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Abstract  

Hiroki Chikuma (2220025) 

 

Ziegler-Natta (ZN) catalysts are heterogeneous catalysts, essential for industrial olefin 

polymerization. Their functional units, called primary particles, consist of MgCl2 nanoplates with 

chemisorbed TiCl4, active site precursor, and internal donors (IDs), used to improve stereoregularity of 

resulting polymers. Insights of the primary particles are essential to understanding the functional origin of 

ZN catalysts. However, surface reconstruction due to chemisorption introduces structural heterogeneity, 

posing significant challenges for modeling the nano-scaled structure of ZN catalysts. The non-empirical 

structural determination of primary particles with such surface reconstructions explicitly considered was 

achieved using a combination of density functional theory (DFT)-based local geometry optimization and 

global exploration based on a genetic algorithm (GA). However, the computational cost of DFT limits the 

structure determination to scales smaller than realistic ones. 

Accelerating the DFT geometry optimization is crucial to investigate catalyst structures at real 

catalyst sizes and compositions. In recent years, methods have been proposed to replace computationally 

expensive DFT calculations by constructing machine learning potentials (MLPs) that accurately 

reproduce DFT results. Here, the high-dimensional neural network potential (HDNNP) approach2 was 

introduced to accelerate structure determination of ZN catalyst primary particles. The HDNNP expresses 

the total energy as the sum of environmentally dependent atomic energies, where the environment of each 

atom is described based on the atom-centered symmetry functions (ACSFs). 

In Chapter 3, HDNNPs were developed for the 

MgCl2/TiCl4 binary system, enabling rapid non-empirical 

structural determination. The reference datasets used for 

training HDNNPs were sampled from a DFT database, which 

was accumulated through past DFT-based GA calculations. 

The accuracy of the constructed HDNNPs was evaluated by 

comparing geometry optimization results with those obtained 

from DFT. Constructed HDNNP applied for 50MgCl2/9TiCl4 

with experimental size and TiCl4 coverage. 

Chapter 4 a HDNNP which applies across multiple 

systems was successfully established, where a reference 

dataset comprised multiple systems with different numbers of 

MgCl2 units and TiCl4 molecules. The established HDNNP 

was used to investigate the impact of the TiCl4 coverage on 

the stability and active-site distribution. Analysis of 

metastable structures demonstrated a clear trend of increasing 

stereospecificity with higher TiCl4 coverage.  

Chapter 5 details the development of a HDNNP for a MgCl2/TiCl4/ID system. While IDs are 

known to enhance polymer stereoselectivity, their precise impact on catalytic performance remains 

unclear. Previous studies using DFT and GA by da Silveira et al. identified key structural features for the 

19MgCl2/4TiCl4/5diethyl phthalate (DEP) system,3 but their scope was limited by computational cost. he 

construction of the HDNNP for this system overcame this limitation, enabling a more comprehensive 

exploration of the parametric space. This expanded search identified many previously unreported stable 

and metastable structures, providing deeper insights. Analysis showed that DEP's diverse adsorption 

patterns significantly contribute to the geometric and electronic diversity of active sites. 

In summary, the acceleration of structural determination using HDNNPs enabled the modeling 

of complex solid catalysts, providing new morphological insights into ZN catalysts that are critical for 

understanding catalytic systems. This approach demonstrates the importance for large-scale modeling of 

complex material systems, offering a deeper understanding of their properties.   

(1) Takasao, G.et al., ACS Catal. 2019, 9 (3), 2599–2609.  

(2) Behler, J.et al., Phys. Rev. Lett. 2007, 98 (14), 1–4. 

(3) Da Silveira, J. M., et al. ACS Catal. 2024, 14 (4), 2300–2312. 

 

Keywords: machine learning potential, interatomic potential, density functional theory, genetic 

algorithm, structure determination, Ziegler-Natta catalyst, internal donor  

Figure 1. Scheme of constructing 

HDNNP and its application to 

structure determination. 
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Preface 

 
The present thesis is submitted for the Degree of Doctor of Philosophy at Japan 

Advanced Institute of Science and Technology, Japan. The thesis is consolidation of 

results of the research work on the topic “Construction and application of high-

dimensional neural network potentials for large-scale modeling of Ziegler-Natta 

catalysts” under the supervision of Prof. Toshiaki Taniike during April 2021– March 

2024 at Graduate School of Advanced Science and Technology, Japan Advanced 

Institute of Science and Technology. 

Chapter 1 describes a general introduction and the purpose of this thesis. 

Chapter 2 presents the numerical methods employed in this research, including the 

framework for constructing and applying high-dimensional neural network potentials 

(HDNNPs). In Chapter 3, I constructed HDNNPs to accelerate calculations and aimed 

to achieve structure determination of Ziegler-Natta (ZN) catalysts at realistic scales. 

Chapter 4 focuses on the effect of TiCl4 coverage, which is a precursor of the active 

site, on the morphology and electronic state of the active site of ZN catalysts. The 

systematic determination of ZN clusters with different coverages was carried out using a 

more generalized HDNNP. Chapter 5 reports on the construction of HDNNP with 

internal donors, which are modifiers of ZN catalysts, and the application of this to 

structure determination. Chapter 6 describes the summary and general conclusion of 

this thesis. The work is original and no part of this thesis has been plagiarized. 

 

Hiroki Chikuma 

 

Graduate School of Advanced Science and Technology 

Japan Advanced Institute of Science and Technology  

November 2024 
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Chapter 1 

 

General Introduction 
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1.1. First-principles calculation  

First-principles calculations are computational methods used to directly estimate 

physical properties from fundamental quantum mechanical quantities such as charge 

and mass. These methods provide a predictive capability rooted in the fundamental laws 

of physics, offering an advantage in accurately modeling complex systems where 

experimental data may be scarce or unavailable. As a result, first-principles calculations 

are widely applied in today’s computational chemistry for tasks such as structure 

optimization—predicting stable structures by rearranging atoms along the potential 

energy surface (PES)—, degerming reaction pathways through transition state 

calculations, and the prediction of spectra, including infrared (IR), Raman, and 

ultraviolet (UV). A key feature of this approach is that it does not rely on empirically 

derived parameters, as the solutions are obtained through quantum mechanical theories 

and mathematical approximations. To achieve exact results, all quantum interactions 

within the system must be considered. However, since analytical solutions are not 

feasible for systems with more than three bodies, numerical solutions using 

approximations are necessarily introduced for simulations. 

In the Schrödinger equation for multi-electron systems, the total Hamiltonian consists 

of terms representing the kinetic energy of electrons (𝑇𝑒̂), Coulomb potential between 

nuclei and electrons (𝑉̂𝑛𝑒), Coulomb potential between electrons (𝑉ee), the kinetic energy 

of nuclei (𝑇̂𝑛), and the Coulomb potential between nuclei (𝑉̂𝑛𝑚). The total Hamiltonian 

of a system (𝐻̂tot) with multiple nuclei and electrons, be expressed as 

𝐻̂tot = 𝐻̂𝑒 + 𝐻̂𝑒𝑛 + 𝐻̂𝑛 = 𝑇𝑒̂ + 𝑉̂𝑒𝑒 + 𝑉̂𝑛𝑒 + 𝑇̂𝑛 + 𝑉̂𝑛𝑚 (1.1). 
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Here, when the eigenfunction corresponding to the Hamiltonian is denoted as Φ and 

the eigenvalue as ε, the Schrödinger equation for the entire system is defined as 

𝐻̂tot𝛷(𝒓𝟏, 𝒓𝟐, . . . , 𝑹𝟏, 𝑹𝟐, . . . ) =  ε𝛷(𝒓𝟏, 𝒓𝟐, . . . , 𝑹𝟏, 𝑹𝟐, . . . ) (1.2). 

The exact solution of Eq. (1.2) is practically impossible for most systems due to the 

high computational cost required to apply the Hamiltonian, which involves second-

order partial derivatives and many-body interactions, to a multidimensional function. 

Thus, the Born-Oppenheimer approximation1, assuming the nuclei are stationary due to 

their significantly larger mass compared to electrons (protons are 1840 times more 

massive than electrons) is common to apply. As a result,𝐻̂n in Eq. (1.1) is neglected, 

yielding 

𝐻̂tot = 𝐻̂e + 𝐻̂en (1.3). 

Based on the Pauli exclusion principle, electron pairs with the same quantum numbers 

must satisfy antisymmetry upon coordinate exchange. This means that the sign of the 

wave function is reversed, and is expressed as 

𝜓(… , 𝐫𝑖, … 𝐫𝑗 , … )  =  −𝜓(… , 𝐫𝑗 , … 𝐫𝑖, … ) (1.4). 

A representation corresponding to this in the form of a determinant was proposed as 

the Slater determinant, expressed as 

𝜓(𝐫1, 𝐫2, … , 𝐫𝑁)  =  
1

√N!
|
𝛷1(1) … 𝛷N(1)

⋮ ⋱ ⋮
𝛷1(N) … 𝛷N(N)

|  
(1.5). 
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Hartree-Fock (HF) method, developed in 1930, approximates the multi-electron 

wavefunction using single-electron orbitals while satisfying this anti-symmetry2. 

However, HF theory has limitations in its chemical accuracy, as it fails to account for 

electron correlation, resulting in energy errors of about 1%, preventing it from achieving 

chemical accuracy (1 kcal/mol for energy and 0.1Å for bond length). To address this, 

methods like configuration interaction was proposed, which include both ground-state 

and excited-state electron configurations. However, the computational cost increases 

exponentially with the number of electrons. Thus, balancing computational cost and 

accuracy, especially in terms of electron correlation, remains a significant challenge in 

first-principles calculations. Today, density functional theory (DFT), explained in next 

section, is widely used for its effective balance between chemical accuracy and 

computational cost. 

 

1.2. Density functional theory 

By expressing the total energy as a functional of the electron density rather than 

directly solving the many-body wavefunction, density functional theory (DFT) offers an 

efficient method for calculating electronic states in many-body systems. The 

Hohenberg-Kohn theorem provides the theoretical foundation of DFT and establishes 

two key principles:3 

• The external potential V(r) is uniquely determined by the electron density ρ(r). 

• The total energy functional E[ρ] satisfies a variational principle: the ground-state 

density minimizes E[ρ]. 

In other words, according to the Hohenberg-Kohn theorem, if the exact energy 

functional for a system can be obtained, the electron density that minimizes the energy 
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is determined. The Kohn-Sham method reformulates the problem by introducing a 

system of non-interacting electrons that reproduce the same ground-state density as the 

interacting system. The electronic state is calculated using the Kohn-Sham equations4: 

[−
ℏ𝟐

2𝑚
𝛁𝟐  +  𝑉eff(𝐫)] 𝜙𝑖(𝐫)  =  𝜀𝑖𝜙𝑖(𝐫)  

(1.6), 

𝑉eff(𝐫)  =  𝑉(𝐫)  +  𝑒2 ∫
𝜌(𝐫′)

|𝐫 −  𝐫′|
𝑑𝒓′  +  

𝛿𝐸xc[𝜌]

𝛿𝜌(𝐫)
  

(1.7), 

𝜌 =  ∑ 𝜌𝑖  =  ∑|𝜙𝑖(𝐫)|2

𝑛

𝑖

𝑛

𝑖

  
(1.8). 

Here, 𝜙𝑖 is the i-th Kohn-Sham orbital orbital in the non-interacting reference system, 

Veff is the effective potential, and Exc is the exchange-correlation energy functional. This 

term is also called simply the functional and includes information on electron 

correlation. 

In practice, DFT calculations use Self-Consistent Field (SCF) iterations, leveraging 

the variational principle to optimize the electron density: 

i. Define an initial set of molecular orbitals and establish the electron density for 

the target system. 

ii. Construct the effective potential Veff using Eq. (1.7). 

iii. Solve the Kohn-Sham equations (1.6) to obtain the eigenvalues and molecular 

orbitals 𝜙𝑖. 

iv. Update the electron density using Eq. (1.8). 

v. Repeat steps ii–iv until the convergence criteria is satisfied to optimize the 

electron density. 
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Since DFT includes electron correlation through the exchange-correlation functional 

Exc, it typically achieves higher accuracy than the Hartree-Fock (HF) method for many 

systems. However, the exact form of Exc remains unknown, necessitating 

approximations. Various functionals have been developed, such as: 

• The Local Density Approximation (LDA), which depends solely on the electron 

density. 

• The Generalized Gradient Approximation (GGA), which incorporates the 

gradient of the density to improve upon LDA. 

• Hybrid functionals, which combine different methods or introduce empirical 

parameters to balance accuracy and computational efficiency. 

The choice of functional is critical and should be guided by the system under study, 

the desired accuracy, and computational cost considerations. 

The main computational bottleneck in DFT is solving the Kohn-Sham equations, 

which requires diagonalizing large matrices. This step scales as O(N3), where N is the 

number of electrons, making DFT computationally intensive for large systems.  

 

1.3. Machine learning potential 

One of the central challenges of first-principles calculations is the immense 

computational cost required for electronic state calculations. This demand becomes 

particularly critical for large-scale systems or simulations involving numerous 

molecules. As a result, empirical potentials have traditionally been used as an 

alternative, describing atomic interactions through simplified mathematical models. 

These models rely on parameters primarily chosen empirically to reproduce 

experimental results or quantum calculations. A representative example is the Lennard-
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Jones potential6. Simulations based on empirical potentials are governed by classical 

mechanics equations and do not directly compute quantum mechanical effects, run 

faster than first principle calculation such as DFT. However, there are limitations in the 

systems they can be applied to and the accuracy they can achieve, such as the inability 

to describe changes in chemical bonds. 

Machine learning potentials (MLP) aim to replace first-principles calculations using 

machine learning, targeting the accuracy of first-principles calculations at the 

computational speed of empirical potentials. Unlike empirical potentials, where 

mathematical models are manually defined by researchers, the predictive power of 

MLPs depends solely on the machine learning model. This allows for the construction 

of complex and high-dimensional potential energy surfaces (PES) that are not 

intuitively formulable by humans. 

In recent years, MLP technology has rapidly advanced. Examples include neural 

network potentials (NNP) using neural networks7–12, Gaussian Approximation 

Potentials (GAP)13 based on Gaussian process regression, and Spectral Neighbor 

Analysis Potentials (SNAP)14, which utilize linear regression.  

The model structure is given by the three-dimensional coordinates of atoms, but the 

position vectors given by these coordinates do not possess symmetry under rotation or 

translation of the entire structure. Therefore, in typical MLP methods, descriptors that 

represent three-dimensional coordinates or other physical quantities as many-body 

functions are used as inputs to the learning model. Descriptor types include the Atom-

Centered Symmetry Function (ACSF)7,15, the Smooth Overlap of Atomic Positions 

(SOAP)16, and the Coulomb Matrix (CM), which are selected based on the 

characteristics of the machine learning model and the system being studied. The 
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overview of MLP construction is performed in the following procedure (also shown in 

Figure 1.1). 

i. Construct a dataset consisting of structures and first-principles calculation 

results (total energy, interatomic forces). 

ii. Convert the structural dataset into descriptor vectors. 

iii. Use machine learning to perform regression on the descriptors and the first-

principles calculation results. 

The accuracy of the constructed machine learning potential (MLP) is comparable to 

that of reference first-principles calculations. Moreover, MLPs bypass direct electronic 

structure calculations, allowing energy and forces to be obtained with exceptional speed. 

This efficiency makes MLPs highly valuable for large-scale simulations and for 

exploring the PES of complex systems, where traditional first-principles methods would 

be prohibitively time-consuming. 

 

Figure 1.1. Schematic diagram of machine learning potential construction. 
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1.4. High-dimensional neural network potential 

The high-dimensional neural network potential (HDNNP) is an MLP architecture 

introduced by Behler et al. in 20077. A key feature of HDNNP is the introduction of 

ACSF and subnetworks. These elements allow HDNNP to achieve invariance to 

rotational and translational operations of the structure, as well as invariance to the 

ordering of atoms, while also maintaining scalability concerning the number of atoms in 

the system. The chemical environment of all atoms in the structure is described by a set 

of typically 20–100 ACSFs as an input to the corresponding atomic subnetworks15,17. 

Typically, the environment of atom iii is defined based on a combination of radial and 

angular ACSFs (𝐺i
a𝑛𝑔

) defined as 

𝐺𝑖
rad = ∑ e−𝜂(𝑅𝑖𝑗−𝑅s)

2

𝑁atoms

𝑗=1

𝑓c(𝑅𝑖𝑗) 

(1.9), 

𝐺𝑖
ang

= 21−𝜁 ∑ ∑ {(1

𝑁atoms

𝑘≠𝑖,𝑗

𝑁atoms

𝑗≠𝑖

+ 𝜆cos𝜃𝑖𝑗𝑘)
𝜁

e−𝜂(𝑅𝑖𝑗
2+𝑅𝑗𝑘

2+𝑅𝑖𝑘
2)𝑓𝑐(𝑅𝑖𝑗)𝑓𝑐(𝑅𝑗𝑘)𝑓𝑐(𝑅𝑖𝑘)} 

(1.10), 

where 𝜂, 𝜁, 𝜆, and 𝑅s are hyperparameters, 𝑅𝑖𝑗 is the distance between atoms i and j, 

and 𝜃𝑖𝑗𝑘  is the angle defined among atoms i, j, and k with i at the corner. The 

hyperparameters are chosen based on the system and are typically selected for each 

element pair (or triad). A cutoff function (𝑓c) is typically described using cosine or 

polynomial functions.  

The architecture of the HDNNP is illustrated in Figure 1.2. Here, each atom in the 

system is assigned an individual subnetwork, which ensures invariance to atom 

permutation and scalability to systems with varying numbers of atoms. Each 



10  

subnetwork takes the ACSF vector of an atom as input and is constructed for each 

atomic species. The same subnetwork is applied to atoms of the same type. The atomic 

energy contribution 𝐸𝑖
𝜈  is output from each subnetwork, and the total system energy 

𝐸total  is represented as a linear sum of the individual atomic energies, defined as 

𝐸𝑡𝑜𝑡𝑎𝑙  =  ∑ ∑ 𝐸𝑖
𝜈

𝑁𝑎𝑡𝑜𝑚𝑠,𝜈

𝑖

𝑁𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝜈

 

(1.11), 

where 𝑁elements is the number of atomic species in the system, and 𝑁atoms,𝜈 is the 

number of atoms of species 𝜈 . The forces between atoms can be calculated as the 

analytical gradient of the energy contribution defined as 

𝐹𝛼,𝑖  =  −
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝛼𝑖
 =  − ∑

𝜕𝐸𝑗

𝜕𝛼𝑖
 =  −

𝑁𝑎𝑡𝑜𝑚𝑠

𝑗=1

∑ ∑
𝜕𝐸𝑗

𝜕𝐺𝑗,𝜈

𝜕𝐺𝑗,𝜈

𝜕𝛼𝑖

𝑁𝐺,𝑖

𝜈=1

𝑁𝑎𝑡𝑜𝑚𝑠

𝑗=1

 

(1.11), 

where, 𝛼 denotes any of the X, Y, or Z axes. Since the potential felt by atoms within 

the cutoff radius changes with atomic movement, the interaction is influenced by atomic 

environments up to twice the cutoff radius (Figure 1.3). The cutoff radius is determined 

according to the nature of the system, and is usually set to 6–10Å.15 
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Figure 1.2. Typical architecture of high-dimensional neural network potentials for a 

system   containing elements A, B, and C. 

 

Figure 1.3. Schematic diagram showing the environment dependence of the force 

vector acting on the central red atom. Because the red atom is within the symmetry 

function cutoff radius (Rc) of all the orange atoms, the red atom is included in the 

chemical environment of the orange atoms. In addition, orange atoms affect the 
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potential of the yellow atoms that are beyond Rc. Therefore, the positions of the red and 

yellow atoms are mutually connected because they are both involved in the energy 

contribution of the orange atom. This extends the force's environment dependence to a 

radius of up to 2Rc. 

 

1.5. Non-empirical structure determination 

Clusters are aggregates composed of several to thousands of atoms or molecules, and 

their properties are influenced by their high surface area and the surrounding chemical 

and physical environment. In many cases, these physicochemical characteristics differ 

significantly from those of bulk materials, which are typically defined by periodic 

structures.18,19 In small clusters, many constituent atoms are located on the surface, and 

changes in the cluster size lead to surface restructuring. 

Computational approach is a powerful tool to understand cluster properties, yet 

determining the initial structure for simulations, which represent the nature of system, 

remains a significant challenge. In experiment, the structure of clusters is commonly 

discussed by combining techniques such as pair distribution function (PDF) or X-ray 

diffraction spectra, pore and surface area estimations from gas adsorption, and the 

analysis of surface chemical environments through IR spectroscopy20–22. However, to 

establish descriptors to link these observations to specific cluster structures is difficult.  

In response, theoretical approaches using simulations have been developed to identify 

the most representable structure of clusters. To define a representative structure for real 

systems, the search for the global minimum is crucial. Geometry optimizations aim to 

obtain a stable configuration by minimizing the total energy, adjusting atomic positions 

toward local minima on the PES. However, the optimized stable structures (local 
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minima) may not always correspond to the most stable structure (global minimum), 

which means that consideration and comparison of various local minima are necessary 

to determine the global minimum (Figure 1.4). 

 

 

Figure 1.4. Image of minimum structures and the potential energy surface (PES) based 

on first-principles calculations. The three clusters are each located at a saddle point on 

the PES, with the most stable “global minimum” represented by the structure in the 

center. The saddle point obtained from the geometric optimization calculation depends 

on the initial structure used in the simulation. To identify the structure that corresponds 

to the global minimum, it is necessary to explore the entire global PES. Derived from 

Ref.23 
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To address this issue, various methods for global exploration of metastable structures 

on the PES, including simulated annealing24, basin hopping25, and evolutionary 

algorithms such as genetic algorithms26,27, which repeatedly design initial configurations 

non-empirically and perform geometry optimizations, were proposed. The GA method, 

employed in this study, is widely used to determine the global minimum structure of a 

system. This algorithm, inspired by the natural processes of selection and evolution, 

creates new structures through operations such as crossover, which combines the 

structural features of different conformations, and mutation, which introduces random 

local structural changes. As a result, the algorithm efficiently facilitates hopping across 

different regions of the PES, enabling thorough exploration. Global exploration is 

ideally performed using accurate and versatile computational methods such as DFT28,29. 

However, as the number of atoms in the system increases, the computational cost and 

time required to find a solution increase rapidly. While global optimization of clusters 

containing a few dozen atoms has been achieved using DFT, determining the structures 

of larger clusters becomes exceedingly difficult. Consequently, in recent years, 

significant efforts have been made to develop more efficient exploration methods by 

improving optimization algorithms, as well as by replacing DFT calculations with 

interatomic potentials including MLPs. MLP enhanced structure determination works 

were reported on various materials such as supported small metal clusters such as Pt10–13 

on MgO(100)30 and Cu4–10 on ZnO(1010),31 as well as for unsupported clusters of a 

larger size such as Au58
32, Na20–40

33, and Cu–Zn alloys consisting of several hundred to 

thousand atoms.34 
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1.6. Ziegler-Natta catalysts 

Ziegler-Natta (ZN) catalysts are polymerization catalysts that play a central role in 

polyolefin production and are widely used in industry.35 The discovery of high isotactic 

propylene polymerization using TiCl4 as a catalyst and AlR3 as a co-catalyst by Natta in 

1954 marked the beginning of various improvements. The industrial significance of ZN 

catalysts lies in their ability to control the polymerization process at the molecular level, 

accounting for 99% of global polypropylene (PP) production. By controlling the 

stereochemistry of polymer chains, it is possible to produce isotactic, syndiotactic, and 

atactic polymers, making it critical to control the microstructure of resulting polymers, 

which in turn determines material properties such as melting point, crystallinity, tensile 

strength, and elasticity.  

Today, MgCl2-supported heterogeneous system is widely used. The catalyst precursor 

is composed of co-adsorption of MgCl2 as a support, TiCl4 as an active species 

precursor, and organic Lewis bases (internal donors, ID) as modifiers. Internal donors 

exert steric and electronic effects on the activated Ti3+ species, influencing the 

stereospecificity of resulting polymers36,37. 

The basic structural unit, called primary particles, is a nanostructure of MgCl2 

terminated by chemisorbed species. These particles interact with one another through 

van der Waals forces, leading to their hierarchical aggregation along the c-axis. This 

aggregation results in a polycrystalline structure containing pores that range in size from 

micro to macro38,39. Regarding typical MgCl2 surface structures, Figure 1.5a illustrates 

that they consist of 4-coordinated Mg2+ or 5-coordinated Mg2+ on {110} and {100} 

surfaces40. As shown in Figure 1.6, high-resolution TEM studies have observed the 

coexistence of (110) and (104) surfaces on activated MgCl2, providing more insight into 
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the surface structure22. Additionally, the introduction of TiCl₄ resulted in the formation 

of an extremely disordered surface structure.41 The epitaxial adsorption of TiCl4 on 

different MgCl2 surfaces, as shown in Figure 1.5b, has been supported by computational 

energy calculations42–46. The particle size varies significantly depending on the 

preparation method; however, primary particles are generally formed within the range 

of 2.4–4.0 nm,39,47 with their surfaces believed to be almost entirely covered by 

adsorbates.21 Although it is known that the Ti loading affects catalytic performance, 

increasing the surface exposure of Ti does not necessarily enhance activity.48 The 

correlations between composition and surface adsorption structures, as well as between 

active structures and catalytic performance, remain subjects of ongoing debate despite 

extensive research over the years. 
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Figure 1.5. a) Surface structure model of a typical MgCl2 plate mono layer. b) Typical 

TiCl4 adsorption structure. From the left, a mononulear species adsorbed on the {110} 

plane, a dinuclear species adsorbed on the {100} plane, and a mononulear species of 

adsorbed on the {110} plane. 

 

 

 

Figure 1.6. Representative high-resolution TEM images of activated MgCl2. White 

lines highlight nanocrystal edges, revealing both 90° and 120° edge angles. Adapted 

from Ref22. 
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Figure 1.7. High-resolution TEM images of ZN catalyst particle obtained by ball-

milling method. The linear surface, similar to that in Figure 1.6 is not visible. Reprinted 

from Ref.41. Copyright John Wiley & Sons. 

 

One important finding regarding the morphology of ZN catalysts is the dynamic 

response of MgCl2 to specific environments, where surface reconstruction of MgCl2 due 

to adsorption has been experimentally demonstrated (Figure 1.7). These studies show 

that surface reconstruction is a critical factor in simulations of ZN primary particles. 

Consequently, using only slab models or cluster models to represent predefined surfaces 

such as {100} and {110} plane, or defects on these surfaces, is insufficient. To define 

the structure of ZN primary particles, it is essential to account for exploring various 

structure candidates while considering both the reconstruction of MgCl2 surface and the 

state of adsorbates. 

 

1.7. Internal donor 

An important nature of ZN catalysts, particularly those supported on MgCl2, is the use 

of ID and external donors (ED).36 These organic compounds play a vital role in 
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improving the catalyst's stereoselectivity, which is essential for producing polymers 

with high isotacticity. IDs are introduced during catalyst preparation and commonly 

include ethyl benzoate (EB), phthalate esters (DEP), diethers (DE), and succinates. ID 

coordinates to the active sites of the catalyst, influencing the orientation of the 

monomers during polymerization. This coordination helps achieve the desired 

stereoregularity of the polymer chain, particularly in the production of polypropylene. 

EDs are added during the polymerization process, typically in the form of alkoxysilanes. 

The distribution of active sites is considered the origin of the molecular weight 

distribution of the resulting polymer, and it is known to vary significantly depending on 

the selected ID, while the impact of ED selection is minimal49. This observation 

suggests that during polymerization, IDs and EDs play similar roles in enhancing 

stereospecificity, while the formation and distribution of active sites during catalyst 

formation are strongly influenced by IDs. Therefore, understanding the adsorption 

structures of IDs and TiCl4 is crucial for comprehending the function of ZN catalysts. 

Based on these facts, efforts have been made to determine the structure of ZN catalysts 

through theoretical calculations as explained in the next section. 

 

1.8. Structure determination of ZN catalyst 

Takasago et al. have reported on the non-empirical structure determination of 

TiCl4/MgCl2 systems. This is a molecular model of the TiCl4/MgCl2 system that was 

obtained by exploration for the thermodynamically most stable structure using DFT and 

GA50–52 (Figure 1.8). In addition to the MgCl2 cluster in the 6–19MgCl2 system, non-

empirical structure determination was carried out by changing the number of adsorbed 

TiCl4 molecules, and the most stable structure for each composition and the distribution 
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of active species at the polymerization temperature were estimated51. From these results, 

it was found that MgCl2 preferentially exposes the {100} plane, but that as the particle 

size increases due to geometric constraints, the distribution appears on the exposed 

surface, and that TiCl4 preferentially adsorbs to the {110} plane. However, the effects of 

particle size and composition in these studies are extremely small compared to the scale 

of actual catalysts, and it has not been possible to successfully determine the structure of 

compositions close to actual catalysts. In more recent work, the structure of the 

19MgCl2/4TiCl4/5ID system, in which two different types of ID (diethyl phthalate: DEP 

and 9,9-bis(methoxymethyl)fluorene) were introduced, was determined, and it was 

found that the co-adsorption of ID with TiCl4 preferentially forms a sharp surface that 

includes edges and cavities53. This is a characteristic that is not seen in systems without 

ID, and the diverse adsorption modes play an important role in the reconstruction of 

MgCl2.  
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Figure 1.8. Overview of structure determination of ZN catalysts using DFT and GA. 

Reprinted from Ref50 with permission. Copyright 2025 American Chemical Society. 

 

The molar ratio of MgCl2 to TiCl4 in general heterogeneous Ziegler-Natta catalysts is 

thought to be around 4–20%. When the same molar ratio is reproduced using a 

molecular model with a small particle size, the specific surface area of MgCl2 increases, 

and the exposed sites of MgCl2 become larger than in the actual catalyst. In addition, the 

pattern of the surface structure of MgCl2 is limited in small-scale clusters, so it is 

desirable to determine the structure in a system with a size comparable that of the 

experimental scale in order to accurately evaluate the physical properties. In addition, it 

is also important to search for a more comprehensive structure in order to estimate the 

distribution of active structures. However, due to the limitations of the calculation cost 

of DFT, it has been necessary to limit the particle size, composition, and space to be 

searched for in these structure determinations. 

To access these computational cost problems, this study implemented a non-empirical 

structure determination method for more realistic systems by accelerating calculations 

using HDNNP. This is one of the first HDNNP studies implemented to describe 

practical and complex catalysts such as ZN catalysts. 

 

1.9. Objective 

Non-empirical structural determination of primary particle clusters in Ziegler-Natta 

(ZN) catalysts has been significantly limited by the computational cost of first-

principles calculations. To achieve structural determination for catalysts with sizes and 
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compositions closer to those of real catalysts and to conduct more comprehensive 

explorations, accelerating the structural determination process is essential. 

In this study, we introduced High-Dimensional Neural Network Potentials (HDNNPs) 

to accelerate calculations while maintaining high computational accuracy. Additionally, 

to reduce both the time required for training and the number of density functional theory 

(DFT) calculations needed for training data, it is desirable to achieve this with a 

minimal dataset. Therefore, efficient sampling methods play a crucial role. This work 

represents a rare implementation of machine learning potentials in practical and 

complex material systems. 

In Chapter 2, we constructed HDNNPs for the MgCl2/TiCl4 binary system and 

achieved non-empirical structural determination using HDNNPs. I investigated 

sampling methods to cover the parameter space with fewer structures. And structure 

determinaion of  50MgCl₂/9TiCl₄ cluster, which has realistic size and coverage, was 

performed. 

In Chapter 3, I performed systematic structural determination for MgCl2/TiCl4 

systems with varying coverage, aiming to estimate the effects of TiCl4 coverage through 

realistic-scale simulations. To enable structural determination across multiple 

compositions, we developed HDNNPs applicable to various compositions. Unlike the 

previous chapter, where HDNNPs were constructed for each specific composition, this 

approach allowed the construction of a robust potential by efficiently sampling data 

from systems with diverse patterns, reflecting significant variations in chemical 

environments due to size and coverage differences.  

In Chapter 4, I constructed a HDNNP and performed structural determination for ZN 

catalysts (MgCl2/TiCl4/ID) containing internal donors (ID), specifically focusing on 
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propylene polymerization catalysts. Using diethyl phthalate (DEP) as the ID, we applied 

accelerated HDNNP computations to explore a broader structural space for the 

19MgCl₂/4TiCl₄/5DEP system.  

This thesis successfully enabled modeling of Ziegler-Natta catalysts comparable to 

experimental observations of their morphology. The insights gained are indispensable 

for understanding the catalytic reactions of these materials. Modeling at realistic 

material scales remains a critical challenge for comprehending the properties of any 

material system. 
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2.1 General workflow 

The primary challenges in structure determination on a realistic scale are the 

computational cost of DFT calculations and the exponential growth of the parameter 

space in larger systems. This thesis employed high-dimensional neural network 

potentials (HDNNPs)1,2 to represent DFT geometry optimization, enabling significant 

acceleration in structure determination (Figure 2.1). HDNNPs consist of neural network 

(NN) subsets corresponding to each atom in the system. These subsets represent the 

total energy as the sum of atomic energies, ensuring permutational invariance and 

allowing for predictions across structures with varying numbers of atoms. The weight 

parameters of the NN subsets are shared among atoms of the same element, and 

interatomic forces are calculated as the analytical derivatives of atomic energies. Non-

empirical structure determination was implemented based on a genetic algorithm (GA) 

framework.3–5 In this approach, non-empirical structure determination targeted the 

primary particles of the Ziegler-Natta catalyst in the MgCl2/TiCl4 system or the 

MgCl2/TiCl4/internal donor (ID) system. Geometry optimization and energy evaluation 

were performed using HDNNPs instead of DFT, significantly accelerating the structure 

determination. 
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Figure 2.1. Overview of structure determination employing genetic algorithm (GA) and 

high-dimensional neural network potentials (HDNNPs). 

 

2.2 Construction of high-dimensional neural network potentials 

Here, the second-generation Behler-Parrinello-type HDNNPs were consistently 

employed. Atomic environments were described using Atom-Centered Symmetry 

Functions (ACSFs), 6,7 which guarantee rotational, translational, and permutational 

invariance. The environment of atom i was described based on a combination of radial 

(𝐺i
rad) and angular ACSFs (𝐺i

ang1
, 𝐺i

ang2
), defined as,  

𝐺𝑖
rad = ∑ e−𝜂(𝑅𝑖𝑗−𝑅s)

2

𝑁atoms

𝑗=1

𝑓c(𝑅𝑖𝑗) (2.1), 

𝐺𝑖
ang1

= 21−𝜁 ∑ ∑ {(1

𝑁atoms

𝑘≠𝑖,𝑗

𝑁atoms

𝑗≠𝑖

+ 𝜆cos𝜃𝑖𝑗𝑘)
𝜁

e−𝜂(𝑅𝑖𝑗
2+𝑅𝑗𝑘

2+𝑅𝑖𝑘
2)𝑓𝑐(𝑅𝑖𝑗)𝑓𝑐(𝑅𝑗𝑘)𝑓𝑐(𝑅𝑖𝑘)} 

(2.2), 

𝐺𝑖
ang2

= 21−𝜁 ∑ ∑ {(1

𝑁atoms

𝑘≠𝑖,𝑗

𝑁atoms

𝑗≠𝑖

+ 𝜆cos𝜃𝑖𝑗𝑘)
𝜁

e−𝜂(𝑅𝑖𝑗
2+𝑅𝑖𝑘

2)𝑓𝑐(𝑅𝑖𝑗)𝑓𝑐(𝑅𝑖𝑘)} 

(2.3), 

where 𝜂, 𝜁, 𝜆, and 𝑅s are hyperparameters, 𝑅𝑖𝑗  is the distance between atoms i and j, 

and 𝜃𝑖𝑗𝑘 is the angle defined among atoms i, j, and k with i at the central atom. A cutoff 

function (𝑓c) with a cutoff radius 𝑅𝑐 is defined as, 

𝑓c(𝑅𝑖𝑗) =  {
0.5 [cos (

𝑅𝑖𝑗

𝑅c
) +  1]          (𝑅𝑖𝑗  ≤  𝑅𝑐)

0                                              (𝑅𝑖𝑗  >  𝑅𝑐)

 (2.4). 
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Each vector component was normalized in the range of ‒0.5 to 0.5. Further details 

about the parameters and functions are provided in Chapters 3 and 5. The HDNNPs 

were constructed using the RuNNer code (version 1.2.0).7,8 The number of hidden 

layers and nodes per layer were optimized based on the system requirements. A 

hyperbolic tangent function was employed as the activation function for the hidden 

layers, while a linear function was used for the output layer. The atomic neural networks 

were trained using a Kalman filter9 to minimize the following loss function, defined as, 

𝛤 =
1

𝑁structure
 ∑ [(𝐸DFT

𝑖 − 𝐸HDNNP
𝑖 )

2

𝑁structure

𝑖

+
𝛽

3𝑁atom
𝑖

∑ (𝐹𝑗,DFT
𝑖 − 𝐹𝑗,HDNNP

𝑖 )2

𝑁𝑎𝑡𝑜𝑚
𝑖

𝑗

] 

(2.5), 

where 𝑁structure is the number of structures in the training set, 𝑁atom
𝑖  is the number of 

atoms in structure i, 𝐸𝑖  is the energy of structure i, and 𝐹𝑗
𝑖 is the force on atom j in 

structure i. Note that 𝐸HDNNP
𝑖  is the sum of atomic energies, and 𝐹𝑗,HDNNP

𝑖  is given as an 

analytical derivative of the atomic energies. The parameter β was adjusted based on the 

target system. 

 

2.3 Reference dataset 

In this thesis, reference datasets were created to train and validate the HDNNPs. 

These datasets consist of structures and their corresponding DFT calculation results. 

The structures were primarily obtained from two sources: 

• Initial structures generated by GA, are the starting configurations used in the 

structure determination workflow. 
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• Trajectories of structure optimization simulations, which include intermediate 

and optimized structures from simulations performed on the GA-generated 

initial structures. 

The structures in reference datasets were systematically sampled from these two sources. 

This dataset was then divided into a training set and a test set, with 70% of the data 

randomly allocated to the training set. Initial DFT data were sampled from the structures 

generated by the GA employing DFT calculations (DFT-GA). 

Furthermore, the initial reference dataset was adaptively enriched by incorporating 

chemically diverse environments with uncertain predictions. This was achieved by 

geometry optimization using two HDNNPs with slightly different architectures trained 

on the same dataset. Geometry optimization was performed for a set of the same initial 

structures using these HDNNPs, and the following cases were listed for inclusion in the 

reference dataset after DFT single-point calculations: 

• When geometry optimization encountered extrapolation failure, the structures at 

the time of suspension or the optimized structures with extrapolation warnings 

were included. 

• When the structures optimized by the two HDNNPs differed beyond a threshold 

in energy or in the root mean square deviation (dRMS) of the interatomic 

distances. The thresholds were empirically adjusted for each system. 

The dRMS between structures X and Y, both consisting of N atoms, is defined as,  

𝑑𝑅𝑀𝑆(𝑋, 𝑌) = √
2

𝑁(𝑁 − 1)
∑ ∑(|𝑟𝑖𝑗

𝑋| − |𝑟𝑖𝑗
𝑌|)

2
𝑁

𝑗>𝑖

𝑁−1

𝑖=1

  (2.8), 

where |𝑟𝑖𝑗
𝑋| is the distance between atoms i and j in the structure X.  



36  

The DFT calculations were performed using the Perdew-Burke-Ernzerhof (PBE) 

functional and the double numerical basis functions (DNP)10 with effective core 

potentials (ECP),11 as implemented in DMol3.10  

 

2.4 Non-empirical structure determination 

Structure determination for the primary particle of ZN catalyst systems was 

performed using the constructed HDNNPs. The methodology followed was identical to 

that previously reported by our group, substituting HDNNPs for DFT in local geometry 

optimization and energy evaluation steps. Starting structures of GA (first generation) 

were generated randomly, where MgCl2 skeletons were formed using a self-avoiding 

random walk algorithm, Cl- anions were placed at anion sites in descending order of 

coordination number, and adsorbates (including terminal Cl, TiCl4, and ID) were 

randomly positioned at adsorption sites located on the lateral periphery of the MgCl2 

skeletons. Structures in subsequent generations were produced using genetic operators, 

such as mutation, crossover, and elitism, based on the energy evaluations of the 

preceding structures. 

Initial structures of each generation were then subjected to geometry optimization 

using a HDNNP implemented by LAMMPS12 with the n2p2 package.13 The 

convergence criterion for optimization was set at 154 meV/Å in the magnitude of the 

global force vector. The energy of the optimized structures (Ecluster) was calculated as 

the sum of the surface energy and the adsorption energy of TiCl4, expressed as, 

𝐸cluster = 𝐸 − 𝑁MgCl2
× 𝐸MgCl2

− 𝑁TiCl4
× 𝐸TiCl4

− 𝑁𝐼𝐷 × 𝐸ID (2.6), 

where E is the total energy of a structure, 𝑁MgCl2
 is the number of MgCl2 units, 𝐸MgCl2

 

is the energy of a MgCl2 unit in α-MgCl2, 𝑁TiCl
4
 is the number of TiCl4 molecules, and 
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𝐸TiCl
4
 is the energy of a TiCl4 molecule in vacuum, 𝑁

ID
 is the number of ID molecules, 

and 𝐸
ID
 is the energy of a ID molecule in vacuum.  

Parental structures used for the crossover and mutation are chosen by roulette selection 

based on the fitness (f) defined as, 

𝑓𝑖  =  𝑒
−3(

𝐸𝑖−𝐸𝑚𝑖𝑛
𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛

)
 (2.7), 

where Ei, Emin, and Emax are the energy of the ith structure in a generation, and the 

energies of the most and least stable structures in the same generation. The population is 

updated by repeating the same procedure, and the loop is terminated when multiple runs 

converged to the identical structure. Parameters in GA were empirically adjusted 

according to the characteristics of a target system. 
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Determination of Ziegler-Natta Catalysts 

with a High-Dimensional Neural Network 

Potential 
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ABSTRACT 

The determination of catalyst nanostructures with first-principles accuracy using 

genetic algorithms (GA) is very demanding due to the cubic scaling of the 

computational cost of density functional theory (DFT) calculations. Here, I demonstrate 

for the case of Ziegler-Natta MgCl2/TiCl4 nanoplates how this structure determination 

can be accelerated by employing a high-dimensional neural network potential (HDNNP) 

of essentially DFT accuracy. First, when building HDNNPs for MgCl2/TiCl4 clusters 

with computationally tractable sizes, I found that the structural diversity in the training 

set is crucial for obtaining HDNNPs reliably describing the large variety of structures 

generated by GA. The resulting HDNNPs dramatically accelerated the structure 

determination, while yielding results consistent with DFT. Subsequently, I developed a 

multistep adaptive procedure to construct a HDNNP for MgCl2/TiCl4 clusters consistent 

in size and TiCl4 coverage with experiments where prior DFT results were scarcely 

collected. The structure determination and analyses underline the importance of system 

size and composition in order to predict some experimentally known facts such as the 

surface morphology and population of isospecific sites. 

KEYWORDS: Neural network potential, genetic algorithm, structure determination, 

Ziegler-Natta catalyst 

 

This chapter is adapted with permission from Hiroki Chikuma, Gentoku Takasao, Toru 

Wada, Patchanee Chammingkwan, Jörg Behler, Toshiaki Taniike, Accelerating Non-Empirical 

Structure Determination of Ziegler–Natta Catalysts with a High-Dimensional Neural Network 

Potential, The Journal of Physical Chemistry C 2023, 127, 11683–11691. Copyright 2025 

American Chemical Society. 
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3.1 INTRODUCTION 

Detailed atomistic information about the structure of materials, which is the key for 

gaining deeper insights into their functions, is difficult to obtain by experiments for 

complex systems such as solid catalysts. Thus, non-empirical structure determination, 

combining a global search algorithm and local geometry optimization, especially at the 

level of a DFT accuracy, has been actively researched.1–7 A major challenge lies in the 

fact that the parameter space to be explored and the cost of DFT calculations increase 

rapidly and simultaneously with the system size, which prevents structure determination 

at experimentally relevant sizes and complexities.  

Machine learning potentials (MLPs) nowadays offer a promising approach to achieve 

the accuracy of underlying first-principle calculations with a scalability close to that of 

molecular mechanics.8–12 Various methods were proposed for construction of MLPs, 

including neural network potentials (NNPs),13,14 Gaussian approximation potentials,15 

spectral neighborhood analysis potentials,16 and moment tensor potentials.17 MLPs can 

provide more generalized and expressive potential energy surfaces than classical 

empirical potentials. Hence, they have been successfully applied to a wide variety of 

molecular systems, including organic molecules,18 water,19,20 metals,21–24 and metal 

oxides,25–29 in the contexts of geometry optimization, molecular dynamics, and structure 

determination. Of particular relevance, NNP-based structure determination has been 

reported for supported small metal clusters such as Pt10–13 on MgO(100)30 and Cu4–10 on 

ZnO(1010),26 as well as for unsupported clusters of a larger size such as Au58,
31 Na20–

40,
32 and Cu–Zn alloys consisting of several hundred to thousand atoms.33 

The heterogeneous Ziegler-Natta catalyst is a catalyst responsible for the industrial 

olefin polymerization.34 Its solid component has a morphology of micrometer-sized 
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spheroidal particles, which consist of hierarchical and irregular agglomeration of 

primary particles as the structural and functional unit of the catalyst.35 Various 

experimental results including combined total X-ray scattering and vibrational 

spectroscopies36–38 well established that the primary particles are MgCl2 nanoplates 

whose lateral edges are terminated by chemisorption of catalytic components such as 

TiCl4 and organic Lewis basic modifiers (called donors). In more detail, truly nanosized 

MgCl2 plates cannot be formed without the existence of strongly coordinating 

molecules (i.e., TiCl4 and donors),36 as the energy of the lateral surfaces is much higher 

than that of the coordinatively saturated basal {001} plane. Besides, it is known that 

MgCl2 flexibly reconstructs its structure in the presence of strongly coordinating 

molecules.39 These facts suggest that the structure determination for the Ziegler-Natta 

primary particles necessitates exploring MgCl2 nanostructures in the presence of 

adsorbates, although, where most of computational studies in the literature presumed a 

static support surface for clarifying the structure-performance relationship.40–49 Takasao 

et al. realized such structure determination, where a combination of a genetic algorithm 

(GA) and DFT geometry optimization allowed us to simultaneously explore the MgCl2 

nanostructure, and the structure and location of TiCl4 adsorbates. The method was 

successfully applied to structure determination of xMgCl2/yTiCl4 (x = 6–19, y = 0–4), 

uncovering the critical role of TiCl4 chemisorption in shaping the MgCl2 nanoplate 

morphology and in diversifying the structures lying in a thermodynamically accessible 

energy range with plausible relevance to the multisite nature of the Ziegler-Natta 

catalyst.6,49 More recently, the premature convergence of GA, which is rooted to the 

increased diversity of metastable structures for a larger molecular system, was 

overcome by implementing a distributed GA based on asynchronous migration from a 
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structure database. This enabled structure determination of 50MgCl2/3TiCl4 with an 

experimentally comparable size.50,51 However, to date the issue of the computational 

cost of DFT has not yet been solved for this system as no atomistic potentials are 

available offering efficient alternatives. For example, the structure determination of 

50MgCl2/3TiCl4 took more than a year even using a high-performance computing 

cluster, and more demanding calculations, such as increasing the number of TiCl4 to 

reach coverages comparable to experiments and Hessian calculations required for 

thermodynamic analysis, etc., are hardly feasible. 

Here, I construct high-dimensional neural network potentials (HDNNPs) for the 

MgCl2/TiCl4 system, which I combine with GA. HDNNPs, which have been introduced 

by Behler and Parrinello in 2007, allow to significantly accelerate the structure 

determination, while keeping the precision of DFT.14 As mentioned above, introduced 

structure determination method explores a vast configurational space composed of the 

structures of both adsorbates and the support, so it was challenging to establish 

HDNNPs applicable to a wide variety of atomic environments. First, HDNNPs were 

constructed by using the results of previously performed DFT calculations, and 

HDNNP-based structure determination was demonstrated for relatively small 

MgCl2/TiCl4 systems. Then, HDNNP construction and structure determination were 

extended to a 50MgCl2/9TiCl4 system with a realistic size and coverage, for which 

structure determination has not been performed due to prohibitively high computational 

cost. The resulting metastable structures were also analyzed to investigate the effect of 

the MgCl2 size and surface coverage on the distribution of the structures, especially the 

structure of TiCl4. Note that TiCl4 is not an active form. During polymerization, it is 

reduced, alkylated, and redistributed upon contact with alkylaluminum.34,52 Due to the 
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transient nature of the active sites, such as formation, deactivation and transformation 

throughout the polymerization process, quantification of the working active site 

concentration is challenging and is estimated to be quite small relative to the total Ti 

amount.53 

3.2 Numerical method 

3.2.1  Construction of high-dimensional neural network potentials 

Here, the second-generation high-dimensional neural network potentials (HDNNPs) 

of the Behler and Parrinello type were adopted. HDNNPs express the total energy as a 

sum of environment-dependent atomic energies provided by individual atomic feed-

forward neural networks, and the atomic environment is described based on atom-

centered symmetry functions (ACSFs),54,55 which assure rotational, translational, and 

permutation invariance. In this study, the environment of atom i was described based on 

a combination of radial (𝐺i
rad) and angular ACSFs (𝐺i

ang1
, 𝐺i

ang2
), defined as,  

𝐺𝑖
rad = ∑ e−𝜂(𝑅𝑖𝑗−𝑅s)

2

𝑁atoms

𝑗=1

𝑓c(𝑅𝑖𝑗) (3.1), 

𝐺𝑖
ang1

= 21−𝜁 ∑ ∑ {(1

𝑁atoms

𝑘≠𝑖,𝑗

𝑁atoms

𝑗≠𝑖

+ 𝜆cos𝜃𝑖𝑗𝑘)
𝜁

e−𝜂(𝑅𝑖𝑗
2+𝑅𝑗𝑘

2+𝑅𝑖𝑘
2)𝑓𝑐(𝑅𝑖𝑗)𝑓𝑐(𝑅𝑗𝑘)𝑓𝑐(𝑅𝑖𝑘)} 

(3.2), 

𝐺𝑖
ang2

= 21−𝜁 ∑ ∑ {(1 + 𝜆cos𝜃𝑖𝑗𝑘)
𝜁

e−𝜂(𝑅𝑖𝑗
2+𝑅𝑖𝑘

2)𝑓𝑐(𝑅𝑖𝑗)𝑓𝑐(𝑅𝑖𝑘)}

𝑁atoms

𝑘≠𝑖,𝑗

𝑁atoms

𝑗≠𝑖

 (3.3), 

where 𝜂, 𝜁, 𝜆, and 𝑅s are hyperparameters, 𝑅𝑖𝑗  is the distance between atoms i and j, 

and 𝜃𝑖𝑗𝑘  is the angle defined among atoms i, j, and k with i at the center. A cutoff 

function (𝑓c) with a cutoff radius 𝑅𝑐 is defined as follows, 
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𝑓c(𝑅𝑖𝑗) =  {
0.5 [cos (

𝑅𝑖𝑗

𝑅c
) +  1]          (𝑅𝑖𝑗  ≤  𝑅𝑐)

0                                              (𝑅𝑖𝑗  >  𝑅𝑐)

 (3.4

). 

Note that 𝐺ang2 was employed when the elemental triad contained two or more Ti 

atoms (which tend to be far from each other), while the rest of the triads was described 

by 𝐺ang1. The number of radial ACSFs was set to 9 for each element pair, and that of 

angular ACSFs was 14 for each element triad. For example, the environment of an atom 

in a MgCl2/TiCl4 system was described by 27 radial and 84 angular ACSFs, 

corresponding to a 111-dimensional ACSF vector. Each vector component was 

normalized in the range of ‒0.5 to 0.5. Parameters relevant to ACSFs were empirically 

determined, as described in Tables 1.1–1.3. To describe the atomic environments, a 

cutoff radius 𝑅𝑐 of 16 Bohr has been used due to the ionic nature of the system and the 

rather large interatomic distances. 

The HDNNPs were constructed by using the RuNNer code (version 1.2.0).10,55 The 

numbers of hidden layers and nodes per layer were optimized between 2 and 3, and 

between 10 and 20, respectively. A hyperbolic tangent function was employed as the 

activation function of hidden layers, and a linear function as that of the output layer. 

The atomic neural networks were trained using a Kalman filter.56 The atomic neural 

networks were trained using a Kalman filter56 to minimize a loss function, defined as, 

𝛤 =
1

𝑁structure
 ∑ [(𝐸DFT

𝑖 − 𝐸HDNNP
𝑖 )

2

𝑁structure

𝑖

+
𝛽

3𝑁atom
𝑖

∑ (𝐹𝑗,DFT
𝑖 − 𝐹𝑗,HDNNP

𝑖 )2

𝑁𝑎𝑡𝑜𝑚
𝑖

𝑗

] 

(3.5), 
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where 𝑁structure is the number of structures in the training set, 𝑁atom
𝑖  is the number of 

atoms in structure i, 𝐸𝑖  is the energy of structure i, and 𝐹𝑗
𝑖 is the force on atom j in 

structure i. Note that 𝐸HDNNP
𝑖  is the sum of the energy of the relevant atoms and that 

𝐹𝑗,HDNNP
𝑖  is given as an analytical derivative of the atomic energies. The parameter 𝛽 

was set to 1.0 in this chapter. More details about the method can be found in recent 

reviews.57  

2.2.2 Determination of ACSF parameters 

Table 3.1–3.2 include the parameters for the radial and angular ACSFs of the high-

dimensional neural network potentials (HDNNPs), respectively. To describe the atomic 

environments, a cutoff radius 𝑅𝑐 of 16 Bohr has been used due to the ionic nature of the 

system and the rather large interatomic distances. 

Three different ACSF sets were compared: Set 1 in which all atomic triads were 

described by 𝐺ang1, set 2 in which all atomic triads were described by 𝐺ang2, and set 3 

in which 𝐺ang2 was employed when the elemental triads contain two or more Ti atoms, 

while the other triads are described by 𝐺ang1. Table 3.3 shows the RMSE values of the 

HDNNPs constructed for 19MgCl2/4TiCl4 using the three ACSF sets, where the 

HDNNPs were trained on the FPS training set and validated on the FPS test set in Table 

3.1–3.2. The ASCF set 3 was found to provide the most accurate HDNNP.  
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Table 2.1. Parameters of the radial ACSFs. The same parameter set was applied to all 

the elemental diads. 

N η (1/Bohr2) Rs (Bohr) Rc (Bohr) 

1 0.000 0.0 16.0 

2 0.002 0.0 16.0 

3 0.005 0.0 16.0 

4 0.009 0.0 16.0 

5 0.016 0.0 16.0 

6 0.029 0.0 16.0 

7 0.050 3.0 16.0 

8 0.050 6.0 16.0 

9 0.050 10.5 16.0 

 

 

Table 3.2. Parameters of the radial ACSFs. The same parameter set was applied to all 

the elemental triads. 

N η (1/Bohr2) λ ζ Rc (Bohr) 

1 0.001 1.0 1.0 16.0 

2 0.001 1.0 2.0 16.0 

3 0.001 1.0 4.0 16.0 

4 0.001 1.0 16.0 16.0 

5 0.001 -1.0 1.0 16.0 

6 0.001 -1.0 2.0 16.0 
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7 0.001 -1.0 4.0 16.0 

8 0.001 -1.0 16.0 16.0 

9 0.003 1.0 1.0 16.0 

10 0.003 1.0 2.0 16.0 

11 0.003 1.0 4.0 16.0 

12 0.003 -1.0 1.0 16.0 

13 0.003 -1.0 2.0 16.0 

14 0.003 -1.0 4.0 16.0 

 

 

Table 3.3. Accuracy of HDNNPs constructed for 19MgCl2/4TiCl4 using different ACSF 

setsa,b 

Training 

dataset 

Training  Testing 

E (meV/atom) 

F 

(meV/Å) 
 E (meV/atom) 

F 

(meV/Å) 

Set 1 0.424 67.0  0.494 66.6 

Set 2 0.452 72.4  0.538 72.8 

Set 3 0.232 50.3  0.215 50.0 

a Three ACSF sets were prepared: Set 1, in which all atomic triads were described by 

𝐺ang1, set 2, in which all atomic triads were described by 𝐺ang2, and set 3, in which 

𝐺ang2 was employed when the elemental triads contain two or more Ti atoms, while the 

other triads are described by 𝐺ang1.  
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2.2.3 Reference datasets 

In this study, HDNNPs were constructed for four different systems: 19MgCl2, 

19MgCl2/4TiCl4, 50MgCl2/3TiCl4, and 50MgCl2/9TiCl4. For the former three systems, 

structure determination was previously performed at a DFT-generalized gradient 

approximation (GGA) level, and hence, the results of DFT geometry optimization were 

accessible for a huge number of structures.6,49 The reference datasets were obtained in 

two steps: Sampling a specified number of structures from the DFT databases, where 

the structures included not only the optimized ones but also the ones obtained in the 

trajectory of geometry optimization, followed by the addition of structures which 

exhibited a large deviation in the prediction between two preliminary HDNNPs. 

Contrary, the last system had scarce prior DFT results so that the construction of the 

reference dataset and DFT calculations were performed synchronously, whose detail is 

described later. The numbers of the structures in the final training were 10,000‒13,000. 

The method of the DFT calculations was performed using the Perdew-Burke-Ernzerhof 

(PBE) functional58 and the double numerical basis functions (DNP)59 with effective core 

potentials (ECP)60 were implemented by using DMol3.59 These setting were selected 

refer to previous liteatures,6,49,50 to balance between the computational cost and 

accuracy. 

 

2.2.4 Non-empirical structure determination 

Structure determination was performed for the MgCl2/TiCl4 systems using the 

constructed HDNNPs. The method of the structure determination was identical to that 

previously reported by some of us, except that HDNNPs were used instead of DFT for 
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the local geometry optimization and the energy evaluation. Briefly, starting structures 

are generated using random numbers, where MgCl2 skeletons are formed based on a 

self-avoiding random walk, Cl− ions are placed at anion sites with the descending order 

of the coordination number, and TiCl4 is randomly placed at adsorption sites defined on 

the lateral periphery of the given MgCl2 skeletons. These structures are subjected to 

geometry optimization implemented in LAMMPS with the n2p2 package61 (an interface 

that adds the HDNNP method in LAMMPS62) and a convergence criterion of 154 

meV/Å in the length of the global force vector. The energy of the optimized structures is 

expressed by Ecluster, which is a sum of the surface energy and the adsorption energy of 

TiCl4, defined as, 

𝐸cluster = 𝐸 − 𝑁MgCl2
× 𝐸MgCl2

− 𝑁TiCl4
× 𝐸TiCl4

 (3.6

), 

where E is the total energy of a structure, 𝑁MgCl2
 is the number of MgCl2 units, 𝐸MgCl2

 

is the energy of a MgCl2 unit in α-MgCl2, 𝑁TiCl
4
 is the number of TiCl4 molecules, and 

𝐸TiCl
4
 is the energy of a TiCl4 molecule in vacuum. The structures of the descendant 

generations are generated by crossover, mutation of skeletons and adsorbates, and 

elitism. If needed, a migration operator can also be implemented, which randomly 

extracts structures within the energy range of elite structures from a database at a 

specified frequency of generations, and adds them to the population. This is an effective 

strategy for preventing premature convergence of the GA, particularly for larger 

systems.50 Parental structures used for the crossover and mutation are chosen by roulette 

selection based on the fitness (f) defined as, 

𝑓𝑖  =  𝑒
−3(

𝐸𝑖−𝐸𝑚𝑖𝑛
𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛

)
 (3.7), 
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where Ei, Emin, and Emax are the energy of the ith structure in a generation, and the 

energies of the most and least stable structures in the same generation. The population is 

updated by repeating the same procedure, and the loop is terminated when multiple runs 

converged to the identical structure. Parameters in GA were empirically adjusted 

according to the characteristics of a target system (Table 3.4). 

Table 3.4. Parameters used in the genetic algorithm 

 
19MgCl

2 

19MgCl2/4Ti

Cl4 

50MgCl2/3TiCl

4 

50MgCl2/9TiC

l4 

Population 52 90 105 125 

Crossover 

(%)  

38 40 38 40 

Mutation 

(skeleton) (%) 

15 20 17 16 

Mutation 

(adsorbate) 

(%) 

12 13 11 16 

Elitism (%) 35 27 34 28 

 

3.3 RESULT AND DISCUSSION 

2.3.1 Construction of the high-dimensional neural network potentials 

The number of structures stored in the DFT databases was too huge 

(1,000,000−3,000,000 structures) to use all of them for training the HDNNPs. Here, I 

investigate a method of down sampling in order to represent a parametric space with a 

much smaller number of structures for 19MgCl2/4TiCl4. First, two such small datasets, 
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respectively termed random and FPS sets, were prepared based on random sampling of 

15,000 structures from the DFT database and farthest point sampling (FPS)63 of the 

same number of structures. FPS was performed on the ACSF vector space for each 

element, and it actually selected a structure that included the atomic environment 

specified by FPS. The random and FPS sets were randomly split into 70% for the 

training and 30% for the testing. The accuracy of the trained HDNNPs was evaluated 

based on the root mean square errors (RMSE) of the energy and forces, which 

represents the deviation from the corresponding DFT values. Moreover, given that 

trained HDNNPs are to be used for the geometry optimization of various structures 

produced in GA, additional testing, called geometry optimization testing, was also 

performed, where 3,000 initial structures (before the geometry optimization), randomly 

selected from the DFT database, were subjected to the geometry optimization by using 

the trained HDNNPs. The robustness of the HDNNPs was evaluated in terms not only 

of the deviation between the HDNNP and DFT geometry optimization results but also 

of the percentage of successful geometry optimization, which was not terminated by the 

occurrence of ACSF extrapolation or did not show extrapolation warning at the end of 

the geometry optimization. A high probability of extrapolation would lead to the loss of 

certain structural features in the evolution.  

The results are summarized in Table 3.5. One can see that the HDNNP trained on the 

random set was more accurate in the training than those trained on the FPS set, while 

their accuracy was significantly worsened in the testing, especially for the FPS test set. 

This is due to an inherent bias present in the DFT database: GA directs sampling 

towards structures with lower energies in the course of its evolution. As a result, random 

sampling from the biased database failed to ensure the diversity of ACSF vectors, 
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leading to overfitting. The diversity of the ACSF vectors in the training set was found 

even more critical for the geometry optimization testing: Extrapolation failure occurred 

in about half of the geometry optimizations in the random set, compared with only 7% 

in the FPS set. Here, one can notice that the RMSE values of energy in the geometry 

optimization testing was far larger than those in the single-point testing. This is due to 

the deviation between the minima determined by the HDNNPs and those by DFT.31 

When the structure optimized by the HDNNP is geometry-optimized by DFT, this 

energy difference is reduced. Note that the deviation was found to be rather systematic, 

and hence, it hardly affected the energy order of different structures. Figure 3.1 

indicates the energy deviation between the HDNNP and DFT for 19MgCl2/4TiCl4. The 

structures for the geometry optimization testing were geometry-optimized by the 

HDNNP that was trained on FPS+, and the optimized structures were evaluated by 

single-point DFT calculations.  

 

Table 3.5 Accuracy of HDNNPs constructed by using differently sampled structures for 

19MgCl2/4TiCl4
a,b 

Trai

ning 

datase

t 

Training  

Testing 

(random) 
 

Testing 

(FPS) 
 

Testing 

(geometry 

optimization) 

E 

(meV/a

tom) 

F 

(me

V/Å) 

 

E 

(meV/a

tom) 

F 

(me

V/Å) 

 

E 

(meV/a

tom) 

F 

(me

V/Å) 

 

E 

(meV/

atom) 

F 

(me

V/Å) 

Suc

cess 

rate 

(%) 
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Ran

dom 

0.356 61.0  0.732 61.2  2.779 

134.

3 
 4.758 

476.

4 

50.

2 

FPS 0.430 69.6  0.428 52.1  0.483 65.2  3.505 56.0 

93.

0 

FPS

+ 

0.501 63.7  0.432 49.3  0.525 61.1  1.549 43.3 

99.

8 

a Three reference datasets were prepared by sampling structures from the DFT database: 

A random set, in which 15,000 structures were selected randomly; a FPS set, in which 

15,000 structures were selected by FPS; a FPS+ set, in which 3,098 structures were 

added adaptively to the FPS training set (see the details in the text). The random and 

FPS sets were split into 70% for training and 30% for testing.  

b Root mean squared errors (RMSE) of the energies E and forces F between the 

HDNNP predictions and the DFT results. Trained HDNNPs were validated on the 

random and FPS test sets. Moreover, geometry optimization testing was performed on 

3,000 initial structures that were randomly sampled from the DFT database. They were 

geometry-optimized using the trained HDNNPs, followed by single-point calculations 

of DFT. The percentage of successful geometry optimization without extrapolation 

failure was also recorded to measure the robustness of the HDNNPs. 
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Figure 3.1. a) Comparison of the energy between the HDNNP and DFT, and b) the 

distribution of the energy deviation. 19MgCl2/4TiCl4 structures in the geometry 

optimization test set of Table 1 were geometry-optimized by the HDNNP trained on 

FPS+. The DFT energy was obtained by single-point calculations for the optimized 

structures.  

 

In order to improve the accuracy and robustness of the HDNNPs, we adopted an 

adaptive to reinforce the FPS set. In doing so, 5,000 initial structures which were not 

used in the geometry optimization testing were randomly sampled from the DFT 

database. They were subjected to geometry optimization by using two HDNNPs having 

different architectures but with comparable accuracy. When the structures optimized by 

the two HDNNPs differed from each other beyond 1.0 kcal/mol (i.e., 0.558 meV/atom) 

in energy or beyond 0.20 Å in root mean square deviation (dRMS) of the distance 

between all atom pairs, the two structures after the geometry optimization were listed. 

The dRMS between structures X and Y, both consisting of N atoms, is defined as,  
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𝑑𝑅𝑀𝑆(𝑋, 𝑌) = √
2

𝑁(𝑁 − 1)
∑ ∑(|𝑟𝑖𝑗

𝑋| − |𝑟𝑖𝑗
𝑌|)

2
𝑁

𝑗>𝑖

𝑁−1

𝑖=1

  (3.8), 

where |𝑟𝑖𝑗
𝑋| is the distance between atoms i and j in the structure X. Also, when the 

geometry optimization posed extrapolation failure, the structures at the timing of the 

suspension or the optimized structures with extrapolation warning were listed. In this 

way, 3,098 structures were identified and added to the FPS set to obtain the FPS+ 

training set. As can be seen in Table 1, the HDNNP trained on the FPS+ set exhibited 

improved accuracy for the geometry optimization testing and negligible occurrence of 

the extrapolation, while keeping comparable accuracy in the single-point testing. The 

final accuracy of the HDNNP corresponded to 1.5 meV/atom in energy, which is 

superior or at least comparable to several meV/atom typically reported in literature.10 

Having determined how to construct the reference dataset, HDNNP training and 

testing were applied to the other systems with sufficient prior DFT results (19MgCl2 

and 50MgCl2/3TiCl4). As can be seen in Table 3.6, HDNNPs having comparable 

accuracy and success rate of the geometry optimization were obtained. This suggests the 

effectiveness of the method based on the FPS and adaptive reinforcement in order to 

obtain accurate and robust HDNNPs irrespective of the MgCl2 size and TiCl4 coverage. 

The most accurate HDNNPs consisted of three hidden layers with 15 nodes for the three 

systems. 

 

 

 

Table 3.6. Accuracy of HDNNPs constructed for different MgCl2/TiCl4 systemsa 
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System 

Training  

Testing 

(FPS) 
 

Testing 

(geometry 

optimization) 

E 

(meV/at

om) 

F 

(meV

/Å) 

 

E 

(meV/ato

m) 

F 

(meV/Å) 
 

E 

(meV/at

om) 

F 

(meV

/Å) 

Succe

ss rate 

(%) 

19MgCl2 0.830 61.8  0.852 61.6  1.867 45.9 99.9 

19MgCl2/4T

iCl4 

0.501 63.7  0.525 61.1  1.549 43.3 99.8 

50MgCl2/3T

iCl4 

0.329 60.9  0.359 61.2  1.626 50.1 99.9 

a The training sets were obtained in the same manner as that of FPS+ in Table 1. Note 

that 30% of the structures after FPS were split for testing, and that 3,000 initial 

structures were randomly sampled from the corresponding DFT database for additional 

geometry optimization testing.  

 

Next, I constructed the HDNNPs for 50MgCl2/9TiCl4, where the structure 

determination had not been realized due to the computational cost, i.e., there were a 

quite limited amount of prior DFT-GA results (approx. 200,000 structures, 

corresponding to ca. a few thousands initial structures). The reference dataset was 

constructed in three steps. First, 12,000 structures were  sampled from the limited DFT 

database based on FPS (termed the FPS set). Second, the trained HDNNP was used in 

combination with GA to collect structures exhibiting extrapolation. From these 
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structures, 1,200 structures were sampled based on FPS. They were subjected to DFT 

single-point calculations, and the results were added to the FPS training set to prepare 

the FPS+ set. Third, initial structures created in the second step were randomly sampled 

and subjected to the geometry optimization by using two HDNNPs that were trained on 

the FPS+ set and possessed different architectures with comparable accuracy. The 

structures which showed deviations beyond the criteria or extrapolation (similar to the 

process to prepare the FPS+ set in Table 1) were computed by DFT and the results were 

added to the FPS+ set to prepare the FPS++ set. The results of the training and testing at 

each step are shown in Table 3.7 It can be seen that the scores of HDNNPs in the 

training and single-point testing did not significantly change among the three steps. On 

the other hand, in the geometry optimization testing, which was performed for 2,000 

initial structures selected from the HDNNP-GA database excluding the structures 

contained in the reference dataset, the success rate of the FPS set was as low as 50%, 

and it improved stepwise to 95.1% for FPS+, and to 98.4% for FPS++. This again 

signified the importance of an adaptive procedure in constructing a robust HDNNP. The 

most accurate HDNNP at FPS++ consisted of two hidden layers with 20 nodes.  
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Table 3.7. Three-step construction of the HDNNPs for 50MgCl2/9TiCl4
a,b 

Traini

ng 

dataset 

Training  

Testing 

(FPS) 
 

Testing 

(geometry 

optimization) 

E 

(meV/ato

m) 

F 

(meV/

Å) 

 

E 

(meV/ato

m) 

F 

(meV/

Å) 

 

E 

(meV/ato

m) 

F 

(meV/

Å) 

Succ

ess rate 

(%) 

FPS 0.178 54.0  0.206 54.2  2.214 57.9 50.0 

FPS+ 0.222 53.3  0.229 51.5  1.441 49.4 95.1 

FPS++ 0.232 50.3  0.215 50.0  1.017 48.4 98.4 

a For 50MgCl2/9TiCl4, where prior DFT results were scarcely present, the reference 

dataset was constructed in three steps: First based on FPS from the limited DFT 

database (FPS set); Second, based on the addition of structures which showed 

extrapolation failure during geometry optimization by using the HDNNPs trained on the 

FPS set (FPS+ set); Third, based on the addition of structures, similar to that of FPS+ 

for the other systems (FPS++ set). See the details in the text. 

b The structures for the single-point testing were obtained by splitting 30% from the FPS 

set, while the structures for the geometry optimization testing were collected by newly 

creating initial structures based on GA. 

 



61  

2.3.2 Genetic algorithm for structure determination 

The constructed HDNNPs were used for GA-based structure determination instead of 

DFT. The results of two GA runs for each of the systems 19MgCl2, 19MgCl2/4TiCl4, 

50MgCl2/3TiCl4, and 50MgCl2/9TiCl4 are shown in Figure 3.2 as evolutionary progress 

plots. The obtained most stable structures are shown in Figures 3.3 and 3.4 The 

hyperparameters used in GA are summarized in Table 3.4. One can see that the two GA 

runs converged to the same structure with the identical energy for each system. 

 

 

Figure 3.2. Evolutionary progress plots of HDNNP-GA for the structure determination 

of a)19MgCl2, b) 19MgCl2/4TiCl4, c) 50MgCl2/3TiCl4, and d) 50MgCl2/9TiCl4. The 

energy of the most stable structure in the population is plotted along with the generation. 

Ecluster is a sum of the surface energy and the adsorption energy of TiCl4, as defined in 

Eq. 3.7. 
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For 19MgCl2 and 50MgCl2/3TiCl4, the obtained most stable structures were identical 

to those previously determined by DFT-GA.49,50 On the other hand, the most stable 

structure determined by HDNNP-GA for 19MgCl2/4TiCl4 differed from that by DFT-

GA. However, the former corresponded to the second most stable structure in DFT-GA, 

and HDNNP-GA found the most stable structure in DFT-GA during the evolution. The 

energy difference between these two structures was only 0.1 kcal/mol, which was hard 

to distinguish based on the given RMSE of HDNNP-GA. A similar reversal in the 

energy ranking also occurred when the exchange-correlational functional of DFT was 

changed from PBE to BP. Hence, it was concluded that HDNNP-GA can reach almost 

the same conclusion as DFT-GA at a dramatically reduced computational cost. For 

example, the time required for geometry optimization of 50MgCl2/3TiCl4 was typically 

reduced from 10,000 seconds for DFT to 7 seconds for the HDNNP. 

 

 

Figure 3.3. The most stable structures and their energies for a) 19MgCl2, b) 

19MgCl2/4TiCl4, and c) 50MgCl2/3TiCl4 determined by HDNNP-GA. The dotted blue 

and dashed red lines indicate the MgCl2 {100} and {110} surfaces, respectively. 
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Figure 3.4. Five most stable structures and their energies for 50MgCl2/9TiCl4 

determined by HDNNP-GA. The energies of the DFT geometry optimizations are given 

in the parentheses. 

 

The most stable structure of 50MgCl2/9TiCl4 in DFT-GA was not known in advance. 

Therefore, we listed the five lowest energy structures obtained by HDNNP-GA, and 

performed geometry optimization by DFT. The results are shown in Figure 3. One can 

see that the energies of the most stable and the second most stable structures were 

reversed between the HDNNP and DFT. However, the energy difference was only 0.2 

kcal/mol, indicating successful structure determination in HDNNP-GA. The five most 

stable structures possessed similar structural features: Most of the TiCl4 molecules were 

bound to the {110} terraces as mononuclear species, while bare {110} terraces were not 

exposed. This is because the stronger adsorption of TiCl4 on {110} than that on {100} 
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overcomes the energetic penalty of exposing the {110} terraces, whose surface energy 

is higher than that of the {100} terraces. Structural comparison between 

50MgCl2/3TiCl4 and 50MgCl2/9TiCl4 revealed the effect of the coverage on the 

formation of MgCl2 clusters at a realistic size scale. The lateral surfaces of 

50MgCl2/3TiCl4 were mainly composed by relatively long {100} terraces with short 

{110} terraces at their edges, whereas in 50MgCl2/9TiCl4, the lateral surfaces were 

composed of short {110} and {100} terraces, thus exposing much more edges. These 

results are likely in line with past high-resolution TEM observations that the lateral 

surfaces of bare MgCl2 were flat, while those of a catalyst were round-like (suggesting 

an abundance of edges).64 

 

2.3.3 Distribution of TiCl4 species 

The dramatic acceleration based on HDNNP-GA resulted in a database much larger in 

size than that previously acquired by DFT-GA (e.g., in the case of 19MgCl2/4TiCl4, the 

number of structures explored by HDNNP-GA was 8.6 times that by DFT-GA). This 

improved the coverage of low-energy structures, i.e., thermodynamically important 

structures. Figure 3.5 compares the histograms of the relative energies of local minima 

in 19MgCl2/4TiCl4 system within 6 kcal/mol of 𝛥𝐸cluster collected by HDNNP-GA and 

DFT-GA. This improved the coverage of low-energy structures, i.e., thermodynamically 

important structure.  
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Figure 3.5. Histograms of the low-energy structures for 19MgCl4/4TiCl4, collected by 

a) HDNNP-GA and b) DFT-GA. The values of 𝛥𝐸cluster in a) were evaluated using 

HDNNP, and while in b) were evaluated using DFT. 

 

Here, the database was analyzed in order to get an insight into the distribution of 

catalytically relevant features. The population (p) of each structure was estimated based 

on the Boltzmann factor,  

𝑝 = 𝑒−
𝛥𝐸cluster

𝑅𝑇  (3.9), 

where 𝛥𝐸cluster is the cluster energy of a structure relative to that of the most stable 

structure, R is the gas constant, and the temperature (T) was set to 350 K. 
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Figure 3.6. Distribution of different TiCl4 species on MgCl2 surfaces. The adsorbed 

TiCl4 molecules are classified into mononuclear and dinuclear species on the {100} 

surfaces and mononuclear species on the {110} surfaces. The mononuclear species on 

the {110} surfaces are further subdivided into three species according to the presence or 

absence of stereo-controlling ligands based on the three-site model.65 The distribution of 

individual species was derived by using Boltzmann weights applied to the identified 

local minima at 350 K. 

 

In general, the structure of Ti species is closely related to their catalytic properties, 

and their distribution is considered to be the main cause of the experimentally observed 

primary structure distribution of polymers.34 Three major types of TiCl4 species on 

MgCl2 surfaces are known: Mononuclear species on {110} terraces, and mononuclear 

and dinuclear species on {100} terraces. Among these, the mononuclear species on 

{110} is known to be thermodynamically more stable,66 and many advanced 

characterization techniques support this species as the most representative type.36,67,68 
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Furthermore, according to the widely accepted three-site model, where the presence of 

bulky ligands at the two adjacent Mg2+ cations is essential for high isospecificity, the 

mononuclear species on {110} were subdivided into three species, mono_1−3.65 In the 

framework of the three-site model, Ti centers without adjacent ligands are assigned to 

non-stereospecific (aspecific) sites.40,47,65,69 The stereo-controlling ligands can be either 

donors or Cl− anions, but only the latter is applicable in the current study. Indeed, 

donor-free catalysts produce isotactic polypropylene, although not as isotactic as that 

produced by donor-containing catalysts.70 

The distribution of TiCl4 species was determined for each system according to the 

above-described three major and three minor classifications (Figure 4). Note that TiCl4 

is not the active form. Upon contact with alkylaluminum, it is reduced and alkylated 

into the active form,53which accompanies redistribution of Ti species, e.g., forming 

agglomerates. Such the transient nature of the active sites is not included in the present 

research. It can be seen that regardless of the system, different TiCl4 species coexist, or 

the structure of TiCl4 is distributed. As seen in Figure 3, this originates from the 

thermodynamic distribution due to many energetically-accessible structures, as well as 

from the non-ideality of lateral surfaces, leading to different species within each 

structure. In all the three systems, the mononuclear species on {110} were found to be 

dominant, consistent with the consensus in literature.35,66–68 The much larger population 

of the mononuclear species on {110} in 50MgCl2/3TiCl4 and 50MgCl2/9TiCl4 

compared to 19MgCl2/4TiCl4 is due to the ease of reconstructing larger clusters for 

exposing the {110} terraces.49 On the other hand, as the TiCl4 coverage increased on 

50MgCl2, the population of mono_2,3, which possess one or two stereo-controlling 

ligands, increased drastically along with a reduction in the population of mono_1, which 
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is known to be aspecific. This is likely consistent with an experimental observation that 

a larger Ti content increased the population of isospecific active sites.71  

 

3.4 Conclusions 

High-dimensional neural network potentials (HDNNPs) were established for 

nanosized MgCl2/TiCl4 ternary halides, in order to accelerate the genetic algorithm 

(GA)-based structure determination of Ziegler-Natta catalysts. For constructing the 

HDNNP applicable to a wide variety of structures explored by GA, we found it is 

essential to ensure a sufficient diversity of ACSF vectors, i.e., atomic environments, in 

the training set based on farthest point sampling (FPS) and to adaptively reinforce the 

training set. A three-step procedure of preparing a training set was successfully 

proposed for a system where prior DFT data are not sufficiently collected due to the 

computational cost. By combining the HDNNP with GA, structure determination was 

demonstrated for MgCl2/TiCl4 of different sizes and Ti contents. The HDNNP-GA was 

found to give results consistent with DFT-GA, approximately 1,400 times faster for 

50MgCl2/3TiCl4. This allowed the structure determination for a larger system 

(50MgCl2/9TiCl4) that had not previously been handled by DFT-GA, and a more 

comprehensive collection of metastable structures. The structures determined for 

50MgCl2/9TiCl4 were featured with a rounder morphology of MgCl2, comprising of 

short {110} and {100} terraces. TiCl4 were dominantly bound to the {110} terraces 

without exposing bare {110} terraces. Thermodynamic analyses for metastable 

structures signified distributed TiCl4 structures, where an increase in the MgCl2 size and 

that in the surface coverage enhanced the population of the mononuclear species on 
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{110} and that of isospecific species, respectively, in perfect agreements with the 

experimental observations. 

Rapid and more exhaustive structure exploration has brought us closer to tackling the 

essence of practical heterogeneous catalysis solely based on computational chemistry. 

Realistic structural models obtained in this way are useful for obtaining deeper insights 

into the structures and functions of the catalysts. For example, the models give a 

realistic interpretation of experimental spectroscopic results.36,51  
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ABSTRACT 

A comprehensive understanding of catalytic activity requires not only macro- to 

microscale observations from experiments but also atomic- and electronic-level insights. 

In general, key chemical environments are highly sensitive to system composition and 

local structure, with significant changes in different compositions. Evaluating the effect 

of composition on active structures is particularly crucial for complex systems such as 

solid catalysts. In this chapter, the effect of TiCl4 coverage on Ziegler-Natta (ZN) 

catalysts was systematically evaluated through non-empirical structure determination of 

various compositions at the actual catalyst scale. The adoption of a high-dimensional 

neural network potential (HDNNP) significantly accelerated calculations, enabling the 

efficient and systematic determination of structures across a range of compositions in 

large-scale systems. Analysis of multiple metastable structures revealed a consistent 

trend of increasing steric specificity with higher TiCl4 coverage. On the other hand, it 

was suggested that many of the TiCl4 molecules were not activated in highly covered 

clusters. This chapter presents the first systematic investigation of the effect of TiCl4 

coverage on the cluster geometry and the electronic state of the active site at a realistic 

scale. 

 

KEYWORDS: Neural network potential, genetic algorithm, structure determination, 

Ziegler-Natta catalyst, Density functional theory 
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4.1. Introduction 

Quantum calculations, which provide insights into material structures and properties 

at the electronic level, are powerful tools for understanding complex materials.1,2 

However, many simulation studies rely on limited assumptions and empirical initial 

models that restrict simulation reliability. Real systems often feature non-uniform 

surface structures that vary with adsorbate presence, whereas most empirical models 

depict only periodic, ideal surfaces or highly localized environments.3–8 To overcome 

these limitations, combining machine learning with quantum calculations offers a non-

empirical approach to structural determination, free from experimental constraints. By 

integrating machine learning, researchers can model structural variations more 

accurately and explore complex atomic interactions, extending the applicability of 

quantum methods to a broader range of materials, including single element clusters,9 

alloys10,11, and supported catalysts.5,12,13 As the number of atoms in a system increases, 

the computational cost and time required to reach a solution escalate rapidly. While 

global optimization of clusters with a few dozen atoms has been achieved using density 

functional theory (DFT), quantum calculations for realistic systems, commonly 

containing hundreds or thousands of atoms, become prohibitively time-intensive. 

Determining the structures of large nanoparticles requires the exploration of extensive 

potential energy surfaces (PES) to account for diverse atomic interactions within both 

adsorbate and support. Thus, a precise and efficient potential capable of covering this 

vast parameter space is essential. 

Machine learning potentials (MLPs), which construct potential energy surfaces 

(PESs) via machine learning, present a promising solution to this challenge.14–16 MLPs 

are developed based on reference datasets of representative conformations obtained 
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through quantum calculations, such as DFT. These models can predict energies and 

forces with first-principles accuracy comparable to the reference calculation methods, 

yet without requiring electronic state calculations, allowing for computational speeds 

approaching those of force fields. Several MLP algorithms have been developed, 

including high-dimensional neural network potentials (HDNNP),17,18 graph neural 

network potentials,19 and other neural network-based approaches,20 as well as Gaussian 

approximation potentials,21 spectral neighbor analysis potentials,22  and moment tensor 

potentials.23 

The solid component of MgCl2-supported Ziegler-Natta (ZN) catalysts, a system 

widely used for industrial olefin polymerization,24 forms through aggregation of MgCl2 

nanoplate primary particles. These primary particles are terminated by TiCl4, the active 

site precursor, and are modified by organic Lewis bases (internal donors, IDs), which 

enable stereoselective olefin polymerization.25–27 Activation is achieved with 

alkylaluminium co-catalysts, while additional Lewis bases (external donors), introduced 

during the reaction, improve stereospecificity and activity by co-adsorbing with Ti 

species to form a steric barrier.25,28–30 Despite extensive research and development in 

this area, the primary particle structure and its distribution remain poorly understood 

due to the system's complexity and surface reconfigurations induced by adsorbates.  

Many computational approaches have sought to elucidate structure-performance 

relationships in Ziegler-Natta catalysts,27,31–39 however, most assume static surfaces. In 

a notable advancement, Takasao et al. achieved non-empirical structural determination 

of MgCl2/TiCl4 primary particles, exploring both the support structure and adsorbates 

simultaneously through a combination of genetic algorithm (GA) and DFT 

optimization.5,39,40 Their study revealed that TiCl4 chemisorption in Ziegler-Natta 
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catalysts contributes to the emergence of various metastable states. The most stable 

structures of different xMgCl2/yTiCl4 (x = 6–19, y = 0–4) systems with particle 

diameters under 2.0 nm were determined, estimating the effects of particle size and 

TiCl4 coverage on structural distribution.39 Although the system size is constrained by 

the high computational cost of DFT, their models qualitatively match experimental 

observations. Further HDNNP-based structure determinations for larger MgCl2/TiCl4 

systems (discussed in Chapter 2) revealed that morphological features at experimentally 

relevant particle scales (approximately 4.0 nm)41,42 differ significantly from those of 

smaller systems. This finding suggests that studying the effects of composition at 

realistic scales could enhance understanding of catalytic structure distributions. 

In this chapter, I focused on understanding the effects of composition on cluster 

morphology and active structures at realistic catalyst scales by introducing HDNNP 

acceleration. To achieve this, I constructed an HDNNP model based on a dataset 

containing a range of compositions and sizes, designed to capture representative 

chemical environments for interpolation across systems with varying atom counts. 

HDNNP approach is adaptable to systems of different sizes as long as the elemental 

composition is consistent, and thus, it is typically trained on datasets that span multiple 

structural configurations.15,18 However, constructing a robust and generalized HDNNP 

requires samples that thoroughly represent the diverse local chemical environments 

within MgCl2/TiCl4 systems, which change significantly with size and coverage. In 

Chapter 2, separate reference datasets were generated for each composition to simplify 

data selection, necessitating the construction of individual potentials for each unique 

composition.43 This chapter goes further, addressing the challenges of efficiently 

sampling data from clusters with a range of compositional patterns, which strongly 
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influence chemical environment distribution. I summarize the effective criteria for 

composition selection in HDNNP construction and discuss the effect of compositional 

variations on the morphology of large-scale systems, thereby providing insights into the 

structural diversity and catalytic performance of MgCl2/TiCl4 catalysts. 

 

4.2. Numerical method  

4.2.1. Construction of reference dataset for HDNNP training 

The second-generation high-dimensional neural network potentials (HDNNPs)18 were 

adopted, and local chemical environments were described by atom centered symmetry 

functions (ACSFs).44 The employed function form and parameters of ACSFs are 

completely same as Chapter 2. The atomic neural network subset has 2 layers with 20 

nodes for each. 

In Chapter 2, reference datasets and HDNNPs were developed for four distinct 

compositions. These datasets were generated using farthest point sampling (FPS) 

combined with adaptive reinforcement to enhance their overall effectiveness. To create 

a comprehensive reference database incorporating multiple compositions, these datasets 

were merged. Here, I utilized systems that included TiCl4-covered compositions 

(19MgCl2/4TiCl4, 50MgCl2/3TiCl4, 50MgCl2/9TiCl4) from the dataset obtained in 

Chapter 2.43 These compositions were chosen to increase the proportion of Ti atoms 

within the reference dataset, ensuring a more comprehensive coverage of Ti-related 

chemical environments. A reference dataset was subsequently created by sampling 

structures using the FPS method based on ACSFs. FPS was applied within the ACSF 

vector space for each element to ensure the selection of structures containing 

representative atomic environments. This approach ensured the training data included 
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diverse and representative configurations to enhance generalizability. 70% of the 

structures in the reference dataset were allocated for training, while the remaining 30% 

were reserved for testing. To further strengthen the reference dataset, adaptive sampling 

was employed. Geometry optimizations were performed on 19MgCl2/9TiCl4 and 

40MgCl2 clusters, representing high TiCl4 coverage and moderate-sized, TiCl4-free 

clusters, respectively. Thousands of initial structures, randomly sampled from the DFT 

database, were optimized using two HDNNPs with different architectures but 

comparable accuracy. Structures showing significant differences in geometry or 

predicted energy between the two HDNNPs were recalculated with DFT and added to 

the reference dataset. 

The constructed HDNNP was evaluated based on its accuracy in single-point 

calculations and geometry optimization for structures with compositions not included in 

the training dataset. The HDNNPs were constructed by using the RuNNer code (version 

1.2.0).45,46 All DFT calculations were performed using the Perdew-Burke-Ernzerhof 

(PBE) functional47 and the double numerical basis functions (DNP)48 with effective core 

potentials (ECP)49 were implemented by using DMol3.48 

 

4.2.2. Non-empirical structure determination 

Non-empirical structure determination was performed for the 50MgCl2 cluster with 

different numbers (4–13) of TiCl4 adsorbates using HDNNP and genetic algorithm 

(GA). These compositions were selected to cover a range of TiCl4 coverage from very 

low to almost full. The structures are subjected to geometry optimization implemented 

in LAMMPS with the n2p2 package50 which integrates the HDNNP method into 

LAMMPS51. The optimization process employed a conjugate gradient method with a 
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convergence criterion of 154 meV/Å for the global force vector, within a maximum of 

1,000 steps. The energy of the optimized structures is expressed by Ecluster, which is 

defined as, 

𝐸cluster = 𝐸 − 𝑁MgCl2
× 𝐸MgCl2

− 𝑁TiCl4
× 𝐸TiCl4

 (4.1

), 

where E is the total energy of a structure, 𝑁MgCl2
 is the number of MgCl2 units, 𝐸MgCl2

 

is the energy of a MgCl2 unit in α-MgCl2, 𝑁TiCl
4
 is the number of TiCl4 molecules, and 

𝐸TiCl
4
 is the energy of a TiCl4 molecule in vacuum. For each system, one independent 

run was performed. For 3–6 additional runs, migration operators were introduced 

starting from the 300th generation of the GA cycle. This operator involved randomly 

selecting structures within the energy range of elite structures from a stable 

configuration database and adding them to the population to enhance diversity. The 

details of GA algorithm and each operations can be found in Ref.5,40. Roulette selection 

was used for its capacity to probabilistically favor high-fitness structures for crossover 

and mutation. Fitness (f) of the ith structure defined as 

𝑓𝑖  =  𝑒
−3(

𝐸𝑖−𝐸𝑚𝑖𝑛
𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛

)
 (4.2

), 

where Ei, Emin, and Emax are the energy of the ith structure in a generation, and the 

energies of the most and least stable structures in the same generation.  
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Table 4.1. Parameters used in the genetic algorithm 

Parameter Value 

Population (structure) 105 

Crossover (%)  38.1 

Mutation (skeleton) (%) 14.3 

Mutation (adsorbate) (%) 14.3 

Elitism (%) 33.3 

 

 

4.3. RESULT AND DISCUSSI 

4.3.1.  Evaluation of HDNNP 

The reference data set was selected from a population containing multiple 

compositions using the farthest-point sampling (FPS) method based on the atomic 

center symmetry function (ACSF). In addition, structures were added through adaptive 

learning. Table 4.2 summarizes the composition of the final reference dataset. The first 

three systems were selected using FPS, with a dominant selection of the 

19MgCl2/4TiCl4 cluster. This suggests that clusters with relatively small and medium 

coverages more significantly reflect changes in the local atomic environment within the 

ACSF framework. The latter two systems represent structures added by adaptive 

sampling. The 19MgCl2/9TiCl4 system is cluster with extremely high coverage that is 

not included in the initial reference data set, necessitating addition of more structures to 

improve representation. 
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Table 4.2. Structure of the reference dataset a 

System N
train

 N
test

 

19MgCl
2
/4TiCl

4
 3398 1468 

50MgCl
2
/3TiCl

4
 2225 1011 

50MgCl
2
/9TiCl

4
 2705 1154 

19MgCl
2
/9TiCl

4
 1187 484 

40MgCl
2
 74 32 

a The reference data set is a mixture of five systems with different compositions. The 

first three systems were selected by FPS, and the structures of the remaining two 

systems were added to adaptive. 70% was used as the training set and 30% as the testing 

set.  

 

Table 4.3. HDNNP prediction errors a 

Training  Single-point test  

Geometry optimization test  

(19MgCl2/9TiCl4) 

E 

(meV/atom) 

F 

(meV/Å) 
 

E 

(meV/atom) 

F 

(meV/Å) 
 

E 

(meV/atom) 

F 

(meV/Å) 

Success 

rate (%) 

0.416 52.9  0.611 53.6  1.30 51.4 99.0 

a The root mean squared errors (RMSE) of energies (E) and forces (F) were calculated 

relative to DFT results. During the training process, 70% of the reference dataset was 

used for training, while the remaining 30% was allocated for single-point testing. 

Additionally, geometry optimization tests were performed using 2,480 initial structures 
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of 19MgCl2/9TiCl4 cluster, characterized by high TiCl4 coverage. RMSE values were 

calculated for 100 structures picked randomly from 2,455 successfully optimized using 

the HDNNP. Success rate means percentage of structures for which no extrapolation 

occurred during the geometry optimization. 

 

The accuracy of the trained HDNNPs was evaluated based on the root mean square 

error (RMSE) of energies and forces relative to the corresponding reference data. 

Ensuring the robustness of the HDNNP during simulation steps is critically important. 

Therefore, an additional test, referred to as the geometry optimization test, was 

performed. Given the need to determine cluster structures across varying coverage 

levels, this test focused on systems with extreme coverage conditions. Specifically, 

2,480 initial structures of 19MgCl2/9TiCl4 cluster were optimized using the HDNNP, 

and 100 resulting structures were randomly sampled. The energies and forces of these 

sampled structures were recalculated using DFT single-point calculations, and the 

deviations from the HDNNP predictions were evaluated using RMSE. Additionally, the 

success rate of the geometry optimizations, defined as the percentage of optimizations 

that either did not terminate due to ACSF extrapolation or showed no extrapolation 

warnings upon completion, was also evaluated. 

Table 4.2 summarizes the accuracy evaluation of the HDNNP. The RMSE for energy 

was 0.416 meV/atom for the training set and 0.611 meV/atom for the testing set. 

Although this was inferior to the HDNNP constructed in Chapter 2 (approximately 0.2 

meV/atom), these values remain within the typical HDNNP accuracy range (0.5–10 

meV/atom). For forces, the RMSE was 52.9 meV/Å for the training set and 53.6 meV/Å 

for the testing set, close to 50 meV/Å reported in Chapter 2,43 indicating negligible 
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impact from dataset generalization. In the geometry optimization test, 99% success rate 

was achieved, and the energy predictions for the optimized structures showed a 

favorable RMSE of 1.30 meV/atom. The robustness of the HDNNP for the exploration 

of unknown systems is evaluated in also the first part of the next section. 

 

4.3.2.  Structure determination  

The constructed HDNNP was applied to non-empirical structure determination using 

GA. First, in order to confirm that the constructed HDNNP has sufficient accuracy for 

the target system, I performed DFT validation on several structures obtained by GA. 

GA was run for 50MgCl2/4TiCl4 and 50MgCl2/13TiCl4, which have lowest and highest 

coverage in trials, and the top 5 stable structures at around the 300th generation were 

picked out. DFT geometry optimization was performed on each of these structures to 

evaluate the deviation in prediction between the HDNNPs and DFT (Figure 4.1). The 

difference between the DFT and the predicted values for the obtained structures was 1–

2 kcal/mol (equivalent to 0.2–0.4 meV/atom), indicating that the HDNNP has sufficient 

accuracy. 
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Figure 4.1. Comparison of energies after optimization using HDNNP and DFT. The 

energies referred to by the GA using HDNNP are indicated by the blue circles. The 

orange stars show the energies of the structures optimized using HDNNP, as evaluated 

by DFT, and the deviation between the orange and blue circles indicates the prediction 

error for the optimized structures. The green diamonds show the energies of the 

structures re-optimized using DFT, and the deviation between the green and blue dots 

indicates the error in energy evaluation in the GA. 

 

Next, structure determination using HDNNP was performed on a 50MgCl2 cluster with 

different TiCl4 coverage: 50MgCl2/4TiCl4, 50MgCl2/7TiCl4, 50MgCl2/11TiCl4, and 

50MgCl2/13TiCl4. Each GA run were performed until the 1000th generation. The energy 

evolution during GA is summarized in Figure 4.2. Due to the vastness of the parameter 

space, more than 500 generations of GA iterations were required to reach the global 

minimum. The most stable structure for each composition was determined after 

searching for 100,000 to 50,000 structure candidates. 
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Figure 4.2. Evolutionary progress plots of HDNNP-GA for the structure determination 

of a)50MgCl2/4TiCl4, b) 50MgCl2/7TiCl4, c) 50MgCl2/11TiCl4, and d) 

50MgCl2/13TiCl4. The energy of the most stable structure in the population is plotted 

along with the generation. Ecluster is a sum of the surface energy and the adsorption 

energy of TiCl4, as defined in Eq. 4.2. 
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Figure 4.3. The most stable structures and their energies of a)50MgCl2/4TiCl4, b) 

50MgCl2/7TiCl4, c) 50MgCl2/11TiCl4, and d) 50MgCl2/13TiCl4 cluster determined by 

HDNNP-GA. The dotted blue and dashed red lines indicate the MgCl2 {100} and {110} 

surfaces, respectively. The energies obtained by DFT-geometry optimization are given 

in parentheses. 

 

Figure 4.3 shows the top 4 stable structures, and their energies obtained on GA using 

HDNNP (HDNNP-GA). The structures and energies in 50MgCl2/9TiCl4 cluster are 

cited from Chapter 2. The energies were further evaluated through geometry 

optimization using DFT, with DFT results shown in parentheses in Figure 4.3. The 

cluster energies predicted by HDNNP closely matched those obtained from DFT 

geometry optimization, confirming that the PES exploration was conducted with high 

accuracy.  

Table 4.4 summarizes the average coverage rates of the obtained clusters. The 

coverage rate is calculated as the ratio of Mg²⁺ cation sites occupied by adsorbates 

(terminal Cl and TiCl4) to the total coordination vacancies of surface Mg2+ cations in the 

MgCl2 cluster, excluding all adsorbates. Specifically, a 5-coordinated Mg2+ ion was 

counted as having one vacancy, while a 4-coordinated Mg2+ ion was counted as having 

two vacancies. Contributions from each cluster were weighted by the following 

Boltzmann factor: 

𝑝 = 𝑒−
𝛥𝐸cluster

𝑅𝑇  (4.3

), 
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where 𝛥𝐸cluster is the cluster energy of a structure relative to that of the most stable 

structure, R is the gas constant, and the temperature (T) was set to 350 K. Based on this 

analysis, the structure determination for 50MgCl2/4–13TiCl4 clusters corresponds to 

coverage rates ranging from 34% to 84%. 

 

Table 4.4. Average coverage of clusters in each composition a 

System Coverage 

50MgCl
2
/4TiCl

4
 34.32% 

50MgCl
2
/7TiCl

4
 51.65% 

50MgCl
2
/9TiCl

4
 62.48% 

50MgCl
2
/11TiCl

4
 72.65% 

50MgCl
2
/13TiCl

4
 83.93% 

a Coverages were estimated as the ratio of surface Mg2+ cation coordination vacancies 

occupied by adsorbates. Specifically, a 5-coordinated Mg2+ ion is counted as having one 

vacancy, while a 4-coordinated Mg2+ ion is counted as having two vacancies. The 

population of each cluster was weighted by the Boltzmann factor in Eq. 2.9. 

 

In terms of general morphological characteristics, the cluster surface structures consist 

of TiCl4-covered {110} terraces and uncovered {100} terraces, consistent with previous 

structural studies on ZN catalysts3,6,9. Furthermore, TiCl4 adsorption preferentially 

exposes {110} terraces, reducing the exposure of {100} terraces as the coverage 

increases. The most stable structures for each composition had different structures of 
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MgCl2 skeleton, suggesting that surface reconstruction due to TiCl4 adsorption occurs 

regardless of the coverage.  

Figure 3.4 plots the stabilizing effect of TiCl4 adsorption on different compositions 

using the most stable structures. The stabilizing effect is calculated as the energy 

difference between the most stable structure of 50MgCl2 cluster (Ecluster = 139.9 

kcal/mol, reported in Ref.40) and the most stable structures of 50MgCl2/4–13TiCl4 

cluster, divided by the number of adsorbed TiCl4 molecules. This value corresponds to 

the adsorption energy, accounting for the surface reconstruction of 50MgCl2 skeleton. 

The plot is based on the most stable structures and energies obtained from DFT 

geometry optimization. The results show that the adsorption energy decreases 

consistently as the coverage of TiCl4 increases. For clusters with high coverage, the 

formation of {110} terraces become less favorable, leading to adsorption on the {100} 

terraces. Consequently, the average adsorption energy decreases. Consequently, the 

average adsorption energy decreases. A similar trend was observed for 50MgCl2/4TiCl4 

and 50MgCl2/7TiCl4 clusters, which contain only {110} TiCl4 monomers. This 

indicates that the stabilization effect is influenced not only by the adsorption 

configuration but also by charge redistribution during TiCl4 adsorption.  

 



99  

 

Figure 4.4. Comparison of the stabilization effect from TiCl4 adsorption on the most 

stable structures of the 50MgCl2/4–13TiCl4 cluster. The stabilization is evaluated as the 

energy difference between the most stable structure of each composition and the most 

stable structure of the bare 50MgCl2 cluster, normalized by the number of TiCl4 

molecules (𝛥𝐸cluster_abs /𝑁TiCl4
). The energy of the bare 50MgCl2 is set to 139.9 

kcal/mol.40 

 

Next, I investigate the adsorption behavior based on the obtained stable structures. 

Specifically, the Gibbs free energy change of the system as a function of number of 

TiCl4 on a 50MgCl2 cluster were compared particles of different compositions by 

analyzing. The thermodynamic stability of the 50MgCl2/nTiCl4 cluster was evaluated 

using the equilibrium: 

50MgCl2  +  (TiCl4)13  →  50MgCl2/𝑛TiCl4  +  (TiCl4)13−𝑛 (4.4



100  

), 

Both the electronic energy and Gibbs free energy were computed at the GGA-PBE 

level, consistent with the methodology used for structural optimization. The most stable 

configurations of 50MgCl2/4–13TiCl4 and bare 50MgCl2, as well as the TiCl4 monomer, 

were optimized using density functional theory (DFT). Vibrational frequencies were 

calculated within the harmonic approximation, and Gibbs free energies were obtained at 

298.15 K. 

To account for the entropy loss in the condensed phase, the entropy contribution of 

TiCl4 in the Gibbs free energy calculation was scaled by a factor of 2/3, a widely 

accepted and commonly employed correction.52–54 The dependence of Gibbs free energy 

on the number of adsorbed TiCl4 molecules is shown in Fig. 4.4. The results 

demonstrate a continuous decrease in the system’s free energy with increasing TiCl4 

coverage, indicating that TiCl4 adsorption is thermodynamically favorable. These 

results are consistent with experimental observations, which suggest that MgCl2 

nanoparticles are nearly fully covered by adsorbed TiCl4.
55 
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Figure 4.5. Gibbs free energy change (ΔG) of the reaction shown at Eq.4.4 as a function 

of the number of adsorbed TiCl4 molecules on a 50MgCl2 cluster. 

 

4.3.3.  Distribution analysis 

The charge of the TiCl4 active site precursor on the cluster is sensitive to its chemical 

environment, and this affects the performance of the active site that is generated. Here, 

the effect of the coverage on the structural and charge distributions of TiCl4 is discussed. 

Because the second-generation HDNNP cannot predict charges, the most stable 

structures within a 6 kcal/mol range were selected from those obtained by HDNNP-GA 

and recalculated using DFT geometry optimization for these analyses. The estimation of 

the structural distribution was performed based on weighting by the Boltzmann factor 

defined as Eq.4.3, and the temperature (T) was set to 350 K. Note that distribution 

analysis was performed using the energies obtained by DFT-geometry optimization. As 
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shown in Figure 4.2, the deviation between HDNNP on DFT in the rankings of stable 

structures and their relative energies was minimal. 

The distribution of Ti species for each composition is summarized in Figure 4.6. Ti 

species are largely classified into mononuclear species on the {110} terrace, 

mononuclear species on the {100} terrace, and dinuclear species, with the mononuclear 

species on the {110} terrace being known to be thermodynamically more stable and 

majority of the active site. Furthermore, according to the three-site model, {110} 

mononuclear species is subdivided, based on presence/absence of ligands present on 

two adjacent Mg2+ cations, into three types: mono_1 (without ligands), mono_2 (with 

one ligand), and mono_3 (with two ligands).56 Coordination species adjacent to the 

active sites limit monomer insertion, resulting in enhanced stereospecificity. Consistent 

with previous studies, the {110} mononuclear species dominated in all compositions. 

Furthermore, as the TiCl4 coverage increased, the population of the non-stereospecific 

mono_1 decreased, while the populations of the stereospecific mono_2 and 3 increased. 

A roughly similar trend has been reported in previous structural determination studies, 

and here, for the first time, it was shown to be a continuous trend by continuously 

varying the coverage. As TiCl4 coverage increases, the surface exposure pattern 

becomes increasingly restricted, with {110} terrace exposure decreasing and TiCl4 

adsorption on {100} terraces being promoted. Computational calculations indicate that 

TiCl4 clusters on {100} terraces form steric barriers, limiting activation to a single Ti 

atom. Experimental and computational studies have revealed that mere Ti exposure is 

not a guarantee of high catalytic activity,57 and this analysis provides strong support for 

those findings. The simultaneous increase of mono_3 and {100} species further 
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underscores that stereospecific active sites are not predominant in the absence of 

internal donors. 

 

 

Figure 4.6. Distribution of different TiCl4 species on MgCl2 surfaces. The adsorbed 

TiCl4 molecules are classified into mononuclear and dinuclear species on the {100} 

surfaces and mononuclear species on the {110} surfaces. The mononuclear species on 

the {110} surfaces are further subdivided into three species according to the presence or 

absence of stereo-controlling ligands based on the three-site model.56 The distribution of 

individual species was derived by using Boltzmann weights applied to the identified 

local minima at 350 K. 
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Figure 3.7. Population of TiCl4 species and these Hirshfeld charge: a)50MgCl2/4TiCl4, 

b)50MgCl2/7TiCl4, c)50MgCl2/9TiCl4, d)50MgCl2/11TiCl4, and e)50MgCl2/13TiCl4. 

The percentage of presence was weighted by the Boltzmann factor. 

 

The properties of Ti active centers are influenced not only by steric hindrance in the 

surrounding environment, but also by electrostatic interactions. For example, electron-

deficient Ti species can form π complexes favorably, resulting in low activation 

energies.39 The charge state of TiCl4 is closely related to its adsorption structure. On 

{100} surfaces, mononuclear and dinuclear species are positively charged, while 

mononuclear species on {110} surfaces exhibit a negative charge distribution, ranging 
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from -0.08 (without internal donors) to between -0.03 and 0 (with internal donors), as 

reported by Hirschfeld charge analysis. Figure 4.5 summarizes the charge states of TiCl4 

as estimated using Hirschfeld charges. Mononuclear species on the {110} surface are 

negatively charged, whereas dinuclear species on the {100} surface are positively 

charged. Although {110} mononuclear species were rarely observed, those that were 

found were positively charged, consistent with previously reported characteristics. In 

the 50MgCl2/4–9TiCl4 cluster containing {110} mono_1, the species exhibited a more 

negative charge compared to {110} mono_2 and 3, with the overall charge distribution 

shifting positively as coverage increased. Conversely, {110} mono_3 exhibited a shift 

toward negative charge as coverage increased, which corresponds to an increase in 

{100} dinuclear species, charged in positive. This is because the Cl of {100} dinuclear 

is coordinated to {110} mono_3, and the interaction makes the charge of {110} mono_3 

more negative. Moreover, while the distribution of {110} mono_3 is narrow and shifts 

with changes in composition. This implies that in systems lacking internal donors, the 

charge state distribution at the highly stereospecific active site remains narrow. 

 

4.4. Conclusion 

This chapter systematically evaluates the effect of TiCl4 coverage on Ziegler-Natta 

(ZN) catalysts without internal donors by determining the structures of multiple 

compositions at a realistic catalyst scale. Due to the high computational cost of DFT, 

which limits systematic structural determination, a high-dimensional neural network 

potential (HDNNP) was developed to describe a wide range of MgCl2/TiCl4 

compositions. 
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By combining HDNNP with a genetic algorithm (GA), new stable structures for 

50MgCl2/4–13TiCl4 clusters (corresponding to coverages of 30–84%) were identified. 

This revealed a consistent trend: as the TiCl4 coverage increases, stereospecificity 

improves, aligning with experimental and computational findings that confirm the 

dominance of mononuclear TiCl4 species on {110} surfaces. However, the increase in 

{100} dinuclear species was observed at higher coverages, negatively affects the overall 

catalytic activity. The adsorption behavior of TiCl4 on MgCl2 was estimated using 

Gibbs free energy, showing that clusters with higher coverage are thermodynamically 

more stable. Charge distribution analysis further revealed direct and indirect interactions 

between Ti species, highlighting the influence of the chemical environment. These 

findings demonstrate that traditional infinite-plane models or localized active site 

models are insufficient for accurately simulating catalytic behavior. 

While these points have been qualitatively discussed in the past, this study provides 

quantitative insights by establishing molecular models. For the first time, this work 

systematically elucidates how TiCl4 coverage affects cluster morphology and the 

electronic state of active sites at a realistic scale. 
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ABSTRACT 

The influence of internal donors (IDs) on the morphological characteristics of Ziegler-

Natta catalysts is crucial for understanding propylene polymerization. A comprehensive 

structural distribution analysis is essential to investigate the complex interactions 

between the active sites, chemical adsorption, and the surface state of the MgCl2 support. 

However, traditional structure searches that combine genetic algorithms (GA) with 

density functional theory (DFT) are often limited by the high computational cost of 

DFT. In this chapter, we employed High-Dimensional Neural Network Potentials 

(HDNNP) to significantly accelerate the computational process, enabling the 

exploration of 12.4 times more structural candidates. This approach led to the 

identification of a new, most stable structure, which is 2.6 kcal/mol more stable than 

previously known configurations. Furthermore, HDNNP-based GA discovered 200 

thermodynamically exchangeable metastable structures that were inaccessible via the 

DFT-based GA approach, providing novel insights into the distribution of active species.  

 

KEYWORDS: Neural network potential, genetic algorithm, structure determination, 

Ziegler-Natta catalyst, internal donor, global minimization 
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5.1. INTRODCUTION  

Ziegler-Natta (ZN) catalysts, developed by Karl Ziegler and Giulio Natta in the 1950s, 

revolutionized the production of high-performance plastics.1 These catalysts are 

essential for industrial polyolefin production and are used in 99% of polypropylene (PP) 

manufacturing. TiCl4 serves as a precursor for the active sites, and MgCl2 supports, are 

typically employed.2  An important nature of ZN catalysts for propylene polymerization 

is the use of internal (ID) and external (ED) donors, composed of organic compounds, 

to improve the stereo regularity and molecular weight distribution of the resulting 

polymer.3–5 Controlling the stereochemistry of the polymer chain allows the synthesis of 

isotactic, syndiotactic, and atactic polymers, which in turn determines material 

properties such as melting point, crystallinity, tensile strength, and elastic modulus. IDs, 

such as ethyl benzoate (EB), phthalate esters (DEP), diethers (DE), and succinates, are 

added during catalyst preparation and coordinate with the active sites, influencing 

monomer orientation during polymerization.5,6 This binding is crucial for achieving the 

desired stereoregularity, especially in polypropylene production. EDs, typically 

alkoxysilanes, are added during polymerization. While the choice of ID significantly 

impacts the distribution of active sites and the resultant molecular weight distribution of 

the polymer, the effect of ED selection is minor.7 These observations suggest that while 

both IDs and EDs enhance stereospecificity during polymerization, IDs have a 

substantial influence on the formation and distribution of active sites during catalyst 

preparation.  

The functional unit of ZN catalysts consists of MgCl2 nanoplates terminated with 

adsorbed TiCl4 and internal donors (IDs), called primary particle. MgCl2 nanoplates are 

composed of {110} and {100} surfaces, corresponding to 4-fold and 5-fold coordinated 
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Mg2+ cation sites, respectively.8,9 The primary particles stack disorderly along the c-axis, 

weakly bound by van der Waals forces.9 Understanding the morphology of primary 

particles and the local chemical environment surrounding active sites provides crucial 

insights into catalytic functionality. On the other hand, the MgCl2 support structure is 

highly sensitive to its surrounding chemical environment and is prone to reconfiguration 

upon adsorption.10,11 Additionally, X-ray scattering spectra tend to be broad, making it 

difficult to identify specific surface exposures.12  

Quantum chemical simulations provide powerful tools for interpreting experimental 

observations at the atomic and molecular levels. For instance, in ZN catalysts, a 

combination of spectroscopy techniques, such as infrared (IR), ultraviolet-visible (UV-

Vis), or other measurement techniques with simulations is applied to decipher structural 

complexities.10,13–15 On the other hand, accurately correlating simulations with the 

properties of real catalysts requires a molecular model that reliably represents the 

system, such as the most stable structure. The integration of machine learning with DFT 

has enabled "non-empirical" structure determination, allowing representative structures 

to be proposed without prior experimental knowledge. This approach has been applied 

across various fields, from single-atom clusters and alloys to supported catalysts.16–19 

Structure determination involves exploring the potential energy surface (PES) over a 

vast configuration space, which is computationally expensive when using DFT. 

Machine learning potentials (MLPs) have emerged as a solution to this challenge.20–27  

To investigate the detailed structure of ZN catalysts, Takasao et al. combined genetic 

algorithms (GA) with DFT geometry optimization, enabling simultaneous exploration 

of the support structure and adsorbates, which led to the determination of MgCl2/TiCl4 

primary particle structures.28–30 This work revealed that the chemisorption of TiCl4 



120  

promotes structural diversity in Ziegler-Natta catalysts by forming MgCl2 nanoplate 

morphologies. Furthermore, Chapters 2 and 3 of this thesis reported non-empirical 

structure determination for experimentally relevant sizes using high-dimensional neural 

network potentials (HDNNPs),20 a classical MLP strategy introduced by Behler and 

Parinello.27 More recently, the structure determination of MgCl2/TiCl4/ID systems with 

two different IDs (diethyl phthalate (DEP) and 9,9-bis(methoxymethyl)fluorene) has 

shown that the co-adsorption of IDs and TiCl4 preferentially forms sharp surfaces with 

edges and cavities, essential for MgCl2 reconstruction.31 Incorporating IDs in structure 

determination increases the DFT computation time and rapidly expands the 

configuration space due to the diversity of adsorption patterns, making investigating 

enough conformational space difficult. 

Here, I explored a more comprehensive configuration space of MgCl2/TiCl4/ID 

cluster using HDNNPs to identify the most stable structures while revealing diverse 

stable configurations. The constructed HDNNP must capture both the covalent nature of 

IDs and the ionic characteristics of MgCl2/TiCl4. This chapter represents one of the few 

cases applying HDNNPs to such a complex system. Also, accelerating these 

calculations is a crucial step toward simulating MgCl2/TiCl4/ID clusters at realistic 

scales. 

 

5.2. Numerical method  

5.2.1. Composition of the MgCl2/TiCl4/ID cluster 

Here, a comprehensive exploration of orientation space for a 19MgCl₂/4TiCl₄/5diethyl 

phthalate (DEP) cluster was conducted using high-dimensional neural network 

potentials (HDNNPs). The HDNNP was trained on a DFT database from a structural 
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determination study for the same system, reported by da Silveira et al. 

19MgCl2/4TiCl4/5ID composition was selected for its balance between computational 

feasibility and realistic catalyst coverage. This chapter focuses on DEP, which has a 

distinct carbonyl (C=O) peak in IR spectroscopy,32 suitable for spectroscopic simulation 

study in the future.  

 

5.2.2. HDNNP construction for MgCl2/TiCl4/DEP system 

The HDNNP input was created by combining radial (𝐺i
rad) and angular (𝐺i

ang1
, 𝐺i

ang2
) 

atom centered symmetry functions (ACSFs)21,27,33 and their cutoff function (fc) with a 

cutoff radius 𝑅𝑐 are defined as, 

𝐺𝑖
rad = ∑ e−𝜂(𝑅𝑖𝑗−𝑅s)

2

𝑁atoms

𝑗=1

𝑓c(𝑅𝑖𝑗) (5.1), 

𝐺𝑖
ang1

= 21−𝜁 ∑ ∑ {(1

𝑁atoms

𝑘≠𝑖,𝑗

𝑁atoms

𝑗≠𝑖

+ 𝜆cos𝜃𝑖𝑗𝑘)
𝜁

e−𝜂(𝑅𝑖𝑗
2+𝑅𝑗𝑘

2+𝑅𝑖𝑘
2)𝑓𝑐(𝑅𝑖𝑗)𝑓𝑐(𝑅𝑗𝑘)𝑓𝑐(𝑅𝑖𝑘)} 

(5.2), 

𝐺𝑖
ang2

= 21−𝜁 ∑ ∑ {(1 + 𝜆cos𝜃𝑖𝑗𝑘)
𝜁

e−𝜂(𝑅𝑖𝑗
2+𝑅𝑖𝑘

2)𝑓𝑐(𝑅𝑖𝑗)𝑓𝑐(𝑅𝑖𝑘)}

𝑁atoms

𝑘≠𝑖,𝑗

𝑁atoms

𝑗≠𝑖

 (5.3), 

𝑓c(𝑅𝑖𝑗) =  {
0.5 [cos (

𝑅𝑖𝑗

𝑅c
) +  1]          (𝑅𝑖𝑗  ≤  𝑅𝑐)

0                                              (𝑅𝑖𝑗  >  𝑅𝑐)

 (5.4), 

where 𝜂, 𝜁, 𝜆, and 𝑅s are hyperparameters, 𝑅𝑖𝑗  is the distance between atoms i and j, 

and 𝜃𝑖𝑗𝑘 is the angle defined among atoms i, j, and k with i at the center. The ACSF 

parameters were determined empirically. Different ACSF parameters were applied for 

ionic (pairs or triads consisting of Mg, Cl, and Ti), covalent (O, H, and C), and mixed 
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environments, which include both types. ACSF parameters to describe ionic 

environment were selected based on Chapter 2, with slight adjustments. The radial 

ACSF parameters for covalent environments referenced those used in ANI-2x, which is 

the HDNNP package representing the organic system provided by Devereux et al.34 For 

mixed interactions, only essential functions within an effective interaction range were 

included, omitting descriptors (e.g., H-Mg-Ti interactions) with minimal impact on the 

entire energy. The details of hyperparameters is discussed in supporting information 

part. 

The HDNNPs were constructed by using the RuNNer code (version 1.2.0).22,35 The 

atomic neural networks were trained using a Kalman filter.36 The atomic neural 

networks were trained using a Kalman filter to minimize a loss function (𝛤), defined as, 

𝛤 =
1

𝑁structure
 ∑ [(𝐸DFT

𝑖 − 𝐸HDNNP
𝑖 )

2

𝑁structure

𝑖

+
𝛽

3𝑁atom
𝑖

∑ (𝐹𝑗,DFT
𝑖 − 𝐹𝑗,HDNNP

𝑖 )2

𝑁𝑎𝑡𝑜𝑚
𝑖

𝑗

] 

(5.5), 

where 𝑁structure is the number of structures in the training set, 𝑁atom
𝑖  is the number of 

atoms in structure i, 𝐸𝑖  is the energy of structure i, and 𝐹𝑗
𝑖 is the force on atom j in 

structure i. 𝐸HDNNP
𝑖  is computed as the sum of atomic energies and Since 𝐹𝑗

𝑖 is obtained 

as the analytical derivative of the atomic energy. The network is thus optimized to 

output atomic energies that minimize the loss function. Here, the beta value was set to 

10.0 to ensure that the optimizer focused on force fitting because the distribution of 

force magnitude significantly depending on the nature of the chemical bonding. The 

final HDNNP atomic network was composed of two layers, each containing 15 nodes. 
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5.2.3. Dataset construction 

An initial reference dataset of 1,800 structures from the DFT database of the 

19MgCl2/4TiCl4/5DEP cluster was selected, including geometry optimization 

trajectories. Furthest point sampling (FPS) was used to efficiently select representative 

environments for the initial dataset, with 70% allocated for training and 30% for testing. 

The initial adaptive sampling cycle added extrapolated structures to expand the potential 

energy surface (PES). Geometry optimization was performed on 10,000 initial 

structures, with 300–1,500 selected from extrapolating structures using FPS and 

recalculated with DFT. The collection process continued until a 95% success rate 

(defined as the proportion of trials that avoided extrapolation at the final simulation 

step) in avoiding extrapolation was achieved. Subsequently, geometric optimization was 

performed using two HDNNPs with different architectures but comparable accuracy. 

Structures with inconsistent energy and geometry results between the two HDNNPs 

were recalculated using DFT and added to the reference dataset. For more details on the 

adaptive sampling approach, refer to Chapter 2. 

The constructed HDNNP was evaluated based on its accuracy in single-point 

calculations and in geometry optimization for structures beyond the training set. DFT 

calculations at GGA-PBE37 level employing the double numerical basis functions 

(DNP)38 basis sets, implemented with effective core potentials (ECP)39 in DMol3.38 

 

5.2.4. Structure determination 

The HDNNP and genetic algorithm (GA) were combined for an extensive structural 

exploration of the 19MgCl₂/4TiCl₄/5DEP cluster, guided by the structure-determination 
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algorithm in Ref31. Each candidate structure was optimized using LAMMPS with an 

HDNNP interface, applying a force convergence criterion of 154 meV/Å, and the 

energy for optimized structures was calculated as Ecluster defined as,  

𝐸cluster = 𝐸 − 𝑁MgCl2
× 𝐸MgCl2

− 𝑁TiCl4
× 𝐸TiCl4  −𝑁ID × 𝐸ID - (5.6), 

where E is the total energy of a structure, 𝑁MgCl2
 is the number of MgCl2 units, 𝐸MgCl2

 

is the energy of a MgCl2 unit in α-MgCl2, 𝑁TiCl
4
 is the number of TiCl4 molecules, and 

𝐸TiCl
4
 is the energy of a TiCl4 molecule in vacuum, 𝑁ID is the number of ID molecules, 

and 𝐸ID is the energy of a ID molecule in vacuum. The GA was performed to minimize 

Ecluster, and the features of the structures with high fitness (f) were preferentially 

inherited through roulette selection.  f of theith structure is defined as, 

𝑓𝑖  =  𝑒
−3(

𝐸𝑖−𝐸𝑚𝑖𝑛
𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛

)
 (5.7), 

where Ei, Emin, and Emax are the energy of the ith structure in a generation, and the 

energies of the most and least stable structures in the same generation.  

The primary GA parameters used are detailed in Table 5.1. In this system, total 

energy is primarily influenced by adsorbate interactions, meaning that even structures 

with similar MgCl2 skeleton can differ significantly in energy. To ensure diversity in 

adsorption patterns, a relatively large number of elite structures were retained in the GA 

process. In order to improve structural diversity, 9 parallel runs were performed, and in 

8 of these runs, an migration operator,30 that imports elite structures from the database 

based on relative energy, was introduced after 200 generations. 
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Table 5.1. Parameters used in the genetic algorithm 

Parameter Value 

Population (structure) 72 

Crossover (%)  27.8 

Mutation (skeleton) (%) 16.7 

Mutation (adsorbate) (%) 11.1 

Elitism (%) 44.4 

 

5.3. RESULT AND DISCUSSION 

5.3.1.  HDNNP construction 

By incorporating adaptive sampling from the structural optimization trajectory, I 

expanded the dataset to obtain structures of 19MgCl2/4TiCl4/5DEP The accuracy of the 

DFT calculations for the HDNNP trained on this dataset was evaluated using the root-

mean-square-error (RMSE), as shown in Table 5.2. Due to the complexity of fitting this 

system, the RMSEs for energy and force in both training and single-point tests were 

higher than those for the MgCl2/TiCl4 system. However, these values, around 1 

meV/atom, remained within acceptable limits. 

A geometry optimization test was conducted using 1,000 initial structures randomly 

extracted from the dataset, with 300 structures, randomly sampled, further analyzed 

using DFT single-point calculations for verification. As indicated in Table 5.2, the 

energy RMSE was 1.54 meV, reflecting the systematic underestimation commonly 

observed in MLP-based geometry optimization. Since the optimization algorithm 

inherently follows the PES toward a more stable structure, underestimation errors can 
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accumulate over successive optimization cycles. Nevertheless, deviations of a few 

meV/atom during structure optimization are typical for HDNNP accuracy.40 

 

Table 5.1. Prediction errors of the HDNNP of 19MgCl2/4TiCl4/5DEP a 

Training  

Single-point 

test 
 Geometry-optimization test 

E 

(meV/atom) 

F 

(meV/Å) 
 

E 

(meV/atom) 

F 

(meV/Å) 
 

E 

(meV/atom) 

F 

(meV/Å) 

Success 

rate (%) 

0.434 72.5  0.747 74.1  1.54 47.8 96.8 

a The energies E and forces F indicate root mean squared error (RMSE) from DFT. In 

training, 70% of the reference dataset was used as the training set and remaining 30% as 

the testing set. Single-point test shows RMSE for the testing set. Geometry optimization 

tests were performed using 10,000 initial structures of 19MgCl2/4TiCl4/5DEP cluster, 

having extremally high TiCl4 coverage. The RMSE values were calculated for the 100 

structures optimized using the HDNNP. Success rate means percentage of structures for 

which no extrapolation occurred during the geometry optimization.  

 

5.3.2.  Structure determination 

Structure determination was performed using the HDNNP and GA (HDNNP-GA) 

was applied to 19MgCl2/4TiCl4/5DEP cluster. Figure 4 presents the energy evolution 

plot of GA runs, which were run for 1,000 generations. This plot illustrates the energy 

of the most ststable structure in the generation, highlighting the optimization process 
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and convergence behavior of the GA toward more stable structures. The GA was 

terminated after 1,000 generations as 7 out of 9 runs—excluding Run 1, which did not 

include migration operations, and Run 3—converged to the same most stable structure. 

All runs resulted close to Ecluster = -52.6 kcal/mol. The HDNNP-GA explored a total of 

178,377 structures (12.4 times the search space of DFT-GA), and obtained 621 stable 

structures ranked within 6 kcal/mol of relative energy ∆𝐸cluster from the most stable one. 

 

 

Figure 5.1. Evolutionary progress plots of HDNNP-GA for the structure determination 

of 19MgCl2/4TiCl4/5DEP. The plot shows the energy of the most stable structure in the 

population of the generation. Ecluster is a sum of the surface energy and the adsorption 

energy of TiCl4, as defined in Eq. 5.6. 

 

The most stable structure obtained by HDNNP-GA and one that obtained by GA 

using DFT (DFT-GA) obtained in Ref.31 are shown in Figure 5.3a. Here, the most stable 

structure obtained using HDNNP-GA (denoted as HDNNP-stable) with that obtained 

using DFT-GA from Ref.31 (denoted as DFT-stable). Both structures, , which were re-
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evaluated via DFT-geometry optimization, have nearly identical energies, 

indistinguishable within the chemical accuracy limit of 1 kcal/mol. Although the DFT-

stable structure was identified during the HDNNP-GA search, the HDNNP-stable 

structure was not found in the DFT-GA. Despite having nearly the same energy, 

HDNNP-stable features a different DEP adsorption distribution, characterized by three 

chelates and two bridges. 

 

 

Figure 5.2. The most stable structures obtained by a) HDNNP-GA and b) DFT-GA. 

The energies of each structure were evaluated using both DFT geometry optimization 

( 𝐸cluster
DFT ) and HDNNP structure optimization ( 𝐸cluster

HDNNP ). Note that the HDNNP 

geometry optimization was applied to the initial structures generated by the GA, while 

the DFT geometry optimization for structure a) was conducted following the HDNNP 

geometry optimization. 
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HDNNP estimated an energy difference of 4 kcal/mol between these closely related 

structures. Although this difference falls within the expected range based on 1.5 

meV/atom, it can influence thermodynamic distribution estimations. To refine this 

analysis, 621 of the top stable structures identified by HDNNP-GA were optimized 

using DFT, and their energies were re-evaluated. Of these, 336 structures fell within 6 

kcal/mol of the most stable energy (Fig. 5.4a), and some had even lower energies than 

the DFT-stable structure (Fig. 5.3c). 

 

 

Figure 5.3. Distribution of relative energy to the most stable one (∆𝐸cluster ) in a) 

HDNNP-GA and b) DFT-GA. c) The most stable structure obtained from metastable 

structures in HDNNP-GA evaluated using DFT-geometry optimization. The dotted blue 

and dashed red lines indicate the MgCl2 {100} and {110} surfaces, respectively. 

 

Although this analysis required DFT optimization of hundreds of structures, the 

computational cost remained significantly lower than a full search of tens of thousands 

of candidates for structure determination. Figure 5.4a shows that HDNNP-GA 
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uncovered more than 20 unique stable structures within 1 kcal/mol, indicating that the 

inclusion of DEP led to a considerable diversification of stable configurations. This 

exploration reached areas that were insufficiently covered by DFT-GA. 

The most stable structure identified by DFT (Fig. 5.4c) shared a motif similar to the 

DFT-GA result, particularly in the distribution of DEP adsorption patterns and terminal 

Cl adsorption sites, but the overall cluster energy differed by 2.6 kcal/mol. A notable 

feature of the HDNNP-stable structure was a TiCl4 species situated between two 

chelating DEPs, which also had an identical MgCl2 framework as shown in Figure 5.3a. 

This suggests that certain stable skeleton found in one GA run were reinforced by 

genetic operations, implying that the variety of DEP adsorption structures plays a key 

role in the overall structural distribution. 

 

5.3.3.  Distribution analysis 

The structure of Ti species is closely tied to their catalytic properties and plays a 

critical role in determining the molecular weight distribution of resulting polymers. On 

the MgCl2 surface, TiCl4 species are generally categorized into three main types: 

mononuclear species on {110} terraces, mononuclear species on {100} terraces, and 

dinuclear species on {100} terraces. Among these, the mononuclear species on {110} 

terraces are known to be thermodynamically more stable, supported by various 

advanced characterization techniques, which consistently identify this species as the 

most representative. Within the framework of the three-site model,41 bulky ligands 

located at two adjacent Mg²⁺ cations are essential for forming high stereo specific active 

site. Consequently, the mononuclear species on {110} terraces have been further 

subdivided into three subtypes: mono_1–3. In this model, 'ligands' refer to Cl− anions, or 
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oxygen atoms from donor molecules that coordinate to Mg2+ cations.41–44 The 

distribution of each species was evaluated using Boltzmann weighting, defined as,  

𝑝 = 𝑒−
𝛥𝐸cluster

𝑅𝑇  (5.8

), 

where p is the population of structure, 𝛥𝐸cluster is the cluster energy of a structure 

relative to that of the most stable structure, R is the gas constant, at a temperature T = 

350 K.  Energies of HDNNP-GA-derived structures were evaluated using DFT-

geometry optimization to ensure consistency. This section provides a detailed chemical 

understanding of the TiCl4 distribution and insights into how the breadth of the search 

space impacts distribution estimates.  

 I independently estimated and compared the TiCl4 distributions based on the stable 

structures obtained via DFT-GA and HDNNP-GA. Figure 5.4 shows the distribution of 

TiCl4 species corresponding to these stable structures. Both methods consistently 

identified {110} mono_3 as the dominant TiCl4 species, with negligible contributions 

from {100} species. Although minor differences in the occupancy of {110} mono_3 

were observed between the two methods, these variations were not statistically 

significant due to the sensitivity of Boltzmann factors to relative energy differences. 

This result highlights the intrinsic role of IDs in enhancing the stereospecificity of 

active sites. As discussed in Chapter 3, clusters without IDs exhibit a lower proportion 

of stereospecific TiCl4 species, even when sufficient surface area is available. These 

insights explain the experimental results that show that, isotactic polypropylene can be 

produced using a catalyst without IDs but less than that of a catalyst that does contain a 

donor.45 
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Figure 5.4. Comparison of the TiCl4 species distribution based on stable structures 

obtained from DFT-GA and HDNNP-GA. The population of each species is expressed 

as a percentage, calculated using Boltzmann weighting at 350 K. The insects display 

representative structures of each species, including {110} mononuclear species 

(mono_1–3), {100} mononuclear species ({100} mono), and {100} dinuclear species 

({100} di) based on three-site model.41 

 

To further refine the analysis, the TiCl4 mono_3 species were classified based on the 

types of ligands present, namely Cl- anions, bridge-adsorbed donors on {100} terraces, 

or chelate-adsorbed donors on {110} terraces (Figure 5.5).46,47 The adsorption mode of 

the donor on the {110} terrace could potentially include bridge sites; however, no such 

configurations were observed among the stable structures within 6 kcal/mol of the stable 

structures obtained via both DFT and HDNNP-GA. Three pairs of ligand classifications 

yielded six different subtypes, and their distributions were estimated for structures 
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derived from both methods, shown in Figure 5.6. Interestingly, while broader 

classifications revealed minimal differences between the two GA approaches, finer 

classifications based on ligand types exposed significant disparities. The DFT-GA-

derived structures exhibited a large population of TiCl4 species coordinated between 

chelate and bridge ligands, whereas the occurrence of TiCl4 species sandwiched by two 

Cl ligands or two chelate ligands was underestimated. These differences in distribution 

arose from the more diverse structural patterns sampled through exhaustive 

configurational searches. Notably, the extensive configurational search enabled by 

HDNNP-GA identified TiCl4 species sandwiched between two Cl ligands, a 

configuration less observed in the DFT-GA results. This finding highlights that, even in 

systems containing IDs, Cl anions can act as steric control ligands, influencing the 

stereospecificity of the active sites. These facts indicate that the active center is not 

governed by a specific chemical environment, and that a variety of active structures 

coexist. 

 

 

Figure 5.5. Representative structures of {110} mono_3 TiCl4 species classified based 

on ligand types. a) Cl⁻ anions, b) bridge-adsorbed donor on a {100} terrace, c) chelate-

adsorbed donor on a {110} terrace. The ligand is surrounded by a blue circle. The 

chelate-adsorbed ID has two O atoms in the vicinity of TiCl4, but here they are defined 

as a single ligand. 
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Figure 5.6. Distribution of TiCl4 species (T = 350 K) based on stable structures 

obtained from DFT-GA and HDNNP-GA. The {110} mono_3 species, which has 

ligands adjacent on both sides, was further subdivided into six types depending on the 

combination of the types of ligands shown in Figure 5.5.  

 

Next, the discussion focuses on the charge distribution of TiCl4 species. The 

introduction of IDs contributes both sterically and electronically to the Ti active center, 

altering its characteristics. Consequently, the electronic state of TiCl4 provides critical 

insights into catalyst performance. For instance, even Ti species with similar steric 

environments exhibit a range of charge states, and species with different charges may 

exhibit varying catalytic activities.29,31 Figure 5.7 presents the charge distribution for 

structures obtained via HDNNP-GA. The charge of TiCl4 was evaluated using Hirshfeld 

charges calculated through DFT at GGA-PBE level. Based on the three-site model 

(Figure 5.5a), the mono_3 structures, which make up the majority of the stable 
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structures, exhibit charges ranging from -0.25 to -0.1. This is significantly more 

negatively charged and widely distributed than the distribution of donor-free clusters 

reported in Chapter 3 (-0.08 to -0.03). This trend is consistent with findings from DFT-

GA,31 which demonstrated that the Lewis basicity of donors increases the negative 

charge of all TiCl4 species, aligning well with DFT29 and experimental observations.48,49 

Notably, the charge of the stereospecific {110} mono_3 species spans a wide range, 

indicating the presence of diverse active species. Figure 5.7b illustrates the charge 

distribution of {110} mono_3, categorized by the ligand types shown in Figure 5.5. 

Interestingly, the charge distribution varies depending on the ligand type, suggesting 

that the donor makes a direct electronic contribution to the adjacent Ti species. Chelate-

adsorbed donors, likely due to the two oxygen atoms functioning as ligands, induce the 

most negative charge on TiCl4. Furthermore, compared to bridge-adsorbed donors, 

chelate-adsorbed donors result in a broader charge distribution for TiCl4. This broader 

distribution can be attributed to the diverse range of stable conformations, reflecting 

their chemical environments. 
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Figure 5.7. Hirshfeld charge distributions for different TiCl4 species. a) Distribution of 

Hirshfeld charges for general active site classifications based on three-site model.41 b) 

Detailed Hirshfeld charge distribution for {110} mono_3 species, further categorized by 

ligand types shown in Figure 5.5. 

 

 

5.4.  Conclusion 

A high-dimensional neural network potential (HDNNP) was developed to enable a 

comprehensive exploration of the structural space of MgCl2/TiCl4/diethyl phthalate 

(DEP) clusters. A key aspect of HDNNP development was the iterative incorporation of 

conformations of flexible organic molecules through HDNNP-based simulations, 
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allowing for the efficient sampling of diverse chemical environments associated with 

DEP. This approach resulted in a potential capable of accurately reproducing DFT-level 

structural optimizations. 

The non-empirical structure determination was performed using a genetic algorithm 

(GA), and the significant computational speedup provided by HDNNP enabled the 

exploration of a structure space 12 times larger than what could be achieved using DFT 

alone. This expanded search uncovered hundreds of previously unexplored metastable 

structures. Subsequent re-evaluation of the energies of these structures via DFT 

geometric optimization identified configurations that are 2.6 kcal/mol more stable than 

those previously reported. 

Additionally, DEP-containing clusters can form a wide range of metastable structures 

within a narrow energy range, primarily due to variations in chemical adsorption 

patterns. Notably, these structural variations occur without requiring substantial 

rearrangement of the MgCl2 surface. The ability to sample a broader spectrum of stable 

structures provides crucial insights into the distribution of chemical environments 

surrounding the active center, emphasizing the significance of the explored parametric 

space. 

Furthermore, an evaluation of the charge distribution in TiCl4 across different ligand 

types revealed that chelate-adsorbed donors induced a more negative charge on the Ti 

species. The adsorption mode of DEP broadened the distribution of charge states, a 

discovery that provides an explanation for the wide molecular weight distribution of the 

resulting polymer. 
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The HDNNP approach described here represents a significant step toward realistic 

simulations of the MgCl2/TiCl4/DEP system and, more broadly, all 

MgCl2/TiCl4/internal donor systems. 
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Supporting information 

Tables S5.1–5.6 show the parameter set for the atom-centered symmetry functions 

(ACSFs) introduced in this chapter. The parameters differ in the element set, so these 

are indicated separately in each table. It was adjusted empirically based on the results 

obtained in Chapter 2 and other literature. Those with a maximum value of less than 0.2 

in the training set were deleted. For the angular ACSF of H, the triad function that 

includes Ti, Cl, and Mg is not used. Also, the Ti-H-H, Mg-H-H, and Cl-H-H functions 

were not used for angular ACSF of Ti, Cl, and Mg. 

 

Table S5.1. Parameters of the radial ACSFs. The same parameter set was applied to 

describe diad in set of H, C, and O. 

N 

η 

(1/Bohr2) 

Rs (Bohr) Rc (Bohr) 

1 5.517 1.512 9.638 

2 5.517 2.02 9.638 

3 5.517 2.528 9.638 

4 5.517 3.055 9.638 

5 5.517 3.543 9.638 

6 5.517 4.051 9.638 

7 5.517 4.559 9.638 

8 5.517 5.067 9.638 

9 5.517 5.575 9.638 

10 5.517 6.083 9.638 
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Table S5.2. Parameters of the angular ACSFs. The same parameter set was applied to 

describe triad in set of H, C, and O. The function type was 𝐺𝑖
ang1

 in Eq.5.2. 

N 

η 

(1/Bohr2) 

λ ζ Rc (Bohr) 

1 0.000 1.0 1.0 6.614 

2 0.000 1.0 2.0 6.614 

3 0.000 1.0 4.0 6.614 

4 0.000 1.0 16.0 6.614 

5 0.000 -1.0 1.0 6.614 

6 0.000 -1.0 2.0 6.614 

7 0.000 -1.0 4.0 6.614 

8 0.000 -1.0 16.0 6.614 

 

 

 

 

 

11 5.517 6.590 9.638 

12 5.517 7.098 9.638 

13 5.517 8.114 9.638 

14 5.517 8.622 9.638 
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Table S5.3. Parameters of the radial ACSFs. The same parameter set was applied to 

describe diad containing both set of H, C, O and set of Mg, Cl, Ti. 

N η (1/Bohr2) Rs (Bohr) Rc (Bohr) 

1 0.002 0.0 12.00 

2 0.005 0.0 12.00 

3 0.009 0.0 12.00 

4 0.016 0.0 12.00 

6 0.029 0.0 12.00 

 

 

Table S5.4. Parameters of the radial ACSFs. The same parameter set was applied to 

describe triad containing both set of H, C, O and set of Mg, Cl, Ti. The function type 

was  𝐺𝑖
ang2

 in Eq.5.3. 

N η (1/Bohr2) λ ζ Rc (Bohr) 

1 0.000 1.0 1.0 12.0 

2 0.000 1.0 2.0 12.0 

3 0.000 1.0 8.0 12.0 

4 0.000 -1.0 1.0 12.0 

5 0.000 -1.0 2.0 12.0 

6 0.000 -1.0 4.0 12.0 
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Table S5.5. Parameters of the radial ACSFs. The same parameter set was applied to 

describe diad in set of Mg, Cl, Ti. 

N η (1/Bohr2) Rs (Bohr) Rc (Bohr) 

1 0.000 0.0 16.0 

2 0.002 0.0 16.0 

3 0.005 0.0 16.0 

4 0.009 0.0 16.0 

5 0.016 0.0 16.0 

6 0.029 0.0 16.0 

7 0.050 3.0 16.0 

8 0.050 6.0 16.0 

9 0.050 10.5 16.0 
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Table S5.6. Parameters of the angular ACSFs. The same parameter set was applied to 

describe triad in set of Mg, Cl, Ti. The function type was  𝐺𝑖
ang2

 in Eq.5.3. 

N 

η 

(1/Bohr2) 

λ ζ Rc (Bohr) 

1 0.001 1.0 1.0 16.0 

2 0.001 1.0 2.0 16.0 

3 0.001 1.0 4.0 16.0 

4 0.001 1.0 16.0 16.0 

5 0.001 -1.0 1.0 16.0 

6 0.001 -1.0 2.0 16.0 

7 0.001 -1.0 4.0 16.0 

8 0.001 -1.0 16.0 16.0 
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Chapter 6 

 

General conclusion 
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The Ziegler-Natta (ZN) catalyst, widely utilized in olefin polymerization, is a 

heterogeneous catalyst whose primary structural unit (primary particle) comprises 

MgCl2 nanoplates chemically modified with TiCl4, the precursor of the active site, and 

an internal donor (ID) to enhance performance. Surface reconstruction induced by 

chemical adsorption introduces significant structural heterogeneity, posing a major 

challenge in designing accurate molecular models. Empirical structure determination of 

primary particles, accounting for such reconstructions, has been achieved by combining 

local optimization based on density functional theory (DFT) with global searches using 

genetic algorithms (GA). However, the computational cost of DFT has restricted these 

studies to small scales, making it challenging to model structures at a more realistic 

scale. 

To explore catalyst structures that more closely resemble the size and composition of 

actual catalysts, it is crucial to accelerate the modeling process. Here I employed the 

high-dimensional neural network potential (HDNNP) approach, which significantly 

speeds up calculations while preserving high accuracy. Moreover, to minimize the 

number of DFT calculations required for training, efficient sampling methods are 

essential to construct accurate potentials using a minimal dataset. This study highlights 

a practical application of machine learning potentials in complex material systems. 

In Chapter 3, HDNNPs were developed for the MgCl2/TiCl4 binary system, enabling 

non-empirical structural determination. By employing farthest-point sampling (FPS) 

and adaptive structure addition, efficient sampling was achieved, covering the parameter 

space with fewer structures. This strategy effectively identifies crucial training data 

from the vast potential energy surface (PES). Accelerated structure searches using 

HDNNPs successfully determined the structure of a 50MgCl₂/9TiCl₄ cluster, 
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representing realistic sizes and coverage. The analysis revealed morphological features 

consistent with experimental observations, such as a round shape with numerous edges 

and an increase in sterically specific active sites with higher Ti coverage. 

Chapter 4 investigates the effect of TiCl4 coverage through realistic-scale simulations. 

Systematic structural determination was conducted for MgCl2/TiCl4 systems with 

varying coverage. HDNNPs applicable to diverse compositions were developed, 

allowing for structural determination across a wide compositional range. A 

comprehensive reference dataset was generated using FPS, and the robustness of 

HDNNP predictions was carefully validated on unknown systems.  Structure 

determination for MgCl2/TiCl4 cluster with different coverage unveiled systematic 

changes in the steric and electronic properties of active sites due to coverage variations. 

The findings clarified the experimental observation that increasing Ti species on the 

MgCl2 surface does not always enhance activity. Furthermore, charge distribution 

analyses emphasized the importance of Ti–Ti interactions, underscoring the need for 

simulations using realistic cluster models. 

In Chapter 5, HDNNPs were developed for ZN catalysts containing internal donors, 

focusing on propylene polymerization. Using diethyl phthalate (DEP) as the internal 

donor, accelerated HDNNP calculations were applied to the 19MgCl2/4TiCl4/5DEP 

system, enabling exploration of a broader structural space. This facilitated the reliable 

determination of the most stable structures and provided deeper insights into the 

structural distribution of active sites. 

This study successfully modeled Ziegler-Natta catalysts in a manner consistent with 

experimental morphological observations. The results from each chapter underscore the 

importance of simulating realistic scales and sampling diverse chemical environments 
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for accurate modeling of complex material systems. The accelerated HDNNP approach 

offers a powerful tool for advancing the understanding of catalytic systems at practical 

scales. 
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