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Abstract

The rapid advancement of convolutional neural networks (CNNs) has revolu-

tionized various fields since AlexNet’s success in 2012. While GPUs excel at

training CNNs, hardware accelerators are vital for inference, leveraging 8-bit

or lower quantized data for energy efficiency. However, challenges remain

with memory access and computational efficiency. This research introduces

a novel CNN accelerator to address these issues.

CNN accelerators generally fall into Overlay and Dataflow categories.

Overlay designs sequentially process layers with a unified Processing Element

(PE) Array, offering flexibility but heavily relying on off-chip memory, which

limits efficiency for lightweight models like MobileNetV2. Dataflow designs

dedicate hardware to each layer, minimizing memory access but requiring

extensive on-chip memory to store weights, reducing flexibility.

The proposed block-based architecture leverages the strengths of existing

designs while addressing their limitations, enabling tailored optimization

for different network structures. It incorporates multiple PE Arrays and

supports flexible runtime interconnection modes: serial execution, which

accelerates entire blocks, and parallel execution, which processes individual

layers.

Experiments on 7Z010, ZU3, ZU7, and VU13P FPGAs show significant

performance gains, achieving up to 11,821 FPS on VU13P with 8-bit quan-

tized MobileNetV2. Despite having a minimal area requirement comparable

to typical Overlay designs, it achieves significantly higher throughput per

unit area than state-of-the-art accelerators. Compared to typical Overlay

designs, our design reduces overall off-chip memory transfer volume by 93%;

compared to typical Dataflow designs, our design reduces the on-chip weight

storage requirement by 88%, offering a scalable, high-performance solution

for modern CNNs.

The minor research optimizes the accelerators by balancing PE Array

size, memory, and DSP allocation. Simulated Annealing (SA) and Ge-

netic Algorithm (GA) are explored, with SA providing more stable results.

Experiments on various FPGAs demonstrate significant throughput and

area efficiency improvements over manual configurations, highlighting SA’s

practical utility.

Keywords: FPGA, Hardware Accelerators, Convolutional Neural Net-

works, MobileNetV2, YOLOv3.
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Chapter 1

Introduction

1.1 Background

As Alex et al. [2] won the 2012 ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [3] with their design, AlexNet, Convolutional Neural

Network (CNN) technology rapidly developed and found widespread use

across various fields. Modern CNNs contain many layers, and the increase in

layers leads to a greater computational load, placing higher demands on

computational devices. Training network models typically requires high-

precision computing equipment, such as Graphics Processing Units (GPUs).

However, quantizing trained network models to 8-bit or lower can still

maintain comparable inference accuracy, meaning that using high-precision

devices like GPUs for inference results in wasted compute resources and

energy. Specialized 8-bit precision accelerators have been developed, and to-

day, such dedicated accelerators are widely integrated into Central Processing

Units (CPUs), GPUs, and various embedded systems.

The main component of these accelerators is typically a systolic array or

other cascaded structure composed of numerous 8×8 multipliers. Systolic ar-

rays can efficiently perform matrix multiplication and conduct layer-by-layer

inference. These accelerators execute different layers’ computations on the

same multiplier array by overlaying, hence the name “Overlay architecture

accelerators [1,4–8],” and its structure is shown in Figure. 1.1a. In contrast,

another approach designs separate dedicated accelerator modules for each

layer and connects them in series, with a physical structure that mirrors the

network model. This type of accelerator is called a “Dataflow architecture

accelerator [9–14],” where the data payload (the activation values of feature

maps) flows between modules. Its structure is shown in Figure.1.1b. These

are the two primary architectures in accelerators today [15].
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Figure 1.1: Two CNN accelerator architectures.

1.1.1 Overlay Architecture Accelerators

As previously mentioned, the theoretical peak performance of Overlay ar-

chitecture accelerators is very high, and the required minimum area does

not vary with the size of the target network model. Overlay architecture

accelerators can serve as hard accelerators attached to System on Chips

(SoCs), MicroController Units (MCUs), GPUs, etc., and can also be deployed

on reprogrammable Field-Programmable Gate Arrays (FPGAs). The layer-

by-layer, operator-by-operator execution characteristic allows it to easily

handle complex models, particularly those that need to repeatedly read

the outputs of previous layers. In non-reprogrammable systems, Overlay

architecture accelerators can rely on general-purpose computing devices, such
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as CPUs, to handle unsupported operators, showcasing their flexibility. On

reprogrammable devices, operators can be flexibly added or removed to adapt

to new network models or improve the throughput per unit area for specific

target network models.

However, the layer-by-layer execution feature requires temporary storage

of inter-layer activation data, which are often large in volume. Designing

high-capacity Static Random-Access Memory (SRAM) for on-chip storage of

these data incurs significant area. Thus, it is more common to transfer data

to high-capacity off-chip Synchronous Dynamic Random-Access Memory

(SDRAM) and perform loop nest optimizations (LNO) to improve data reuse.

This approach, however, limits performance based on off-chip memory band-

width. Additionally, a single large computing array may waste computational

capacity when executing layers with lower computational requirements.

This design can provide high overall performance for classic networks

with substantial computational demands. However, lightweight networks

that use depthwise convolutional layers have recently achieved satisfactory

accuracy with reduced computational and parameter requirements. Overlay

architecture accelerators demonstrate lower efficiency when running these

networks, due to memory bandwidth limitations and substantial wastage of

computational capability when executing depthwise convolution layers.

1.1.2 Dataflow Architecture Accelerators

In contrast, Dataflow architecture accelerators exhibit consistently high

performance across various networks because their submodules and inter-

connects are fully optimized for the target network. This one-to-one corre-

spondence between the network model and the accelerator makes Dataflow

architecture accelerators primarily suited for programmable devices like

FPGAs, where they can be reprogrammed to accelerate different network

models.

Compared to Overlay architecture accelerators, which frequently access

off-chip memory during execution, each layer’s module in a Dataflow ar-

chitecture accelerator has its own dedicated memory module. Weights can

be preset or written before startup, so only input image data is needed to

produce results directly during execution. The modules are connected via a

stream bus, requiring only minor First-In-First-Outs (FIFOs) for throughput

matching without any need for temporary data storage, thus completely
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avoiding additional memory access and demanding minimal off-chip memory

bandwidth.

However, this architecture requires sufficient on-chip memory to fully

store the weights of the target network. Additional on-chip memory is also

needed for row buffers for the Sliding Window Unit (SWU) performing the

im2col (also called unfold) operation required by layers with convolution

kernels size larger than 1, as well as for FIFOs to prevent deadlocks caused by

throughput differences between modules. Therefore, the more complex and

larger the target network model, the greater the minimum area required

to deploy a Dataflow architecture accelerator, which imposes significant

constraints on the device’s capacity and the number of parameters (the model

size) it can support.

Additionally, modern networks widely use operations like shortcut con-

nections and concatenation (concat) operators that require repeated reading

of previous layer outputs, which are relatively challenging to implement on

Dataflow architecture accelerators. For early shortcut connections using

1×1 convolution layers, the throughput of these layers can be adjusted to

match the timing difference between payload generation and consumption,

and FIFOs can be added for the further timing adjustment. For the

currently popular shortcut connections and concat operations without any

intermediate layers, the usual approach is to add deep FIFOs with depths

exceeding the clock cycle count of the time gap between payload generation

and consumption to prevent deadlock. This further increases the demand for

on-chip memory capacity.

1.1.3 Background Works

Lucian Petrica et al. [15] deployed ResNet50, targeting the ImageNet dataset,

on the Alveo U250 data center accelerator card using FINN [10, 11], a

framework for designing Dataflow architecture accelerators. The U250 card

has on-chip resources identical to the XCVU13P (VU13P) and boasts the

highest capacity of Block RAM (BRAM) and Ultra RAM (URAM) among

the UltraScale+ series. They quantized weights to 1 bit to reduce the on-

chip memory required for weight memory and used a heuristic algorithm to

pack weights from multiple layers together. [16] They also introduced asyn-

chronous design elements, allowing a single memory module to be accessed by

multiple compute modules simultaneously, increasing the capacity utilization
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of individual BRAMs and reducing waste. Despite these optimizations,

they still used 1,935 BRAMs to store convolutional layer weights and 109

URAMs for the final fully connected layer weights. [17] For activations, they

opted for a higher 2-bit quantization to mitigate accuracy loss from lower-bit

quantization, represented as w1a2 (1-bit weights, 2-bit activations). They

achieved a throughput of 2,703 Frames Per Second (FPS). Even fitting 1-bit

quantized weights into the on-chip memory of the UltraScale+ device with

the highest capacity is already challenging, let alone for networks using the

more common 8-bit quantization scheme.

Di Wu et al. [1] designed an Overlay architecture accelerator with

a dedicated execution unit for depthwise convolution, allowing a regular

convolution layer to be followed immediately by a depthwise convolution

layer. The depthwise convolution module accesses the output buffer of

the main computation array, reads its output, performs on-the-fly im2col

operations and depthwise convolution, and then writes the results back to

the buffer. The controller writes data processed by the depthwise convolution

module back to the main off-chip memory. They also proposed a technique

called Channel Augmentation, which rearranges data to address the issue of

insufficient utilization of computing resources in the first layer due to the

limited number of input channels (typically RGB 3 channels). Their exper-

imental results showed that the independent depthwise convolution engine

significantly reduced off-chip memory access, and the Channel Augmentation

technique greatly improved computing efficiency in the first layer, achieving

throughput far surpassing other Overlay architecture accelerators without

a dedicated depthwise convolution unit. However, their implementation

on the XCZU9 showed lower area efficiency in terms of FPS per Digital

Signal Processor (DSP) and FPS per Look-Up Table (LUT) compared to the

implementation on the XCZU2, suggesting poor scalability and inefficiency

in utilizing the larger area of high-end FPGA devices. Our estimates suggest

that their implementation on the XCZU9, like many Dataflow architecture

accelerators, likely encountered memory bottlenecks.

Manoj Alwani et al. [18] attempted to merge computations from multiple

layers by changing the computation order, aiming to reduce the need for

storing intermediate data to off-chip memory. If a re-computation mode is

used instead of storing and reusing intermediate data, their paper indicated

that this approach significantly increases computational load in certain cases.

For example, when fusing the first two convolutional layers in AlexNet, the
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extra re-computation involved 678 million additional MAC operations, which

is 8.6 times the total computation. Compared to re-computation, storing

intermediate results has a smaller cost. The paper noted that by storing and

reusing intermediate results to avoid re-computation, only about 55.86KB of

on-chip storage is needed to save the same amount of off-chip data transfer

when fusing AlexNet’s first two layers. In experiments with the VGGNet-

E network, fusing all 19 convolution and pooling layers required 470 billion

additional MAC operations in the re-computation model, while the reuse

model only required 1.4MB of storage. However, this study is quite dated,

raising doubts about the feasibility of depthwise convolutions, which are

commonly used in modern networks.

Weixiong Jiang et al. [14] designed a specialized Dataflow architecture

accelerator for the widely-used MobileNetV2. They used deep FIFOs to

implement residual connections (i.e., shortcut connections) to avoid dead-

lock, designed dedicated pointwise and depthwise convolution engines, and

proposed a resource allocation strategy to balance the computation time

needed for different layers in the Dataflow architecture accelerator. They also

introduced a technique called Tunable Activation Weight Imbalance Transfer

to improve quantization accuracy, achieving a Top-1 classification accuracy

of 72.98%, close to that of the floating-point model. The accelerator was

deployed on the evaluation board with a XCZU9EG FPGA, achieving an

impressive 1,910 fps throughput. However, the accelerator used 75% of the

large FPGA’s BRAM, totaling 691 BRAMs, or approximately 24.3Mb of

memory. The requirement for such large on-chip memory capacity makes it

challenging to deploy on smaller devices, limiting its flexibility.

The studies mentioned above illustrate explorations to improve existing

accelerator architectures, such as adding a dedicated depthwise convolution

module to conventional Overlay accelerators, using heuristic algorithms to

package weights, making it feasible to deploy Dataflow architecture acceler-

ators on current devices, merging multiple layers to reduce off-chip memory

access, and mapping entire models onto Dataflow architecture accelerators.

1.2 Objective

Although GPUs used for training models can also be used for inference,

recent years have seen the addition of specialized computational units, such

as Tensor Cores, to enhance performance for specific workloads by accel-
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erating low-precision matrix multiply-accumulate operations. As general-

purpose computing units, GPUs rely on CUDA cores to execute most

common computations. In the early days of model training on GPUs,

calculations were primarily carried out using these CUDA cores. However,

with the development of low-precision training in recent years, Tensor Cores

have gradually replaced CUDA cores for multiply-accumulate operations

in training. Despite these advancements, GPUs, as general-purpose units,

still allocate a significant portion of their die area to functions that are

not utilized in neural network acceleration. This results in relatively high

costs and power consumption, prompting the development of specialized

accelerators designed specifically for neural network acceleration to reduce

these overheads. Modern GPUs primarily achieve higher performance

through extremely high computational power (hundreds to thousands of Tera

Operations per second (TOP/s)) and off-chip memory bandwidth TB/s) to

run neural network models in an Overlay fashion. Even with low memory

access efficiency, they can achieve very high throughput. For instance, the

80GB memory version of the A100 GPU [19,20] features an off-chip memory

bandwidth of 1.94TB/s and contains 432 third-generation Tensor Cores, each

capable of performing 1,024 INT8 operations per clock cycle, delivering an

INT8 computational power of 624 TOP/s (312 Tera Multiply-Accumulation

per second (TMAC/s)). As of now (excluding the unreleased Blackwell

architecture), the latest H100 GPU [21] SXM5 version provides an off-chip

memory bandwidth of 3,352GB/s. It is equipped with 528 fourth-generation

Tensor Cores, each capable of performing 2,048 INT8 operations per clock

cycle, achieving an INT8 computational power of 1,978.9 TOP/s (989.45

TMAC/s). Although higher computational power and off-chip memory

bandwidth can improve throughput, the energy efficiency issues brought

about by more off-chip memory access cannot be ignored.

FPGA is an excellent validation platform. High-capacity FPGAs can

closely emulate ASIC performance but still fall short in terms of scale and

frequency. In this study, we use the VU13P, which features an impressive

12,288 DSPs, a leading number among FPGA platforms. By employing

DSP packing techniques, a single DSP can perform two 8×8 multiplications,

allowing for a theoretical maximum of 24,576 8×8 multipliers. At the

maximum frequency of 775 MHz for a speed grade of -2, the theoretical peak

INT8 performance is 19.0 TMAC/s. The FPGA with the highest DSP count

currently is AMD’s Versal Premium Series VP1802, which has 14,352 DSPs.
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Each DSP can be split into three 8×9 small signed multipliers, resulting in

an equivalent of 43,056 8×9 multipliers. At a maximum frequency of 1,070

MHz for a speed grade of -2, its theoretical peak INT8 performance is 46.1

TMAC/s. Among competitors, Altera’s Agilex 5 has up to 3,680 18×19

multipliers (A5D 064), which can each be split into three 8×8 multipliers,

yielding an equivalent of 11,040 8×8 multipliers. With a maximum frequency

of 655 MHz for a -2V speed grade, its theoretical peak INT8 performance is

7.23 TMAC/s. Agilex 7, with up to 17,056 18×19 multipliers (AGF 027),

can split each multiplier into two 8×8 multipliers, resulting in an equivalent

of 34,112 8×8 multipliers. At a maximum frequency of 771 MHz for a -2V

speed grade, its theoretical peak INT8 performance is 26.3 TMAC/s.

Compared to GPUs, which achieve hundreds of TMAC/s, FPGA per-

formance is an order of magnitude lower for two main reasons: 1. Lower

operating frequency: GPU frequencies generally range from 1.5 GHz to 2

GHz; 2. Fewer multipliers: For example, the A100 has an equivalent of

432 × 512 = 221,184 INT8 multipliers, while the H100 has an equivalent

of 528 × 1,024 = 540,672 INT8 multipliers. In practical FPGA usage, the

number of usable DSPs may be much lower than the theoretical count due to

space occupation by non-computational components and routing limitations

(e.g., congestion and distance). Additionally, frequency is often constrained

and cannot reach the theoretical maximum. Off-chip memory bandwidth

is another limitation. While GPUs with multi-channel High Bandwidth

Memory (HBM) can achieve several TB/s, FPGA platforms typically offer

only tens of GB/s (DDR-based platforms) to several hundred GB/s (HBM-

based platforms). In summary, Overlay architecture accelerators mainly rely

on computational power and off-chip memory bandwidth, resulting in almost

no advantage of implementing Overlay architecture accelerators on FPGAs

over GPUs.

An alternative is the Dataflow architecture accelerator, primarily imple-

mented on FPGAs and designed for a single network structure. It requires no

memory access during operation, resulting in extremely low off-chip memory

bandwidth demands. However, its single-network design makes it unsuitable

for ASIC implementation. In early stages, Due to the extremely high

utilization of available computing resources and on-chip memory bandwidth

by Dataflow architecture accelerators, they even outperformed contempora-

neous GPUs, which have no Tensor Cores inside, in throughput. However,

the introduction of Tensor Cores significantly boosted GPU computational
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power, and advancements in memory technology have enabled GPUs to

achieve off-chip memory bandwidths of several TB/s, leading to substantial

throughput improvements. State-of-the-art GPUs use the most advanced

process technologies, such as the H100 built on TSMC’s 5nm process. In

contrast, FPGAs, due to their flexibility and long lifecycle, typically always

use the latest process technology available at their launch and do not undergo

process updates during their lifecycle. For example, the widely used 7 series is

based on a 28 nm process and UltraScale+ is based on a 16/14 nm process,

while the latest Versal series uses a 7 nm process. Consequently, FPGA

on-chip computation energy efficiency lags behind GPUs. In summary, the

advantages of Dataflow accelerators implemented on FPGAs have diminished

significantly.

The objective is to reduce CNN accelerators’ dependency on off-chip

memory to lower costs. Furthermore, off-chip data transfer consumes more

energy than on-chip computation, meaning communication and off-chip

memory access account for a significant portion of power consumption.

Reducing bandwidth dependency can indirectly lower power consumption.

Currently, GPUs, Tensor Processing Units (TPUs), Neural Processing Units

(NPUs) embedded in SoCs, and accelerators implemented on most FPGAs

all use Overlay architectures to run network models. These architectures

allocate computation tasks layer by layer to available resources, with sig-

nificant inter-layer data typically stored off-chip. This increases off-chip

memory access demands, raises bandwidth requirements, and increases data

movement energy consumption.

In this dissertation, we propose a new accelerator architecture that

effectively addresses the shortcomings of prior research. Noting that modern

advanced network models are often composed of multiple blocks with similar

structures, we leverage this by designing a specialized accelerator tailored for

a specific type of block, with each layer within the block having its dedicated

execution unit. This approach maximizes resource utilization by covering at

this granularity, minimizing idle hardware resources.

Our design combines the advantages of both Dataflow and Overlay

architectures—low memory access demand and low area requirements—while

avoiding their downsides, such as large area and high memory access de-

mands. Since each block’s weight size is much smaller than that of an

entire model, we avoid the massive on-chip memory requirements typical

of Dataflow architecture accelerators needed to store the full model weights.
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For most commonly used lightweight models, two computation arrays

with similar parallelism are needed to execute the expansion and reduction

convolutional layers, respectively. For isolated layers within the network

model, we designed a structure that temporarily merges the execution

units of two layers to dynamically increase parallelism, allowing for flexible

adjustment of computation resource allocation based on workload.

As the accelerator targets entire blocks, the computation arrays of each

layer within a block are connected using a handshake-based bus, eliminating

the need to temporarily store data between layers. On-chip memory is

primarily used for weight storage and row buffers required for sampling

depthwise convolution inputs, so the required on-chip memory is minimal,

making deployment feasible even on resource-constrained devices.

For high-end devices with larger on-chip memory, we designed an optional

on-chip cache to store inter-block data, further reducing off-chip memory

bandwidth requirements and improving throughput. Ultimately, our acceler-

ators, which are designed for inverted residual blocks, achieved a throughput

of 586 FPS on the cost-optimized ZU3 FPGA when running MobileNetV2,

2,350 FPS on the mid-range ZU7 FPGA, and 11,821 FPS on the high-

end VU13P FPGA, where the inter-block caching enabled for the designs

targeting mid-range and high-end FPGAs.

The computational demand and inter-layer data volume of CNN models

are directly proportional to the input image size. Although specialized

accelerators can achieve high throughput for basic image classification tasks,

throughput decreases as image resolution increases. In real-world image

classification, resolutions like 224×224 are common. For object detection,

typical resolutions are 300×300 and 416×416. When the resolution increases

to 300×300, the computation load of the convolution layers rises to 1.79 times

the original, reducing throughput for these parts to 55.75% of the original

at a fixed computational limit. At a resolution of 416×416, the computation

load increases to 3.45 times, with throughput dropping to 28.99%.

Furthermore, in data centers, higher throughput and better energy

efficiency are critical. This drives GPU- and TPU-based accelerators to

relentlessly scale up computational power by adopting more advanced process

technologies to gain an edge. Our accelerators have extremely high through-

put and are also suitable for data center usage scenarios. In addition, since

our accelerator architecture is mainly targeted at blocks and can be executed

in fallback mode like a normal Overlay, it has certain ASIC implementation
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value to achieve higher throughput and energy efficiency.
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Figure 2.1: The typical structure of CNN models.

Chapter 2

Preliminaries

2.1 Blocks

As shown in Figure. 2.1,the structure of modern CNNs generally consists of

a Stem convolution layer, a Body section made up of a backbone network,

followed by a Head convolution layer and a predictor. The backbone network

typically consists of many consecutive, similar blocks. The predictor varies

depending on the task; for example, in classification tasks, it is often a

fully connected layer. Early blocks were simple, such as VGG [22], which

consists of several consecutive 3×3 convolution layers followed by pooling

(Figure. 2.2a). Later, ResNet [23] introduced the residual block with residual

connections, where each block’s final output is the sum of the current block’s

output and its input(Figure. 2.2b). This design effectively addresses the

degradation problem that arises when CNNs become very deep. Most blocks

consist of three convolution layers: a 1×1 convolution layer for dimensionality

reduction ( 1 in Figure. 2.2b), a 3×3 convolution layer for feature extraction

2 , and another 1×1 convolution layer 3 for dimensionality expansion.

When the input and output dimensions differ, an additional 1×1 convolution

layer 4 is added on the shortcut path for dimension adjustment. While

residual connections help address neural network degradation, as mentioned

earlier, they also pose challenges for accelerator design.

ResNet can achieve high classification accuracy but involves a large
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Figure 2.2: Blocks used in CNNs. The trapezoid’s base length represents

the variation in the number of I/O channels, and the color indicates the

computational loads.

computational workload. Therefore, the inverted residual block with depth-

wise convolution were proposed in MonbileNetV2 [24]. Inverted residual

block and its variations are widely used [25–27]. Unlike the conventional

residual block, it expands dimensions internally rather than reducing them

and uses less computationally intensive depthwise convolutions for feature

extraction(Figure. 2.2c). Networks using inverted residual blocks signifi-

cantly reduce computation and parameter counts while maintaining com-

parable classification accuracy to conventional residual blocks, leading to

their widespread use today. A typical inverted residual block also consists of

three layers: a 1×1 expansion convolution layer(A in Figure. 2.2c), a 3×3

depthwise convolution layer B for feature extraction, and a 1×1 projection

convolution layer C for dimensionality reduction. Generally, the expansion

convolution layer increases the number of input feature map channels by

a factor of six. When the input and output feature maps have the same

shape, they are added together via residual connections. While models
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using inverted residual blocks reduce weight size and computation, they

do not reduce inter-layer activation transfer. Thus, unlike networks using

conventional 3×3 convolutions, which are bottlenecked by computation,

networks with inverted residual blocks, using 3×3 depthwise convolutions,

require high data transfer in less time, making data transfer the primary

bottleneck.

2.2 MobileNetV2

As mentioned earlier, MobileNetV2 mainly consists of its proposed inverted

residual blocks, while other components are almost identical to conventional

CNN models (Figure 2.1). In standard MobileNetV2, the input is a 224×224

3-channel image. It first passes through an input convolution layer with a

kernel size of 3×3 and a stride of 2, producing 32 output channels. This is

followed by a batch normalization (BN) [28] layer and an activation function,

resulting in a feature map size of 32×112×112 (in “NCHW” format with

“N” omitted, where the first number represents channels, and the other two

represent height and width).

The output is then fed into the first block “blk0”. This block is slightly

different from others, as it lacks the upsampling convolution layer A .

Instead, it directly processes the input through a depthwise convolution

layer B and a downsampling convolution layer C , ultimately outputting

a 16×112×112 feature map.

The output then progresses through “blk1” and “blk2”. These two blocks

have identical parameters and form a stage. The depthwise convolution in

“blk1”, being the first block of the stage, has a stride of 2, while other blocks

(“blk2”) in the stage have a stride of 1. All blocks in this stage output

feature maps of 24×56×56. In “blk1”, the channel count is increased to 6

times its input channels (16), resulting in 96 channels, a standard practice

in MobileNetV2. Similarly, in “blk2”, the channels increase from 24 to 144.

Since the input and output feature map sizes of “blk2” are identical, it has

a residual connection.

The subsequent blocks (“blk3” to “blk5”) form another stage, identical

to the previous stage, with output feature maps of size 32×28×28. Blocks

“blk6” to “blk9” form a stage that outputs feature maps of size 64×14×14.

Blocks “blk10” to “blk12” form a stage that outputs feature maps of size

96×14×14, without further reducing feature map dimensions. Blocks “blk13”
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to “blk15” form a stage that outputs feature maps of size 160×7×7.

Finally, “blk16” forms a standalone stage, producing feature maps of size

320×7×7. This is followed by an upsampling convolution layer that increases

the feature map size to 1280×7×7, and global max pooling compresses it to

1280×1×1. This can be viewed as the output of a fully connected layer with

1,280 nodes. Compared to earlier models that extensively used flattening

and fully connected layers for feature extraction, this approach significantly

reduces computation.

The final step is a fully connected classification predictor, which identifies

1,000 ImageNet classes from these 1,280 features.

2.3 Quantization

When deploying CNNs, quantization is commonly applied to improve perfor-

mance on CPU or NPU platforms. There are various quantization schemes.

Most schemes can be represented as⎧⎨
⎩
y = �clamp(Γ · x+B,Qn, Qp)� For Activations

wQ = �clamp(γQW · w,Qn, Qp)� For Weights,
(2.1)

where Qn and Qp represent the minimum and maximum values for the clamp

function, �·� denotes rounding, and Γ and B are the scaling factor and bias

with BN folding. They are calculated as:

Γ =
γQW · γQI

γQO

· γBN√
σ2
BN + εBN

(2.2)

B =
1

γQO

·
(
βBN − μBN · γBN√

σ2
BN + εBN

)
, (2.3)

where γQW is the weight scaling factor, γQI is the input feature map scaling

factor, and γQO is the output feature map scaling factor. BN parameters are

taken from the BN layer.

Quantization schemes are divided into two types: post-training quantiza-

tion (PTQ) and quantization-aware training (QAT). In PTQ, quantization

parameters are computed after training based on the distribution of weights

and activations. In QAT, fake quantization modules are inserted into the
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CNN during training without changing the data distribution. The fake

quantization module is computed as

y = γQO ·
⌊
clamp(

x

γQO

, Qn, Qp)

⌉
. (2.4)

After training, the fake quantization modules are removed, and BN layers

are folded by freezing. QAT generally achieves higher accuracy than PTQ. In

quantized models for CPU or GPU, feature map data between blocks is not

quantized; instead, it is quantized at the entry of the next block to maintain

accuracy. In contrast, all data must be quantized, as deploying floating-point

numbers on FPGA devices is challenging.

2.4 FINN

(a) Channel ⇒ Row ⇒
Column

(b) Row ⇒ Channel ⇒
Column

(c) Row ⇒ Column ⇒
Channel

Figure 2.3: Processing a convolution layer in different orders. C is channel,

W is width (horizontal direction) and H is height (vertical direction)

FINN [10,11] is a framework developed by Xilinx for deploying CNNs on

FPGAs. It uses a Matrix-Vector-Threshold Unit (MVTU) module to map

layers, and these MVTUs are connected sequentially, forming a Dataflow

accelerator as shown in Figure. 1.1b.

There are multiple ways to execute layers in the accelerator. The method

shown in Figure. 2.3a ensures that the output feature map data of one

layer is in the same order as the input feature map data for the next layer,

allowing FIFO connections between the modules of two layers. This property
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makes it suitable for Dataflow architecture accelerators. To make another

method shown in Figure. 2.3b suitable for Dataflow architecture accelerators,

additional buffers are required between layers to rearrange data order. For

Overlay architecture accelerators, this method strikes a balance between

feature map and weight reuse. The method in Figure. 2.3c is less suitable

for Dataflow accelerators, but it allows complete weight reuse when memory

capacity for weights is limited. FINN uses the method shown in Figure. 2.3a.

In the MVTU, multiple Processing Elements (PEs) process multiple

output channels (neurons) in parallel. Each PE also processes multiple input

channels (synapses) in parallel. In a single PE, FINN leverages multiple

SIMD lanes to process multiple input channels independently, thereby en-

hancing computational parallelism. The number of these SIMD lanes is

represented as SPE. The parallelism of the MVTU is represented by PPE

(equal to the number of PEs), which determines the neuron and synapse

folding. Neuron folding (Neu) is calculated as:

Neu =

⌈
COFM

PPE

⌉
, (2.5)

where COFM represents the number of channels in the output feature map.

Synapse folding (Syn) is determined by:

Syn =

⌈
CIFM ×K ×K

SPE

⌉
, (2.6)

where K is the convolutional kernel size and CIFM is the number of channels

in the input feature map. SPE represents the number of input channels

processed in parallel. The minimum clock cycles (CC) required to execute a

layer are given by:

CC = HOFM ×WOFM ×Neu× Syn, (2.7)

where HOFM andWOFM represent the height and width of the output feature

map, respectively. When running layers with a convolution kernel size K >

1, additional SWUs are required to act the im2col operation. The SWU

contains K+1 memories, K for sampling outputs and one extra for inputting

the next row simultaneously.
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2.5 DSP Packing

The input ports of a single DSP differ based on the FPGA series. For

instance, the DSP48E1 [29] used in the Virtex6 and 7 series across all product

lines supports the multiplication of two signed numbers of 25-bit and 18-bit

widths. The DSP48E2 [30] in the UltraScale/UltraScale+ series supports

the multiplication of two signed numbers of 27-bit and 18-bit widths. The

latest Versal series DSP58 [31] supports the multiplication of signed numbers

of 27-bit and 24-bit widths and additionally supports a dot product mode,

which splits into three groups of 9-bit and 8-bit signed multiplications. Since

the initial DSPs, Altera has supported the ability to split into multiple 9×9

bit calculation modes (except for the Stratix10 and Arria10 series, which

lack this split mode). These DSPs with 9×8 or 9×9 calculation modes can

efficiently compute convolutions. However, DSPs without split modes would

waste high bit-width capability when performing only 8×8 multiplications,

so methods for utilizing a single high bit-width DSP to execute multiple low

bit-width multiplications have been proposed.

DSP packing techniques [32–35], enable a single DSP48 to perform

multiple multiplications within a single clock cycle. When performing 8× 8

bit multiplications, two activations or two weights are packed into the 27-bit

input port. A few guard bits are allocated between the two 8-bit inputs. An

approximate product is then obtained from the output port. Packing two

activations results in a1 · w and a2 · w, effectively processing two pixels in

parallel. Packing two weights yields w1 · a and w2 · a, effectively processing

two output channels in parallel. Additional circuitry can be added to the

output port for more accurate values. [33]

2.6 FPGA Basic Knowledge

FPGA is a flexible, programmable hardware containing a large number of

programmable logic units. By modifying the attributes of these units, FPGAs

can simulate any digital circuit. The main programmable units include

LUTs, carry logic, Flip-Flops (FFs, also known as registers), DSPs, block

memory, Phase-Locked Loops (PLLs), buffers, I/O pins, transceivers, and

other routing resources. Additionally, FPGAs include a small number of

hard IP cores to implement specific functions, such as PCIe.
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2.6.1 LUT

LUTs are used to implement combinational logic, such as O = A · B + C ·
D. The 4-input LUT (LUT4) is often used as a baseline for comparing the

capacity of different FPGA architectures. This metric is referred to as Logic

Cell (LC) or Logic Element (LE).

In a LUT4, its four input pins can connect to four different input

signals, producing an output signal based on these inputs. As shown in

the earlier example, A,B,C,D are the four inputs, O is the output, and their

logical relationship can be implemented by a LUT. Essentially, a LUT is

an asynchronous SRAM that typically only allows its internal data to be

modified during programming. This SRAM has a port width of 1 bit and

a depth of 16, sufficient to store the output (truth table) for all possible

combinations of four inputs. The four input pins act as read addresses,

retrieving the corresponding output for a given combination.

Modern FPGA LUT designs are much more complex than this baseline.

For instance, in Xilinx’s 7-Series and UltraScale(+) devices, the LUT6

typically has six inputs, two outputs, equivalent two 1-bit-wide, 32-bit-deep

SRAMs. One SRAM output connects to output port O5, and it also connects

to output port O6 through a multiplexer (MUX) with the other SRAM. This

MUX uses one input pin to select which SRAM output is used. The remaining

five inputs are shared as address lines for both SRAMs. Consequently, the

LUT can function as one LUT6, two LUT5s (sharing inputs but implementing

different logic), or a combined LUT5+LUT6 with partial logic sharing.

Some LUTs can dynamically modify their stored data during runtime, a

feature known as distributed memory or LUTRAM. These LUTs, which can

be used as RAM, can also function as multi-stage shift registers.

In the latest Versal architecture, LUT6 is composed of four LUT4s,

with additional output ports and more complex input-output sharing rules.

Another FPGA manufacturer, Altera, uses Adaptive Logic Modules (ALM)

in its mid-to-high-end devices and LUT4s in entry-level devices. ALM designs

are more complex, incorporating two LUT4s and four LUT3s. While its

equivalent capacity is 64 bits, the same as LUT6, it provides more input and

output ports, allowing for better utilization of logical resources.
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2.6.2 Carry Logic

Carry logic is primarily used to mitigate potential issues such as reduced

frequency in adders or comparators caused by overly long carry chains.

Adjacent carry logic units typically have dedicated cascading resources to

chain multiple units into longer carry logic structures. In Xilinx FPGAs,

the carry logic design varies across different families. In current-generation

devices, the 7 series uses CARRY4, which, as the name suggests, employs

a ripple-carry structure to handle four carry inputs. The UltraScale series

features CARRY8, while the Versal series introduces LOOKAHEAD8, which

uses a more advanced lookahead carry structure to process eight carry inputs

in parallel. This parallelism provides significant latency advantages over

traditional ripple-carry structures in wide-width computations.

In Altera’s ALMs, dedicated ripple-carry structures are available for

adders. Unlike Xilinx FPGAs, where an additional 2-input LUT is needed

before the carry chain for constructing adders, Altera’s design eliminates this

requirement, enabling more efficient use of logic resources for adders.

2.6.3 Flip-Flop (FF)

FFs are units used to temporarily store one bit of data, synchronized by clock

or control signals. Various types of FFs exist, such as SR-FF, JK-FF, T-FF,

and D-FF. In FPGAs, the most commonly used is the D-FF with set/reset

and enable features. Its functionality is to capture the input pin’s signal

level at a clock edge and store it internally for output. Using FFs and clock

signals, sequential logic can be implemented.

More FFs are often used to create deeper pipelines, which can improve the

operating frequency of a design. However, the design’s frequency is ultimately

determined by the slowest (longest delay) path in the circuit. Thus, only a

well-designed circuit without long paths can utilize more flip-flops to increase

the frequency.

Adding more pipeline stages may also increase latency, as results take

longer time to propagate. In designs where inputs depend on outputs (e.g.,

CPU designs with data hazards), deeper pipelines can introduce more stalls if

instruction reordering (via compiler optimization or out-of-order execution) is

not applied. In such cases, the frequency may increase, but the performance

(IPC) could decrease due to inefficiencies.
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2.6.4 Digital Signal Processor (DSP)

DSPs are units designed for multiplication operations. Their predecessors

were simple multipliers, but recent designs incorporate additional modules

and registers to efficiently handle more complex computational tasks with

less reliance on general-purpose logic (e.g., LUTs). These tasks include FIR

filtering, systolic arrays, and floating-point calculations.

Modern DSPs typically feature pre-adders and post-adders/accumulators

around the multipliers. They also include one or more stages of pipeline regis-

ters (D-FFs) at the input, output, and interconnections between multipliers,

adders, and accumulators to achieve higher operating frequencies. Cascading

resources enable multiple DSPs to form wider multipliers or parallel multiply-

accumulate units.

In Xilinx FPGAs, DSP types include DSP48E1, DSP48E2, and DSP58,

depending on the series. The DSP48E1 features a 25×18-bit signed multiplier

(unsigned multiplication requires fixing the MSB to 0) and a pre-adder for

25-bit signed addition or subtraction. Its complex post-accumulator, also

referred to as an Arithmetic Logic Unit (ALU), supports a wide range

of functions, including basic arithmetic, bitwise logic operations, XOR-

reduction for error checking, and data comparison. The ALU operates at a

48-bit width but can be split into two 24-bit or four 12-bit ALUs for smaller-

width operations.

The DSP48E2 extends the pre-adder and one multiplier input to 27

bits and introduces more computation modes. The DSP58, based on the

DSP48E2, further extends another multiplier input to 24 bits and allows

splitting into three 9×8-bit multipliers.

In Altera FPGAs, DSP capabilities vary across series. Recent FPGA

generations include 27×27-bit multipliers that can be divided into two 18×18-

bit or 19×18-bit multipliers. Some even support finer splits, such as three

9×9 multipliers (Stratix V), four 9×9 multipliers (Agilex 7), or six 9×9

multipliers (Agilex 5).

2.6.5 BRAM

BRAM refers to on-chip synchronous SRAM with relatively large capacity

(tens of kilobits) used to temporarily store information required by circuits.

While LUTRAM can also store data, its capacity is limited, and its low bit

width necessitates combining a large number of LUTs to form large memory
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blocks. This increases timing closure complexity and routing congestion.

Therefore, selecting the appropriate memory type based on the required

capacity and port bit width is critical.

Xilinx FPGAs feature two types of block memory. One is the 36Kb

BRAM, with adjustable port widths ranging from 1 to 72 bits (9 to 72 bits

in Versal). When the port width of a single BRAM is ≤ 36 bits, it can form

single-port memory (one port for read or write), simple dual-port memory

(namely pseudo dual-port, one port for read, the other for write), or true

dual-port memory (two independent ports for read/write). For port widths

> 36 bits, a single BRAM cannot create true dual-port memory. In simple

and true dual-port modes, the two ports can operate on different clocks,

enabling the creation of asynchronous FIFOs for data buffering and clock

domain crossing (hardware FIFOs were removed in Versal).

The second type is the 288Kb UltraRAM (URAM). Compared to BRAM,

URAM in UltraScale series FPGAs restricts port width to 72 bits, making

it less flexible. In true dual-port mode, URAM simulates two ports through

time-division multiplexing using a single physical port. Thus, simultaneous

read and write to the same address through different ports may yield

inconsistent results. Additionally, URAM does not support dual-clock

operation. The latest Versal URAM enhances port width flexibility, allowing

adjustments from 9 to 72 bits.

Altera’s BRAM primarily includes M20K with a capacity of 20Kb in

newer architectures and M10K (10Kb) in older ones.

2.6.6 Phase-Locked Loop (PLL) and Buffer

PLLs and buffers generate required clock signals and manage signal fan-

out, respectively. Typical FPGA boards have fixed-frequency oscillators

(e.g., 25MHz, 33MHz, 50MHz, 100MHz), providing input clock signals to the

FPGA. For specific applications like DDR memory or QSFP ports, custom

oscillators may directly provide specialized frequencies, often dedicated to

specific IPs and unavailable for general use.

For custom applications requiring non-standard frequencies, PLLs gen-

erate the desired clock signals. A PLL increases the input frequency by a

multiplication factor, which can be fractional on advanced platforms. The

resulting frequency, termed the VCO frequency, must remain within a specific

range (typically 500MHz to 1GHz) to ensure stable operation. The VCO
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frequency is then divided to obtain the target frequency, with integer division

ratios. PLLs can also adjust clock phase. In addition, PLL can ensure that

multiple clocks with different frequencies but proportional relationships are

from the same source (i.e. synchronized clocks) to create multi-cycle paths.

Xilinx devices provide two frequency adjustment modules: PLLs and

Mixed-Mode Clock Managers (MMCMs). MMCMs operate similarly to PLLs

but offer additional features for broader applications.

When signals must connect to numerous target pins (e.g., clock or control

signals like enable, reset, and set), high fan-out occurs. Since every output

pin has a specific drive strength, weak drive strength can cause longer delays

in level transitions. Designing all output pins with high drive strength is

challenging due to physical and cost constraints. Therefore, a limited number

of high-drive cells, called buffers, are used. Buffers enhance the driving

capability of signals, though additional delay from the wires and buffers must

be considered. Buffers come in various types, depending on their purpose and

scope.

2.6.7 IO pad and Serial Transceiver

IO pads and serial transceivers are components used by FPGAs to com-

municate with external devices. IO pads are generally divided into two

categories: GPIO and high-speed serial transceivers. Some devices feature

GPIO equipped with lower-speed serial transceivers (typically below 3Gbps)

and SDR/DDR conversion modules. However, compared to high-speed serial

transceivers, these GPIO-based transceivers are simpler in functionality and

lack features like hardwired DC-balanced encoding schemes (e.g., 8b/10b,

128b/130b).

High-speed serial transceivers cannot typically be used as general-purpose

I/O (GPIO) and are instead dedicated to high-speed serial communication

protocols such as PCIe, SATA, and QSFP. The maximum data rate of high-

speed serial transceivers varies depending on the device series and its intended

application, ranging from 3Gbps to 112Gbps. The availability of built-in DC-

balanced encoders also differs: most devices support 8b/10b encoding, newer

platforms support 128b/130b encoding, and some devices support 64b/66b,

64b/67b, and PAM-4 encoding.
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Chapter 3

Proposed Architecture

3.1 Overview

As mentioned earlier, the acceleration bottleneck in lightweight networks

with depthwise convolution layers typically lies in inter-layer data trans-

fer. Since MobileNetV2 is widely used and has ample related research for

comparison, we use it as a paradigm for bandwidth performance analysis

and accelerator design. The relevant content of this section has been

presented in [36], along with the specific implementation details provided in

the following sections

3.1.1 Memory Access Analysis

When the input and output feature maps have identical dimensions and

there is a 6× upsampling within the block, assuming the input data size

is one unit, an Overlay architecture accelerator that executes layer-by-layer

needs to read one unit of data for the main data path and shortcut data path

at different times at a in Figure. 2.2c, due to a significant time difference in

data consumption between the two paths. At b , six units of data are written

and read, and at c , six units are also written and read. Since summing the

values from the two data paths incurs negligible area cost and delay, we

assume they can be executed continuously, so it requires writing one unit of

data at d , totaling 27 units of data read and written.

3.1.2 Throughput Upper Limit Model

We constructed an off-chip memory bandwidth throughput upper limit model

based on actual network structure and assuming that channel counts in all

layers are rounded up to multiples of 8 for efficient transfer. The memory

controller and off-chip memory are assumed to support full-speed, cost-free,

24



Figure 3.1: Throughput upper limits.

efficient random access. Additionally, we assume the Overlay architecture

accelerator has ample on-chip memory and has been optimized through

loop unrolling, requiring minimal data reads—each layer’s weights only need

to be read once, and inter-layer data only need to be written and read

once. As mentioned earlier, [1] added an independent depthwise convolution

engine to the output buffer at b for continuous execution to reduce feature

map transfer by up to 44.4%, which we also consider in this model. The

model’s prediction results are shown in Figure. 3.1, which also includes

peak off-chip memory bandwidth for common FPGA platforms. Note that

actual performance is limited by bandwidth allocation to Processing System

(PS)/Programmable Logic (PL) on ZYNQ platforms and the limited random

access capability of soft memory controllers MIG on normal FPGA platforms,

which often do not reach the peak bandwidth.

We created a System Performance Modeling Project [37] using Advanced

eXtensible Interface (AXI) Traffic Generator [38] and AXI Performance

Monitor [39] to test the maximum bandwidth allocated to the PL side by

default on ZYNQ platforms. On a ZYNQ UltraScale+ platform with 64-bit

2,400MT/s DDR4 SDRAM, the maximum PL bandwidth is 14.05 GiB/s for

reads, 12.54 GiB/s for writes, and 11.82 GiB/s for mixed reads/writes. On a
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Figure 3.2: An example configuration of our CNN accelerator architecture

that runs Inverted Residual Blocks efficiently, and the most used data path

is highlighted in red.

ZYNQ7000 platform with 32-bit 1,066MT/s DDR3 SDRAM, the maximum

PL bandwidth is 3.71 GiB/s for reads, 3.76 GiB/s for writes, and 3.21 GiB/s

for mixed reads/writes.

From Figure. 3.1, we observe that even with advanced platforms boasting

ultra-high memory bandwidth, the theoretical maximum throughput of an

Overlay architecture accelerator dependent on off-chip memory reads/writes

is only around 2,000 FPS. In contrast, a Dataflow architecture accelerator,

which does not need to read weights from memory for each image and

involves no off-chip reads/writes of feature maps during operation, achieves

a theoretical maximum throughput exceeding 100,000 FPS. The calculated

values for [1] are also marked in the figure; it uses a ZCU102 platform where

the PS-side memory is SO-DIMM with a maximum bandwidth of 2,133 Mb/s

according to [40]. Therefore, it is around 11 GiB/s, with an intersection near

1,000 FPS. Their achieved throughput is 809.8 FPS, which is expected given

the actual random memory access by Overlay architecture accelerators. The

approach in [1] does indeed achieve a noticeable improvement in throughput

limit over typical Overlay architecture accelerators by avoiding memory

access at b , yet it remains far from the performance of Dataflow architecture

accelerators. Reducing off-chip memory access further is key to improving

throughput.
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3.1.3 Serial Execution

To further reduce off-chip memory access, a , c , and d can be optimized. For

c , we can avoid access by executing an entire block continuously; for this, we

designed an accelerator architecture that executes by block. Figure. 3.2 shows

an example accelerator structure capable of efficiently executing inverted

residual blocks.

Running a CNN model requires numerous modules to handle various op-

erators. Common operators in CNNs include matmul(matrix multiplication),

im2col, pool, mul (scale), add (bias), relu, and others. In accelerators, data

are often quantized to reduce computational bit-width and the complexity

of floating-point operations. This introduces additional operators like round

and sign.

Accelerators typically merge multiple consecutive identical operators to

reduce computational complexity and data transfer. For example, batch

normalization and quantization’s multiplication and addition (scale and

bias), as well as the bias in convolution or fully connected layers, can be

combined into a single mul and a single add operation. Besides, the sign,

round and relu operations are integrated into the quantization modules of

PE Arrays.

Our accelerator architecture includes various modules for different oper-

ators. The main part is the core operator of convolution and fully connected

layers, matmul operation. The matmul operation in convolution layers

comprises multiple smaller calculations, while the matmul in fully connected

layers follows the standard form, which can be viewed as multiple smaller

computations. The madd and acc parts of our PE Array 0/1 can perform

matmul calculations and support configurable loop counts for step-by-step

execution of smaller computations.

The core operation of depthwise convolution layers is also matmul, but

it differs slightly from regular convolution layers. Its loop structure lacks

the input channel loop, resulting in significantly reduced computational

workload. Our custom depthwise convolution computation engine, the

PEDW Array, efficiently handles this part.

Next is im2col, which transforms input feature maps into the format

required for convolution operations. For example, if the input feature map is

of size 4×7×7 (height and width of 7, and 4 channels in NCHW format) with

a 3×3 kernel, same padding, and stride of 1, the result of im2col would be

27



196 groups of sequences with 9 elements each. The 196 groups correspond to

sampling from the 4×7×7 input feature map, and 9 refers to the 3×3 data

elements sampled each time. The SWU module in our accelerator performs

this operation and can adjust the output order and parallel approach of the

196 groups as needed.

The pool compresses feature maps with larger sizes into smaller ones.

Common pooling methods include max pooling and average pooling, both of

which have minimal computational complexity. A special form of pooling,

global pooling, compresses an entire feature map into a size of C×1×1 for

use in conjunction with fully connected layers. In recent CNN models,

conventional pooling has become less common, with convolution layers or

depthwise convolution layers with a stride of 2 increasingly used to progres-

sively reduce feature map sizes. However, global pooling, often replacing

flattening operations, has become more prevalent. Our accelerator includes

a module for global pooling.

Next we will introduce how to design the accelerator

First, we take a convolution engine and split it into two clusters, namely

PE Array 0 and 1. These two clusters handle the computation of 1×1

expansion convolution layer A and 1×1 projection convolution layer B in the

inverted residual block, respectively. Since the computational load of these

two layers is generally the same in most inverted residual blocks, they are set

with identical parallelism. When processing layers with slight discrepancies

in computation, such as blocks with stride 2 that halve the output feature

map size in width and height, this setup may lead to some computational

resource waste.

Next, we design a specialized computation engine, the PEDW (Processing

Element for Depth-Wise convolution) Array, specifically for the 3×3 depth-

wise convolution layer B between the two conventional convolution layers.

Due to the relatively low computation requirements of this layer, the number

of multipliers used is also minimal, meaning that even during independent

layer execution, idle resources will not significantly impact computational

efficiency.

Since the depthwise convolution kernel is usually not 1×1, an additional

engine performs the im2col operation to unfold the input feature map on-

the-fly. We utilize a Dataflow structure within the block, and the SWU in

FINN meets our requirements. Because the Dataflow architecture requires

consistent input ordering between each module, our computation modules
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and various processing modules are designed to process or transfer data in

a channel-row-column sequence to ensure alignment. By connectiong these

modules according to the actual structure of an inverted residual block, we

create a Dataflow architecture accelerator capable of executing the entire

block.

Processing each block sequentially allows the backbone network, com-

posed of inverted residual blocks, to be computed. The Dataflow connection

at b and c avoids off-chip data exchange, resulting in a total off-chip

memory access reduction of 88.9%.

Currently, there is no Overlay research at the intra-block level using

Dataflow, where Overlay is applied at the block level. The closest work is [1],

as mentioned earlier, which designs two computation engines targeting con-

ventional convolution layers and depthwise convolution layers, respectively.

Its structure is shown in Figure. 3.3.

First, feature map data are read from off-chip memory and cached in an

on-chip input buffer. The conventional convolution engine reads data from

this buffer for computation, with results written to another output buffer.

The depthwise convolution engine can access this buffer, read data, and
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compute results. Since depthwise convolution does not change the channel

count, it only reduces the feature map size when the stride is 2.

Originally, during conventional convolution engine execution, the buffer

results were written back to off-chip memory. In this design, if there are

consecutive executions of conventional and depthwise convolution layers, only

the results of the depthwise convolution are written back to off-chip memory.

These buffers are used for on-the-fly im2col operations, so the two on-chip

buffers consume memory equivalent to that required by two SWUs.

In our design, only one SWU is needed to handle both conventional and

depthwise convolutions. Splitting the conventional computation engine into

two consecutive computations does not incur additional off-chip memory

capacity overhead but has a significant impact on off-chip memory bandwidth

savings.

3.1.4 Bus Between Modules

The bus width between modules is generally B×BWA×DC×2×PP , where

B is the batch size, BWA is the bit-width of the quantized activation value,

DC×2 includesDC, which is the height of the DSP cascade, and 2 is a multi-

cycle correction factor that will be explained in later sections. PP represents

the parallel number of processed pixels (2 in our design), enabling almost

all modules in the accelerator to process two pixels in parallel. Modules

are interconnected with handshake buses, and most module outputs (before

DEMUX, to ensure that routing switches do not cause incorrect transmission

targets) have handshake registers to resolve issues with prolonged ready

signals.

Data paths can be switched via MUX and DEMUX, and possible paths

in Figure. 3.2 are listed in Table.3.1, where paths 2, 3, 4, 6, 7, 8, and 9 are

needed for executing MobileNetV2.

Path 8 is intended to split the inverted residual block into two parts

when there is a substantial imbalance in computation load between the two

conventional convolution layers, as seen in the final block. This enables

separate execution by merging the two PE Arrays to process this high-load,

high-parameter layer, thereby reducing PE idling and lowering the minimum

required on-chip memory for storing weights.

The control signals of the most MUX and DEMUX connect to the

controller, which manages the operation of each module and switches paths
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Table 3.1: Available Paths on Example Configuration

# PATH Block/Layer

1
ADATA ⇒ PE Array 0 ⇒ Fully Connected /

ADATA Conv 1x1

2

ADATA ⇒ Broadcast ⇒ Fully Connected /

PE Array 0 & PE Array 1 ⇒ Conv 1x1

Combine ⇒ ADATA (parallel execution)

3
ADATA ⇒ SWU ⇒

Conv k×k
PE Array 0 ⇒ ADATA

4

ADATA ⇒ (Inverted) Residual Block

SWU ⇒ PEDW Array ⇒ w/o channel expansion

PE Array 1 ⇒ ADATA w/o residual connection

5

ADATA ⇒ (Inverted) Residual Block

SWU ⇒ PEDW Array ⇒ w/o channel expansion

PE Array 1 ⇒ ADD ⇒ ADATA w/ residual connection

6

ADATA ⇒ PE Array 0 ⇒ (Inverted) Residual Block

SWU ⇒ PEDW Array ⇒ w/ channel expansion

PE Array 1 ⇒ ADATA w/o residual connection

7

ADATA ⇒ PE Array 0 ⇒ (Inverted) Residual Block

SWU ⇒ PEDW Array ⇒ w/ channel expansion

PE Array 1 ⇒ ADD ⇒ ADATA w/ residual connection

8

ADATA ⇒ PE Array 0 ⇒ half block

SWU ⇒ PEDW Array ⇒ w/ channel expansion

ADATA w/o residual connection

9 ADATA ⇒ GAP ⇒ ADATA Global Average Pooling

when relevant modules are idle. A few DEMUX control signals are directly

connected to the certain modules; these modules do not synchronize input-

output switching with the currently running block or layer but instead use a

state machine on their input side to switch states.

The path mapping of our accelerator running MobileNetV2 is listed in

Table 3.2
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Table 3.2: Block/Layer Path Mapping

Block/Layer Path

stem 3

blk0 4

blk1 6

blk2 7

blk3 6

blk4 7

blk5 7

blk6 6

blk7 7

blk8 7

blk9 7

blk10 6

blk11 7

blk12 7

blk13 6

blk14 7

blk15 7

blk16 1st 8

blk16 2nd 2

head 2

gap 9

fc(1/4) 2

fc(2/4) 2

fc(3/4) 2

fc(4/4) 2
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3.1.5 Inter-block Data

The ADATA module in Figure. 3.2 handles inter-block data with two options:

storing them on-chip or transferring them off-chip. When stored on-chip, it

further avoids off-chip data exchanges at a and d , so only the input image

is needed to obtain the final output without additional feature map transfer,

and only weights need to be transferred during operation.

Due to block-based execution, our accelerator requires on-chip memory

for weight storage, with the minimum capacity sufficient to store the weights

of a single block. If the on-chip memory capacity for weights is increased

to accommodate the sum of the largest capacities of two consecutive blocks,

block-switching time for initializing the next block’s weights can be reduced,

resulting in a slight throughput increase. The row buffer capacity needed for

SWU and other modules is also minimal.

Modern mid-range and high-end FPGA devices typically have ample

on-chip memory, which often leaves significant memory unused. In newer

AMD devices, this memory is usually URAM, which offers 8× the capacity

of traditional BRAM but lacks features such as variable port width and

dual clocks, making it more restricted in use. The inverted residual block

expands dimensions within the block and reduces them between blocks, so

the inter-block feature map size is significantly smaller than that of intra-

block, requiring only minimal capacity to store them.

Thus, we can use these URAMs to form an inter-block feature map

buffer, reducing the remaining 11.1% off-chip memory transfer at a and

d . This URAM buffer can also prefetch the next image to be processed

during runtime. We refer to the design using URAM for inter-block buffer as

the URAM version, while the design that transfers inter-block feature maps

to off-chip SDRAM is referred to as the SDRAM version.

The required on-chip memory capacity is determined by the largest inter-

block feature map data volume. For a configuration with DC = 4 running

standard 8-bit quantized MobileNetV2, the bit-width of the inter-block

memory per image is BWA×DC×2×PP = 128, and the maximum required

depth is calculated as follows: for the input image, it is 224×224×8×8
128

= 25088

(where the 3 channels are padded to 8 channels), and for the stem layer’s

output feature map, it is 112×112×32×8
128

= 25088 (in the example configuration,

the output channel count of “blk0” may need to be padded to 32, matching

the stem layer’s output feature map size). Therefore, we need an on-chip
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Table 3.3: Depth requirements per block/layer for inter-block memory of

ADATA

Block/Layer Memory depth requirements

input 25088

stem 25088

blk0 25088

blk1 6272

blk2 6272

blk3 1568

blk4 1568

blk5 1568

blk6 784

blk7 784

blk8 784

blk9 784

blk10 1176

blk11 1176

blk12 1176

blk13 560

blk14 560

blk15 560

blk16 dw 3360

blk16 prj 1120

head 4480

gap 160
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memory with a bit-width of 128 and a depth of 25,088 for inter-block feature

maps, which translates to 6.125×2 URAMs. We round this up to 8×2 = 16

URAMs, providing a depth of 32,768.

In the example configuration, the memory depth requirements for the out-

put feature maps of each block and individual layer are shown in Table. 3.3.

It can be observed that the data volume for later blocks is much smaller. As

long as the depth needed by the current block and each subsequent block

(including input and output, taking the maximum) plus the input image

depth is less than 32,768, prefetching can start while processing the block.

From the table, it is evident that prefetching can start as early as when

processing “blk2”.

3.1.6 Batch-based Execution

Additionally, from Figure. 3.2, we can observe that the main execution part is

duplicated. This is because, as the parallelism of a single PE Array increases,

it does not always lead to a linear improvement in throughput. Therefore,

we opted to process multiple images in parallel, similar to GPUs, to mitigate

these diminishing returns.

Furthermore, we can see that in Figure. 3.2, the top modules related

to weight memory, the Controller module, and the ADATA module on the

left (which handles inter-block feature map data) are not duplicated. The

reason for not duplicating the memory and controller modules is that by fully

synchronizing the modules processing multiple images in parallel, they can

share the memory modules, the control signals from the controller, and run-

time parameters. The state signals from each module are referenced only

from submodule 0, avoiding the need for duplicating. Sharing the weight

memory when processing multiple images also reduces the average weight

memory transfer requirement per image.

The ADATA module is not duplicated due to the fixed number of

AXI ports, which limits duplicating. On ZYNQ UltraScale+ platforms,

the maximum width of AXI port form/to PS is 128, and parallelizing the

data from multiple images onto the AXI port does not yield performance

gains. Therefore, we use time-division multiplexing for these AXI ports.

Additionally, when ADATA is configured to use URAM for inter-block buffer,

these URAM buffer are duplicated.
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Figure 3.4: Two main interconnection methods target different workloads.

3.1.7 Weight Memory Structure

Although the weight memory appears as a unified block in Figure. 3.2,

internally, it is organized like a Dataflow architecture accelerator, where each

PE in the PE Array has its own dedicated memory to maximize the ultra-

high on-chip memory bandwidth of the FPGA. Separate weight memories

help reduce routing distance and decrease fan-out signal loads.

3.1.8 Parallel Execution Mode

As shown in Figure. 2.1, aside from the main part composed of blocks,

the CNN model network includes other independent layers, especially the

head and predictor, which have a large number of output channels and thus

significant computational load. It is clear that using just one of the two PE

Arrays to execute these independent layers would cause severe computational

resource wastage, as the other PE Array would be entirely idle. Additionally,

the large disparity in computational load between the two 1×1 convolution

layers in the last block would lead to excessive idling of the less-loaded PE

Array.

We designed modules that can temporarily combine two PE Arrays into

a single large computing array, as shown in Figures. 3.2 and 3.5, labeled as

Broadcast and Combine. These modules enable dynamic switching between

the serial and parallel execution modes during runtime. The configuration

that connects these modules in a block-wise, serial calculation mode is

referred to as the serial execution mode (Figure. 3.4a and highlighted paths

in Figure. 3.2). The mode that connects two PE Arrays in parallel, using

Broadcast and Combine, is called parallel execution mode (Figure. 3.4b and

highlighted paths in Figure. 3.5). Parallel execution mode not only reduces
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Figure 3.5: The data path of the parallel execution mode is highlighted,

where the common path is in red, the path for PE Array 0 is in green and

the path for PE Array 1 is in blue.

PE idling when executing a single layer, but also treats the two PE Arrays

as one, effectively halving the on-chip weight memory requirement when

executing layers with a high number of weights.

3.1.9 Pixels Processed in Parallel

The maximum parallelism achievable through handling multiple input and

output channels simultaneously is limited. To further increase parallelism, we

utilize the dual-port nature of on-chip BRAM/URAM, allowing the SWU’s

row buffer to sample activation values from two pixels simultaneously. This

capability enables processing of multiple adjacent pixels in a row, enhancing

parallelism across additional dimensions.

3.1.10 Reduced Control Set

Many modules have an output FIFO, especially those with longer pipelines,

higher register usage, and larger area requirements. The FIFO allows these

modules to continue executing already dispatched tasks and temporarily store

results when Dataflow blocking occurs, avoiding the need for global clock

enable (CE) which could increase routing difficulty and reduce frequency.
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Figure 3.6: Throughput upper limits of our design.

3.1.11 Theoretical Upper Limit

The theoretical upper limit of our accelerator’s throughput is illustrated in

Figure. 3.6. Here, SDRAM represents the version without on-chip inter-

block memory buffering, followed by numbers indicating batch size. Since

the URAM version is primarily intended for medium to large FPGAs,

the URAM1 configuration has minimal value, and we opted for the high-

parallelism URAM16 configuration instead. As batch size increases, the

performance gap between the URAM version and the Dataflow architecture

accelerator gradually narrows. This is due to the decreasing impact of

additional weight transfer bandwidth as batch size grows. The throughput

of the SDRAM version is significantly lower than the URAM version but still

substantially surpasses that of typical Overlay architecture accelerators.

Next, we will detail each module in the proposed architecture.
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3.2 ADATA

3.2.1 Sub-modules

As mentioned earlier, ADATA is responsible for handling inter-block data,

and it contains several sub-modules to manage different parts: the Main

output port (MAIN module), Shortcut output port (SC module), Write input

port (W module), and an initialization module for writing image data into

the internal inter-block buffer (INIT module). A control module coordinates

the operations of these sub-modules, allowing it to accept commands for the

next block/layer while all four sub-modules are still operational.

When the read modules (MAIN and SC) complete their current tasks,

the control module can immediately activate these read modules, as it has

already received the instructions for the next block. However, this could

potentially lead to a situation where the read modules access old data before

the W module completes its writing task, resulting in incorrect computation.

To prevent this, we have added a safeguard: a flag signal is triggered when

there is a mismatch between the current blocks of the read and write modules.

When the flag is active, an additional check is performed on the write count

(using the write completion count from the B channel in AXI bus) and the

read count; data reading is allowed only if the write count exceeds the read

count.

3.2.2 URAM-used and URAM-free Configuration

As previously mentioned, ADATA offers two configurations for handling

inter-block data: a URAM-based design for on-chip storage and an SDRAM-

based design for off-chip storage. The URAM version is suited for mid-

to-high-end devices with ample on-chip memory and sufficient resources to

support high-parallelism (batch size) configurations. The SDRAM version is

intended for smaller devices where both on-chip memory and computational

resources are limited, making high-parallelism configurations impractical.

In these devices, time-division multiplexing of AXI ports does not lead to

excessive waiting times, so the lack of inter-block data buffering does not

impact performance. Since the URAM version requires more resources than

the SDRAM version, devices capable of accommodating the URAM design

can also support the corresponding SDRAM design.
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Similar to ADATA’s two configurations, its sub-modules also have two

operating modes: URAM mode and SDRAM mode. In URAM mode,

inter-block data are read from or written to URAM directly. In SDRAM

mode, data are read from or written to external SDRAM via time-division

multiplexed AXI ports. The SDRAM version omits URAM-related logic and

the INIT module.

3.2.3 SDRAM version

The MAIN and W modules share one AXI master port, MAXI0, with the

MAIN module using the read-related channels (AR, R) and the W module

using the write-related channels (AW, W, B). The SC module has a dedicated

AXI master port, MAXI1, using only the read-related channels. The INIT

module also has a dedicated AXI master port, MAXI2, using only the read-

related channels. The URAM design does not include the SC module’s

MAXI1 port, while the SDRAM design does not include the INIT module’s

MAXI2 port.

When transmitting data from parallel-processed images through time-

division multiplexed AXI ports, data for each image are polled by ticks. Since

all modules for parallel-processed images operate in perfect synchronization,

any delay in one image’s module will cause delays in the modules of all other

images. While adding FIFOs to each parallel image’s I/O ports can mitigate

this issue, polling by tick not only reduces the required FIFO depth but also

prevents scenarios where data for all parallel images are not simultaneously

ready due to memory controller or AXI interconnect delays.

3.2.4 URAM version

When using URAM as inter-block buffers, as mentioned earlier, the mem-

ory for each parallel image is independent, allowing concurrent read/write

operations to meet the high bandwidth and bit-width demands of ultra-high

parallel image processing. Due to the URAM port width limitation, the data

of two pixels processed in parallel typically have separate memory banks.

These URAMs operate in true dual-port mode, ensuring that the two ports

do not simultaneously read/write from/to the same address.

The usage strategy for the two ports of URAM is as follows: Port A

is primarily used for reading data to the Main output port, while Port B
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is mainly used for reading data to the Shortcut output port. For writing

the data from the Write input port, data are written through Port A if it is

idle; otherwise, it is written through Port B, which has a higher priority than

reading the data to the Shortcut output port. Additionally, when prefetching

the next image to be recognized during execution, the INIT module has the

lowest priority for writing. It only writes when the port is entirely idle, with

a preference for Port A when available.

3.2.5 Running Time

The runtime of the ADATA module depends on the port throughput.

When running in SDRAM mode, the AXI port throughput may become

a bottleneck, as it requires time-division multiplexing of AXI ports to access

data from external SDRAM. To ensure address alignment for read/write

operations, we round the actual number of images being transferred (batch

size) up to the nearest power of 2, so each read/write command aligns

perfectly. This may add overhead when the number of parallel images is

not a power of 2.

In this configuration, the runtime for the read submodule is represented

by:

CCAREAD = HIFM ×
⌈
WIFM

PP

⌉
× C ′

IFM

DC × 2
× B′, (3.1)

where HIFM is the height of the input feature map or image, WIFM is the

width, CIFM is the number of input channels, PP is the number of pixels

processed in parallel, DC is the DSP cascade height, and B is the batch size.

Here, C ′
IFM represents the padded number of input channels, and B′ is the

rounded-up batch size. The time required for writing is similar, with IFM

replaced by OFM to reflect output feature map data.

In URAM mode, no bottleneck arises since each fully parallelized image

has a dedicated internal module, and the read time is given by:

CCAREAD = HIFM ×
⌈
WIFM

PP

⌉
× C ′

IFM

DC × 2
. (3.2)

3.3 PE Array 0/1

The PE Arrays are composed of many PEs that can perform multiply-

accumulate operations, enabling them to handle standard convolutional
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layers. Fully-connected layers, treated as 1×1 convolution layers, can also be

processed. As our design theoretically requires minimal bandwidth, we have

implemented advanced methods to maximize the computational capabilities

of the PEs in PE Arrays 0 and 1, pushing the accelerator closer to its

throughput limits.

3.3.1 DSP Packing

We use DSP packing techniques to increase the computational density of

each DSP. DSPs are designed for signed fixed-point calculations, meaning

their most significant bit (MSB) is used as a sign bit. When unsigned data

are computed, the range is limited. Generally, weight values are signed,

which poses no issues. However, the sign of activation values depends on the

previous layer’s activation function, e.g., ReLU, which outputs only positive

values. Thus, when activation values are unsigned, the MSB needs to remain

0 and cannot be used.

Our design allows activation values to be either signed or unsigned,

preserving the original range of the neural network. We perform parallel

calculations for two adjacent output pixels, so two activation values are

packed together in each operation, where a1 and a2 come from filters 1 and

2, respectively. Depending on the layer, they may be signed or unsigned, and

to ensure compatibility, the MSB is left unused.
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Figure 3.7: Performing simultaneous multiplication of two unsigned or signed

numbers using DSP48E2.

As shown in Figure. 3.7, when using DSP48E2, a1 occupies bits 0 to 7

of the DSP’s A port, with its sign bit always extended to bits 8 to 26. a2
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occupies bits 18 to 26 of the D port, with its sign bit extended to bit 26.

On the other hand, weight w1 occupies bits 0 to 7 of the B port, with its

sign extended to bits 8 to 17. The calculation is then (A+D)×C, where bits

0 to 15 of the result correspond to a1w1, bits 16 and 17 are sign extensions,

and bits 18 to 33 is the approximate result of a2w1. According to [33], a1w1’s

sign bit must be added to restore the exact value.

Since the sign extension of a1w1 is only two bits, cascading four DSPs

would result in a1w1 occupying up to bit 17. Further increasing the number

of cascaded DSPs would overflow into the lower bits of a2w1. To avoid

overflow, the DSP cascade depth in our design is limited to four.

When using older FPGA architectures, as the DSP48E1 pre-adder is

only 25 bits, it cannot accommodate guard bits between the two results

for cascading. Cascading is therefore disabled, and the built-in ALU cannot

be used for addition. Instead, extra LUTs are used to form adders, resulting

in lower performance per unit area compared to designs using more advanced

DSPs.

3.3.2 DSP Cascading

We leverage DSP modules for multiply-accumulate operations. In FPGAs,

DSP columns are typically equipped with dedicated routing resources, al-

lowing cascaded DSPs to use these dedicated routes, reducing the usage of

general routing resources. This alleviates routing congestion and increases

the final clock frequency, a widely accepted practice for designing efficient

FPGA-based computing systems.

In Overlay accelerators, it is common to cascade DSPs to accumulate and

pass the partial sum values, then pass weights horizontally through multiple

cascaded DSP columns, forming a systolic array interwoven in both vertical

and horizontal directions. However, a systolic array requires downstream

DSP columns to reuse upstream weights, meaning multiple DSP columns

share the same weight input but compute with different activation values.

The best way to meet this requirement is to input activations from multiple

channels of several filters in parallel, along with weights for a single output

channel, and output the activations for one channel of multiple pixels.

The on-chip memory in FPGA platforms is dual-ported. Reading or

writing such a large volume of feature maps requires creating multiple copies

of the buffer to increase the number of ports, which is undoubtedly a waste
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of precious on-chip resources. Moreover, it requires buffering all channels of

multiple filters’ activations for repeated reads to compute all output channels.

Additionally, when using DSP packing to compute w1a1 and w2a1, where w1

and w2 are signed, the maximum cascading depth is eight, severely limiting

the scale of the systolic array. Therefore, a design based on multiple systolic

arrays is not suitable for our target accelerator.

After careful consideration, we adopted a PE structure similar to MVTU

in FINN, with loop nesting for processing, incorporating DSP cascading.

Compared to MVTU, our PE can handle higher bit-width data, and we have

added redundancy in memory modules used for the filter buffer and counters

for operational states, allowing parameter flexibility for different layers.

DSPs in the cascade process multiple input channels, effectively comput-

ing multiple synapses in parallel. Different channels are input sequentially

until all channels have been computed (input channel loop), then the entire

convolution kernel is computed by rows and columns (kernel row and column

loop). Each DSP column in the cascade acts as one PE, calculating one

output channel (one neuron). Each PE uses weights from different output

channels (shared among multiple PE Arrays for parallel image processing),

enabling parallel computation of multiple output channels, i.e., multiple

neurons. The loop inputs the convolution kernel into these PEs, each time

using weights for subsequent output channels until all output channels are

processed (output channel loop), and then processes the convolution kernel

corresponding to the next pixel (feature map row and column loop).

This cascading scheme not only efficiently utilizes the dedicated routing

resources within the DSP columns, but also, by staggering the processing

times of the same batch of input data, allows the DSP’s internal ALU to

perform addition on the current products and partial sums from the previous

DSP stage. This approach avoids the need for additional summing structures

built from LUTs. Unlike a systolic array that requires parallel input of

multiple activation values, our approach may require parallel input of more

weight data, which can be obtained easily from distributed weight memory

modules.

As mentioned before, we leverage the DSP packing to compute both

w1a1 and w1a2, corresponding to two output pixels. In this way, only

the activation values of two input filters (typically representing two pixels)

need to be buffered to compute all output channels. The input consists of

multiple channels of two filters, and the output comprises multiple channels
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of two pixels, making the data order and per-clock data volume completely

consistent and forming an ideal Dataflow structure.

3.3.3 Multi-cycle Path

Control Logic
clk1x & clk2x

AMEM
clk2x

WMEM
clk2x

MADD
clk2x

ACC
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QUANT
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QMEM
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inA REG
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SRL
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Addr Shift
clk2x
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Module

PE Array

Figure 3.8: Clock frequencies used for each component.

The DSPs’ maximum operating frequency is very high, and to enable the

control logic to operate at such high frequencies, we need to minimize the

logic levels, with a maximum of three levels to match the DSP’s performance.

Achieving this is challenging, so we run these DSP modules at double the

clock frequency, clk2x, using multi-cycle paths. Thus, when the cascade

depth is DC, the actual number of input channels processed per cycle of

the main clock clk1x is DC × 2, leading to the formula SPE = DC × 2.

Figure. 3.8 shows the clock frequencies used for each component. The input

activation values undergo a clock domain conversion to clk2x immediately.

The centralized control state machine counter runs on clk1x and converts

control signals to the compute path via multi-cycle paths.

3.3.4 Processing of Input Data

To avoid severe timing violations that would result from fanning out the

output of the configuration register indicating whether the activation values

are signed to all DSP input ports, we choose to expand the activation values

to 9-bit signed integers at an earlier stage. Hence, 8-bit of data and 1-bit of

sign.
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We expand the sign of the input activation values right after clock

domain conversion, before the data are stored in the filter buffers (AMEM in

Figure. 3.8). When running MobileNetV2 with DC = 4, the on-chip memory

required for buffering the activations of the two input filters is minimal. Since

these buffers operate at clk2x, each filter requires only a 36-bit width to

handle activations, where four 1-bit data are allocated as sign-extension bits

for four 8-bit input activations. A depth of 320 is sufficient to store the

activations of an entire filter. The maximum BRAM width of 36 bits can

be used for this, with a depth of 512, though this results in slight memory

wastage; alternatively, LUTRAM can be used without capacity or area waste,

although maximum frequency might be lower.

3.3.5 Input Shift of Cascaded DSPs

Since there is a one-cycle delay between DSPs in different positions within the

cascade when processing the same input filter data, downstream DSPs are

one clock cycle behind upstream DSPs. To adjust the timing of data entering

the cascaded DSPs, shift registers are inserted at the input. As mentioned,

the input activation values are shared across PEs, making the data volume

small, so this can be achieved with a simple Shift Register Logic (SRL).

However, for weight data that are not shared among PEs, using SRL

would require a significant amount of logic resources, which is inefficient

and would increase routing pressure. Pre-shifting the data before storing

them in weight memory can address this issue, but this method introduces a

delay of DC − 1 clock cycles whenever switching to the next two pixels after

processing all output channels for two filters. This would result in significant

overhead in layers with fewer input and output channels in the early stages

of processing.

Therefore, instead of trying to shift the output, we chose to shift the read

address. This approach requires each DSP in the cascade to have its own

independent weight memory. Figure. 3.9 shows an example where the DSP

cascade depth is 2; here, every two PEs and two weight memories are grouped

together. Weight memory 0 stores the weights for the first-stage DSP in the

two PEs, and weight memory 1 stores the weights for the second-stage DSP.

The circuit in the figure offsets the address inputs of the two memories,

allowing the address signal to fan out to a larger area. We added shifted

reset circuits shown in Figure. 3.9 to the downstream pipeline registers so
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Figure 3.9: Example of adder shifting for weight memories.

they initialize to zero correctly at the start.

3.3.6 Weight Memory Binding

When the BRAM used for weight memory is configured with an 8-bit port,

its depth is up to 4,096, which is far more than we need, leading to resource

waste. Since the port width of URAM cannot be changed, this approach

cannot use URAM as a substitute for BRAM in devices with limited BRAM

but abundant URAM. Therefore, we package DC PEs into a group, group

number is marked asG, so the total parallelism of the PE Array is represented

as PPE = G×DC. Each group usesDC×DC DSPs for MAC operations, and

DSPs in the same position in the cascade within the group share a BRAM,

using different 8-bit words on one of the BRAM’s ports.
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For URAM, which has a fixed 64-bit port width (excluding ECC), lower-

ing the port width by masking address bits to increase depth complicates the

design and reduces frequency. When DC = 4, a group has four PEs, and four

DSPs in the same position in the cascade will share this 64-bit width, but

they can only use 32 bits. Since the number of PEs needs to be a multiple

of DC × 2, the group count must also be even. Thus, when using URAM,

two groups of PEs can share the weight memory’s port width.

For smaller devices, DC may be less than 4, reducing the number of PEs

in a group

, and each PE would require greater weight memory depth, resulting in

the need for more BRAMs. This allocation strategy, therefore, covers all

device configurations.

These weight memories are configured in simple dual-port mode, with one

port for the weight reads described above, operating at clk2x, and the other

port for preloading the weights for the next layer, operating at clk1x. When

using URAM as weight memory, it doesn’t support dual-clock operation, so

we use interleaved clock enable signals to create multi-cycle paths, reducing

the routing difficulty of the initialization signals.

3.3.7 Accumulator

The accumulator can be implemented with either LUTs or the DSP48’s

SIMD24 mode, allowing simultaneous calculation of values for two output

pixels.

When using DSP48, as shown in Figure. 3.10, the values sent to the

accumulator are input into both 48-bit ports of the DSP, with different input

register stages to ensure that the downstream accumulator register can fetch

different inputs from both ports at the same time. In SIMD mode, the

DSP’s A and B ports are combined into a 48-bit input with a single-stage

input register, while the C port uses a two-stage input register. We control

the clock enable of the P register to update alternately at clk2x, ensuring

data on odd clock cycles are added to data on even cycles. This also forms

a multi-cycle path, with output converted to clk1x. When one output pixel

is calculated, the input accumulator value’s Z MUX is switched to 0 to clear

the accumulated value, and the P register is updated to hold the partial sum

of the new pixel, avoiding unnecessary stalls.

When using LUTs to construct the accumulator, the calculation process
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Figure 3.10: DSP48 for accumulator.

is the same as when using DSPs, but the placement of certain registers has

been adjusted to reduce logic levels and maintain high frequency.

3.3.8 Quantization

The interconnect bus between modules in our accelerator that processes a

single image also uses a bit width of DC×2×PP for activations. Thus, each

PE Array includes DC × 2 quantization modules, each capable of processing

PP activations in parallel, ensuring the PE Array can output as many

activations as the input bus. These quantization modules are shared by all

PEs, so each PE takes turns accessing them, and the number of PEs needs

to be a multiple of DC × 2. Therefore, if the output data rate of the PEs is

too high (i.e., when Syn < PPE

DC×2
), waiting will occur.

In the example design, the quantization module follows the typical madd

and clamp scheme, with BN folded into the madd computation. This

quantization scheme can be replaced by more advanced ones. The clamp can

output either signed results [−127, 127] or unsigned results [0, 255] depending

on the activation function.

Before clamp, round is needed. There are various ways to handle

round at 0.5; in our implementation, we chose floor(x + 0.5) to simplify

hardware, which rounds up for both positive and negative values at 0.5.
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The quantization parameter memory module consists of LUTRAMs, also in

simple dual-port mode, with the beta value pre-added by 0.5, allowing round

by simply taking the integer part.

3.3.9 Running Time

The number of clk1x clock cycles required for the PE Array module to

execute a regular convolution layer is

CCPE = Neu×max

(
Syn,

PPE

DC × 2

)
×HOFM ×

⌈
WOFM

PP

⌉
, (3.3)

where Neu is the folding factor for neurons (output channels) and is equal

to
C′

OFM

PPE
. PPE is the parallelism of the PE Array, i.e., the number of PEs.

C ′
OFM is the output feature map channel count, rounded up to the nearest

multiple of PPE, with weights for any additional channels filled with zeros.

Syn is the folding factor for synapses (usually input channels) and is equal

to
K×K×C′

IFM

DC×2
, where K is the kernel size, which is 1 for all but the first layer.

Since the input feature map is typically the output from other computing

modules, C ′
IFM represents the actual channel count of data output by the

previous module. After the first layer, it’s also rounded up to the nearest

multiple of PPE; for the first layer, it’s rounded up to the nearest multiple

of DC × 2, matching the channel count of the interconnect bus. The second

term in the max() function represents the time required for a full polling cycle

when multiple PEs share the quantization module. If Syn is smaller than

this value, even though the PE Array can quickly process all synapses, the

overall processing rate is reduced due to the time required for quantization.

3.4 Combine and Broadcast

The Combine and Broadcast modules are used to temporarily group multiple

PE Arrays into a single large PE Array. The Broadcast module broadcasts

the input data stream to multiple output ports, only processing the next

payload when all output ports have successfully output a payload. The

Combine module polls data from multiple input ports and sends the received

data to the output port.

In the example accelerator shown in Figure. 3.2, the output feature map

channels are evenly distributed across the PE Arrays, with a granularity of
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DC × 2 channels. PE Array 0 processes the first DC × 2 channels, PE

Array 1 processes the next DC × 2 channels, alternating until all channels

are allocated. As a result, the two PE Arrays continuously output DC×2×2

channels. The Combine module merges such data in an interleaved manner,

making the data structure and sequence equivalent to that of a single large

PE Array.

Since COFM is allocated to two PE Arrays, each PE Array processes COFM

2

channels and must still follow the padding rules of the PE Array. The value

of COFM

2
must be rounded up to the nearest multiple of PPE, so C ′

OFM must

be rounded up to the nearest multiple of 2× PPE.

Due to the polling mechanism used by Combine, when using the config-

uration in Figure. 3.2 (with two input ports and the same parallelism for

both upstream PE Arrays), the utilization of the two input ports and their

buses is limited to 50%. Combining multiple PE Arrays usually occurs in

the deeper layers, where the number of input synapses and output neurons

is typically large, so the bus utilization limit and rounding to a larger value

usually don’t add extra overhead.

Due to the characteristics of the Dataflow architecture, when processing

the same layer data sequentially, the two PE Arrays have a time difference.

Downstream modules need to wait for the upstream module to output part of

the data before starting. Therefore, switching from the serial to the parallel

execution mode requires additional wait time, allowing downstream modules

to clear the current load. The time required is approximately K
H

of the

running time of the last serial-executed block, where K is the kernel size in

the depthwise convolution layer, and H is the height of the output feature

map.

3.5 PEDW Array

The PEDW (Processing Element for Depth-Wise convolution) Array is de-

signed to compute depthwise convolution layers. Unlike regular convolution,

depthwise convolution does not require summing across different channels,

making the PEs in PE Array 0/1 very inefficient for this purpose.

We designed a fully pipelined PE with a initiation interval of 1, capable of

completing the channel-wise computations for two filters per clock cycle and

outputting the activation values for two pixels. When the kernel size K = 3,
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each filter performs nine multiplications in parallel, summing them through

an adder tree to produce the results for two pixels, which are then sent to

the quantization module. Like the regular PE Arrays, which can perform

multiple parallel operations across multiple output channels, the PEDW

Array can also operate across multiple output channels simultaneously to

improve parallelism.

Due to the significantly lower computational load of depthwise convolu-

tion layers compared to regular convolution layers, we use LUTs to implement

these 8×8 multipliers. These LUT-based multipliers are interleaved among

the DSPs used by PE Array 0/1. To avoid interfering with the high-frequency

routing of these DSPs, these LUT-based multipliers operate on the clk1x

clock to ease their placement and routing requirements.

Each clock cycle, the PEDW Array requires a substantial number of

input weights and feature map data. The control logic generates the access

addresses for the weight memory, and it typically takes several clock cycles

to read weights from memory. If the feature map data are received in the

initial pipeline stages, multiple stages of pipeline registers are required to

propagate this large amount of data. While this approach could effectively

use an endpoint FIFO to reduce control set overhead, the large area required

would be impractical. Another approach is to first read the weights from

memory and then receive the feature map data from the input port when

needed in the pipeline stage. However, if the input feature map data are

not always ready, a global CE signal would be needed to pause the entire

pipeline and wait for the input. After careful consideration, we decided to

use a local CE signal before the feature map input stage, and then use an

endpoint FIFO to buffer the payload, with only two pipeline stages requiring

CE signal to solve this issue.

Since the PEDW Array outputs results every clock cycle, sharing quan-

tization modules among multiple PEs, as in the PE Array, would lead to

polling delays for all layers. Therefore, each PE has its own dedicated

quantization module. When the number of PEs in the PEDW Array exceeds

DC × 2, the data bus would require polling, causing efficiency loss. Thus,

the maximum parallelism is limited to DC × 2, and it can be adjusted to a

factor of DC × 2. Because ReLU always follows the depthwise convolution

layer, the quantization module disables signed output to save resources.

The weight memory for the PEDW Array typically requires a very large

output bit width to support multiple parallel multiplications across several
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PEs. However, the memory depth required is quite shallow, and since LUTs

implement the multipliers, they are widely spread out. Therefore, using

BRAM for this memory is not ideal, and we use simple dual-port LUTRAM

instead. The computation order of the PEDW Array is relatively complex

and will be explained in detail in later sections.

The time required for the PEDW Array to execute a depthwise convolu-

tion is

CCPEDW =

⌈
C ′

IFM

PPEDW

⌉
×
⌈
WOFM

PP

⌉
×HOFM , (3.4)

where PP represents the effective pixel count processed in parallel, which

will be explained in the next section.

3.6 SWU

The SWU performs the im2col operation (also known as unfold) on-the-

fly. It requires at least K + 1 true dual-port memory modules internally,

with K modules used to output activations for K rows, and the remaining

one for writing the input data while sampling. Once a row of filter output

is completed and the input memory module has finished writing a full row

of activation data, the roles of these K + 1 memory modules switch. The

module that was used for writing switches to output, and the one that initially

output sampled data for the smallest row number, which is no longer needed,

switches to input mode to write the next row of input data. This process is

repeated to complete sampling across the entire feature map.

The input and output submodules operate independently, controlled by

a central state machine. They monitor each other’s current row status and

pause if one progresses faster than the other to synchronize. The input

module can also start collecting data for the next layer before the output

module finishes sampling the current layer. Near the boundary, when some

rows are padded with zeros, fewer than K memory modules are used for

output. At this point, memory modules that are no longer needed for

output are used to writing input data, significantly reducing the waiting time

required to switch to the next block when the accelerator runs continuously

over two blocks.

Since each activation column needs to be individually addressable, even

though the input and output buses handle two activations per clock cycle,

SWU must separate them internally for sampling, where the data from odd
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columns are stored into odd addresses and the even ones are stored into even

addresses. The two write ports of each BRAM or URAM are used to store

activations for odd and even columns, respectively. (Figure. 3.11)

0 1 2 3 4

5 6 7 8 9

a b c d e

f 10 11 12 13

14 15 16 17 18
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ROW 1 ⇒ MEM 1
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ROW 3 ⇒ MEM 3

ROW 4 ⇒ MEM 0

COL 1
Port B
Addr 1

COL 0
Port A
Addr 0

COL 3
Port B
Addr 3

COL 2
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COL 4
Port A
Addr 4

ROW 5 ⇒ MEM 1

Input Write

Figure 3.11: Writing data to the K +1 SWU memories, whereas data in the

red frame are inputted and written at the same time.

Additionally, using K + 2 row buffer memory modules instead of the

minimumK+1 can avoid alternating runs between the previous layer module

and the SWU output submodule. This occurs when the time taken to write

a row of feature map data (at stride=2 for certain layers) is shorter than

the sampling time for a row. Since only one row of data can be written

in advance, when one row of data are written, the output of the previous

module is blocked. After the line changed, two rows of new data are needed

to start sampling, resulting in the alternating operation of the previous layer

module and the SWU output submodule. By using K + 2 modules, when

the time to input a row is longer than the output time for a row, the entire

block runtime is determined by the previous layer module, unaffected by the

SWU output time. This will be explained in detail later when discussing the
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running time.

When running MobileNetV2 with a configuration of DC = 4, each row

buffer requires an on-chip memory configuration of 64-bit ports and a depth

of 1,344, meaning at least three BRAMs are needed to provide sufficient

capacity. However, in true dual-port mode, BRAMs have a maximum port

width of 32 bits, so such a configuration cannot be achieved with only

three BRAMs directly. For mid- to high-end devices where BRAMs are

more plentiful, we extend the depth to 2,048, using four BRAMs or larger

URAMs. While this approach may lead to resource waste, it avoids complex

BRAM combinations that could increase routing complexity and reduce the

maximum frequency.

On resource-constrained low-end devices, we use a custom structure to

combine three BRAMs. These BRAMs operate at double-speed clk2x,

doubling the effective port width to 64 bits, with the depth halved to

512. One solution is to use a cascaded configuration, but high-port-width

BRAM cascading is only achievable on UltraScale and newer FPGAs. Direct

cascading reduces the maximum frequency (tests on ZYNQ UltraScale+

speed grade 1 devices showed that cascading three BRAMs limits the max

frequency at 593 MHz). To mitigate this, using multi-stage BRAM output

registers in the cascade requires building with primitives, which increases

output latency. A simpler and more efficient approach is to use the high

bits of the address as the selection signal for BRAMs and connect multiple

BRAMs via DEMUX and MUX.

SWU supports two operating modes: standard convolution mode and

depthwise convolution mode, with some shared logic components across both

modes:

3.6.1 Standard Convolution

In this mode, the SWU samples and outputs activations in the processing

order of the PE Array described in previous sections, following the sequence:

input channel (Syn-folded) → kernel row → kernel column → feature map

row → feature map column. These data values are directly read from K

memory modules.

When reading, the first port reads the data of a specific filter, and the

second port reads the data of the next adjacent filter.
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3.6.2 Depthwise Convolution

Unlike standard convolution, where there are separate input and output chan-

nel loops, depthwise convolution pairs input channels with output channels

on a one-to-one basis, eliminating the need for two separate loops. Since the

PE of the PEDW Array processes all pixels in a channel of the convolution

kernel per clock cycle, there are no loops for the row and column of the

kernel. Thus, the innermost loop becomes the channel loop.

The K memory modules in the SWU allow for parallel reads. If the

necessary data are read directly from these modules, up to two partial

convolution kernels can be output per clock cycle, with each kernel producing

1×K pixels for DC×2 channels. The PEDW Array requires a large amount

of activation data per clock cycle to operate, specifically two full kernels,

each containing K ×K pixels of activations. To sample additional data, we

added shift registers to the output ports of the memory modules.

When K = 3, each memory port requires at least two stages of shift

registers, plus one additional stage to hold data when pipeline stalls prevent

output. As shown in Figure. 3.12, each port, with 3 stages × 2 ports × K

memory modules, can hold values for 6 columns and K rows. One output

port accesses columns 0–2, and the other accesses columns 1–3. When output

stalls, the data flow into the last reserve register, allowing one output port to

access columns 2–4 and the other to access columns 3–5. If the channel loop

is the innermost loop, an excessive number of shift register stages would be

required—for instance, in MobileNetV2, the deepest channel count is 1,280,

with 8-bit data, resulting in as many as 1280×8×PP×(2+1)×K = 184320

registers. This would be a significant challenge for device capacity and the

fan-out of control signals needed for handling pipeline stalls.

Therefore, we adjusted the loop nesting, moving the channel loop out-

ward. The innermost loop became the feature map row loop. We first process

one complete row of a partial set of channels (a group of channels) and then

slide across the row for all channels (channel group loop) before moving the

sampling window to the next row (feature map column loop). The mode and

computation order for the PEDW Array in SWU follow the sequence: feature

map row → channel group → feature map column. The channel group size is

tied to the parallelism of the PEDW Array; if the PEDW Array’s parallelism

reaches the maximum DC×2, only (DC×2)×8×PP × (2+1)×K = 1152

registers are needed, significantly reducing the number to a manageable level.
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Figure 3.12: Reading data through shift registers, whereas data in red frame

from columns 0-2 are for pixel 0 and data with light blue background from

columns 1-3 are for pixel 1.

This approach requires a few extra clock cycles to load new row data into

the shift register when the output row or channel group changes, potentially

causing additional wait time when the feature map size is small. For stride=2,

since the shift register always advances one slot per clock cycle, the data

from output port 2 is invalid, reducing the effective pixel count processed in

parallel in Formula 3.4 to 1.

Because this modified sampling and computation order differs, an ad-

ditional channel-reordering module called DWC (Depth Wise convolution

channel Converter) is added after the PEDW Array to restore the original

channel-priority output order. When stride=2, half of the PEDW Array’s

output is invalid, and this module also removes invalid data. Its structure

is similar to the SWU, requiring two row memory modules of the same

size as those in the SWU—one for writing and one for reading. When the

PEDW Array’s parallelism is less than DC × 2, the write port of the row

buffer memory requires byte-enable support for bit-width conversion. The
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SWU’s dedicated output port for the PEDW Array is the only part of the

computation module with a different width from other buses, with specific

bit-width configurations shown in Figure. 3.13.

SWU

PEDW
Array

DWC

B×DC×2×PP×BWA

B×PPEDW×K×K×PP×BWA

B×PPEDW×BWA

B×DC×2×PP×BWA

PEDW Array
(wrapper)

Figure 3.13: Bus bit-width changing in PEDW Array related path.

3.6.3 Running Time

The computation time for the SWU depends on various factors. In standard

convolution mode, the SWU’s data output rate matches the maximum input

rate of the PE Array, so normally there is no bottleneck. However, if the

stride equals 2, the number of memory modules is K+1, and the input time

for one row is less than the output time for one row, a bottleneck may occur.

First, we need to define several variables. CCSWUIN1
represents the time

required for the upstream module to output a row of data, and CCSWUOUT1

represents the time required for SWU to sample a row of data. In the case of

stride is 2, when CCSWUIN1
> CCSWUOUT1

, the running time is equal to the

58



ROW 0 ROW 1 ROW 2 ROW 3SWU input

SWU output ROW 0 ROW 1

SWUIN1>SWUOUT1

K+1 Memories

ROW 0 ROW 1 ROW 2 ROW 3SWU input

SWU output ROW 0 ROW 1

SWUIN1<SWUOUT1
K+1 Memories

ROW 0 ROW 1 ROW 2 ROW 3SWU input

SWU output ROW 0 ROW 1

SWUIN1<SWUOUT1
K+2 Memories

Figure 3.14: The running time of SWU under different conditions

time required by inputting data (the sum of the light blue area and green

area in Figure. 3.14). On the other hand, when CCSWUIN1
< CCSWUOUT1

,

the SWU’s output time is the time taken by the SWU to output (the white

area in Figure. 3.14) plus the time required for the previous layer to output

half of all rows (the light green area in Figure. 3.14). This can be calculated

with

CCSWU = CCSWUOUT1
×HOFM + CCSWUα , (3.5)

where

CCSWUOUT1 =

⌈
WIFM

PP

⌉
× CIFM

DC × 2
×K ×K; (3.6)

CCSWUα = CCSWUIN1
×HOFM , (3.7)

when CCSWUIN1
< CCSWUOUT1

and stride = 2 and the number of memory

modules is K + 1, otherwise CCSWUα = 0.

In depthwise convolution mode, the calculation method differs, given by

CCSWUOUT1 =

(⌈
WOFM

PP

⌉
+ 2

)
× COFM

PPEDW

, (3.8)

where COFM

PPEDW
represents the number of times one row of the feature map

is scanned, and
⌈
WOFM

PP

⌉
+ 2 is the time required to scan a row. The

additional +2 accounts for the time needed to initialize the SRL when

switching rows or channel groups. Both row and channel switches require

SRL data initialization. The PP value is the actual number of parallel pixels,

consistent with the PP in the PEDW Array’s Formula 3.4. When stride =

2, since the second port of the SWU output is invalid, PP is set to 1. In

depthwise convolution mode, if conditions are met, CCSWUα is also added.
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3.7 GAP

The GAP(Global Average Pooling) module performs global average pooling

between the convolution and fully-connected layers in the model. The

parallelism PGAP can be adjusted from 1 to DC × 2, but it must be a factor

of DC × 2. However, since GAP occupies minimal area and input-output

bit-width conversion takes additional space, it is usually set to the maximum

parallelism DC × 2.

The GAP internally requires simple dual-port memory for the maximum

channel count to temporarily store accumulated values for all channels. These

memories use LUTRAM. The accumulation operation polls at the input end

of these memories, with a maximum of PGAP memories active at any time.

After accumulating all values in a channel group, the results are multiplied

by the reciprocal of the pixel count, rounded by adding 0.5 and getting the

integer part. When GAP operates at maximum parallelism, it can input and

output every clock cycle without causing a throughput bottleneck.

3.8 ADD

The ADD module combines data streams from the main and shortcut paths.

Like the GAP module, the parallelism PADD can be adjusted from 1 to 2×
DC, though it is generally set to the maximum parallelism. Unlike other

modules, the ADD module does not raise the ready signal early when valid

is low to reduce pipeline gaps; it raises the ready signal only when the valid

signals of both paths are high simultaneously.

After addition, the result is clamped to ensure no overflow before output.

When ADD operates at maximum parallelism, it can input and output every

clock cycle without causing a throughput bottleneck.

3.9 Weight

The Weight module manages weights and quantization parameters. The

memory module part has been detailed in the PE Array section, so only the

initialization part is covered here. The Weight module has a self-initialization

circuit with an independent AXI port connected to the memory controller,
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allowing it to independently load required weights and quantization param-

eters from the off-chip SDRAM.

Each memory module has its independent AXI master port, allowing it

to prefetch the next layer’s weights from off-chip memory into the unused

on-chip memory space during execution.

The initialization process for standard convolution and depthwise convo-

lution layers differs slightly: in the case of standard convolution, it transfers

DC × DC weights (for DC PEs, i.e., one group) each time; in the case

of depthwise convolution, it transfers the weights for one PE each time.

When using a narrower AXI port or when one PE group (PE Array 0/1) or

PE’s (PEDW Array) weights exceed the AXI port’s bit-width, weights are

transferred across multiple clock cycles.

For quantization parameters, the maximum bit-width of 18 bits permitted

by a single DSP is used, rounded up to 32 bits for transmission. The LSB

half of the AXI bus transmits gamma, and the MSB half transmits beta. For

each PE group in the PE Array 0/1, quantization parameters are transmitted

over multiple clock cycles according to the actual AXI bus bit-width; for the

PEDW Array, all PE quantization parameters are similarly transmitted over

multiple cycles.

The time required to initialize the weights and quantization parameters

for PE Arrays 0/1 is calculated as follows:

CCINIT = (M ×Neu× 2× Syn+N ×Neu)×G, (3.9)

where M ×Neu× 2× Syn is the time to initialize weights in one PE group

and N × Neu is the time to initialize quantization parameters. M and N

are folding factors applied when the bit-width of the data exceeds the AXI

bus width. The folding factor M for weights is calculated by

M =

⌈
BWW ×DC ×DC

BWAXI

⌉
, (3.10)

and N for quantization parameters by

N =

⌈
BWQ ×DC

1
2
BWAXI

⌉
, (3.11)

where BWW is the bit-width of the weights, BWQ is the bit-width of the

quantization parameters and BWAXI is the bit-width of the AXI bus.
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On the other hand, the time needed to initialize weights and quantization

parameters for the PEDW Array is given by

CCINITDW = M × CIFM +N × CIFM

PPEDW

, (3.12)

where M is the folding factor for weights

M =

⌈
K ×K × BWW

BWAXI

⌉
, (3.13)

and N for quantization parameters

N =

⌈
BWQ × PPEDW

1
2
BWAXI

⌉
. (3.14)

If the memory requirement of two adjacent blocks exceeds the design’s

memory capacity, initialization is divided into two parts: the first part is

executed along with the PE Array/PEDW Array, while the second part ini-

tializes once the current layer releases weight memory space upon completion.

At this point, the PE Array/PEDW Array will wait until this initialization

completes before executing the next layer.

3.10 Controller

The controller module manages the START signals for all modules and

provides the necessary operational parameters. It can be configured and

monitored via the AXI-Lite bus.

When the next block needs to run, the controller identifies all related

modules and marks them as pending. If a module is in the IDLE state, the

START signal is activated, and the pending flag is cleared. For modules

requiring weight initialization (such as the PE Array), both the PE Array

and its initialization module must be IDLE before simultaneously triggering

their START signals, preventing calculation errors caused by starting before

weight initialization completes.

For initialization modules, the weight initialization and input initializa-

tion for the next image also have additional optional pending flags, which can

be triggered at the start of initialization and cleared at the end for refined

control. When all module pending states and initialization pending states

are cleared, the block counter increments, and the next block is processed.
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Figure 3.15: The optimal working state when executing multiple blocks,

where the red area represents the stalling time.

The ideal operation state is shown in Figure. 3.15. (The red line marks

task dispatch times, red area indicates waiting due to lack of input data or

blocked by output port, and blue shows modules running normally. When

module rates are inconsistent, modules with lower throughput may create

bubbles.)

3.11 Improvement on Scalability

So far, the design has focused on edge computing devices like ZYNQ. When

parallelism increases significantly, the SDRAM version without URAM may

face severe performance degradation. To improve portability and scalability

for achieving high performance with large parallelism, especially for high-

capacity, high-performance data center accelerator cards, we have made

several enhancements to the accelerator. In the previous design, to maintain

address consistency between SDRAM and URAM versions, the address range

in SDRAM version instructions was limited to match that of the URAM

version. When targeting MobileNetV2, this capacity was set to 16 URAM

units, or 512KiB, with each instruction accessing up to 512KiB × B.

To simplify data transfer, it is preferable for the tick index of an AXI burst

transfer to correspond one-to-one with the sequence of parallel processed

images, meaning the batch size should be padded to the nearest power of 2.

This adds extra transfer time.

Table. 3.4 shows the impact of batch size B and PE parallelism PPE on

throughput when running MobileNetV2 with the SDRAM version at clk2x =

600 MHz andDC = 4. Table. 3.4 shows FPS per DSP to indicate throughput

per unit area. To visualize trends more clearly, results are presented in a
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Table 3.4: FPS Matrix of SDRAM Version when Running MobileNetV2

B

PPE 8 16 24 32 40 48 56 64

1 197.9 375.7 468.6 633.6 597.8 666.2 611.3 631.6

2 395.1 729.5 887.2 1202.7 1103.8 1171.6 1048.3 1041.4

3 570.6 1030.7 1127.8 1439.5 1275.7 1182.7 1043.3 983.3

4 760.8 1374.3 1503.8 1919.3 1700.9 1577.0 1391.0 1311.0

5 884.0 1343.9 1228.1 1485.1 1258.5 1106.9 969.0 878.1

6 1060.8 1612.7 1473.7 1782.2 1510.2 1328.2 1162.8 1053.7

7 1237.7 1881.5 1719.4 2079.2 1761.9 1549.6 1356.6 1229.3

8 1414.5 2150.3 1965.0 2376.2 2013.6 1771.0 1550.3 1405.0

9 1236.7 1498.2 1228.8 1456.2 1203.9 1031.4 896.3 804.1

10 1374.2 1664.7 1365.4 1618.0 1337.6 1146.0 995.9 893.5

11 1511.6 1831.2 1501.9 1779.8 1471.4 1260.6 1095.5 982.8

12 1649.0 1997.6 1638.4 1941.6 1605.2 1375.2 1195.1 1072.1

13 1786.4 2164.1 1775.0 2103.4 1738.9 1489.8 1294.7 1161.5

14 1923.8 2330.6 1911.5 2265.2 1872.7 1604.4 1394.3 1250.8

15 2061.2 2497.1 2048.0 2427.0 2006.4 1718.9 1493.9 1340.2

16 2198.7 2663.5 2184.6 2588.8 2140.2 1833.5 1593.4 1429.5

Table 3.5: FPS per DSP Matrix of SDRAM Version when Running Mo-

bileNetV2

B

PPE 8 16 24 32 40 48 56 64

1 1.596 1.998 1.860 2.005 1.573 1.501 1.203 1.104

2 1.593 1.940 1.760 1.903 1.452 1.319 1.032 0.910

3 1.534 1.828 1.492 1.518 1.119 0.888 0.685 0.573

4 1.534 1.828 1.492 1.518 1.119 0.888 0.685 0.573

5 1.426 1.430 0.975 0.940 0.662 0.499 0.381 0.307

6 1.426 1.430 0.975 0.940 0.662 0.499 0.381 0.307

7 1.426 1.430 0.975 0.940 0.662 0.499 0.381 0.307

8 1.426 1.430 0.975 0.940 0.662 0.499 0.381 0.307

9 1.108 0.885 0.542 0.512 0.352 0.258 0.196 0.156

10 1.108 0.885 0.542 0.512 0.352 0.258 0.196 0.156

11 1.108 0.885 0.542 0.512 0.352 0.258 0.196 0.156

12 1.108 0.885 0.542 0.512 0.352 0.258 0.196 0.156

13 1.108 0.885 0.542 0.512 0.352 0.258 0.196 0.156

14 1.108 0.885 0.542 0.512 0.352 0.258 0.196 0.156

15 1.108 0.885 0.542 0.512 0.352 0.258 0.196 0.156

16 1.108 0.885 0.542 0.512 0.352 0.258 0.196 0.156
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Table 3.6: FPS Matrix of URAM Version when Running MobileNetV2

B

PPE 8 16 24 32 40 48 56 64

1 197.9 375.7 468.6 634.3 598.6 667.5 612.6 633.3

2 395.7 751.4 937.3 1268.5 1197.1 1335.0 1225.1 1266.6

3 593.6 1127.0 1405.9 1902.7 1795.6 2002.4 1837.6 1899.8

4 791.5 1502.7 1874.6 2537.0 2394.2 2669.9 2450.1 2533.1

5 989.4 1878.4 2343.1 3171.0 2992.5 3336.9 3062.2 3165.9

6 1187.2 2254.0 2811.7 3805.2 3591.0 4004.3 3674.7 3799.1

7 1385.1 2629.7 3280.3 4439.4 4189.5 4671.7 4287.1 4432.2

8 1583.0 3005.4 3749.0 5073.6 4788.0 5339.1 4899.6 5065.4

9 1780.8 3380.9 4217.2 5707.0 5384.8 6002.7 5506.8 5692.9

10 1978.7 3756.6 4685.8 6341.1 5983.1 6669.7 6118.6 6325.5

11 2176.6 4132.2 5154.4 6975.2 6581.4 7336.7 6730.5 6958.0

12 2374.4 4507.9 5623.0 7609.3 7179.8 8003.6 7342.4 7590.5

13 2572.3 4883.5 6091.6 8243.4 7778.1 8670.6 7954.2 8223.1

14 2770.2 5259.2 6560.2 8877.5 8376.4 9337.6 8566.1 8855.6

15 2968.0 5634.8 7028.7 9511.6 8974.7 10004.5 9178.0 9488.2

16 3165.9 6010.5 7497.3 10145.7 9573.0 10671.5 9789.8 10120.7

heatmap, with better values in green and poorer values in red.

All other parameters are fixed at their maximum allowable values to avoid

additional variables, so the throughput represents the theoretical maximum

for the given parallelism. The results were obtained using behavioral simu-

lation with Verilator [41]. In Tables. 3.4 and 3.5, the x-axis represents PE

parallelism PPE, and the y-axis represents batch size B. The DSP count per

parallel image varies with PPE values, specifically: 124, 188, 252, 316, 380,

444, 508, and 572.

The relevant content about the improvements discussed in this section

and its subsections has been published in [42].

3.11.1 Increasing Batch Size Result in Negative Im-

provement

In Table. 3.5, we found a significant drop in FPS/DSP when batch sizes

increase from 1 to 2, 2 to 3, 4 to 5, and 8 to 9. Additionally, total FPS

tends to decrease as batch size increases, with this effect becoming more

pronounced. This leads to an unexpected outcome: despite the increase in

DSP usage and parallelism, the overall throughput actually declines.
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Table 3.7: FPS per DSP Matrix of URAM Version when Running Mo-

bileNetV2

B

PPE 8 16 24 32 40 48 56 64

1 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

2 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

3 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

4 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

5 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

6 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

7 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

8 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

9 1.596 1.998 1.859 2.007 1.575 1.502 1.204 1.106

10 1.596 1.998 1.859 2.007 1.575 1.502 1.204 1.106

11 1.596 1.998 1.859 2.007 1.575 1.502 1.204 1.106

12 1.596 1.998 1.859 2.007 1.575 1.502 1.204 1.106

13 1.596 1.998 1.859 2.007 1.575 1.502 1.204 1.106

14 1.596 1.998 1.859 2.007 1.575 1.502 1.204 1.106

15 1.596 1.998 1.859 2.007 1.575 1.502 1.204 1.106

16 1.596 1.998 1.859 2.007 1.575 1.502 1.204 1.106

On the other hand, the simulation results of the URAM version are shown

in Tables. 3.6 and 3.7. Compared with the simulation results of the previous

SDRAM version, the throughput of the URAM version changes linearly when

B changes.

We attempted to optimize the access pattern for off-chip SDRAM to re-

duce the impact of batch size variations on performance. First, we optimized

and reused some instruction fields, expanding the maximum accessible off-

chip memory per instruction from 512KiB× B to 256MiB× B.

Next, for running MobileNetV2, we allocated larger memory capacity, for

example, 512KiB per image multiplied by the maximum batch size BMAX =

16. The difference between 2MiB for B = 4 and 8MiB for B = 16 is negligible

for high-capacity DDR4 SDRAM.

The base address of read/write instructions aligns with burst length ×
BMAX × BWAXI . All values of B share identical instructions; when B is

less than BMAX , each read/write instruction accesses less space, skipping

the subsequent space. The first data in the initial burst transfer of each

instruction comes from the first parallel processed image, but for subsequent

bursts, the first data may not come from the first image. The last data in the
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Figure 3.16: Burst transfer to off-chip SDRAM.

final burst may not be the last data from the last image, thus requiring some

padding for write instructions and discarding padding for read instructions.

Figure. 3.16 compares the two methods for a burst length of 8, B = 3,

and data transfer size of 5, where “p” denotes padding data. As shown,

the new method requires less transfer time and is more efficient. Unlike the

previous method where each burst had overhead, the new approach only

incurs overhead on the last burst, which is negligible for large volumes of

valid data.

After applying this improvement, the data transfer time for ADATA to

off-chip memory changes, and the rounding-up parameter B′ in Formula (3.1)

becomes the original value B, with negligible overhead for the last burst.

3.11.2 Increasing PE Parallelism Result in Negative

Improvement

From Table. 3.4, we observed that performance does not consistently increase

with higher PPE. Specifically, PPE = 16 and PPE = 32 show noticeably

better performance compared to other values, as these values are factors of

most layer channel counts in MobileNetV2. During actual operation, all layer

channels must be padded to multiples of PPE.

In Table. 3.6, which shows the throughput of the URAM version. A

similar phenomenon is observed, though it is less pronounced than in the

SDRAM version. This suggests that the URAM version is less affected.

Notably, throughput slightly drops at PPE = 40 and PPE = 56 compared
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Table 3.8: FPS Matrix of SDRAM Version when Running EfficientNetV1

B

PPE 8 16 24 32 40 48 56 64

1 159.4 306.9 398.6 503.5 549.3 588.4 572.4 575.0

2 318.4 599.1 760.7 965.9 1020.7 1049.6 990.7 963.1

3 463.1 855.4 988.5 1204.0 1200.3 1098.1 1005.6 943.7

4 617.5 1140.5 1318.0 1605.3 1600.5 1464.2 1340.8 1258.2

5 727.1 1158.2 1125.9 1335.1 1224.1 1071.7 962.4 868.4

6 872.5 1389.8 1351.1 1602.1 1468.9 1286.1 1154.9 1042.0

7 1017.9 1621.5 1576.2 1869.1 1713.7 1500.4 1347.3 1215.7

8 1163.4 1853.1 1801.4 2136.1 1958.6 1714.8 1539.8 1389.4

9 1058.8 1372.6 1184.9 1371.0 1204.6 1027.3 905.8 806.5

10 1176.5 1525.1 1316.5 1523.3 1338.5 1141.4 1006.4 896.1

11 1294.1 1677.6 1448.2 1675.6 1472.3 1255.6 1107.0 985.7

12 1411.8 1830.2 1579.9 1827.9 1606.2 1369.7 1207.7 1075.3

13 1529.4 1982.7 1711.5 1980.3 1740.0 1483.9 1308.3 1164.9

14 1647.1 2135.2 1843.2 2132.6 1873.8 1598.0 1409.0 1254.5

15 1764.7 2287.7 1974.8 2284.9 2007.7 1712.1 1509.6 1344.1

16 1882.4 2440.2 2106.5 2437.3 2141.5 1826.3 1610.2 1433.7

to adjacent values. However, in Figure. 3.7, it can be clearly observed that

when PPE = 16 and PPE = 32, the results are significantly better than other

values of PPE.

We also evaluated the performance of EfficientNetV1, designed with

Neural Architecture Search (NAS) technology [43] (removing SE blocks [44]

that are unfavorable for hardware computation). NAS-designed networks

often have more irregular shapes and non-uniform channel counts compared

to manually designed networks, resulting in a lack of fixed factors. Simu-

lation results with the SDRAM version are shown in Table. 3.8, where we

observed that although throughput decreases with increasing PPE, the trend

is smoother than with MobileNetV2.

In fact, at PPE = 64, half of the results’ throughput exceeds that

of MobileNetV2, even though the computational load of EfficientNetV1 is

approximately 1.3 times that of MobileNetV2. This highlights a crucial

issue: in early layers with fewer output channels, excess PEs produce invalid

data, occupying quantization modules and data buses, which increases the

computation load of the PEDW Array and degrades performance.

To address this issue, we added the effective PE count (in units of DC×2

PEs) for the last Neu fold to the instruction, and included logic in the
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accelerator to skip quantization and output of invalid data. Now, the channel

count only needs to be a multiple of DC × 2 (or DC × 2× 2 when merging

two PE Arrays with Broadcast and Combine), significantly reducing overhead

compared to the previous method, which required padding to PPE multiples.

The clock cycle count required to execute one layer with the improved

approach is calculated by

Neu′ =
⌊
COFM

PPE

⌋
(3.15)

Rem =

⌈
COFM mod PPE

SPE

⌉
(3.16)

CCPERem=0
= max

(
Syn,

PPE

SPE

)
×Neu′

×
⌈
WOFM

2

⌉
×HOFM (3.17)

CCPERem �=0
= CCPERem=0

+

max(Syn,Rem)×
⌈
WOFM

2

⌉
×HOFM , (3.18)

where Neu′ is the value of Neu for the final fold when COFM is not a multiple

of PPE, and Rem is the clock cycle count occupied by the quantization

module in the last Neu fold. When Rem �= 0, some PE quantization

outputs are skipped in the last fold, reducing the parameter in max(). When

Rem = 0, the computation is consistent with the original method.

3.11.3 Implementation of concat

To enable our accelerator to handle more complex models where later layers

require repeated reads of earlier layer outputs, a concatenation (concat)

operation is essential. Thus, we implemented an almost overhead-free concat

method.

Due to the limited capacity of on-chip memory, storing outputs from

earlier layers on-chip is nearly impossible; therefore, we must store them in

large off-chip memory. During writes, we allow a certain number of addresses
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Figure 3.17: The implementation of concat.

to be skipped after each data segment. Similarly, the read process supports

skipping. The alignment requirement of the base address for each burst was

removed, meaning that the base address for the next access is only fully

aligned after transferring B × burst length.

As shown in Figure. 3.17 (using the same example parameters as Fig-

ure. 3.16), 3×8 = 24 complete bursts must be completed to finish the transfer

at the boundary between the red and blue sections. Then, the write pointer

jumps to the start of the next blue section for the following write. When

performing the concat operation, the red section is written after completing

the first input layer, and subsequent layers write to the blue section, achieving

a seamless concat operation during reads.

When DC is set to 4 and the burst length is 16, the minimum number

of channels to skip or write to ensure address alignment is 4× 2× 16 = 128.

Since concat operations primarily occur in later layers/blocks, the impact of

this higher minimum channel count is minimal. Additionally, the minimum
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channel count can be reduced by sacrificing transfer efficiency (reducing burst

length) in special cases.

This method also allows a layer to be divided into multiple segments

for execution or a reverse residual block to be divided into two parts: the

1×1 convolution and 3×3 depth-wise convolution, along with the final 1×1

convolution. These parts can be further subdivided into smaller segments

for independent execution. This flexibility enables the proposed accelerator

to fit into smaller devices.

3.11.4 Utilize Wider AXI Port to Improve SDRAM

Bandwidth Utilization

Our initial target device was the ZYNQ UltraScale+, whose PS-side AXI

ports have a maximum bit width of 128 bits, matching the required bit width

in the example configuration. When using the SDRAM version instructions,

the initial layers fully utilize the ADATA MAXI0 port at 100% with a bit

width of 128 bits. Since the ZYNQ UltraScale+ PS can only provide a

maximum port width of 128 bits, increasing the width of the MAXI0 port

does not improve performance due to the AXI slave port bottleneck on the PS

side. In contrast, the URAM version requires very low bandwidth, imposing

minimal demand on the port bandwidth.

When we migrated our design to larger Virtex devices, the positions of the

device’s I/O pads determined the placement of the softcore memory controller

MIG. This placement prevented the MIG from providing a large, continuous

blank area for our accelerator, requiring the entire accelerator instance to

be split into smaller, independent instances. In this split configuration,

accelerator instances share the MIG controller, which not only increases the

memory access volume related to weights but also introduces randomness in

memory access, drastically reducing throughput.

After identifying this issue, we allowed multiple accelerator instances

to share the top-level port, enabling larger accelerators to be split into

smaller parts to address the problem. Additionally, this approach reduces the

potential frequency drop risk by minimizing signal fan-out over large areas.

The weight-related memory modules can be independently owned by each

instance to handle the issue of non-continuous deployment space, or they

can be shared proportionally to minimize BRAM usage.

Controller modules, memory initialization submodules, and other shared
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Figure 3.18: Multiple accelerator instances sharing the top-level port.

resources are synchronized across instances sharing the top-level port to

ensure fully synchronized operation of computation modules in each instance.

ADATA has two configurations: one where it is not shared across instances

but includes multiple buffers and data paths to handle data from different

instances (as shown in Figure. 3.18a). This configuration reduces the

interconnection network between instances when deployed in non-continuous

spaces but requires additional area. Another configuration involves ADATA

being not shared among multiple instances, with only ADATA of instance

0 responsible for communication control with the AXI slave, while the

remaining instances handle only the corresponding data transfer (as shown
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in Figure. 3.18b). This configuration is used primarily in continuous spaces

to achieve higher throughput.

Aside from these shared and partially shared modules, all other modules

are completely independent across instances, maximizing the division into

separate parts to minimize space requirements during routing.

Due to the limited range of AXI bus width values, the configurations

achievable with this improvement are constrained. The number of images

processed in parallel must be a multiple of powers of 2, such as 2, 4, 6, or

8. While padding with invalid data could allow odd-numbered values, this

would contradict the original intent of the improvement.

Additionally, it is important to note that the AXI4 protocol defines an

upper limit for bus width, preventing ports wider than 1,024 bits from

directly interfacing with existing systems. Consequently, in the example

accelerator configuration, the port can be expanded up to 4 times its original

width at most.

Furthermore, the MIG has a maximum port width of 512 bits. Since the

off-chip interface of DDR memory operates in half-duplex mode and cannot

read and write simultaneously, the effective bandwidth during simultaneous

read and write operations is equivalent to a 256-bit port. Thus, when using

DDR memory, expanding the port width to 512 bits may yield only limited

performance gains.
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Chapter 4

Experiments

4.1 Quantized Models

(a) Quantization

for CPUs.

(b) Quantization

for hardware during

training.

(c) Quantization

for hardware dur-

ing inference.

Figure 4.1: Difference between quantization schemes.
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Table 4.1: FPGA Devices

LUT LUTRAM FF BRAM URAM DSP

ZU7 230400 101760 460800 312 96 1728

ZU3 70560 28800 141120 216 0 360

VU13P 432000×4 197760×4 864000×4 672×4 320×4 3072×4

7Z007S 14400 6000 28800 50 0 66

7Z010 17600 6000 35200 60 0 80

First, we trained the 8-bit quantized MobilenetV2 for evaluation. As

described before, compared with quantized models for CPU (Figure 4.1a),

all the values should be quantized in the models for hardware. Figure 4.1b

is the quantization method at the initial stage of training. The Fake Quant

layers with * mark mean they share the quantization parameters.

The quantization scheme used is LSQ [45]. Signed values are quantized to

[−127, 127], and unsigned values are quantized to [0, 255]. After finishing the

training with fake quantization modules, the fake quantization modules are

replaced with real ones, and the BN layers are folded with the quantization

parameters.

Due to the quantization parameters being quantized to 18 bits, the accu-

racy can drop. Fine tune on fully quantized modules is required to restore

accuracy. The scales of the feature maps between blocks tend to become

equal in a fine-trained model. So removing quantization on the shortcut

path and replacing the quantization after the add with a clamp function

does not affect the accuracy (Figure 4.1c). After training, MobileNetV2 got

71.546% Top-1 accuracy on ImageNet.

4.2 Performance Estimation

The first experiment focuses on edge computing with the ZYNQ UltraScale+

platform. Two FPGAs are selected for this stage: the mid-range device

XCZU7EV-FFVC1156-2-E (referred to as ZU7) and the cost-optimized

device XCZU3EG-SFVC784-1-I (referred to as ZU3), with their available

resources listed in Table. 4.1.

We deploy the accelerator shown in Figure. 3.2, optimized for residual
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blocks, on these two devices. The weight memory and other configurations

are sufficient for running MobileNetV2. Based on the hardware resources

of these FPGAs, particularly the number of DSPs and URAMs, we selected

reasonable parallelism parameters. To simplify the design, most parameters

of the accelerator are shared between the two devices.

The content of the subsections not related to improvements has been

presented in [36], whereas the subsections addressing improvements have

been published in [42].

4.2.1 Configurations

As explained in previous sections, DSP cascade height is closely tied to the

computation density of a single PE, the maximum parallelism of various

components, and the maximum bus bit width, so it is best set to the

maximum value of 4. Given that the DSP count ratio between the two

devices is 4.8 and that the ZU7 has a larger area, reducing the number of

DSPs used can facilitate achieving the target frequency. To this end, we set

the batch size B = 4 for the ZU7 and B = 1 for the ZU3. These values allow

us to maintain DSP utilization at approximately 80%, minimizing congestion.

The maximum supported configuration for both devices is PPE = 32, while

PPEDW is set to its upper limit of 8, which both devices can handle.

With this configuration for running MobileNetV2, the weight memory

required by the PE Array when using Broadcast and Combine modes

consists of four 32-bit wide memories with a depth of 1,600 per group.

Without Broadcast and Combine, the required depth doubles to 3,200. To

demonstrate the minimal on-chip memory usage of our accelerator, we chose

parameters with minimal capacity. However, it should be noted that using

larger weight and quantization parameter memories can reduce extra wait

time from segmented execution initialization, slightly improving throughput.

With a word width of 32 bits, the BRAM depth is 1,024, so we rounded 1,600

up to 2,048, totaling two BRAMs in depth. As a result, 2 × DC BRAMs

per group, and group counts G = PPE

DC
= 8, the BRAMs used in total for the

weights are 2×DC ×G = 64 per PE Array.

The quantization parameter memory required for the PE Array is eight

memories per group (four for gamma and four for beta), each with an 18-bit

width and a depth of 30. As previously mentioned, this memory is suitable

for LUTRAM. Each LUT has a capacity of 64 bits, configurable as 1×64 or
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2×32. In our design, we consistently use the 1×64 configuration, so we round

30 up to 64.

The weight memory required by each PE in the PEDW Array has a width

based on the actual weight width KMAX ×KMAX × BWW , with a depth of

120. The quantization parameter memory has a width of 18 and matches the

weight memory’s depth, rounded from 120 to 128.

4.2.2 Throughput Calculation

In accelerators interconnected with a Dataflow structure, all modules are

pipelined, so each module relies on the previous module’s output during

operation. If one module takes longer than the others, it intermittently

blocks the upstream module’s output and cannot supply sufficient data to the

downstream module, leading to extra wait time. Thus, the longest-running

module determines the overall accelerator throughput.

On the other hand, in accelerators that use an Overlay processing

structure, the time required to run a task equals the sum of all its subtask

durations, determining the throughput. In CNN accelerators, each layer’s

overlay execution task constitutes a subtask, and the total time for all layers

equals the time required to run the entire network.

In previous sections, we described the calculation of each module’s

runtime, allowing us to predict the total model execution time. As shown in

Figure. 3.15, the time required to execute multiple layers within a block using

the Dataflow structure is approximately equal to the time needed for the

longest-running module in the block. This is represented as a parallelogram

in Figure. 3.15 because later modules in the current block finish later, but

earlier modules are already processing the next block, so the delay can be

ignored. The total runtime is approximately the sum of the runtime for

all blocks or layers, and the additional time CCP (penalty) mentioned in

Section. 3.4:(∑
i

max(CCAREADi
, CCAWRITEi

, CCPE0i , CCPEDWi
, CCPE1i ,

CCSWUi
, CCINIT0i+1

, CCINITDWi+1
, CCINIT1i+1

)

)
+ CCP .

(4.1)

We mainly deploy our accelerator on UltraScale+ series FPGAs. Due

to the limitations of the maximum frequency (333 MHz) of the ZYNQ

platform’s PS AXI ports and various hard resources in this series, our

accelerator achieves a maximum clk2x frequency of 600 MHz on standard
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Table 4.2: Estimated, Simulated, and Actual Performance

Est. CC Sim. CC Act. CC Act. FPS Act. Delay

ZU7 URAM4 510032 507840 510589 2350 1.70ms

ZU7 SDRAM4 664656 671156 674097 1780 2.25ms

ZU3 SDRAM1 510032 508333 511976 586 1.71ms

0.85V UltraScale+ FPGA devices, corresponding to a clk1x of 300 MHz.

Achieving a clk2x frequency above 600 MHz on UltraScale+ FPGAs is

challenging. This limitation arises because the upstream ready signals of

SWU and ADATA form critical paths. Due to the path-switching mechanism,

handshake registers cannot be added to these paths, restricting the clk1x

paths to a maximum of 300 MHz. Therefore, we estimate throughput

based on this frequency (using calculations and later simulations), and after

synthesis and routing, the actual frequency will be used to measure actual

throughput on the evaluation board.

The throughput is calculated as

FPS =
fclk1x
CC

× B, (4.2)

where fclk1x is the control/transfer frequency for clk1x, as the formula from

previous sections is based on this frequency. For the URAM version, there is

an initial time cost to preload images onto the on-chip inter-block feature map

memory before processing the first batch. However, as images are processed

continuously in batches, data for the next batch are already prefetched onto

the chip before the first batch finishes, avoiding additional time. Thus, the

initial loading time for the first batch is considered a bias, and its impact

on the average runtime per batch decreases as more batches are processed.

Therefore, we ignore this bias when discussing the runtime of the URAM

version.

We present the calculation results in Table. 4.2 and the resolution is stan-

dard 224×224, where it is clear that, due to image polling on the AXI port

for parallel image processing, the ZU7 SDRAM cycle count is significantly

higher than the other two. The estimated time for ZU3 SDRAM1 and ZU7

URAM4 is consistent, as with a batch size of 1, there is no polling of the

data across multiple images, preventing bus congestion; thus, the final term

B′ in Formula (3.1) is 1, leading to identical estimated values.
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4.2.3 Simulation

We implemented the accelerator’s various modules in RTL using Verilog

HDL. We simulated our accelerator with Verilator [41], and the pre-synthesis

behavioral simulation results are shown in Table. 4.2. Due to the platform’s

reliance on numerous proprietary bus interconnection IPs from AMD (Xil-

inx), open-source tools like Verilator are unable to simulate these private IPs.

As a result, only behavioral-level simulations were conducted on the accel-

erator itself. The estimated throughput from our model closely matches the

simulated throughput, confirming the accuracy of our throughput estimation

model.

Through simulation, we observed that for MAC operations with the same

number of DSPs, SDRAM1 under extremely high parallelism (PPE = 128)

achieves only 26.5% of the throughput of ZU7 SDRAM4 at PPE = 32. The

latency advantage is only 6.0%, due to the excessive I/O overhead incurred

by high parallelism when processing layers with fewer output channels.

According to the simulation, using K +2 memory in the SWU instead of

K + 1 improved performance by approximately 3.7% for the ZU3 SDRAM1

and ZU7 URAM4 configurations. However, no significant change was ob-

served for ZU7 SDRAM4. The improvement from adding more memory is

minimal.

Compared to using parallel execution mode for the final layers, ZU7

URAM4 requires an average of 75,000 additional clock cycles, and ZU7

SDRAM4 requires an average of 66,000 additional cycles in designs without

Broadcast or Combine, according to the simulation results. The BRAM

capacity of ZU3 cannot support this configuration to independently run the

head convolution layer. Switching from serial execution mode to parallel exe-

cution mode using Broadcast and Combine incurs a worst-case computational

overhead of 7,200 clock cycles. However, simulation waveforms indicate an

actual overhead of 5,241 clock cycles. This modest cost results in a significant

improvement in throughput, making the trade-off highly favorable.

4.2.4 Simulation of the Design with Improvements

We simulated the proposed improvements using Verilator, with all pa-

rameters set to their maximum allowed values except for the parameters

under test, to avoid interference. Starting with the improvement from

Section 3.11.1, results for the SDRAM version are shown in Table. 4.3-4.6.
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Table 4.3: FPS Matrix of SDRAM Version when Running MobileNetV2 with

Improvement 3.11.1

B

PPE 8 16 24 32 40 48 56 64

1 197.9 375.7 468.6 633.6 597.8 666.2 611.3 631.6

2 395.1 729.5 887.2 1202.7 1103.8 1171.6 1048.3 1041.4

3 581.4 1062.0 1248.5 1641.5 1477.0 1434.1 1273.0 1232.7

4 760.8 1374.3 1503.8 1919.3 1700.9 1577.0 1391.0 1311.0

5 933.5 1625.6 1674.9 2121.7 1837.2 1664.3 1463.0 1352.1

6 1099.9 1838.9 1806.9 2236.7 1920.2 1710.1 1509.0 1376.8

7 1260.0 2004.8 1897.7 2317.0 1972.4 1744.3 1535.4 1393.8

8 1414.5 2150.3 1965.0 2376.2 2013.6 1771.0 1550.3 1405.0

9 1551.9 2278.9 2010.2 2424.2 2046.7 1786.8 1562.1 1412.2

10 1670.4 2365.9 2047.8 2464.3 2071.8 1799.6 1571.7 1416.8

11 1781.7 2437.4 2079.6 2498.0 2089.8 1810.0 1578.8 1420.5

12 1886.5 2500.3 2107.0 2524.4 2104.8 1818.2 1583.1 1423.4

13 1972.7 2548.4 2130.6 2544.6 2117.3 1823.3 1586.2 1425.6

14 2053.1 2591.1 2151.4 2561.7 2127.6 1827.3 1589.0 1427.6

15 2128.2 2629.2 2169.6 2576.4 2135.2 1830.6 1591.3 1428.7

16 2198.7 2663.5 2184.6 2588.8 2140.2 1833.5 1593.4 1429.5

Table 4.4: FPS per DSP Matrix of SDRAM Version when Running Mo-

bileNetV2 with Improvement 3.11.1

B

PPE 8 16 24 32 40 48 56 64

1 1.596 1.998 1.860 2.005 1.573 1.501 1.203 1.104

2 1.593 1.940 1.760 1.903 1.452 1.319 1.032 0.910

3 1.563 1.883 1.652 1.732 1.296 1.077 0.835 0.718

4 1.534 1.828 1.492 1.518 1.119 0.888 0.685 0.573

5 1.506 1.729 1.329 1.343 0.967 0.750 0.576 0.473

6 1.478 1.630 1.195 1.180 0.842 0.642 0.495 0.401

7 1.452 1.523 1.076 1.047 0.742 0.561 0.432 0.348

8 1.426 1.430 0.975 0.940 0.662 0.499 0.381 0.307

9 1.391 1.347 0.886 0.852 0.598 0.447 0.342 0.274

10 1.347 1.258 0.813 0.780 0.545 0.405 0.309 0.248

11 1.306 1.179 0.750 0.719 0.500 0.371 0.283 0.226

12 1.268 1.108 0.697 0.666 0.462 0.341 0.260 0.207

13 1.224 1.043 0.650 0.619 0.429 0.316 0.240 0.192

14 1.183 0.984 0.610 0.579 0.400 0.294 0.223 0.178

15 1.144 0.932 0.574 0.544 0.375 0.275 0.209 0.167

16 1.108 0.885 0.542 0.512 0.352 0.258 0.196 0.156
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Table 4.5: FPS Matrix of URAM Version when Running MobileNetV2 with

Improvement 3.11.1

B

PPE 8 16 24 32 40 48 56 64

1 197.9 375.7 468.6 634.3 598.6 667.5 612.6 633.3

2 395.7 751.4 937.3 1268.5 1197.1 1335.0 1225.1 1266.6

3 593.6 1127.0 1405.9 1902.8 1795.7 2002.4 1837.6 1899.9

4 791.5 1502.7 1874.6 2537.0 2394.2 2669.9 2450.1 2533.1

5 989.4 1878.4 2343.1 3171.2 2992.7 3337.2 3062.4 3166.2

6 1187.2 2254.0 2811.8 3805.3 3591.1 4004.5 3674.9 3799.3

7 1385.1 2629.7 3280.3 4439.5 4189.6 4671.8 4287.2 4432.4

8 1583.0 3005.4 3749.0 5073.6 4788.0 5339.1 4899.6 5065.4

9 1780.8 3381.0 4217.5 5707.7 5386.4 6006.2 5511.7 5698.4

10 1978.7 3756.7 4686.1 6341.7 5984.7 6673.5 6124.0 6330.9

11 2176.6 4132.3 5154.6 6975.8 6583.1 7340.5 6736.3 6963.0

12 2374.4 4508.0 5623.2 7609.8 7181.4 8007.7 7347.7 7594.9

13 2572.3 4883.6 6091.7 8243.8 7779.6 8674.6 7958.4 8226.6

14 2770.2 5259.2 6560.3 8877.8 8377.9 9340.7 8569.1 8858.2

15 2968.0 5634.9 7028.7 9511.8 8976.1 10006.0 9179.6 9489.5

16 3165.9 6010.5 7497.3 10145.7 9573.0 10671.5 9789.8 10120.7

Table 4.6: FPS per DSP Matrix of URAM Version when Running Mo-

bileNetV2 with Improvement 3.11.1

B

PPE 8 16 24 32 40 48 56 64

1 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

2 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

3 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

4 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

5 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

6 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

7 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

8 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

9 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

10 1.596 1.998 1.860 2.007 1.575 1.503 1.206 1.107

11 1.596 1.998 1.860 2.007 1.575 1.503 1.205 1.107

12 1.596 1.998 1.860 2.007 1.575 1.503 1.205 1.106

13 1.596 1.998 1.859 2.007 1.575 1.503 1.205 1.106

14 1.596 1.998 1.859 2.007 1.575 1.503 1.205 1.106

15 1.596 1.998 1.859 2.007 1.575 1.502 1.205 1.106

16 1.596 1.998 1.859 2.007 1.575 1.502 1.204 1.106

81



Clearly, as the batch size B increases, throughput also increases for each

PPE value. The trend in throughput change is shown in Figure. 4.2, where

we observe that significant throughput increases only occur when PPE is

relatively small. For example, PPE = 8 and PPE = 16 are highlighted,

showing that as PPE increases, the throughput increment from increasing B

diminishes. Since this improvement minimally affects the URAM version, it

is not discussed separately.

Figure 4.2: The trend in throughput variation as batch size increases.

Results of the improvement in Section 3.11.2 are listed in Table. 4.7-

4.10, where increasing PPE raises throughput for each B value. Figure. 4.3

illustrates the throughput trend, showing that results improve as the B value

approaches the nearest power of 2. While the URAM version also benefits

from this improvement, its results are similar to those achieved when both

improvements are applied, as shown later.
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Table 4.7: FPS Matrix of SDRAM Version when Running MobileNetV2 with

Improvement 3.11.2

B

PPE 8 16 24 32 40 48 56 64

1 197.9 383.6 486.3 640.1 653.8 695.3 697.9 739.4

2 395.1 744.4 936.4 1216.7 1241.4 1315.9 1320.7 1395.0

3 570.6 1050.4 1302.0 1517.8 1543.4 1619.4 1624.3 1698.3

4 760.8 1400.6 1736.0 2023.7 2057.8 2159.2 2165.7 2264.4

5 884.0 1364.0 1568.7 1705.5 1738.0 1784.5 1804.8 1829.7

6 1060.8 1636.7 1882.5 2046.6 2085.6 2141.4 2165.8 2195.6

7 1237.7 1909.5 2196.2 2387.7 2433.2 2498.3 2526.8 2561.6

8 1414.5 2182.3 2510.0 2728.8 2780.8 2855.2 2887.8 2927.5

9 1236.7 1541.1 1641.8 1694.2 1708.5 1715.7 1723.1 1725.9

10 1374.2 1712.4 1824.2 1882.4 1898.3 1906.3 1914.6 1917.6

11 1511.6 1883.6 2006.7 2070.7 2088.2 2096.9 2106.0 2109.4

12 1649.0 2054.9 2189.1 2258.9 2278.0 2287.5 2297.5 2301.1

13 1786.4 2226.1 2371.5 2447.1 2467.8 2478.2 2488.9 2492.9

14 1923.8 2397.3 2553.9 2635.4 2657.7 2668.8 2680.4 2684.7

15 2061.2 2568.6 2736.4 2823.6 2847.5 2859.4 2871.9 2876.4

16 2198.7 2739.8 2918.8 3011.9 3037.3 3050.0 3063.3 3068.2

Table 4.8: FPS per DSP Matrix of SDRAM Version when Running Mo-

bileNetV2 with Improvement 3.11.2

B

PPE 8 16 24 32 40 48 56 64

1 1.596 2.040 1.930 2.026 1.721 1.566 1.374 1.293

2 1.593 1.980 1.858 1.925 1.633 1.482 1.300 1.219

3 1.534 1.862 1.722 1.601 1.354 1.216 1.066 0.990

4 1.534 1.862 1.722 1.601 1.354 1.216 1.066 0.990

5 1.426 1.451 1.245 1.079 0.915 0.804 0.711 0.640

6 1.426 1.451 1.245 1.079 0.915 0.804 0.711 0.640

7 1.426 1.451 1.245 1.079 0.915 0.804 0.711 0.640

8 1.426 1.451 1.245 1.079 0.915 0.804 0.711 0.640

9 1.108 0.911 0.724 0.596 0.500 0.429 0.377 0.335

10 1.108 0.911 0.724 0.596 0.500 0.429 0.377 0.335

11 1.108 0.911 0.724 0.596 0.500 0.429 0.377 0.335

12 1.108 0.911 0.724 0.596 0.500 0.429 0.377 0.335

13 1.108 0.911 0.724 0.596 0.500 0.429 0.377 0.335

14 1.108 0.911 0.724 0.596 0.500 0.429 0.377 0.335

15 1.108 0.911 0.724 0.596 0.500 0.429 0.377 0.335

16 1.108 0.911 0.724 0.596 0.500 0.429 0.377 0.335
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Table 4.9: FPS Matrix of URAM Version when Running MobileNetV2 with

Improvement 3.11.2

B

PPE 8 16 24 32 40 48 56 64

1 197.9 383.6 486.4 640.1 653.8 695.3 698.0 739.6

2 395.7 767.1 972.7 1280.2 1307.6 1390.5 1395.9 1479.1

3 593.6 1150.71459.0 1920.2 1961.2 2085.7 2093.7 2218.5

4 791.5 1534.21945.4 2560.3 2615.0 2780.9 2791.7 2958.0

5 989.4 1917.72431.6 3200.1 3268.4 3475.8 3489.1 3696.8

6 1187.22301.32917.9 3840.2 3922.1 4170.9 4186.9 4436.2

7 1385.12684.83404.3 4480.2 4575.8 4866.1 4884.7 5175.6

8 1583.03068.33890.6 5120.2 5229.5 5561.2 5582.6 5914.9

9 1780.83451.74376.5 5759.4 5881.2 6251.7 6272.9 6646.6

10 1978.73835.34862.8 6399.4 6534.7 6946.3 6969.9 7385.1

11 2176.64218.85349.1 7039.3 7188.1 7641.0 7666.9 8123.6

12 2374.44602.35835.4 7679.2 7841.6 8335.6 8363.9 8862.1

13 2572.34985.86321.7 8319.2 8495.0 9030.2 9060.9 9600.6

14 2770.25369.46808.0 8959.1 9148.5 9724.9 9757.9 10339.1

15 2968.05752.97294.2 9599.0 9802.0 10419.510454.911077.6

16 3165.96136.47780.510239.010455.411114.111151.911816.1

Table 4.10: FPS per DSP Matrix of URAM Version when Running Mo-

bileNetV2 with Improvement 3.11.2

B

PPE 8 16 24 32 40 48 56 64

1 1.596 2.040 1.930 2.026 1.721 1.566 1.374 1.293

2 1.596 2.040 1.930 2.026 1.720 1.566 1.374 1.293

3 1.596 2.040 1.930 2.026 1.720 1.566 1.374 1.293

4 1.596 2.040 1.930 2.026 1.720 1.566 1.374 1.293

5 1.596 2.040 1.930 2.025 1.720 1.566 1.374 1.293

6 1.596 2.040 1.930 2.025 1.720 1.566 1.374 1.293

7 1.596 2.040 1.930 2.025 1.720 1.566 1.374 1.293

8 1.596 2.040 1.930 2.025 1.720 1.566 1.374 1.293

9 1.596 2.040 1.930 2.025 1.720 1.564 1.372 1.291

10 1.596 2.040 1.930 2.025 1.720 1.564 1.372 1.291

11 1.596 2.040 1.930 2.025 1.720 1.564 1.372 1.291

12 1.596 2.040 1.930 2.025 1.720 1.564 1.372 1.291

13 1.596 2.040 1.930 2.025 1.720 1.564 1.372 1.291

14 1.596 2.040 1.930 2.025 1.720 1.564 1.372 1.291

15 1.596 2.040 1.930 2.025 1.720 1.564 1.372 1.291

16 1.596 2.040 1.930 2.025 1.720 1.564 1.372 1.291
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Table 4.11: FPS Matrix of SDRAM Version when Running MobileNetV2

with Both Improvements

B

PPE 8 16 24 32 40 48 56 64

1 197.9 383.6 486.3 640.1 653.8 695.3 697.9 739.4

2 395.1 744.4 936.4 1216.7 1241.4 1315.9 1320.7 1395.0

3 581.4 1082.9 1351.8 1662.3 1693.0 1784.9 1790.9 1881.4

4 760.8 1400.6 1736.0 2023.7 2057.8 2159.2 2165.7 2264.4

5 933.5 1655.0 2033.1 2310.9 2363.4 2466.7 2476.7 2554.6

6 1099.9 1870.2 2267.3 2535.6 2603.5 2691.0 2729.5 2777.9

7 1260.0 2036.7 2404.3 2651.4 2707.6 2788.4 2825.0 2875.8

8 1414.5 2182.3 2510.0 2728.8 2780.8 2855.2 2887.8 2927.5

9 1551.9 2310.9 2596.8 2792.3 2840.6 2908.6 2935.0 2963.2

10 1670.4 2413.7 2669.5 2845.2 2890.3 2951.1 2974.1 2992.3

11 1781.7 2498.8 2732.0 2890.0 2932.0 2985.3 3006.7 3016.4

12 1886.5 2567.5 2780.5 2925.3 2962.9 3008.3 3027.4 3033.5

13 1972.7 2618.2 2821.6 2952.4 2985.4 3022.1 3038.2 3045.4

14 2053.1 2663.2 2857.9 2975.3 3005.1 3032.7 3047.8 3055.7

15 2128.2 2703.5 2890.0 2995.2 3022.3 3041.9 3056.0 3062.5

16 2198.7 2739.8 2918.8 3011.9 3037.3 3050.0 3063.3 3068.2

Figure 4.3: The trend in throughput variation as parallelism of PE increases.

The combined simulation results of the improvements from Section 3.11.1

and Section 3.11.2 are displayed in Tables. 4.11-4.14, showing that for both

the SDRAM and URAM versions, throughput increases with rising B and
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Table 4.12: FPS per DSP Matrix of SDRAM Version when Running Mo-

bileNetV2 with Both Improvements

B

PPE 8 16 24 32 40 48 56 64

1 1.596 2.040 1.930 2.026 1.721 1.566 1.374 1.293

2 1.593 1.980 1.858 1.925 1.633 1.482 1.300 1.219

3 1.563 1.920 1.788 1.753 1.485 1.340 1.175 1.096

4 1.534 1.862 1.722 1.601 1.354 1.216 1.066 0.990

5 1.506 1.761 1.614 1.463 1.244 1.111 0.975 0.893

6 1.478 1.658 1.500 1.337 1.142 1.010 0.895 0.809

7 1.452 1.548 1.363 1.199 1.018 0.897 0.794 0.718

8 1.426 1.451 1.245 1.079 0.915 0.804 0.711 0.640

9 1.391 1.366 1.145 0.982 0.831 0.728 0.642 0.576

10 1.347 1.284 1.059 0.900 0.761 0.665 0.585 0.523

11 1.306 1.208 0.986 0.831 0.701 0.611 0.538 0.479

12 1.268 1.138 0.919 0.771 0.650 0.565 0.497 0.442

13 1.224 1.071 0.861 0.719 0.604 0.524 0.460 0.410

14 1.183 1.012 0.810 0.673 0.565 0.488 0.429 0.382

15 1.144 0.959 0.765 0.632 0.530 0.457 0.401 0.357

16 1.108 0.911 0.724 0.596 0.500 0.429 0.377 0.335

Table 4.13: FPS Matrix of URAM Version when Running MobileNetV2 with

Both Improvements

B

PPE 8 16 24 32 40 48 56 64

1 197.9 383.6 486.4 640.1 653.8 695.3 698.0 739.6

2 395.7 767.1 972.7 1280.2 1307.6 1390.5 1395.9 1479.1

3 593.6 1150.71459.0 1920.3 1961.3 2085.7 2093.8 2218.6

4 791.5 1534.21945.4 2560.3 2615.0 2780.9 2791.7 2958.0

5 989.4 1917.72431.7 3200.3 3268.7 3476.0 3489.3 3697.3

6 1187.22301.32918.0 3840.3 3922.3 4171.1 4187.1 4436.6

7 1385.12684.83404.2 4480.3 4575.9 4866.1 4884.8 5175.8

8 1583.03068.33890.6 5120.2 5229.5 5561.2 5582.6 5914.9

9 1780.83451.94376.8 5760.1 5883.0 6256.0 6280.0 6654.0

10 1978.73835.44863.1 6400.1 6536.5 6951.1 6977.6 7392.5

11 2176.64218.95349.3 7039.9 7190.0 7645.8 7674.8 8130.4

12 2374.44602.45835.6 7679.8 7843.5 8340.8 8370.9 8868.0

13 2572.34985.96321.8 8319.6 8496.9 9034.8 9066.3 9605.4

14 2770.25369.46808.1 8959.4 9150.3 9728.3 9761.8 10342.6

15 2968.05752.97294.2 9599.2 9803.7 10421.110457.011079.5

16 3165.96136.47780.510239.010455.411114.111151.911816.1
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Table 4.14: FPS per DSP Matrix of URAM Version when Running Mo-

bileNetV2 with Both Improvements

B

PPE 8 16 24 32 40 48 56 64

1 1.596 2.040 1.930 2.026 1.721 1.566 1.374 1.293

2 1.596 2.040 1.930 2.026 1.720 1.566 1.374 1.293

3 1.596 2.040 1.930 2.026 1.720 1.566 1.374 1.293

4 1.596 2.040 1.930 2.026 1.720 1.566 1.374 1.293

5 1.596 2.040 1.930 2.026 1.720 1.566 1.374 1.293

6 1.596 2.040 1.930 2.025 1.720 1.566 1.374 1.293

7 1.596 2.040 1.930 2.025 1.720 1.566 1.374 1.293

8 1.596 2.040 1.930 2.025 1.720 1.566 1.374 1.293

9 1.596 2.040 1.930 2.025 1.720 1.566 1.374 1.293

10 1.596 2.040 1.930 2.025 1.720 1.566 1.374 1.292

11 1.596 2.040 1.930 2.025 1.720 1.565 1.373 1.292

12 1.596 2.040 1.930 2.025 1.720 1.565 1.373 1.292

13 1.596 2.040 1.930 2.025 1.720 1.565 1.373 1.292

14 1.596 2.040 1.930 2.025 1.720 1.565 1.373 1.292

15 1.596 2.040 1.930 2.025 1.720 1.565 1.372 1.291

16 1.596 2.040 1.930 2.025 1.720 1.564 1.372 1.291

PPE. For the SDRAM version, throughput growth slows as both values

increase, while for the URAM version, it only slows as PPE increases.

Tables. 4.12 and 4.14 presents throughput per DSP, indicating area efficiency.

For PPE = 16 and PPE = 32, maximum efficiency is observed when B is 4 or

less. In contrast, PPE = 8 is less efficient, as too many DSPs are dedicated

to non-core operations such as quantization, reducing area efficiency.

Line graphs plotting FPS against parameters are shown in Figure. 4.4,

similar to Figures. 4.2 and 4.3, shows no line crossover, proving that scala-

bility has significantly improved after these improvements.

The results calculated with formulas from previous sections are pes-

simistic estimates. Compared to the simulated FPS matrix, the predicted

average throughput is 98.1%, with a worst-case scenario of 105.1%, providing

a fairly accurate estimate of theoretical performance.

4.3 Implementation

We implemented the accelerator using Vivado 2021.1 [46]. The implemen-

tation is divided into two parts: the first part involves deploying a small to
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(a) The trend in throughput variation as batch size increases.

(b) The trend in throughput variation as parallelism of PE increases.

Figure 4.4: The trend of configuration with both improvement on batch size

and PE parallelism.

svg

medium-scale accelerator suitable for edge computing on the ZYNQ Ultra-

Scale+ platform, without the later improvements discussed in Section 3.11.

The second part verifies the effectiveness of the subsequent improvements,

including implementing a large-scale accelerator suitable for data centers on

the Virtex UltraScale+ platform and conducting extended experiments on

certain improvements.

Similar to the previous section, subsections unrelated to improvements,

88



such as those detailing SDRAM1 on ZU3 and SDRAM4/URAM4 on ZU7,

have been presented in [36]. On the other hand, subsections that highlight

improvements, identified by “B” or “G” in their configuration names, have

been published in [42]. The implementation described in [36] represents an

earlier stage of development, where achieving the target frequency on the

ZU7 platform was not yet stable. This dissertation adopts more optimized

implementation strategies and refines additional critical paths, ensuring that

the accelerator configuration achieves the target frequency consistently on

the current device within a single die. As a result, the experimental results

described in this disseration achieve slightly higher frequencies compared to

those in [36] and [42].

4.3.1 Implementation on Edge Computing Device

The ZYNQ UltraScale+ FPGA has a hard memory controller located on the

PS side, shared among all connected hard and soft cores for bandwidth. It

also allows for deploying a soft memory controller in the PL side dedicated

to user logic. The hard memory controller on the PS side and the external

SDRAM it controls meet the needs of our accelerator without using additional

logic resources, while also providing excellent random access performance.

Therefore, we primarily utilize this hard controller.
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Figure 4.5: Port allocation on ZYNQ UltraScale+ platform.

The PS side of the ZYNQ UltraScale+ FPGA has multiple AXI slave

ports, some of which share ports from the SDRAM controller. The sharing

situation is shown in Figure. 4.5. To maximize performance, we avoid

assigning two high-traffic master ports (such as the MAXI0 port for ADATA

and the MAXI ports for Weight 0 and 1) to share an AXI slave port on the

SDRAM controller. The MAXI ports of the Weight 0 and Weight 1 modules

are connected to S AXI HP0 FPD and S AXI HP3 FPD, respectively, which

do not share bandwidth with other PL ports. The MAXI port of the

Weight DW module is connected to S AXI HPC0 FPD. ADATA’s MAXI0

port is connected to S AXI HP1 FPD, while MAXI1 or MAXI2 connects to

S AXI HP2 FPD. Although these two slave ports share bandwidth, the low

traffic of MAXI1 and MAXI2 has little impact on overall throughput.

When our design is deployed on the edge computing platform, utilization

may exceed the QoR (Quality of Results) recommendations. Therefore, we

experimented with various strategy combinations to achieve a high clock

frequency. Compared to previously published results, we have now identified

the optimal strategy combination for our design, which enables more stable

timing closure at clk2x of 600 MHz with less effort. Thus, we updated

our results to reflect this new strategy combination, while keeping the logic

consistent.
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The default synthesis strategy was used during logic synthesis. Based

on our testing, the Performance ExplorerWithRemap implementation strat-

egy consistently yielded the best results. This is due to several factors:

firstly, this strategy enables Post-Route Phys Opt Design, which allows

additional optimization of critical paths after routing. Secondly, it activates

aggressive remap during the Opt Design phase before placement, compress-

ing logic levels and shortening longer control logic paths, making it easier to

meet timing requirements.

Our design also extensively uses hard blocks such as DSP, BRAM, and

URAM, which have numerous input and output signals. Even with cascading,

these hard blocks place significant pressure on routing resources, making

routing congestion a critical issue. Proper placement has a substantial

impact on the final results, and strategies with special placement methods

occasionally yielded surprisingly good results.

Thus, base on the Performance ExplorerWithRemap strategy, we em-

ployed additional placement directives. Two placement directives performed

particularly well. The first, EarlyBlockPlacement (EBP), prioritizes the

interconnections between hard blocks and places them accordingly, using

these blocks as anchors around which general resources like LUTs and FFs

are arranged. The DSP and BRAM used in the computation paths of PE

Arrays 0/1 operate at higher frequencies, requiring stricter placement and

routing distances. The lower-frequency LUT multipliers of the PEDW Array

have more relaxed distance requirements, so prioritizing DSP and BRAM

with higher frequencies often yields better placement and routing results.

The second directive, ExtraNetDelay high (ENDh), increases the estimated

delay between long-distance components (a more pessimistic approach),

encouraging closer placement to reduce critical path delays.

The implementation results are shown in Table. 4.15. The target fre-

quency of clk2x is 600 MHz, and all three configurations met the target

frequency. Additionally, the operating frequency can be changed via the

AXI slave port of the MMCM-related control module.

In the ZU3, there are relatively few DSPs occupying routing resources.

Therefore, even with the majority of DSPs and BRAM utilized and with LUT

usage reaching 55% (including 27% LUTRAM usage), it is still relatively

easy for both directives to achieve the target frequency The results of the

EBP directive are listed in the table. The ZU7SDRAM4 and ZU7URAM4

configurations use a very similar amount of logic and arithmetic resources
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Table 4.15: Implementation Result on ZYNQ UltraScale+ Platform

Device ZU7 ZU7 ZU3

Configuration URAM4 SDRAM4 SDRAM1

Directive ENDh ENDh both, EBP

Overall

LUT 122781 122306 38524

LUTRAM 13181 13774 7898

FF 195067 196880 61748

BRAM 248 248 158

URAM 64 0 -

DSP 1264 1264 316

Power(W) 20.729 17.466 7.083

Accelerator

LUT 120299 119759 36985

LUTRAM 13043 13636 7760

FF 190910 192759 57303

BRAM 248 248 158

URAM 64 0 -

DSP 1264 1264 316

Power(W) 17.01 13.773 3.887

clk2x(MHz) 600 600 600

Sim. CC
URAM 507840 - -

SDRAM - 671156 508333

Act. CC
URAM 510589 - -

SDRAM - 674097 511976

Act. FPS
URAM 2350.227 - -

SDRAM - 1780.159 585.965

Act. Band URAM 2.915858 - -

(GiB/s) SDRAM - 7.128928 3.867033
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but show noticeable differences in memory resources. In both configurations,

BRAM is used to store weights, filters’ data, and small capacity row data of

SWU, resulting in identical BRAM usage. However, ZU7URAM4 utilizes an

additional 64 URAMs as inter-block buffers, whereas ZU7SDRAM4 does not

use any URAM. Both configurations achieve the target frequency, although

they require more effort compared to ZU3SDRAM1. Despite using additional

URAM in ZU7URAM4, these URAMs are cascaded in groups of eight, which

maximizes the use of dedicated cascade routing resources, allowing the target

frequency to be achieved.

We validated our accelerator on the ZYNQ UltraScale+ MPSoC ZCU104

evaluation board (ZU7) and the ALINX Baidu EdgeBoard FZ3B (ZU3).

When running our accelerator on the ZCU104 at the maximum clk2x

frequency of 600 MHz, the power management chip (PMIC) triggers over-

current protection (the current reported by Vivado is far below the maximum

sustained current value for a 10-year lifespan on page 389 of UG583 v1.28),

cutting off the power supply. As the ZCU104 is an evaluation kit, it has a

lower current limit than the silicon’s maximum allowable current to minimize

the risk of damage due to improperly designed logic.

Therefore, for evaluations on the ZCU104, we first reduced the clk2x

frequency to 500 MHz and the clk1x frequency to 250 MHz to verify that

our accelerator operates correctly on the actual FPGA development board.

We then restored the frequencies to the maximum level and set all weights

and input images to zero. This approach halts the operation of DSPs and

LUT-based multipliers, reducing switching power, while keeping the timing

and quantity of data transfers unchanged. This allows testing at the highest

frequency, where the accelerator demands more bandwidth and runs more

clock cycles. The actual runtime on the FPGA closely matched the simulated

runtime.

The actual runtime is shown in Tables. 4.2 and 4.15. Due to the

limited weight memory capacity, the accelerator frequently pauses to wait for

initialization to complete. Accessing the actual off-chip SDRAM introduces

additional latency, and the need for self-refresh further extends initialization

time, resulting in slightly lower performance than the simulated results.

Runtime analysis of the AXI bus waveform reveals that during periods of high

bus activity, the valid signal on the R channel of the AXI slave port of the

Zynq PS periodically de-asserts for brief intervals, despite numerous pending

read tasks. This behavior suggests delays in providing read data, likely
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caused by factors such as SDRAM row switching or self-refresh operations.

Nevertheless, thanks to the efficient design of the hard memory controller in

the PS, the discrepancy between simulation and real-world results remains

minimal.

4.3.2 Implementation on High-end Device

High-end FPGAs like Virtex have very large hardware resource capacities.

To control costs and improve yield, these high-end FPGAs are typically

made from multiple dies connected using Stacked Silicon Interconnect (SSI)

technology, with each die referred to as a Super Logic Region (SLR). These

SLRs are placed on a large silicon interposer manufactured with a more

mature process that offers higher yield. The SLRs are interconnected

through this silicon interposer, achieving high bandwidth and low-latency

inter-die connections. However, compared to intra-die connections, the

inter-die connections still have limited routing resources and higher latency.

Dataflow architecture accelerators can map modules from different layers

to multiple SLRs, with limited interconnect width between modules. The

limited physical connections between SLRs will not significantly impact

performance.

However, our accelerator resembles an Overlay architecture, where mod-

ules are tightly coupled with denser interconnects. Placing an instance of

the accelerator across multiple SLRs may significantly reduce the frequency.

Therefore, it is preferable to place an instance of the accelerator within

a single SLR. Currently, the highest DSP count on a single die in AMD

FPGAs is 4,272 in the ZYNQ UltraScale+ RFSoC series [47] and 3,984 in the

Versal Prime/Premium series [48], which makes it impossible to implement

the configuration shown in the lower right corner of Table. 4.12 (highlighted

in orange to red). Thus, these results cannot be fully verified on an actual

FPGA.

We used the XCVU13P-FHGB2104-2 (VU13P) accelerator card to verify

these configurations, with its hardware resources shown in Table. 4.1. This

accelerator card consists of four interconnected dies with identical resource

capacities using SSI technology, giving it four SLRs. Additionally, it is

equipped with four channels of 72-bit 2,400 MT/s DDR4 ECC SDRAM,

each connected to the IO pad of a separate SLR. Each SLR on the VU13P

has up to 3,072 DSPs, more than most devices, with hardware resources
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ratio (including BRAM, URAM, and LUTs) closely matching the needs of

our accelerator. Since it’s not feasible to maximize all configurations like

in the simulated evaluations in Section 4.2.4, the actual throughput of the

implemented accelerator is slightly lower.

Based on previous simulation results, we determined the most suitable

configuration: PPE = 32, B = 8, with a depth of 2,048 for Weight 0/1.

This configuration is similar to the previous ZYNQ platform implementation,

except for batch size. We marked configurations that used batch size

improvements from Section 3.11.1 with a mark “B” and those using PPE

improvements from Section 3.11.2 with a mark “G” (Group). Simulations

showed that, with improvements from Section 3.11.1 and Section 3.11.2,

SDRAM8BG requires 944,941 clock cycles on clk1x, while URAM8BG

only needs 502,972 cycles. Without any improvements, SDRAM8 requires

1,076,982 cycles and URAM8 requires 507,841 cycles. The small difference

is because the batch size improvement in Section 3.11.1 does not apply when

B is a power of 2.

Unlike the previous accelerator configurations for edge computing plat-

forms that required separate implementations for URAM and SDRAM

versions, the configuration on this accelerator card is much larger, and

there are many platform components, making it challenging to estimate

the time required for separate synthesis, placement, and routing. It was

shown that the two versions mainly differ in URAM usage, so we integrated

both versions such that the URAM version’s physical implementation is

logically compatible with the SDRAM version’s instructions. Thus, only the

URAM8BG physical configuration is implemented, and with corresponding

instructions, both URAM8BG and SDRAM8BG can be evaluated.

As shown in the floorplan in Figure. 4.6, platform components share

SLR1, while the accelerator and its connected AXI interconnect module fully

utilize SLR2. In this layout, the purple area represents the accelerator,

yellow represents the AXI bus interconnect, green represents the DDR4

SDRAM controller MIG, and red represents XDMA. The results show that

our accelerator fully utilized the hardware resources of SLR2. The resource

usage statistics for the accelerator alone are: 55% LUT, 11% LUTRAM, 43%

FF, 55% BRAM, 40% URAM, and 82% DSP. Detailed results are shown in

Table. 4.16.

After placement and routing, clk2x achieved the target frequency of 600

MHz. Even though our accelerator and platform interconnect components
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Table 4.16: Implement Result of URAM8BG on VU13P

Device VU13P

Configuration URAM8BG

Directive EBP

Overall

LUT 345200

LUTRAM 38450

FF 521943

BRAM 531.5

URAM 128

DSP 2531

Power(W) 53.262

Accelerator

LUT 235625

LUTRAM 21359

FF 374870

BRAM 368

URAM 128

DSP 2528

Power(W) 36.876

clk2x(MHz) 600

Sim. CC
URAM 502972

SDRAM 944942

Act. CC
URAM 533069

SDRAM 1071667

Act. FPS
URAM 4502.231

SDRAM 2239.502

Act. Band URAM 3.638745

(GiB/s) SDRAM 6.901092
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Figure 4.6: The floorplan for single instance occupying an SLR.

heavily occupied SLR2’s hardware resources, the target frequency was still

met, demonstrating that our accelerator can maintain high operating fre-

quencies even when using a large area with high parallelism.

Actual testing showed that SDRAM8BG required 1,071,667 clock cycles,

whereas the simulation required only 944,942 cycles, achieving only 88.2% of

the simulated performance, with a throughput of 2,239.5 FPS, approximately
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82.1% of the theoretical maximum. The required off-chip memory bandwidth

was 6.90 GiB/s. For URAM8BG, the actual clock cycles were 533,069,

achieving 94.4% of the simulated performance, with a throughput of 4,502.2

FPS, approximately 88.0% of the theoretical maximum, with an off-chip

memory bandwidth of 3.64 GiB/s.

The difference between simulation and actual results is mainly due to

limitations in the efficiency of the off-chip memory controller MIG, and the

VU13P board’s DDR4 SDRAM x16 chips (native x16, not twin-x8 which

means packaged x8 chips) have only 8 banks, half the number of x8 chips,

resulting in lower random access performance. [49] Additionally, due to

the limited capacity of the weight memory in the tests, compared to the

maximum throughput achieved with maximum capacity weight memory,

there were additional pauses, reducing throughput slightly. However, a

higher ratio was still achieved, though increasing the weight memory capacity

could lead to a large increase in area with limited potential for performance

improvement.

With B = 8, resource usage is very high, making it challenging to

verify each improvement individually. Furthermore, the improvements in

Section 3.11.1 mainly target cases where B is not a power of 2, so B = 8 does

not demonstrate their effects. Therefore, we focused on the case of B = 6.

The floorplan used is the same as for B = 8. Regardless of whether the

improvements were applied, the resource utilization results were similar, with

the accelerator occupying approximately 41% of SLR2’s hardware resources

for LUT, 9% for LUTRAM, 33% for FF, 46% for BRAM, 30% for URAM,

and 62% for DSP.

Table. 4.17 compares simulation results with actual results, demon-

strating that the throughput relative to the theoretical maximum remains

relatively consistent in both simulated and actual measurements, confirming

the effectiveness of these improvements on real hardware. Compared to

URAM6, URAM6B had less impact on throughput but significantly reduced

bandwidth usage, bringing the usage rate for the same throughput down

to 88.4% of the original. URAM6G slightly improved throughput. For

both improvements enabled URAM6BG, the simulation result reached 93.2%

of the theoretical maximum, while the actual result was 87.9%. On the

other hand, for SDRAM8BG, the simulation result reached 92.9% of the

theoretical maximum, while the actual result was 83.5%. The off-chip

memory bandwidth usage of SDRAM6BG reached 35.7%.
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Table 4.17: Implement Result of URAM8 under Different Conditions on

VU13P

Device VU13P

Configuration URAM6 URAM6B URAM6G URAM6BG

Directive both, EBP both, EBP both, EBP both, EBP

Overall

LUT 288495 288755 289024 289437

LUTRAM 34599 34600 34600 34596

FF 431593 431530 431721 431572

BRAM 471.5 471.5 471.5 471.5

URAM 96 96 96 96

DSP 1899 1899 1899 1899

Power(W) 44.697 42.77 45.023 44.605

Accelerator

LUT 177936 178253 178113 178555

LUTRAM 17509 17509 17509 17507

FF 284470 284326 284583 284461

BRAM 308 308 308 308

URAM 96 96 96 96

DSP 1896 1896 1896 1896

Power(W) 28.683 26.917 29.061 28.689

clk2x(MHz) 600 600 600 600

Sim. CC
URAM 507841 507824 502971 502954

SDRAM 1076982 860536 944942 764169

Act. CC
URAM 538299 537412 532965 532987

SDRAM 1215508 957016 1071649 849932

Act. FPS
URAM 3343.867 3349.386 3377.332 3377.193

SDRAM 1480.862 1880.846 1679.654 2117.816

Act. Band URAM 3.603391 3.189831 3.639455 3.216314

(GiB/s) SDRAM 7.05324 6.989882 6.901208 6.831407
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When the depth for the Weight 0/1 was increased to the device’s max-

imum allowable value of 4,096, the actual measurement for SDRAM6BG

reached 84.2% of the theoretical maximum, and URAM6BG reached 95.2%.

To further enhance the MIG’s efficiency, the burst transfer length was

doubled to 32, which increased SDRAM6 throughput to 90.2%. Reducing

the DDR4 memory width led to a decrease in throughput but significantly

increased bandwidth usage. When the width was reduced to 8 bits, the

off-chip memory bandwidth usage reached 83.8%. This behavior resembles

the improvement achieved by increasing burst transfer length to improve

MIG efficiency, as it increases the burst transfers for a single memory access

command, reduces row switching, and lowers randomness. Additionally, we

experimented with modifying the priority arbitration strategy for AXI Smart-

Connect and AXI Crossbar, but no significant improvement was observed.

The board-level evaluation effectively assessed the actual performance

of the accelerator with improvements, even when substantially increasing

area usage, showing its capability to maintain a high frequency despite

severe congestion. Individual assessments in various scenarios confirmed the

effectiveness of these improvements on the actual evaluation board.

4.3.3 Fully Utilizing VU13P

We attempted to achieve maximum throughput on the VU13P device. As

previously mentioned, placing components across different SLRs can signifi-

cantly reduce the maximum frequency. Additionally, as the user I/O for each

SLR is centrally located, MIG and AXI interconnect components must be

centrally placed. The tight interconnections between two PE Arrays in our

accelerator would cause severe congestion if routed through areas occupied

by MIG and other modules.

With this in mind, we split the B = 6 configuration into two parts, each

with B = 3, placing them on opposite sides of an SLR, as shown in Fig. 4.7.

The VU13P has four SLRs, giving eight slots. However, XDMA occupies a

large area, making it difficult to place a B = 3 configuration accelerator in

that slot, so we abandoned the XDMA slot, placing one instance in each of

the remaining seven slots. MIG in SLR3, SLR2, and SLR0 is shared by two

instances, while MIG in SLR1 is dedicated to instance 7.

After synthesis and placement and routing, our accelerator utilized 37%

of the device’s LUT, 11% of LUTRAM, 28% of FF, 57% of BRAM, 26% of
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Figure 4.7: The floorplan for multiple instances.
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URAM, and 55% of DSP. Including platform-related components, the total

usage was 55% of LUT, 20% of LUTRAM, 41% of FF, and 68% of BRAM,

with URAM not used by the platform, and minimal DSP usage, keeping the

percentage unchanged. Specific information is shown in Table. 4.18.

Due to the smaller size of each instance, clk2x easily achieved the target

frequency of 600 MHz. When running these instances individually, the

throughput per instance reached 1,424.3 FPS for SDRAM3BG and 1,687.8

FPS for URAM3BG, reaching 91.6% and 94.3% of the simulation results,

respectively. Compared to the theoretical maximum, this achieved 85.7%

and 87.9%.

However, when all instances started simultaneously to simulate actual

load, resource contention emerged between instances sharing the MIG, lead-

ing to a significant throughput reduction compared to individual execution.

We optimized the timing of the user channel writes to the bar in XDMA to

be as close as possible. Since PCIe drivers and WinAPI require reinitializing

the write pointer after each address write, this takes longer. Writing the

start command to all seven instances took a total of 0.023 ms, averaging

about 1,000 clock cycles at clk1x per instance, which is negligible compared

to the runtime of at least 500,000 clock cycles, approximating simultaneous

execution.

For SDRAM3BG, when instances 1-6 started simultaneously, their

throughput dropped to 785.5 FPS, about half of the original value. This

highlights that when eight ports sequentially access MIG, the sequential

access appears highly random from the MIG’s perspective, significantly

reducing efficiency. The throughput of instance 7 remained unchanged, with

a total throughput of 6,137.5 FPS for all seven instances, only 50.5% of

the simulation result. For URAM3BG, when instances 1-6 started simul-

taneously, their throughput only slightly dropped to 1,503.9 FPS, showing

minimal change. This demonstrates the critical importance of using URAM

as an inter-block buffer under complex conditions. The total throughput of

the seven instances reached 10,710.9 FPS, with a smaller drop from individual

execution, achieving 84.0% of the simulation result.

In this section, we explored the computational potential of VU13P, suc-

cessfully achieving a throughput of over 10,000 FPS for running MobileNetV2

on a single chip. To our best knowledge, the only current FPGA accelerator

reaching this level is AMD’s Alveo V70, running DPU C20B14CU1 [50] and

achieving 11,544.90 FPS. However, it primarily relies on the AI Engine (2-gen
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Table 4.18: Implementation Result of 7 URAM3BG Instances on VU13P

Device
VU13P VU13P Simultaneous

Individual Inst. 7 Inst. 1-6 Sum

Configuration URAM3BGx7 URAM3BG URAM3BG URAM3BGx7

Directive EBP

Overall

LUT 950671

LUTRAM 154892

FF 1412933

BRAM 1833.5

URAM 336

DSP 6816

Power(W) 124.081

Accelerator

LUT 646334

LUTRAM 86394

FF 974720

BRAM 1526

URAM 336

DSP 6804

Power(W) 85.065

clk2x(MHz) 600

Sim. CC
URAM 502929

SDRAM 578910

Act. CC
URAM 533240 533096 598497

SDRAM 631880 631886 1145725

Act. FPS
URAM 11814.56 1688.25 1503.766 10710.85

SDRAM 9970.242 1424.307 785.5286 6137.479

Act. Band URAM 12.22496 2.581298 2.299226 16.37666

(GiB/s) SDRAM 32.98214 5.415642 2.986815 23.33653
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AIE-ML tiles) unique to the Versal series, which has a significant advantage

over our DSP-based accelerator.

4.3.4 Implementation for Improved Performance

In Section 3.11.4, we introduced an improvement aimed at addressing the

severe throughput drop observed when two accelerator instances sharing the

same MIG run SDRAM3BG simultaneously, as noted in the previous section.

The new physical implementation configuration is named URAM3x2BG,

where “3” represents the batch size, and “x2” indicates that two sub-

instances with a batch size of 3 share the ports to reduce memory access

randomness and volume. Since this configuration aims to minimize the

routing impact caused by the MIG and AXI interconnect modules placed

centrally in the SLR, we need to deploy independent weight memories on both

sides for these two sub-instances. Thus, the hardware resource usage in this

configuration is close to the total usage of two URAM3BGs. The operational

instructions for URAM3x2BG are identical to those of configurations without

instance port sharing, and its input-output data format is fully compatible

with URAM6BG.

Even with minimized cross-region connections, leaving only essential

control signals and weight initialization buses, achieving the target frequency

of 600 MHz for clk2x remains challenging. To meet this frequency goal, we

imposed several layout constraints to ensure that the placement aligns as

closely as possible with our design. First, we ensured that shared modules

between the two instances are centrally located within the SLR, so the

signal fanout to corresponding modules in both instances has equal-length

paths. With the increased number of modules in the central region, and

additional signal fanouts to both sides, congestion in this area became even

more pronounced.

Originally, we made no modifications to the XDMA’s AXI bus, main-

taining a maximum width of 512 bits to fan out across the four MIGs in

the SLRs. However, XDMA’s bandwidth could not fully utilize a four-lane

512-bit AXI bus (up to a single 512-bit lane or four 128-bit lanes). Due to

the increased congestion in the central region, we adjusted the bus width to

a more suitable value. According to our simulation, the maximum achievable

throughput in this configuration aligns with twice the values for URAM3BG

and SDRAM3BG, reaching 3,579.0 FPS. Writing image data to SDRAM
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managed by the MIG requires a bandwidth of 1.34 GiB/s. Given a 250

MHz frequency for the SLR interconnect network, a 64-bit AXI interconnect

network between SLRs meets the bandwidth demand. We developed custom

modules to ensure the AXI interconnect correctly handles the bit-width

conversion.

Additionally, we constrained the placement of PE Arrays 0 and 1 within

each instance. Through repeated attempts, the automatic placer failed to

achieve optimal solutions. The most common outcome was arranging PE

Arrays 0 and 1 horizontally in the left space for one instance, while placing

them vertically on the right for the other instance, resulting in excessive

routing distances for signals from the central shared modules to the leftmost

PE Array. Another suboptimal outcome was placing both left and right

arrays vertically but inconsistently, with PE Array 0 positioned on the upper

left and on the lower right, leading to cross-routing and longer routing

distances. Thus, we opted for manual layout. In the floorplan shown in

Figure. 4.8, the central horizontal region of the SLR has a clear gap, and

each SLR is split into upper and lower sections. The upper section houses PE

Array 0, and the lower section PE Array 1, with the initialization modules

centrally located, ensuring equal-length fanout in the horizontal direction.

For the SLR occupied by XDMA, we used only half of it to house the physical

configuration for the URAM3x1BG accelerator.

Ultimately, we achieved the clk2x target frequency of 600 MHz. The

hardware resources used by the accelerator account for 37% of LUTs, 10%

of LUTRAM, 30% of FFs, 57% of BRAM, 26% of URAM, and 54% of

DSPs. Including platform components, resource utilization for the entire

device reached 51% of LUTs, 16% of LUTRAM, 39% of FFs, and 69% of

BRAM, with URAM and DSP percentages unchanged. Detailed information

is provided in Table. 4.19. Compared to URAM6BG implemented in

Section 4.3.2, URAM3x2BG’s resource usage is similar, except for slightly

higher BRAM and LUTRAM usage due to the addition of identical weight

memory on both sides of the SLR.

In terms of throughput, URAM3x2BG achieves a significant improve-

ment, reaching 3,377.5 FPS, while SDRAM3x2BG achieves 2,738.1 FPS. This

brings the total throughput to 11,821.5 FPS for the URAM configuration

and 9,642.0 FPS for the SDRAM configuration, representing notable gains

compared to previous results, especially for the SDRAM version, which

achieves approximately 1.6 times the prior performance.
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Table 4.19: Implementation Result of 3 URAM3x2BG Instances and 1

URAM3x1BG Instance on VU13P

Device VU13P

Configuration
URAM3x2BGx3+ URAM3x2BG URAM3x1BG

URAM3x1BGx1

Directive EBP

Overall

LUT 885870

LUTRAM 129119

FF 1360008

BRAM 1847

URAM 336

DSP 6648

Power(W) 144.55

Accelerator

LUT 647642 184786 93285

LUTRAM 79741 22693 11662

FF 1028063 293295 148177

BRAM 1526 436 218

URAM 336 96 48

DSP 6636 1896 948

Power(W) 104.581 29.782 15.234

clk2x(MHz) 600

Sim. CC
URAM 502929 502929

SDRAM 578910 578910

Act. CC
URAM 532940 532840

SDRAM 657390 630384

Act. FPS
URAM 11821.54 3377.491 1689.062

SDRAM 9642.003 2738.101 1427.701

Act. Band URAM 12.23233 3.216597 2.58254

(GiB/s) SDRAM 31.92529 8.832248 5.428548
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Figure 4.8: The floorplan for multiple instances.
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4.3.5 Utilizing Improvements for Previous Implementa-

tions

4.3.5.1 URAM4BG, SDRAM1BG and URAM2x2BG on ZYNQ
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Figure 4.9: Port allocation on ZYNQ UltraScale+ platform for improved

design.

We applied these subsequent improvements to the ZU3, ZU7. For the

ZU3, we used the SDRAM1BG configuration; for the ZU7, we implemented

URAM4BG. The new AXI port allocation is shown in Figure. 4.9. The

results are listed in Table. 4.20, showing a slight performance increase in the

new implementations.

As previously mentioned, the maximum AXI port width on the PS side

of the ZYNQ UltraScale+ platform is 128 bits, and increasing the port width

beyond this limit may not yield additional benefits. We are also exploring

ways to surpass this limit. A reasonable solution is to use two ports for ping-

pong operations, alternately transferring higher-width data bursts across the

two ports. These data are first processed through a FIFO to ensure that the

high-width side can transmit or receive data at full speed before converting

to a lower width that connects to the PS side’s AXI port.
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Table 4.20: Implementation Result with Improvements on ZYNQ Ultra-

SCALE+ Platform

Device ZU7 ZU3

Configuration URAM4BG SDRAM1BG

Directive EBP both, EBP

Overall

LUT 124708 38500

LUTRAM 13746 7901

FF 198410 62452

BRAM 248 158

URAM 64 -

DSP 1264 316

Power(W) 21.627 7.418

Accelerator

LUT 122085 35945

LUTRAM 13608 7763

FF 193665 57945

BRAM 248 158

URAM 64 -

DSP 1264 316

Power(W) 18.294 4.683

clk2x(MHz) 600 600

Sim. CC
URAM 502937 -

SDRAM 637501 502888

Act. CC
URAM 504938 -

SDRAM 640293 506430

Act. FPS
URAM 2376.529 -

SDRAM 1874.142 592.382

Act. Band URAM 2.94849 -

(GiB/s) SDRAM 6.58572 3.61872
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Figure 4.10: The Fusion of two AXI slave ports on ZYNQ UltraScale+

platform.

The specific connections, as shown in Figure. 4.10, are optimized per

port load to ensure that high-bandwidth-demanding ports receive sufficient

bandwidth. This approach allows us to implement the URAM2x2BG con-

figuration on the ZU7. Since the aim is to increase port width for higher

throughput, both instances continue sharing the weight memory despite

being split. The implementation results are shown in Table. 4.21, and

compared with Tables. 4.15 and 4.20, hardware resource usage between

URAM4, URAM4BG, and URAM2x2BG remains similar. However, the

URAM2x2BG configuration significantly enhances SDRAM mode through-

put, further closing the gap with URAM mode.

4.3.5.2 URAM2x4BG and URAM4x2BG on VU13P

Additionally, we split the URAM8BG configuration on the VU13P into

URAM2x4BG and URAM4x2BG with all other conditions unchanged. Since

the allocated layout area is a single SLR, there are no routing constraints

between instances, so all four instances share the weight memory. Since

URAM8BG already achieved the target frequency, its split versions also easily

reached this goal. The results, shown in Table. 4.22, reveal that while the split

implementations’ area remains nearly identical to URAM8BG, throughput

saw a substantial boost, especially with SDRAM-based instructions.
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Table 4.21: Implementation Result of a URAM2x2BG Instances on ZU7

Device ZU7

Configuration URAM2x2BG

Directive EBP

Overall

LUT 130220

LUTRAM 14975

FF 206765

BRAM 265

URAM 64

DSP 1264

Power(W) 19.338

Accelerator

LUT 121478

LUTRAM 13566

FF 192918

BRAM 248

URAM 64

DSP 1264

Power(W) 15.728

clk2x(MHz) 600

Sim. CC
URAM 502920

SDRAM 527504

Act. CC
URAM 505190

SDRAM 561004

Act. FPS
URAM 2375.344

SDRAM 2139.022

Act. Band URAM 2.94702

(GiB/s) SDRAM 7.516506
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Table 4.22: Implement Result of URAM2x4BG on VU13P

Device VU13P

Configuration URAM2x4BG URAM4x2BG

Directive ENDh EBP

Overall

LUT 348869 348302

LUTRAM 39950 38941

FF 526686 523293

BRAM 531.5 531.5

URAM 128 128

DSP 2531 2531

Power(W) 47.841 50.866

Accelerator

LUT 234920 235798

LUTRAM 21275 21319

FF 373193 373956

BRAM 368 368

URAM 128 128

DSP 2528 2528

Power(W) 35.18 34.369

clk2x(MHz) 600 600

Sim. CC
URAM 502920 502937

SDRAM 527520 637501

Act. CC
URAM 532829 532828

SDRAM 696823 751356

Act. FPS
URAM 4504.259 4504.268

SDRAM 3444.203 3194.225

Act. Band URAM 3.640384 3.640391

(GiB/s) SDRAM 10.61342 9.843101
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However, compared to SDRAM2x4’s simulation result, the achieved

throughput is significantly lower, reaching only 75.7%. This is because,

despite MIG providing a 512-bit, 300 MHz AXI slave port for 64-bit, 2,400

MT/s DDR4 SDRAM, the SDRAM interface is half-duplex; read and write

operations must alternate rather than occur simultaneously. Consequently,

the maximum bandwidth during full-speed read and write equates to only

half the effective width of the AXI bus. For the initial layers, the 512-bit

AXI bus’s read and write channels are fully occupied, causing delays as MIG

cannot handle such a large data volume without waiting.

In further simulation, we limited the AXI port’s throughput to one

transfer every two clock cycles, resulting in 631,701 clock cycles, which is

close to the actual FPGA-measured outcome. Note that restricting transfer

rates in the simulation might yield worse results than actual performance,

as we did not implement outstanding transactions in the simulation. This

limitation means that if there are bursts of high data transfer, the simulation

cannot balance the load by adding a FIFO.

On the other hand, the measured performance of the SDRAM4x2 config-

uration reached 84.8% of the simulation result, falling within the reasonable

margin of performance loss attributed to the MIG controller. However,

despite its higher efficiency, the achieved throughput is still lower than that

of the SDRAM2x4BG configuration. This indicates that while using wider

ports may result in efficiency loss, it positively impacts throughput, making

it a reasonable choice.

4.3.5.3 URAM4x4BG on VU13P

Splitting a single accelerator instance into multiple instances with mini-

mized inter-instance routing not only enhances throughput and simplifies

meeting target frequency requirements but also enables implementing a

highly parallel accelerator across multiple SLRs. We attempted to use

two SLRs on the VU13P for a URAM4x4BG configuration, with each SLR

containing two instances, and each pair having independent copies of weight

memory. Thus, cross-SLR connections consist only of control signals and

memory initialization buses. These signals have input/output registers at

the relevant module ports, mostly operating at clk1x, with a few multi-

cycle paths working at clk2x, meeting timing requirements consistent with

clk1x. Consequently, even without using Laguna registers for inter-SLR

113



communication and instead connecting directly, the timing requirements can

be met fairly easily.

The floorplan is shown in Figure. 4.11. Compared to the previous

setup using only one SLR, using two SLRs requires more considerations.

First, we placed the modules shared among the four instances at the top of

SLR2 to minimize the distance to SLR3 at the top. These modules mainly

communicate with the MIG, and to avoid occupying space designated for

the accelerator, we continue using the SDRAM located on SLR1, as in the

previous floorplan. However, since the connection from the center of SLR1

to the top of SLR2 is quite long, pipeline registers are required.

We used AXI register slice IP in timing-driven automatic multi-SLR

crossing mode for the connections. In this mode, the IP automatically

generates multi-stage pipeline registers based on the transmission distance

and creates a FIFO at the destination end to avoid using control signals

for long-distance pipeline registers. For the ADATA-related ports, half of

the endpoints are at the top of SLR2 and the other half at the bottom of

SLR3. When transferring data from the accelerator to the MIG (AR, AW,

and W channels), the AXI register slice consolidates the src end signals from

different SLRs near the destination MIG slave port using multiple chained

registers. However, when the MIG responds to the accelerator’s read/write

commands (R and B channels), due to the requirement that the FIFO on

the dest end of the AXI register slice must be placed together, signals can

only be transmitted to the top of SLR2. Further transmission to SLR3 skips

registers, and the ADATA input ready signal does not pass through registers,

causing the maximum frequency to drop sharply to below 400 MHz.

To address this, we added handshake registers between modules on the

ADTA AXI ports for each instance by channel. After adding these, the

accelerator’s maximum frequency increased to 519.5MHz. The failure to

achieve the target frequency of 600 MHz is not due to cross-SLR paths

but rather the relatively uniform distribution of inter-die connection points

created using silicon via technology. Multiple AXI Slice Register IPs are

scattered across SLR2 (the sparse yellow dots in SLR2 of Figure 4.11),

consuming a large number of vertical routing resources. This prevents the

computation and weight modules located in SLR2 from being compactly

placed, ultimately lowering the frequency. Although relocating the AXI

Interconnect module to the top of SLR2 could reduce the number of paths

crossing SLR2, it would excessively encroach on the accelerator’s available
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Figure 4.11: The floorplan for single instances crossing two SLRs.
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area. Thus, we had to accept the current result. The implementation details

are shown in Table. 4.23, and the actual operating frequency obtained by

adjusting the MMCM is in the bracket. Actual verification on the VU13P

accelerator showed that URAM-based instructions ran for 523,093 clock cy-

cles, achieving a throughput of 7,933.6 FPS, reaching 96.1% of the simulation

results; SDRAM-based instructions ran for 923,216 clock cycles, achieving a

throughput of 4,495.2 FPS, only 69.1% of the simulation. This discrepancy

stems from the same reasons as for URAM2x4BG running SDRAM-based

instructions: we limited port transfer speed during simulation, which then

took 930,062 clock cycles, longer than actual runtime.

4.3.6 Implementation on Ultra-Small Devices

Section 3.11.3 introduces a method to implement concat and split the

execution of inverted residual blocks without any overhead, enabling our

accelerator to fit ultra-small devices. Spartan and Artix devices have very

limited hardware resources, and MIG and AXI interconnect components can

take up more than half of available resources. Therefore, we used the smallest

devices in the ZYNQ 7000 series, specifically the XC7Z010CLG400-1 (7Z010)

and XC7Z007SCLG400-1 (7Z007S), as listed in Table. 4.1. The DC = 4

configuration would require at least 124 DSPs (PPE = DC × 2), which is

too large to fit. We reduced it to DC = 2, lowering DSP requirements to

42. Due to the limited LUT resources, adapting our accelerator became

challenging, requiring us to move some accumulation operations to the DSPs

using ALU24 mode, increasing DSP utilization to 50%.

Compared to the DSP48E2 [30] in the UltraScale series (with a multiplier

width of 27 × 18 bits), the DSP48E1 [29] in the 7 series has a multiplier

width of only 25 × 18 bits. Thus, when using DSP packing, the cascade

lacks sufficient guard bits, requiring additional LUTs for addition in the 7

series, reducing area efficiency. For the 7Z007S, this is still insufficient, so we

allowed the remaining DSPs to inefficiently perform 8 × 8 multiplications in

the PEDW Array.

In the previous configuration, the accelerator’s instruction memory used

631 LUTs, which is excessive for small devices. We moved this memory to off-

chip memory and accessed it via an additional AXI port when needed. Due to

the limited BRAM in the 7Z007S, we switched the BRAMs used for the SWU

and DWC to a lower-frequency but more resource-efficient configuration. The
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Table 4.23: Implement Result of URAM4x4BG on VU13P

Device VU13P

Configuration URAM4x4BG

Directive ENDh

Overall

LUT 595180

LUTRAM 65533

FF 924871

BRAM 899.5

URAM 256

DSP 5059

Power(W) 88.264

Accelerator

LUT 471987

LUTRAM 42007

FF 751793

BRAM 736

URAM 256

DSP 5056

Power(W) 67.542

clk2x(MHz) 519.5(518.75)

Sim. CC
URAM 502939

SDRAM 637523

Act. CC
URAM 523093

SDRAM 923216

Act. FPS
URAM 7933.58

SDRAM 4495.156

Act. Band URAM 4.696508

(GiB/s) SDRAM 12.87997
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remaining BRAMs are used for weight memory, with approximately 32 to 36

available. For each PE Array, we used 16 BRAMs, as there are two groups

in total, with 8 BRAMs per group. The height of cascaded DSPs is two, so

each position has four available DSPs. At this point, the port width is 16,

and the total depth of 4 BRAMs is 8,192.

Finally, we successfully adapted the accelerator to these ultra-small

devices. The resource utilization is shown in Table. 4.24, with a maximum

operating frequency of 330.8 MHz for clk2x on the 7Z010 and 230 MHz on the

7Z007S. When deployed on 7-series FPGA devices, the maximum frequency

varies by architecture. For the Artix fabric used in the 7Z010 and 7Z007S, the

maximum frequency is about 330 MHz, while for the Kintex/Virtex fabric,

it reaches 430 MHz, far below the 600 MHz of the UltraScale+ series.

When running MobileNetV2 instructions, starting from block 6, ad-

ditional independent weight initialization time is required, which in the

previous configuration was only needed after block 11. Block 14 was split

into two parts. The second 1×1 convolution layer in block 16 and the

head convolution layer were each divided into four parts, and the final fully

connected layer was split into 16 parts.

Simulation results showed that 5,631,128 clock cycles were required,

resulting in a throughput of 28.4 FPS on the 7Z010 and 20.4 FPS on the

7Z007S. Actual measurements on the 7Z010 development board recorded

5,640,858 clock cycles, equivalent to 28.4 FPS.

In this section, we successfully deployed our accelerator on an ultra-small

FPGA, using the zero-overhead concat method. This further demonstrates

that the improved accelerator requires significantly fewer resources than other

methods, highlighting its flexibility and scalability.
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Table 4.24: Implement Result of SDRAM1BG on 7Z010 and 7Z007S

Device 7Z010 7Z007S

Configuration SDRAM1BG

Directive - -

Overall

LUT 14187 14122

LUTRAM 4733 5369

FF 15345 16316

BRAM 58 50

URAM - -

DSP 50 66

Power(W) 2.496 2.029

Accelerator

LUT 13051 13005

LUTRAM 4627 5263

FF 13662 14643

BRAM 58 50

URAM - -

DSP 50 66

Power(W) 0.896 0.501

clk2x(MHz) 330.8(320) 230

Sim. CC
URAM - -

SDRAM 5631128 5631128

Act. CC
URAM -

SDRAM 5640858

Act. FPS
URAM -

SDRAM 28.36448

Act. Band URAM -

(GiB/s) SDRAM 0.187189
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Chapter 5

Analysis

In the experimental chapter, we analyzed many metrics. In this chapter, we

will provide additional analysis on aspects that were not previously covered.

The relevant content of Sections 5.1 and 5.2 has been presented in [36].

5.1 Bandwidth Savings

Since our goal is to increase throughput by reducing external memory

accesses, in this section we discuss how much memory access our accelerator

saves compared to a typical Overlay architecture accelerator.

First, we look at the unmodified design implemented on the ZYNQ

platform prior to the improvements from Section. 3.11. We calculated the

memory bandwidth required by the accelerator, as shown in Table. 5.1. For

the URAM version, only weights, input images, and output results need to

be transferred during runtime. In contrast, the SDRAM version requires

additional transfers of feature maps between inverted residual blocks, so its

bandwidth demand is higher than the URAM version. Both versions avoid

transferring feature maps within the inverted residual blocks. The number

of channels within an inverted residual block in MobileNetV2 is six times

that between blocks. Therefore, our design in SDRAM mode theoretically

saves up to 88.9% of external memory access when transferring feature maps.

When running three-layer blocks, the average savings is 87.66%, slightly lower

than the theoretical value of 88.9% due to varying input and output sizes in

certain blocks. The overall model savings is 77.46%.

The multi-instance computation modules that share weights and process

multiple images in parallel saved a significant amount of bandwidth for weight

transfers. ZU7 SDRAM4 requires 2.4 times the data transfer amount of

ZU3 SDRAM1 but processes four times the number of images. If multiple

images could not be processed in parallel with shared weights, maintaining
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Table 5.1: Off-chip SDRAM Access

Single Run Bandwidth Feature Map/Frame

ZU7 URAM4 5203.75KiB 2.92GiB/s 394KiB

ZU7 SDRAM4 16796.75KiB 7.13GiB/s 3292.25KiB

ZU3 SDRAM1 6920KiB 3.87GiB/s 3292.25KiB

the same throughput on ZU7 SDRAM4 would require an additional 4.62

GiB/s bandwidth to transfer weights needed for the extra three images per

batch.

For example, with ZU7 SDRAM4, if all data were transferred from/to

external memory and FPS remained unchanged, the read/write data for b

would require an additional 11.48 GiB/s bandwidth. Similarly, c would

need an additional 7.74 GiB/s, plus the aforementioned 4.62 GiB/s, totaling

30.97 GiB/s. According to our measurements, when ZYNQ UltraScale+ is

equipped with 64-bit 2,400MT/s DDR4 SDRAM, the maximum bandwidth

for the PL side accessing PS-side SDRAM is about 13 GiB/s, which cannot

meet these demands. Thanks to our bandwidth-saving design, even the

highest-bandwidth-demanding design doesn’t fully utilize the platform’s

maximum bandwidth.

Next, we provide a detailed analysis of how the proposed method impacts

bandwidth savings. Figure. 5.1 shows the total data transfer needed to infer

a single image at each location when running MobileNetV2 for all three-layer

blocks, and a and d include inputs and outputs for two-layer blocks as well

as other standalone layers.

The bandwidth values in the results tables of the previous sections were

calculated based on the values in Figure. 5.1 and subsequent Figure. 5.2. For

a to f , the calculation is based on the actual transmitted feature map as

HFM ×⌈WFM

2

⌉×2×C ′
FM ×BWA, where BWA is the quantization bit width,

and CFM is padded according to the rules described in previous sections, to

the nearest multiple of 8, PPE, or 2×PPE is explicitly padded to the nearest

multiple of 2 in the formula. During the final fully connected layer of the

model, since the feature map size is 1×1, there are no two pixels, leading to

a small amount of waste.

For g , the transmission amount is calculated based on the padded

channel count. For conventional convolutions, the formula isK×K×C ′
IFM×

C ′
OFM × BWW + 2 × COFM × BW ′

Q, where BWW is the quantization bit
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Output Results: 2KiB

Weight:
PE Array 0: 1803KiB
PE Array 1: 1656.75KiB
PE Array DW: 168KiB
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Figure 5.1: The amount of data transfer required for inferring a single image.

width, and BW ′
Q is the bit width of the quantization parameter, which is 18,

rounded up to the nearest power of 2. The factor of 2 accounts for the two

quantization parameters, γ and β. The fully connected layer calculation is

similar. Depthwise convolutions do not require multiplication by CIFM .

The calculations from a to g do not account for additional waste caused

by AXI burst transfers. Simulations can include this waste, and the ratio

of bandwidth calculated from the table to the simulated results varies by

scenario. When the burst length is 16:

• For ZU3 SDRAM1, the ratio is 99.55%.

• For ZU7 URAM4, the ratio is 99.42%.

• For ZU7 SDRAM4, the ratio is 99.82%.

When our accelerator infers multiple images simultaneously, a to f

increase based on the number of images, while g remains unchanged.

Considering a real-world scenario: when the batch size is 4 and throughput

is approximately between the ZU7 SDURAM4 and ZU7 URAM4 results,

around 2,000 FPS, it would save bandwidth equivalent to g × 2000 × 3
4
=
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Figure 5.2: The amount of data transfer required for inferring a single image

with imporved design.

5.19 GiB/s. Our block-level execution method, which only stores inter-

block data in external SDRAM, saves ( b + c ) × 2000 = 21.58 GiB/s

of bandwidth. Temporarily storing this data on-chip using URAM saves

( a + d + e ) × 2000 = 5.53 GiB/s of bandwidth, and the final required

bandwidth is f × 2000 + g × 2000× 1
4
= 2.48 GiB/s. This shows that our

block-level execution method contributes the most savings. When using a

typical Overlay architecture accelerator, the total bandwidth requirement is

the sum of the previous results: 34.78 GiB/s. For a Dataflow architecture

accelerator, the required bandwidth is f × 2000 = 0.75 GiB/s.

These calculations show that our method saves approximately 76.97%

(SDRAM version) to 92.87% (URAM version) of bandwidth compared to

Overlay architecture accelerators. Compared to Dataflow architecture accel-

erators, we have only minor weight transfer overhead, giving our architecture

better scalability and flexibility.
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5.2 Achieving the Throughput Limit

For the case with the highest bandwidth in Table. 5.1, ZU7 SDRAM4, we

analyzed the bandwidth usage during the execution of each block/layer. Due

to the complexity of the actual runtime, the exact timing for each module

and memory sampling module is staggered, and their execution durations

do not fully align. This makes it difficult to determine when one module

in a block completes its current task and moves on to the next block while

other modules are still finishing up their tasks. As a result, these overlapping

times cannot be easily attributed to a single block. Given the accuracy of our

throughput estimation model, we analyzed the execution time based on this

model. Figure. 5.3 shows the ratio of the average off-chip memory bandwidth

to the execution time of each current block, where the green area includes

feature map transfers and the blue area represents weight transfers.
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Figure 5.3: Average off-chip memory bandwidth requirements in GiB/s for

each block/layer when running MobileNetV2 with ZU7 SDRAM4.
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The decimal labels on top of each bar show the average off-chip memory

bandwidth requirements in GiB/s for feature map and weight transfers, with

blue labels indicating only weight transfers. The integer numbers in brackets

after labels represent the number of clk1x clock cycles required to execute

each block/layer. For clarity, the bar width also represents execution time.

The chart shows that AXI port memory access is relatively high when

executing the initial and final blocks/layers, but lower for the middle blocks.

Early on, feature map transfers dominate, while weight transfers dominate

later on. When executing the “stem” convolution layer and “blk0”, we can

see that the memory access frequency, excluding the blue weight transfers,

reaches around 9 GiB/s on average. These layers lack shortcut paths and

only use ADATA’s MAXI0 port, meaning the read and write channels for

that port are fully utilized. Additionally, “blk2” has an average memory

access bandwidth of 10.14GiB/s due to a shortcut path that divides the

load between the read and write channels of ADATA’s MAXI0 port and the

read channel of MAXI1, resulting in an average of 3.38GiB/s per channel,

without reaching full capacity. Although these blocks/layers saturate more

than one AXI port’s bandwidth, the sequential read/write operations are

easily managed by the hard memory controller on the PS side of the ZYNQ

UltraScale+.

In the fully connected layers at the end, which involve a large number

of parameters, the weight initialization module consumes a very high band-

width. The blue portion of these bars, representing weight transfer, shows an

average of around 9GiB/s (with an additional “init6” for weight initialization

in the head convolution layer). This indicates 100% utilization of the read

channels of the AXI master ports of the weight initialization modules in PE

Arrays 0 and 1. However, the hard memory controller on the PS side does

not become a bottleneck for these fully loaded sequential read ports.

Among all tasks, “init3” and “init4” show the highest transfer rates.

However, the narrow width of these bars indicates that these initializations

take very little time relative to the other instructions. Even if a higher

bandwidth requirement slightly extends the initialization time, the overall

performance impact is minimal, as confirmed by our measurements.

The weight transfers in the blue area are also necessary for the URAM

version. Additionally, in the URAM version, image prefetching can begin

as early as during the execution of “blk2” and should be completed before

image processing ends. This prefetching can utilize idle bandwidth flexibly,
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ensuring more stable throughput for URAM.

We tested performance degradation when the CPU consumes its maxi-

mum SDRAM bandwidth to assess the worst-case impact on our accelerator.

The CPU’s peak memory bandwidth is 14.06 GiB/s, which drops to 10.44

GiB/s when the accelerator is running. As SDRAM bandwidth usage

approaches its limit, our ZU7 SDRAM4 performance decreases to 1,558 FPS.

Next, we aimed to achieve maximum throughput under bandwidth lim-

itations. Since the URAM version’s upper limit is too high for current

FPGA devices, we could only test the SDRAM version with a lower limit.

The ZU7’s hardware resources are insufficient to achieve throughput at the

PS-side DDR4 SDRAM bandwidth saturation limit. Utilizing the CPU to

use part of the bandwidth results in dynamic bandwidth allocation by the

memory controller, which cannot establish a “hard” limit.

After careful consideration, we decided to limit the maximum bandwidth

via the AXI interface. By connecting all AXI master ports of our accelerator

through a shared AXI SmartConnect to the PS, we limited our accelerator’s

memory bandwidth to 4.47 GiB/s × 2 (full duplex). In contrast to Fig-

ure. 3.1, where half-duplex SDRAM is used, we needed to consider reads and

writes separately here. In this setup, the throughput limit was 1,632 FPS.

We measured an actual throughput of 1,531 FPS on the evaluation board,

reaching about 94% of the upper limit.

Table. 5.2 provides the maximum bandwidth required per layer/block,

with separate statistics for read and write bandwidths, along with the ratio

of required to available bandwidth. When the ratio is below 1, bandwidth

is not a bottleneck; when it exceeds 1, bandwidth becomes a bottleneck. In

this case, multiplying the ratio by the originally estimated runtime yields

the estimated runtime under bandwidth constraints. From this table, we

see that write operations never become a bottleneck, while read operations

are a bottleneck in the initial and final layers, reducing throughput. Layers

or blocks that do not become bottlenecks do not fully utilize the available

bandwidth, hence achieving only 94% of the limit. This indicates that our

accelerator can effectively utilize available bandwidth in most layers.

The data transfer requirements throughout the model when running one

image with the improvements related to PPE enabled design are shown

in Figure.5.2. In Figure. 5.2, compared to Figure. 5.1, for a to f ,

only the channel counts need to be padded to the nearest multiple of 8 or

2 × 8. For g , the number of invalid channels is reduced, and the padded
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Table 5.2: Ratio of required bandwidth and available bandwidth.

Bandwidth(GiB/s) Ratio

read write read write

stem 4.476 4.470 1.001 1.000

blk0 4.497 4.470 1.006 1.000

blk1 4.514 1.118 1.010 0.250

blk2 6.806 3.338 1.522 0.747

blk3 3.743 0.894 0.837 0.200

blk4 5.701 2.608 1.275 0.583

blk5 5.867 2.608 1.313 0.583

blk6 4.820 1.490 1.078 0.333

blk7 4.820 1.490 1.078 0.333

blk8 4.820 1.490 1.078 0.333

blk9 5.193 1.490 1.162 0.333

blk10 3.563 1.490 0.797 0.333

blk11 3.659 0.993 0.819 0.222

init0 4.470 0.000 1.000 0.000

blk12 4.153 0.993 0.929 0.222

init1 4.470 0.000 1.000 0.000

blk13 5.308 0.473 1.187 0.106

init2 4.470 0.000 1.000 0.000

blk14 4.977 0.596 1.113 0.133

init3 11.074 0.000 2.477 0.000

blk15 4.977 0.596 1.113 0.133

init4 11.074 0.000 2.477 0.000

blk16 1st 2.423 3.576 0.542 0.800

init5 4.470 0.000 1.000 0.000

blk16 2nd 7.357 1.192 1.646 0.267

init6 8.941 0.000 2.000 0.000

head 2.427 3.576 0.543 0.800

init7&gap 7.791 0.160 1.743 0.036

fc(1/4) 9.402 0.092 2.103 0.021

init8 8.941 0.000 2.000 0.000

fc(2/4) 9.402 0.092 2.103 0.021

init9 8.941 0.000 2.000 0.000

fc(3/4) 9.402 0.092 2.103 0.021

init10 8.941 0.000 2.000 0.000

fc(4/4) 5.588 0.894 1.250 0.200
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CIFM for conventional convolutions and COFM for depthwise convolutions

are both decreased. However, to avoid increasing the complexity of the

weight initialization module, COFM is still padded to the nearest multiple

of PPE or 2× PPE for weight initialization, even though the padded weights

may not always participate in computations. Similarly, simulations were

used to assess the waste caused by burst transfers. The ratio of bandwidth

calculated from the table to simulation results also varies by scenario. When

the burst length is 16, across all scenarios (including results calculated

without the improvements in Figure. 5.1), the best case is 99.95% (VU13P

SDRAM4x4BG). The worst case is 99.42% (ZU7 URAM4).

Our implementation on the high-end FPGA device VU13P achieves

ultra-high parallelism, but without a multi-instance shared-port design, we

cannot fully utilize the bandwidth provided by the 64-bit 2,400 MT/s DDR4

SDRAM. The design with two instances sharing ports barely utilizes the

bandwidth fully when executing the “stem” convolution layer as shown in

Figure. 5.4 but does not exceed it, while the design with four sub-instances

sharing ports can exceed it.

Figure. 5.5 shows the average bandwidth utilization when running each

block or layer in the SDRAM2x4BG scenario. The figure shows that only

the “stem” convolution layer, “blk0”, and “init7 & gap” fully utilize the

bandwidth.
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Figure 5.4: Average off-chip memory bandwidth requirements in GiB/s for

each block/layer when running MobileNetV2 with SDRAM4x2BG on VU13P.
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Figure 5.5: Average off-chip memory bandwidth requirements in GiB/s for

each block/layer when running MobileNetV2 with SDRAM2x4BG on VU13P.
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Figure 5.6: Average off-chip memory bandwidth requirements in GiB/s for

each block/layer when running MobileNetV2 with SDRAM4x4BG on VU13P.
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For an ultra-high parallelism URAM4x4BG accelerator built using two

SLRs on the VU13P running SDRAM-version instructions, the average data

transfer per clock cycle per layer or block is shown in Figure. 5.6. The figure

shows that in most layers, all available DDR4 SDRAM bandwidth is fully

utilized. For SDRAM4x4BG using 64-bit 2,400 MT/s DDR4 SDRAM, the

theoretical throughput upper limit is 6,241.418 FPS (when MIG efficiency

is 100%, but unfortunately, under absolutely ideal conditions, the efficiency

can only reach 91%.), while our accelerator achieved an actual throughput

of 4,495 FPS, reaching 72%. Since the latter layers or blocks did not fully

utilize bandwidth, further throughput improvement would require increased

parallelism, particularly in the number of PEs per image (PPE). However, the

device capacity of VU13P no longer allows us to further increase parallelism.

Therefore, even with a large accelerator using resources from two SLRs, full

utilization of the off-chip memory bandwidth is unachievable, highlighting

the low memory bandwidth required by our accelerator.

These experiments show that our accelerator’s performance remains rel-

atively stable even under limited bandwidth conditions. However, achieving

full bandwidth utilization to reach the throughput limit is challenging with

current devices, further demonstrating the low off-chip memory bandwidth

requirement of our accelerator.

5.3 Effective DSP Utilization Ratio

Our accelerator primarily relies on DSPs for computation, making the

effective DSP utilization ratio a key efficiency metric. Performance counters

were integrated into the simulation to monitor this indicator. As shown

in Table. 5.3, the results for ZU3 SDRAM1 and ZU7 URAM4 are almost

identical, while ZU7 SDRAM4 shows a noticeable drop in performance.

Furthermore, the DSP utilization ratio for PE Array 0 is much higher than

for PE Array 1. This is because the early layers require a longer execution

time but have fewer output channels, making parallel computation with

dual PE Arrays less effective. As a result, PE Array 1 remains idle for

extended periods. Additionally, as the feature map size decreases, PE Array

1’s workload significantly declines. When running the entire model, the

poorer performance is primarily due to the fully connected layer, which has

a low computation load but large weight size, leading to extended time for

initialization.
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Table 5.3: Effective Working Time Ratio of DSP

The Entire Model Tree-layers Block Only

PE Array 0 PE Array 1 PE Array 0 PE Array 1

ZU7 URAM4 82.08% 54.63% 95.06% 65.59%

ZU7SDRAM4 62.18% 41.39% 87.86% 61.20%

ZU3 SDRAM1 82.00% 54.58% 95.06% 65.59%

For this metric, our accelerator demonstrates a high DSP utilization ratio

when processing the middle layers with a high computational load, indicating

efficient use of hardware arithmetic resources. Table. 5.4 also provides the

DSP utilization ratios in each PE Array per layer, calculated from the time

the first valid data is received until layer execution is complete. Since the

ZU3 SDRAM1 and ZU7 URAM4 results are nearly identical, only one is

displayed.
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Table 5.4: Effective Working Time Ratio of DSP for Each Block/Layer

ZU7 URAM4 ZU7 SDRAM4

PE Array 0 PE Array 1 PE Array 0 PE Array 1

stem 100.00% 53.20%

blk0 96.58% 23.72%

blk1 100.00% 25.36% 74.49% 19.41%

blk2 95.38% 93.45% 95.38% 93.45%

blk3 99.43% 26.19% 99.43% 26.19%

blk4 92.05% 87.92% 92.05% 87.92%

blk5 87.71% 87.96% 87.71% 87.96%

blk6 97.72% 53.66% 97.72% 53.66%

blk7 100.00% 100.00% 100.00% 100.00%

blk8 100.00% 100.00% 100.00% 100.00%

blk9 100.00% 100.00% 100.00% 100.00%

blk10 87.34% 100.00% 87.34% 100.00%

blk11 98.72% 100.00% 98.72% 100.00%

blk12 100.00% 100.00% 99.84% 100.00%

blk13 100.00% 51.53% 99.84% 51.53%

blk14 100.00% 100.00% 99.66% 100.00%

blk15 100.00% 100.00% 99.66% 100.00%

blk16 1st 100.00% 99.66%

blk16 2nd* 100.00% 85.64% 82.43% 72.42%

head* 100.00% 100.00% 99.99% 100.00%

fc(1/4)* 99.85% 100.00% 58.21% 58.25%

fc(2/4)* 99.85% 100.00% 74.77% 74.89%

fc(3/4)* 99.85% 100.00% 74.77% 74.89%

fc(4/4)* 99.85% 100.00% 74.77% 74.89%

* Running at the parallel execution mode.
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Chapter 6

Comparison

We compared our accelerator (the versions without further improvements, so

there are no “B” or “G” marks in the configuration name) with other works.

Table. 6.1 shows the implementation comparison on mid-range devices, and

Table. 6.2 shows the comparison on cost-optimized devices. The content

related to comparisons has been presented in [36].

In the mid-range device comparison, our ZU7 URAM4 used the fewest

LUTs but outperformed other works in terms of FPS, FPS/DSP, and

FPS/1kLUT, even when many of these works used the larger ZU9. Our

ZU7 SDRAM4 achieved slightly lower FPS than others but maintained

comparable throughput with significantly lower resource utilization.

In the cost-optimized device comparison, since few works implement the

full MobileNetV2, we included works that use custom low-bit quantized

networks. Our ZU3 SDRAM1 outperformed all other works, even surpassing

most mid-range device implementations.

Regarding on-chip memory usage, our ZU7 URAM4 utilized a large

amount of on-chip memory, whereas ZU7 SDRAM4 used less on-chip memory

compared to most other works. ZU3 SDRAM1 had comparable on-chip

memory capacity with other works.

In Tables. 6.1 and 6.2, [1] is a fast Overlay architecture accelerator

on all types of devices, designed with dedicated modules for depthwise

convolution layers. It establishes a data path from expanded convolution

layers to depthwise convolution layers, allowing these two layers to execute

continuously. On cost-optimized devices, its area efficiency (FPS per DSP

and FPS per 1kLUT) is comparable to our design. However, on mid-range

devices, its area efficiency drops significantly, falling far below our design. Its

performance on mid-range devices cannot improve further because, according

to our calculations, the average bandwidth is about 8.9 GiB/s, which should

reach the peak limit. On the other hand, on cost-optimized devices, it
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Table 6.1: Comparison on Mid-range Devices

[1] [51] [7] [52] [8] [14]* [53]* ours

2019 2020 2021 2021 2022 2023 2020 URAM4 SDRAM4

Network MobileNetV2 MobileNetV1 MobileNetV2

FPGA ZU9 7K325t 7V690t ZU9 ZU9 ZU9 Alveo U250 ZU7 ZU7

FPS 810 326 302 382 538 1910 1800 2350 1780

Top-1(%) 68.1 - 70.8 72.0 65.67 72.98 70.4 71.55 71.55

Prec. w8a8 w8a8 w8a8 w8a8 w8/w4a5 w8a8 w4a4 w8a8 w8a8

DSP 2070 704 2160 576 2092 1283 109 1264 1264

BRAM 771 192.5 941.5 - 440.5 691 885 248 248

URAM 0 0 0 0 0 0 22 64 0

LUT 162k 174k 308k 125k 180k 170k 474k 123k 122k

FF 301k 241k 433k 143k - 154k 463k 195k 197k

FPS/DSP 0.39 0.46 0.15 0.66 0.26 1.49 16.51 1.86 1.41

FPS/1kLUT 5.00 1.87 0.98 3.06 2.99 11.20 3.80 19.10 14.50

* Dataflow architecture accelerator.
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Table 6.2: Comparison on Cost-optimized Devices

[1] [8] [11]* [54] [55] [13]* ours

2019 2022 2018 2019 2021 2021 SDRAM1

Network MobileNetV2 Custom MobileNetV2

FPGA ZU2 7Z020 ZU3 ZU3 ZU3 ZU3 ZU3

FPS 205 132 183 66 48 77 586

Top-1(%) 68.1 65.57 50.3 68.3 71.8 70.06 71.55

Prec. w8a8 w8/w4a5 w1a2 w4a4 w1a1.4 wmixeda8 w8a8

DSP 212 208 - 360 224 360 316

BRAM 145 123 216 159 201 215.5 158

LUT 31k 41k 36k 52k 51k 61k 39k

FF 47k - - 42k - 55k 62k

FPS/DSP 0.97 0.73 - 0.18 0.21 0.21 1.85

FPS/1kLUT 6.61 3.20 5.08 1.27 0.94 1.26 15.03

* Dataflow architecture accelerator.
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does not reach the bandwidth limit and is thus less affected by bandwidth

constraints.

Their performance is lower than ours because they used a smaller ZU2

device as a cost-optimized option. Regarding FPS per DSP, our design’s lead

on cost-optimized devices is less than on mid-range devices.

[53] and [11] are Dataflow architecture accelerators built by FINN. As

previously mentioned, running large models on them requires a large amount

of on-chip memory. Even with the Alveo U250 (whose LUTs are 8.5× and

DSPs are 7.1× that of the ZU7), its performance is comparable to ours.

Due to the lack of DSP use for 4-bit multiplication, [53]’s FPS per DSP

is extremely high. In [11], due to memory capacity limitations, custom

networks were adopted. This work used low-bit binary neural networks

(BNNs) with fewer parameters, so its accuracy is not comparable. Except for

on cost-optimized devices, almost all works trade off between performance

and accuracy. Our design’s FPS per DSP and FPS per 1kLUT are much

higher than other works, making our design highly area-efficient.

The Dataflow architecture accelerator introduced in [14] is targeted at

MobileNetV2. Compared to our ZU7 URAM4, it achieves slightly lower

throughput on a larger device, yet has significantly higher LUT utilization.

As a Dataflow architecture accelerator, it is difficult to port to smaller

devices, reducing its flexibility and scalability. It uses a modified version of

MobileNetV2, resulting in higher accuracy than the original MobileNetV2.

Additionally, [14] proposed a hybrid approach of using both on-chip and

off-chip memory for storing weights. According to the information provided

in the paper, the final fully connected layer weights are stored off-chip. If all

3.53M parameters of MobileNetV2 were stored on-chip, at least 766 BRAMs

with the capacity of 36Kbit would be required. However, by moving the final

fully connected layer’s weights off-chip, the requirement is reduced to just

488 BRAMs. This suggests that approximately 200 BRAMs are used for

FIFOs, row buffers, and filter buffers.

In contrast, our design uses only 128 BRAMs for weights and 30 BRAMs

per image processed in parallel for row buffers and filter buffers. Additionally,

in the URAM version, 16 URAMs per image are allocated for inter-block

buffering. As a result, the required on-chip weight memory capacity in our

reference design is reduced to 16.7% of a conventional Dataflow architecture

accelerator and 26.2% of [14].

If we use the minimum required memory depth of 1,600 instead of
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the rounded-up value of 2,048—meaning all blocks are executed without

splitting—then the BRAM usage for weights reduces from 128 to 96 (plus

a small amount of LUTRAM). In this case, the required on-chip weight

memory drops to 12.5% of a conventional Dataflow architecture accelerator

and 19.7% of [14].

If split-execution is applied, as shown in Table 4.24 in the previous

chapter, the BRAM usage for weights further decreases to 32. This value

is already lower than the on-chip memory requirements of most Overlay

architecture accelerators.

In Table. 5.1, we provide additional information about the amount of data

transfer required to process a single frame by transferring feature map data

to off-chip SDRAM. As [52] reported, their result was 3,392 KiB, slightly

higher than our SDRAM version but significantly higher than our URAM

version.

6.1 Running Other Networks

Our accelerator can be adapted to different network models by modifying the

modules and interconnect structures shown in Figure. 3.2. Therefore, we also

compare the performance of our accelerator architecture when running dif-

ferent networks. It also includes computationally intensive network models,

for which the FPGA-related academic community mainly focuses on pruning

and using lower bit quantization. Only commercial accelerator IP products

support computing conditions consistent with ours, and there are also few

accelerator works targeting these remaining atypical network models, so no

comparison with other works is performed. The content related of this

section has been presented in [36].

The example configuration in Figure. 3.2 enables our accelerator to run

the Minimalistic version of MobileNetV3 [56] without any modifications. The

Minimalistic version is a streamlined network more suited to specialized

accelerators. Compared to the standard MobileNetV3, it replaces 5×5

convolution kernels with more area-efficient 3×3 kernels and removes the

Squeeze-and-Excitation (SE) block [44]. The SE block globally averages the

feature map of the depthwise convolution output, then applies two fully

connected layers (or 1×1 convolution layers) to “squeeze” and “expand”

back to the original channel count to compute scaling weights for each

channel. This scaling weight is then multiplied by the depthwise convolution
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Figure 6.1: The configuration for ResNet-50.

result, channel by channel. Global pooling within the block requires that

the depthwise convolution in the preceding module be fully completed to

produce an output. After two fully connected layers, data from the previous

layer must also be read, which reduces efficiency on both dedicated hardware

and on Mobile CPUs (the original target of MobileNet). Thus, the SE block

is removed in the Minimalistic version of MobileNetV3.

Running EfficientNet b0 requires replacing the SWU with a K=5 version.

Additionally, some of the simplifications applied to the Minimalistic version

are also necessary, such as removing the SE block. Due to the increase in the

maximum convolution kernel size, the number of compute units required per

PE in the PEDW Array increases to 25
9
of the original amount. We halved

PPEDW to maintain reasonable LUT utilization.

EfficientNetV2 requires adding a path from PE Array 0 to PE Array 1.

As its inter-block feature maps are too large to fit into the URAM of ZU7,

there is no URAM version.

Running ResNet-50 requires modifying its structure to match that in

Figure. 6.1, removing the PEDW Array and adding two additional PE

Arrays. Along with the two original PE Arrays, PE Arrays 1 to 3 execute 1 ,

2 , and 3 in Figure. 2.2b, while PE Array S executes 4 . Given the large
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Table 6.3: Evaluation of Running Other Networks

Network GMACs Params DSPs FPS Bandwidth GMAC/s

MobileNetV2
URAM4

0.3 3.53M
1264 2437 3.02GiB/s 731

SDRAM4 1264 1849 7.20GiB/s 555

MobileNetV3 URAM4
0.065 2.09M

1264 6236 5.53GiB/s 405

Small Minimalistic SDRAM4 1264 3538 7.77GiB/s 230

MobileNetV3 URAM4
0.209 4.00M

1264 2634 3.56GiB/s 551

Large Minimalistic SDRAM4 1264 1869 7.79GiB/s 390

EfficientNet b0
URAM4

0.39 4.83M
1232 1766 2.75GiB/s 689

SDRAM4 1232 1490 6.49GiB/s 581

EfficientNetV2-S(P) SDRAM4 8.37 17.78M 1264 99 4.06GiB/s 826

EfficientNetV2-S(S) SDRAM4 8.37 17.78M 1264 83 2.07GiB/s 699

ResNet50 SDRAM4 4.09 24.40M 1576 237 5.80GiB/s 968

weight size for each layer, URAM is also used to store weights. In the fourth

stage, the weight size for even a single block exceeds URAM capacity, so a

parallel execution strategy is used to process all layers in this stage.

In our evaluation, we considered the range of resource usage within

the ZU7 and aimed to maximize weight memory capacity. The estimated

results are shown in Table. 6.3. GMAC and Params represent the effective

values provided by the original papers, open-source code repositories, or

framework model libraries, excluding any extra overhead caused by rounding

the channel count. GMAC/s (billion multiply-accumulate operations per

second) is calculated based on these effective values, while bandwidth is based

on the actual amount of data transferred. This approach aims to provide a

conservative estimate.

Compared to the estimates in Table. 4.2, sufficient memory capacity

resulted in a 3.6% (ZU7 URAM4) and 2.4% (ZU7 SDRAM4) throughput

increase when running MobileNetV2.

For EfficientNetV2, there are two versions: P and S. In the new Fused-

MBConv case, P denotes parallel execution using two PE Arrays, while S

denotes serial execution. Due to the significant difference in computational
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load between the two layers in Fused-MBConv, the S version has slightly

lower performance, although it can save approximately half the memory

bandwidth. Notably, in P mode, transitioning from serial execution mode to

parallel execution mode occurs twice, incurring two penalty periods, CCP1

and CCP2, compared to only one CCP in S mode. Despite the additional

switching overhead accounting for less than 0.1% of the total runtime, it

results in a throughput improvement exceeding 19%. Thus, the benefits

gained from the transition significantly outweigh the incurred overhead,

making it a highly advantageous trade-off.

When running the classic ResNet-50, our accelerator does not significantly

outperform other existing works in terms of performance per unit area. The

reason is that computation resources are already approaching the device’s

limits. While our accelerator does not achieve significant throughput gains on

computation-intensive networks, it requires less off-chip SDRAM bandwidth.

Running ResNet-50 at a throughput of 237 FPS, our accelerator needs 5.80

GiB/s of SDRAM bandwidth. In comparison, the DPU (DPUCZDX8G

B4096) achieves a throughput of 194 FPS for an 8-bit quantized ResNet-50 on

the ZU9, but requires three parallel instances, with each instance averaging

3.06 GiB/s of bandwidth.

In computation-intensive models, GMAC/s is very high, approaching

theoretical limits. On the other hand, when running lightweight models, the

low computational load fails to fully saturate the PEs, causing a decrease in

GMAC/s. For memory bandwidth, all scenarios remain within reasonable

ranges.

We ran EfficientNet b0 and the Minimalistic version of MobileNetV3 on

the evaluation board, with actual performance matching the estimated results

at an average rate of 96.4%. The largest error occurred with MobileNetV3

Small Minimalistic, where the SDRAM version achieved only 89.1% of

the estimated throughput. Simulation results were close to the estimated

throughput, but in actual board-level execution, shorter computation time

led to significant SDRAM latency impacts. The remaining results were close

to the estimates.

6.2 Object Detection

In addition to splitting and executing inverted residual blocks, the method

introduced in Section 3.11.3 also supports the concat operation, enabling
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Table 6.4: FPS Matrix of URAM Version when Running YOLOv3

B

PPE3×3 8 16 24 32 40 48 56 64 72 80 88 96

1 1.2 2.5 3.5 4.8 5.5 6.4 7.1 8.9 9.0 9.4 9.9 9.9

2 2.5 4.9 7.0 9.5 11.0 12.8 14.3 17.8 18.0 18.8 19.7 19.8

3 3.7 7.4 10.514.316.5 19.2 21.4 26.7 27.0 28.2 29.6 29.7

4 5.0 9.8 14.019.122.0 25.6 28.5 35.6 36.0 37.7 39.5 39.6

5 6.2 12.317.523.827.6 32.0 35.6 44.5 45.1 47.1 49.3 49.5

6 7.4 14.721.028.633.1 38.4 42.8 53.4 54.1 56.5 59.2 59.4

7 8.7 17.224.533.438.6 44.9 49.9 62.3 63.1 65.9 69.0 69.3

8 9.9 19.628.038.244.1 51.3 57.0 71.2 72.1 75.3 78.9 79.2

9 11.222.131.542.949.6 57.7 64.2 80.1 81.1 84.7 88.8 89.1

10 12.424.535.047.755.1 64.1 71.3 89.0 90.1 94.2 98.6 99.0

11 13.727.038.552.560.6 70.5 78.4 97.9 99.1 103.6108.5108.9

12 14.929.442.057.266.1 76.9 85.5 106.8108.1113.0118.4118.8

13 16.131.945.562.071.6 83.3 92.7 115.7117.1122.4128.2128.7

14 17.434.349.066.877.1 89.7 99.8 124.6126.2131.8138.1138.6

15 18.636.852.571.582.7 96.1 106.9133.5135.2141.2148.0148.5

16 19.939.256.076.388.2102.5114.1142.4144.2150.6157.8158.4

more complex models to be run. To evaluate this, we used popular object

detection networks as examples. The target networks are the commonly

used SSD networks [57] (SSDMobileNetV2 [58], SSDliteMobileNetV2 [59])

and YOLOv3 [60], where the input image size is 300× 300 for the two SSD

networks and 416×416 for YOLOv3. Estimated throughput for each network

is listed in Tables 6.4-6.9. The content of this section has been published

in [42].

The YOLOv3 accelerator includes two PE Arrays with different paral-

lelism for executing 3×3 and 1×1 convolutions in Darknet [61]. The 1×1

convolution PE Array has a much lower computational load than the 3×3

convolution PE Array, so in the evaluation, the parallelism of the 1×1

convolution array, PPE1×1 , is fixed at 8. For various values of PPE3×3 , the

number of DSPs needed to process each image in parallel is 100, 128, 160,

192, 224, 256, 288, 320, 352, 384, 416, and 448. Therefore, the maximum

throughput for ZU7, constrained by DSPs, is approximately 44.5 FPS, for a

single SLR in the VU13P, around 71.2 FPS, and for the entire VU13P device,

around 26.7×7=186.9 FPS.

By calculating FPS per DSP based on DSP count, we found that when

PPE3×3 = 64, the throughput per unit area was highest, approaching a 9:1
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Table 6.5: FPS Matrix of SDRAM Version when Running YOLOv3

B

PPE3×3 8 16 24 32 40 48 56 64 72 80 88 96

1 1.2 2.5 3.5 4.8 5.5 6.4 7.1 8.9 9.0 9.4 9.9 9.9

2 2.5 4.9 7.0 9.5 11.012.814.317.8 18.0 18.8 19.7 19.8

3 3.7 7.4 10.514.316.519.221.426.5 26.8 28.0 29.3 29.4

4 5.0 9.8 14.019.122.025.628.534.9 35.4 36.9 38.5 38.7

5 6.2 12.317.523.827.531.935.542.9 43.4 45.3 47.2 47.4

6 7.4 14.721.028.432.738.042.150.3 50.9 53.1 55.3 55.5

7 8.7 17.224.532.937.943.948.657.4 58.1 60.5 62.9 63.1

8 9.9 19.627.837.443.049.554.764.2 65.0 67.6 70.0 70.2

9 11.222.131.241.848.055.060.770.7 71.5 74.3 76.8 77.0

10 12.424.434.445.652.359.765.775.8 76.6 79.5 82.0 82.3

11 13.626.737.549.356.464.270.580.5 81.3 84.3 86.9 87.1

12 14.828.940.652.960.368.575.084.9 85.8 88.8 91.4 91.7

13 16.031.143.556.464.172.679.289.0 89.9 93.0 95.6 95.9

14 17.333.446.459.767.776.483.192.9 93.8 96.8 99.5 99.7

15 18.535.549.162.971.379.886.696.5 97.4 100.5103.0103.3

16 19.737.751.766.174.683.089.999.9100.8103.9106.3106.6

Table 6.6: FPS Matrix of URAM Version when Running SSD-MobileNetV2

B

PPE 8 16 24 32 40 48 56 64

1 68.2 132.6 174.0 234.6 250.6 271.3 274.6 296.6

2 136.4 265.3 348.0 469.2 501.3 542.5 549.2 593.1

3 204.6 397.9 521.9 703.8 751.9 813.8 823.9 889.7

4 272.8 530.6 695.9 938.4 1002.5 1085.1 1098.5 1186.3

5 341.1 663.2 869.9 1172.9 1253.1 1356.4 1373.1 1482.8

6 409.3 795.9 1043.9 1407.5 1503.8 1627.6 1647.7 1779.4

7 477.5 928.5 1217.8 1642.1 1754.4 1898.9 1922.4 2076.0

8 545.7 1061.2 1391.8 1876.7 2005.0 2170.2 2197.0 2372.5

9 613.9 1193.8 1565.8 2111.3 2255.6 2441.4 2471.6 2669.1

10 682.1 1326.4 1739.8 2345.9 2506.3 2712.7 2746.2 2965.7

11 750.3 1459.1 1913.8 2580.5 2756.9 2984.0 3020.8 3262.2

12 818.5 1591.7 2087.7 2815.1 3007.5 3255.2 3295.5 3558.8

13 886.7 1724.4 2261.7 3049.6 3258.2 3526.5 3570.1 3855.4

14 955.0 1857.0 2435.7 3284.2 3508.8 3797.8 3844.7 4151.9

15 1023.2 1989.7 2609.7 3518.8 3759.4 4069.1 4119.3 4448.5

16 1091.4 2122.3 2783.6 3753.4 4010.0 4340.3 4394.0 4745.1
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Table 6.7: FPS Matrix of SDRAM Version when Running SSD-MobileNetV2

B

PPE 8 16 24 32 40 48 56 64

1 68.2 132.6 174.0 234.6 250.6 271.3 274.6 296.6

2 136.4 260.2 340.5 442.9 474.3 516.2 526.2 568.8

3 202.6 378.4 488.2 612.3 648.9 697.0 709.1 759.3

4 266.5 487.8 623.3 745.2 785.7 835.9 846.5 899.5

5 328.2 585.0 734.2 856.8 895.1 947.0 957.8 1011.3

6 387.2 669.0 824.4 947.7 986.7 1038.7 1040.9 1089.5

7 443.9 735.9 888.8 1009.2 1045.9 1083.6 1090.6 1130.5

8 498.8 795.7 940.9 1053.4 1081.1 1116.1 1126.5 1157.7

9 551.7 849.2 984.7 1090.1 1110.0 1138.2 1147.8 1175.6

10 597.6 895.3 1022.9 1115.5 1134.3 1156.1 1165.0 1184.8

11 641.2 934.7 1056.3 1136.6 1154.3 1171.2 1176.1 1192.5

12 682.6 970.3 1085.3 1152.2 1169.1 1184.1 1185.6 1198.9

13 717.4 998.0 1104.8 1163.4 1179.3 1188.9 1190.2 1202.6

14 750.1 1023.1 1122.1 1173.1 1188.2 1193.0 1194.2 1205.7

15 781.0 1045.7 1137.5 1181.7 1193.5 1196.5 1197.7 1208.4

16 810.1 1066.3 1151.3 1189.2 1198.1 1199.6 1200.7 1210.2

Table 6.8: FPS Matrix of URAM Version when Running SSDlite-

MobileNetV2

B

PPE 8 16 24 32 40 48 56 64

1 72.4 140.8 186.2 248.6 268.8 291.7 297.9 311.7

2 144.9 281.6 372.5 497.2 537.6 583.4 595.8 623.3

3 217.3 422.4 558.7 745.8 806.4 875.0 893.6 935.0

4 289.8 563.2 744.9 994.4 1075.2 1166.7 1191.5 1246.6

5 362.2 704.0 931.1 1243.0 1344.0 1458.4 1489.4 1558.3

6 434.6 844.8 1117.4 1491.7 1612.8 1750.1 1787.3 1869.9

7 507.1 985.6 1303.6 1740.3 1881.5 2041.7 2085.2 2181.6

8 579.5 1126.4 1489.8 1988.9 2150.3 2333.4 2383.1 2493.2

9 652.0 1267.2 1676.1 2237.5 2419.1 2625.1 2680.9 2804.9

10 724.4 1408.0 1862.3 2486.1 2687.9 2916.8 2978.8 3116.5

11 796.9 1548.8 2048.5 2734.7 2956.7 3208.4 3276.7 3428.2

12 869.3 1689.6 2234.8 2983.3 3225.5 3500.1 3574.6 3739.8

13 941.7 1830.4 2421.0 3231.9 3494.3 3791.8 3872.5 4051.5

14 1014.2 1971.2 2607.2 3480.5 3763.1 4083.5 4170.3 4363.1

15 1086.6 2112.0 2793.4 3729.1 4031.9 4375.2 4468.2 4674.8

16 1159.1 2252.8 2979.7 3977.8 4300.7 4666.8 4766.1 4986.4
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Table 6.9: FPS Matrix of SDRAM Version when Running SSDlite-

MobileNetV2

B

PPE 8 16 24 32 40 48 56 64

1 72.4 140.8 186.2 248.6 268.8 291.7 297.9 311.7

2 144.9 275.9 363.7 470.2 509.9 556.5 573.1 600.4

3 215.0 400.5 519.9 646.6 693.0 745.7 765.4 789.9

4 282.1 515.3 661.6 782.8 833.4 882.1 899.9 924.5

5 347.1 616.3 776.2 891.4 938.3 987.4 1005.3 1029.7

6 409.1 702.8 867.9 977.3 1024.2 1072.4 1080.7 1104.0

7 468.6 770.6 928.0 1032.3 1076.0 1108.8 1121.6 1142.9

8 526.0 830.6 975.0 1070.7 1104.2 1134.3 1150.1 1168.1

9 581.2 881.9 1013.8 1102.2 1127.0 1153.8 1168.3 1184.3

10 628.5 925.1 1047.2 1122.8 1145.9 1169.8 1183.3 1192.0

11 673.4 961.3 1076.2 1140.2 1161.9 1183.2 1192.3 1198.4

12 715.9 993.5 1101.2 1155.0 1175.6 1194.6 1199.9 1203.7

13 751.1 1017.8 1116.9 1165.4 1184.8 1198.1 1202.9 1206.4

14 784.0 1039.6 1130.7 1174.4 1192.8 1201.0 1205.5 1208.7

15 815.0 1059.3 1142.9 1182.4 1197.3 1203.5 1207.7 1210.6

16 844.2 1077.1 1153.7 1189.4 1201.1 1205.6 1209.6 1211.7

computational ratio between the two PE Arrays in the most regular layers.

However, in many irregular layers, the 1×1 PE Array remains idle when

running a single layer, with the actual optimal parallelism ratio at 8:1, and

9:1 being the next best.

The results for SSDMobileNetV2 and SSDliteMobileNetV2 show similar

trends to the MobileNetV2 results used for classification, as the main

computational load is still in the backbone network. The throughput for

each device is slightly less than half of the classification results.
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Chapter 7

Optimization

7.1 Utilizing URAM to Store Weights

The ratio between BRAM and URAM varies for different devices. Some

devices have limited BRAM but a large amount of URAM. Therefore, we

consider allowing the use of URAM as the weight memory for the PE Array.

Compared to BRAM, URAM has a much larger capacity, equal to the sum

of eight BRAMs’ capacities, but it has lower flexibility and does not support

dual-clock operations. Therefore, additional modifications are required to

ensure consistent functionality. Additionally, the port width of URAM

cannot be modified. For weights, the maximum sum of all DSP weights

at one cascade position in a group is only 4 × 8 = 32, which cannot fully

utilize the capacity of URAM. Therefore, we allow binding multiple groups

of PEs together to share one URAM.

7.2 Optimization Problem Description

Porting our accelerator to other devices involves considerable work and

requires many parameters to be considered. The proportional relationship

between parallelism parameters significantly affects the final performance.

For instance, increasing the size of the PE Array does not always result

in a proportional increase in throughput, which may lead to suboptimal

performance despite using more resources. Based on the details of the

accelerator in the previous chapters, we summarize the key parameters in

Table. 7.1.

Below are explanations about these parameters:

• URAMmode is not optimized as a target. Because for large-capacity

devices, URAM mode always achieves much higher throughput than
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Table 7.1: Parameters

Parameter Type

URAMmode bool

LITE bool

B int

G int

DC int

DWCCDIV int

SWUMEM int

PEW int

PEQ int

PEDWWQ int

FCDIV int

MADDDSP float

ACCDSP float

PEWMEMBRAM
float

AMEMBRAM bool

SWUMEM bool

DWCMEM bool

PEWMEMmode
bool

149



SDRAM mode; for small-capacity devices, SDRAM mode always has

higher area efficiency than URAM mode, and devices that are too small

may not even accommodate accelerators in URAM mode.

• LITE controls whether the path from PEDW Array to ADATA is

enabled. When enabled, it can reduce the minimum weight capacity of

the PE Array.

• B represents batch size, ranging from 1 to 16.

• G represents group size, controlling the number of PEs in the PE Array,

ranging from 2 to 16, with each 2 being a step. It determines PPE

together with DC.

• DC represents the height of DSP cascades.

• DWCCDIV controls the number of PEs in the PEDW Array, where

PPEDW = DC
DWCCDIV

, and its value is a factor of DC × 2.

• SWUMEM controls the number of memories in the SWU, eitherK+1

or K + 2.

• PEW controls the depth of weight memory in the PE Array, ranging

from 64 to 16,384, with each 64 being a step.

• PEQ controls the depth of quantization parameter memory in the PE

Array, ranging from 64 to 256, with each 64 being a step.

• PEDWWQ controls the depth of weight and quantization parameter

memory in the PEDW Array, ranging from 64 to 1,024, with each 64

being a step.

• FCDIV controls how many parts the fully connected layer is divided

into, with values of 1, 2, or 4.

• MADDDSP represents the proportion of DSPs used for multiply-

accumulate operations in the PE Array.

• ACCDSP represents the proportion of DSPs used for accumulation

operations in the PE Array.

• PEWMEMBRAM
represents the proportion of weight memory in the PE

Array using BRAM, with the remaining part using URAM.

• AMEMBRAM controls whether the AMEM in PE Array 0/1 uses

BRAM.

• SWUMEM controls the type of memory in the SWU.

• DWCMEM controls the type of memory used by the channel conversion

module in the PEDW Array.

• PEWMEMmode
controls the structure of weight memory in the PE Array.

When set to MUX, it allows mixing of BRAM and LUTRAM to achieve
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higher area efficiency when slightly exceeding the BRAM capacity

multiple.

7.3 Optimization Goal

According to the target device’s capacity information, our objective is to find

the optimal parameters to achieve the highest performance or performance

per unit area (efficiency).

7.3.1 Area

Due to the complexity of synthesis tool algorithms, the generated netlist

may vary significantly with changes in variable names. Therefore, we use

the default synthesis strategy during the evaluation process and enforce

hierarchy preservation. Generally, the resource utilization after place-and-

route is slightly lower than post-synthesis utilization. Therefore, we use

synthesis results as a pessimistic estimate.

Before proceeding, we need to calculate the relationship between SRAM

capacity and area. When LUTs in SLICEM are combined into LUTRAMs,

only multiples of 64 appear according to the above parameters, so each

LUT’s effective capacity is fully utilized. When combining simple dual-port

SRAMs, with depths in multiples of 64, if using an UltraScale device, each

SLICEM contains 8 LUTs, and the simple dual-port mode requires at least

one additional LUT per SLICEM. The total number of LUTs used is a power

of 2, such as 2, 4, 8. The calculation method is as follows:⎧⎨
⎩

⌊
W
7

⌋× D
64

W mod 7 = 0(⌊
W
7

⌋× 8 + 2�log2(W mod 7+1)�)× D
64

W mod 7 �= 0
, (7.1)

where W is the width and D is the depth. For 7-series devices, each SLICEM

contains 4 LUTs, with other constraints consistent with UltraScale devices.

The calculation method is as follows:⎧⎨
⎩

⌊
W
3

⌋× D
64

W mod 3 = 0(⌊
W
3

⌋× 4 + 2�log2(W mod 3+1)�)× D
64

W mod 3 �= 0
. (7.2)

We define this calculation as LUTRAMsdp(W,D).
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Table 7.2: RAMB36d()

W D

W = 1 32768

W = 2 16384

3 ≤ W ≤ 4 8192

5 ≤ W ≤ 9 4096

10 ≤ W ≤ 18 2048

19 ≤ W ≤ 36 1024

37 ≤ W ≤ 72 512

The relationship between port width W and depth D when using

RAMB36 is shown in Table. 7.2.

When W > 36, simple dual-port SRAM cannot be formed. We define

this calculation as RAMB36d(W ).

Additionally, we need to calculate the relationship between the MUX

ratio and the number of LUTs, calculated as follows:

LUT4MUX(x) = 2�log2 �x
4�� (7.3)

7.3.2 PE Array

Let’s start by analyzing the PE Array. Due to the large number of config-

urable parameters, we have thoroughly examined the impact of each variable.

Table. 7.3 shows the resource requirements for each part.

MADD represents the resource demand of two multiply-accumulate units

when it is implemented with LUT. MADDM is a correction factor resulting

from optimization of the adder when the first stage is fixed at 0 input. ADD

indicates additional resource usage due to the need for extra adders because

of the bit-width limitations of the 7-series DSP48E1. ACC represents the

resources needed for the accumulator. Q denotes the resources required for

the control logic in the quantization module, where only DSP48 units are used

due to the wide bit-width of quantization calculations. Ctrl represents the

control section’s resource demand, while FIFO is for the FIFO required to

store output payloads. AMEM denotes memory resources for storing input
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Table 7.3: Resource Requirements of PE Array

UltraScale Series 7 Series

LUT FF LUT FF

MADD 184 120 182 120

MADDM -38 -4 -36 -4

ADD 0 0 63 48

ACC 87 125 87 125

Q 39 26 39 26

Ctrl 213+14 253 213+14 253

FIFO

LUTRAMsdp( SPE × 2 LUTRAMsdp( SPE × 2

SPE × 2 ×BWA SPE × 2 ×BWA

×BWA, +18 ×BWA, +18

64) + 47 64) + 74

AMEMLUTRAM

LUTRAMsdp( SPE× LUTRAMsdp( SPE×
SPE ×BWA, BWA SPE ×BWA, BWA

320) + 2 ×6 + 3 320) + 2 ×6 + 3

×SPE× ×SPE×
BWA + 4 BWA + 4

AMEMBRAM 0 SPE ×BWA 0 SPE ×BWA

SRL

∑DC
i=3(SPE

∑3
i=0((i+ 1)

∑DC
i=3(SPE

∑3
i=0((i+ 1)

×BWA) ×SPE ×BWA) ×SPE

+SPE ×BWA ×BWA)+ +SPE ×BWA ×BWA)+∑DC
i=3(SPE

∑DC
i=3(SPE

×BWA × 2)+ ×BWA × 2)+

(DC − 1) (DC − 1)
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feature maps, configurable as either LUTRAM or BRAM. SRL represents

the shift registers used to offset the input feature map. Here, BWA and

BWW are 8 bits, BWACC is 24 bits, and BWQ is 18 bits.

Thus, the required number of LUTs is:

�PPE × (1−MADDDSP )� × (LUTMADD ×DC + LUTMADDM
) For MADD

+ �PPE ×MADDDSP � For DSP Packing Correction

+ �PPE × ACCDSP � For OPMODE of ACC DSP

+ �PPE × (1− ACCDSP )� × LUTACC For ACC

+ (BWQ +BWACC)× SPE × 2 For MUX of Quantization Sharing

+LUTQ × SPE × 2 For Quantization

+LUTFIFO For FIFO

+LUTSRL × 2 For SRL

+SPE ×BWA For Clock Domain Convert

+LUTCtrl For Controller

(7.4)

Additionally, if using a 7-series device, we need to add the LUT count for

the addition operation in MADD calculations as follows:

�PPE ×MADDDSP � × (LUTADD × (DC − 1)) . (7.5)

Moreover, based on the configuration of AMEM, we need to add either

AMEMLUTRAMLUT
or AMEMBRAMLUT

.
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On the other hand, the required number of FFs is:

�PPE × (1−MADDDSP )� × (FFMADD ×DC + FFMADDM
) For MADD

+PPE ×DC × BWW For input W reg

+PPE ×DC × (BWA + 1)× 2 For input A reg

+PPE × (BWA × 4 + 4)× 2 For DSP Packing Correction

+ �PPE × (1− ACCDSP )� × FFACC For ACC

+ (BWQ +BWACC)× PPE × 2 For MUX of Quantization Sharing

+FFQ × SPE × 2 For Quantization

+FFFIFO For FIFO

+FFSRL × 2 For SRL

+SPE ×BWA × 3 For Clock Domain Convert

+LUTCtrl For Controller

.

(7.6)

Similarly, if using a 7-series device, we also need to add the FF count for

the addition operation in MADD calculations:

�PPE ×MADDDSP � × FFADD × (DC − 1) (7.7)

Likewise, depending on the usage of AMEM, we may need to add the DSP

count, adding either AMEMLUTRAMFF
or AMEMBRAMFF

. The required

number of DSPs is calculated as follows:

�PPE ×MADDDSP � ×DC + �PPE × ACCDSP �+ SPE × 2. (7.8)

The three components of the polynomial are MADD, ACC, and the

quantization section. When AMEM uses BRAM, the BRAM usage is 1;

otherwise, it is 0.

7.3.3 PEDW Array

Next, we analyze the PEDW Array, where each component’s resource re-

quirements are listed in Table. 7.4.
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Table 7.4: Resource Requirements of PEDW Array

UltraScale Series 7 Series

LUT FF LUT FF

MUL 148 58 148 58

ADD25 422 446 422 446

ADD9 151 179 151 179

Q 11 26 11 26

Ctrl 113+14 175 113+11 175

FIFO

LUTRAMsdp(
SPE×2×BWA

DWCCDIV
LUTRAMsdp(

SPE×2×BWA

DWCCDIV

SPE×2×BWA

DWCCDIV
, +18 SPE×2×BWA

DWCCDIV
, +18

64) + 49 64) + 74

MUL represents the resource demand for two multipliers, and ADD

indicates the resources needed for the adder tree. Here, two scenarios are

considered: when K=5, there are 25 input data; when K=3, there are 9

input data. Q denotes the quantization module’s resources, and in the case

of the PEDW Array, the quantization is lower because the PE outputs only

unsigned fixed-point numbers. Ctrl represents the control section’s resources,

and FIFO is for storing the output payloads.

Thus, the required number of LUTs is:

PPEDW × (LUTMUL ×K ×K + 2× LUTADD) For Madd

+PPEDW × 2× LUTQ For Quantization

+LUTFIFO For FIFO

+LUTCtrl For Controller

. (7.9)
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BRAM MUX

BRAM

BRAM

BRAM

BRAM

BRAM MIX

BRAM

BRAM

BRAM

LUTRAM

Figure 7.1: Memories with MUX structure.

On the other hand, the required number of FFs is:

PPEDW × (FFMUL ×K ×K + 2× FFADD) For Madd

+PPEDW × 2× BWA ×K ×K × 2 For input A reg

+PPEDW × 2× FFQ For Quantization

+FFFIFO For FIFO

+FFCtrl For Controller

. (7.10)

The required number of DSP units is PPEDW × 2.

7.3.4 Weight and Quantization Parameter Storage

The next step is weight and quantization parameter memory. There are

multiple configurations for weight memory in the PE Array, and the use of

MUX mode has a significant impact on the usage of LUTs and FFs. Fig-

ure. 7.1 illustrates this method, showing the additional MUX and DEMUX

components required. Additionally, when the capacity is not a multiple of

BRAM’s capacity, a combination of BRAM and LUTRAM can be used.
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The required number of LUTs is:

(DC − 1)× B +G For W

+LUTRAMsdp (BWQ, PEQ)× 2× PPE +
(
BWQ × 2 +

⌈
PEQ

64

⌉)
× PPE + 2×G For Q

+211 For INIT

.

(7.11)

When using the MUX mode, the additional requirement of LUT is:

�PPE × PEWMEMBRAM
� ×

(⌈
PEW

RAMB36d (DC × BWW )

⌉
+DC × BWW

)
.

(7.12)

If it’s not a multiple of the BRAM depth, the additional requirement of LUT

is:

�PPE × PEWMEMBRAM
�×

(LUTRAMsdp (DC × BWW , PEW mod RAMB36d (DC × BWW )) +DC × BWW ) .
(7.13)

When mixed with URAM, the additional required quantity of LUT is:

�G× (1− PEWMEMBRAM
)� × SPE. (7.14)

On the other hand, the required FF count is:

DC × PPE × BWW + 1 + 14×DC × B For W

+BWQ ×
(⌈

PEQ

64

⌉
+ 1
)
× LUT4MUX

(
PEQ

64

)
× 2× PPE For Q(1/2)

+LUT4MUX
(

PEQ

64

)
× PPE For Q(2/2)

+
(
DC ×DC × BWW +DC ×DC × BWW × BWQ

32
× 2
)
× 2 + 162. For INIT

(7.15)

When using MUX mode, additional requirements of LUT include:

�PPE × PEWMEMBRAM
�×

(2× �log2 (PEW mod RAMB36d (DC × BWW ))�+DC × BWW × 3) .

(7.16)

When mixing with URAM, additional requirements of LUT are:

�G× (1− PEWMEMBRAM
)� ×DC × 2. (7.17)

The required BRAM quantity varies depending on the MUX mode:
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• MUX mode:

�G× PEWMEMBRAM
� ×DC×⌈

DC × BWW ×
⌊

PEW

RAMB36d (DC × BWW )

⌋
× RAMB36d (DC × BWW )

36864

⌉
.

(7.18)

• CAS mode:

�G× PEWMEMBRAM
� ×DC×⌈

DC × BWW ×
⌈

PEW

RAMB36d (DC × BWW )

⌉
× RAMB36d (DC × BWW )

36864

⌉
.

(7.19)

If using URAM, the required URAM quantity is:⎡
⎢⎢⎢
�G× (1− PEWMEMBRAM

)�⌊
72

DC×BWW

⌋
⎤
⎥⎥⎥×DC ×

⌈
PEW

4096

⌉
. (7.20)

The PEDW Array’s weight and quantization parameter memories are both

composed of LUTRAMs. The required LUT count is:

LUTRAMsdp (BWW ×K ×K,PEDWWQ)× PPEDW+ For W(1/2)

BWW ×K ×K × LUTMUX
(

PEDWWQ

64

)
+
⌈
PPEDW

64

⌉× PPEDW + PPEDW For W(2/2)

+LUTRAMsdp (BWQ, PEDWWQ)× 2× PPEDW+ For Q(1/2)(
BWQ × LUT4MUX

(
PEDWWQ

64

)
× 2 +

⌈
PEDWWQ

64

⌉)
× PPEDW For Q(2/2)

+219 For INIT
(7.21)

The required FF count is:

BWW ×K ×K × PPEDW For W

+BWQ × 2× PPEDW For Q

+
(
BWW ×K ×K +BWAXI × BWQ

32
× 2
)
× 2 + 149 For INIT

(7.22)
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7.3.4.1 SWU

The remaining modules require relatively fewer parameter modifications, and

we have fitted them accordingly. The SWU module requires the following

number of LUTs:{
392× PPEDW + (462×DC + 1096) + SWUMEM K=5

141× PPEDW + (307×DC + 596) + SWUMEM K=3
. (7.23)

If using BRAM, the additional required LUT count is:(
DC × BWA ×

(
2 + 2× LUT4MUX

(
3072

RAMB36d (DC × BWA)

))

+3 +
3072

RAMB36d (DC × BWA)
× 2

)
× SWUMEM. (7.24)

The required number of FFs is:{
319× PPEDW + (135×DC + 487) + SWUMEM K=5

167× PPEDW + (130×DC + 397) + SWUMEM K=3
. (7.25)

If using BRAM, the additional required FF count is:

(DC × BWA × 7× 2 + 40)× SWUMEM. (7.26)

If URAM is used, the required quantity of URAM is equal to SWUMEM.

On the other hand, if BRAM is used, the requirement is as follows:

SWUMEM×⌈
DC × BWA ×

⌊
3072

RAMB36d (DC × BWA)

⌋
× RAMB36d (DC × BWA)

36864

⌉
.

(7.27)

The number of DSPs used is fixed at 2.

7.3.4.2 DWC

The number of LUTs required for the DWC (Depth-Wise channel Converter)

module is:

15× PPEDW + (65×DC + 400) + 2. (7.28)

If using BRAM, the additional required LUT count is:
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(
DC × BWA × LUT4MUX

(
3072

RAMB36d (DC × BWA)

)
× 2

+3 +
3072

RAMB36d (DC × BWA)
× 2

)
× 2. (7.29)

The required number of FFs is:

29× PPEDW + (16×DC + 325) + 2. (7.30)

If using BRAM, the additional required FF count is:

(DC × BWA × 6× 2 + 40)× 2. (7.31)

If URAM is used, the required quantity of URAM is equal to SWUMEM.

On the other hand, if BRAM is used, the requirement is as follows:

2×
⌈
DC × BWA ×

⌊
3072

RAMB36d (DC ×BWA)

⌋
× RAMB36d (DC × BWA)

36864

⌉
.

(7.32)

The number of DSPs used is fixed at 2.

7.3.4.3 GAP and ADD

The number of LUTs required for the GAP module is:

90×DC + 47 +DC × 2× LUTRAMsdp

(
14, 28

)
. (7.33)

The required number of FFs is:

88×DC + 41. (7.34)

The number of DSPs required is 2.

The number of LUTs required for the ADD module is:

104×DC + 59. (7.35)

The required number of FFs is:

69×DC + 34. (7.36)

The number of DSPs required is 2.

(7.37)
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7.3.5 Miscellaneous Modules

To facilitate the explanation of the remaining modules, we first define the

total bus width between the modules processing an image as:

BWBUS = SPE × BWA × PP. (7.38)

The resource requirements for other miscellaneous modules are listed in

Table. 7.5. Based on the instance count of each module and the batch size

B, we can estimate the resources required for the entire accelerator.

Table 7.5: Resource Requirements of Miscellaneous Modules

LUT FF

HsReg BWBUS + 3 2× BWBUS + 2

Broadcase 5 2

Combine BWBUS + 4 1

MUXn
BWBUS × LUT4MUX(n)+ �log2 n�

LUT4MUX(n) + n

DEMUXn LUT4MUX(n) + n �log2 n�

7.4 Cost Function

First, we need to define the capacity of the target device, including LUT, FF,

DSP, BRAM, and URAM. This is defined as a hard constraint. However, high

utilization of these resources often leads to routing difficulties and a reduced

achievable maximum frequency. Therefore, we need an additional constraint

to ensure that hardware resource utilization remains within a reasonable

range. We referenced Xilinx’s recommended values to design soft limits in

Table. 7.6. When the solution’s area exceeds this soft constraint, a penalty

is applied to the throughput to discourage the optimization algorithm from

generating solutions with excessive area.

The constraints are set to 80% for LUT, 50% for FF, and 80% each for

DSP, BRAM, and URAM. Compared to Xilinx’s recommendations, we do

not limit the total DSP, BRAM, and URAM usage to below 70% because
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Table 7.6: Utilization limits

Xilinx Guideline Soft Limit in Exp.

LUT 70% 80%

FF 50% 50%

DSP,BRAM,URAM 80% 80%

DSP+BRAM+URAM 70% N/A

LUTRAM 30% N/A

CARRY8 25% N/A

we aim to utilize dedicated cascade routing resources to reduce the impact

of these IO-intensive hardware resources on general routing resources. We

set the LUT utilization constraint slightly higher than Xilinx’s recommended

values because the post-place-and-route utilization is typically lower than the

synthesis value, along with effective use of the dedicated routing resources

mentioned earlier. We do not constrain LUTRAM and CARRY8 usage, as

LUTRAM in medium to large devices is far from reaching this threshold, and

it will inevitably exceed this threshold in smaller devices, while CARRY8 will

undoubtedly exceed it significantly.

Thus, our cost function is as follows:

Cost =

{
1×10−8 exceed

p× FPS + (1− p)× LIM not exceed
, (7.39)

where

FPS =
3×108

CCEst

× B, (7.40)

LIM =
FPS

LUT
LUTLIM

+ FF
FFLIM

+ DSP
DSPLIM

+ BRAM+8×URAM
BRAMLIM+8×URAMLIM

. (7.41)

If any resource utilization exceeds the soft limit, we need an additional

division by resource utilization
soft limit

. Here, BRAM and URAM are calculated together

after weighting their actual capacities. This is because URAM quantities

are usually low, and using even one can significantly increase utilization,

which might cause the optimization algorithm to avoid using URAM entirely.

Combining them in the calculation helps to alleviate this issue to some extent.
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Additionally, the formula includes a coefficient p, which controls the bias

of the optimization objective. When p approaches 1, absolute throughput

is prioritized, whereas when p is closer to 0, throughput per unit area is

emphasized.

7.5 Optimization Algorithm

We experimented with several optimization algorithms to solve this prob-

lem. However, due to constraints like data types, particularly nonlinear

parameters such as DWCCDIV , as well as conditional branches and higher-

order functions, many optimization algorithms face implementation chal-

lenges. Therefore, we primarily rely on Simulated Annealing and Genetic

Algorithms, both of which allow the cost function to be treated as a black

box.

7.5.1 Simulated Annealing

Let’s start with Simulated Annealing. Simulated Annealing is a classical

heuristic algorithm used for optimization problems. It simulates the anneal-

ing process in metallurgy, where decisions to adopt new solutions follow the

Metropolis criterion based on the current temperature. When searching for

a maximum, the Metropolis criterion uses the following formula to determine

the probability of accepting a new solution:{
1 Δ > 0

e
Δ
t Δ ≤ 0

. (7.42)

As the formula indicates, the higher the temperature, the greater the proba-

bility of accepting a solution worse than the original one. The computation

process of Simulated Annealing is illustrated in Figure. 7.2.

The specific steps are as follows:

1. Generate an initial solution and calculate its cost function value.

2. Randomly modify this solution and calculate the cost function value of

the modified solution.

3. Compare the two cost function values. If the new solution is better,

update it directly; otherwise, decide whether to accept it based on the

Metropolis rule.
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Figure 7.2: Simulated Annealing.

4. Check whether the iteration count at the current temperature has been

reached. If not, return to Step 2.

5. If the maximum iteration count at the current temperature has been

reached, lower the temperature. Check if the temperature has reached

the final temperature. If not, return to Step 2.

We have three main types of parameters: Boolean, integer, and floating-

point. Each type generates new solutions in different ways:

• For Boolean values, we first generate a random value, then calculate

the probability of adopting the new value based on the current tem-
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perature. This probability is calculated using the formula log(Tmax

T
).

SWUMEM is mapped as a Boolean, where K+1 represents false and

K + 2 represents true.

• For integer parameters, such as memory depths PEW , PEQ, and

PEDWWQ, we first generate a Gaussian-distributed random number

with a mean of 0 and a variance of 1. Then, we multiply this value by

a scaling factor calculated based on the current temperature, which

is log10(T ). The resulting value is rounded to the nearest integer,

multiplied by the parameter’s minimum interval (in this case, 64), and

added to the original value. If this value is out of range, it is clipped

to stay within the range.

• For parameters B and DC, a Gaussian-distributed random number

with a variance of 0.2 is generated. The remaining steps are similar to

the above. For parameter G, the variance of the Gaussian distribution

is 0.1, and the rounded value is multiplied by the minimum interval (in

this case, 2).

• A special case is DWCCDIV : first, we generate a list of factors. If

DC changes, a value is randomly selected from this list. If DC remains

unchanged, the value is randomly adopted based on a probability

similar to the Boolean process.

• For floating-point values, we generate a random number with a

mean of 0 and a variance of 0.1. After multiplying this value by the

temperature scaling factor and clipping, it is added to the original value.

7.5.2 Genetic Algorithm

Next is the Genetic Algorithm, another classic general-purpose heuristic al-

gorithm inspired by biological evolution. Compared to Simulated Annealing,

Genetic Algorithms come with some additional constraints. All parameters

need to be represented in binary, which makes encoding certain parameters

more complex:

• Boolean variables can be directly represented with binary values.

• Integer variables like PEW , PEQ, and PEDWWQ have specific ranges

and step sizes, so directly using their binary values may leave some

values unreachable. To address this, we create a mapping:

y = clamp (MIN + x×Δ,MIN,MAX) . (7.43)
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The range of acceptable values x is rounded up to the nearest power of

2, so it slightly exceeds the maximum.

• For DWCCDIV , when the maximum value of DC is set to 4, the

values range from 1, 2, 4, to 8, resulting in four possible values. We

encode this as 2 bits, representing the position of the parameter value

in the list.

• For other parameters that need to vary, like FCDIV and G, we take

the original values and convert them during decoding to the actual

required values.

• Floating-point values use a fixed quantization adjustment. These pa-

rameters are finally encoded as a 75-bit gene in the Genetic Algorithm.

Figure. 7.3 illustrates the process of the Genetic Algorithm. Initially, a

number of individuals are generated with randomly created genes. These

individuals are then evaluated based on their cost function values, and each

individual is assigned a selection probability. Here, rather than a traditional

linear probability distribution, we want the better results to have a higher

likelihood of selection. Therefore, we use a softmax function to handle their

probability distribution, calculated as follows:

y =
ex∑
exi

. (7.44)

Traditional softmax works well when processing data with a mean of 0

and a variance of 1, using e as the base. However, in our case, values are

scaled to a sequence in the range [0, 1]. Using e as the base may not be

optimal, so we allow different bases for softmax.

The main loop then begins. First, a random subset of individuals

equal to the total population size is selected based on the calculated prob-

abilities. Next, based on crossover probability, some individuals undergo

crossover. There are several crossover methods available; we choose single-

point crossover and uniform crossover. In single-point crossover, a random

crossover point is selected within the gene, where one offspring inherits the

first half of the gene from one parent and the second half from the other,

while the remaining genes form another offspring. In uniform crossover, bit

positions are randomly selected for swapping, with each bit having an equal

chance of being chosen.

Then, the new population undergoes mutation, where random gene posi-

tions experience bit-flipping. Afterward, all individuals in the new population
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Figure 7.3: Genetic Algorithm.

are evaluated. If the iterations are not yet complete, the process returns to

the loop entrance to simulate the next generation.

7.6 Experiment

We designed experiments with various parameter combinations, running each

scenario 128 times to eliminate randomness and analyze the probability of

generating high-quality solutions.

For Simulated Annealing, we adopted two scenarios: standard Simulated
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Annealing (marked as SA), where all parameters are randomly updated at

each step, and specialized Simulated Annealing (marked as SA1), where only

one parameter is updated randomly per iteration. Besides the final output

of the algorithm, we also recorded the highest cost function value during the

computation (marked as Hi-SA and Hi-SA1). The initial temperature was set

to 10,000, the final temperature to 1, and the temperature update factor to

0.95, with each temperature cycle containing 1,000 iterations, totaling 180k

operations.

Table 7.7: Scenarios of Genetic Algorithm

Scenario Pop. Gen. softmax Base Crossover Calculation

GAp20i10 20 10k - One 200k

GAp20i10s1 20 10k 10 One 200k

GAp20i10s2 20 10k 100 One 200k

GAp20i10s3 20 10k 1000 One 200k

GAp20i10s4 20 10k 10000 One 200k

GAp100i2 100 2k - One 200k

GAp100i2s1 100 2k 10 One 200k

GAp100i2s2 100 2k 100 One 200k

GAp100i2s3 100 2k 1000 One 200k

GAp100i2s4 100 2k 10000 One 200k

GAp100i5 100 5k - One 500k

GAp100i5s1 100 5k 10 One 500k

GAp100i5s2 100 5k 100 One 500k

GAp100i5s3 100 5k 1000 One 500k

GAp100i5s4 100 5k 10000 One 500k

GAp20i10u 20 10k - Uniform 200k

GAp20i10s1u 20 10k 10 Uniform 200k

GAp20i10s2u 20 10k 100 Uniform 200k

GAp20i10s3u 20 10k 1000 Uniform 200k

GAp20i10s4u 20 10k 10000 Uniform 200k

In the Genetic Algorithm (marked as GA) experiments, due to the large

number of parameters and their significant impact, we configured a series of

comprehensive scenarios as shown in Table. 7.7.

The population and generation settings consisted of three configurations,
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with two having computational loads similar to Simulated Annealing: p20i10

(smaller population, more generations) and p100i2 (larger population, fewer

generations). The third configuration, p100i5, had a significantly higher

computational load. The softmax base had four options, ranging from 101

to 104, with an additional version that didn’t use softmax for comparison.

Scenarios were also set for uniform crossover. The crossover probability was

set to 0.8 and the mutation probability to 0.1.

Table 7.8: FPGA List

LUT(k) FF(k) BRAM URAM RAM DSP

ZU1 37 74 108 108 216

ZU2 47 84 150 150 240

ZU3 71 141 216 216 360

ZU3T 72 144 146 50 546 576

ZU4 88 176 128 48 512 728

ZU5 117 234 144 64 656 1248

ZU6 217 429 714 714 1973

ZU7 230 461 312 96 1080 1728

ZU9 274 548 912 912 2520

ZU11 299 597 600 80 1240 2928

ZU15 341 682 744 112 1640 3528

ZU17 423 847 796 102 1612 1590

ZU19 523 1045 984 128 2008 1968

VU13P(1SLR) 432 864 672 320 3232 3072

We selected FPGA targets with different capacities, including ZU15, ZU7,

ZU5, and ZU3, as listed in Table. 7.8. These FPGAs span various device

sizes, with a preference for devices containing URAM to enable SDRAM and

URAM versions for comparison.
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Figure 7.4: Cost function distribution
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Figure. 7.4 shows the distribution of 128 cost function values for each

experimental scenario. These are presented as box plots, where each box

represents the distribution of results from the 1st to 3rd quartiles. The “×”

inside the box indicates the mean, and the horizontal line represents the

median. The lines extending upward or downward indicate values within

1.5 times the box length from the upper or lower quartile. Outliers beyond

this range are shown as points. The series in the figure is divided into three

sections, with the horizontal axis showing the value of p.

As the efficiency ratio increases, the cost function values tend to de-

crease since throughput per area (efficiency) is lower than throughput. The

highest cost function values found by the two algorithms are close. From

Figure. 7.4, we can observe that Simulated Annealing consistently finds the

optimal solution, with SA generally more stable than SA1 in most cases.

In Figure. 7.4(e), Hi-SA1 slightly outperforms Hi-SA. When computational

complexity is similar, Simulated Annealing typically achieves better and more

stable solutions than the Genetic Algorithm.

For the Genetic Algorithm, with equivalent computational complexity,

results with smaller populations and more generations are more stable,

though slightly lower in quality compared to larger populations with fewer

generations. In most cases, higher softmax base values result in better

solution quality. However, on ZU5, the results were completely opposite.

Additionally, in some cases, using a base of 104 led to minimal improvement

over 103, as the larger base reduced the search space. In most cases, using a

base of 10 yielded worse results than not using softmax at all. Increasing the

Genetic Algorithm’s computational complexity allows it to reach performance

similar to Simulated Annealing. On smaller devices, uniform crossover shows

significant improvement over single-point crossover, though no significant

difference is observed on larger devices.

Detailed efficiency and throughput distributions are shown in Figures. 7.5

and 7.6.
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Figure 7.5: Efficiency distribution
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Figure 7.6: Throughput distribution
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In terms of efficiency, as p decreases, the optimization objective shifts

toward higher efficiency, which is evident in Fig. 7.5. In most cases, Simulated

Annealing continues to show more stable results and better solutions than the

Genetic Algorithm. Figure. 7.5(g) clearly shows that Simulated Annealing

outperforms the Genetic Algorithm.

Regarding throughput, as p decreases, throughput gradually decreases

slightly. However, from Figure. 7.6, we can see that in most experimental

scenarios, the difference in throughput between p = 1.0 and p = 0.5 is minor.

However, the efficiency difference in Figure. 7.5 is significant. Therefore, in

practical applications, it may be preferable to add a slight efficiency weighting

in the cost function evaluation rather than solely focusing on throughput,

even when pursuing high throughput.

Solutions obtained with Simulated Annealing at p = 0.5 are listed in

Table. 7.9. Compared to the previous manually specified configuration, the

solutions found were significantly better. For ZU7 URAM, the improvement

was less noticeable as the differences weren’t as pronounced, but for ZU7

SDRAM, there was a 21% improvement. Similarly, for ZU3 SDRAM, the

improvement was nearly 15%. Not only was throughput improved, but

the performance per area was significantly enhanced, with a more balanced

utilization across various resources.
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Table 7.9: Solutions Obtained by Simulated Annealing

ZU15 ZU15 ZU7 ZU7 ZU5 ZU5 ZU3

URAM SDRAM URAM SDRAM URAM SDRAM SDRAM

LITE 1 1 1 1 1 1 1

B 6 6 4 6 2 5 2

G 12 8 8 6 8 4 4

DC 4 4 4 4 4 4 4

DWCCDIV 1 1 1 2 1 2 2

SWUMEM K + 2 K + 2 K + 2 K + 2 K + 2 K + 2 K + 2

PEW 2624 5120 3072 7936 2816 6080 4096

PEQ 64 64 64 64 64 64 64

PEDWWQ 256 256 256 448 256 256 256

FCDIV 2 1 2 1 2 2 4

MADDDSP 0.997 1 1 0.878 1 1 0.719

ACCDSP 0.334 1 0.434 0.022 1 0.797 0

PEWMEMBRAM
1 1 0.683 0 0.405 0.362 0.919

AMEMBRAM 1 1 1 1 1 1 1

SWUMEM BRAM BRAM BRAM BRAM BRAM URAM BRAM

DWCMEM BRAM BRAM BRAM BRAM BRAM URAM BRAM

PEWMEMmode
CAS CAS CAS MUX MUX CAS CAS

LUT 199137 164017 125383 158541 76203 94695 58477

FF 341743 241963 1820633 226543 88763 116307 69829

DSP 2868 2280 1376 1380 760 1030 296

BRAM 426 458 234 138 110 106 174

URAM 96 0 72 48 48 51 0

FPS 3826.83 2532.76 2490.29 2155.67 1239.87 1517.22 642.94

Efficiency 1457.75 1438.56 1001.14 875.69 518.43 520.68 217.85

Cost 2642.29 1985.66 1745.71 1515.68 879.15 1018.95 630.39

7.7 Conclusion

This chapter focuses on optimizing accelerator design by exploring vari-

ous optimization algorithms due to the complexity of the problem. The

main algorithms used were Simulated Annealing and Genetic Algorithm.

Simulated Annealing was explored in two scenarios: standard Simulated

Annealing (SA) and Simulated Annealing with single-parameter updates

(SA1). Results indicated that SA generally outperformed SA1 in terms

of stability and solution quality. The Genetic Algorithm was extensively

explored under different population and generation configurations, using

various softmax bases and comparing with a version that did not use softmax.
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In most cases, Simulated Annealing consistently demonstrated superior

stability and solution quality compared to the Genetic Algorithm. Specific

solutions obtained with Simulated Annealing, particularly at p = 0.5, showed

significant improvements over manually specified configurations. Notably,

throughput for ZU7 and ZU3 SDRAM targets increased considerably, along

with substantial improvements in performance per unit area and resource

utilization ratios.
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Chapter 8

Conclusion

8.1 Conclusion

This dissertation set out to address the pressing challenges posed by modern

CNNs, particularly lightweight models like MobileNetV2, on CNN acceler-

ators. The primary goal was to find a balanced solution that combines the

scalability and flexibility of Overlay architecture accelerators with the perfor-

mance advantages of Dataflow architecture accelerators, all while minimizing

off-chip memory dependency and maximizing resource efficiency.

The research presented herein made significant strides in the domain of

CNN accelerators through the development of a novel block-based execution

model. This model effectively mitigates the memory bandwidth bottlenecks

that are inherent in Overlay architecture accelerators and overcomes the

resource-intensive nature of Dataflow architecture accelerators. The following

key findings emerged from the study:

Block-based Execution: The proposed block-based architecture processes

entire inverted residual blocks as single units, which proved to be a strategic

approach for reducing data transfer overhead. This design enables the

accelerator to leverage the efficient handling of data within a block and

minimizes reliance on high-bandwidth off-chip memory. By processing data

through optimized on-chip pathways, the accelerator can sustain higher

throughput compared to traditional Overlay architecture accelerators, which

require frequent data storage and retrieval from off-chip memory.

Dual Configuration Strategy: The design supports two configurations:

a URAM-based configuration that capitalizes on the high on-chip memory

available in mid-range to high-end FPGA devices, and an SDRAM-based

configuration tailored for more constrained devices. This dual configuration

ensures that the architecture is adaptable and scalable across different FPGA

platforms, making it suitable for a range of practical applications, from edge
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devices to powerful data center accelerators.

Parallelism and Resource Utilization: The architecture’s ability to process

multiple images in parallel, akin to the batch processing seen in GPUs, was

shown to significantly enhance resource utilization and overall throughput.

This strategy mitigates the diminishing returns of increasing parallelism

within a single PE Array.

Two Execution Modes: The accelerator supports two execution modes

and allows dynamic switching at runtime based on the workload. The serial

execution mode can run blocks efficiently while the parallel execution mode

is critical for efficiently executing individual layers and reducing the on-chip

weight memory capacity.

Efficiency with Lightweight Models: The architecture was particularly

effective when deployed on lightweight models such as MobileNetV2. The

block-based execution reduced the high inter-layer activation transfer, a com-

mon bottleneck in depthwise convolution layers. This feature ensures that

the proposed design not only achieves high throughput but also maintains

efficient DSP and LUT utilization, critical for achieving high area efficiency

on FPGA devices.

Extensive experiments validated the performance gains offered by the

proposed architecture. The accelerator achieved notable throughput im-

provements across various FPGA platforms: ZU3 (cost-optimized): Achieved

586 FPS, demonstrating a significant performance increase over traditional

Overlay architecture accelerators with lower memory bandwidth. ZU7 (mid-

range): Reached 2,350 FPS, leveraging enhanced on-chip memory for efficient

inter-block data storage. VU13P (high-end): Realized a peak performance

of 11,821 FPS, thanks to the extensive use of URAM for storing inter-block

data and maintaining high parallelism.

These results underscore the architecture’s scalability and suitability

for various hardware configurations. The use of on-chip URAM for inter-

block buffering was particularly beneficial in high-end devices, where ample

memory resources allowed the accelerator to operate with minimal off-chip

data transfer, maintaining high throughput.

The proposed architecture offers a new pathway for developing efficient,

scalable CNN accelerators capable of handling modern lightweight and com-

plex CNNs. The reduction in off-chip memory access translates directly to

lower energy consumption and higher data processing rates, which are critical

for applications in edge computing, where power and memory bandwidth are
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often limited. Furthermore, the architecture’s modular design allows for

flexibility in adapting to different CNN structures and requirements without

significant redesign efforts. For other network structures, such as RNNs

and transformer models, their specialized accelerators could be designed at

the block level. These structures typically consist of repeated blocks or

repeatedly feeding a single block with data. This characteristic suggests

that our accelerator architecture may effectively compute these models for

other tasks.

By supporting a range of FPGA platforms, the architecture ensures that

even devices with modest on-chip memory can benefit from a version of

the design (SDRAM-based configuration), making it a versatile solution for

diverse deployment scenarios.

Minor research concludes with a detailed evaluation of optimization

strategies for designing efficient CNN accelerators on FPGA platforms. The

findings confirm that choosing the right combination of resource allocation

and parallelism configuration can dramatically impact the performance of

CNN accelerators. Among the techniques studied, Simulated Annealing

proved to be particularly effective for complex, parameter-rich optimization

problems. Its iterative approach, coupled with controlled randomness,

allowed it to find solutions that balance throughput and resource use better

than static configurations.

The Genetic Algorithm, while showing promise with larger populations

and varied crossover methods, struggled to match the stability and perfor-

mance of SA under equivalent computational loads. Nonetheless, the GA’s

adaptability and the ability to explore diverse solution spaces make it a

valuable tool for multi-objective optimization scenarios.

Key experimental results highlighted substantial throughput and effi-

ciency gains. For instance, tests on the ZU7 FPGA using SA yielded

configurations that outperformed manually tuned designs by up to 21%,

particularly when utilizing SDRAM-based memory setups. The chapter also

noted that using URAM configurations where feasible provided significant

improvements in larger FPGA devices, while smaller devices benefited from

the strategic use of BRAM.

Minor research’s insights into optimization reveal that practical accel-

erator designs require careful balancing of on-chip memory, DSP usage,

and algorithmic complexity. Future research could expand on dynamic

optimization strategies that adapt to changing workloads and explore hybrid
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approaches combining SA and GA elements. These extensions could further

enhance efficiency and make CNN accelerators more competitive for diverse

applications, from edge devices to data centers.

In conclusion, the block-based accelerator presented in this dissertation

represents a significant advancement in the field of CNN acceleration. By

strategically combining the strengths of Overlay and Dataflow architecture

accelerators while addressing their weaknesses, this architecture provides

a robust solution for high-throughput, memory-efficient CNN processing.

Compared to typical Overlay architecture accelerators, this design reduces

overall off-chip memory transfer volume by 93%, eliminating the need for ex-

pensive high-speed memory and thereby lowering the cost of large-scale data

center deployments. Compared to typical Dataflow architecture accelerators,

this design reduces the on-chip weight storage requirement by 88%, making

it deployable on cost-optimized small devices and significantly reducing

the deployment cost for edge computing. The demonstrated performance

gains, coupled with its adaptability and scalability, position this design as

a compelling option for future CNN accelerator development. The results

of this study pave the way for more sophisticated and efficient hardware

solutions that cater to the ever-growing demands of machine learning and AI

applications.

8.2 Future Works

Despite the advancements made with the proposed accelerator design, there

remain several challenges that must be addressed to improve its overall

performance and versatility. One significant issue is that the current inter-

connection design for internal accelerator modules is still reliant on manual

processes. This approach is not only highly labor-intensive but also greatly

limits the architecture’s adaptability to diverse network structures, hindering

its potential for rapid deployment across different CNN models.

Furthermore, the use of handshake bus connections between modules

imposes stringent timing requirements for path switching. This constraint

allows for the insertion of handshake registers only at the outputs of specific

modules, which can restrict flexibility and extensibility. The accumulation

of too many paths within the architecture exacerbates this issue, potentially

leading to long “ready” path delays and complications in signal synchro-

nization. These timing challenges can impact data throughput and overall
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system stability, particularly as network complexity increases.

Another critical aspect to consider is the performance of the accelerator

when running computationally intensive models. The current design does

not show significant advantages in these scenarios, highlighting the need

for additional optimization techniques such as pruning. Integrating prun-

ing support into the accelerator could help reduce the computational load

and enhance efficiency by eliminating unnecessary operations and weights.

However, implementing pruning effectively within a Dataflow architecture

poses its own set of challenges, particularly in ensuring that the architecture

can dynamically adapt to pruned network structures without sacrificing data

consistency or processing speed.

Addressing these limitations—automating the interconnection design,

managing handshake timing more efficiently, and integrating pruning ca-

pabilities—will be essential for the continued evolution of this accelerator.

These enhancements would not only boost adaptability and performance

but also make the architecture more competitive for a wider range of CNN

applications, from lightweight models to those with heavier computational

demands.

During the design phase, we considered dynamically allocating PEs to

different PE Arrays based on workload. However, after evaluation, it was

determined that such dynamic allocation would require the relevant PE

Array to remain idle during reallocation. For the inverted residual blocks

accelerated in this dissertation, PE Array 0 would need to wait for PE Array

1 to complete its work before dynamic reallocation could occur, resulting in

additional waiting time as shown in Figure. 3.15. The benefits of dynamic

allocation may not outweigh this extra waiting time.

However, considering the potential for ASIC implementation, this fea-

ture could contribute to building a general-purpose CNN accelerator. By

assigning PEs to different PE Arrays before execution and not changing this

allocation during operation, it is possible to leverage the advantages of this

feature while avoiding potential issues. Additionally, implementing the PE

Arrays using Versal’s AI Engine(-ML) Tiles is feasible, provided the number

of parallel pixels is increased to suit the systolic array, or utilizing multiplier

columns from the systolic array to process data from different images.

More complex on-chip interconnects need to be introduced, allowing

connections between all computation engines and establishing independent

pathways between any two engines. This would make it possible to create a
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more general-purpose accelerator. Such a general-purpose accelerator could

be valuable if implemented as an ASIC. The equivalent number of 8×8

multipliers in the implementation on the VU13P FPGA already exceeds

10,000, but still fewer than that of modern ASIC accelerators. On the other

hand, the maximum frequency is limited by the FPGA platform, operating

at approximately 600 MHz, which is significantly lower than the 1.5 GHz to

2 GHz typical of ASIC-based parallel accelerators.

Implementing this as an ASIC could significantly narrow the computa-

tional power gap with GPUs and other ASIC implementations. It would

allow high-throughput execution of models like ResNet50 and YOLO while

requiring minimal off-chip memory bandwidth. It may also handle models

such as RNNs and transformers with high efficiency.

With the rapid advancement of AI-related technologies, their applications

are gradually integrating into everyday life. Due to the limitations of edge

computing devices, most reliance still falls on high-performance computing

in data centers. If the technologies related to this research achieve further

development and widespread application, both edge computing and high-

performance computing can benefit from the extremely low bandwidth

requirements.

Firstly, compared to current computing products that depend on costly

HBM or relatively less expensive GDDR memory, our architecture can meet

bandwidth demands using much cheaper DDR memory, directly influencing

the final product pricing. For edge computing products, a more affordable

price allows more people to enjoy the convenience brought by technological

advancements. For data centers, this reduces procurement costs and impacts

the pricing of computing services. Reduced memory access means less power

is used for data transfer, enhancing the battery life of edge devices and

improving the user experience when leveraging AI-related technologies on

edge computing devices.

Lower power consumption also leads to reduced heat generation. For

data centers, this translates to lower operational costs due to reduced power

consumption and cooling needs, which also affects the pricing of related

services. Currently, data centers are major consumers of electricity and water

(for cooling purposes), so this research contributes to energy conservation

and emissions reduction. More affordable edge computing products and data

center services will encourage these technologies to penetrate every corner of

daily life, improving convenience and productivity.
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Just as ultra-low-cost MCUs like the ESP8266, ESP32 and RP2040 have

driven IoT-related products and services into every aspect of life, we believe

our outcomes will also promote AI’s integration into all facets of daily life.
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