become much easier. (A1) 

Limited resource of AI 
knowledge  

3 We serve mass chemical enterprises. For example, 80% of enterprises meet the policy 
requirements, so we provide services for them. As for niche companies, we rarely interact 
with them. (A1) 

Geographical 
disparities 

6 Some southern companies are doing quite well in this regard, while in the north, there is 
relatively less involvement.  (U1)  

Neglecting 
apparel 
manufacturing 
MSMEs 

The apparel 
manufacturing is not a 
key supportive industry 

6 Schools seem to approach it from a design perspective, with little official funding support. AI 
application in art fields is almost non-existent, but there’s a clear policy inclination toward 
engineering and AI-related fields. (U1) 

Governments invest 
only to large sized firms 

4 The government’s support in this area is relatively strong, and many Japanese-funded 
companies enjoy national treatment. For instance, Jian Shan receives government subsidies, 
but other Chinese small-sized enterprises are excluded due to eligibility thresholds. (A2) 

Priority for large sized 
firms 

6 The company must have scale to avoid waste. For instance, if you only have 30 orders, and I 
set up an intelligent system for you, once you’re done with the work, the system becomes 
useless. (I1) 

Universities prefer to 
cooperate with large 
sized enterprises 

2 Some large dyeing factories collaborate with textile colleges, offering internship 
opportunities. (I3) 

Information gap   3 In 2020, during the pandemic, the deputy district mayor visited us for an inspection and 
added me on WeChat. He shared a document from the Ministry of Commerce, asking if we 
had ever participated in overseas exhibitions. It turns out the government offers subsidies for 
this. I didn’t know about it before—I used to pay for these trips myself, which cost a lot. (I7) 

Policy support but no 
financial support 

5 There is some policy support for using AI, but no subsidies for now. (I3) 
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Another significant concept is self-involution (in Chinese is 内卷), which is a socio-cultural 

phenomenon characterized by excessive competition and internal focus without yielding significant 

external gains. It is particularly relevant to understanding barriers to AI adoption in Chinese apparel 

manufacturing industry. This phenomenon manifests in several interconnected ways, including 

competitive pressure, price competition, and peer-driven dynamics, all of which contribute to a culture 

of resistance or misalignment in adopting transformative technologies like AI. 

One of the most significant aspects of self-involution is competitive pressure to adopt AI, which is 

referenced seven times in the dataset. This pressure often leads to reactive and short-term decision-

making, unlike constructive competition, which drives innovation. As one respondent noted,  

“I don’t think this can be called a consumer group; it is caused by peer competition. It’s all due to 

intense internal competition” (I4). This response states that AI is not brought in by firms to enhance 

operational efficiency or customer satisfaction in a way that is genuine but is in fact instead being used 

as a defensive posture to catch up to rivals. This competition creates a zero-sum mentality (Kakkar & 

Sivanathan, 2022), in which firms prefer fragmented and non-sustainable implementations. 

Price competition, mentioned three times, is another facet of self-involution that fully undermines 

the market’s capacity to leverage AI’s potential. Firms often prioritize cost-cutting strategies over 

technological investments in a hyper-competitive pricing environment (Lochmann & Steger, 2002). A 

respondent explained,  

“Taobao has now introduced a price comparison system that offers many similar products at the 

time of payment. This mechanism disrupts the market; the Red Ocean strategy relies on price competition 

and somewhat undermines healthy market development” (I4). This seeks to show that the industry case 

concerning price wars prices the AI product lower than the company that focuses on the long-term 

benefits of process automation and efficiency improvements. Therefore, a company is less likely to use 

AI technologies because of the possibility of a low-margin, high-volume manufacturing cycle. 

The future AI trend to adopt AI reveals an aspirational but constrained perspective within the 

industry. While some recognize AI as an inevitable force, this awareness is not translated into immediate 

action. One participant stated,  

“If someone truly wants to follow the path of AI, or if the entire industry, society, and all sectors 

take AI as the driving force and ultimate goal, AI will definitely be indispensable in the future” (U4). 

This highlights a cultural tension between the long-term acknowledgment of AI’s importance and the 

short-term pressures of competition and survival. This disconnect often leads to procrastination, as firms 

defer investments until broader systemic changes compel adoption. 

Peer influence to adopt AI, also mentioned two times, further illustrates how self-involution drives 

reactive, rather than proactive, technology adoption. One respondent observed,  

“For example, we haven’t had much exposure to AI, but over time, through some friends, like our 

suppliers and customers who often talk to me about AI, we are gradually able to accept it” (I3). This 

suggests that peer influence often impacts AI adoption (Cao et al., 2021; Talukder & Quazi, 2011). Firms 

are hesitant to invest in AI until their peers or competitors demonstrate its viability, leading to delaying 

widespread adoption. 
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This scenario is deeply rooted in the Chinese cultural phenomenon of “卷” (self-involution) (Ni et 

al., 2024), where excessive internal competition encourages companies to focus on immediate survival 

rather than long-term innovation. In this environment, companies are reluctant to take risks, instead 

prioritizing the benefits and impact of adopting AI with their competitors or peers. This culture not just 

causes the delay of the AI system; it is also the case in the fact that companies are kept from using the 

full spectrum of these technologies to attain uniqueness and advancement. Self-involution is also closely 

tied to other barriers, such as financial constraints and managerial decision lag. For instance, intense 

competition reduces profit margins, making it harder for firms to justify AI investments. Similarly, the 

reactive nature of AI adoption driven by peer influence compounds managerial hesitation, as leaders 

prioritize short-term strategies over long-term technological planning. These interconnections highlight 

the systemic nature of self-involution as a barrier to AI adoption in the Chinese apparel manufacturing 

industry. 

The systematic management category indicates that many common dilemmas afflicting apparel 

manufacturers are mainly organizational issues that stand in the way of AI adoption. This theme concerns 

the problems of controlling complicated supply chains and the proper management of operations, which 

are the imperative conditions for successfully introducing AI into the business. Sustainable inefficiency 

in any given decade among these challenges increases the difficulty for organizations in taking full 

advantage of the scope of activities that AI has. 

One prominent issue is complex SCM with the frequency of three. The apparel manufacturing 

industry is characterized by extensive and fragmented supply chains (Christopher et al., 2004), often 

involving multiple stakeholders across raw material procurement, production, and distribution. One 

respondent described this complexity succinctly:  

“We are just one part of the supply chain, which is very long. You should explore further upstream” 

(I6). This indicates that businesses frequently lack understanding and governance over the entire supply 

chain, hindering their ability to use AI-driven solutions efficiently. For example, the efficiency of AI in 

the procurement process or logistics begins with the comprehensive collection of real-time information 

across the supply chain. 

Additionally, the complication of management processes, also mentioned three times, further 

restricts AI adoption. Streamlining operations, a prerequisite for successful AI integration, is perceived 

as a challenging task. One participant noted,  

“Streamlining the process is indeed very difficult” (I6). This reflects the traditional apparel 

industry’s heavy reliance on legacy systems, which hinders applying AI. Without streamlined processes, 

implementing AI solutions becomes more complex.  

The complex interactions between these factors create a difficult cycle: the fragmentation of supply 

chains contributes to increasing complexity in management, which in turn creates fragmentation in 

supply chains, further deepening the problem. To illustrate, firms that are characterized by segmented 

supply chains find it difficult to optimize their internal processes due to having to consider the elements 

of variability and unpredictability that are brought about by the involvement of external stakeholders. On 
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the other hand, poor internal management practices hinder the coordination of the supply chain partners 

and this results in a lack of feasibility for the integration of AI technologies in the supply chain. 

Workforce readiness adds another layer of complexity. The aging workforce, referenced seven 

times, reflects the sector’s demographic challenges. As one respondent noted,  

“With the 70s’ generation retiring, even fewer from the ’80s generation are entering the industry. 

You must adopt intelligent solutions” (I4). This highlights the diminishing pool of skilled labor, which 

AI systems could potentially alleviate, but the low educational level of apparel workers, also cited 6 

times, limits their ability to effectively operate advanced AI technologies. A participant remarked, “Due 

to workers’ skill levels and knowledge reserves, many errors are frequent, and work progress is slow” 

(I4). Thus, the lack of technical expertise creates a bottleneck, as the implementation of AI systems often 

requires skilled operators who can oversee and optimize their performance. 

Market uncertainty compounds these barriers, with eight mentions of “market shift” reflecting the 

volatile nature of consumer demand and retail environments. As respondent I7 complained,  

“Our difficulty lies in the sharp decrease in the number of stores, which leads to fewer customers” 

(I7). This unpredictability discourages manufacturers from making long-term investments in AI, as 

fluctuating demand reduces the likelihood of achieving consistent returns. Additionally, customer 

requirements, with five mentions of their focus on quality over technology, reveal another misalignment. 

One respondent stated,  

“They don’t care whether your work is produced intelligently or manually; as long as the quality 

is good, that’s enough” (I11). This reduces the perceived value of AI, further limiting its adoption despite 

its potential to enhance efficiency and precision. 

The above interconnectedness of industry challenges suggests that technical limitations in handling 

garment complexity increase operational risks, which are further amplified by financial constraints and 

managerial hesitation. Workforce unpreparedness exacerbates these issues, as a lack of skilled operators 

reduces the efficacy of AI systems, while market volatility and customer expectations limit the perceived 

benefits of AI adoption. All these systemic barriers require a holistic approach to overcome. 

5.4.2. University Factors 

University factors highlight the critical gap between educational outputs and the industry’s evolving 

needs in the context of AI integration. The lack of alignment between university programs and industry 

requirements, combined with insufficient technological exposure, creates a significant talent bottleneck. 

These limitations impede the apparel manufacturing industry’s ability to leverage AI effectively, as the 

necessary skills and knowledge have not been either unavailable or inadequately developed yet. 

A recurring theme within university factors is the inability of universities to cultivate talents 

required by the industry, with five mentions underscoring this challenge. The lack of specialized 

programs tailored to emerging areas, such as AI applications in apparel manufacturing, is a significant 

concern. One respondent remarked,  

“This doesn’t quite align with us because we focus more on specialties. If schools don’t offer these 

specialties, such as sportswear and performance fabrics, very few students can adapt” (I8). This reflects 
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a disconnect between academia and industry, where universities continue to emphasize traditional 

design-oriented training at the expense of integrating advanced technologies. Consequently, graduates 

often lack the technical proficiency needed to operate, maintain, or innovate within AI-enabled systems. 

Relatedly, talent requirements for system development and maintenance were cited four times as a 

critical gap. AI implementation requires not just theoretical knowledge but also practical skills in 

software development, engineering, and industrial systems. As one participant noted,  

“The kind of talent you just mentioned is indeed what’s needed. System development and subsequent 

maintenance require skilled professionals” (A1). This highlights the industry’s demand for 

multidisciplinary knowledge that combines apparel knowledge with engineering and data science. 

However, current educational programs are failing to meet. 

Another barrier is that students lack access to intelligent equipment, mentioned three times. Without 

hands-on experience with AI technologies, students are ill-prepared to address the practical challenges 

of integrating and operating such systems in real-world manufacturing environments. A participant stated, 

“If manufacturing truly transitions to being technology-driven, it will likely attract more scientific 

and technical talent and expose them to advanced technology and equipment” (U4). This suggests that 

exposure to cutting-edge tools during education could not only enhance skill development but also shift 

employment trends, attracting more talent to technologically advanced industries. 

The lack of AI talents for emerging AI departments emerged as the most frequently mentioned 

challenge in this category, with nine occurrences. Respondents pointed out that AI adoption is not limited 

to creating new opportunities within the industry but also requires the transformation of traditional roles. 

One respondent remarked,  

“If AI is introduced, it could also attract highly knowledgeable talent into traditional industries. 

We don’t just need people skilled in making clothes but also engineers, those in industrial engineering, 

and professionals skilled in software system development” (I3). This highlights the transformational 

potential of AI, provided universities can adapt their curricula to include these emerging roles. The gap, 

however, is significant, as most institutions have not yet developed comprehensive AI-focused programs 

that align with the interdisciplinary demands of the industry in China. 

Compounding these challenges is the lack of AI talent in fashion specialties, with five mentions 

indicating the difficulty of integrating AI into design and pattern-making processes. One participant 

noted,  

“These enterprises and schools are still mainly focused on designers and pattern design, but pattern 

design is becoming less common and is mostly design-oriented. When it comes to AI, I have had limited 

exposure to places like Dalian University of Technology” (A1). This underscores the limited scope of AI 

applications in fashion, which remain confined to isolated academic or experimental contexts rather than 

being incorporated into mainstream curricula. 

A notable sub-theme within the broader university factors is the lack of interdisciplinary talents in 

the fashion manufacturing sectors, mentioned 2 times. This issue reflects the increasing complexity of 

modern fashion manufacturing, which demands expertise that transcends traditional design and 

production skills. As respondent I2 highlighted,  
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“Natural fabrics with enzymes involve chemical knowledge and even food science. If you’re solely 

trained in fashion, you might know nothing about this. Fabrics are composed of chemical materials, 

making the field of fashion inherently interdisciplinary” (I2). This statement underscores the 

multifaceted nature of the challenges facing the industry, where the integration of advanced materials, 

sustainability, and AI technologies requires knowledge spanning multiple disciplines. 

Nowadays, apparel manufacturing is not limited to the aesthetic part of design and tailoring. Thanks 

to innovations in fabric technology, integrative bio-based materials, enzyme treatments, etc. (Rahman et 

al., 2022) drive talents to acquire knowledge of chemistry, material science, and biology. However, the 

current academic frameworks held by many universities are still centered on one discipline, with fashion 

programs purely being the place of artistic and design-oriented curriculums. This gap leaves graduates 

with a dilemma in fulfilling the demands of new technology and science in the contemporary production 

of clothes, and it is a major difficulty in the incorporation of AI. 

The consequences of this multidisciplinary gap are twofold. First, it is the barrier to progress in the 

industry’s use of state-of-the-art technologies in fabric and material sciences, owing to workers lacking 

the essential skills to adopt and leverage innovations. Second, it is worsening the obstacles to AI adoption 

in the industry, where the successful integration of AI usually involves the partnership of technologists, 

material scientists, and designers. The underlying reason for this is that it is almost always impossible to 

apply the AI technology of material selection, performance testing, and production optimization without 

staff who are the ones linking these sectors. 

This interdisciplinary challenge is closely tied to the broader educational gaps highlighted earlier. 

Universities’ failure to incorporate diverse fields into fashion-related programs not only reduces the 

industry’s access to skilled talent but also perpetuates a culture of specialization that is increasingly 

misaligned with industry needs. Furthermore, this gap interacts with workforce readiness challenges, as 

existing employees lack the opportunity to reskill in areas outside their original training. 

Thus, the concept of “lack of technological employees”, mentioned 2 times, reflects broader 

workforce challenges. Even with proper training, the absence of a strong base of technically proficient 

workers limits the industry’s ability to scale AI solutions. As one respondent explained, 

 “While there’s a shortage of those as well, with proper training, they can adapt to this level. But 

the fundamental issue lies in the competitiveness of the industry itself” (A2). This statement points to the 

structural nature of this barrier, where educational gaps are compounded by industry-wide 

competitiveness challenges that further deter investment in skill development. 

The awareness of talent cultivation as a key axis in university factors reveals how gaps in 

recognizing the importance of AI-related talent development hinder the apparel manufacturing industry’s 

AI adoption. This challenge is rooted in the misalignment of educational priorities, a lack of forward-

thinking strategies among educators, and insufficient emphasis on preparing students for the demands of 

AI-driven industries. 

One significant aspect of this axis is the teachers’ educational value, cited 5 times, which highlights 

the limitations in how educators contribute to talent cultivation. The issue lies not only in the content 
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being taught but also in the educators’ ability to understand and teach emerging technologies effectively. 

Respondent U3 observed,  

“Not knowing how to use it is secondary; many students have already started teaching themselves. 

If students are learning and using it, but as a teacher, you don’t know or don’t understand it, then you’re 

really not fit to be a teacher, right?”. This statement underscores a fundamental issue: the lag in educators’ 

technical competence undermines their role in preparing students for technology-centric roles. When 

students are forced to self-teach critical skills, the formal education system fails to fulfill its role as a 

primary knowledge source. 

Another major issue is the direction of student cultivation, mentioned eight times, which reflects a 

broader misalignment between university curricula and the skillsets required by AI-driven industries. I1 

respondent remarked,  

“The knowledge taught in schools is essentially useless for our companies”. This illustrates how 

the existing education system focuses on traditional and generalized knowledge areas, which are no 

longer adequate for meeting the demands of advanced manufacturing environments. Programs often lack 

the specificity needed to train students in interdisciplinary fields like AI for apparel manufacturing, 

leaving graduates ill-equipped for modern industry challenges. 

The disconnect between universities and the industry further exacerbates this problem, as educators 

and administrators fail to adjust their strategies to meet the rapidly evolving technological landscape. 

Instead, curricula remain focused on conventional disciplines, leaving critical gaps in areas such as 

software systems, engineering, and AI applications in apparel manufacturing. 

This lack of awareness and focus on cultivating relevant talent is deeply interwoven with other 

university factors, particularly knowledge level gaps and constraint knowledge in educators and students. 

When educators themselves are not equipped to understand or value AI’s role in transforming the 

industry, they are less likely to prioritize its integration into their teaching. As one respondent noted,  

“If university teachers lack foresight and don’t believe AI will bring changes, they will eventually 

be eliminated in the teaching process” (U4). This resistance to change perpetuates a cycle where students 

are denied exposure to the skills and technologies needed for future industry demands. 

The emphasis on maintaining traditional teaching methods and subject areas also reflects a cultural 

resistance to change within universities. This cultural inertia stems from a lack of accountability for 

aligning education with industry outcomes and a broader skepticism toward AI’s role in reshaping the 

apparel manufacturing sector. Such resistance limits the proactive development of innovative programs 

that could bridge the gap between education and industry, further delaying progress. 

In addition to the previously discussed gaps in talent cultivation, passively accepted knowledge in 

universities and the lack of impactful university-industry collaborations further hinder the alignment of 

academic outputs with the needs of AI-driven industries. These problems are mainly related to the 

structural and cultural limitations of the education system, which prevent students from freely exploring 

interdisciplinary fields and prevent collaboration between academia and industry. As mentioned twice 

before, the passive acceptance of knowledge in universities exposes a key problem in the traditional 

education system. Although students themselves are creative and motivated to learn, the reality is that 
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they are often trapped in a fixed curriculum framework, unable to really try something beyond the 

established subject. One interviewee said,  

“He is inherently self-driven, creative, proactive, and dynamic, rather than passive. However, he 

is constrained by the framework of the talent cultivation system within the school. For instance, the 

limitations of the curriculum might prevent him from exploring another field he is curious about. There 

might not be such a program, or as you mentioned earlier, there might not be the faculty resources to 

teach him what he wants to learn” (I2). This illustrates how the inflexible nature of the education system 

stifles innovation and makes it difficult for students to engage with emerging fields like AI that require 

interdisciplinary understanding. The structural rigidity is not just a constraint on individual students, it 

also creates a mindset in the entire academic environment that knowledge is fixed rather than something 

that needs to be constantly developed. As the respondent further stated, “In fact, there isn’t any university 

or educational institution today that can fully cover the most advanced and current developments in the 

world” (I2). This disconnect between the academic curriculum and the real world is symptomatic of a 

larger problem: universities often fail to keep pace in the face of a rapidly changing technological 

landscape. Moreover, the lack of valuable collaboration between universities and industry, which has 

been mentioned five times, also makes talent development more difficult. While there are some 

collaborations between universities and companies, they are usually narrow in focus and often revolve 

around clothing design rather than technological innovation. One interviewee mentioned, 

“The association is also exploring university-enterprise collaboration. From what I know, 

collaboration in Dalian mainly focuses on garment design and lacks technological influence” (A2). This 

indicates that these collaborations fail to integrate cutting-edge AI technologies into the manufacturing 

processes, limiting their impact on both student training and industry outcomes. 

The lack of a truly effective cooperation mechanism between universities and enterprises makes it 

difficult for students to be exposed to the practical application of AI technology, and enterprises cannot 

find talent that truly meets their needs. As a result, the disconnect between academia and industry 

becomes more and more serious, and eventually becomes a cycle - students are not ready, companies are 

not able to use the new technology, and innovation is difficult to achieve. 

5.4.3. Government Factors 

Under China’s governance system, government factors play a central role in promoting the application 

of AI in the garment manufacturing industry. Although the government’s top-down approach to 

policymaking has ambitious goals and hopes to promote innovation, in practice, the results are often 

uneven because of regional differences and uneven allocation of resources. Coupled with institutional 

inefficiencies, a lack of localized support, and a more decentralized governance structure, these issues 

make it more difficult for AI to land in the garment manufacturing industry. These phenomena, in essence, 

are the result of China's political and economic environment. 

 The Chinese government frequently relies on intermediary organizations, such as industry 

associations, to implement policies and distribute support. With nine mentions, this reliance is a key 

mechanism for policy dissemination, yet it often lacks efficacy. One respondent observed,  
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“They have such associations, but they mostly exist to fulfill policy-related tasks and address very few 

actual problems” (I5). This reflects a systemic problem in China’s decentralized policy enforcement 

model, in which local associations place more emphasis on administrative compliance than on providing 

real on-the-ground support. This problem is particularly pronounced in some regions with limited 

technical capacity and resources, making it difficult for these associations to effectively guide 

manufacturers in the application of AI. Although the policy encourages the integration of AI, the lack of 

specific localization guidance makes it difficult for enterprises to start in actual operation, and it is 

difficult to convert macro goals into executable strategies. The mismatch between the goals of national 

policies and local implementation has also greatly reduced the actual effect of the government's 

promotion of AI applications. 

The lack of effectiveness of association support, mentioned two times, further illustrates the 

shortcomings of this institutional model. In China, industry associations are often tasked with peripheral 

activities, such as organizing events or reporting compliance metrics, rather than providing substantive 

support to manufacturers. One respondent from MSMEs brand manager remarked,  

“Other than informing me about Dalian Fashion Week or asking about exhibition fees, there’s 

practically nothing else” (I7). This suggests that apparel associations are underutilized as channels for 

delivering meaningful support, such as training programs, funding assistance, or technical expertise 

related to AI. Administrative reforms in China have also had an impact on cross-regional investment 

(Shi et al., 2021). But from the perspective of the larger policy environment, many intermediaries still 

prefer to handle administrative matters rather than focus on driving innovation. As a result, manufacturers 

lack the necessary support when applying AI, and can only explore their own solutions to technical, 

financial and operational problems. 

The previous factors further lead to a strong reliance of MSMEs on government support. This 

reliance, cited five times, underscores the industry’s dependence on government-led initiatives to drive 

technological advancements. One respondent stated,  

“If the government had supportive policies, many things would become much easier” (A1). This 

reflects a common phenomenon in China’s manufacturing sector, where government policy is often the 

main driver of innovation because private companies invest relatively little in research and development. 

But this reliance also creates problems, as many manufacturers struggle to have the funding or autonomy 

to drive AI adoption without government subsidies or incentives. For example, many MSMEs in China 

have narrow profit margins themselves, and government subsidies mainly support technology upgrades. 

However, these subsidies are often allocated based on macroeconomic objectives, rather than precise 

support for specific industries or technologies, which also undermines their effectiveness in truly solving 

real problems in AI applications. 

China’s regional economic and industrial disparities further complicate the effectiveness of 

government policies in fostering AI adoption. With six mentions, geographical disparities emerged as a 

critical barrier, reflecting uneven access to resources and support across different regions. One 

respondent (U1) noted,  
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“Some southern companies are doing quite well in this regard, while in the north, there is relatively 

less involvement” (U1). This situation illustrates the development gap between different regions of China, 

such as the Yangtze River Delta, the Pearl River Delta and other economically developed regions, 

manufacturers can enjoy more government investment, better infrastructure, and more technical talent. 

In contrast, enterprises in some less developed areas in the north are not so lucky, with limited capital, 

insufficient technical support, and the implementation of policies is not satisfied. This regional gap makes 

it easier for enterprises that already have advantages to apply AI technology and occupy market 

opportunities, while enterprises with fewer resources can only be left behind. In fact, this also reflects 

China’s “dual-track” economic development model (Wu & Zhou, 2024), different local governments can 

mobilize different resources and autonomy, and ultimately affect the actual effect of AI-related policies 

in different places. 

Another critical barrier is the limited resource of AI knowledge, cited three times, which reflects a 

gap in the Chinese government’s approach to fostering technological applications in apparel 

manufacturing. While policies may emphasize AI adoption, they often fail to address the knowledge and 

expertise required to implement these technologies effectively. One respondent noted,  

“We serve large-sized enterprises. For example, 80% of enterprises meet the policy requirements, 

so we provide services for them. As for small and medium sized companies, we rarely interact with them” 

(A1). This suggests that policies tend to favor larger, better-founded companies, while MSMEs have 

much less access to AI-related technical knowledge and training. This reflects a general problem in 

Chinese top-down policymaking, which often ignores the real needs of smaller, less visible players in 

the industry. Without targeted support programs to help manufacturers improve AI-related capabilities, 

the potential benefits of government policies will not be fully realized. 

Another issue of the government factor is the neglect of MSMEs in the apparel manufacturing 

industry. When the Chinese government promotes the application of AI, it is often more inclined to 

support large enterprises, because these enterprises have more resources and scale, and can bring more 

significant returns. But this practice has implicitly marginalized the MSMEs that make up the majority 

of the industry. This neglect is reflected in many aspects, such as the tilt of financial support, the uneven 

distribution of cooperative resources, and the asymmetry of industry information.  

In addition, the apparel manufacturing industry is not regarded as a key support industry, which 

was mentioned six times by respondents, and further illustrates the marginalization of the industry in the 

policy system. One interviewee mentioned, 

 “Schools seem to approach it from a design perspective, with little official funding support. AI 

application in art fields is almost non-existent, but there’s a clear policy inclination toward engineering 

and AI-related fields” (U1). This highlights the government’s focus on high-tech sectors, such as 

engineering and advanced manufacturing, at the expense of traditional industries like apparel. As a result, 

apparel manufacturers face challenges in securing the financial and technical support needed for AI 

adoption, even though the sector has significant potential for transformation through automation and 

smart technologies. This policy bias is indicative of broader trends in China’s economic development 

strategy, which prioritizes industries perceived as more technologically advanced or strategically 



 140 

important. However, this approach overlooks the opportunity to modernize traditional sectors like 

apparel manufacturing, which remain labor-intensive and ripe for efficiency gains through AI. 

Government policies also exhibit a clear priority for large-sized firms, mentioned 6 times, and a 

tendency to invest only in large enterprises, cited four times. One participant explained,  

“The company must have scale to avoid waste. For instance, if you only have 30 orders, and I set 

up an intelligent system for you, once you’re done with the work, the system becomes useless” (I1). This 

reflects a common perception that smaller firms lack the scale necessary to justify investments in AI 

systems, leading policymakers to concentrate resources on larger companies that are seen as more 

capable of implementing and benefiting from such technologies. However, this focuses on large 

enterprises neglects the unique challenges and opportunities within MSMEs. Smaller firms often face 

more acute resource constraints, making them prime candidates for targeted support that could enable 

them to adopt cost-effective AI solutions. Moreover, the exclusion of MSMEs from government support 

limits the overall impact of AI adoption on the industry, as these firms collectively represent a substantial 

share of production capacity and employment. This bias extends to university-industry collaborations, 

which also favor large enterprises. With two mentions, respondents noted that partnerships with 

educational institutions primarily benefit larger firms. One participant remarked,  

“Some large dyeing factories collaborate with textile colleges, offering internship opportunities” 

(I3). This reflects how MSMEs are often excluded from such collaborations, further restricting their 

access to the knowledge and talent needed to integrate AI technologies. 

The presence of information gaps, cited three times, further exacerbates the challenges faced by 

MSMEs. One respondent recounted,  

“In 2020, during the pandemic, the deputy district mayor visited us for an inspection and added me 

on WeChat. He shared a document from the Ministry of Commerce, asking if we had ever participated 

in overseas exhibitions. It turns out the government offers subsidies for this. I didn’t know about it 

before—I used to pay for these trips myself, which cost a lot” (I7).  

This further illustrates the lack of communication between government agencies and enterprises, 

resulting in many enterprises simply not knowing what subsidies, grants or other support policies are 

available. This information gap is particularly acute for MSMEs, as they often do not have sufficient 

internal resources or industry connections to navigate complex policy environments. If the channel to 

obtain policy information is not clear and convenient, these enterprises will easily miss the opportunity 

to take advantage of government support, so that the gap between large and small enterprises in AI 

application is getting wider and wider.  

In addition, the lack of corresponding funding for policy support, which was mentioned five times, 

also reflects the disconnect between policy objectives and actual implementation. Although the 

government encourages AI applications, without direct financial incentives, it is difficult for MSMEs to 

truly implement these policies. One interviewee mentioned, 

 “There is some policy support for using AI, but no subsidies for now” (I3). This reflects a broader 

trend where policies often emphasize long-term goals without addressing the immediate financial barriers 

faced by smaller firms. This lack of financial backing is particularly challenging in the context of MSMEs, 
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which operate on thin profit margins and cannot afford the upfront costs associated with AI 

implementation. Without subsidies or low-interest loans, these firms are unlikely to invest in the 

technologies needed to remain competitive, perpetuating a cycle of underinvestment. 

In summary, the neglect of MSMEs in government policies reflects deeper structural and cultural 

biases within China’s economic development strategy. By prioritizing large enterprises and high-tech 

industries, policymakers inadvertently marginalize MSMEs that play a critical role in the fashion industry. 

This approach also limits the broader impact of AI adoption, as the exclusion of MSMEs reduces the 

potential for widespread transformation across the industry. Furthermore, the reliance on information 

dissemination through informal channels, such as personal connections or localized networks, highlights 

inefficiencies in policy communication. These gaps reflect a broader need for more inclusive and 

transparent governance mechanisms that ensure all industry players, regardless of size, have equal access 

to resources and support. 

5.5. Summary of Chapter  

This chapter presents the results of the semi-structured interviews and grounded the emerging main 

conceptual categories using qualitative grounded theory (process) to theorize what required AI 

capabilities in Chinese apparel manufacturing sectors, and categorized the industry, universities, and 

government factors hinder them to adopt AI technologies in manufacturing and production processes 

(product). The two layers of findings will be further discussed in the next chapter, and theorize the AI-

enabled innovation ecosystem. Combining with the analysis of Study 1 and Study 2, Chapter 6 will also 

discuss these theoretical contributions and managerial implications in detail. 
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6. Discussions and Contributions 

6.1. Introduction 

This chapter discusses the results from Chapter 4 and Chapter 5, analyzing data from Chinese apparel 

manufacturing sectors to evaluate the determinants of AI-integrated technology adoption driving 

MSMEs’ open innovation. It also develops a theoretical AI-enabled innovation ecosystem framework 

with proposed mechanisms. Section 6.2 addresses the SRQs of Study 1, focusing on AI adoption, open 

innovation, KACAP mediation, and the hypothesized relationships. Section 6.3 discusses the grounded 

results, focusing on the SRQs of Study 2. This is followed by Section 6.4, which achieves the MRO by 

developing an AI-enabled innovation ecosystem framework. Section 6.5 highlights the theoretical 

contributions and managerial implications, while Section 6.6 provides a synthesis discussion and 

conclusion summary of the chapter. Section 6.7 summarizes the chapter. The sequence of sections is 

illustrated in Figure 6.1. 

 
Figure 6.1 Flow Chart of Chapter 6 

6.2. Study1: Determinators of AI Adoption in Chinese Apparel Manufacturing MSMEs 

Study 1 consists of two SRQs: 1) What factors affect AI adoption, KACAP, and open innovation in 

Chinese apparel manufacturing? 2) What is the role of KACAP in the linkage between AI adoption and 

organizational open innovation? This section primarily focuses on discussing these two issues. Thus, to 

discuss the results of SRQs, this section follows the previous analysis phases by first inferences of 

preliminary analysis and then the hypothesized relationships.  

6.2.1. Inferences of Preliminary Analysis  

Data collected from Chinese apparel manufacturing MSMEs underwent screening for missing values, 

unengaged responses, outliers, normality, and common method bias. This preliminary analysis (Section 

5.3) was conducted to prepare for descriptive statistics (Section 5.4) and PLS-SEM analysis (Section 5.5). 

The descriptive statistics provided insights into demographic characteristics, such as firm size, age, 

business types, and industry clusters. 

The analysis revealed that most responses were collected through a third-party agency, ensuring 

complete data without unengaged responses. To maintain generalizability and minimize data 
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modifications, outliers were retained based on established criteria (Tabachnick & Fidell, 2019). The 

dataset was also tested for normality using the Kolmogorov-Smirnov test, confirming its suitability for 

PLS-SEM analysis (Hair et al., 2022). 

Common method bias, a potential concern when using third-party data collection services, was 

addressed through partial correlation analysis, revealing no significant effects on study correlations 

(Simmering et al., 2015). The structural model was robust, demonstrating high explanatory (R2) and 

predictive power (PLSpredict) within the extended TAM-TOE framework. These findings highlight the 

reliability and quality of the dataset, supporting its application in this thesis. 

6.2.2. Structural Equation Modelling – Hypothesized Relationships (SRQs 1 and 2) 

This subsection presents the findings from the empirical analysis conducted using the PLS-SEM 

statistical approach. PLS-SEM involves a dual-stage process to evaluate the research model (Hair et al., 

2022). The results begin with assessing the measurement model and confirming its adequacy for further 

analysis. Following this validation, attention shifts to the structural model, which forms the foundation 

for the subsequent discussion on the model’s contributions. We drew on TAM and TOE to develop the 

extended TAM-TOE model to understand the antecedents behind AI adoption to influence open 

innovation. We examined that the 11 hypotheses from technological factors (H1 and H2), organizational 

factors (H3a and H4a), and environmental factors (H5, H6, H7, and H8) impact AI adoption. Meanwhile, 

organizational factors (H3b and H4b) directly impact KACAP, and environmental factors (H5b, H6b, 

H7b, and H8b) directly impact open innovation. Subsequently, the drivers of AI adoption (H9) towards 

open innovation (H10) through KACAP (H11).  

6.2.2.1. Technology Factors 

H1: Perceived usefulness will positively influence AI adoption.  

H2: Perceived ease of use will positively influence AI adoption. 

The study hypothesized that AI adoption would be positively influenced by perceived usefulness (H1) 

and perceived ease of use (H2); however, based on the results, the path coefficient of perceived ease of 

use (PEOU -> AIA) is 0.068, with a T-value of 1.033 and a p-value of 0.302, which does not meet the 

significance level of p<0.05. Therefore, it can be concluded that perceived ease of use has no significant 

impact on AI adoption. This outcome challenges the foundational assumptions of traditional technology 

adoption frameworks, such as the TAM, which posit perceived ease of use as a key determinant of 

technology acceptance (Chatterjee et al., 2021; Davis, 1989). In the case of AI, a more nuanced 

interpretation is required. AI technologies’ increasing sophistication and complexity likely necessitate a 

shift in organizational priorities, where decision-makers emphasize the potential strategic benefits and 

innovative capabilities AI can unlock rather than its ease of use in short-term. For managers and 

executives, the perceived value of AI lies more in its capacity to transform business processes and confer 

competitive advantages than in its ease of use. 
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Moreover, this diminished role of perceived ease of use in the context of Chinese MSMEs, 

particularly those operating in OEM firms, may also be attributed to the sector’s operational dynamics. 

These organizations, often resource-constrained, have likely developed a higher tolerance for 

technological complexity, viewing it as a necessary trade-off for potential gains in operational efficiency 

and market competitiveness (Dickson et al., 2006). As such, ease of use may no longer serve as a primary 

consideration when adopting advanced technologies like AI. Instead, perceived usefulness emerges as a 

more critical factor in driving adoption decisions, as reflected by its significant path coefficient of 0.228 

and a statistically significant p-value (p<0.05), suggesting that organizations place a premium on the 

demonstrable benefits AI adoption can bring. 

Thus, the limited significance of perceived ease of use in this context underscores a broader shift in 

technological adoption behavior, where the emphasis is placed on outcome-oriented assessments, 

focusing on the tangible impacts and strategic advantages offered by AI, rather than on minimizing user 

effort or system complexity.  

6.2.2.2. Organizational Factors 

Organizational complexity and ORE are two internal organizational factors hypothesized in this study. 

Both are proposed to impact AI adoption (H3a and H3b) and directly toward KACAP (H4a and H4b).  

H3a: Organizational complexity will negatively influence AI adoption.   

H3b: Organizational complexity will positively influence knowledge absorptive capacity.  

Although the complexity has been demonstrated, its negative impacts on individuals’ intentions to 

use AI (Chatterjee et al., 2021; Gangwar et al., 2015; Kamble et al., 2021; Tasnim et al., 2023) for 

adoption by organizations, the results on H3a and H3b reveal that organizational complexity does not 

exhibit a significant impact on AI adoption. This suggests that, within the context of this study, the 

structural complexity of organizations does not directly facilitate the adoption of AI technologies. High 

organizational complexity could impede decision-making processes, reduce information flow efficiency, 

and consequently, slow the adoption of new technologies.  

The results also show that organizational complexity has no significant impacts on KACAP, which 

is in contrast with prior research that has highlighted the potential of complexity to shape knowledge 

processes within organizations. For example, complexity in organizational studies, as defined by 

structural differentiation (Ali et al., 2018; Robbins, 1990, as cited in Ali et al., 2018), has been shown to 

affect both the extent and intensity of knowledge creation and absorption (Kim, 1980). This perspective 

is built upon earlier theories, such as Cohen and Levinthal’s (1990) work on absorptive capacity, which 

posits that the structural complexity of an organization facilitates the flow and integration of new 

knowledge, primarily by leveraging prior knowledge. In light of these findings, the insignificant 

relationship observed between organizational complexity and KACAP in this study might be explained 

by several factors. First, the level of organizational complexity in the firms sampled may not have 

reached the threshold necessary to enhance knowledge flows and foster absorptive capacity. While prior 

research suggests that increased differentiation can create opportunities for deeper knowledge integration, 
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this may only hold in highly complex organizations with advanced structures. In contrast, the 

organizations in this study, particularly MSMEs in the apparel manufacturing sector, may exhibit 

relatively moderate levels of complexity that neither impede nor enhance the absorptive process. Second, 

the specific type of complexity at play could also be a determining factor. Previous studies, such as those 

by Winkelbach and Walter (2015), focused on advanced technological complexity, which may directly 

influence absorptive capacity more than structural complexity alone. It is possible that the type of 

organizational complexity referring to primarily structural does not sufficiently align with the kind of 

complexity that facilitates knowledge absorption, as proposed in prior theoretical frameworks. Third, 

while prior studies have consistently shown that organizational complexity can foster KACAP, the 

particular context, industry, and characteristics of complexity in this study may not align with the 

requisite conditions for such benefits to materialize. As a result, the influence of organizational 

complexity on knowledge absorption is likely context-dependent. Further investigation is required to 

clarify the circumstances under which complexity functions as an enabler rather than an impediment to 

knowledge absorption, contributing to a more refined understanding of its multifaceted role. 

H4a: Organizational readiness will positively influence AI adoption.  

H4b: Organizational readiness will positively influence knowledge absorptive capacity. 

Another organizational antecedent is organizational readiness. As Lacovou et al. (1995) articulated, 

it encompasses the availability of necessary financial and technological resources required to adopt 

innovations. Several studies, including those by Kuan and Chau (2001), Aboelmaged (2014), and 

Chatterjee et al. (2021), highlight that larger organizations, due to their abundant resources, exhibit higher 

readiness and, consequently, a greater likelihood of adopting advanced technologies, such as AI. 

Financial resources ensure that firms can cover ongoing expenses during the implementation of AI, while 

technological resources, both tangible (e.g., infrastructure) and intangible (e.g., IT skills), enable 

effective integration of AI into business processes. The findings from H4a, however, show that 

organizational readiness does not significantly impact AI adoption despite theoretical support for this 

relationship in the literature. This discrepancy could be attributed to several factors. While organizational 

readiness, especially regarding resources, is a critical enabler, the actual decision to adopt AI might 

depend on other factors such as the organization's strategic alignment, cultural readiness, or the perceived 

usefulness of AI. For example, despite having adequate resources, firms may lack the managerial support 

or innovation mindset required to initiate AI adoption (Cao et al., 2021; Hashem & Aboelmaged, 2023). 

Additionally, industries in emerging economies might face external challenges, such as regulatory 

barriers or market uncertainty, which can reduce the efficacy of organizational readiness in driving AI 

adoption (Hossain et al., 2024). These findings suggest that while resources are necessary, they may not 

be sufficient for AI adoption, particularly if other organizational or contextual factors are not aligned. 

On the other hand, the results of H4b show a significant positive relationship between organizational 

readiness and KACAP. This finding aligns with prior research that emphasizes the role of organizational 

readiness in enhancing a firm’s ability to assimilate and exploit new knowledge (Van den Bosch et al., 



 146 

1999, as cited in Vega-Jurado et al., 2008). In this context, organizational readiness, particularly its 

intangible assets such as technical knowledge, collaboration strategies, and IT development plans, equips 

firms with the necessary infrastructure and skills to absorb and utilize external knowledge. This capacity 

is essential for organizations aiming to stay competitive in a rapidly evolving technological landscape, 

especially in sectors driven by AI and digital transformation. As Machado et al. (2021) noted, readiness 

is not just about resource availability but also about the organization’s ability to adjust to digital 

transformation. Lokuge et al. (2019) further highlight that the readiness for adopting and exploiting 

digital technologies plays a critical role in shaping an organization’s KACAP. The findings from H4b 

suggest that organizations with higher readiness levels are better positioned to acquire, integrate, and 

exploit new knowledge, thus fostering ACAP, which is crucial for leveraging AI-integrated technologies.  

Thus, while ORE may not directly lead to AI adoption (as evidenced by H4a), it plays a significant 

role in building the foundational capacities necessary for knowledge absorption (as supported by H4b). 

This distinction highlights the multifaceted nature of organizational readiness, which may not always 

guarantee immediate adoption of advanced technologies like AI but provides the critical infrastructure 

and capabilities that underpin long-term organizational learning and innovation.  

6.2.2.3. Environmental Factors 

There are four antecedents behind AI adoption (H5a, H6a, H7a, and H8a) to drive open innovation, and 

four direct hypotheses of H5b, H6b, H7b, and H8b between the antecedents of AI adoption and open 

innovation.  

H5a: Competitive pressure will positively impact AI adoption.   

H6b: Competitive pressure will positively impact open innovation.   

In the context of Chinese manufacturing MSMEs, competitive pressure emerges as a pivotal driver 

of AI adoption, aligning with existing literature findings. Competitive pressure, defined as the degree of 

pressure felt by firms from their competitors within the industry (Oliveira & Martins, 2010), has been 

recognized as a key factor influencing the adoption of innovative technologies, particularly in resource-

constrained environments like SMEs (Dickson et al., 2006; Ghobakhloo, 2019). In Chinese apparel 

MSMEs, which operate in a highly competitive and fast-paced market, this pressure is further amplified 

by the challenges posed by globalization and digital transformation. Also, it is intensified by the need to 

adapt to Industry 4.0 and 5.0, respond to shifting market demands, and compete with other larger OEMs, 

ODMs, and OBMs. The results from H5a show a significant positive relationship between competitive 

pressure and AI adoption, which is in line with Ghobakhloo (2019) and Sayginer & Ercan (2020) studies 

that adopting AI is crucial to maintaining their competitiveness in a market where technological 

advancements are becoming essential for survival. These firms face constant threats such as suppliers’ 

unsatisfying and unsustainable performance, market share loss, and customer disloyalty, which AI 

adoption helps mitigate by enabling faster production cycles, improving quality control, and enhancing 

customer responsiveness. However, unlike larger firms, apparel manufacturing MSMEs often lack the 
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resources to develop or deploy advanced technologies internally. This forces them to adopt AI 

strategically, focusing on applications that deliver immediate efficiency gains or customer value, such as 

automating labor-intensive production processes or optimizing supply chain management. Therefore, 

competitive pressure in this context does not merely drive AI adoption as a reactive measure but also 

pushes MSMEs to innovate in cost-effective and targeted ways that align with their limited resource base, 

such as talent, equipment, knowledge, etc. 

The findings from H5b indicate a significant positive relationship between competitive pressure 

and open innovation, which is particularly relevant for Chinese apparel MSMEs. Due to their limited 

internal capacities, these firms often rely on open innovation to compensate for their resource constraints, 

a notion supported by prior research (Aboelmaged, 2014; Z. Yang et al., 2015). Competitive pressure 

compels these firms to engage in external collaborations, leveraging partnerships with suppliers, research 

institutions, and technology providers to access new knowledge and innovations they cannot generate in-

house. In the highly competitive Chinese apparel sector, MSMEs are constantly pressured to innovate 

quickly in response to fast-evolving market trends and customer expectations. This competitive pressure 

fosters a reliance on open innovation to enhance their technological capabilities, particularly in the 

context of AI adoption. Collaborating and drawing on external expertise allows these firms to adopt AI 

and tailor its applications to their specific production needs. For instance, partnerships with technology 

firms can help MSMEs develop AI-driven solutions for optimizing fabric usage or enhancing design 

customization, both of which are critical for maintaining competitiveness in a customer-driven market, 

especially for companies with design initiatives and proposals such as ODMs and OBMs. 

H6a: Supplier involvement will positively influence AI adoption. 

H6b: Supplier involvement will positively influence open innovation.  

As previously noted, supplier involvement refers to suppliers engaging with downstream 

organizations to create competitive advantages, particularly in collaborative supply chain processes 

(Jöhnk, 2021; Oliveira & Martins, 2011). However, the results of H6a indicate that supplier involvement 

does not have a significant impact on AI adoption, suggesting that the role of suppliers in this context 

may be limited or indirect. 

In Chinese apparel MSMEs, the supply chain is often complex, involving multiple stakeholders 

from raw material suppliers and their suppliers to brand customers or customers’ customers. This finding 

can be explained by several industry-specific characteristics. First, the supply chain in this sector is often 

highly fragmented and hierarchical, involving multiple tiers of suppliers, from raw material providers to 

finished product distributors (Horani et al., 2023). This fragmentation reduces the influence of any single 

supplier in driving technological advancements like AI adoption. Many suppliers focus on fulfilling 

operational tasks rather than contributing to strategic innovations, such as implementing AI technologies. 
Second, Chinese apparel MSMEs typically prioritize cost efficiency and production volume over 

technological collaboration with suppliers. While larger enterprises in other industries might engage 

suppliers in AI-driven process improvements, MSMEs in apparel manufacturing may lack the resources 
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or incentives to leverage supplier involvement for such purposes. Consequently, suppliers often play a 

more transactional role rather than a transformative one. Third, the adoption of AI in Chinese apparel 

industry often faces resource constraints and low digital maturity, further limiting the potential for 

supplier-driven AI implementation. Suppliers in this sector may themselves lack the technical expertise 

or capacity to support AI adoption effectively.  

The positive relationship between supplier involvement and open innovaiton in H6b is supported 

by existing literature and reflects the realities of Chinese apparel MSMEs. Open innovation, as defined 

by Gassmann and Enkel (2004), emphasizes the importance of external collaborations, including 

partnerships with suppliers, to facilitate the flow of valuable knowledge and co-create innovative 

solutions. In Chinese apparel industry, MSMEs often rely on external partners, such as suppliers, to 

access new technologies and knowledge that they cannot generate internally. This aligns with findings 

from studies by Guan et al. (2023), which indicate that supplier partnerships (guanxi) are crucial for 

advancing innovations in sectors such as AI-integrated blockchain technologies. 

For Chinese MSMEs, engaging in open innovation with suppliers is not merely a reactive response 

to market pressures but a proactive strategy to enhance their innovation capacity. Equipment suppliers 

are often at the forefront of technological advancements, providing access to the latest AI-based systems 

and solutions. By integrating suppliers early in the innovation process, MSMEs can tap into external 

knowledge, which accelerates internal innovation and improves their ability to compete in a rapidly 

changing industry (Hagedoorn, 1993; 2002). This collaboration with suppliers is essential for fostering 

open innovation, as it allows firms to co-develop AI applications tailored to their specific needs, whether 

in production optimization, supply chain transparency, or customer engagement. This supports the view 

of open innovation as a framework that leverages both internal and external knowledge to drive 

innovation performance, as noted by Chatterjee et al. (2021) and Lokuge et al. (2019). 

H7a: Market uncertainty will positively influence AI adoption.  

H7b: Market uncertainty will positively influence open innovation. 

Tracing back to market uncertainty, adapted from the concept of environmental uncertainty, refers 

to the lack of information and predictability regarding changes in the external business environment, 

which can impact organizational decision-making (Duncan, 1972; López-Gamero et al., 2011). This 

unpredictability arises from various factors, including evolving technologies, fluctuating market 

conditions, and unforeseen events such as the COVID-19 pandemic, which disrupted global supply 

chains and increased uncertainty in production and operations (X. Lu et al., 2022). In the case of Chinese 

apparel MSMEs, which operate in a highly competitive and dynamic environment, market uncertainty 

can have a profound impact on their decision to adopt AI technologies. 

As noted in previous literature, AI plays an important role in mitigating the effects of market 

uncertainty through its advanced data processing, forecasting, and decision-making capabilities (Bai & 

Li, 2020; Cannas et al., 2023). In apparel manufacturing sectors, AI enables firms to predict market 

trends, analyze customer demand, and control potential disruptions caused by supply chain instability 
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(Brau et al., 2023; Dey et al., 2023). For China’s MSMEs, which often struggle with unpredictable 

customer demand and volatile market conditions, adopting AI can provide a strategic advantage by 

reducing the uncertainty associated with future market developments. This is particularly relevant given 

the resource constraints typical of MSMEs, where the ability to make informed decisions about 

production, inventory, and distribution can significantly improve operational efficiency and 

competitiveness. The data supporting H7a may reveal a significant positive relationship between market 

uncertainty and AI adoption. This would indicate that as market uncertainty increases, MSMEs are more 

likely to adopt AI technologies to cope with unpredictability. AI provides firms with the tools to reduce 

the risks associated with volatile market conditions, enabling them to make informed decisions and 

improve operational efficiency. 

H7b explores the relationship between market uncertainty and open innovation. Open innovation 

involves leveraging external knowledge and collaborations with partners, suppliers, and other 

stakeholders to drive innovation within the firm (Gassmann & Enkel, 2004). In the face of high market 

uncertainty, firms often seek external expertise and resources to navigate unpredictable changes and 

maintain their competitive edge. Engaging in open innovation becomes a critical strategy for managing 

market uncertainty for Chinese apparel MSMEs, which may lack extensive internal R&D capabilities. 

Collaborating with external partners—such as suppliers, AI technology vendors, or research 

institutions—enables these firms to access cutting-edge knowledge and resources they cannot develop 

in-house, which is aligned with the RBV and KBV.  This is particularly important in the apparel sector, 

where rapid changes in market demand and consumer preferences can quickly render existing products 

or processes obsolete. The results for H7b might indicate a significant positive relationship between 

market uncertainty and open innovation, suggesting that firms are more likely to engage in open 

innovation activities as market uncertainty increases. In response to unpredictable market conditions, 

Chinese apparel MSMEs may form partnerships with suppliers and other external stakeholders to co-

develop new AI-driven solutions that improve their ability to forecast demand and adjust to market shifts 

(Horani et al., 2023). This collaborative approach helps these firms not only to manage risks but also to 

seize competitive opportunities that arise from market volatility. 

H8a: Government support and policy will positively influence AI adoption. 

H8b: Government support and policy will positively influence open innovation. 

H8a explores the relationship between government support and policy and AI adoption. 

Government support refers to the facilitation provided to organizations, such as financial incentives, pilot 

programs, training, and scientific resources, and policy releases to encourage the adoption of new 

technologies (Badghish & Soomro, 2024). In the context of Chinese apparel MSMEs, government 

policies and incentives play a crucial role in promoting AI adoption, particularly given the limited 

resources and technical expertise that many MSMEs face. Previous studies have consistently shown that 

government support is a key driver in adopting AI technologies (Badghish and Soomro, 2024; Jun et al., 

2019). In China, government-led policies that foster Industry 4.0 and digital transformation further 
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accelerate the adoption of AI by offering subsidies, tax breaks, and innovation grants to MSMEs in 

manufacturing sectors, including apparel. These policies provide financial and technical support for 

MSMEs to overcome barriers to AI adoption, such as high implementation costs and a lack of skilled 

labor. 

The results of H8a reveal a significant positive relationship between government support and policy 

and AI adoption, underscoring the importance of governmental facilitation in technology diffusion within 

MSMEs. For Chinese apparel MSMEs, which often struggle with limited resources, government support 

is critical for enabling AI adoption by lowering the financial and operational risks associated with 

integrating new technologies. Furthermore, government policies create a favorable environment for 

MSMEs to adopt AI, not only by offering direct support but also by fostering an ecosystem where digital 

technologies are increasingly essential for maintaining competitiveness in both domestic and global 

markets.  

H8b examines the influence of government support and policy on open innovation in Chinese 

apparel MSMEs. Open innovation involves leveraging external and internal knowledge sources, often 

through collaborations with suppliers, customers, and other partners, to drive innovation (Gassmann & 

Enkel, 2004). Government support and policy are often assumed to facilitate these collaborative efforts 

by promoting knowledge-sharing initiatives, funding collaborative R&D projects, and establishing 

innovation ecosystems. However, the results of H8b reveal that government support and policy does not 

have a significant impact on open innovation in Chinese apparel MSMEs, contrasting with prior research 

emphasizing the enabling role of government policies in fostering innovation practices (Akbari & 

Hopkins, 2022; Tang et al., 2023). This nonsignificant relationship can be attributed to the following 

aspects. First, government policies promoting innovation are often designed with high-tech or large-scale 

industries in mind, leaving traditional sectors like apparel manufacturing, especially MSMEs, 

underserved. Many of these policies may lack alignment with the practical needs of apparel MSMEs, 

which often prioritize cost efficiency and operational stability over collaborative innovation. As a result, 

policies aimed at fostering open innovation may not resonate with the operational realities of smaller 

apparel firms. Second, limited absorptive capacity among MSMEs in Chinese apparel industry further 

diminishes the impact of government support. Effective participation in open innovation initiatives often 

requires a certain level of internal technical expertise, R&D capability, and managerial capacity to 

integrate external resources. Many MSMEs in this sector operate with constrained resources and lack the 

capacity to leverage government-provided grants, innovation platforms, or collaborative opportunities, 

reducing the effectiveness of government support and policy in driving open innovation practices. 

6.2.2.4. AI Adoption, KACAP, and Open Innovation  

H9 explores the relationship between AI adoption and KACAP, grounded in the ACAP framework 

introduced by Cohen and Levinthal (1990). ACAP refers to a firm’s ability to acquire, assimilate, 

transform, and apply external knowledge to achieve innovation and maintain competitiveness (Zahra & 

George, 2002). In the context of Chinese apparel MSMEs, the adoption of AI represents a critical 

knowledge-based resource that can significantly enhance a firm’s ACAP. AI technologies, with their 
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capabilities in data processing, knowledge management, and predictive analysis, enable firms to absorb 

external information better and integrate it into their internal processes, thus increasing their innovation 

potential (Kinkel et al., 2022). 

The significant positive relationship in H9 indicates that AI adoption enhances KACAP in Chinese 

apparel MSMEs. This result aligns with previous literature, such as the work of Adamides and 

Karacapilidis (2020) and Kastelli et al. (2024), demonstrating that AI is a catalyst for improving a firm’s 

ability to recognize and exploit valuable external knowledge. In apparel manufacturing, AI helps MSMEs 

better manage and integrate external knowledge, such as tacit knowledge, experience, culture, and 

explicit knowledge, such as customers’ data, garment technique specification, etc., into their production 

processes, enhancing absorptive capacity. Therefore, the results demonstrate the roles of AI-integrated 

technologies in apparel production and manufacturing processes for tacit and explicit knowledge ACAP.  

H10 examines the impact of KACAP on open innovation. KACAP enables firms to utilize external 

knowledge effectively, which is a critical component of open innovation. The open innovation theory 

posits that firms intentionally manage knowledge flows across organizational boundaries to drive internal 

and external innovation (Chesbrough & Bogers, 2014). In the case of Chinese apparel MSMEs, KACAP 

provides the foundation for integrating external knowledge, which means acquired from suppliers, 

customers, and other stakeholders, into internal processes, enabling these firms to engage more 

effectively in open innovation. 

The significant positive result for H10 suggests that KACAP plays a critical role in facilitating open 

innovation in Chinese apparel MSMEs. This finding aligns with prior studies, which highlight the 

importance of ACAP in leveraging external knowledge for innovation (Moilanen et al., 2014). For 

Chinese MSMEs operating in a highly competitive and dynamic industry, open innovation is essential 

for maintaining competitiveness. KACAP enables these firms to effectively absorb external knowledge 

and collaborate with external partners, leading to improved innovation outcomes. This relationship is 

significant in apparel manufacturing, where rapid consumer preferences and market trends require firms 

to innovate continuously through collaboration with external stakeholders. 

Hypothesis H11 tests the direct relationship between AI adoption and open innovation. Previous 

research suggests that AI capabilities can enable open innovation by facilitating knowledge sharing and 

collaboration across organizational boundaries (Mariani et al., 2023). However, the results of H11 

indicate that AI adoption does not significantly impact open innovation in Chinese apparel MSMEs. This 

non-significant result suggests that while AI adoption may enhance a firm’s technological capabilities, 

it does not directly lead to open innovation without the presence of the mediating factor of KACAP. The 

lack of a direct relationship could be due to the complexity of managing external collaborations and 

knowledge flows, which require firms to have absorptive solid capacities to effectively leverage AI 

technologies for open innovation. In other words, AI adoption alone may not be sufficient to drive open 

innovation unless firms can also absorb, integrate, and apply external knowledge effectively (Kastelli et 

al., 2024). This finding emphasizes the importance of KACAP as a mediating effect between AI adoption 

and open innovation, suggesting that AI adoption alone is insufficient to facilitate the complex, 

boundary-spanning knowledge flows required for open innovation. Using AI in isolation may enhance 
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internal efficiencies or provide better decision-making tools. Still, the firm’s capacity to engage in open 

innovation remains limited without the ability to collaborate with external partners and integrate diverse 

knowledge streams effectively. In this context, KACAP acts as the critical mediating factor that 

transforms AI-driven insights into actionable innovations by enabling the firm to engage meaningfully 

with external partners and co-develop new solutions. 

6.3. Study 2: Categorizing Required AI Capabilities and Barriers to Adopting AI in Chinese 
Apparel Manufacturing MSMEs 

The objective of Study 2 is to ground the required AI capabilities and barriers to adopting AI in Chinese 

apparel manufacturers. By integrating the previous analysis and contextualizing it within China’s unique 

manufacturing landscape, this section has addressed the study’s findings by structuring the discussion 

around two key research questions following the SRQs of Study 2: 1) What are the emerging concepts 

of AI capabilities that Chinese manufacturing firms need? 2) What are the emerging concepts of 

challenges hinder AI adoption in China’s manufacturing sector?  

6.3.1. Layer 1- Required AI Capabilities in Innovation Ecosystem Framework (SRQ3) 

As our informants indicated, AI is urgently required to enhance adaptive and human-centered capabilities 

in apparel manufacturing MSMEs’ production processes. These firms, which lag behind larger sectors, 

struggle to cope with uncertain market shifts, a lack of skilled talent, and financial constraints. They also 

face neglect from local governments and apparel associations. Thus, the first layer of the framework 

focuses on AI capabilities, particularly adaptive production capability and augmented human-AI 

collaboration capability. These capabilities are directly derived from the specific needs identified in 

earlier analyses of the apparel manufacturing sector, where agility, precision, responsiveness, and 

sustainability are paramount. 

This ability to adapt and be human-centered emphasizes the flexibility to respond to customers’ 

demands for low-volume, high-quality production in a short period of time. According to previous coding 

analysis, many MSMEs struggle with tight delivery cycles and frequent design changes. Some 

respondents mentioned that when dealing with custom orders, such as switching from making loose 

trench coats to waist models, the production process must often be adjusted quickly. This ability can help 

garment manufacturers coordinate resources and production schedules more efficiently and maintain an 

edge in a competitive market.  

Although AI has made breakthroughs in many industries, human-machine collaboration remains 

indispensable due to the peculiarities of the garment manufacturing industry. Unlike highly automated 

industries, garment production relies heavily on human experience in fabric handling, creative decision-

making, and real-time quality assessment. AI performs well when performing structured tasks, but still 

requires human intervention in the face of unpredictable fabric properties, complex sewing processes, 

and rapidly changing design requirements. As a result, augmented human-machine collaboration has 

become a major feature of the industry, which uses AI technology to make up for skills shortages and 

improve productivity.  
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 From previous coding analysis, AI has played an important role in processes such as cutting and 

fabric selection, tasks that are error-prone and time-consuming under traditional manual operations. 

Some respondents pointed out that while human labor remains the core of production, AI compensates 

for human limitations by reducing errors in complex processes. This capability is especially important 

for MSMEs, as they often lack enough skilled workers. Compared to large enterprises that can afford full 

automation, MSMEs need AI to complement manpower rather than completely replace it. The need for 

this hybrid model is also driven by market demands for high customization, shorter production cycles, 

and sustainable production, challenges that AI alone cannot yet fully address. 

However, these capabilities are not standalone but deeply interconnected. For example, real-time 

production adjustments (adaptive capability) often rely on AI-enabled tools that are part of human-AI 

collaboration. Without human adaptability, AI would be limited in addressing last-minute order changes, 

ensuring material compatibility, or responding to unexpected production challenges. Together, these 

capabilities form the operational foundation of the innovation ecosystem, driving its ability to deliver 

value to external stakeholders in Layer 3. 

6.3.2. Layer 2 – Factors that Hinder AI Adoptions (SRQ4) 

Layer 2 contextualizes the systemic barriers that impede the development and deployment of Layer 

1 capabilities, which are categorized into industry factors, university factors, and government factors, 

highlight the complex interplay between organizational, technical, and policy-level challenges.  

Industry factors represent intrinsic constraints, such as high costs, technical complexity, and unclear 

ROI. For instance, as noted in the earlier analysis, many SMEs lack the financial resources to implement 

AI solutions, and even when resources are available, the perceived risks often deter investments. The 

absence of standardized AI solutions tailored to apparel manufacturing further complicates adoption, 

requiring firms to navigate technical challenges independently. These barriers directly limit the 

development of adaptive production capabilities, as firms are unable to invest in the required technologies 

or expertise. 

University factors underscore the persistent talent gap that hinders the sector’s ability to leverage 

AI. Earlier coding revealed that university curricula remain misaligned with industry needs, focusing 

more on design than on the technical skills required for AI integration. A respondent pointed out that 

even when students are trained in fashion-related fields, their knowledge of AI applications is minimal, 

leaving a gap in technical expertise that enterprises struggle to fill. This shortfall in talent impacts not 

only human-AI collaboration but also the ability to implement adaptive production systems, as firms lack 

access to professionals capable of managing these transitions. 

Government factors involve both enablers and constraints. While central government policies 

provide strategic support, regional “uneven policy implementation’ (Schubert & Alpermann, 2019, p. 

203) often leave partial SMEs without sufficient resources or guidance. Previous coding analysis 

revealed that local governments frequently prioritize large apparel enterprises, with SMEs receiving little 

direct support. For example, subsidies for AI adoption are often inaccessible to smaller firms due to 

eligibility thresholds, creating a structural barrier that perpetuates inequalities within the ecosystem.  
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These barriers interact dynamically, compounding the challenges faced by apparel manufacturers. 

For instance, the lack of talent (university factor) exacerbates the technical complexity (industry factor), 

while limited financial support (government factor) leaves firms unable to address either issue effectively. 

6.4. MRO: Developing an AI-enabled Innovation Ecosystem Framework with Propositions for 
Chinese Apparel Manufacturing MSMEs (MRQ) 

The MRQ of the research is how to develop an AI-enabled innovation ecosystem to explain the 

mechanisms through which enterprises, universities, associations, and government enhance collaboration 

in the Chinese’s manufacturing sectors. To enhance the academic context, this section incorporates 

previous literature on innovation ecosystems and open innovation, providing a comprehensive view of 

how AI technologies shape collaborative processes within this framework. 

AI plays a key role in facilitating collaboration among businesses, universities, industry associations, 

and governments (Arenal et al., 2020; Kim et al., 2024). This mechanism of cooperation aligns with the 

principle of an innovation ecosystem where multiple actors interact to drive technological progress and 

economic growth (Rabelo Neto et al., 2024). As Chesbrough (2003) noted in his open innovation 

framework, collaboration between external and internal stakeholders is essential for enhancing 

innovation, and AI provides the technological infrastructure to enable such interactions in this context. 

As we decided to adopt Granstrand and Holgersson (2020. p3) defined innovation ecosystems as our 

grounded theory of AI-enabled innovation ecosystem framework’ theoretical foundations, which is 

aligned with Chesbrough (2003)’s open innovation definitions, the grounded layer 3 explains the 

collaborative mechanisms around 13 propositions through internal organizational and external university 

actors and government actors in collaborated activities in the China’s government support.  

An innovation ecosystem comprising “…actors, activities, artifacts, and the institutions and 

relations.” Artifacts here include “products and services, tangible and intangible resources, 

technological and non-technological resources, and other types of system inputs and outputs, including 

innovations.” 

Thus, in the context of AI adoption in the Chinese apparel manufacturing sector, as shown in Figure 

6.2, the Layer 3 serves as the collaborative framework that underpins the innovation ecosystem. This 

layer emphasizes the systemic and inter-organizational dynamics through which government, 

universities, and enterprises coordinate efforts to address barriers to the adoption of AI (Layer 2) and 

enable the development of AI capabilities (Layer 1). Layer 3 functions as the central engine of the 

ecosystem, orchestrating resource allocation, fostering knowledge exchange, and ensuring policy 

alignment to create an environment conducive to innovation. As the integrative mechanism of the 

framework, Layer 3 directly tackles the challenges outlined in Layer 2 based on the results of grounded 

data, such as high adoption costs, skill shortages, and data-sharing constraints, by facilitating multi-

stakeholder collaboration. At the same time, it strengthens enterprises’ KACAP, enabling them to 

internalize and utilize external AI-related knowledge, which supports the development of required AI 

capabilities, such as adaptive production and human-AI collaboration. 
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This foundational understanding of Layer 3 as the driving engine of the innovation ecosystem sets 

the stage for the subsequent sub-sections. These sections delve into the mechanisms by which 

government policies, university contributions, and industry dynamics synergize to operationalize this 

framework. This discussion highlights how these collaborative efforts can foster collaboration, overcome 

barriers, and create the necessary conditions for the effective application and integration of AI technology 

in China's apparel manufacturing industry. 

 
Figure 6.2 AI-enabled Triple-Layer Innovation Ecosystem Framework 

6.4.1. Mechanism 1of Layer 3: Government Policies as Enablers for Collaboration 

A critical mechanism within Layer 3 lies in the evolving role of government policies in fostering AI 

adoption. Governing in China involves both steering through state power and cooperating with corporate, 

collective, and individual actors within a highly complex institutional setting (Schubert & Alpermann, 

2019). However, the top-down policy implementation has traditionally emphasized national-level 

frameworks and prioritized large-scale enterprises. While these strategies have driven technological 

advancements in advanced regions, they have often overlooked the needs of MSMEs and exacerbated 

geographic disparities in AI adoption. To address these systemic challenges, a shift in government 

policies is essential, which is from acting as a centralized policy setter to becoming a collaborative 

enabler within the innovation ecosystem. This transition requires a more nuanced approach that 

emphasizes decentralized implementation, tailored financial support, and ecosystem-wide collaboration. 

As previously indicates by our informants, regional disparities are one of the key barriers limiting the 

equitable diffusion of AI capabilities, revealing that southern regions, with advanced infrastructure and 

strong industrial clusters, have a significant advantage, while northern and less-developed regions face 

challenges in accessing financial and technical resources (Frequency: 6, U1). In the apparel industry, 

geographic disparities are also pronounced. Southern regions typically benefit from well-developed 

infrastructure and robust industrial clusters, whereas northern and underdeveloped areas face significant 

resource constraints (Wang, 2013). Establishing regional innovation hubs is crucial for apparel MSMEs 

as it provides centralized access to funding, technology, and expertise, thereby reducing regional 

inequalities and enhancing overall competitiveness within the sector. These disparities create bottlenecks 

for the development of Layer 1 capabilities, as firms in underdeveloped areas are unable to access the 

tools and knowledge needed to build adaptive production systems or augmented human-AI collaboration. 
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Governments, therefore, need to establish regional AI innovation hubs that act as centralized resource 

centers, providing access to funding, technology, and expertise. Such hubs would also facilitate cross-

regional knowledge-sharing, enabling less-developed regions to benefit from the experiences and 

successes of advanced areas. 

In addition to addressing geographic disparities, tailored funding mechanisms are critical to 

supporting MSMEs. The prioritization of large-scale enterprises in policy frameworks (Frequency: 6, I1) 

has left MSMEs struggling to compete. High costs (Frequency: 8, I3) and limited access to subsidies 

(Frequency: 5, I3) prevent these smaller firms from investing in AI, despite their critical role in supply 

chain operations. Without targeted interventions, MSMEs risk being excluded from the broader 

ecosystem. In the apparel industry, the rapid evolution of trends and consumer preferences necessitates 

continuous adaptation (Trieu, 2024). Unlike sectors characterized by longer product cycles, the apparel 

market operates at an accelerated pace, where fashion trends can shift within weeks or even days. This 

dynamic environment compels apparel MSMEs to make frequent and incremental investments in 

sourcing materials, production processes, and technological advancements to maintain competitiveness. 

The need for agility in responding to market shifts underscores the importance of flexible supply chain 

strategies and adaptive business models in the apparel sector (Irfan et al., 2019). Therefore, decentralized 

funding mechanisms, such as microgrants and low-interest loans, can lower the entry barriers for MSMEs 

in such case. By incentivizing AI experimentation and pilot programs, governments can empower smaller 

firms to explore AI applications without bearing the financial risks associated with large-scale 

implementation. Furthermore, local governments are uniquely positioned to act as facilitators of 

collaboration within the ecosystem. By connecting enterprises, universities, and industry associations, 

local governments can create platforms for knowledge exchange and joint problem-solving. However, 

current government-related associations are often ineffective in fostering innovation, focusing primarily 

on policy dissemination rather than enabling collaboration (Frequency: 2, I7). The fast-paced nature of 

downstream customers’ fashion trends necessitates a rapid response from upstream suppliers’ constant 

adaptions in the complex supply chain processes, which many apparel MSMEs cannot generate 

independently. In this context, governments should promote public-private partnerships that align the 

objectives of diverse actors. For instance, local governments could host workshops, innovation 

challenges, or AI demonstration projects encouraging cross-sectoral collaboration and providing real-

world applications for university research. In addition, the apparel industry in China is undergoing a 

significant transformation as firms shift from traditional OEM/ODM models to OBM strategies that 

emphasize branding and market differentiation. This transition is not solely a technological upgrade but 

also a comprehensive strategic repositioning that demands enhanced capabilities in design, marketing, 

and consumer engagement. Government-led public-private partnerships play an important role in this 

transformation, bringing together a variety of resources and expertise from the public and private sectors. 

By sharing the risks and costs of research and development and market adjustment, this collaborative 

model offers MSMEs the opportunity to experiment with innovation without overburdening them 

financially. Therefore, this collaborative model has become an important support to promote the 

successful transformation of OBM and promote the overall development of the industry.  



 157 

At the same time, the apparel industry association acts as a bridge between enterprises and 

government policies, university research, and technical resources. While they could have played a greater 

role, the current focus is on policy communication rather than actually driving innovation (Frequency: 

2). If they can further expand their functions, such as organizing training and building knowledge-sharing 

platforms, they can play a more critical role in the application of AI, especially for MSMEs that have 

difficulty accessing advanced technologies. 

In Layer 3, the role of government has changed, which has profound implications for the entire 

innovation ecosystem. By narrowing regional gaps, supporting SMEs, and promoting cross-industry 

cooperation, government policies can not only help enterprises and universities enhance Layer 1 core 

competencies but also break through Layer 2 barriers. This shows that the government is not only a 

policy maker but also an enabler in promoting ecological innovation as a whole. Therefore, based on the 

above discussion, we propose the following propositions: 

P1: Regional innovation hubs should be established to reduce geographic disparities in AI adoption. 

P2: Tailored funding mechanisms targeting MSMEs will increase their capacity to experiment with and 

adopt AI technologies. 

P3: Governments should prioritize public-private partnerships that align the goals of enterprises, 

universities, and associations. 

P4: Local governments must act as facilitators of cross-sectoral collaboration, promoting platforms for 

joint innovation. 

P5: Industry associations must expand their role to include capacity-building initiatives and knowledge-

sharing platforms. 

6.4.2. Mechanism 2 of Layer 3: Universities as Knowledge Hubs in Addressing Talent and 
Knowledge Gaps 

Another critical mechanism within Layer 3 is the role of universities as knowledge hubs in fostering AI 

adoption in the apparel manufacturing sector. Universities are uniquely positioned to address the talent 

and knowledge gaps that impede the industry’s ability to fully integrate AI technologies. However, their 

potential remains underutilized due to misalignments between academic outputs and industry needs. For 

instance, university programs predominantly focus on traditional disciplines like design and pattern-

making, while the industry increasingly demands expertise in AI engineering, software development, and 

data analytics (Frequency: 9, I3). Additionally, the limited access to advanced manufacturing 

technologies in educational settings further delays graduates’ readiness to contribute effectively to AI 

adoption (Frequency: 3, U4). 

To bridge these gaps, universities must reform their curricula to integrate AI-specific modules that 

cater to the interdisciplinary demands of the industry. Programs combining AI-driven production systems 

with practical training on intelligent equipment can better prepare students for workforce challenges. 

Partnerships with enterprises can also provide students with hands-on experience, ensuring the 

development of skills needed to transition seamlessly into the workforce. However, the current state of 

collaboration between universities and enterprises often focuses on short-term product development 
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rather than long-term technological innovation (Frequency: 5, A2). This narrow focus prevents 

universities from addressing systemic industry challenges such as garment complexity or workforce 

readiness, which are critical barriers in Layer 2. To align academic research with industry needs, 

universities should participate in government-funded joint R&D programs that prioritize the co-

development of AI tools tailored to specific challenges. These programs would leverage academic 

expertise and industry insights to create innovations like predictive analytics for supply chains or 

automated quality control systems. Moreover, universities need institutional support to foster 

interdisciplinary innovation. Current frameworks often lack the resources and infrastructure necessary to 

integrate expertise from computer science, engineering, and fashion (Frequency: 2, I2). Thus, 

establishing interdisciplinary AI innovation centers within universities would enable collaborative 

research while providing shared access to advanced equipment for experimentation. 

The transformation of universities into active contributors to the innovation ecosystem holds 

profound implications for AI adoption in the apparel manufacturing sector. By addressing the talent gap, 

enhancing research collaboration, and institutionalizing interdisciplinary innovation, universities can 

overcome barriers while building the capabilities needed in Layer 1. Therefore, we propose the following 

propositions: 

P6: Universities must reform curricula to integrate interdisciplinary AI modules that address the needs 

of the apparel industry. 

P7: Joint R&D programs between universities and enterprises should prioritize the co-development of 

AI solutions for industry-specific challenges. 

P8: Establishing interdisciplinary AI innovation centers will enable universities to serve as collaborative 

hubs for research and training. 

P9: Partnerships between universities and enterprises should focus on providing hands-on experience to 

students, fostering workforce readiness for AI adoption. 

6.4.3. Mechanism 3 of Layer 3: Collaboration and Competition as Drivers of AI Adoption for 
Apparel Industry  

Layer 3 focuses on the dynamics of industry actors and their roles in shaping AI adoption as the 

third critical mechanism. Participants in the apparel manufacturing industry are in a complex network of 

cooperation and competition. As the previous coding analysis, the apparel industry is often involved in 

collaborative efforts through supply chain interactions and industry associations. The integration of AI 

tools in apparel supply chain is very complicated (Frequency:3). However, if companies along the supply 

chain can share data through a collaborative platform, seamless integration of AI systems can be achieved. 

For example, a unified data standard can help suppliers and manufacturers better synchronize production 

schedules, reduce inefficiencies, and increase production speed. 

In contrast to collaboration, competitive pressures also drive AI adoption within the industry. Firms 

that lead in adopting AI technologies often create a demonstration effect, setting benchmarks that other 

enterprises emulate (Frequency: 2). This dynamic encourages the diffusion of AI but can exacerbate 

inequalities, as smaller firms struggle to meet the resource-intensive requirements of AI systems. 
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Moreover, intense competition within the sector often manifests as price wars (Frequency: 3, I4), which 

limit firms’ ability to invest in innovation due to low profit margins. Thus, balancing competitive 

pressures with support mechanisms directly impacts maintaining robust enterprise-customer 

relationships within the innovation ecosystem. This outcome reinforces the importance of maintaining 

equitable support structures for enterprises to sustain strong customer engagement in the ecosystem.  

The interplay between collaboration and competition highlights the need for systemic interventions 

to balance these forces. Apparel industry associations can play a crucial role in mitigating disparities by 

facilitating access to shared AI resources and promoting best practices. Similarly, firms that succeed in 

AI adoption should be encouraged to mentor smaller enterprises, fostering a culture of knowledge-

sharing and mutual growth.  

Layer 3’s industry dynamics further emphasize that innovation across the entire ecosystem can only be 

truly fostered by promoting collaboration while maintaining a level playing field. Therefore, we propose 

the following propositions: 

P10: Supply chain partners should adopt standardized data-sharing protocols to enhance interoperability 

and support AI integration. 

P11: Firms leading in AI adoption should mentor smaller enterprises to promote equitable technology 

diffusion. 

P12: Collaborative platforms should focus on aligning supply chain operations with AI-enabled tools to 

optimize efficiency. 

P13: Competitive pressures should be balanced with support mechanisms to prevent marginalization of 

smaller firms in the ecosystem. 

6.4.4. ACAP as the Outcome of Layer 3 Interactions 

The three mechanisms of government policies as enablers, universities as knowledge hubs, and 

industry dynamics of collaboration and competition lay the foundation for the fourth mechanism, which 

is ACAP. In the previous literature defined absorptive capacity as a firm’s ability to recognize the value 

of external knowledge, assimilate it, and apply it to create innovation (Cohen & Levinthal, 1990; Grant, 

1996), emerges as a systemic outcome of Layer 3 interactions. As we proposed, the Chinese government 

policies play a pivotal role by reducing structural barriers, such as geographic disparities and financial 

constraints, through regional AI innovation hubs and tailored subsidies for MSMEs. Hence, these 

initiatives provide firms with access to external resources and technologies, creating opportunities for 

experimentation and engagement with AI solutions. Universities, as knowledge providers, bridge the gap 

between theoretical research and practical applications, equipping firms with the specialized skills and 

technical expertise required for AI adoption through joint R&D programs and interdisciplinary 

innovation centers. Meanwhile, industry dynamics foster KACAP by creating environments for shared 

learning and competitive benchmarking. Collaborative supply chain platforms and industry associations 

facilitate knowledge sharing, while competitive pressures incentivize firms to adopt and adapt AI 

innovations to maintain market relevance. Together, these mechanisms enable firms to recognize, 

assimilate, and apply external knowledge, transforming barriers into adaptive capabilities. Thus, KACAP 
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becomes both a product of Layer 3 interactions and a driver for sustained innovation within the ecosystem, 

reinforcing the recursive and dynamic nature of the innovation framework. 

6.5. Theoretical Contributions and Managerial Implications  

The findings of this research offer substantial contributions to understanding how AI facilitates open 

innovation and enhances collaboration across industries, universities, associations, and government, 

particularly within the context of Chinese apparel manufacturing sector. This section outlines the key 

theoretical contributions and managerial implications of the two studies presented in this thesis. Study 1 

utilized PLS-SEM to empirically validate the factors influencing AI adoption and its mediating role in 

organizational open innovation (SRO 1 was addressed). Study 2 applied grounded theory to develop a 

comprehensive framework, yielding 13 propositions describing the collaboration mechanisms between 

enterprises, universities, and government (SRO 2 was addressed). These two complementary approaches 

offer substantial theoretical insights into the AI-enabled innovation ecosystem and provide practical 

guidelines for industry and policymakers (MRO was addressed). The following sub-sections discuss 

these theoretical contributions and managerial implications for Chinese apparel manufacturing sector.  

6.5.1. Theoretical Contributions 

The thesis aims to build an AI-enabled innovation ecosystem for Chinese apparel manufacturing, and 

thus, to achieve it, Study 1 provides a preliminary statistical analysis of AI adoption of MSMEs toward 

open innovation based on the TOE-TAM model. It contributes to the existing literature by empirically 

validating the relationships between technology, organizational, and environmental factors and AI 

adoption within Chinese apparel manufacturing sector, using PLS-SEM. The extended TAM-TOE model 

developed in this study integrates multiple theoretical perspectives, including the TAM, the TOE 

framework, and the ACAP theory. Several key theoretical contributions emerge from the empirical 

findings. First, the study advances the TAM-TOE model by introducing KACAP as a mediating construct 

between AI adoption and open innovation. Second, while the traditional TAM posits that perceived ease 

of use is critical for technology adoption, the findings challenge this assumption in the context of AI. 

Specifically, perceived ease of use does not significantly influence AI adoption in China’s MSMEs, 

reflecting a shift towards more outcome-oriented evaluations, where the perceived usefulness of AI and 

its potential to drive competitive advantage play a more pivotal role. Therefore, the diminished impact 

of perceived ease of use on AI adoption suggests a need to reconsider the emphasis placed on use ease 

when adopting highly complex technologies like AI. Unlike conventional IT systems, AI’s sophistication 

and transformative potential outweigh operational ease concerns, highlighting the importance of long-

term strategic benefits over immediate usability. Third, the study introduces new insights into the 

relationship between organizational readiness and KACAP. While organizational readiness does not 

directly influence AI adoption, it significantly impacts a firm’s ability to absorb and exploit external 

knowledge, highlighting its indirect importance in driving AI-enabled open innovation. Fourth, Study 1 

reveals that competitive pressure is critical environmental factor facilitating AI adoption. The results 
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suggest that China’s MSMEs are driven to adopt AI to maintain competitiveness and meet evolving 

market demands. Simultaneously, suppliers play an essential role in providing the necessary resources 

and expertise for AI integration, which highlights the interdependence of firms within the supply chain 

and the critical role of external actors in fostering innovation. Lastly, as stated, knowledge is a crucial 

input and a significant source of value in manufacturing (Chatterjee et al., 2021; Legesse et al., 2024; 

Tasnim et al., 2023), and open innovation is the process based on intentional management of knowledge 

flows across organizational boundaries (Chesbrough & Bogers, 2014, as cited in Arias-Pérez & Huynh, 

2023), which provides a framework for utilizing external and internal knowledge, technology, and 

resources to accelerate internal and external innovation. Thus, KACAP would leverage purposive inflows 

and outflows of knowledge to achieve innovative performance. Overall, this thesis contributes to the 

empirical investigation of KACAP’s mediating effect on AI adoption toward open innovation, an area 

where no research currently exists.  

To achieve SRO 2, Study 2 extends the theoretical foundation laid by Study 1 by developing the 

framework, grounded in empirical findings from the Chinese apparel manufacturing sector. This 

framework builds on the grounded theory approach to propose 13 key propositions that describe the 

mechanisms through which AI facilitates collaboration across industries, universities, associations, and 

government, thereby constructing the AI-enabled innovation ecosystem framework. The grounded 

innovation ecosystem framework developed through qualitative interviews offers significant theoretical 

contributions by advancing our understanding of how innovation ecosystems operate in emerging 

economies and traditional industries like apparel manufacturing. While much of the existing literature 

on innovation ecosystems focuses on high-tech industries in developed economies, this framework 

broadens the scope by contextualizing the adoption of AI within a sector traditionally considered low-

tech, emphasizing the unique pathways through which such industries can transform. A central 

contribution lies in its layered structure, which integrates requried capabilities (Layer 1), barriers to 

adopting (Layer 2), and external collaborative mechanisms (Layer 3), offering a dynamic, multi-level 

perspective on how ecosystems evolve. This layered approach highlights the interplay between internal 

capabilities, such as adaptive production, and external systemic factors, such as workforce readiness and 

policy constraints, while also revealing the mechanisms by which external collaborations mitigate these 

challenges and enable knowledge absorption. Moreover, the framework reconceptualizes the role of 

governments in emerging economies, shifting from a top-down policy enforcement perspective to one 

that emphasizes enabling bottom-up initiatives and supporting decentralized innovation, especially for 

MSMEs. It also underscores the critical importance of interdisciplinary knowledge integration, revealing 

how ecosystems thrive by bridging disciplinary silos across fashion design, AI engineering, and supply 

chain management, facilitated by universities as key knowledge hubs. Furthermore, the framework 

positions KACAP not as a standalone firm-level construct but as a systemic outcome of collaborative 

mechanisms in Layer 3, illustrating how government policies, university contributions, and industry 

dynamics interact to enhance firms’ ability to assimilate and apply external knowledge. By 

contextualizing these interactions within China’s institutional environment, characterized by a blend of 

top-down state influence and market-driven dynamics, the framework provides a culturally specific lens 
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that deepens theoretical insights into how ecosystems adapt in complex governance settings. Additionally, 

the framework enriches the understanding of the dual forces of collaboration and competition, showing 

how cooperation fosters shared learning and resource pooling while competition drives innovation and 

benchmarking, achieving a balance that propels systemic innovation. Taken together, the framework not 

only extends the theoretical boundaries of innovation ecosystem studies but also offers a robust, context-

sensitive model for examining the transformation of traditional industries in emerging economies. 

Overall, this thesis combines the findings of Study1’s PLS-SEM analysis with the grounded theory 

propositions from Study 2 to offer an integrated understanding of AI’s role in fostering open innovation 

in Chinese apparel manufacturing sector. The integration of findings from the PLS-SEM analysis (Study 

1) and the grounded theory- innovation ecosystem framework (Study 2) provides a comprehensive, 

multi-layered understanding of AI adoption in Chinese apparel manufacturing sector by connecting 

quantitative determinants with qualitative insights into systemic collaboration. The PLS-SEM analysis 

identifies key constructs that influence AI adoption and open innovation. These constructs, when 

contextualized within the innovation ecosystem developed in Study 2, reveal the roles and interactions 

in Layer 3. For instance, perceived usefulness aligns with Layer 1’s emphasis on adaptive and 

collaborative AI capabilities, while government support and policy and supplier involvement highlight 

Layer 3’s mechanisms of resource mobilization and knowledge exchange. This integrated framework 

advances theoretical discussions by showing how firm-level determinants operate within a broader 

ecosystem structure. Furthermore, the SEM finding that organizational readiness positively influences 

KACAP (H4b) reinforces qualitative insights that firms’ ability to assimilate external knowledge is 

critical, bridging internal readiness with the external dynamics of Layer 3. The interaction between 

competitive pressure, market uncertainty, and open innovation, as evidenced by Study 1’s findings (e.g., 

H5b and H7b), aligns with Study 2’s focus on industry dynamics in Layer 3, illustrating how competitive 

benchmarking and uncertainty stimulate collaborative problem-solving across supply chains. Overall, 

these findings contribute to the literature by demonstrating how external pressures, rather than solely 

acting as barriers, serve as catalysts for innovation within a coordinated ecosystem. 

6.5.2. Managerial Implications 

The thesis’s findings have offered valuable managerial implications that can be developed to guide the 

future development of AI technology acceptance intentions in organizations. Study 1 focuses on 

identifying the determinants of AI adoption in Chinese apparel manufacturing MSMEs through the 

TAM-TOE and KACAP frameworks. The managerial implications of these findings highlight the 

importance of strategic decision-making in the adoption and integration of AI-integrated technologies in 

the apparel manufacturing sectors.  

First, for apparel manufacturing managers, the findings of the diminished role of perceived ease of 

use in AI adoption (H2) imply that managers suggest that focusing on the strategic value of AI, rather 

than its operational simplicity in use, is critical for driving adoption. Managers should prioritize AI-

integrated technologies and tools that deliver long-term competitive advantages, such as improved 

production efficiency and enhanced decision-making capabilities, even if the technology is initially 
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complex. Second, the findings underscore the critical role of organizational readiness in KACAP (H4b). 

Thus, managers must ensure their firms are prepared for AI knowledge absorption and integration by 

securing the necessary financial, technological, and human resources for readiness. This includes not 

only investing in infrastructure but also facilitating open innovation that is adaptable to technological 

resources (knowledge) and strengthening their ACAP. Organizational readiness should be seen as a 

multi-faceted concept, encompassing IT infrastructure, financial capacity, and the development of a 

skilled workforce capable of interacting with AI-integrated technologies and fostering a culture of 

collaboration that embraces external knowledge sources. Third, the external factors of competitive 

pressure and close collaboration with suppliers are crucial drivers of AI adoption and open innovation 

(H5a, H5b, and H6b). As a result, managers should prioritize the strategic importance of adopting AI 

more quickly than their competitors. This proactive approach will boost the confidence of forego users 

(e.g., technicians and pattern cutters using AI after its adoption), helping them recognize that integrating 

AI tools can make the organization more productive than others (Chatterjee et al., 2021). Managers, also, 

must ensure employees understand how AI technology contributes to the organization’s competitive 

advantage. These advantages of AI tools in production and manufacturing processes would benefit all 

stakeholders in complete apparel supply chains. The benefits of AI tools in production and manufacturing 

processes extend to all stakeholders across apparel supply chains. Therefore, managers should actively 

seek partnerships with suppliers and external experts to facilitate the integration of AI technologies and 

ensure that their firm remains competitive in a rapidly evolving industry. Fourth, firms need to enhance 

their dynamic capacity since market uncertainty significantly positively affects AI adoption and open 

innovation, as ascertained from our study (H7a and H7b) and prior studies (Arifin & Frmanzah, 2015; 

Graham & Moore, 2021). It has been discovered that increasingly uncertain external circumstances bring 

internal agile management. Consequently, organizations must enhance learning and adaptation through 

continuous training and knowledge-sharing activities to promote and foster an organizational culture of 

innovation with AI’s challenges to traditional industries (e.g., apparel manufacturing). To sustain their 

competitive advantages, managers leverage their agile management capabilities to improve, refresh, and 

reconfigure the stock of resources and adapt AI tools. Furthermore, leadership, outsourcing capability, 

and governance can ensure that AI initiatives are aligned with all stakeholders and employees in the 

organizations’ innovation ecosystems. This, as such, is the prerequisite of AI adoption in organizations. 

Fifth, precisely because AI adoption is intricately linked to a firm’s ability to absorb and utilize external 

knowledge (H9), it has been discovered that increasingly uncertain external circumstances bring internal 

agile management. Thus, managers should focus on enhancing their firms’ KACAP by encouraging 

continuous learning, establishing channels for knowledge exchange, and promoting cross-departmental 

collaboration based on the results of H10 and H11. Investing in training programs that help employees 

understand and utilize AI technologies can significantly improve the firm ability to innovate and compete 

in a technology-driven marketplace. Last, as ascertained in H8a and H8b, policymakers should release 

favorable concrete AI policies in collaboration with higher education and apparel manufacturing, 

focusing on reducing regional disparities in AI adoption by providing targeted subsidies, improving 

access to technological infrastructure, and encouraging cooperation between inland and coastal apparel 
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clusters. Addressing these imbalances is essential for ensuring that all firms, regardless of geographical 

location, can benefit from AI-enabled innovation. 

Building on the empirical analysis of Study 1, which examined the antecedents of AI adoption, thus 

driving open innovation in Chinese apparel manufacturing sector, Study 2 shifts the focus toward a 

theoretical exploration of how AI facilitates collaboration across industries, universities, associations, 

and government policy within the broader innovation ecosystem. The grounded theory approach in Study 

2 provides a set of propositions that emphasize the mechanisms through which these stakeholders interact 

to foster open innovation driven by AI. This section will elaborate on how each actor (enterprises, 

universities, associations, and government) can work together to establish collaborative pathways in AI 

integration, drawing on the 13 activities’ propositions from the grounded study. 

The grounded innovation ecosystem framework developed in Study 2 offers several key managerial 

contributions for stakeholders in Chinese apparel manufacturing sector. First, it provides actionable 

insights into how firms can leverage interorganizational collaboration to overcome barriers to AI 

adoption. For managers, the framework highlights the importance of engaging with external actor, such 

as universities, suppliers, and government bodies, not only to access resources and knowledge but also 

to build long-term partnerships that enhance adaptive and collaborative AI capabilities. By understanding 

the roles and mechanisms outlined in Layer 3, firms can strategically position themselves within the 

ecosystem, proactively aligning their internal capabilities with external opportunities. Second, the 

framework underscores the need for managers to cultivate KACAP within their organizations. By 

fostering a culture of learning and openness, firms can better assimilate external knowledge and 

innovations, enabling more effective integration of AI technologies into their operations. Additionally, 

the emphasis on decentralized, bottom-up policy engagement suggests that managers should not 

passively rely on government support but should actively advocate for their needs and participate in 

shaping supportive policies, particularly for MSMEs that often lack direct access to resources. Finally, 

the framework highlights the role of competitive benchmarking and collaborative experimentation in 

driving open innovation. Managers are encouraged to balance competitive pressures with opportunities 

for shared learning within supply chains and industry networks, fostering a culture where collaboration 

and competition coexist to accelerate innovation. By operationalizing these insights, managers can 

enhance their firms’ resilience and adaptability, ensuring sustainable growth in an increasingly AI-driven 

industrial landscape. 

6.6. Synthesis of Discussion and Conclusion (MRO) 

To achieve the MRO of developing an AI-enabled innovation ecosystem for Chinese apparel 

manufacturing sector, this thesis employs a systematic, dual-phase approach, combining quantitative and 

qualitative methods. In the first phase, Study 1 (to achieve SRO1) quantitatively investigates the 

relationship between AI adoption and open innovation in Chinese apparel manufacturing MSMEs. Using 

the TAM-TOE framework, Study 1 identifies key drivers of AI adoption, with a focus on Knowledge 

Absorptive Capacity (KACAP) as a critical mediating factor that converts AI adoption into actionable 
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innovation. By quantitatively establishing these foundational elements, Study 1 creates an organizational 

basis for AI readiness, highlighting KACAP’s essential role in bridging technology adoption and 

innovative outcomes. 

Building on these findings, the second phase, Study 2 (addressing SRO 2), utilizes an inductive 

grounded theory approach to identify the essential AI capabilities needed by firms and the barriers 

hindering AI adoption. Through qualitative analysis, Study 2 explores how universities, industry 

associations, and government entities can collaborate with apparel firms to promote open innovation. 

The results clarify the roles and interactions of these stakeholders, providing theoretical support for 

developing an AI-enabled innovation ecosystem framework and propositions (MRO).  

Therefore, the combined insights from both studies effectively fulfill the MRO, developing a 

comprehensive, empirically supported ecosystem framework that addresses both internal organizational 

readiness and external collaborative dynamics. By synthesizing quantitative and qualitative data, the 

triple-layer framework offers actionable guidance, ensuring MSMEs leverage both absorptive capacities 

and external partnerships to sustainably drive AI-enabled open innovation in the Chinese apparel 

manufacturing sector. This holistic, evidence-based approach bridges an essential gap in AI ecosystem 

development, contributing valuable strategic insights for policymakers, industry stakeholders, educators, 

and academic partners (see Figure 6. 3). 

 
Figure 6.3 The Relationship of the Findings of MRO, SRO 1 and SRO 2 

6.7. Chapter Summary 

This chapter discusses and reflects upon the results reported in Chapter 4 (Study1) and Chapter 6 (Study 

2) to construct a comprehensive framework for understanding AI adoption within Chinese apparel 

manufacturing sector. Study 1 employed PLS-SEM to identify key determinants of AI adoption. These 

quantitative insights provided a foundational understanding of the factors directly influencing firms’ AI 

adoption and open innovation. Complementing this, Study 2 utilized qualitative methods to grounded the 

AI capabilities essential for apparel firms and the barriers preventing AI adoption for developing an 
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innovation ecosystem framework with 13 propositions (MRO). While Study 1 highlighted firm-level 

dynamics, Study 2 expanded the perspective by exploring the multi-layered mechanisms driving 

collaboration, resource flow, and KACAP across the ecosystem. Overall, these studies highlight the 

interplay between micro-level adoption determinants and macro-level systemic enablers and barriers, 

providing both theoretical insights and practical implications for fostering AI-driven innovation in the 

apparel manufacturing sector. 
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7. Conclusion, Limitations and Future Research, and Highlights  

7.1. Introduction  

This chapter serves as the conclusion of this thesis research. Section 7.2 provides an overview of the key 

findings from each chapter. Section 7.3 discusses the limitations and offers recommendations for future 

research. Finally, Section 7.4 presents highlights. The chapter flowchart is illustrated in Figure 7.1. 

 
Figure 7.1  Flow Chart of Chapter 7 

7.2. Research Overview  

Chapter 1 presented the research context of AI evolution, its disruption in China’s traditional apparel 

manufacturing in Industry 4.0, and the extent to which Chinese AI policies foster an innovative 

environment. This presented an overview of AI adoption drives innovation and updating in this domain. 

Furthermore, the theoretical background provided the rationale and gaps for researchers aware of the rare 

research on specific industry with the current technology adoption theories, and promoted organizations 

to understand holistically the antecedents driving AI adoption. Thus, the MRO and SROs were identified, 

and the research approach was also briefly described, and the research approaches and boundaries were 

determined. The research significance was introduced from theoretical and practical aspects, and the 

policy-related significance was briefed, thereby crystallizing the research idea to conduct the literature 

review further.  

Chapter 2 reviewed the theoretical background associated with AI’s capabilities toward innovation 

and AI adoption, documenting their influence on open innovation. This provided the foundations of AI 

adoption, enabling roles in innovation, and arrival to present these AI-integrated technologies adoption, 

together with the factors driving their adoption, influencing the MSMEs’ open innovation in exchange. 

Among the reviewed studies, the TAM-TOE framework is widely recognized in technology adoption 

studies as a robust analytical tool (Dobre, 2022). It enables an in-depth examination of technological and 

organizational factors within the broader context of the business environment. Thus, this study has been 

conducted with the underpinning of the TOE-TAM for exploring AI-integrated technologies adoption 

research from firm level. To further expand the driver of technology adoption toward open innovation, 

several studies mentioned RBV has been applied in a significant number of the studies reviewed for this 

thesis. Therefore, the research applied KBV that is derived from RBV for exploring the mediator roles 

of KACAP between AI adoption and open innovation in the present status of China’s traditional apparel 

manufacturing transformation. Using the integrated and extended TAM-TOE framework, the integrated 

and extended TAM-TOE framework was used to develop a conceptual model that simplifies complex 

concepts by incorporating antecedents, intermediates, and consequences derived from established 
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technology adoption models. In Study 1, the model integrates and extends the TAM-TOE framework by 

introducing the new concept of KACAP, which acts as a mediator between AI adoption and open 

innovation within the organizational component of the TOE framework. The TAM model’s dimensions 

of perceived usefulness and perceived ease of use align with the technological factors in the TOE 

framework, while the organizational dimension includes organizational complexity and readiness. 

Additionally, the external environment is defined by competitive pressure, supplier involvement, market 

uncertainty, and government support and policies. The study formulates hypotheses regarding the effects 

of technological, organizational, and environmental factors on AI adoption, KACAP, and open 

innovation. By introducing KACAP as a key mediator, the study expands the traditional TAM-TOE 

framework, which fills a research gap by providing a structured approach to understanding the 

relationship between AI adoption and open innovation. From the KBV perspective, this research offers 

a comprehensive framework for assessing how AI technologies can enhance open innovation within 

firms, thus contributing to academic knowledge and practical applications in strategic management in 

Chinese apparel manufacturing MSMEs.  

Furthermore, this Chapter reviewed the literature of innovation ecosystem and revisited AI 

capabilities in open innovation to define innovation ecosystem in the AI age for Study 2. This thesis 

employs the definition of innovation ecosystem by Granstrand and Holgersson’s (2020) in that this 

definition aligned with Chesbrough (2003)’s open innovation theory, highlighting the importance of 

external knowledge flows, where firms leverage ideas and technologies from outside sources to enhance 

their internal innovation capabilities with the collaboration with stakeholders. As we hypothesized that 

AI adoption drives open innovation in Study 1, the understanding of how firms leverage AI to build an 

innovation ecosystem from open innovation perspectives is crucial. It is a significant theoretical base for 

the grounded AI-enabled innovation ecosystem theory in Study 2. As this definition emphasizes the 

importance of collaboration of different stakeholders within the manufacturing ecosystem, the theory of 

TH model (Etzkowitz & Leydesdorff, 1995) was employed to further clarify the roles of universities, 

industry, and the China’s central government, providing the theoretical context for building the grounded 

theory for Study 2. The literature review has been synthesized for the relationships between Study 1 and 

Study 2, which suggests a theoretical direction for achieving the MRO. 

Chapter 3 was to proceed with the research framework, consisting of two different research 

approaches in Study 1 and Study 2, respectively. First, the research paradigms and corresponding 

methodological approaches based on Saunders et al. (2015, p.164) “research onion” were provided 

together with the rationale for the research philosophy of this thesis. Then, the research design, including 

methodology choices, strategies, and time horizons, was presented, followed by a description of the data 

collection and procedure of Study 1 and Study 2, respectively. In terms of Study 1, it adopts an 

ontological objectivist perspective combined with an epistemological positivist approach, utilizing a 

deductive methodology. A quantitative method was implemented, employing a web-based survey as the 

primary data collection tool. The measurement scale was designed using items validated in prior research. 

For sampling, a quota-based approach was applied to ensure representativeness. It was employed to select 

specific manufacturers, and a simple random sampling technique was then applied to ensure 
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representativeness among apparel manufacturing companies in China, identified through research of 

apparel association databases. The data collection started in June 2024 and lasted until August 2024. The 

minimum sample size was set for 155 observations, with 269 responses that were received and usable 

for the survey. Study 2 was identified as an ontological constructivist perspective with epistemological 

interpretivism. It was an inductive qualitative study using grounded theory, a theory-constructing 

procedure by open, axial, and selected coding framework. It conducted a semi-structured interview using 

purposive sampling research with theoretical sampling and snowball sampling. The contents of these 

subsequent documents were analyzed using the constant comparison method. No new concepts emerged 

after examining the theoretical saturation, and existing categories were fully developed. As a result, 15 

semi-structured interviews with 5 for data saturation were conducted in Study 2. 

To satisfy the ethical requirements, the ethical research protocol approval of the thesis was obtained 

prior to data collection. The survey questionnaire and interviews were provisioned with a comprehensive 

Participant Information Sheet and an Informed Consent. A cover letter has also been provided to third 

agency to ensure that the participants to whom they are distributed are aware of the research content, 

including detailed research purposes, researchers, and corresponding academic information. 

Chapter 4 and Chapter 5 presented the data results and analysis of the thesis. Chapter 4 (Study 1) 

conducted an analysis using the PLS-SEM technique. It presented the preliminary data analysis results, 

including the pilot and main studies. The pilot study has been found appropriate for further testing 

through the construct reliability and validity results. Outliers and normality were analyzed in the 

preliminary data assessment, and all items were retained for subsequent evaluation. Further, the 

descriptive statistics offered valuable insights into the demographics of MSMEs, including their size, 

age, business type, and industry clusters. The chapter then focused on MSEM analysis, detailing the 

outcomes of both the measurement and structural models for the full sample. The analysis of the proposed 

model revealed critical findings, highlighting the significant impact of the AI construct on MSMEs’ open 

innovation mediated by KACAP. AI adoption was significantly influenced by one technological factor 

(perceived usefulness), not by perceived ease of use. Both two organizational antecedents were found to 

have insignificant impacts on AI adoption. Except for the supplier involvement factor, all external 

environmental factors (Competitive pressure, supplier involvement, market uncertainty, government 

support and policy) significantly impact AI adoption (excluding supplier involvement) and open 

innovation (excluding government support and policy).  

Chapter 5 (Study 2) presents the findings from Study 2, which employed qualitative methods to 

explore the dynamics of AI adoption in Chinese apparel manufacturing sector. Drawing on semi-

structured interviews with key stakeholders from industry, government, and universities, the analysis 

identified critical AI capabilities, such as adaptive production and human-AI collaboration, as well as 

systemic barriers, including insufficient resources, talent shortages, and policy mismatches. These 

findings provide rich, grounded insights into the challenges and opportunities associated with AI 

adoption, emphasizing the interconnected roles of stakeholders across the sector.  

Chapter 6 revisited the results reported in Chapter 4 and the findings from Chapter 5, aligning 

them with the five research questions. The preliminary data analysis initially confirmed that the research 
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model was robust and that the data set was high quality. Regarding the structural TAM-TOE model, the 

review and analysis of results followed a clear and systematic approach, accurately assessing the model’s 

explanatory power using the R² coefficient of determination. The predictive power was also evaluated 

through PLSpredict, which effectively demonstrated the models’ explanatory solid and predictive 

capabilities. Then, the first and second research questions have been discussed, especially in the aspects 

of the contributions of the KACAP concept in examining the determinators of AI-integrated technologies 

adoption toward MSMEs’ open innovation. The third and fourth research questions were addressed from 

the coding analysis based on the grounded data, and then the fifth research question was addressed 

through an AI-enabled triple-layer innovation ecosystem framework. 

It also discussed the theoretical contributions and managerial implications. KACAP served as a 

mediator, contributing to the KBV and RBV literature on strategic management by bridging AI and 

business alignment, fostering both AI adoption and open innovation. The theoretical contributions of this 

research also include advancing innovation ecosystem theory by bridging micro-level adoption 

determinants and macro-level systemic mechanisms. The framework was developed to demonstrate how 

external collaborations, such as university-industry partnerships and supply chain integrations, enable 

firms to overcome barriers and build knowledge absorptive capacity. Additionally, the study 

reconceptualized the role of government, highlighting the transition from top-down directives to 

facilitating collaborative innovation. 

From a managerial perspective, the findings underscore the importance of developing internal 

capabilities while leveraging external resources. Managers are encouraged to foster interdisciplinary 

teams and actively engage in ecosystem-wide collaborations. Policymakers should focus on creating 

regional innovation hubs, tailored funding mechanisms, and programs that address talent shortages and 

resource inequities. By aligning organizational efforts with ecosystem dynamics, stakeholders can 

accelerate AI adoption and foster sustainable innovation. 

7.3. Limitations and Future Research 

7.3.1. Limitations and Future Research of Study 1 

The study has contributed comprehensive theoretical lenses and managerial implications; however, it has 

several limitations, which could provide room for future research. The first limitation arises from the 

study’s cross-sectional nature. This research has conducted a cross-sectional analysis in which the data 

was gathered at only one point. Thus, future studies could collect longitudinal data to see how the model 

performs, using data collected from the same responses over a certain period (Chatterjee et al., 2021).  

Second, although it covers China’s typical apparel clusters, given that geographic variance is 

associated with local culture and subjective norms (Dziembowska-Kowalska & Funck, 2000; Tomczak 

& Stachowiak, 2015), the antecedent of culture or Guanxi may influence managers’ attitudes toward AI 

adoption (W. Guan et al., 2023). This is the second limitation of geographical culture in China. Thus, 

future studies might revisit cultural factors in the proposed model. Third, the proposed model suggests 

that the two indicators of organizational complexity may not fully capture the construct’s complexity, 
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affecting the measurement model’s ability to adequately reflect the underlying concept and potentially 

impacting the construct validity of organizational complexity in the analysis. Therefore, future studies 

should consider incorporating more latent indicators for a construct to ensure its robustness and better 

capture its complexity.  

Last, the study has identified the factors influencing AI adoption in Chinese apparel manufacturing 

sector, driving open innovation through KACAP. However, the gap in educational levels across apparel 

manufacturing is significant, and different types of apparel manufacturing reflect distinct business 

models. The study did not differentiate between various types of managers based on the types of products 

they manufacture. For example, companies specializing in producing single product types, such as suits 

and shirts, tend to have a greater need for AI technologies, while companies with a more diverse range 

of products are currently less confident in the ability of AI to handle the complexity of more intricate 

designs. Therefore, future research should differentiate the study sample by categorizing company 

owners based on product types to compare the effects of the same model across different types of apparel 

manufacturers. In addition, MSMEs’ trust in AI technologies should also be incorporated as a factor in 

adoption models, as it might significantly influence AI adoption. 

7.3.2. Limitations and Future Research of Study 2 

One of the primary limitations of this grounded theory study is the extensive time required for data 

collection and analysis, as these processes must coincide with constant comparison. This study conducted 

the interviews in two rounds, and theoretical saturation was tested after the second coding round. 

However, whether theoretical saturation was achieved largely depends on the researcher’s coding 

experience and subjective judgment. Future research should emphasize continuously comparing 

grounded data and increasing the number of coding rounds to ensure that theoretical saturation and 

validity are adequately achieved. 

A second limitation relates to the sample size in the first round of interviews, which consisted of 15 

participants representing key roles in the innovation ecosystem. Due to the wide variation in participants’ 

educational backgrounds and experiences, some interviewees struggled to engage deeply with the 

questions, occasionally leading to biased responses. Additionally, the relatively small number of 

interviews with association leaders stemmed from difficulties in securing interviews, as many declined 

participations due to the technical or policy-related nature of the discussions. These challenges posed 

significant barriers to the research process. The researcher relied on personal connections within China 

(Guanxi) (Guan et al., 2023) to establish contact with apparel associations and secure company 

interviews, which inevitably limited the diversity and range of participants. To address these limitations, 

future studies should consider diversifying the interview methods, such as incorporating focus groups. 

Given that grounded theory can draw from various data sources, future research could also include policy 

text analysis and, where copyright permits, content from apparel-related video platforms as additional 

data, and industry panel data for grounded theory analysis. These alternative data sources could enrich 

the findings and provide a broader perspective on AI adoption and open innovation within the apparel 

industry.  
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The third limitation is the lack of validation for the identified barriers to AI adoption through 

structural equation modelling. Thus, future research should focus on empirically validating the identified 

barriers to AI adoption using structural equation modeling or other quantitative methods. This would 

allow for a more robust understanding of the relationships between these barriers and their impact on AI 

adoption within the innovation ecosystem.  

Fourth, the model of AI-enabled innovation ecosystems in Chinese apparel manufacturing sector 

has not yet been applied to an apparel firm to validate its practical effectiveness, which highlights a key 

agenda for future research. Therefore, this theoretical model should be implemented in a specific project 

to examine how these barriers evolve over time and interact with dynamic changes in policy, market 

conditions, and technological advancements, ideally through a longitudinal case study. 

Fifth, Propositions (P1, P2, and P3) are rooted in the specific challenges and opportunities of the 

Chinese apparel manufacturing sector, they hold potential applicability for other industries facing similar 

issues of regional disparity, financial constraint, and the need for collaborative innovation. However, 

their broader implementation requires careful contextual adaptation, considering industry-specific 

market dynamics, funding cycles, and institutional environments. Future research should aim to 

empirically test and refine these propositions in diverse industrial settings to better delineate their scope 

and optimize their effectiveness beyond the apparel sector. 

Last but not least, while the findings provide valuable insights into AI adoption in emerging markets, 

they may not directly apply to developed economies, such as the U.S., without further validation. The 

dynamics of manufacturing in Western countries, particularly in terms of technological infrastructure, 

labor markets, and policy environments, differ significantly from those in China. For instance, Western 

manufacturers may face different drivers and barriers to AI adoption, such as higher levels of AI 

readiness and stricter regulatory frameworks. Future research could extend this study by examining how 

the conceptual framework and findings apply in developed economies, adapting for context-specific 

variables. A comparative study between Chinese and Western manufacturers could also provide a more 

comprehensive understanding of AI adoption patterns globally, enriching both theoretical and practical 

implications. In addition, this study has not yet tested the framework in other developing economies that 

share similar characteristics with China, such as Vietnam, India, Indonesia, or Bangladesh. These 

countries also have large MSME sectors, government-driven industrial policies, and growing AI adoption 

initiatives, making them potential candidates for future validation of this framework. Therefore, Future 

research should conduct comparative studies across these developing economies to determine whether 

the identified AI adoption challenges, policy influences, and innovation ecosystem dynamics hold true 

in different national contexts. Such research would help refine the framework, allowing for potential 

adaptations that account for regional variations in government support, industrial maturity, and digital 

transformation strategies. 
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7.4. Highlight of Conclusion 

To conclude, this chapter offers an overview of the entire research conducted in this study, highlighting 

the key points and main insights from each chapter. The MRO and SROs of the thesis have been 

achieved, providing a comprehensive understanding of the evolutionary nature of AI adoption in Chinese 

apparel manufacturing MSMEs. The study presents preliminary findings on the factors influencing open 

innovation within the context of current AI development, applied to the traditional industry under 

Industry 4.0 and Industry 5.0. Evidence from the Chinese apparel manufacturing sector supports these 

conclusions. The results of Study 1 indicated that technological, organizational, and environmental 

factors significantly influence AI adoption, KACAP, and open innovation. Notably, this study 

emphasized that AI adoption must be mediated by KACAP to drive open innovation, suggesting that a 

traditional apparel MSME’s ability to absorb new technologies is pivotal in determining the extent of its 

open innovation. However, firms do not exist in isolation within the innovation ecosystem; they must 

continuously adapt to external environmental uncertainty and leverage external resources (knowledge) 

to address the challenges posed by technology-driven transformations in traditional industries. 

Building on this premise, Study 2 employed a grounded theory approach to qualitatively analyze 

interviews with representatives from enterprises, universities, and government entities. Through 

systematic coding and analysis, the study identified critical required AI capabilities, adoption barriers, 

and collaborative mechanisms, which informed the development of a triple-layered innovation ecosystem 

framework. This framework illustrates the dynamic interplay between external knowledge absorption 

and internal innovation capacity within firms, highlighting the roles of various stakeholders in enabling 

AI adoption and fostering open innovation. By addressing barriers and aligning multi-actor 

collaborations, the framework contributes to achieving the MRO of this thesis, providing a theoretical 

foundation for understanding and advancing AI-driven innovation in the apparel manufacturing sector.  

In conclusion, this doctoral thesis presents a comprehensive exploration of AI adoption and open 

innovation in Chinese apparel manufacturing industry, integrating the concepts of KACAP and 

collaboration among enterprises, universities, and government bodies. Theoretically, the research 

develops a novel framework that connects AI adoption with open innovation, filling gaps in the existing 

literature by highlighting the mediating role of KACAP. Empirically, Study 1 employs PLS-SEM to 

quantify the relationships between AI adoption, KACAP, and open innovation, while Study 2 applies 

grounded theory to uncover the layered roles and interactions of stakeholders in the innovation ecosystem. 

The study provides practical insights for manufacturers seeking to integrate AI into innovation processes 

and improve competitiveness. Moreover, the findings offer policymakers guidance on promoting AI-

enabled collaboration across industries and institutions, contributing to sustainable economic 

development in Chinese apparel manufacturing sector. This research serves as a foundational framework 

for future studies and provides valuable direction for stakeholders to co-create value through AI-enabled 

innovation ecosystems. 
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Appendices 

Appendix A(a) The Core National Stakeholders of China’s AI Policies (2017-2022) 

Stakeholders Acronym Total Issues 
Ministry of Science and Technology  MOST 26 
Ministry of Industry and Information Technology  MOIIT 9 
Ministry of Education MOE 8 
National Radio and Television Administration NRTA 6 
National Development and Reform Commission NDRC 5 
Office of the Central Cyberspace Affairs Commission OOTCCAC 3 
China Machinery Industry Federation CMIF 2 
Standardization Administration SA 2 
Ministry of Human Resources and Social Security  MOHRSS 2 
Department of Science and Technology, Ministry of Transport DOSTMOT 2 
Ministry of Human Resources and Social Security General 

Office 

MOHRSSGO 1 
Ministry of Civil Affairs MOCA 1 
New Generation AI Governance Expert Committee NGAGEC 1 
Ministry of Transport  MOT 1 
China National Intellectual Property Administration CNIPA 1 
Chinese Association for Artificial Intelligence CAFAI 1 
China National Intellectual Property Administration CNIPA 1 
Cyberspace Administration  CA 1 
Ministry of Finance  MOF 1 
State Administration for Market Regulation SAFMR 1 
National Information Security Standardization Technical 

Committee 

NISSTC 1 
National Bureau of Statistics NBOS 1 
State Council  

China Securities Regulatory Commission 

SC 

CSRC  

1 

1 
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Appendix A(b)The Core Regional Stakeholders of China’s AI Policies (2017-2022) 

The Regional Stakeholders  Acronym Total 

Issues Guangzhou Municipal Science and Technology Bureau GMSTB 11 
Shanghai Municipal Commission of Economy and Informatization SMCOEI 8 
Wuhan Municipal Science and Technology Bureau WMSTB 7 
Guangzhou Municipal Industry and Information Technology Bureau GMIITB 6 
Hefei Municipal People’s Government HMPG 6 
Xiamen Municipal Industry and Information Technology Bureau XMIITB 6 
Hefei Municipal Science and Technology Bureau HMSTB 5 
Department of Economy and Information Technology of Hubei 

Province 

DOEITOHP 5 

Jinan Municipal Industry and Information Technology Bureau JMIITB 5 
Tianjin Municipal Industry and Information Technology Bureau TMIITB 5 
Tianjin Municipal Science and Technology Bureau TJMSTB 5 
Chengdu Municipal People’s Government CDMPG 4 
Hangzhou Municipal People’s Government HZMPG 4 
Department of Industry and Information Technology of Hunan 

Province 

DOIITHNP 4 
Jinan Municipal Commission of Economy and Informatization JNMCOEI 4 
Shenzhen Municipal Industry and Information Technology Bureau SZMIITB  
Changsha Municipal Science and Technology Bureau CSMSTB 4 
Changsha Municipal Science and Technology Bureau CSMSTB 4 
Chengdu Municipal Bureau of Economic and Information Technology CDMBOEIT 3 
Chengdu New Economic Development Commission CDNEDC 3 
The People’s Government of Gansu Province PGOGSP 3 
Big Data Development Bureau of Guangxi Zhuang Autonomous 

Region 

BDDBOGX 

ZAR 

3 

Hefei Municipal Development and Reform Commission HFMDRC 3 
Nanning Municipal Industry and Information Technology Bureau NNMIITB 3 
Shanghai Municipal People's Government SHMPG 3 
Shanghai Xuhui District People's Government SHXDPG 3 
Science, Technology and Innovation Commission of Shenzhen 

Municipality 

STICSM 3 

Shenyang Municipal Science and Technology Bureau SYMSTB 3 
Chongqing Municipal Science and Technology Bureau CQMSTB 3 
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Appendix B. Survey Questionnaires of Study 1 

Please read the informed consent, and if you agree, please complete the following questions.  

Please confirm that you would like to participate and click “Next”.  

Section 1. Descriptive questions (Demographics) 

Q01. How many years did you own your company?  

 <5years  6-10years  11-15years  >15years 

 Q02. How many employees are there in your company?  

   1-10  11-50  51-200  201-500  >500 

 Q03. What are your company’s annual sales (unit: thousand)?  

   <1,000   1,001-5,000  5,001-10,000  >10,000 

 Q04. What is your production capacity for export (unit: piece per month)?  

   <1,000  1,000-5,000  5,001-10,000  10,000-20,000 >20,000 

 Q05. What is the business type of your company/manufacturing (Multiple choice)?  

   for OEM  for ODM  for OBM  

 Q06. What is your main exported country or region (multiple choice)?  

   Asia- Japan, Korean  Asia-Singapore  Europe North America- Canada  

North America- the U.S.  Domestic 

Section 2. Likert-scale questions 

Please circle a number that best reflects your perspectives on AI technology adoption in the 

manufacturing and production processes. (1= ‘strongly disagree’, 2 = ‘disagree’, 3 = ‘neutral’, 4= ‘agree’, 

5 = ‘strongly agree’)  

Q7_About perceived usefulness 

Q7_1. Using AI-based manufacturing and production systems can enhance work efficiency.  

1  2  3  4  5  

Q7_2. Using AI-based manufacturing and production systems can improve the quality of task. 

1  2  3  4  5  

Q7_3. Using AI-based manufacturing and production systems can increase productivity. 

1  2  3  4  5  

Q7_4. Using AI-based manufacturing and production systems can save a significant amount of time. 

1  2  3  4  5  

Q7_5. AI can provide valuable decision support for manufacturing and production. 

1  2  3  4  5  

Q8_About perceived ease of use  

Q8_1. The AI operation process is easy to understand. 

1  2  3  4  5  

Q8_2. The time required to learn AI is reasonable. 

1  2  3  4  5  
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Q8_3. Our employees can easily operate an AI-based manufacturing and production system. 

1  2  3  4  5  

Q8_4. Our employees can quickly learn about the usage of AI in their work processes. 

1  2  3  4  5  

Q9_About organizational complexity  

Q9_1. Integrating AI technology with the existing legacy system is difficult for our organization. 

1  2  3  4  5  

Q9_2. Resistance to change is high regarding migrating from the legacy system to an AI-based 

manufacturing and production system. 

 1  2  3  4  5  

Q10About Organizational Readiness 

Q10_1. Our company has the complete infrastructure to develop AI in manufacturing and production 

processes. 

1  2  3  4  5  

Q10_2. Our employees have the necessary skills and knowledge to use the AI-based system.  

1  2  3  4  5  

Q10_3. Our management has a high level of support for AI in manufacturing and production systems. 

1  2  3  4  5  

Q11_About competitive pressure 

Q11_1. A few of our competitors are implementing an AI-based manufacturing and production system. 

1  2  3  4  5  

Q11_2. Using an AI-based manufacturing and production system will bring a competitive advantage to 

my firm.  

1  2  3  4  5  

Q11_3. The apparel industry has increasingly applied an AI-based manufacturing and production system. 

1  2  3  4  5  

Q12_About supplier involvement 

Q12_1. Our suppliers provide satisfying products and services.  

1  2  3  4  5  

Q12_2. Our suppliers respond quickly to our demands. 

1  2  3  4  5  

Q12_3. We have close relationships with our suppliers.  

1  2  3  4  5  

Q13_About market uncertainty 

Q13_1. Our market demand frequently experiences significant changes. 

1  2  3  4  5  

Q13_2. Our customers’ needs are variable and unpredictable. 

1  2  3  4  5  

Q13_3. The pace of technological development in our industry is very fast. 
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1  2  3  4  5  

Q13_4. The emergence of new technologies has an unpredictable impact on our industry. 

1  2  3  4  5  

Q14_About government support and policy 

Q14_1. I knew about government policies and regulations regarding the application of AI technology in 

apparel manufacturing and production. 

1  2  3  4  5  

Q14_2. The government provides adequate financial support for developing and applying AI-integrated 

technology to our company. 

1  2  3  4  5  

Q14_3. The government’s support and help are very important when applying AI technologies. 

1  2  3  4  5  

Q15_About AI adoption  

Q15_1. We need to adopt AI technology for manufacturing and production.  

1  2  3  4  5  

Q15_2. We need to adopt AI technology to solve problems in supply chain management.  

1  2  3  4  5  

Q15_3. We need to adopt AI technology to reduce risks in our manufacturing and production processes. 

1  2  3  4  5  

Q15_4. We need to adopt AI technology to be agile in an uncertain environment. 

1  2  3  4  5  

Q16_About knowledge absorptive capacity 

Q16_1. Our company can effectively identify and acquire important new knowledge and information 

within and outside the industry to support the application of AI technology. 

1  2  3  4  5  

Q16_2. We actively acquire knowledge from external sources and integrate it with internal knowledge. 

1  2  3  4  5  

Q16_3. Our company can understand and analyze the acquired knowledge and information within and 

outside the industry, ensuring compatibility with existing knowledge. 

1  2  3  4  5  

Q16_4. We provide sufficient technical training for our employees to help them absorb and understand 

AI technology. 

1  2  3  4  5  

Q17_About open innovation 

Q17_1. Our company culture encourages knowledge sharing. 

1  2  3  4  5  

Q17_2. Our company extends sources with our customers. 

1  2  3  4  5  

Q17_3. Our company extends sources with our suppliers.  
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1  2  3  4  5  

Q17_4. Our company extends its resources to institutions and universities. 

1  2  3  4  5  

Q17_5. Our collaboration with external partners helps us better adopt new technologies. 

1  2  3  4  5  

Survey Link: 

https://www.yibiaoda.com/r/82e30

https://www.yibiaoda.com/r/82e30
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Appendix C. Informed consent of survey questionnaires. 

Dear Participant, 

Thank you for taking the time to participate in this research study. The aim of this survey is to explore 

managers’ attitudes toward the use of artificial intelligence (AI) in manufacturing and production 

processes, examine the impact of AI on organizational innovation, and identify the factors hindering AI 

adoption in China’s manufacturing industry. All the information you provide will be used solely for 

academic research purposes and will be strictly confidential in accordance with legal requirements. This 

study is conducted by Chen QU and Eunyoung KIM at the Graduate School of Advanced Science and 

Technology, Japan Advanced Institute of Science and Technology (JAIST). The research findings will 

be presented in a doctoral thesis, and your personal and corporate names will not appear in any reports. 

Your participation is crucial to the success of this research. 

Survey Information 

Eligibility: The survey is intended for managers working in the Chinese apparel manufacturing industry. 

Survey Content: The questionnaire will gather insights into your company’s practices and perspectives 

on AI implementation, innovation management, and knowledge absorption. Completing the survey will 

take approximately 10-15 minutes. 

Confidentiality: The survey is conducted anonymously. All responses will be kept confidential and used 

solely for aggregate statistical analysis. The data will not be disclosed to any third party or used for 

commercial purposes. 

Voluntary Participation: Participation is entirely voluntary. You may withdraw from the survey at any 

time, and if you choose to do so, your responses will not be included in the analysis. 

Consent 

By clicking “Next” and completing the questionnaire, you acknowledge that you have read and 

understood the above information, and you consent to participate in this study. 

If you have any questions or require further information regarding this research, please contact the 

investigator QU Chen via email: s2120407@jaist.ac.jp.  

Thank you very much for your participation! 

 

[Japan Advanced Institute of Science and Technology] 

Date: June 2024
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Appendix D. Informed consent of semi-structured interview. 

Dear Participant (from apparel manufacturing firms), 

Thank you for agreeing to participate in this research interview. The purpose of this interview is to 

explore the mechanisms that hinder AI adoption among decision-makers or managers in apparel 

manufacturers and how enterprises’ roles are involved with universities, associations, and government 

for a collaborative innovation ecosystem.  

This study is conducted by Chen QU and Eunyoung KIM at the Graduate School of Advanced Science 

and Technology, Japan Advanced Institute of Science and Technology (JAIST). The information you 

provide will be used exclusively for academic research, and all personal data will be kept strictly 

confidential. Your name or identifying information will not appear in any reports or publications. 

The interview will take approximately 30-60 minutes, and with your permission, we would like to record 

the conversation for accurate transcription and analysis. Your participation is entirely voluntary, and you 

can withdraw from the interview at any time without any negative consequences. If you choose to cancel, 

any data you have provided will not be used in the research. 

If you have any questions about the research, please contact the principal investigator Chen QU via email: 

s2120407@jaist.ac.jp. 

Please read and sign below to confirm that you understand the above information and agree to participate 

in this study. 

Participant’s Signature: ________________ 

Date: ________________ 

 
Before conducting the interview, we first explained the definitions of innovation ecosystems. Then, we 
explained what AI-integrated technologies are used in apparel manufacturing, such as AI sewing machine 
robots, Decision support systems, Blockchain, IoT, Big data, etc.  
Q1. Please introduce your company (company size, industry, main business, etc.). 
Q2. What is the current state of the company’s technology infrastructure? 
Q3. Please describe the specific application domains and current application scenarios in apparel 
manufacturing.  
Q4. What do you think are the main uses of AI in apparel manufacturing and production? (e.g., demand 
forecasting, optimizing operations, customer service, supply chain management, etc.)? 
Q5. Has your company adopted AI?  
If yes, please tell me the performance that AI brings to your company. (to Q6, Q7, andQ9) 
If not, please tell me why your company has not decided to adopt AI. And what is your concern?  
Q6. If your company adopts AI technology, what are the main challenges your company faces (e.g., 
technical difficulties, funding issues, talent shortages, etc.)?  
Q7. If your company does not adopt AI technology, what barriers may your company face (e.g., technical 
difficulties, funding issues, talent shortages, etc.)? 
Q8. What do you think is the impact of AI technology adoption on your company? (e.g., improving 
efficiency, reducing costs, increasing revenue, etc.)  
Q9. Are there specific performance indicators that show AI improving company performance?  
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To achieve the second purpose, we designed the following interview questions. 
Q10. What key elements should be included in an effective AI innovation ecosystem (such as technical 
support, policies and regulations, talent training, partnerships, etc.)? 
Q11. Does your company work with external institutions (such as universities, research institutes, and 
other businesses) in AI? If yes, describe the impact of these collaborations on the company’s performance. 
If not, do you plan to, or are you willing to work with external institutions? 
Q12. What role should government or industry associations play in building an AI innovation ecosystem? 
Q13. What else do you think or suggest about the impact of the AI innovation ecosystem? 
Thank you for participating!
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Dear Participant (from universities), 

Thank you for agreeing to participate in this research interview. The purpose of this interview is to 

explore the direction of cultivating fashion talents in the AI age, the challenges of current teaching faculty, 

and how universities’ roles are involved with industries, associations, and government for a collaborative 

innovation ecosystem.  

This study is conducted by Chen QU and Eunyoung KIM at the Graduate School of Advanced Science 

and Technology, Japan Advanced Institute of Science and Technology (JAIST). The information you 

provide will be used exclusively for academic research, and all personal data will be kept strictly 

confidential. Your name or identifying information will not appear in any reports or publications. 

The interview will take approximately 30-60 minutes, and with your permission, we would like to record 

the conversation for accurate transcription and analysis. Your participation is entirely voluntary, and you 

can withdraw from the interview at any time without any negative consequences. If you choose to cancel, 

any data you have provided will not be used in the research. 

If you have any questions about the research, please contact the investigator QU Chen via email: 

s2120407@jaist.ac.jp. 

Please read and sign below to confirm that you understand the above information and agree to participate 

in this study. 

Participant’s Signature: ________________ 

Date: ________________ 

 

Before conducting the interview, we first explained the definitions of open innovation and innovation 
ecosystems. 

Q1. What is your position/role in university? 

Q2. What is the primary academic discipline of your institution? 

Q3. In your opinion, what is the necessity of offering AI programs at art institutions? 

Q4. What types of collaborative projects related to AI has your university engaged in with apparel 

companies or organizations? (Please explain the type of collaboration, how the cooperation is carried out, 

and the goals and outcomes of the collaboration.) 

Q5. What challenges has your institution faced in promoting university-industry collaboration in the field 

of AI? (e.g., technical challenges, resource integration, policy support) 

Q6. How do you think AI technology contributes to promoting open innovation? (e.g., collaborative 

projects, talent cultivation, knowledge flow, technology transfer) 

Q7. How does your institution utilize innovation and entrepreneurship centers or other platforms to 

promote open innovation in the field of AI? 

Q8. What contributions do you think your institution has made in promoting intelligent manufacturing 

and industrial upgrading and transformation? 

Q9. In the era of AI, how should companies and schools build an innovation ecosystem? What is the role 

of AI in this innovation ecosystem?
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Dear Participant (from associations), 

Thank you for agreeing to participate in this research interview. The purpose of this interview is to 

explore the direction of working direction in the AI age and how universities’ roles are involved with 

industries, universities, and government for a collaborative innovation ecosystem.  

This study is conducted by Chen QU and Eunyoung KIM at the Graduate School of Advanced Science 

and Technology, Japan Advanced Institute of Science and Technology (JAIST). The information you 

provide will be used exclusively for academic research, and all personal data will be kept strictly 

confidential. Your name or identifying information will not appear in any reports or publications. 

The interview will take approximately 30-60 minutes, and with your permission, we would like to record 

the conversation for accurate transcription and analysis. Your participation is entirely voluntary, and you 

can withdraw from the interview at any time without any negative consequences. If you choose to cancel, 

any data you have provided will not be used in the research. 

If you have any questions about the research, please contact the investigator QU Chen via email: 

s2120407@jaist.ac.jp. 

Please read and sign below to confirm that you understand the above information and agree to participate 

in this study. 

Participant’s Signature: ________________ 

Date: ________________ 

 

Before conducting the interview, we first explained the definitions of innovation ecosystems. 
To achieve the first purpose, we designed the following interview questions: 
Q1. What are the most challenging problems in current AI research in fashion? 
Q2. Has the association already had AI-related training or curriculums? 
If so, please tell me the curriculum’s specific content.  
If not, please tell me why there are no related training or curriculums.  
To achieve the second purpose, we designed the following interview questions: 
Q3. Has the association collaborated with industries, enterprises, government, or other academic 
institutions?  
If yes, please describe some specific cooperation cases in detail and explain how these collaborative 
projects help advance AI research and applications. 
If not, please tell me what the reasons are.  
Q4. Has the association received resources from the government or industries? 
If yes, how does this support help research and teaching? If not, what do you think of the issues or barriers?  
Q5. What additional resources or support are needed to advance AI research and applications? 
Q6. What are your suggestions for the government to support the AI innovation ecosystem? 
Thank you for participating!  
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Appendix E. Cover Letter 

Dear Beijing Fengling Digital Intelligence Information Technology Co., LTD, 
My name is QU Chen, and I am a doctoral student at the Japan Institute of Science and Technology. 

My supervisor is Kim Eunyoung. We are conducting a survey for the PhD thesis in artificial intelligence 

(AI) adoption and open innovation in the micro, small and medium-sized Chinese apparel manufacturing 

firms.  

We are reaching out to request your assistance in distributing a survey as part of this doctoral thesis 

focusing on the adoption of AI in the Chinese apparel manufacturing industry. The survey aims to gather 

insights into top managers’ attitudes toward AI technologies being implemented in this sector, their 

potential impact on operational efficiency, and their role in driving innovation. 

AI in this research pertains to intelligent apparel manufacturing equipment applications, such as 

automated fabric spreading machines, data-driven pattern generation systems, process instruction readers, 

automated layout and cutting systems, and sewing robots. These technologies transform traditional 

manufacturing processes by optimizing efficiency, improving product quality, and enabling companies 

to respond more effectively to market dynamics. Also, AI is integrating with emerging technologies such 

as the Internet of Things, blockchain, and cloud computing, which can be applied in the supply chain 

management. 

The survey was designed to capture feedback from top managers and owners in the apparel 

manufacturing industry, especially OEM, ODM, and OBM companies. Your support in distributing this 

questionnaire to relevant respondents will be invaluable. We are particularly interested in reaching 

organizations directly involved in manufacturing operations, decision-making, or innovation processes 

in the apparel sector. 

Key details about the survey: 

Estimated Completion Time: 10-15 minutes 

Confidentiality: All responses will remain anonymous and used solely for academic purposes. 

Survey Link: https://www.yibiaoda.com/r/82e30 

We kindly ask your assistance in forwarding this survey invitation to your network of relevant 

participants. Your support will contribute significantly to the success of this research, helping to advance 

understanding in this critical area of technological development. 

If you require further information about the survey or the research project, please do not hesitate 

to contact me at s2120407@jaist.ac.jp.  

Thank you very much for your collaboration and support in this endeavor. 

Sincerely, 

QU Chen 

2120407@jaist.ac.jp.  

Japan Advanced Institute of Science and Technology 

Date: July 3, 2024 

mailto:s2120407@jaist.ac.jp

