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Abstract

Thin-film solar cells utilizing tin sulfide (SnS) and zinc sulfide (ZnS) represent a promising
avenue for advancing photovoltaic technologies. This research investigates the stability and
electronic properties of bulk, surface, and interface structures between SnS and ZnS, addressing
the critical need to enhance semiconductor interface efficiency and stability. A comprehensive
approach employs first-principles calculations and advanced high-throughput interface struc-
ture search techniques to explore the structural and electronic characteristics of SnS and ZnS
heterostructures.

The analysis begins with an examination of the bulk and surface properties using density
functional theory (DFT). Results indicate that bulk SnS has a bandgap of 0.92 eV, while ZnS
demonstrates a wider bandgap of 2.08 eV. The evaluation of surface stability reveals that SnS
(100) and ZnS (110) exhibit lower surface energies than other low-index surfaces, establish-
ing them as the most stable surfaces. Additionally, the assessment shows slight decreases in
bandgap for surface structures, with SnS (100) at 0.91 eV and ZnS (110) at 1.87 eV, attributed
to surface reconstructions and atomic rearrangements.

The pristine SnS/ZnS interface structure, modeled from SnS (100) and ZnS (110) surfaces,
exhibits a staggered type-II band alignment that facilitates spatial separation of electron and hole
states, significantly reducing charge recombination. This energy offset is crucial for optimized
photovoltaic performance, with the electronic structure featuring a conduction band offset of
0.18 eV, a valence band offset of 1.28 eV, and a bandgap of 0.857 eV. These findings highlight
the potential of the SnS/ZnS interface to enhance thin-film solar cell efficiency.

To investigate the effects of defects on the SnS/ZnS heterostructure, various interface com-
positions were analyzed by incorporating ad-atoms such as Sn, S, and Zn. Six distinct configu-
rations were generated to simulate realistic defect conditions. Results show that interfaces with
balanced atomic distributions from both SnS and ZnS retained their semiconducting properties,
with a bandgap of 0.43 eV. Conversely, configurations dominated by a single element whether
Sn-rich, S-rich, or Zn-rich exhibited metallic behavior characterized by overlapping valence and
conduction bands near the Fermi level. This metallic behavior adversely affects device perfor-
mance by increasing recombination rates and hindering effective charge transport. Additionally,
introducing ad-atoms significantly alters the electronic structure, leading to reduced bandgaps in
certain configurations. For instance, (Sn,S)-rich and (Zn,S)-rich interfaces displayed bandgaps
of 0.27 eV and 0.32 eV, respectively, due to additional electronic states introduced within the
bandgap.

In summary, this research underscores the importance of interface engineering in the de-
velopment of SnS/ZnS heterostructures for solar energy applications. By tailoring interface
compositions and reducing defect-induced alterations in electronic properties, the structural and
operational stability of SnS/ZnS-based solar cells can be improved. These results contribute to
advancing the understanding of interface phenomena, providing insights that are essential for
the development of reliable and sustainable photovoltaic technologies.

Keywords: Thin-film solar cells, SnS, ZnS, Interface stability, First-principles calculations,
Electronic properties
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Chapter 1

Introduction

1.1 Backgroud

A crucial driver in the transition to a clean, renewable energy economy is the energy harnessed
from solar cells, which offer an affordable and environmentally friendly solution to growing
energy demands [4]. Solar cells convert sunlight into electricity, and among the various types
available, thin-film solar cells (TFSCs) stand out for their innovative design and versatility [5].
Unlike traditional crystalline silicon cells, TFSCs are composed of semiconductor layers just
a few micrometers thick, making them lightweight and adaptable for integration on diverse
substrates such as glass, metal, or plastic. This flexibility enables TFSCs to be used in a range
of applications, including building-integrated photovoltaics and portable solar devices [5].

Thin-film solar cells, as illustrated in Figure 1.1, consist of multiple functional layers that
facilitate sunlight conversion into electricity. The substrate provides foundational support, while
the back contact, typically made from conductive materials like molybdenum, enables electron
flow into an external circuit. The absorber layer, critical for light absorption and electron-hole
pair generation, can be made of materials like cadmium telluride (CdTe), copper indium gallium
selenide (CIGS), or tin sulfide (SnS) [2, 6, 7]. The buffer layer, often composed of zinc sulfide
(ZnS) or cadmium sulfide (CdS), enhances the efficiency of the absorber layer by improving
charge collection and reducing recombination losses [8, 9]. The transparent conductive oxide
(TCO) layer, typically made from indium tin oxide (ITO) or zinc oxide (ZnO), allows sunlight to
pass through while also conducting electricity [9]. Finally, the top contact, made from materials
such as silver or aluminum, collects the generated current and facilitates its flow to an external
load. Each of these layers plays a critical role in ensuring the efficient operation of TFSC
technology [5].

As the demand for sustainable energy solutions intensifies, TFSCs have emerged as a promis-
ing alternative to conventional silicon solar cells, which typically achieve efficiencies between
10% and 28% [10]. TFSCs, with potential efficiencies up to 23% [10], offer several advantages,
including their ability to maintain performance in challenging environmental conditions such as
low light or high temperatures. Moreover, TFSCs present opportunities for reducing material
costs and expanding applications due to their flexibility. However, the use of scarce and toxic
elements in some TFSC technologies, like CdTe and CIGS, limits their scalability and environ-
mental sustainability. This has driven efforts to explore alternative materials like copper zinc
tin sulfide (CZTS) and tin sulfide (SnS), both of which are more abundant and environmentally
friendly [2, 5].
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Figure 1.1: Schematic of thin film solar cell structure

In order to optimize the performance of TFSCs and address the challenges posed by material
choices, a deep understanding of their electronic properties at the bulk, surface, and interface
levels is essential [2, 11]. The electronic structure of semiconductor materials influences their
efficiency in converting sunlight to electricity by determining key factors like band gaps and
charge carrier dynamics.

Ab initio Density Functional Theory (DFT) is a powerful computational tool used to study
the electronic structure of materials at the atomic level, providing insight into how electrons
behave in bulk materials, at surfaces, and across interfaces [12, 13]. For TFSCs, DFT-based
studies are especially valuable in understanding how surface states and interfacial phenomena
impact charge transfer and recombination processes—key factors in determining device effi-
ciency. By employing DFT, researchers can model and optimize the electronic properties of
various material compositions, helping to design new materials and structures that minimize
losses and enhance performance. This thesis aims to utilize DFT to investigate the electronic
properties of bulk, surface and absorber/buffer interfaces in thin-film solar cells, with a focus on
developing materials that can overcome the limitations of existing technologies while advancing
the sustainability and efficiency of solar energy solutions.

1.2 Motivation

Despite significant advancements in thin film solar cell (TFSC) technology, optimizing mate-
rial properties and enhancing overall efficiency remain key challenges [14]. These challenges
are particularly pronounced when selecting appropriate materials and examining their surface
and interface sections. As the demand for renewable energy sources intensifies, there is an ur-
gent need to explore alternative materials that are not only efficient but also environmentally
friendly. Conventional materials like cadmium telluride (CdTe) and copper indium gallium se-
lenide (CIGS) present significant challenges due to their reliance on scarce and toxic elements,
raising concerns about their long-term sustainability [15]. The Cu2ZnSnS4 (CZTS) offers some
promise as an alternative, yet issues with phase purity persist due to the complexity of its multi-
element composition [6].

In this context, tin sulfide (SnS) emerges as a promising candidate due to its low- cost, abun-
dant composition and favorable optical properties. Investigating SnS offers the opportunity to
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address the critical material selection challenges while also enhancing the overall performance
of TFSCs. Unlike conventional TFSC like CdTe and CIGS, SnS is abundant and non-toxic,
which enhances its sustainability [15]. Additionally, it possesses inherent p-type conductivity,
high carrier concentrations ranging from 1015 to 1018 cm−3, and a suitable bandgap of 1.25 eV,
making it ideal for effective light absorption and charge transport in solar cells [16–18]. Current
experimental efficiencies for SnS-based solar cells are approximately 4.63%, while theoretical
assessments suggest that efficiencies could exceed 30% [19]. This notable disparity between
experimental and theoretical performance highlights the significant opportunities for further
research and enhancement of SnS-based TFSCs.

Efficiency losses in TFSCs stem from several key factors, including defect-assisted recom-
bination in the bulk material, surface defects, and recombination at interfaces, particularly at
the heterojunction between layers [20, 21]. Defect-assisted recombination occurs when charge
carriers, such as electrons and holes, become trapped by material imperfections, leading to
recombination and a consequent decrease in overall device efficiency [21]. Surface defects,
especially on critical layers, exacerbate this problem by introducing more recombination sites,
further impeding performance. For instance, studies on the SnS(111) surface have revealed
that tin antisite defects notably disrupt the surface’s electronic properties, causing a transition
from semiconducting to metallic behavior, which severely hinders charge separation and trans-
port [2].

Poor interface quality between the absorber and buffer layers in TFSCs can lead to the
formation of undesired phases, such as SnS2 or Sn2S3, and the development of point defects at
the interface [22]. These defects are particularly problematic as they serve as primary sites for
recombination, which undermines the charge carrier dynamics essential for efficient solar cell
operation. The buffer layer plays a key role in minimizing these losses by acting as a barrier,
improving energy level alignment, and enhancing charge carrier separation at the interface [8,
23].

Several studies have explored various buffer materials, and it has been shown that the right
choice of buffer layer can dramatically reduce recombination losses, thereby improving the so-
lar cell’s overall efficiency. For instance, changing the buffer layer has been found to increase
open-circuit voltage (Voc). A study by Xu et al. used numerical analysis to evaluate SnS het-
erojunctions with different buffer layers, including CdS, ZnS, ZnO, a-Si, and c-Si. Their results
revealed that the SnS/ZnS heterojunction achieved the highest conversion efficiency, driven
by its superior short-circuit current density [24]. Consequently, the SnS/ZnS heterojunction
is considered one of the most effective structures for improving TFSC performance. ZnS is
a particularly promising buffer layer due to its excellent optical properties, including 60-95%
transmittance in the visible spectrum, low absorbance, and a wide band gap of 3.22 eV [25,26].
This wide band gap enables ZnS to transmit a large portion of incident light to the absorber
layer, maximizing energy capture. Given these advantages, our research focuses on investigat-
ing the interface properties of SnS and ZnS as p-type and n-type materials, respectively, with
the goal of optimizing their interaction to improve TFSC efficiency.

The efficiency of thin-film solar cells (TFSCs) is often hindered by defects present in the
bulk material, at the surfaces, and at the interfaces between different materials, particularly
in SnS/ZnS heterojunctions. Poor interface quality can lead to the formation of undesirable
phases and defects, negatively impacting solar cell performance. Moreover, the complexity
and disorder characteristic of material interfaces present significant challenges for experimental
characterization, making it difficult to fully understand defect formation and recombination pro-
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cesses at the atomic level. To address these issues, advanced computational methods, especially
ab initio simulations and materials informatics tools, are essential for exploring the electronic
and structural properties of SnS/ZnS interfaces. This study aims to employ density functional
theory (DFT) and high-throughput interface structure searches to investigate the interface prop-
erties of SnS/ZnS, providing crucial insights for optimizing material selection and enhancing
the performance of TFSCs.

1.3 Outline

This work is divided into 5 chapters.

• Chapter 1: This chapter establishes the research’s context, significance, and scope, de-
tailing the motivation, primary objectives, and relevant literature.

• Chapter 2: This chapter outlines the existing literature related to the methodologies em-
ployed in this research, with a focus on DFT, interface structure search and supercell
modeling.

• Chapter 3: Results and discussion for bulk and surfaces of SnS and ZnS.

• Chapter 4: Results and discussion for SnS/ZnS interfaces.

• Chapter 5: This chapter summarizes the key points, results, and conclusions from Chap-
ters 2, 3, and 4.
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Chapter 2

Methodology

Ab initio simulations, particularly those based on Density Functional Theory (DFT), provide a
powerful first-principles approach to solving the fundamental ”many-body Schrödinger equa-
tion” of quantum mechanics [9]. As a predictive method, DFT enables the calculation of mate-
rial properties using only information about the constituent atoms, without relying on empirical
or experimental data. By modeling electron density rather than wave functions, DFT simpli-
fies the complex many-body problem, allowing for the accurate prediction of a wide range of
material properties, including physical, electronic, optical, and magnetic characteristics. These
simulations are applicable to materials modeled as crystals, atomic clusters, and other structures,
and are also widely used to study chemical reactions and surface phenomena. Although newer
methods, such as stochastic Quantum Monte Carlo and wave function-based techniques like
coupled-cluster (CCSD), offer higher accuracy, DFT remains a popular choice due to its com-
putational efficiency, making it suitable for systems with hundreds of atoms [27]. Moreover,
continuous advancements in DFT have improved its accuracy and extended its applicability to
previously challenging materials, such as those with strong electron correlation. This makes ab
initio simulations using DFT indispensable in material science, driving innovations in energy
storage, photovoltaic, and semiconductor technologies [27].

2.1 Quantum mechanics and schrödinger equation

Quantum mechanics provides the foundational framework for understanding the behavior of
particles at atomic and subatomic scales [28, 29]. It reveals the intricate and often counterin-
tuitive aspects of the quantum realm, where the rules governing particles differ significantly
from our everyday experiences. A central concept in this framework is wave-particle duality,
which states that particles like electrons and photons can exhibit both wave-like and particle-like
properties, depending on how they are observed.

In classical physics, objects are typically seen as either particles, with definite positions
and paths, or waves, characterized by their amplitude and frequency [29]. However, in the
quantum world, particles can behave like waves, demonstrating phenomena such as interference
and diffraction. For instance, light can produce patterns of bright and dark spots when passed
through a double slit, indicating its wave nature. When measured, these particles appear as
distinct entities with quantized properties. This duality alters our understanding of motion and
interaction, suggesting that at microscopic scales, particles do not have fixed paths. Instead,
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their behavior is described by probabilistic laws, captured in a mathematical function known as
the wave function, denoted as Ψ, which outlines the likelihood of finding a particle in various
positions.

The schrödinger equation is a fundamental equation in quantum mechanics that describes
how the quantum state of a physical system changes over time. It plays a key role in under-
standing the behavior of particles at the quantum level. For a single particle in a potential field
time-dependent schrödinger equation is expressed as [28]:

iℏ
d
dt
ψ (r, t) = Ĥψ (r, t) (2.1)

Here, ℏ is the Hamiltonian operator, E representing the total energy of the system, including
both kinetic and potential energy. The wave function ψ(r, t) represents the probability of finding
the particle at a specific position r at time t, while the reduced Planck constant ℏ links quantum
mechanics to classical physics. The wave function is a complex function, and its square modulus
|ψ|2 gives the probability density of finding the particle in a particular region of space.

However, often we are not interested in how the quantum wave function will evolve over
time. For example, in a steady-state system, we might be more concerned with the steady-state
quantum wave function given an arbitrary potential field. Moreover, transitions in the quantum
world occur on timescales of picoseconds to femtoseconds, making it more important to ob-
tain the steady-state quantum wave function. This is where the time-independent schrödinger
equation becomes crucial [28].

The time-independent schrödinger equation can be rewritten as:

Eψ (r) = Ĥψ (r) (2.2)

Here, ψ(r) represents the corresponding eigenvectors, r is the position in 3-dimensional
space. Ĥ is the Hamiltonian operator, which represents the total energy of the system E, en-
compassing both kinetic energy (the energy of motion) and potential energy (the energy due to
position in a force field). In many cases, the hamiltonian can be expressed as:

Ĥ = T̂ + V̂ = −
ℏ2

2m
∇2 + V (r) (2.3)

where T̂ represents the kinetic energy operator and V̂ represents the potential energy opera-
tor. The lowest energy eigenvalue is essentially the ground state energy of the system, and the
corresponding eigenvector is the ground state quantum wave function

In practical atomic, molecular, and solid systems, the interactions among numerous particles
lead to the emergence of complex many-body systems [29]. To effectively manage this com-
plexity, the schrödinger equation has been expanded to incorporate the many-body schrödinger
equation (MBSE). While the single-particle schrödinger equation concentrates on the behavior
of an individual electron within a potential field, the MBSE is essential for accurately modeling
the intricate interactions that occur in systems with multiple particles. The general form of the
time-independent many-body schrödinger equation can be expressed as [29]:
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Eψ (r1, r2, ..., rN) = Ĥψ (r1, r2, ..., rN) (2.4)

where ψ(r1, r2, ..., rN) is the wave function of N interacting particles, and Ĥ is the Hamilto-
nian operator that accounts for the kinetic and potential energies of all particles in the system:

Ĥ = −
N∑

i=1

ℏ2

2m
∇2

i −

M∑
A=1

ℏ2

2MA
∇2

A −

N∑
i=1

M∑
A=1

e2ZA

riA
+

N∑
i=1

N∑
j>1

e2

ri j
+

M∑
A=1

M∑
B>A

e2ZAZB

RAB
(2.5)

where, A and B run over nuclei, MA is the mass of nucleus A, i and j run over electrons,
∇ is the Laplacian operator, m is the mass of an electron, e is the charge on an electron, ZA is
the atomic number of nucleus A, and riA is the distance between particles i and A, ℏ is Planck’s
constant divided by 2π. The first two terms represent the kinetic energy of the electrons and
the nuclei, and the other three terms are the potential energy between nuclei and electrons,
electron-electrons and nuclei-nuclei.

To effectively solve the MBSE, various approximation methods have been developed due
to the complexity of many-body systems. The Born-Oppenheimer (BO) approximation is one
of the most widely used techniques, particularly in quantum chemistry [9, 29]. It simplifies
the problem by decoupling the motions of nuclei and electrons, if nuclei move much more
slowly than electrons. Consequently, the nuclear kinetic energy can be neglected, allowing the
Hamiltonian to be separated into electronic and nuclear components:

Ĥelec = −

N∑
i=1

ℏ2

2m
∇2

i −

N∑
i=1

M∑
A=1

e2ZA

riA
+

N∑
i=1

N∑
j>1

e2

ri j
(2.6)

This leads to the effective electronic schrödinger equation:

Eelecψ = Ĥelecψ (2.7)

These frameworks deepen our comprehension of quantum phenomena and play a crucial
role in advancing quantum chemistry, materials science, and condensed matter physics, fos-
tering ongoing innovation in these areas, especially through the implementation of ab initio
simulations and electronic structure methods [9].

2.2 Density functional theory

Density Functional Theory (DFT) emerges as a powerful and efficient framework for investi-
gating the electronic structure of complex many-body systems, building upon the foundational
principles established by the many-body schrödinger equation [9,12,13]. Instead of focusing on
the intricate many-body wave function, ψ(r1, r2, ..., rN). DFT emphasizes the more manageable
electron density, n(r), which can be experimentally measured and theoretically calculated.
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n (r) = 2
∑

i

ψ∗i (r)ψi (r) (2.8)

where, ψ∗i (r) and ψi(r) represent the wave functions of individual electron and its complex
conjugate at position r. Multiplication factor 2 is due to the fact that electrons are spinning and
therefore, as per the exclusion theory of pauli, each independent wave function can now have
two opposite spin electrons.

2.2.1 The Hohenberg-Kohn theorems

DFT is anchored in the Hohenberg-Kohn theorems [12], which assert that the ground state
properties of a system are uniquely determined by its electron density [9]. The first theorem
states [12] that “The ground-state energy from the schrödinger equation is a unique functional
of the electron density”. This statement interprets that the energy of the ground state can be
expressed as a function of the electron density E[n]. This relationship can be expressed mathe-
matically as:

E[n] =
〈
Ψ
∣∣∣Ĥ∣∣∣Ψ〉

(2.9)

where Ĥ is the Hamiltonian operator, and
〈
Ψ
∣∣∣Ĥ∣∣∣Ψ〉

represents the expectation value of the
energy in terms of the wave function Ψ. Since calculating the electron density is significantly
simpler than solving the full multiparticle wave function, this theorem facilitates the effective
application of DFT to many-body systems.

The second Hohenberg-Kohn theorem [12] states that “The electron density that minimizes
the overall functional is the true electron density corresponding to the full solution of the
schrd̈inger equation.” This theorem applies the variational principle within the context of func-
tionals, which can be expressed mathematically as:

E0 = E0[n] = min
Ψ→n
⟨Ψ|Ĥ|Ψ⟩ (2.10)

In this expression, E0 denotes the ground-state energy corresponding to the electron density
n, while Ψ represents the many-electron wave function that produces n. The notation minΨ→n

indicates that the minimum ground state energy is achieved by identifying the wave function Ψ
that corresponds to the specified electron density n.

Furthermore, if the precise form of the functional is known, one can compute the true elec-
tron density relatively easily. However, the challenge arises from the fact that the exact form
of the actual functionals is often unknown. This theorem thus establishes a framework for
approximating these functionals, enabling accurate determination of the electron density.

2.2.2 Kohn-Sham equations

The Kohn-Sham equation [13] represent a pivotal advancement in DFT, providing a practical
approach to calculate the electron density of many-body systems. By introducing a system
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of non-interacting particles that reproduce the same electron density as the interacting sys-
tem, Kohn and Sham transformed the complex problem of many-body interactions into a more
tractable form. This transformation allows for the use of single-particle equations, facilitating
the efficient computation of properties in quantum systems. The Kohn-Sham framework ef-
fectively separates the total energy of a system into contributions from kinetic, external, and
electron-electron interactions, making it easier to analyze and compute electronic structures.

The Kohn-Sham equations can be mathematically expressed as follows:

[
−
ℏ2

2m
∇2 + Veff (r)

]
ψi (r) = εiψi (r) (2.11)

Here, ψi(r) is a wavefunction of eigenvectors, εi are eigenvalues in the Kohn Sham equation,
− ℏ

2

2m∇
2 is the kinetic energy of an electron and Veff(r) is the effective potential, defined as:

Veff (r) = Vext (r) + VH (r) + VXC (r) (2.12)

1. External Potential (Vext(r)): This term represents the sum of the contributions from the
nuclei and the electron-electron interactions. Mathematically, it can be expressed as:

Vext (r) =
N∑

i=1

M∑
A=1

e2ZA

riA
+

N∑
i=1

N∑
j>1

e2

ri j
(2.13)

where ZA is the charge of nucleus A, ri is the position of electron and RA is the position of
the nucleus, This term directly influences the electrons’ motion and their distribution in
space.

2. Hartree Potential (VH(r)) : This term accounts for the classical Coulomb repulsion
between electrons by representing the average potential due to the electron density n(r).
It is mathematically expressed as:

VH (r) = e2
∫ n

(
r
′
)

|r − r′ |
d3r

′

(2.14)

This integral sums the contributions from the electron density n(r′) at all points r′ in
space, providing a mean-field description of electron-electron interactions.

3. Exchange-Correlation Potential (VXC(r)) : The exchange-correlation potential [12] in-
corporates the quantum mechanical effects of electron correlation and exchange, which
are not captured by the Hartree term.

VXC (r) =
δEXC [n]
δn

(2.15)

where, EXC[n] is the exchange-correlation energy functional, and δEXC[n]
δn represents the

functional derivative, indicating how the exchange-correlation energy changes with re-
spect to changes in the electron density.
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2.2.3 Exchange-Correlation functional

The exchange-correlation functional [12] EXC[n] is a fundamental component of DFT, encap-
sulating the complex quantum mechanical effects of electron-electron interactions that are not
accounted for by the Hartree term. It embodies both exchange effects, which arise from the anti-
symmetry of the many-body wave function, and correlation effects, which describe the tendency
of electrons to avoid each other due to their mutual repulsion. As previously described in the
Kohn- Sham equations, the exchange-correlation potential VXC is derived from this functional.
The EXC[n] is crucial for accurately predicting the ground-state properties of a many-electron
system, such as binding energies, molecular geometries, and electronic excitations.

Accurately describing the EXC[n] is a complex challenge in DFT, leading to the development
of several approximations. The most widely utilized approximations are:

1. Local Density Approximation (LDA): The LDA [12] assumes that the exchange-correlation
energy density at a point in space depends only on the electron density at that point. This
can be expressed as:

ELDA
XC (n) =

∫
nεunif

XC (n) dr (2.16)

where, εunif
XC is the energy exchange-correlation per atom of uniform electron gas interact-

ing with the density n.

2. Generalized Gradient Approximation (GGA): The GGA [30] improves upon LDA by
incorporating the gradient of the electron density. The exchange-correlation energy is
expressed as a function of both the electron density and its gradient:

EGGA
XC (n) =

∫
nεXC (n,∇n) dr (2.17)

GGA yields significantly better atomic energy and binding energy than LDA at a mod-
est additional computational expense. In specific, they lead to better outcomes for the
bandgap in semiconductors and insulators. There are several types of GGA function-
als, such as the Perdew-Burke-Ernzerhof functional [30] (PBE) and the Perdew-Wang
functional [31] (PW91) based on how the electron density gradient is integrated with the
functional.

3. Meta-GGA: Meta-GGA [32] incorporates additional information, such as the kinetic
energy density, into the exchange-correlation functional. It can be expressed as:

EmGGA
XC (n) =

∫
nεXC

(
n,∇n,∇2n, τ

)
dr (2.18)

4. Hybrid Functionals: Hybrid functionals [33, 34] mix traditional DFT methods with
Hartree-Fock (HF) exchange to improve the accuracy of the calculated properties. This
funtional can be represented as:

Ehybrid
XC (n) = αEHF

X (n) + EC (n) (2.19)
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where α is mixing parameter, EHF
X is Hartree Fock exchange and EC is correlation energy.

There are several types of Hybrid functional used like PBE0, B3YLP, HSE [33–35].

Chemical accuaracy

Hybrid DFT

Meta-GGA
𝑛, ∇𝑛, ∇!𝑛

GGA
𝑛, ∇𝑛

LDA
𝑛

Hartree approximation

Ac
cu

ra
cy

Sim
plicity

Figure 2.1: Jacob’s ladder of density functional approximations

The hierarchy of approximations for electronic structure calculations, commonly known
as Jacob’s ladder [36] (as illustrated in Figure 2.1), categorizes various exchange- correlation
functionals, EXC[n], according to their complexity. This framework positions functionals along
a ladder, progressing from the Hartree approximation at the base to more precise functionals
at the top. The LDA improves upon this by partially addressing exchange-correlation effects,
although it is still rooted in the theoretical framework of electron gas. Moving up the ladder, the
GGA incorporates gradients of electron density, resulting in enhanced accuracy for both molec-
ular and solid-state systems. Further levels in this hierarchy provide additional refinements,
employing various schemes to recover correlation energy and yielding increasingly precise cal-
culations with fewer approximations. It is important to note that while Meta-GGA and other
advanced theories achieve greater accuracy, they often require significantly more computational
resources. In contrast, the GGA functional utilized in this study strikes a favorable balance be-
tween computational efficiency and accuracy, making it well-suited for a wide range of materials
science applications, including the analysis of ground-state properties and structural optimiza-
tion.

2.3 Ab initio DFT simulation

Ab initio DFT simulations provide a robust computational framework for exploring the elec-
tronic properties of materials, utilizing the principles of DFT to deliver precise predictions of
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ground-state characteristics without reliance on empirical parameters [9]. These simulations
employ a Self-Consistent Field (SCF) approach to determine the ground-state properties of
electronic systems [9, 13]. In the SCF method, the electron density is iteratively refined until it
converges to a stable solution, ensuring consistency between the calculated electron density and
the potentials derived from it. Figure 2.2 illustrates the typical workflow for DFT simulations.
The process begins with an initial guess of the electron density, followed by the resolution of the
Kohn-Sham equations to obtain the effective potential. This potential is subsequently used to
update the electron density, and the iterative procedure continues until convergence is reached,
typically defined by a predetermined threshold for energy variation.

Initial guess electron density- n(𝑟)

Calculate effective potentional 𝑉!""(𝑟)

Solve the single particel 
Kohn-Sham equation for 𝜓#(𝑟)

Calculate new n 𝑟 = 2∑ 𝜓#∗(𝑟)𝜓#(𝑟)#

Calculate energy and forces

Self conisitent ?No

Yes

Calculate V(𝑟) (electron-nuclie interaction)

Generate new n 𝑟

Figure 2.2: DFT calculation workflow for a self-consistent
calculation using the Kohn-Sham equation
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2.3.1 Basis set expansion

Plane waves form the complete basis for periodic wave functions [37]. The solution to the
schrödinger equation in a periodic system adheres to a fundamental principle known as Bloch’s
theorem, which can be expressed as:

ϕk (r) = eik·ruk (r) (2.20)

In this equation, the exponential term represents plane waves characterized by the wave
vector k, while uk(r) is a periodic function with the periodicity of the unit cell or supercell. The
plane waves are represented by a set of wave vectors G, which correspond to the reciprocal
lattice vectors of the periodic structure:

ϕk (r) =
∑

G

Ck+Gei(k+G)·r (2.21)

Combining the equations (2.20) and (2.21) yields:

uk (r) =
∑

G

CGeiG·r (2.22)

Theoretically, a complete basis set for ϕk(r) would require an infinite number of plane waves.
However, due to the higher curvature of the higher frequency components, these terms become
less significant in the plane wave expansion of the bloch function. Therefore, a cutoff can
be applied, allowing for a reasonable approximation. The cutoff energy is determined by the
relationship:

ℏ2

2m
|k +G|2 ≤ Ecut (2.23)

The cut-off effect is to generate some less accurate wavefunction and thereby higher energy
of the system. It is essential to assess convergence to ensure that the results are not adversely
affected by the truncation.

2.3.2 Brillouin-Zone Integration

To compute various physical properties of solids, including total energy and electron (spin)
density, matrix element integrals over the Brillouin zone (BZ) are analyzed. k-points are the
sampling points within the Brillouin zone [9]. In a periodic supercell, k denotes the wave
vectors of the wave functions. Various methods exist for selecting the k-point grid, with the
Monkhorst-Pack scheme being the most used [38]. This method specifies the number of k
points in each direction of reciprocal space, which are then uniformly distributed by the DFT
code to create a k-point grid.
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2.3.3 Pseudopotential

The Coulomb potential surrounding an atomic nucleus is exceptionally strong. To counter-
balance this effect, the kinetic energy of the wave function must also be substantial, leading to
rapid oscillations that require a significant number of Fourier components for accurate represen-
tation. The use of pseudopotentials addresses this issue effectively. Pseudopotentials simplify
the description of electron-ion interactions by allowing researchers to concentrate on valence
electrons while effectively averaging out the contributions from core electrons. This method
enhances computational efficiency by substituting the complex Coulomb potential of atomic
nuclei with a smoother, effective potential, facilitating the calculation of electronic structures
across a variety of materials. Pseudopotentials can be categorized into two primary types: norm-
conserving and ultrasoft. Norm-conserving pseudopotentials maintain the total electron count,
making them ideal for lighter elements. In contrast, ultrasoft pseudopotentials provide greater
flexibility and significantly reduce the number of plane waves required for calculations, proving
advantageous for heavier elements and more complex systems. Another approach, the Projector
Augmented Wave (PAW) method [37], combines the benefits of pseudopotentials with full-wave
calculations, offering a more accurate representation of core and valence electron interactions.
In this study, PAW pesudopotential was used for computaiton.

The pseudopotential formalism serves two main purposes. First, it employs a much weaker
pseudopotential to eliminate the effects of core electrons, which would otherwise necessitate
representation by plane wave-based functions due to their deep potential. Second, it helps
to mitigate the rapid oscillations of the valence electron wave functions in the vicinity of the
core [9].

2.3.4 Smearing

In DFT simulations, particularly when dealing with metallic systems or materials with partially
filled electronic states, the concept of smearing becomes essential. Smearing techniques are
employed to distribute the occupancy of electronic states around the Fermi level, thereby en-
hancing numerical stability and convergence in calculations. This is achieved by broadening
the sharp distribution of electron states using methods such as Gaussian smearing, Methfessel-
Paxton smearing, or Marzari-Vanderbilt smearing [39, 40]. For instance, in Gaussian smearing,
the occupancy f (E) of electronic states is expressed as:

f [E] = e
−(E−E f )2

2σ2 (2.24)

where E is the energy of the state, E f is the Fermi energy, and σ represents the smearing
parameter, which controls the width of the Gaussian distribution. A careful selection of this
parameter is crucial: while larger σ values provide increased numerical efficiency, they can also
lead to inaccuracies in the results. Conversely, smaller σ values offer higher accuracy but may
result in longer computational times. In the present work, we have utilized Gaussian smearing
with a small σ value of 0.01 to balance efficiency and accuracy in this calculations.
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2.3.5 Force calculation and geometry optimization

DFT calculations are instrumental in predicting the lattice parameters and atomic positions of
a system due to their ability to compute forces using the Hellmann- Feynman theorem [41].
Through self-consistent cycles of DFT, the eigenvalue E and the eigenfunctions ϕ(r) can be
obtained, allowing for the calculation of other observables, such as atomic forces. The forces
acting on atoms are derived from the gradient of the energy with respect to atomic positions,
enabling the determination of equilibrium geometries where the net forces on all atoms are
zero. Geometry optimization involves iteratively adjusting atomic positions to minimize the
total energy of the system, leading to a local minimum on the potential energy surface. This
optimization process is essential for identifying the most stable configuration of a system. Dur-
ing each self-consistent field (SCF) loop, forces and stresses are calculated, and based on these
results, the atomic parameters are perturbed for the subsequent SCF loop using a specific algo-
rithm. In this work, the conjugate-gradient algorithm was employed to update the ionic positions
throughout the geometry optimization process. The choice of convergence criteria, including
energy and force tolerances, significantly influences the optimization outcome. In this study, a
force tolerance of approximately 0.01 eV/Å and an energy tolerance of 1 × 10−6 eV were con-
sidered, ensuring that the optimization process achieves the desired accuracy and stability for
the atomic configurations.

2.3.6 Dipole correction

Dipole correction is an essential technique employed in DFT simulations to account for the
long-range interactions associated with dipole moments in periodic systems [42]. When study-
ing surfaces, interfaces, or finite-sized systems, the use of periodic boundary conditions can
lead to artificial interactions between the periodic images of the system, especially when a net
dipole moment is present. This can distort key results, particularly those sensitive to elec-
tric fields, such as adsorption energies and charge distributions. To mitigate this issue, dipole
correction involves adding a term to the total energy of the system that compensates for the
energy associated with the interaction of the dipole moment with the electric field generated
by the periodic images. The dipole moment d is defined as d =

∑
i=1 qiri, where qi is the

charge of atom i and ri is its position vector. The correction to the energy can be expressed as
Edipole = −

1
2d · Efield =

∑
i=1 qiri, where Efield is the electric field due to the periodic images. By

incorporating this dipole correction, researchers can significantly improve the accuracy of their
simulations, leading to more reliable predictions of electronic structure, adsorption energies,
and structural optimizations in systems where dipole interactions play a critical role.

2.4 Supercell modelling and optimization

Supercell modeling is a crucial technique in computational materials science, particularly in
the context of DFT, as it allows for the study of periodic systems with defects, interfaces, or
other structural modifications. A supercell is constructed by repeating a unit cell in one or more
dimensions, thereby enabling the simulation of larger, more complex systems while maintaining
periodic boundary conditions.
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2.4.1 Bulk structure

In this study, the bulk structure was optimized with specific convergence criteria for energy
and forces, set to 1 × 10−6 eV and 0.01 eV/Å, respectively. These criteria ensure that the opti-
mization process achieves the desired accuracy and stability for the atomic configurations. The
optimization involves iterative adjustments to the atomic positions within the supercell, guided
by the computed forces derived from the Hellmann-Feynman theorem [41]. The schematic of
bulk supercell is shown in Figure 2.3 (a).

sub-interface layer-B

bulk layer -A

bulk layer-B

sub-interface layer-A

interface layer A/B

Vacuum

Vacuum

Vacuum

Fixed slab

(a) Bulk Supercell

(b) Surface Supercell (c) Interface Supercell

Figure 2.3: Schematic of (a) bulk, (b) surface and (c) interface supercells (created
using VESTA software [1])

2.4.2 Surface structure

To create the surface structure, a surface supercell was modeled with a bulk slab and a vacuum
layer on top of the surface as illustrated in Figure 2.3(b). In this study, seven different low-index
surfaces were considered, corresponding to various surface orientations, namely (100), (010),
(001), (011), (101), (110), and (111) planes. The surface supercells were constructed using
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VASPKIT [43], ensuring accurate modeling of the desired surfaces.

Each surface supercell consisted of three slabs with a vacuum of 15 Å to minimize inter-
actions between the top and bottom slabs. To simulate realistic surface conditions, the atoms
in the bottom slab were fixed to behave like a substrate, while the atoms in the top two slabs
were allowed to move freely in any direction (as shown in Figure 2.3). This setup enabled a
comprehensive examination of surface relaxation and structural adjustments that occur during
optimization.

Furthermore, a dipole correction was applied in the z-direction for the surface supercells to
account for any potential dipole moments that could arise due to the asymmetry introduced by
the vacuum layer. This correction is vital for accurately calculating the electronic properties
and energies of the surface structure.

Similar to the bulk structure optimization, the surface structure was subjected to the same en-
ergy and force convergence criteria of 1× 10−6 eV and 0.01 eV/Å, respectively. These stringent
criteria ensure that the optimization process captures the stability and electronic characteristics
of the surface configuration accurately.

2.4.3 Interface structure and lattice mismatch

The interface structure is critical in influencing the performance of nanoscale devices like solar
cells [44]. The interface supercells were modeled by aligning the supercells of two distinct
materials while maintaining periodic boundary conditions. Accurate modeling of the atomic-
scale geometry at the interface is essential for predictive simulations.

The two materials involved have different lattice constants, requiring one or both surfaces to
be strained to form a compatible supercell. In some cases, rotating the surfaces can alleviate the
strain but often increases the supercell size, especially when preserving symmetry. Achieving a
low-strain interface without overly expanding the supercell presents a significant challenge.

The strain induced by lattice mismatch can lead to defects or distortions at the interface,
affecting the material’s stability and electronic properties [45, 46]. The optimization process
must carefully adjust atomic positions to minimize strain and create a stable interface configu-
ration. A well-optimized interface model provides valuable insights into interfacial interactions,
which are critical for the performance of heterostructures in photovoltaics, where the interface
characteristics are key to their functionality.

A comprehensive screening procedure was developed to identify the lattice-matched inter-
face structure [45,46]. This process begins with the crystallographic unit cells of two materials,
designated as A and B as depicted in Figure 2.4. Next, two surface supercells with respective
lattice vectors of (−→u a, −→v a) and (−→u b, −→v b). are constructed from the surface unit cells of materials
A and B. Moreover, in order to prevent the high computational cost, a threshold area of 200 Å2

was maintained as a constraint for creating a superlattice. Further, this two supercells are rota-
tionally aligned (step 3 of Figure 2.4) by rotation and then matched using the the strain tensor
ε. The individual strain components are defined as follows:

εxx =
ub,x − ua,x

ua,x
, (2.25)
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εyy =
vb,y − va,y

va,y
, (2.26)

and

εxy = εyx =
1
2

(
vb,x

va,y
−

ub,xva,x

ua,xva,y

)
(2.27)

To identify and optimize the misfit between different surfaces following equation for lattice
mismatch was used [46]:

ε =
|εxx| +

∣∣∣εyy∣∣∣ + 2
∣∣∣εxy

∣∣∣
4

(2.28)

SnS ZnS

1. Bulk Structure 

4. Evaluate lattice mismatch

2. Create surface

3. Rotational alignment

SnS ZnS

𝑢!
𝑢"

𝑣!

𝑣"

𝜃

Figure 2.4: Flowchart diagram for matching two sur-
faces forming an interface with minimal strain

The interface structure with small values of ε was considered a well-matched superlattice.

The schematic of the interface supercell is depicted in Figure 2.3 (c). Vacuum layers are
introduced at the top and bottom of the supercell to eliminate interactions between materials A
and B across periodic boundaries, ensuring accurate simulation of the interface. The outermost
layers of both materials, referred to as bulk layers, have atoms fixed in place before relaxation,
maintaining the characteristics of bulk materials. This constraint stabilizes the structure and
isolates the interface behavior. Meanwhile, atoms in the sub-interface layers and at the A/B
interface were unconstrained and allowed to relax freely in all directions, simulating natural
atomic rearrangements at the interface. This configuration enables an accurate study of the
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atomic and electronic properties at the interface while preserving the bulk characteristics of the
surrounding layers.

2.5 Formation energy

Formation energy is a critical parameter in materials science, particularly for assessing the
stability and thermodynamic favorability of various structures, such as surface, interfaces, and
compounds [47]. It is defined as the energy difference between the total energy of a system
containing a specific configuration (such as a surface or an interface) and the energies of the
individual components in their equilibrium states.

In the context of surface and interface structures, formation energy provides insight into the
stability of the surface or interface. A lower formation energy indicates a more stable config-
uration, while a higher formation energy suggests that the system is less favorable and may be
prone to defect formation or phase separation.

The surface formation energy (γsurface) can be expressed mathematically as [44, 47]:

γsurface =
1

2 · A
{Es − N × Eb} (2.29)

where, Es represents the energy of the slab supercell, Eb is the bulk energy of the single bulk
slab, A is the area of the surface unit cell, and N denotes the number of bulk slabs in the surface
slab. The 1/2 pre-factor accounts for the two surfaces of a slab.

The interface formation energy [44] was calculated using the following relation:

γinterface =
1

2 · A

Etotal − Ebulk,A − Ebulk,B −
∑

i

NiEi

 (2.30)

where, A is the cross-section area of the interface, Einterface, Ebulk,A, Ebulk,B are the free ener-
gies (approximated as the total energies in DFT calculations) of the interface system, bulk A,
and bulk B, respectively. Ni and Ei denote the total number and energy of atoms in the interface
system, where i corresponds to distinct atoms.

2.6 Interface structure prediction

Interface structure prediction is a crucial aspect of materials science, particularly for understand-
ing the atomic arrangements and properties at the junction between two materials [44]. This pre-
diction plays a significant role in various applications, including electronics, photovoltaics, and
catalysis, where the interface can dramatically influence device performance. Consequently,
accurately predicting interface structures can drive advancements across multiple fields.

A powerful method for identifying the most stable structure from a given chemical compo-
sition is global optimization, which seeks the global minimum within a predefined multidimen-
sional space [48]. The theoretical prediction of interface structures typically involves two key
steps [44, 46]: (i) Lattice matching and (ii) characterizing the atomic structure at the interface.

19



Various optimization techniques, including genetic algorithms [49], particle swarm optimiza-
tion (PSO) [46,48], and the stochastic surface walking (SSW) method [50], can be employed in
this search. In this study, PSO was chosen due to its adaptability in identifying the most stable
interface structure, which may not necessarily correspond to the global minimum but rather to
a metastable configuration. This method effectively incorporates additional constraints, such
as lattice matching and the inherent restrictions imposed by the neighboring bulk materials on
either side of the interface [46]. Moreover, implementing physics-informed modifications in the
global optimization process is essential for accurately determining the interface structure, ensur-
ing that the unique characteristics of the materials involved are appropriately considered [48].

2.6.1 CALYPSO

The PSO algorithm was applied to crystal structure prediction using the CALYPSO code for
crystal structure analysis through particle swarm optimization [46, 48, 51].

Genrate random structure

Local optimization

List of geometric strucuture parameters

Generation of new structure by PSO 
(and some random strucuture) 

Local optimization

Stop

Converged or not ?

No

Yes

Figure 2.5: Flowchart diagram for CALYPSO simulations

The global minimization method through CALYPSO code [51] for predicting interface
structures comprises mainly four steps as depicted in the flow chart of Figure 2.5:

1. Generate random interface structures with the bonding constraint:
The surface configuration is derived from the lattice mismatch value, and these surfaces
are then used to form the interface supercell. The initial position of an atom in the in-
terface region is randomly assigned, and its validity is then evaluated by checking the
interatomic bond lengths and nearest-neighbor coordination numbers. If the bond lengths
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are too short or the coordination numbers fall outside acceptable ranges, the atom’s posi-
tion is rejected and regenerated. This procedure is repeated iteratively until a physically
valid interface structure is achieved.

2. Local optimization:
The potential-energy surface can be viewed as a multidimensional landscape of peaks
and valleys, with saddle points linking different regions. The valleys correspond to local
basins of attraction on the potential energy surface. Geometry relaxation is applied to
move the system toward local minima within this landscape. In this process, the free
energies determined using DFT simulation.

3. Identification of Local minima:
The energies of the structures, determined through DFT simulations, are used as fitness
values to evaluate their stability. After optimization, several similar or identical structures
may appear. To accelerate the search process, these duplicate structures are removed.

E

Xt

Vt+1
Vt

Xt+1

pbestt

gbestt

Figure 2.6: Illustration of update for position and velocity on potential en-
egy surface in PSO. An initial velocity V t evolves into V t+1 after one step
of PSO, as described by Eq. 2.31. A high-energy structure (Xt) transitions
to a significantly lower-energy structure (Xt+1) after one PSO operation.

4. New structures generation by PSO:
To thoroughly explore the potential energy landscape, the structures evolve using the in-
terfacially confined PSO algorithm, which possesses global search capabilities. Assuming
the interface region contains n atoms, a total of 3n+2 search dimensions are needed to up-
date the interface structure, with 3n dimensions corresponding to the atomic coordinates
and 2 dimensions for rigid-body displacement. Specifically, the position of the structure
(x) in each search dimension k is updated according to the following.

xt+1
i (k) = xt

i (k) + vt+1
i (k) (2.31)

where, i and t represent the indices of the structure in the population and the generation,
respectively. The initial velocities (v) of the structures in the first generation were gener-
ated randomly. The new velocity of each individual i in the kth dimension was calculated
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based on its previous position (x) before optimization, its previous velocity (v), its cur-
rent best position (pbestt

i), determined by the lowest enthalpy, and the global best position
(gbest) with the highest fitness value from the entire population. Each particle’s position
is updated using its velocity vector, as shown in Fig

vt+1
i (k) = ωvt

i (k) + c1r1
[
pbestt

i (k) − xt
i (k)

]
+ c2r2

[
gbest (k) − xt

i (k)
]

(2.32)

The inertia weight (ω) was dynamically and linearly reduced from 0.9 to 0.4 throughout
the iterations. The factor c1 represents self-confidence and indicates how much a particle
relies on its own past experiences, while c2 represents swarm confidence, reflecting how
much it trusts the collective experience of the swarm. Both c1 and c2, which are the learn-
ing factors, were fixed at 2. Additionally, r1 and r2 were two random numbers uniformly
distributed in the range (0, 1) to ensure comprehensive coverage of the search space and
to prevent entrapment in local optima. To mitigate premature convergence of the algo-
rithm, the velocities were constrained within the range of −1.2/l to 1.2/l, where l (in Å)
denotes the length of the corresponding lattice vector. To enhance the efficiency of the
procedure and improve structural diversity, a selection of low-energy structures from the
previous generation was chosen to generate the next generation using PSO (60%), while
the remaining structures were generated randomly(40%).
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Chapter 3

Bulk and surface of SnS and ZnS

This chapter explores the structural and electronic properties of the bulk and surface of tin sul-
fide (SnS) and zinc sulfide (ZnS). Understanding these properties is crucial for optimizing thin-
film solar cell performance, as both bulk characteristics and surface phenomena significantly
influence charge carrier dynamics and material interactions. We will first examine the bulk
structures of SnS and ZnS, highlighting their crystal structures and inherent properties. Sub-
sequently, the chapter will delve into the surface characteristics of both materials, discussing
factors such as surface energy, defects, and their impact on interface stability and performance.

3.1 Computational methods

All density functional theory (DFT) calculations were performed using the Vienna Ab-initio
Simulation Package (VASP) [52–54]. The exchange-correlation interaction was treated using
the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) func-
tional [30]. The interactions between ions and electrons were described by the projector aug-
mented wave (PAW) method [37]. For the electronic structure calculations, a plane-wave basis
set with a kinetic energy cutoff of 450 eV was employed, which ensures sufficient convergence
for total energy and forces. The Brillouin zone was sampled using a Monkhorst-Pack grid with
k-spacing of 0.01 Å−1. The self-consistent field (SCF) convergence criterion was set to 1 × 10−6

eV for the total energy. For geometry optimizations, the atomic positions were relaxed until the
forces on all atoms were less than 0.01 eV/Å. In addition, pseudopotentials were used to sim-
plify the computational treatment of core electrons, with valence configuration, where 4d, 5s,
and 5p electrons of Sn; 3d, 4s electrons of Zn and 3s, 3p electrons of S were treated as valence
electron configuration.

Seven different low-index surfaces were considered by cleaving the optimized bulk SnS and
ZnS structures along the (100), (010), (001), (011), (101), (110), and (111) crystallographic
planes. Surface supercells were generated using VASPkit [43], each consisting of three atomic
slabs separated by a 15 Å vacuum layer, ensuring negligible interaction between the periodic
images. The bottom slab atoms were fixed to simulate the behavior of a substrate, while the
atoms in the top two slabs were allowed to relax in all directions. Notably, during the surface
structure optimizations, the surface structure itself was kept constant to maintain the vacuum,
and only the atomic positions of the top two slabs were relaxed as shown in Figure 3.4. To
account for potential surface dipole effects, a dipole correction was applied along the z-direction
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for all surface supercells [42].

3.2 Bulk structure of SnS and ZnS

Here, the lattice parameters and electronic structures of bulk SnS and ZnS as shown in Fig-
ures 3.1 (a) and (b) were investigated to ensure the reliability of the computational method
applied. The lattice parameters for SnS and ZnS were consistent with previously reported val-
ues obtained through DFT calculations and experimentation as shown in Table 3.1 [2, 55–60].
This agreement provides confidence in the accuracy of the structural optimizations performed
using the chosen computational setup. Moreover, the band gaps of bulk SnS and ZnS were
found to be 0.92 eV and 2.08 eV, respectively, which were comparable to other computational
work [2,55,56,58,60]. Whereas, the difference in the band gap with the experimentation value
was due to the discontinuity in the gradient derivatives and self-interaction error in the DFT
simulation [61, 62].

Sn Zn S

(a) (b)

Figure 3.1: Schematic of bulk (a) SnS and (b) ZnS structure
(created using VESTA software [1]).

Table 3.1: Lattice parameter (in Å) and bandgap (in eV) of bulk SnS and ZnS

Lattice Parameter (α= β= 90◦)
Bandgap

a b c γ

SnS Current computational work 11.410 4.026 4.427 90◦ 0.92

Other computational work [2, 55] 11.202 4.023 4.459 90◦ 0.92

Experimental Value [56, 57] 11.192 3.984 4.329 90◦ 1.25

ZnS Current computational work 3.845 3.845 6.309 120◦ 2.08

Other computational work [58–60] 3.843 3.843 6.299 120◦ 2.11

Experimental Value [58] 3.850 3.850 6.290 120◦ 3.77
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The electronic band structure and density of states (DOS) for bulk SnS and ZnS provide
valuable insights into the electronic properties of both materials. Bulk SnS was found to be an
indirect band gap semiconductor with a band gap of 0.9235 eV, as depicted in Figure 3.2(a) [2].
The analysis of the DOS reveals that the valence band edge (VBE) is primarily composed of S
3p orbitals, with a minor contribution from Sn 5s states. The conduction band edge (CBE), on
the other hand, is dominated by Sn 5p orbitals, with smaller contributions from S 3p orbitals,
as shown in Figure 3.2(b). Further analysis of the DOS reveals that the lower valence band
(ranging from −2 to −4 eV) is primarily attributed to the occupied S 3p orbitals, along with a
minor contribution from the occupied Sn 5p states. This suggests strong bonding interactions
between the sulfur atoms and the neighboring tin atoms in this energy range. In contrast, the
higher conduction band (from 2 to 4 eV) is largely dominated by unoccupied Sn 5p states, with
small contributions from unoccupied S 3p states. This distribution of electronic states highlights
the significant role of Sn 5p orbitals in defining the conduction properties of bulk SnS, making
it a key factor in its electronic behavior.
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Figure 3.2: (a) Electronic band structures (P1 and P2 are the conduction band minima
and valence band maxima, respectively) and (b) total and partial density of states
(PDOS) of the bulk SnS (the dotted lines here represent the Fermi level (E f ), and
these have been set to zero in the energy scale). (Adapted from Dahule et. al. [2])

The electronic band structure and density of states (DOS) for bulk ZnS reveal important
insights into its electronic properties. Bulk ZnS was found to be a direct band gap semicon-
ductor with a band gap of 2.08 eV, as depicted in Figure 3.3(a). The direct nature of the band
gap indicates that the valence band maximum and conduction band minimum occur at the same
k-point i.e., γ, making ZnS suitable for optoelectronic applications that require efficient photon
absorption and emission. The DOS analysis shows that the VBE is primarily composed of S 3p
orbitals, with a minor contribution from Zn 3d states. The CBE is dominated by Zn 4s orbitals,
with smaller contributions from S 3p states, as shown in Figure 3.3(b). Further examination of
the DOS reveals that the lower valence band (ranging from −2 to −4 eV) is primarily composed
of occupied S 3p states, with additional contributions from occupied Zn 3d states. Beyond −4
eV, the valence band shows a significant contribution from both S 3p and Zn 4s states, indicat-
ing a complex interplay between the sulfur and zinc orbitals in defining the electronic structure
of ZnS. In contrast, the higher conduction band (beyond 3 eV) is dominated by unoccupied Zn
4s orbitals, with minor contributions from unoccupied S 3p states. This highlights the critical
role of Zn 4s orbitals in the conduction band, which is pivotal for the electronic and optical
properties of ZnS. The predominance of Zn 4s states in the conduction band underscores the
effectiveness of ZnS in applications requiring efficient charge carrier mobility and photonic
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interactions, making it a suitable candidate for optoelectronic devices.
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Figure 3.3: (a) Electronic band structures (P1 and P2 are the conduction band minima
and valence band maxima, respectively) and (b) total and partial density of states
(PDOS) of the bulk ZnS (the dotted lines here represent the Fermi level (E f ), and
these have been set to zero in the energy scale) (Adapted from Dahule et. al. [3]).

3.3 Surface stability and electronic structure

The stability of a material’s surface is a critical determinant of its overall performance and leg-
evity of solar cells. The surfaces of these materials often exhibit distinct properties that diverge
from their bulk counterparts, primarily due to factors such as reduced atomic coordination and
the presence of defects. These surface characteristics significantly influence key aspects of so-
lar cell performance, including charge carrier dynamics, light absorption, and surface reactivity
with environmental factors. Understanding the electronic structure at the surface is essential for
optimizing the functionality of thin-film solar cells, as it directly impacts the behavior of charge
carriers and the stability of the material interfaces. In this context, the surface study of SnS and
ZnS was conducted to understand their stability and electronic behavior. Moreover, the surface
supercells were constructed using with periodically repeated slab models cleaved from the bulk
structure and 15 Å vacuum space to decouple the surfaces. The surface structure for SnS and
ZnS are illustrated in Figure 3.4. Here the bottom slab of SnS(100) and ZnS (110) is a fixed
slab as denoted in Figure 3.4 and other slab i.e. between fixed slab and and vacuum consist of
atoms free to move in any directions. The low index surfaces ((100), (010), (001), (011), (101),
(110), and (111)) of SnS and ZnS were selected to find their stability using surface energies.

3.3.1 SnS surfaces

To evaluate the surface stability of SnS surfaces, the surface energies were calculated using
equation (2.29) and presented in table 3.2 As shown in table 3.2, the surface energy of SnS(100)
is lower than that of other low index surfaces considered. This suggests that the SnS(100)
surface is the most stable among them. Our results for surface stability was in good agreement
with the surface energy reported by Tritsris et al., who also investigated the relative stability
of the SnS surface using stoichiometric and oxygen-containing structural models and found the
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(a) SnS (100) Surface (b) ZnS (110) Surface

Vacuum

Fixed slab Fixed slab

Vacuum

Sn

Zn

S

Figure 3.4: Schematic of (a) SnS (100) and (b) ZnS (110) surface structures.
(created using VESTA software [1])

SnS (100) stable surface [63]. The surface strcuture for SnS(100) supercell was depected in
Figure 3.4 (a).

The electronic structure of SnS surfaces was analyzed to assess the influence of surface
configurations. Figure 3.5 presents the total and partial density of states (DOS) for all sur-
faces considered. The SnS (100), (010), (011), (101), and (111) surfaces display similar orbital
contributions to their valence band (VB) and conduction band (CB) compared to bulk SnS, in-
dicating that the electronic structure remains largely preserved across these surface orientations.
Among them, the SnS (100) surface most closely resembles the bulk structure. The band gap
for the SnS (100) surface was calculated to be 0.91 eV, slightly lower than the bulk band gap
of 0.92 eV. In contrast, for the SnS (010), (011), (101), and (111) surfaces, a sharp peak in the
Sn 5p states was observed near the conduction band edge (CBE), which is attributed to surface
reconstruction following relaxation and changes in the coordination of surface atoms. The band
gaps for these surfaces were found to be 1.01 eV, 0.62 eV, 0.1 eV, and 0.77 eV, respectively.
This variation in band gap suggests that surface reconstruction significantly impacts electronic
properties and could influence their performance in photovoltaic applications. Additionally, the
surface reconstruction of SnS (001) resulted in the formation of states above the Fermi level, a
characteristic also observed in previous studies involving SnS surface defects, such as Sn va-
cancies (VS n) [2]. These surface states can introduce traps or recombination centers, which may
affect charge transport efficiency.

SnS (101) and (110) surfaces exhibited an overlap of the valence and conduction bands,
leading to metallic behavior. In these metallic surfaces, the DOS at the Fermi level primarily
consists of S 3p states, with a minor contribution from Sn 5p states, highlighting the significant
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role of sulfur atoms in influencing the electronic properties of these surfaces. The metallic
behavior of these surfaces may have implications for the efficiency of thin-film solar cells, as
it could result in increased surface conductivity, potentially impacting device performance by
enhancing or inhibiting charge separation and transport.

Table 3.2: Surface energies (γsurface) for SnS and ZnS surfaces.

Surface
Total Energy (eV)

Surfcae Area (Å2) Surface Energy (eV/Å2)
Eb Es

SnS 100 −35.464 −106.184 17.936 0.0058

010 −35.464 −103.450 51.638 0.0280

001 −35.464 −102.681 45.077 0.0412

011 −70.949 −209.728 68.545 0.0228

101 −70.929 −210.495 48.514 0.0236

110 −70.930 −207.352 54.664 0.0497

111 −106.39 −316.196 72.562 0.0206

ZnS 100 −13.688 −39.340 24.311 0.0355

010 −13.688 −39.340 24.311 0.0355

001 −13.688 −38.956 14.809 0.0712

011 −27.381 −76.179 28.467 0.1048

101 −27.381 −77.012 28.467 0.0902

110 −27.379 −79.206 42.108 0.0346

111 −41.080 −117.875 49.306 0.0544

3.3.2 ZnS surfaces

The stability fo ZnS surfaces were evaluated through their surface energies. The surface ener-
gies for all low index surface of ZnS along with their total energies of slab and surface supercell
were shown in Table 3.2. Among the surfaces analyzed, the most stable surface, ZnS (110),
exhibits DOS orbital contributions that closely resemble those of bulk ZnS. Moreover, the sur-
face strcuture of ZnS (110) are illustrated in Figure 3.4 (b). This similarity suggests that the
ZnS (110) surface retains the essential electronic characteristics of the bulk material. The cal-
culated electronic structure, represented by the total and partial density of states (DOS) for ZnS
surfaces, is illustrated in Figure 3.6. Furthermore, the band gap of the ZnS (110) surface was
determined to be 1.87 eV, which is consistent with the bulk ZnS value, confirming the stability
of this surface from an electronic perspective. However, one key difference between the surface
and bulk DOS is the presence of a sharp peak around 1.87 eV near to CBE in the ZnS (110)
surface, as shown in Figure 3.6. These sharp DOS peaks are attributed to localized electronic
states caused by changes in the coordination of surface atoms following surface relaxation [64].
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(e) SnS(101) surface

(f) SnS(110) surface
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Figure 3.5: (a) Total and partial density of states of SnS surfaces (the dotted lines here
represent the Fermi level (E f ), and these have been set to zero in the energy scale)
(Adapted from Dahule et. al. [3]).
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These states indicate the mixed ionic-covalent bonding character of ZnS, which is influenced
by surface structure and atomic arrangement [65].

Variations in band gap values across the different ZnS surfaces are primarily influenced
by broken bonds and atomic surface relaxation, particularly within the surface supercells. For
instance, both the ZnS (100) and ZnS (110) surfaces exhibit similar orbital contributions in the
valence band (VB) and conduction band (CB) when compared to bulk ZnS. However, subtle
differences in their DOS peaks indicate that the surface morphology plays a significant role in
modifying the electronic properties of these surfaces. Notably, the ZnS (100) and ZnS (010)
surfaces share an identical surface structure, leading to equivalent surface energies, as detailed
in Table 3.2. The band gap for these surfaces was calculated to be 1.53 eV, slightly lower than
that of the ZnS (110) surface. Despite this, these surfaces also exhibit a sharp DOS peak near
the conduction band edge (CBE), similar to the ZnS (110) surface, further distinguishing them
from the bulk ZnS, which lacks such pronounced peaks.

Moreover, distinct DOS profiles were observed across different configurations of metallic
ZnS surfaces, highlighting the diversity in their electronic structures. The overlap of the VB and
CB for ZnS (001), (011), (101), and (111) surfaces not only signifies metallic characteristics but
also suggests potential differences in surface reactivity, which could impact their performance
in various device applications. For these metallic surfaces, the DOS at the Fermi level is pre-
dominantly composed of S 3p states, with a smaller contribution from Zn 4s and 3d states. This
substantial presence of sulfur-derived states near the Fermi level emphasizes the critical role
that sulfur atoms play in dictating the electronic properties of the ZnS surfaces. The strong con-
tribution from sulfur orbitals in the metallic surfaces points to the complex interplay between
atomic coordination, surface relaxation, and electronic structure.

The transition from semiconducting to metallic behavior on certain ZnS surfaces highlights
the importance of understanding surface stability and electronic structure when designing ma-
terials for specific applications. In the context of thin-film solar cells, the stability of the ZnS
(110) surface, coupled with its retained band gap and preserved electronic structure, makes it
a promising candidate for use as a buffer or window layer. On the other hand, the metallic
nature of the ZnS (001), (011), (101), and (111) surfaces could either be detrimental or advanta-
geous, depending on the application. For instance, while metallic surfaces may offer enhanced
surface conductivity, they may also introduce undesirable recombination centers in solar cells,
negatively impacting device efficiency. Thus, a careful balance between surface stability and
electronic properties must be achieved to optimize ZnS surfaces for photovoltaic and other op-
toelectronic applications.

Overall, the analysis of SnS and ZnS surfaces underscores the importance of understand-
ing surface stability and electronic structure for optimizing these materials in photovoltaic and
electronic applications. While stable surfaces like SnS (100) and ZnS (110) offer promising
semiconducting properties for thin-film solar cells, the metallic characteristics observed in other
surface orientations could influence their conductivity and performance. Careful surface engi-
neering will be essential to harness the full potential of these materials in future device tech-
nologies.
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Figure 3.6: (a) Total and partial density of states of SnS surfaces (the dotted lines
here represent the Fermi level (E f ), and these have been set to zero in the energy
scale)(Adapted from Dahule et. al. [3]).
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Chapter 4

SnS/ZnS Interfaces

Interfaces play a crucial role in determining the overall performance of thin-film solar cells
(TFSC) and other optoelectronic devices, as they directly impact charge transfer, recombination
processes, and overall device efficiency. The interaction between different materials at inter-
faces, particularly between the absorber layer and buffer or window layers, introduces complex
phenomena such as lattice mismatch, interface reconstruction, and localized states. These fac-
tors influence both the structural and electronic properties of the interface, making it essential
to understand their behavior at an atomic level.

In this chapter, we focus on the interface between SnS and ZnS, two promising materials for
use in TFSCs due to their favorable optical and electronic properties. By analyzing the structural
stability and electronic structure at these interfaces, we aim to elucidate the key mechanisms that
govern interface behavior. Special attention is given to the impact of lattice mismatch, interface
bonding characteristics, and the formation of interface states, all of which play a critical role
in determining the efficiency and stability of TFSC devices. Additionally, we explore how
defects and surface reconstructions influence the overall interface properties, providing insights
for optimizing material combinations in photovoltaic applications.

4.1 Computational method

In this study, the structural and electronic properties of the SnS(100)/ZnS(110) interface, both
in pristine and defect-rich configurations, were investigated using first-principles density func-
tional theory (DFT) calculations [12,13]. All simulations were performed within the framework
of the projector augmented wave (PAW) method [37], as implemented in the Vienna Ab initio
Simulation Package (VASP) [52–54]. The exchange-correlation interactions were treated using
the Perdew-Burke-Ernzerhof Generalized Gradient Approximation (PBE-GGA) [30].

Supercell models were constructed for pristine and defective interface structures. The pris-
tine SnS(100)/ZnS(110) interface structure consisted of an equal number of Sn, S, and Zn atoms.
Defective interface structures were created by introducing additional Sn, S, or Zn ad-atoms,
forming Sn-rich, S-rich, Zn-rich, (Sn,S)-rich, and (Zn,S)-rich configurations. A vacuum layer
of 15 Å was added to avoid interactions between periodic images.

Geometry optimizations were performed by relaxing the atomic positions until the forces on
all atoms were smaller than 0.01 eV/Å. The plane-wave cutoff energy was set to 450 eV, and the
Brillouin zone was sampled using a Monkhorst-Pack grid of 4×5×1 k-points for the interface
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supercells [38]. All calculations were performed with a convergence criterion of 1×10−6 eV for
the total energy.

The electronic structure of the interface, including the partial density of states (PDOS) for
individual atomic layers, was calculated for both pristine and defect-rich configurations. To
obtain accurate band alignment and offsets, electrostatic potential profiles were generated using
the planar and macroscopic average methods, as discussed in previous sections. The interface
energies were calculated using Equation (2.30), and the resulting energies for different interface
configurations were compared to determine the most energetically stable structure.

For the defect-rich models, additional CALYPSO interface structure prediction software
was used to explore the potential configurations and optimize interface structures [46]. This
approach combined particle swarm optimization (PSO) with DFT energies to identify the most
stable atomic arrangements for the various defect compositions at the interface. Additional
details regarding the CALYPSO method and its application to materials prediction, including
specific parameter choices and validation techniques, are provided in Chapter 2.

4.2 Pristine interface structure

The pristine interface structure between materials in TFSCs plays a critical role in influencing
the efficiency of charge separation and transport across the various layers. A pristine inter-
face is characterized by an idealized, defect-free boundary where the structural and electronic
properties of both materials remain intact, devoid of impurities or surface reconstructions. As
outlined in Chapter 3, several surfaces were evaluated, including SnS(100) and ZnS(110), which
demonstrated the lowest surface energies among the surfaces considered. Understanding the re-
lationship between surface energy and electronic properties is essential for optimizing materials
intended for solar cell applications, as stable semiconductor surfaces are crucial for maximizing
device performance. Therefore, the choice of the most stable surfaces, as identified in Chapter 3,
is fundamental in the design of interfaces, as the stability of these materials significantly affects
the efficiency of solar cells. In particular, SnS(100) and ZnS(110) are noteworthy because they
exhibit minimal surface energy and demonstrate advantageous semiconductor characteristics,
positioning them as prime candidates for effective interface modeling.

The interface structure of the solar cell was carefully designed to minimize strain. The
lattice mismatch between the SnS(100) and ZnS(110) heterostructure was assessed using Equa-
tion (2.28), resulting in a calculated mismatch of 1.291% (ε = 0.0129), which falls within an
acceptable range. Generally, a lattice mismatch of less than 5% is necessary for effective epi-
taxial growth. Such a low mismatch is vital for minimizing defect formation at the interface and
facilitating the relaxation process.

Initially, the interface models were developed by omitting the interface atoms, resulting in
a pristine interface structure, as illustrated in Figure 4.1. This process involved merging the
surfaces of SnS(100) and ZnS(110) to create the supercell for the SnS(100)/ZnS(110) interface.
The SnS(100) surface consisted of 7 Sn atoms and 7 S atoms, while the ZnS(110) surface
comprised 6 Zn atoms and 6 S atoms. These surface structures were meticulously cleaved
to achieve minimal lattice mismatch, as described in Section 2.4.3 of the methodology. This
careful approach ensured that the interface was constructed with a strong emphasis on optimal
atomic arrangement, thereby improving compatibility and minimizing strain between the two
materials.
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In the interface model, the atoms located in the outermost layer, nearest to the vacuum,
were fixed in place to replicate the bulk structure, thereby categorizing them as part of the bulk
layer. In contrast, the atoms in the neighboring sub-interface regions were permitted to move
freely in any direction, which is referred to as the sub-interface layer, as depicted in Figure 1.
Additionally, the interface structure underwent further optimization, and the interface energy
was calculated using equation (2.30) excluding any interface ad-atoms. The optimized pristine
interface structure exhibited an interface energy of −0.066 eV/Å2 and a thickness of 2.02 Å.
Measurements of atomic displacements near the interface revealed that atoms were displaced
by up to 0.2 Å, while sub-interface atoms experienced displacements of up to 0.1 Å. These
displacements diminished progressively with increasing distance from the interface, as shown
in Figure 4.1 of the atomic structure.

The partial density of states (PDOS) for the pristine SnS(100)/ZnS(110) interface structure
was thoroughly examined, with PDOS profiles plotted for various layers of atomic slabs, as
shown in Figure 4.1. The pristine interface exhibited a bandgap of 0.8573 eV. Notably, the
PDOS for the bulk layers closely resembled those of bulk SnS and ZnS. In the SnS bulk layer,
the valence band edge (VBE) is primarily composed of S 3p orbitals, with a minor contribution
from Sn 5s states, while the conduction band edge (CBE) is dominated by Sn 5p orbitals and
includes a smaller contribution from S 3p orbitals. For the ZnS bulk layer, the density of states
analysis shows that the VBE is mainly made up of S 3p orbitals, with a slight contribution
from Zn 3d states, and the CBE is dominated by Zn 4s orbitals, along with minor input from
S 3p states. Within the PDOS of the SnS bulk layer, a prominent peak corresponding to Sn 5p
states was detected near the Fermi level, indicative of p-type semiconductor behavior, which
suggests that the SnS bulk layer serves as a source of hole carriers typical of p-type materials.
In contrast, the Fermi level for the ZnS bulk layer was situated near the CBE, reflecting n-type
semiconductor behavior and signifying electron carrier contributions from the ZnS bulk layer.
Additionally, Zn 4s states were identified at the CBE, as illustrated in Figure 4.1.

The displacement of ZnS sub-interface atoms adjacent to the interface led to the emergence
of S 3p DOS states near the valence band edge (VBE) within the energy range of -2 to -0.1
eV, as depicted in the PDOS of the ZnS sub-interface layer. This finding indicates that atomic
displacements influence the electronic states within the sub-interface region. Similarly, Zn 4s
states were observed at 0.2 eV near the CBE in the ZnS sub-interface layer, suggesting a sub-
stantial contribution to the overall electronic structure. In the SnS sub-interface layer, the CBE,
associated with Sn 5p states, shifted closer to the Fermi level, resulting in a reduced bandgap
compared to the SnS(100) surface structure, as detailed in Figure 4.1. This shift implies en-
hanced electronic interactions at the interface, likely playing a significant role in the overall
reduction of the bandgag compared to its SnS and/or ZnS bulk and surfaces.

The band alignment of the SnS(100)/ZnS(110) interface structure was assessed using the
electrostatic potential alignment technique as detailed by Weston et al. [66]. The valence band
offset (VBO) is determined as

VBO = ∆Ev + ∆V (4.1)

where ∆Ev denotes the difference in the valence band maximum (VBM) between the two
materials, relative to their average electrostatic potential, while ∆V epresents the variation in
the macroscopic electrostatic potential energy derived from the calculations of the interface
structure. The change in electrostatic potential (V(r)) concerning the interface structure was
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Figure 4.1: PDOS of corresponding layers in the pristine interface models
(the dotted line in the right panel represented the Fermi level (E f )) (The
color schemes for the atom are Sn: Silver, Zn: Grey, S: Yellow)(Adapted
from Dahule et. al. [3]).
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assessed through the planar averaged electrostatic potential, defined as:

V (z) =
1
S

V (r) dxdy (4.2)

where S efers to the surface area of the interface. Additionally, the reference value for

potential alignment can be determined through macroscopic averaging, represented as V(z),
commonly referred to as the macroscopic averaged electrostatic potential:

V (z) =
1
L

∫ L
2

−L
2

V (z) dz (4.3)

SnS (100) ZnS (110)

Figure 4.2: Geometry-optimized model of the SnS(100)/ZnS(110)
pristine interface structure and the corresponding planar and
macroscopic average electrostatic potential. The blue solid line
represents the macroscopic average of the electrostatic potential
across the interface and ∆V stands for the potential alignment
(Adapted from Dahule et. al. [3]).

SnS

Eg = 0.92 eV

Eg = 2.08 eV

VBO = 1.28 eV

CBO = 0.18 eV

CB

VB
ZnS

Figure 4.3: Energy band alignment diagram of
SnS(100)/ZnS(110) interface structure (Adapted
from Dahule et. al. [3]).
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The planar and macroscopic average electrostatic potentials (V(z) and V(z)) related to the
Sns(100)/ZnS(110) interface structure are illustrated in Figure 4.2. The conduction-band offset
(CBO) for the SnS/ZnS heterostructure was calculated using the bandgap values derived from
the bulk calculations of SnS and ZnS. As illustrated in Figure 4.3, the energy band alignment for
the SnS/ZnS interface displays a staggered type II configuration, which is consistent with previ-
ous experimental findings related to SnS/ZnS heterostructures [26]. This staggered alignment is
beneficial for charge separation, as it allows for efficient transfer of electrons and holes between
the two materials, enhancing the overall performance of the solar cell. The calculated CBO and
valence-band offset (VBO) for this heterostructure were determined to be 0.18 eV and 1.28 eV,
respectively. These values indicate that the energy levels at the interface are well-aligned to
facilitate optimal charge carrier dynamics, which is crucial for improving the efficiency of thin-
film solar cells. Such favorable band alignments are essential for developing high-performance
photovoltaic devices [4, 5].

4.3 Defects at SnS/ZnS interface

In real-world experimental conditions, interfaces often exhibit a range of defect structures re-
sulting from the inherent complexities of their environments. These defects can significantly
impact the electronic properties, stability, and overall performance of the SnS/ZnS heterostruc-
ture in TFSC. To explore these variations, we expanded our analysis beyond pristine models
to investigate six distinct interface compositions between the SnS(100) and ZnS(110) surfaces.
By introducing ad-atoms such as Sn, S, and Zn into the interface regions, we created interface
supercells with various defect configurations. This method allowed us to capture the intricate
behavior of these interfaces and assess how different ad-atom arrangements influence interface
stability.

The initial interface configuration comprised an equal distribution of atoms from both sur-
faces, featuring 7 Sn atoms, 13 S atoms, and 6 Zn atoms, as illustrated in Figure 4.4. This bal-
anced composition served as a reference point for subsequent modifications. We then varied the
interface composition to enrich the configurations with additional Sn, S, and Zn atoms, result-
ing in Sn-rich, S-rich, and Zn-rich interface structures, respectively. Furthermore, we enhanced
the interface composition to create (Sn,S)-rich and (Zn,S)-rich environments by increasing the
quantities of Sn and S atoms, and Zn and S atoms, respectively.

All six configurations were employed to model the interface structure using CALYPSO, a
widely utilized computational tool in materials science and chemistry for predicting and opti-
mizing structures. CALYPSO integrates particle swarm optimization (PSO) with density func-
tional theory (DFT) energies to effectively search for and identify stable atomic arrangements
at the interface. This method is particularly advantageous in dealing with the complexity of ma-
terials, as it allows for efficient exploration of a vast configurational space, thereby increasing
the likelihood of discovering energetically favorable structures. Through the use of CALYPSO,
we successfully predicted and identified the energetically favorable interface structures for the
SnS(100)/ZnS(110) system across all six distinct interface compositions.

The stability of the interface structure was evaluated using Equation (2.30), with the re-
sulting interface energies summarized in Table 4.1. Notably, the SnS(100)/ZnS(110) interface
configuration, characterized by an equal distribution of atoms, demonstrated the lowest inter-
face energy among all the configurations examined. Consequently, this specific configuration
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Table 4.1: Interface configurations with No. of
atoms and interface formation energy (γinterface)
(Adapted from Dahule et. al. [3])

No. of atoms
γinterface (eV/Å2)

Sn S Zn

Equal atom 7 13 6 −0.114

Sn-rich 8 13 6 −0.082

S-rich 7 14 6 −0.101

Zn-rich 7 13 7 −0.095

(Sn,S)-rich 8 14 6 −0.094

(Zn,S)-rich 7 14 7 −0.093

was determined to be the most stable among the interface structures analyzed.

4.3.1 Equal atom interfaces

The electronic structure of the defect-containing interface supercell was meticulously analyzed
through the partial density of states (PDOS) for the corresponding atomic layers, which in-
cluded the bulk layers and sub-interface layers of SnS and ZnS, as well as the SnS/ZnS inter-
face layer with ad-atoms. The layered PDOS for both SnS and ZnS is depicted in Figure 4.4,
providing a comprehensive view of the electronic states within the materials. Notably, the
SnS(100)/ZnS(110) interface structure with defects demonstrated significant atomic displace-
ments of ≥ 0.2 Å for atoms adjacent to the interface and ≤ 0.1 Å for sub-interface atoms,
resulting in notable surface reconstruction. This finding highlights the dynamic nature of the
interface and its susceptibility to structural changes under realistic conditions.

Importantly, the bulk layers of SnS and ZnS remained unchanged, as their atoms were fixed
in position, ensuring the integrity of their electronic properties. The VBE of the SnS bulk layer
was primarily composed of S 3p and Sn 5s states, while the CBE featured Sn 5p states, as
illustrated in Figure . Similarly, the ZnS bulk layer exhibited S 3p states at the VBE and Zn
4s states at the CBE. Additionally, the DOS of the bulk layers aligned closely with the bulk
and surface states of SnS and ZnS affirming the expected electronic characteristics of these
materials.

In the equal atom interface configuration, two distinct peaks of Sn 5p states, along with
minor contributions from Sn 5s states, were identified near the VBE of the SnS bulk layer.
Moreover, the presence of S 3p states at the ZnS sub-interface played a crucial role in facilitating
a reduction in the bandgap. Specifically, the bandgap of the equal atom interface structure was
reduced to 0.43 eV, compared to 0.83 eV for the pristine interface structure. This significant
reduction in bandgap can be directly linked to the incorporation of ad-atoms at the interface,
which altered the electronic structure and introduced new electronic states within the bandgap.
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(iv) SnS sub-interface layer

(i) ZnS bulk layer

(v) SnS bulk layer

(ii) ZnS sub-interface layer

(iii) SnS/ZnS interface layer

Vacuum

Vacuum

(a) (b)

Sn

Zn

S

Figure 4.4: (a) SnS/ZnS interface structures with equal atom at interface.
(b) The corresponding DOS layers in equal atom at interface strcuture.
Here, SnS/ZnS interface layer have Sn:7, S:13 and Zn:6 atoms. (the ver-
ticle dotted line in DOS represented the Fermi level (E f )) (Adapted from
Dahule et. al. [3])

4.3.2 Sn-/Zn-/S-rich interfaces

In cation-rich interfaces, particularly those with Sn-rich and Zn-rich compositions, the interface
structure exhibited metallic characteristics due to the significant overlap between the valence
band (VB) and conduction band (CB), as illustrated in Figures 4.5 and 4.6. This band overlap
was not limited to the interface layer; it also extended into the sub-interface layers as seen in the
SnS sub-interface layer (as illustrated in Figures 4.5 and 4.6), indicating a profound influence
on the electronic properties of the entire heterostructure. The DOS analysis around the Fermi
level revealed a dominant presence of Sn 5p states at the SnS/ZnS interface layer, contributing
substantially to the observed metallic behavior. This is clearly depicted in Figures 4.5 and 4.6.
Furthermore, the incorporation of excess Sn atoms led to the formation of Sn antisites on the
surface, significantly enhancing the metallic nature of these interface structures, aligning with
findings from previous studies [2]. In addition, the SnS and ZnS bulk layers for Sn-/Zn-rich
interface structure configuration is same as that of the pristine interface structure as well as the
equal-atom defect interface strcuture.

The presence of metallic characteristics in cation-rich interfaces is critical as it may facilitate
charge carrier transport, potentially improving device efficiency. However, this enhancement
also raises concerns about increased recombination losses, which could negatively impact the
overall performance of the SnS/ZnS heterostructure in thin-film solar cells (TFSC).

In contrast, for the S-rich interface structure, the DOS analysis showed that S 3p states,
along with minor contributions from Sn 5p states, crossed the Fermi level, as illustrated in
Figure 4.7. In this case, the SnS sub-interface layer exhibited a shift in the VB states, with Sn
5p states moving closer to the VBE or even aligning with the Fermi level. The DOS for both
bulk SnS and ZnS layers remained consistent with their respective pristine bulk layers. This
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crossing at the Fermi level suggests a change in the electronic structure, potentially influencing
the conductivity and charge transport properties of the interface.

(iv) SnS sub-interface layer

(i) ZnS bulk layer

(v) SnS bulk layer

(ii) ZnS sub-interface layer

(iii) SnS/ZnS interface layer

Vacuum

Vacuum

(a) (b)

Sn

Zn

S

Figure 4.5: (a) SnS/ZnS interface structures with Sn-rich interface.
(b) The corresponding DOS layers in Sn-rich SnS/ZnS interface str-
cuture. Here, SnS/ZnS interface layer have Sn:8, S:13 and Zn:6
atoms. (the verticle dotted line in DOS represented the Fermi level
(E f )) (Adapted from Dahule et. al. [3]).

4.3.3 (Sn,S)-/(Zn,S)-rich interfaces

In the (Sn,S)-rich and (Zn,S)-rich interface configurations, distinct semiconductor behavior was
observed, contrasting with the metallic characteristics present in the Sn-rich, S-rich, and Zn-rich
interfaces (as illustrated in Figures 4.8 and 4.9). Despite exhibiting semiconductor properties,
the bandgaps of the (Sn,S)-rich and (Zn,S)-rich interfaces were measured at 0.27 eV and 0.32
eV, respectively. These values signify a reduction compared to both the pristine and equal atom
interface structures.

This phenomenon of reduced bandgaps is thought to arise from the presence of excess ad-
atoms in these configurations compared to the equal atom interface structure. Notably, the
(Sn,S)-rich interface exhibited a prominent DOS peak associated with Sn 5p states, similar to
that observed in the PDOS of the equal atom interface, as depicted in Figure 4.8. Additionally,
the DOS analysis of the (Zn,S)-rich interface revealed S 3p states near the CBE, which further
emphasizes the unique electronic characteristics of these interfaces.

Incorporating both cationic (Sn and Zn) and anionic (S) elements into the interface structure,
rather than relying solely on individual Sn, Zn, or S atoms, presents a promising approach for
enhancing the electronic properties of the interface. This strategy could lead to optimized per-
formance in TFSC, as the interplay of multiple elements may improve charge carrier dynamics
and reduce recombination losses.
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(iv) SnS sub-interface layer
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(iii) SnS/ZnS interface layer
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Figure 4.6: (a) SnS/ZnS interface structures with Zn-rich interface.
(b) The corresponding DOS layers in Zn-rich SnS/ZnS interface strcu-
ture. Here, SnS/ZnS interface layer have Sn:7, S:13 and Zn:7 atoms.
(the verticle dotted line in DOS represented the Fermi level (E f ))
(Adapted from Dahule et. al. [3]).

(iv) SnS sub-interface layer

(i) ZnS bulk layer

(v) SnS bulk layer

(ii) ZnS sub-interface layer

(iii) SnS/ZnS interface layer

Vacuum

Vacuum
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Figure 4.7: (a) SnS/ZnS interface structures with S-rich interface.
(b) The corresponding DOS layers in S-rich SnS/ZnS interface strcu-
ture. Here, SnS/ZnS interface layer have Sn:7, S:14 and Zn:6 atoms.
(the verticle dotted line in DOS represented the Fermi level (E f ))
(Adapted from Dahule et. al. [3]).
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(iv) SnS sub-interface layer

(i) ZnS bulk layer

(v) SnS bulk layer
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(iii) SnS/ZnS interface layer
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Figure 4.8: (a) SnS/ZnS interface structures with (Sn,S)-rich interface.
(b) The corresponding DOS layers in (Sn,S)-rich SnS/ZnS interface
strcuture. Here, SnS/ZnS interface layer have Sn:8, S:14 and Zn:6
atoms. (the verticle dotted line in DOS represented the Fermi level (E f ))
(Adapted from Dahule et. al. [3]).

(iv) SnS sub-interface layer

(i) ZnS bulk layer

(v) SnS bulk layer

(ii) ZnS sub-interface layer

(iii) SnS/ZnS interface layer
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Figure 4.9: (a) SnS/ZnS interface structures with (Zn,S)-rich interface.
(b) The corresponding DOS layers in (Zn,S)-rich SnS/ZnS interface str-
cuture. Here, SnS/ZnS interface layer have Sn:7, S:14 and Zn:7 atoms.
(the verticle dotted line in DOS represented the Fermi level (E f ))
(Adapted from Dahule et. al. [3]).
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In summary, the investigation into defect structures at the SnS/ZnS interface reveals a com-
plex interplay between composition and electronic properties that significantly influences the
performance of thin-film solar cells. The analysis of various interface configurations, including
Sn-rich, S-rich, Zn-rich, and (Sn,S) and (Zn,S)-rich compositions, demonstrates how the pres-
ence of ad-atoms alters the electronic structure and bandgap characteristics. The transition from
metallic behavior in cation-rich interfaces to distinct semiconductor properties in the (Sn,S)-rich
and (Zn,S)-rich configurations underscores the importance of tailoring interface compositions
for enhanced functionality. The observed reduction in bandgaps and the emergence of unique
electronic states provide critical insights into optimizing the SnS/ZnS heterostructure for im-
proved charge carrier dynamics and overall device efficiency.
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Chapter 5

Conclusion

In this thesis, the stability and electronic properties of bulk, surface, and interface structures
between tin sulfide (SnS) and zinc sulfide (ZnS) are investigated, focusing on their potential
applications in thin-film solar cells. The motivation for this research arose from the need to
enhance the efficiency and stability of semiconductor interfaces, which are critical to photo-
voltaic technologies. By leveraging first-principles calculations and advanced high- throughput
interface structure search techniques, this study provides a comprehensive exploration of the
structural and electronic properties of SnS and ZnS heterostructure. The Density Functional
Theory (DFT) and CALYPSO were employed to analyze the behavior of these materials in
various configurations, emphasizing bulk, surface, and interface structures.

The investigation into the electronic properties of SnS and ZnS in both bulk and surface
forms revealed significant differences. Bulk SnS exhibited a bandgap of 0.92 eV, while ZnS had
a wider bandgap of 2.08 eV. Additionally, the assessment of surface stability showed that SnS
(100) and ZnS (110) possess lower surface energies than other low-index surfaces, confirming
their status as the most stable configurations. The evaluation of surface structures indicated
minor reductions in bandgap, with values of 0.91 eV for SnS (100) and 1.87 eV for ZnS (110),
which were attributed to surface reconstructions and atomic rearrangements. These results con-
tribute to a deeper understanding of the electronic behavior of these materials and establish a
basis for a more detailed analysis of SnS/ZnS interfaces, where the interaction between atomic
structure and electronic properties is further investigated.

The pristine SnS/ZnS interface structure was modeled based on the SnS (100) and ZnS
(110) surfaces identified in the surface stability study. The analysis of its electronic proper-
ties demonstrated semiconductor characteristics, with a bandgap of 0.857 eV. Additionally, the
interface exhibited a conduction band offset of 0.18 eV and a valence band offset of 1.28 eV.
Notably, the pristine SnS/ZnS interface displays a staggered type-II band alignment, which is
particularly advantageous for solar cell applications. This alignment facilitates charge separa-
tion by promoting the spatial separation of electron and hole states, thereby minimizing charge
recombination and enhancing overall charge transfer efficiency.

To assess the impact of imperfections on the functionality of these heterostructures, the
influence of interface defects was investigated. Six distinct interface compositions were created
by introducing ad-atoms such as Sn, S, and Zn, simulating realistic conditions where defects are
unavoidable. The findings indicated that interfaces with balanced atomic distributions from both
SnS and ZnS surfaces preserved their semiconducting properties, akin to those of the pristine
interface, thus maintaining the essential electronic structure required for solar cell applications,
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with a bandgap of 0.43 eV. This balanced atomic configuration was identified as the most stable,
exhibiting the lowest interface energy.

In contrast, interfaces that are predominantly composed of a single element—specifically,
Sn-rich, S-rich, or Zn-rich configurations—exhibited a shift toward metallic behavior. This shift
was characterized by the overlapping of the valence and conduction bands near the Fermi level,
resulting in unwanted metallic properties. Such behavior can adversely affect device perfor-
mance by increasing recombination rates, which in turn degrades the efficiency of solar cells by
impeding effective charge separation and transport. Additionally, the introduction of ad-atoms
at the interface significantly influenced the band structure, leading to reduced bandgaps in cer-
tain configurations. For instance, (Sn,S)-rich and (Zn,S)-rich interfaces exhibited semiconduct-
ing characteristics, but with notably decreased bandgaps of 0.27 eV and 0.32 eV, respectively.
This reduction is attributed to the introduction of extra electronic states within the bandgap due
to the presence of excess ad-atoms. While interfaces with defects can maintain some benefi-
cial properties, careful control of atomic composition is essential to prevent compromising the
electronic performance of the material.

Overall, the findings highlight the importance of controlling atomic composition and de-
fect configurations at the SnS/ZnS interface to ensure both structural stability and advantageous
electronic properties. If not effectively managed, interfaces rich in defects can lead to metal-
lic behavior or a reduction in the bandgap, which may adversely affect the performance of
SnS/ZnS-based solar cells. In contrast, balanced atomic arrangements help maintain semicon-
ducting characteristics and facilitate efficient charge transport, which are crucial for achieving
high-performance thin-film solar cells.

In conclusion, this study highlights the critical role of interface engineering in the develop-
ment of next-generation SnS/ZnS heterostructures for solar energy applications. By optimizing
interface compositions and reducing defect-induced alterations in electronic properties, the sta-
bility and efficiency of SnS/ZnS-based solar cells can be significantly improved. These findings
establish a foundation for advancing sustainable, high-efficiency photovoltaic technologies.
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