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Abstract  

Aya Fujiwara (2220027) 

 

Materials Informatics (MI) aims to accelerate the discovery and understanding of materials 

through data science, especially in cases where complexity exceeds human intuition. However, there are 

two main challenges to implementing MI in practical applications: one is the lack of data that meets the 

quality, scale, and consistency required for effective machine learning, and the other is the need for 

advanced domain knowledge to design descriptors (numerical representations of catalysts). To address 

the data challenge, Taniike and his research group have developed their own datasets using high-

throughput experimentation (HTE). Additionally, they introduced an automatic feature engineering 

(AFE) method that enables the design of descriptors without domain-specific knowledge, thereby 

addressing the descriptor challenge. This technique generates numerous features (descriptor candidates) 

from the physicochemical properties of catalyst components and extracts those that are relevant for 

describing catalyst performance. 

The oxidative coupling of methane (OCM) is a catalytic reaction that directly synthesizes 

ethylene (C2H4) from methane (CH4). This process is significantly more energy-efficient than 

conventional synthesis routes via syngas. However, due to the higher stability of CH4 compared to C2H4, 

achieving high yields remains challenging, necessitating the development of high-performance catalysts. 

Taniike and his group have accumulated a dataset containing performance data for over 600 catalysts in 

OCM using their HTE system. Using this data as the training dataset, they have expanded the scope of 

catalyst exploration with machine learning techniques, such as decision tree analysis and support vector 

regression (SVR). These approaches, however, adopted one-hot encoding to represent catalyst 

compositions, where a catalyst component is represented as either 0 (element x is absent) or 1 (element x 

is present). The limitation of this method is that it treats catalyst compositions as symbols without 

providing insight. While researchers may recognize that catalysts A and B share common physical 

properties, the machine learning model perceives only common symbols. For efficient catalyst 

exploration, it would be ideal to define some physical features as a descriptor, however, achieving this in 

such a complex catalytic reaction is highly challenging. This illustrates a core challenge in MI: the need 

for a machine learning framework capable of generating hypotheses without requiring prior knowledge 

of the target system, particularly for the vast exploration of candidate materials. 

From the perspective that “researchers derive insights from multiple observations,” when 

observational data is limited, it becomes difficult to reject competing hypotheses. Thus, researchers 

conduct repeated control experiments to refine their hypotheses and arrive at accurate conclusions. This 

hypothesis refinement process is heavily reliant on a researcher’s intuition, impacting both the speed and 

quality of research outcomes. If this process could be integrated into a machine learning framework and 

streamlined with high-throughput experimentation, it could establish a versatile research framework 

applicable to a wide range of experimental research. 

In this thesis, a refinement process is simulated using an adaptive catalyst design cycle that 

combines AFE, farthest point sampling (FPS), and HTE, targeting OCM catalysts. The study aims to 

develop and validate a robust machine learning model, demonstrating its utility in understanding catalyst 

design principles and supporting efficient catalyst development. 

In Chapter 2, an efficient catalyst discovery process combining data-driven AFE, active learning, 

and HTE was demonstrated targeting BaO-supported catalysts for OCM. Through the refinement of 

feature space across diverse catalysts via AFE and HTE, predictive accuracy was enhanced, leading to the 

discovery of high-performance catalysts with C2 yields exceeding 15%. 

Building on this methodology, Chapter 3 expands the scope to multiple catalyst supports, 

including BaO, CaO, La2O3, TiO2, and ZrO2. The analysis revealed two main patterns: one where a single 

element, such as La on BaO, dominated performance, achieving high yields without additional elements; 

and another, exemplified by CaO, where a combination of multiple elements, particularly alkaline earth 

metals with Cs, was essential. These findings highlighted distinctive design rules for each support. 

In Chapter 4, active learning efficiency was explored to achieve high-accuracy learning with 

smaller datasets. Additionally, I explored the possibility of applying design hypotheses derived from 

known supports to new supports. We tested whether design hypotheses from the five supports in Chapter 

3 could guide predictions for Y2O3 supports. This approach confirmed the transferability of design insights 

across supports. 



The catalysts newly developed in Chapters 2, 3, and 4 are synthesized in Chapter 5, which 

highlights the high-performance catalysts created throughout the thesis. 

In summary, this thesis presents an original adaptive catalyst design cycle with recursive feature 

engineering, proving the utility of the resulting machine learning models in understanding catalyst design 

heuristics and enhancing catalyst development. By exploring a broad range of compositions for OCM 

catalysts, this approach successfully identified high-performance catalysts and valuable design heuristics. 

 

Keywords: Catalyst informatics, Machine learning, High-throughput experimentation, Oxidative 

coupling of methane, Descriptor design technology 
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Preface 

The present thesis is submitted for the Degree of Doctor of Philosophy at Japan 

Advanced Institute of Science and Technology, Japan. The thesis is consolidation of 

results of the research work on the topic “Development of methane oxidative coupling 

catalysts with feature engineering-based machine learning” under the supervision of Prof. 

Toshiaki Taniike during April 2022– March 2025 at Graduate School of Advanced 

Science and Technology, Japan Advanced Institute of Science and Technology. 

Chapter 1 provides a general introduction and outlines the purpose of this thesis, 

focusing on the challenges in Materials Informatics (MI) for catalyst discovery. Chapter 

2 employs an adaptive design cycle incorporating AFE, HTE, and FPS for BaO-supported 

catalysts, successfully deriving a validated design hypothesis through four iterative cycles. 

The results also demonstrate the system's capability to accurately predict highly efficient 

catalysts. Chapter 3 expands this approach to multiple supports (BaO, CaO, La2O3, TiO2, 

ZrO2), revealing characteristics of each supports. Chapter 4 then active learning 

efficiency was explored to enable high-accuracy learning with smaller datasets. Design 

hypotheses from the five supports in Chapter 3 were tested on Y2O3 supports, confirming 

the transferability of design insights across supports. Chapter 5 summarizes the 

performance of the catalysts measured in this thesis. Chapter 6 describes the summary 

and general conclusion of this thesis. This work is entirely original, and no portion of this 

thesis has been plagiarized. 

Aya Fujiwara 

Graduate School of Advanced Science and Technology 

Japan Advanced Institute of Science and Technology  

November 2023 
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1.1. HETEROGENEOUS CATALYSTS 

Heterogeneous catalysts, exist in a different phase from the reaction products, enabling 

easy separation and recycling after the reaction.1 This characteristic makes heterogeneous 

catalysts indispensable, playing a role in over 70% of industrial chemical processes.2 For 

example, heterogeneous catalysts are used in biomass conversion,3  ammonia synthesis,4 

selective oxidation, fuel cells, renewable fuels,  and renewable chemicals. As addressing 

energy issues has become an urgent task, catalysts with the ability to improve the 

efficiency of fossil fuel utilization are being actively researched.5,6 

 

Figure 1.1. With solid catalysts, it is possible to achieve a hierarchical design that 

combines different properties by accumulating components with different roles on the 

solid surface.7 

Despite the critical role of heterogeneous catalysts and ongoing research challenges, 

their development has largely relied on human ingenuity and serendipitous discoveries. 

For example, the Ziegler-Natta catalyst was discovered during an ethylene polymerization 

reaction, where the use of an apparatus containing metallic impurities unexpectedly 

accelerated the reaction. Likewise, in ammonia synthesis, the successful combination of 

reagents was found through a systematic exploration of various chemicals in the 
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laboratory. The reason that research has been carried out in an ad hoc manner until now 

is the difficulty of predicting catalytic reactions. Catalytic reactions involve numerous 

potential reactions between the catalyst surface and reactants, each intricately 

interconnected, making it difficult to fully understand or predict their behavior.8–11 In 

addition, catalytic reactions proceed near the surface, but the surface structure can easily 

change depending on the composition and synthesis process. In order to obtain the desired 

performance, it is necessary to control these elements that change so delicately.12–14 

One of the primary functions of catalysts is to accelerate the rate of chemical reactions, 

thereby enhancing their "activity." In intricate systems involving multiple possible 

reactions, the "selectivity" of the process can be adjusted by preferentially accelerating 

specific reactions. As the reaction proceeds, however, by-products may accumulate on 

the catalyst's surface, potentially compromising its "durability." Additionally, certain 

catalytic reactions impose a substantial "environmental burden," resulting in adverse 

environmental impacts. Therefore, when evaluating catalyst performance, these four 

parameters—activity, selectivity, durability, and environmental burden—are especially 

critical. 

 

1.2. OXIDATIVE COUPLING OF METHANE 

1.2.1. Fundamentals 

Oxidative coupling of methane (OCM) is one of the most challenging catalytic 

reactions to develop. This process converts methane (CH4) directly into ethylene (C2H4) 

in a single step. As the primary component of natural gas and biogas, CH4 has attracted 

significant attention amid the global expansion of natural gas exploration and extraction 
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efforts.15,16 Consequently, interest in utilizing CH4 via OCM has grown. C2H4, the product 

of this reaction, is an essential feedstock for a wide range of petrochemical products.  

Currently, C2H4 is mainly produced from naphtha, a petroleum derivative.17,18 When 

using natural gas, production involves two steps: first, converting CH4 into synthesis gas 

through reforming reactions, and second, converting the synthesis gas into synthetic fuel 

via Fischer-Tropsch synthesis (FTS).19 However, the high cost and complexity of FTS 

have driven interest in the direct conversion of CH4 through OCM.20 One of the key 

challenges in the OCM reaction is the chemical inertness of CH4 compared to its products, 

making high yields difficult to achieve. As a result, the maximum yield for OCM is 

generally considered to be around 35%.9 

OCM involves many potential reactions, with the seven reactions listed in Table 1.1 

representing the main pathways. 

 

Table 1.1. Possible potential reactions that can occur during the oxidative coupling of 

methane process. 

No. Reaction 

1 2CH4 + 1/2O2 → C2H6 + H2O 

2 CH4 + 2/3O2 → CO + 2H2O 

3 CH4 + 2O2 → CO2 + 2H2O 

4 C2H6 + 1/2O2 → C2H4 + H2O 

5 C2H4 + 2O2 → 2CO + 2H2O 

6 CO + H2O → CO2 + H2 

7 CO2 + H2 → CO + H2O 
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In all of the reaction stages shown in Figure 1.2, the OCM reaction forms products 

through catalytic reactions. In the process, CH4 is converted through reactions 1−3. In the 

selective primary reaction, C2H4 is produced by OCM reaction 1. When OCM was first 

discovered, it was thought that the dimerization reaction of methyl radicals occurred on 

the catalyst surface, but subsequent research revealed that the reaction field was the gas 

phase near the catalyst.21,22 Within 2, 3 steps of the reaction, gas-phase reactions occur, 

leading to the production of carbon oxides through the non-selective oxidation of methane. 

What this reaction means is that if the surface area of the catalyst is large, methyl radicals 

are likely to be generated, but at the same time, reactions that lower the yield, such 

reaction as 2 and 3, are also likely to progress due to the increase in the volume of the gas 

phase near the catalyst.23 The reaction in which C2 products are further oxidized to 

become COx becomes more pronounced as the conversion rate of CH4 increases. 

Although the generated ethylene has the potential to react with oxygen to form C2H4 via 

reaction 4, the majority instead converts to carbon monoxide through reaction 5, which 

then acts as an intermediate, ultimately leading to carbon dioxide production in reaction 

6. The amount of conversion from carbon monoxide to carbon dioxide is affected by the 

water-gas shift reaction, which is a reversible reaction 6 and 7.24,25 

 

 

Figure 1.2 General reaction scheme for oxidative coupling of methane. 
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1.2.2. Catalysts for OCM 

Mavlyankariev et al. have demonstrated that, in the absence of a catalyst, even with 

improvements to the reactor, the achievable selectivity and yield in the OCM reaction are 

limited to 25% and 7.3%, respectively.26 Therefore, catalyst development is essential for 

improving the performance of the OCM reaction. Moreover, very few catalysts are known 

to achieve stable technological and economic performance in conventional fixed-bed flow 

reactors, such as C2 yields above 30%, 80% selectivity, or C2 yields of 28%. Catalyst 

development has been ongoing for over 40 years, starting in 1982, leading to the discovery 

of several high-performance catalyst families, including Li/MgO, Sr/La2O3, and Mn–

Na2WO4/SiO2.
27–29 These catalyst families have been developed independently, each 

following distinct design principles. Identifying and leveraging their commonalities and 

differences could lead to a deeper understanding and more effective catalyst design. 

 

1.2.2.1. Li/MgO 

The surface of pure MgO, acting as the support, predominantly consists of {100} planes, 

which are known to be the most stable and contain relatively few active oxygen species. 

Typically, the addition of a supported element is expected to enhance specific properties, 

such as increasing and tuning the number of basic sites, as well as affecting lattice oxygen. 

When Li is doped into MgO, {110} and {111} planes increase due to Li migration from 

the bulk phase. These planes are energetically less stable, leading to the formation of 

Mg2+O2- sites or defective MgO surfaces, both of which contribute to CH4 activation.30–

34 With sufficient Li doping, Mg2+O2- sites on the MgO{110} planes become the dominant 

surface. These sites have been reported to efficiently and selectively activate CH4, 

forming a methyl radical intermediate while minimizing further dissociation and 
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combustion reactions.30 In this way, Li acts as a structural modifier rather than an active 

center. Li/MgO catalysts provide high performance instantaneously, but because Li is 

easily volatilized at high temperatures and has poor durability, there is a need for 

improvements that will increase the usable time of this catalyst. 

 

 

Figure 1.3. The role of  (Li-doped) -MgO.30 

 

1.2.2.2. Sr/La2O3 

Regarding Sr/La2O3, La2O3 is a support with a highly basic and stable structure, but it 

has poor C2 selectivity. Among the alkaline earth metal oxides, Sr2+ ions have been 

experimentally shown to be the most effective in improving the selectivity of 

La2O3catalysts.35 The active species of Sr/La2O3 is lattice oxygen. When Sr is 

incorporated into the crystal lattice, distortions and changes in electron density occur, 

resulting in the formation of several types of active oxygen species, such as superoxides 

(O2
-), peroxide ions (O2

2-), hydroxide ions (OH-), carbonates (CO3
2-), and lattice oxygens 

(O2-).35,36 It is suggested that this active oxygen, particularly O2
-, activates CH4. The 
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advantages of this catalyst are its long lifespan and activity at low temperatures. From an 

industrial perspective, achieving activity at even lower temperatures is a key goal. 

 

1.2.2.3. Mn-Na2WO4/SiO2  

Regarding the support, while SiO2 itself does not possess catalytic activity, it can retain 

molten active species by forming a cristobalite phase. The active species in Mn–

Na2WO4/SiO2 is WO4
2− with a tetrahedral structure, which is generated when Na 

transforms W into an oxometalate anion. W can exist in multiple oxidation states, but it 

is rapidly regenerated to W6+ by Mn. The interaction of these elements results in a high 

C2 yield. While Mn–Na2WO4/SiO2 has excellent selectivity at high temperatures, the CH4 

conversion rate remains a challenge. 

 

1.3. CATALYSTS INFORMATICS 

Conventional catalyst research has relied on the researcher's intuition, but this method 

is time-consuming and expensive.37–39 therefore, data-driven catalyst research (catalyst 

informatics) using machine learning and high-throughput experiments has been attracting 

attention due to advances in computational technology.40 This is especially effective when 

used for calculations on a scale that exceeds human perception. The clarification of 

catalytic reactions is complex because reactions are involved. Furthermore, the reaction 

mechanism is affected by changes in reaction conditions and catalysts, so it is difficult to 

track the complete reaction mechanism experimentally.  

The bottlenecks in catalyst informatics are the scarce availability of catalyst data 

suitable for data science and the difficulty of hand-crafting descriptors that capture the 

essence of intricate structure-function relationships. This thesis utilizes high-throughput 
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experimentation (HTE) to prepare and evaluate a large number of solid catalysts, 

generating sizable, high-quality, and consistent datasets for various heterogeneous 

catalytic reactions, including OCM. Moreover, we recently introduced an automatic 

feature engineering (AFE) technique, which programmatically designs descriptors that 

can capture the essence of target catalysis, starting from general physical properties of 

elements such as atomic radii and electronegativity. 

 

1.4. HIGH-THROUGHPUT EXPERIMENTATION 

Numerous studies have reported the development and design of new materials using 

high-throughput experiments.41–43 Furthermore, integrating this approach into catalyst 

informatics is expected to enable unprecedented unified data analysis, facilitating a 

deeper understanding of catalytic reactions. However, in order to process large datasets 

without losing critical information, optimal design and configuration of reactors is 

essential. The high-throughput equipment used in this study was custom-designed, and 

through repeated measurements and iterative optimization, a mechanism specifically 

tailored for OCM measurements was successfully established.42,44,45 
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Figure 1.3. Illustration of the developed high-throughput screening (HTS) system. 42 

 

Figure 1.3 shows the high-throughput screening system (HTS device). This device is a 

combination of a gas mixer, flow rate distributor, quartz reaction tube, electric furnace, 

autosampler, and quadrupole mass spectrometer (QMS). After each gas leaves the gas 

cylinder, it is first sent to the gas mixer. The flow rate is controlled to create a mixture of 

CH4/O2/Ar, which is then evenly distributed to the 20 reaction tubes using a flow rate 

distributor. These reaction tubes are installed inside a electric furnace and 20 of them are 

heated simultaneously. The electric furnace is equipped with three temperature control 

mechanisms, with T1 being the gas inflow side, T2 being the catalyst bed section, and T3 

being the gas outflow side. The inner diameter of the reaction tube is 4 mm on the gas 

supply side and 2 mm on the gas outflow side. The aim of this is to increase the gas flow 

rate after the reaction to suppress secondary oxidation of the product. The catalyst is 

loaded to a height of 10 mm in the section where the inner diameter of the reaction tube 

transitions at the center. The gas after the reaction is sequentially sent to the autosampler 

and analyzed by the QMS. 

 

1.5. AUTOMATIC FEATURE ENGINEERING 
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AFE automates the design of physically meaningful features for a given catalyst dataset 

within the framework of supervised ML.46 This process involves a structured pipeline of 

feature assignment, synthesis, and selection. First, physical quantities of elements are 

assigned to the catalysts, with their elemental compositions represented through 

commutative operations. Higher-order features involving nonlinear and combinatorial 

effects are then synthesized from these assigned primitive features using mathematical 

operations. Finally, a specified number of features that optimize the score of the 

supervised ML are selected from the large synthesized array of features. 

In this study, we utilized 58 parameters of elements from XenonPy, normalized 

according to the literature. These parameters were assigned to each catalyst using five 

commutative operations (maximum, minimum, average, product, and standard deviation), 

yielding 290 primary features. These primary features were further synthesized into 3,480 

features using 12 functional forms (x, sqrt(x), x2, x3, ln(x), exp(x), and their reciprocals, 

where x represents each primary feature). A genetic algorithm-based approach was 

employed to select eight features that minimized the mean absolute error (MAE) in leave-

one-out cross-validation (LOOCV) using Huber regression. This process involved 

assessing approximately 4,000,000 models per dataset with various feature combinations 

and selecting the combination of features (X) and model (f(X)) that yielded the lowest 

cross-validation (CV) score as the most plausible design hypothesis. Huber regression, 

which is a form of multiple linear regression, was employed to prevent overfitting owing 

to its reduced number of parameters and ensure robustness against outliers, such as 

experimental failures. The number of selected features was empirically determined to 

balance the CV score and the cost of feature selection. 
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Similar to how researchers cannot dismiss alternative hypotheses when evidence is 

limited, AFE cannot overlook alternative design hypotheses (ML models with differently 

tailored descriptors that fit the training data) when the diversity of catalysts in the training 

data is restricted. Consequently, we implemented an active learning strategy (Figure 1.4). 

This strategy employs farthest point sampling (FPS) within the descriptor space 

established by AFE to propose catalysts that are maximally dissimilar to those included 

in the training data.47–49 These catalysts served as rigorous control experiments to validate 

the proposed design hypothesis. The performance of the proposed catalysts were assessed 

using HTE to reinforce the training data and update the design hypothesis via AFE. 

 

Figure 1.4. Schematic of the active learning cycle. Feature engineering was performed 

in several iterations, with data from 20 additional catalysts incorporated in each update.46 

 

1.6. OBJECTIVE 

When we take the perspective that “researchers gain some insight from multiple 

observations”, if the number of observational data used for reference is small, it is not 

possible to reject the opposing hypothesis. For this reason, experiments are repeated to 

narrow down the truly correct hypothesis. This process is the part of the experimental 
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process that relies most on the researcher's personal sense. The way hypotheses are 

created and the way experiments are set up will affect how quickly you reach a conclusion 

and the quality of the research. If we can incorporate this process into a machine learning 

framework and make it more efficient using high-throughput experiments, we can build 

a general-purpose research framework that can be applied to all kinds of experimental 

activities. In this paper, we aim to obtain a well-validated machine learning model by 

implementing an adaptive catalyst design loop that combines AFE, as shown in Figure 

1.4, with farthest point sampling (FPS) and HTE, and to demonstrate the usefulness of 

the obtained model in understanding catalyst design rules and efficient catalyst 

development. 

In Chapter 2, an adaptive catalyst design cycle that combines machine learning and 

high-throughput experiments was implemented. I demonstrated that a well-validated 

machine learning model (design hypothesis) is useful for understanding catalyst design 

rules and for efficient catalyst development. 

In Chapter 3, we derived design hypotheses for 5 different supports (BaO, CaO, La2O3, 

TiO2, ZrO2) by executing an adaptive catalyst design cycle. By acquiring and comparing 

design hypotheses for these multiple supports, we clarified the characteristics of each 

support. 

The research in Chapter 4 is based on the idea that if there is a similarity in the design 

rules between supports, then the design hypothesis acquired for another support may be 

useful for deriving the design hypothesis for an unknown support. We demonstrated that 

the design hypothesis for the 5 supports derived in Chapter 3 can be applied to Y2O3 

supports that are not included in the training data at all. 
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The catalysts newly developed in Chapters 2, 3, and 4 are synthesized in Chapter 5, 

which highlights the high-performance catalysts created throughout the thesis. 

Based on the above research and results, this paper presents a catalyst design technique 

that can be applied to all reactions. We believe that this research will contribute to the 

development of the catalyst. 
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ABSTRACT 

Traditional catalyst discovery has been driven largely by researchers intuition, with 

hypotheses constructed and validated through experimental testing. The rise of data-

driven approaches, however, has enabled a transformation in catalyst research, offering 

significant advancements. Nonetheless, data scarcity and challenges in designing suitable 

descriptors for machine learning (ML) remain major obstacles, as catalyst datasets are 

typically limited in quantity and complexity. To address these limitations, this study 

leverages automatic feature engineering (AFE) integrated with active learning and high-

throughput experimentation (HTE) to systematically refine design hypotheses for BaO-

supported catalysts in oxidative coupling of methane (OCM). 

AFE automates the selection of meaningful features, enhancing model interpretability 

and generalizability across different catalyst compositions. Through iterative active 

learning cycles, catalysts were selected using farthest point sampling (FPS) within the 

feature space, maximizing diversity to filter out locally fit models and reinforce robust, 

globally applicable hypotheses. This approach enabled the identification of a globally 

accurate design hypothesis, significantly reducing discrepancies between predicted and 

observed catalyst performance. Performance evolution was visualized using t-SNE, 

showing a gradual refinement of the feature space as diverse catalysts were added. The 

study demonstrated that AFE combined with HTE and active learning not only improved 

predictive accuracy but also accelerated high-yield catalyst discovery, revealing 30 

catalysts with C2 yields ≥15%. This approach offers a scalable framework for advancing 

data-driven catalyst design in complex catalytic reactions like OCM. 
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2.1. INTRODUCTION 

The intricacy of structure-function relationships has made trial and error a major driver 

in the development of solid catalysts.1,2 Individual researchers propose their own 

hypotheses and test various materials as potential catalysts. The research focus then 

evolves along with improved hypotheses and catalysts found in prior research for further 

refinement. This situation is exemplified by oxidative coupling of methane (OCM)—a 

reaction that converts methane (CH4), the main component of natural gas and biogas, into 

C2 compounds in a single step.3 OCM is considered potentially more efficient than the 

current two-step route involving steam reforming and the Fischer‒Tropsch process.4 

However, due to the chemical inertness of CH4 when compared to the C2 products, 

achieving high yields is challenging. Currently, few catalysts are known to stably achieve 

techno-economical performance (e.g., C2 yields over 30% otherwise 28% with 80% 

selectivity) in a conventional fixed-bed flow reactor.5–7 Efforts have been directed at 

optimizing the conversion-selectivity tradeoff through various methods, including 

catalyst preparation techniques, the addition of extra elements, and so on.  

Traditional catalyst research has relied on the intuition of researchers, with hypotheses 

constructed and validated through experiments. However, the rise of data-driven 

approaches has transformed this process, yielding significant advancements across many 

scientific fields, particularly in catalysis.8–11 Data-driven catalysis research, also known 

as catalyst informatics, aims to accelerate the development and understanding of catalysts 

by discovering applicable trends and patterns hidden in catalyst data with the aid of data 

science techniques such as machine learning (ML) and visualization. The bottlenecks in 

catalyst informatics are the scarce availability of catalyst data suitable for data science 

and the difficulty of hand-crafting descriptors that capture the essence of intricate 



33  

structure-function relationships.12–15 Catalyst datasets typically consist of fewer than 1000 

observations, making the application of complex ML models, especially deep learning, 

difficult. As a result, researchers commonly select key descriptors and use simpler ML 

models to efficiently process the data. However, this process requires deep expertise to 

identify system-specific factors. Moreover, the complexity of catalytic mechanisms 

makes descriptor design particularly challenging compared to other fields.  

To address these challenges, this study utilized automatic feature engineering (AFE) 

without prior system knowledge to explore design principles for BaO-supported catalysts 

in OCM reactions. BaO is the catalyst support with the highest average performance in 

the dataset of Taniike group. Additionally, I utilize a new approach by integrating AFE 

with active learning and high-throughput experimentation (HTE) to accelerate catalyst 

discovery. This is the first attempt to simulate the process of hypothesis refinement in 

data science using this method. 

 

2.2. METHOD 

Just as researchers cannot dismiss alternative hypotheses when evidence is limited, 

AFE must also consider alternative design hypotheses, such as ML models with 

differently tailored descriptors that fit the training data, especially when catalyst diversity 

within the training set is limited. To address this, we implemented an active learning 

strategy (Figure 2.1) that uses farthest point sampling (FPS) within the descriptor space 

defined by AFE to suggest catalysts that are as dissimilar as possible to those in the 

training set.16–18 These catalysts serve as rigorous control experiments to test and validate 

the proposed design hypothesis. 
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The performance of each proposed catalyst was evaluated using HTE, reinforcing the 

training data and allowing AFE to update and refine the design hypothesis iteratively. 

This process aims to discard design hypotheses that lack generalizability across diverse 

catalysts, ultimately leading to a robust, experimentally validated design hypothesis. 

Further details are provided below. 

 

 

Figure 2.1. Active learning cycle employed in this study. Automatic feature engineering 

was applied to a given catalyst dataset to derive a design hypothesis (an ML model with 

tailored descriptors). Catalysts recommended by FPS were assessed using HTE. The 

resulting data were integrated back into the dataset, and this iterative process continued 

until a robust design hypothesis was established to elucidate the relationship between 

catalyst compositions and performances. 

 

2.2.1. Dataset 

Taniike group has accumulated OCM data for quaternary catalysts represented as M1–

M2–M3/Support using a consistent experimental protocol through HTE. M1–3 represent 

the supported elements, which can be selected, with duplication allowed, from Li, Na, 

Mg, K, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Mo, Pd, Cs, Ba, La, Ce, Nd, Eu, Tb, 

Hf, W, and none (none indicates no addition of elements). The support is selected from 

MgO, Al2O3, SiO2, CaO, TiO2, ZrO2, BaO, La2O3, and CeO2. The loading amount of 
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supported elements, except for none, is 0.37 mmol per gram of support per selection. This 

constitutes a parameter space containing 4,060 catalysts per support and a total of 36,540 

catalysts. 

In this chapter, out of 636 quaternary catalysts that we have reported, we extracted 95 

catalysts relating to BaO supports, for establishing design hypotheses through active 

learning. BaO was selected as a reference to these supports but with higher C2 yields and 

selectivity. Among the 95 catalysts, 29 were obtained via random sampling from the 

entire space, while the remaining 66 catalysts were obtained to validate various ML 

techniques.  

Additionally, 20 new catalysts were evaluated using HTE. Of these, 18 catalysts were 

selected based on FPS in the feature space, while the remaining 2 were chosen based on 

the largest absolute error between observed and predicted yields from the previous 

regression model. This process was repeated 4 cycles, updating the AFE feature space 

with the obtained data, leading to the evaluation of a total of 80 catalysts. 

 

2.2.2. Automatic feature engineering 

AFE automates the design of physically meaningful features for a given catalyst dataset 

within the framework of supervised ML.19 This process involves a structured pipeline of 

feature assignment, synthesis, and selection. First, physical quantities of elements are 

assigned to the catalysts, with their elemental compositions represented through 

commutative operations.20 Higher-order features involving nonlinear and combinatorial 

effects are then synthesized from these assigned primitive features using mathematical 

operations.21–23 Finally, a specified number of features (descriptors) that optimize the 

score of the supervised ML are selected from the large synthesized array of features. 
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In this study, we utilized 58 parameters of elements from XenonPy, normalized 

according to the literature.24 These parameters were assigned to each catalyst using five 

commutative operations (maximum, minimum, average, product, and standard deviation), 

yielding 290 primary features. These primary features were further synthesized into 3,480 

features using 12 functional forms (x, sqrt(x), x2, x3, ln(x), exp(x), and their reciprocals, 

where x represents each primary feature). A genetic algorithm-based approach was 

employed to select eight features that minimized the mean absolute error (MAE) in leave-

one-out cross-validation (LOOCV) using Huber regression.25 This process involved 

assessing approximately 4,000,000 models per dataset with various feature combinations 

and selecting the combination of features (X) and model (f(X)) that yielded the lowest 

cross-validation (CV) score as the most plausible design hypothesis. Huber regression, 

which is a form of multiple linear regression, was employed to prevent overfitting owing 

to its reduced number of parameters and ensure robustness against outliers, such as 

experimental failures. The number of selected features was empirically determined to 

balance the CV score and the cost of feature selection. Further details on AFE and 

parameter selection are provided in previous study.19 

 

2.2.3. Farthest point sampling 

To validate and refine the design hypothesis presented in Section 2.2, we added either 

10 or 20 catalysts to each active learning cycle for experimental testing. Among these, 

90% were selected using FPS within the normalized eight-dimensional feature space 

established by AFE. The remaining 10% corresponded to the re-evaluation of the catalysts 

that exhibited the largest deviations between observed and predicted values in the last 

cycle. 
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2.2.4. High-throughput experimentation 

The catalysts proposed in Section 2.3 were prepared and evaluated using the same 

experimental methods and conditions as those employed when acquiring the original 

training data, which are briefly described as follows.26 

 

2.2.4.1. Materials 

The metal precursors used were LiNO3, NaNO3, Mg(NO3)2, KNO3, Ca(NO3)2·4H2O, 

Ti(OiPr)4, VOSO4·xH2O (x = 3–5), Mn(NO3)2·6H2O, Fe(NO3)3·9H2O, Co(NO3)2·6H2O, 

Ni(NO3)2·6H2O, Cu(NO3)2·3H2O, Zn(NO3)2·6H2O, Sr(NO3)2, Y(NO3)3·6H2O, 

ZrO(NO3)2·xH2O (x = 2), (NH4)6Mo7O24·4H2O, Pd(OAc)2, CsNO3, Ba(NO3)2, 

La(NO3)3·6H2O, Ce(NO3)3·6H2O, Nd(NO3)3·6H2O, Eu(NO3)3·5H2O, Tb(NO3)3·5H2O, 

Hf(OEt)4, and (NH4)10H2(W2O7)6. These materials were purchased from one of the 

following suppliers: Sigma-Aldrich, Kanto Chemical, Wako Pure Chemical Industries, 

Alfa-Aesar, or Sumitomo Chemical. The oxide support and their precursor included 

Ba(OH)2·8H2O (1.1 m²/g, Wako Pure Chemical Industries). 

 

2.2.4.2. Preparation of catalysts 

The catalyst preparation was conducted using a parallelized wet impregnation method, 

where support powder was impregnated with an aqueous solution of specified metal 

precursors at 50 °C for 6 hours. The loading amount of elements was fixed at 0.37 

mmol/g-support per selection within M1–3. Following impregnation, the powder was 

vacuum-dried and then calcined in air at 1000 °C for a duration of 3 hours. When the 

precursors involved metal alkoxides, the impregnation was performed in two steps: First 
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with an aqueous solution of the other precursors, followed by impregnation with an 

ethanol solution of metal alkoxides.26 

 

2.2.4.2. Evaluation of catalysts 

The catalysts were evaluated for OCM using a custom-built HTE system. The system 

functions through a combination of a gas mixer, flow distributor, electric furnace bearing 

reactors, autosampler, and quadrupole mass spectrometer (QMS), enabling the automated 

evaluation of the performance of 20 catalysts under a programmed sequence of reaction 

conditions. The catalysts were fixed into 1 cm-high beds in reaction tubes (made of fused 

quartz tubes with 4 mm and 2 mm inner diameters), with the aid of quartz wool. After 

inline activation at 1000 °C for 3 hours in an oxygen stream, the 20 catalysts were tested 

under 135 conditions varying in temperatures (700, 750, 800, 850, and 900 °C), total gas 

flow rates (10, 15, 20 mL/min/channel), CH4/O2 ratios (2, 4, 6 mol/mol), and Ar partial 

pressures as a balance gas (0.15, 0.40, 0.70 atm). Each catalyst was labeled based on its 

highest C2 yield among the 135 conditions. 

 

2.3. RESULTS AND DISCUSSION 

2.2.5. Active learning for obtaining robust design hypotheses 

In conventional hypothesis validation, researchers add data not only to verify the 

primary hypothesis but also to eliminate alternative hypotheses that could explain the 

original data. Similarly, when the training data are limited, the AFE may generate 

multiple design hypotheses with similar scores, which are considered alternative design 

hypotheses. These arise owing to multicollinearity among features within the given data. 

Eliminating incorrect or less robust hypotheses requires active learning. In this study, 
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catalysts were selected using FPS to enhance the diversity of the data and assess the 

robustness of the proposed design hypotheses. Design hypotheses that were not applicable 

to diverse data were filtered out through repeated active learning cycles, resulting in more 

robust and reliable design hypotheses.  

Although these models demonstrate similar performance in explaining the training data, 

their predictive behaviors for unknown catalysts can vary significantly. In other words, 

many of these models are only locally fit, lacking the global characteristics necessary to 

explain the entire composition. An active learning strategy enables AFE to exclude locally 

fit models and identify a globally fit model, i.e., the true hypothesis set. Figure 2.2 is a 

graph showing the CH4 conversion and C2 selectivity of the catalysts used in this study, 

and you can see the performance of each catalyst along with its name. Figure 2.3 is a 

graph showing only the measured and predicted values of the catalysts from the dataset 

used in this study. In this graph, the measured values of the original and added BaO-based 

catalysts in each cycle are plotted on the x-axis, while the predicted values from the each 

design hypothesis are shown on the y-axis. As the loop progresses, you can see that the 

predictions become more accurate. 
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Figure 2.2. Scatter plot of 175 catalysts experimentally tested in previous and current 

studies. The x-axis represents CH4 conversion (%), the y-axis represents predicted C2 

selectivity (%), and the color of the dot indicates the C2 yield (%). 

Table 2.1 shows the evolution of design hypotheses and active learning cycles of BaO-

based catalysts. Notably, the MAECV values were similar to the MAEtrain values across all 

the cycles, indicating an absence of overfitting. In the first cycle, the exploration of the 

catalyst space using FPS led to a slight increase in the MAE values for both training and 

cross-validation. However, in subsequent cycles, these values remained relatively 

unchanged. The final MAE values (2.2–2.3%) were slightly higher than the typical 

experimental error (1.5–2.0%). This is likely because the linear model failed to capture 

sudden deactivation phenomena in some catalysts, such as carbonization or clogging of 

the reaction tube due to dissolution. When the data points with 0% C2 yield were excluded, 

the MAE decreased to approximately 1.9%. However, the elimination of less robust 

design hypotheses that did not apply to the newly added data resulted in variations in the 
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selected features. The selected features are ordered in Table 2.1 according to their 

importance. gs_mag_moment_std appears frequently, but it is not the most important 

feature.  

Figure 2.4a and b provide a summary of the relevant scores and individual test results, 

respectively. In the first cycle, the largest diversification of catalyst composition driven 

by FPS moderately increased the MAEtrain,CV values, but subsequent cycles did not largely 

change these values. The final MAEtrain,CV values (2.2–2.3%) were higher than the typical 

experimental error (1.0–2.0%), partly because the linear model failed to capture various 

0% C2 yield data (any observed inactivity may be attributed to several reasons). Excluding 

these data points reduced the MAECV to ~1.9%. The changes in the test score were larger 

than those in the training and CV scores. Several extrapolations occurred during the first 

cycle, where the predicted yield was >30% or <0%, resulting in an extremely large 

MAEtest. These extrapolations correspond to the model attempting to explain catalysts 

entirely beyond its original consideration. As the cycle progressed and the catalysts in the 

training dataset diversified sufficiently, these extrapolations disappeared, and the 

difference between the observations and predictions decreased monotonically. Pearson’s 

correlation coefficient between the regression models increased from 0.6 in Cycles 0 and 

1 to 0.9 in Cycles 3 and 4, indicating the convergence of feature engineering toward a 

global model. 
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Table 2.1. Development of design hypotheses for BaO-based catalysts throughout the 

active learning cycles. This table shows the scores and selected features of the design 

hypotheses obtained in each individual active learning cycle.  

Cycle MAECV (train)
a Selected featuresb 

0 1.73% (1.69%) 

1. 1/ln(en_allen_max) 

2. ln(num_s_valence_min) 

3. 1/ln(atomic_radius_rahm_min) 

4. (en_pauling_ave)1/2 

5. (gs_mag_moment_max)3 

6. 1/ln(vdw_radius_ave) 

7. 1/ln(dipole_polarizability_min) 

8. (atomic_number_std)1/2 

1 2.46% (2.43%) 

1. ln(covalent_radius_pyykko_min) 

2. 1/(sound_velocity_max) 

3. 1/ln(fusion_enthalpy_min) 

4. (en_pauling_ave)2 

5. exp(gs_mag_moment_std) 

6. (num_s_valence_min)1/2 

7. ln(electron_affinity_ave) 

8. 1/exp(lattice_constant_std) 

2 2.38% (2.28%) 

1. 1/(gs_est_bcc_latcnt_min) 

2. (gs_mag_moment_std)1/2 

3. 1/ln(electron_affinity_ave) 

4. 

1/exp(covalent_radius_pyykko_triple_min) 

5. 1/(sound_velocity_max)1/2 

6. ln(num_s_valence_min) 

7. gs_energy_ave 

8. (covalent_radius_slater_ave)3 

3 2.36% (2.28%) 

1. (num_s_valence_min)1/2 

2. 1/(gs_est_fcc_latcnt_min) 

3. gs_mag_moment_std 

4. 1/ln(electron_affinity_ave) 

5. 1/(covalent_radius_pyykko_min)1/2 

6. (hhi_r_max)1/2 

7. 1/ln(sound_velocity_max) 

8. (atomic_radius_rahm_pro)3 

4 2.29% (2.24%) 

1. 1/(Polarizability_min)1/2 

2. 1/(dipole_polarizability_min)1/2 

3. (first_ion_en_max)3 

4. hhi_r_max 

5. 1/ln(gs_mag_moment_min) 

6. (gs_mag_moment_std)2 

7. 1/exp(electron_affinity_pro) 

8. lattice_constant_min 
a The MAE of C2 yields during CV and training is shown in parentheses. 
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b Eight features were selected to minimize the MAECV value and are listed in order of 

permutation feature importance. The features are described in the same manner as 

XenonPy, and their meanings can be found in the Table S1. 

 

 

According to Figure 2.4a, the model’s convergence is evident in the reduction of 

extreme predicted values (over 30% or below 0%) that initially appeared. These outliers 

were due to the model’s limited early scope in the catalytic space, which caused local 

fitting errors. As training cycles advanced with more diverse catalysts, these errors 

gradually reduced, and the gap between observed and predicted yields diminished. 

Model performance evolution is visually tracked using t-distributed stochastic neighbor 

embedding（t-SNE）,27 as shown in Figure 2.4b This technique compresses the features 

selected in each active learning cycle to two dimensions while maintaining catalyst 

similarities, illustrating the model's developing "recognition" of diverse catalyst designs. 

The plot includes all 4,060 catalysts, both tested and untested, with colors representing 

the predicted C2 yields. With each cycle, active learning clarifies data clusters, refining 

the feature space and enabling more distinct composition-performance relationships. The 

expanding catalyst space in the t-SNE visualization highlights increasingly precise yield 

predictions as the model progresses. 

 

Figure 2.3. Active learning implemented for OCM catalyst design. The model scores and 

test results for active learning are shown in (a) and (b), respectively. (a) displays the model 

scores alongside test results. According (b), over the course of the active learning cycles, 

the discrepancy between predicted and observed C2 yields steadily decreased. Evolution 
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in the feature space and prediction is plotted based on t-SNE in (c), where circled data 

points correspond to the test results except for the last cycle adopting the training data. 

The color reflects either the predicted or observed C2 yield, and the counters indicate the 

Gaussian kernel density estimation for the C2 yield above 18%. 

 

Figure 2.4c visualizes the progress of feature engineering using t-distributed stochastic 

neighbor embedding (t-SNE), where the eight features selected during each active 

learning cycle were reduced in two dimensions, maintaining the pairwise similarities of 

the catalysts. This approach allowed us to monitor the evolution of the machine’s ability 

to perceive individual catalysts. The plot shows all 4060 catalysts in the library (including 

both tested and untested ones), with the color indicating the predicted C2 yield and circled 

data points representing the test results. Leveraging the advancements in active learning, 

the data were divided into a larger number of clusters, representing the machine’s process 

of refining a feature space to distinguish the catalysts better through distinct composition–

performance relationships. Then, the question is how does the machine perceive the 

composition-performance relationships? This was addressed in two steps. First, the 

dataset was subjected to manual statistical analysis, as shown in Figure 2.5. Early 

transition metals such as Mo and Zr and heavy alkali metals such as K and Cs are 

attributed high performance (Figure 2.5a, b). This is because early transition metals can 

form oxometalate anions active for OCM when they are combined with Ba in the support 

or other supported elements with low electron affinity. Alkali metals can enhance the C2 

selectivity by strengthening the basicity of alkali earth metal oxides. By contrast, late 

transition metals (excluding Zn with completely filled 3d orbitals) tend to decrease the C2 

yield with increasing group number (Figure 2.5a, c), as they act as combustion catalysts. 
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Next, keeping the abovementioned researcher’s observations in mind, the machine’s 

perception was interpreted by analyzing the distribution of individual elements in the 

feature space (Figure 2.7). Figure 2.6. summarizes the regions where individual elements 

are concentrated after active learning, which decodes the machine perception. Late 

transition metals form separate clusters, whereas Mo and W are concentrated in narrow 

regions, indicating that the machine recognizes these elements as having differently 

significant impacts on the performance. By contrast, elements with a wide spatial 

distribution either have limited data points (e.g., La) or exhibit significantly different 

performance depending on their combination (e.g., Mg and Mn). Elements with 

overlapping distributions are not only similar in their physicochemical properties but also 

in their impact on the catalytic performance. For example, high-performing K and Cs 

have overlapping distributions, whereas the less-effective Li and Na are separated. These 

observations align with the researchers’ understanding acquired from Figure 2.7. An 

application of the same analysis to the unselected feature set and the feature set selected 

before active learning (Figure 2.7) revealed the essentiality of both feature engineering 

and active learning in achieving such level of discrimination. Eventually, AFE 

transformed general physicochemical knowledge of elements into an OCM-specific one, 

while active learning enhanced the machine’s accuracy in discriminating elements. The 

visualization of the feature space is also valuable for uncovering combinatorial rules 

(Figure.2.8). For example, catalysts containing both high-performing Mo and low-

performing Pd are found within the cluster of Pd-based catalysts, suggesting that Pd has 

a more dominant influence than Mo in OCM. Strongly interacting combinations, such as 

those of Cs with Ti, Zr, and Mo, that are frequently observed in high-performing catalysts, 

are distributed in small clusters separated from the main cluster for Cs-based catalysts. 
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Additionally, Fe-Zn, while not prominently featured in the training data, is isolated in a 

very narrow region with relatively high predicted C2 yields, an aspect to be explored 

further. 

  

Figure 2.4. Relationship between the supported elements and the performance of 

catalysts containing them. In (a), the distribution of C2 yield for catalysts containing each 

element is shown in the box and swarm plots. Elements that are frequently contained in 

the catalysts with the C2 yield above 18% (b) and below 7% (c). 

 

 

Figure 2.5. Machine recognition for OCM catalyst design. The feature space of the latest 

model is visualized by t-SNE, along with the Gaussian kernel density estimation for the 

C2 yield above 18%. The dotted lines indicate the region where catalysts containing each 

element concentrate. 

 

 

Figure 2.6. Element-wise machine recognition for the OCM catalyst design. The feature 

space of the latest model is visualized by t-SNE. The black dots represent catalysts 

containing a specified element with their estimated Gaussian kernel density. The color 

corresponds to the predicted C2 yield in the range of 25% (red) to 0% (blue). 
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Figure 2.7. Development of the machine recognition for OCM catalyst design. In a‒c, all 

the features in the library, the eight features engineered for the initial training data, and 

the eight engineered features in the end of the active learning are used as the input of t-

SNE visualization, respectively. The distribution of a specified element in the respective 

t-SNE spaces is presented with black dots and Gaussian kernel density estimation. 

 

 

Figure 2.8. Visualization of combinatorial rules using t-SNE. The black dots represent 

catalysts containing a specified binary combination with the estimated Gaussian kernel 

density. The color corresponds to the predicted C2 yield in the range of 25% (red) to 0% 

(blue). 

 

2.2.6. Design of high-yield catalysts 

The primary advantage of AFE, particularly when combined with active learning, lies 

in its high predictive accuracy and applicability across a wide range of catalysts. To 

showcase this, we applied FPS to a subset of catalysts with predicted C2 yields ≥ 15% 

using the model obtained after active learning; this resulted in the recommendation of 36 

catalysts. Subsequent experimental evaluation revealed that 30 out of the 36 catalysts 

actually exhibited C2 yields ≥ 15%, with 16 of them surpassing a yield of 18% (Figure 

2.9). This is compared to only 37 cases exceeding a yield of 18% among 175 catalysts in 

the training data. These catalysts predominantly comprise elements whose oxides possess 
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high basicity, such as alkaline, alkaline earth, and rare earth metal elements, along with 

early transition metal elements from groups 4 to 6. By contrast, many of the high-

performing catalysts identified in Figure 2.9 do not conform to this pattern, with a notable 

presence of elements like Fe and Zn. These elements are largely underexplored in the 

history of OCM research. A unique advantage of this methodology lies in utilizing the 

integration of AFE and HTE to systematize the model’s education, rather than solely 

focusing on catalyst discoveries. As a result, the model, enhanced through active learning, 

significantly streamlined the discovery of high-performing catalysts. 

 

 

Figure 2.9. 18 catalysts with predicted C2 yields of 15% or more were tested. 

 

The preceding discussion has highlighted the value of the model using engineered 

features for understanding catalyst design principles and identifying various high-

performing catalysts. However, directly extracting physical insights from these 

engineered features remains challenging. While the engineered features, whether 

individually or in combination, exhibit statistical correlations with catalytic performance, 

statistical correlation does not imply causation in catalysis. Moreover, the physical 

properties of individual elements used to construct catalyst features are often too far 

removed from the causal factors in catalytic behavior. 
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For example, the model obtained after active learning represents a combination of 

features: 22.0 (first_ion_en_max)3 + 3.32 ln(gs_mag_moment_min)−1 − 8.63 

(Polarizability_min)−0.5 + 4.59 (dipole_polarizability_min)−0.5 − 4.22 

lattice_constant_min − 6.44 exp(electron_affinity_pro)−1 + 10.0 

(gs_mag_moment_std)2 + 3.26 hhi_r_max +27.8, with features such as 

Polarizability_min, dipole_polarizability_min, and first_ion_en_max identified as 

particularly impactful. These features help differentiate between elements with strongly 

basic oxides, those that aid O2 activation, and late transition metals that often catalyze 

unselective combustion. However, these interpretations arise not directly from the 

engineered features but are instead post hoc explanations based on existing knowledge. 

Therefore, in order to develop a catalyst using this method, it is necessary to either gather 

sufficient data on the specific composition of the target, borrow design hypotheses on 

other catalysts, or develop a more efficient learning method. 

 

2.4. CONCLUSION 

In conclusion, AFE was validated using BaO-supported catalysts for OCM, 

demonstrating its effectiveness in applying machine learning (ML) to small, diverse 

datasets of solid catalysts. AFE excelled in automatically generating system-specific 

features without prior knowledge and effectively identified optimal feature combinations. 

The success of active learning with AFE was largely attributed to the consistent datasets 

produced through high-throughput experimentation (HTE) and the expansion of the 

search space via farthest point sampling (FPS). By integrating these techniques into an 

iterative learning cycle, the efficiency of ML model training was significantly enhanced, 
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allowing for the exclusion of alternative hypotheses and the identification of robust 

hypotheses applicable to a wide range of catalyst compositions. 
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ABSTRACT 

Solid catalyst development has traditionally relied on trial-and-error approaches, 

limiting the broader application of valuable insights across different catalyst families. To 

overcome this fragmentation, we introduce a framework that integrates high-throughput 

experimentation (HTE) and automatic feature engineering (AFE) with active learning to 

acquire comprehensive catalyst knowledge. The framework is demonstrated for oxidative 

coupling of methane (OCM), where active learning is continued until the machine 

learning model achieves robustness for each of the BaO-, CaO-, La2O3-, TiO2-, and ZrO2-

supported catalysts, with 333 catalysts newly tested. The resulting models are utilized to 

extract catalyst design rules, revealing key synergistic combinations in high-performing 

catalysts. Moreover, we propose a method for transferring knowledge between supports, 

showing that features refined on one support can improve predictions on others. This 

framework advances the understanding of catalyst design and promotes reliable machine 

learning. 
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3.1. INTRODUCTION 

The complexity of structure–function relationships has made trial-and-error approaches 

crucial for developing solid catalysts.1,2 Studies have proposed several hypotheses and 

evaluated various materials as potential catalysts. As improved hypotheses and catalysts 

emerge from previous studies, the focus of catalyst research evolves, leading to further 

refinement. This development typically occurs concurrently, resulting in the discovery of 

multiple catalyst families that differ in design concepts. An outstanding example is the 

oxidative coupling of methane (OCM). This reaction converts methane, which is the 

primary component of natural gas and biogas, into C2 compounds in a single step.3 OCM 

is considered potentially more efficient than the current two-step route, which involves 

steam reforming and the Fischer–Tropsch process.4 However, achieving high yields 

remains challenging owing to the chemical inertness of CH4 relative to the C2 products. 

Only a few catalysts are known to achieve consistent techno-economic performance (e.g., 

C2 yields exceeding 30%; otherwise, 28% with 80% selectivity) in conventional fixed-

bed flow reactors.5–7 

Despite these challenges, catalyst development has progressed since 1982,3 leading to 

the identification of several high-performance catalyst families, including Li/MgO, 

Sr/La2O3, and Mn–Na2WO4/SiO2.
8–10 In Li/MgO, the incorporation of Li increases the 

number of active sites on the MgO surface.11–15 However, strategies are needed to prevent 

Li sublimation at high reaction temperatures. In Sr/La2O3, the introduction of Sr2+ into 

La2O3 causes lattice distortion and/or electronic modulation, which enhances the C2 

selectivity of La2O3, likely owing to the formation of superoxide species (O2
–).16,17 This 

development has continued, with the primary aim of strengthening the advantages of low-

temperature activity. The Mn–Na2WO4/SiO2 catalyst family is considered one of the most 
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promising catalysts for OCM because of its high C2 selectivity and durability resulting 

from synergistic interactions among its components. Na+ stabilizes tetrahedral WO4
2– 

species, which are active in OCM, by interacting with them and promoting the formation 

of the cristobalite phase of SiO2, which further stabilizes these species. Mn2+ enhances 

the OCM process by facilitating the recovery of W6+.18,19 Several studies have focused on 

optimizing the conversion–selectivity trade-off through various methods, including 

catalyst preparation techniques and the incorporation of additional elements. However, 

these catalyst families are based on distinct design guidelines and have been developed 

largely independently, without an explicit exchange of design guidelines across families 

20 A more comprehensive understanding or rational design of catalysts could be achieved 

by elucidating and applying the commonalities and differences among various catalyst 

families. 

Data-driven catalysis research, also known as catalyst informatics, leverages data 

science techniques such as machine learning (ML) and visualization to accelerate the 

development and understanding of catalysts by revealing applicable trends and patterns 

hidden within catalyst data. However, catalyst informatics is constrained by the scarcity 

of catalyst data suitable for data science and the difficulty in handcrafting descriptors that 

capture the essence of intricate structure–function relationships.21 I used high-throughput 

experimentation (HTE) to prepare and evaluate numerous solid catalysts, generating sized, 

qualified, and consistent datasets for various heterogeneous catalytic processes, including 

OCM.22–26 Furthermore, we recently introduced an automatic feature engineering (AFE) 

technique that programmatically designs descriptors to capture the essence of the target 

catalysis, beginning with the general physical properties of the elements, such as atomic 

radii and electronegativity.27 AFE generates predictive ML models with tailored 
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descriptors without requiring researchers to make assumptions or hypotheses about the 

target system. Using BaO-supported catalysts for OCM as an example, a robust design 

hypothesis was developed by recursively refining the ML model and descriptors through 

active learning with AFE. This refined hypothesis can be applied across a broad range of 

catalysts and is effective for identifying various high-performance catalysts and 

understanding the underlying design guidelines.27 

In this study, the same active learning approach integrated with HTE and AFE was 

applied to five OCM catalyst families. We began with previously acquired OCM catalyst 

data for five supports (BaO, CaO, La2O3, TiO2, and ZrO2) and conducted large-scale 

active learning by adding 333 catalysts to establish a robust design hypothesis for each 

support. These design hypotheses were then analyzed to elucidate the commonalities and 

differences among the five catalyst families. Notably, a design hypothesis established for 

one catalyst family can aid in constructing an ML model for another family based on their 

commonalities, thus demonstrating that knowledge gained from one catalyst family can 

be transferred to facilitate the design of another. 
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3.2. METHOD 

This study used previously acquired data to establish a design hypothesis for each of 

the five catalyst families corresponding to different support materials. However, similar 

to how researchers cannot dismiss alternative hypotheses when evidence is limited, AFE 

cannot overlook alternative design hypotheses (ML models with differently tailored 

descriptors that fit the training data) when the diversity of catalysts in the training data is 

restricted. Consequently, we implemented an active learning strategy (Figure 3.1). This 

strategy employs farthest point sampling (FPS) within the descriptor space established by 

AFE to propose catalysts that are maximally dissimilar to those included in the training 

data.28 These catalysts served as rigorous control experiments to validate the proposed 

design hypothesis. The performances of the proposed catalysts were assessed using HTE 

to reinforce the training data and update the design hypothesis via AFE. This iterative 

process aims to eliminate design hypotheses that do not generalize well across catalysts, 

resulting in a robust and experimentally validated design hypothesis. Further details are 

provided below. 

 

 

Figure 3.1. Active learning cycle employed in this study. Automatic feature engineering 

(AFE) was applied to a given catalyst dataset to derive a design hypothesis (an machine 

learning (ML)  model with tailored descriptors). Catalysts recommended by farthest point 
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sampling (FPS) were assessed using high-throughput experimentation (HTE). The 

resulting data were integrated back into the dataset, and this iterative process continued 

until a robust design hypothesis was established to elucidate the relationship between 

catalyst compositions and performances. 

 

3.2.1. Dataset 

Taniike group accumulated OCM data for quaternary catalysts represented as M1–M2–

M3/Support using a consistent experimental protocol involving HTE.22,27,29,30 M1–M3 

correspond to the supported elements, which can be selected (with duplication allowed) 

from the following: Li, Na, Mg, K, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Mo, Pd, 

Cs, Ba, La, Ce, Nd, Eu, Tb, Hf, W, and none (where “none” indicates no addition of 

elements). The selected supports were MgO, Al2O3, SiO2, CaO, TiO2, ZrO2, BaO, La2O3, 

and CeO2. The loading amount of supported elements, except for the “none” option, was 

set at 0.37 mmol per gram of support for each selection. This resulted in a parameter space 

containing 4,060 catalysts per support, amounting to a total of 36,540 catalysts. 

In this study, we extracted 381 catalysts related to CaO, BaO, La2O3, TiO2, and ZrO2 

supports from the 636 quaternary catalysts we previously reported to establish design 

hypotheses through active learning.30–32 CaO and La2O3 were selected because they are 

the most extensively studied basic oxides in OCM and are likely to exhibit distinct 

catalyst designs.33 BaO was selected as the reference for these supports because it offers 

higher C2 yields and selectivities. In contrast, the redox-active supports TiO2 and ZrO2 

were included to investigate potential relationships between the general physical 

properties and design hypotheses. Among the 381 catalysts, 175 were obtained via 
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random sampling from the entire space, whereas the remaining 206 were selected to 

validate various ML techniques.30–32 

 

3.2.2. Automatic feature engineering 

AFE automates the design of physically meaningful features for a given catalyst dataset 

within the framework of supervised ML. This process involves a structured pipeline of 

feature assignment, synthesis, and selection. First, physical quantities of elements are 

assigned to the catalysts, with their elemental compositions represented through 

commutative operations. Higher-order features involving nonlinear and combinatorial 

effects are then synthesized from these assigned primitive features using mathematical 

operations. Finally, a specified number of features (descriptors) that optimize the score of 

the supervised ML are selected from the large synthesized array of features. 

In this study, we utilized 58 parameters of elements from XenonPy, normalized 

according to the literature34These parameters were assigned to each catalyst using five 

commutative operations (maximum, minimum, average, product, and standard deviation), 

yielding 290 primary features. These primary features were further synthesized into 3,480 

features using 12 functional forms (x, sqrt(x), x2, x3, ln(x), exp(x), and their reciprocals, 

where x represents each primary feature). A genetic algorithm-based approach was 

employed to select eight features that minimized the mean absolute error (MAE) in leave-

one-out cross-validation (LOOCV) using Huber regression.35 This process involved 

assessing approximately 4,000,000 models per dataset with various feature combinations 

and selecting the combination of features (X) and model (f(X)) that yielded the lowest 

cross-validation (CV) score as the most plausible design hypothesis. Huber regression, 

which is a form of multiple linear regression, was employed to prevent overfitting owing 



60  

to its reduced number of parameters and ensure robustness against outliers, such as 

experimental failures. The number of selected features was empirically determined to 

balance the CV score and the cost of feature selection. Further details on AFE and 

parameter selection are provided in previous study.27 

 

3.2.3. Farthest point sampling 

To validate and refine the design hypothesis presented in Section 2.2, we added either 

10 or 20 catalysts to each active learning cycle for experimental testing. Among these, 

90% were selected using FPS within the normalized eight-dimensional feature space 

established by AFE. The remaining 10% corresponded to the re-evaluation of the catalysts 

that exhibited the largest deviations between observed and predicted values in the last 

cycle. 

 

3.2.4. High-throughput experimentation 

The catalysts proposed in Section 2.3 were prepared and evaluated using the same 

experimental methods and conditions as those employed when acquiring the original 

training data, which are briefly described as follows. 

 

3.2.4.1. Materials 

The metal precursors used were LiNO3, NaNO3, Mg(NO3)2, KNO3, Ca(NO3)2·4H2O, 

Ti(OiPr)4, VOSO4·xH2O (x = 3–5), Mn(NO3)2·6H2O, Fe(NO3)3·9H2O, Co(NO3)2·6H2O, 

Ni(NO3)2·6H2O, Cu(NO3)2·3H2O, Zn(NO3)2·6H2O, Sr(NO3)2, Y(NO3)3·6H2O, 

ZrO(NO3)2·xH2O (x = 2), (NH4)6Mo7O24·4H2O, Pd(OAc)2, CsNO3, Ba(NO3)2, 
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La(NO3)3·6H2O, Ce(NO3)3·6H2O, Nd(NO3)3·6H2O, Eu(NO3)3·5H2O, Tb(NO3)3·5H2O, 

Hf(OEt)4, and (NH4)10H2(W2O7)6. These materials were purchased from one of the 

following suppliers: Sigma-Aldrich, Kanto Chemical, Wako Pure Chemical Industries, 

Alfa-Aesar, or Sumitomo Chemical. 

The oxide supports and their precursors included Ca(OH)2 (3.0 m²/g, Wako Pure 

Chemical Industries), Ba(OH)2·8H2O (1.1 m²/g, Wako Pure Chemical Industries), La2O3 

(8.3 m²/g, Wako Pure Chemical Industries), TiO2 (17.4 m²/g, anatase type, Kanto 

Chemical), and ZrO2 (3.2 m²/g, Kanto Chemical). 

 

3.2.4.2. Preparation of catalysts 

The catalysts were prepared using a parallelized wet impregnation method, in which 

support powder was impregnated with an aqueous solution of specified metal precursors 

at 50 °C for 6 h. The loading amount of elements was fixed at 0.37 mmol/g-support per 

selection within M1–3. Following impregnation, the powder was vacuum-dried and 

calcined in air at 1000 °C for 3 h. For precursors that contained metal alkoxides, 

impregnation was performed in two steps: first, with an aqueous solution of the other 

precursors, followed by impregnation with an ethanol solution of the metal alkoxides. 

 

3.2.4.3. Evaluation of catalysts 

The catalysts were evaluated for OCM using a custom-built HTE system.22 This system 

functions by integrating a gas mixer, flow distributor, reactors housed within an electric 

furnace, an autosampler, and a quadrupole mass spectrometer (QMS). This setup allows 

the automated evaluation of 20 catalysts under a predefined sequence of reaction 
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conditions. The catalysts were secured in beds 1 cm in height within reaction tubes made 

of fused quartz, which had inner diameters of 4 and 2 mm, using quartz wool. After inline 

activation at 1000 °C for 3 h in an oxygen stream, the 20 catalysts were tested under 135 

conditions varying in temperature (700, 750, 800, 850, and 900 °C), total gas flow rates 

(10, 15, and 20 mL/min/channel), CH4/O2 ratios (2, 4, and 6 mol/mol), and Ar partial 

pressures as a balancing gas (0.15, 0.40, and 0.70 atm). Each catalyst was labeled 

according to the highest C2 yield achieved among all 135 conditions. 

3.3. RESULTS AND DISCUSSION 

3.3.1. Active learning for obtaining robust design hypotheses 

In conventional hypothesis validation, researchers add data not only to verify the 

primary hypothesis but also to eliminate alternative hypotheses that could explain the 

original data. Similarly, when the training data are limited, the AFE may generate 

multiple design hypotheses with similar scores, which are considered alternative design 

hypotheses. These arise owing to multicollinearity among features within the given data23 

Eliminating incorrect or less robust hypotheses requires active learning. In this study, 

catalysts were selected using FPS to enhance the diversity of the data and assess the 

robustness of the proposed design hypotheses. Design hypotheses that were not applicable 

to diverse data were filtered out through repeated active learning cycles, resulting in more 

robust and reliable design hypotheses. According to chapter 2, the active learning cycle 

was conducted five times and, in some cases, six times.27 

Table 3.1 shows the evolution of design hypotheses and active learning cycles of CaO-

based catalysts. Notably, the MAECV values were similar to the MAEtrain values across all 

the cycles, indicating an absence of overfitting. Moreover, both values remained within a 
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narrow range of 1.6–1.9%, which is comparable to the experimental error (1.5–2% in C2 

yields). This consistency suggests that the AFE process identified design hypotheses that 

fit the training data similarly, despite its diversity increasing with the number of cycles. 

However, the elimination of less robust design hypotheses that did not apply to the newly 

added data resulted in variations in the selected features. The selected features are ordered 

in Table 3.1 according to their importance. Three features 

(covalent_radius_pyykko_double_min, atomic_radius_rahm_min, and 

covalent_radius_cordero_min) consistently appeared in most cycles with high importance, 

despite slight differences in functional forms. Therefore, these features are irreplaceable 

descriptors of CaO-based catalyst performance. Other less important features varied 

across cycles, reflecting the elimination of less robust design hypotheses. 

Less robust design hypotheses are eliminated through active learning; however, this 

does not necessarily lead to convergence to a single design hypothesis. Certain feature 

combinations may exhibit significant collinearity across the entire space (i.e., 4059 

catalysts), rendering them indistinguishable regardless of additional data. Such global 

collinearity suggests that the design hypotheses, despite possessing differing features, 

exhibit similar predictive behavior throughout the entire space and are therefore 

considered similarly robust. To address this, we compared the predictive behavior of the 

design hypothesis obtained in one cycle with that obtained in the previous cycle. 

Specifically, we predicted the C2 yields for 4059 catalysts using two design hypotheses 

and calculated the MAE between the two prediction sets. Figure 3.2 shows the 

development of MAE values across the active learning cycles. For all the supports, the 

MAE value significantly decreased during the early stages of active learning. This 

indicates that the less robust design hypotheses proposed by AFE, owing to limited data, 



64  

were rapidly corrected in these early stages. In the later stages, the changes in MAE 

became considerably smaller, indicating that the predictive behavior of the design 

hypotheses stabilized with the addition of data. In the final cycle, the MAE values for all 

the supports were below 2%, which is comparable to or lower than the experimental error 

(further reductions in the MAE are considered negligible owing to limitations in 

experimental precision). Based on this, we concluded that the design hypotheses were 

sufficiently robust for use in subsequent analyses. 

The active learning process involving the five supports added 333 catalysts to the 

original dataset of 381 catalysts. Their measured OCM performances are summarized in 

Figure 3.3 and are digitally accessible on a database platform 

(https://cads.eng.hokudai.ac.jp/).24 

 

Table 3.1. Development of design hypotheses for CaO-based catalysts throughout the 

active learning cycles. This table shows the scores and selected features of the design 

hypotheses obtained in each individual active learning cycle. 

Cycle MAECV (train)
a Selected featuresb 

0 1.65% (1.70%) 

1. 1/(covalent_radius_pyykko_double_min) 

2. ln(covalent_radius_cordero_min) 

3. (atomic_radius_rahm_min)1/2 

4. (density_max)2 

5. 1/ln(thermal_conductivity_ave) 

6. ln(density_ave) 

7. (atomic_weight_min)3 

8. 1/exp(gs_est_fcc_latcnt_max) 

1 1.75% (1.67%) 

1. 1/(covalent_radius_cordero_min) 

2. 1/(covalent_radius_pyykko_min) 

3. (atomic_radius_rahm_min)1/2 

4. 

1/(covalent_radius_pyykko_double_min)1/2 

5. ln(atomic_radius_rahm_min) 

6. exp(num_f_unfilled_max) 

7. (gs_mag_moment_max)3 

8. ln(period_ave) 

https://cads.eng.hokudai.ac.jp/
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2 1.85% (1.79%) 

1. (first_ion_en_max)2 

2. 1/(polarizability_min)1/2 

3. (atomic_radius_rahm_min)1/2 

4. 

1/(covalent_radius_pyykko_double_min)1/2 

5. (num_f_unfilled_std)1/2 

6. (num_d_valence_max)2 

7. (hhi_p_max)3 

8. num_f_valence_ave 

3 1.63% (1.56%) 

1. 1/(covalent_radius_pyykko_double_min) 

2. 1/(covalent_radius_cordero_min) 

3. (atomic_radius_rahm_min)1/2 

4. (num_d_valence_max)2 

5. 1/(covalent_radius_pyykko_triple_min) 

6. ln(vdw_radius_uff_max) 

7. 1/(hhi_p_ave) 

8. 1/exp(num_f_unfilled_std) 

4 1.67% (1.62%) 

1. 

1/(covalent_radius_pyykko_double_min)1/2 

2. (atomic_radius_rahm_min)1/2 

3. (covalent_radius_cordero_min)1/2 

4. (covalent_radius_pyykko_triple_min)1/2 

5. covalent_radius_cordero_ave 

6. (num_d_valence_std)2 

7. exp(fusion_enthalpy_max) 

8. heat_capacity_mass_std 

5 1.67% (1.65%) 

1. (atomic_radius_rahm_min)1/2 

2. 

1/(covalent_radius_pyykko_double_min)1/2 

3. ln(covalent_radius_cordero_min) 

4. (bulk_modulus_max)2 

5. 1/(sound_velocity_max)1/2 

6. 1/ln(covalent_radius_pyykko_double_std) 

7. 1/exp(heat_capacity_mass_min) 

8. exp(gs_mag_moment_max) 
a The MAE of C2 yields during CV and training is shown in parentheses. 

b Eight features were selected to minimize the MAECV value and are listed in order of 

permutation feature importance. The features are described in the same manner as 

XenonPy, and their meanings can be found in the Table S1. 
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Figure 3.2. Development of the predictive behavior of design hypotheses through active 

learning. The MAE was calculated by comparing the predicted C2 yields of 4059 catalysts 

between the design hypothesis obtained in one cycle and that from the previous cycle. 

Lower MAE values indicate greater similarity between the predictive behaviors of the 

two design hypotheses. In the early stages of active learning, MAE values decreased 

significantly, reflecting the elimination of less robust design hypotheses as data were 

added. In the later stages, additional data led to minor changes in MAE, suggesting that 

the design hypotheses became similarly robust. Note that any accidental increases in 

MAE values during certain cycles were attributed to the random nature of the genetic 

algorithm during feature selection; in such cases, the sixth cycle was included. 
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Figure 3.3. Scatter plot of 726 catalysts experimentally tested in previous and current 

studies. The x-axis represents CH4 conversion, and the y-axis represents C2 selectivity. 

Different supports are indicated by symbols of varying colors and shapes. Histograms 

outside the plot area show the data distribution for each support. 

 

3.3.2. Extracting catalyst design guidelines 

The design hypotheses obtained in Section 3.1 for the five catalyst families were 

applied to extract catalyst design guidelines. Specifically, the relationships between the 

elemental compositions of the catalysts and their predicted C2 yields were analyzed to 

identify design rules, including high-performance designs for each support, along with 

similarities and differences across supports. 

First, the distribution of predicted C2 yields for the 4059 catalysts on each support was 

analyzed (Figure 3.4). The distribution varied according to the support, with the medians 

ranked as BaO > La2O3 > CaO > TiO2 > ZrO2. This pattern suggests that basic oxides 
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generally achieved higher yields, which is consistent with common OCM practices. To 

assess the overall similarity between the supports, irrespective of absolute yield 

differences, Pearson correlation coefficients were calculated for the predicted C2 yields 

of the 4059 catalysts across different supports (Figure 3.5). High positive correlation 

coefficients among the supports indicate that the design hypotheses were largely similar. 

The correlation coefficients among CaO, BaO, and La2O3 all exceeded +0.8, indicating 

that these basic supports not only achieve higher yields but also share similar design 

hypotheses. In contrast, the design hypotheses for the Group 4 oxides, TiO2 and ZrO2, 

exhibited lower similarity, which can likely be attributed to differences in their redox 

behaviors. Notably, La2O3 exhibited the highest correlation with the other supports, 

suggesting that its design hypothesis is generally applicable. 

 

 

Figure 3.4. Box plot of predicted C2 yields for each support. The line represents the 

median value, the box indicates the interquartile range (IQR), and the whiskers denote 

1.5 times the IQR, with any data points beyond the whiskers considered outliers. 
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Figure 3.5. Similarity of design hypotheses across supports. The Pearson correlation 

coefficients for the predicted C2 yields of the 4059 catalysts across different supports were 

calculated and are presented as a heatmap. A correlation coefficient closer to 1 indicates 

greater similarity between the design hypotheses. Basic oxides such as CaO, BaO, and 

La2O3 exhibit similar design hypotheses, which differ from those of TiO2 and ZrO2. 

Next, to analyze the design rules for high-performance catalysts, a subset of catalysts 

with predicted C2 yields in the top 10% for each support was created, and the frequency 

of individual elements within this subset was examined. The results are shown in Figure 

3.6a in a periodic table format, where elements with higher frequencies indicate more 

effective pairing with the corresponding supports. Moreover, the frequency of secondary 

elements associated with the three most frequent elements for each support was analyzed. 

Figure 3.6b shows a pie chart of the results. The insights derived from Figures 3.6a and 

3.6b for each support are summarized below: 

CaO: The elements most commonly found in high-performance catalysts, ranked by 

frequency, are Sr > Mg > Ca > Cs. Alkaline earth metals are the predominant elements, 

followed by rare earth and Group 4 elements. Notably, Cs is the only alkali metal that 
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appears frequently. The effectiveness of pairing alkaline earth metals, particularly Sr, 

with CaO is well known, supporting the validity of the established design hypothesis.25 

The secondary elements frequently associated with the top three elements (Sr, Mg, and 

Ca) are shown in Figure 3.6b. The patterns of secondary elements are relatively similar 

among these primary elements and mainly include alkali metals, alkaline earth metals, 

rare earth elements, and Group 4 elements (excluding Ti). In particular, Cs is the most 

frequent secondary element, despite alkaline earth metal elements being expected to be 

more prevalent based on Figure 3.6a. This observation suggests a synergistic combination 

of alkaline earth metal elements and Cs on CaO, as confirmed in Figure 3.7. 

BaO: The trends of the elements frequently observed in BaO differ considerably from 

those in CaO, which is another alkaline earth metal oxide (Figure 3.6a). No overall 

preference exists for alkaline earth or rare earth elements; rather, specific elements are 

frequently found in BaO. In particular, La exhibits a significantly higher frequency, 

followed by Mo, Cs, Zn, and Sr. As shown in Figure 3.6b, the elements associated with 

La are diverse, suggesting that the La–BaO combination alone can achieve high 

performance. Furthermore, Mo is frequently paired with Zn, W, and La. Notably, the Zn–

La combination effectively enhances catalyst stability and prevents carbon deposition in 

OCM.26 The association of Mo and W suggests that increasing the amount of Group 6 

elements can improve performance, as evidenced by the observed high yield of W–W–

W/BaO. Cs is frequently associated with the primary elements, La, Mo, and Sr, and a 

similar specificity of Cs among alkali metal elements is also observed for CaO. 

La2O3: The elements frequently found in this basic oxide resemble those in CaO, with 

alkaline earth metals, rare earth elements (excluding Ce), and Group 4 elements 

(excluding Ti) being most prevalent. Doping La2O3 with elements that possess an 
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oxidation state equal to or lower than that of La (3+) enhances its activity.16 This aligns 

with the frequent occurrence of alkaline earth metals (2+) and rare earth elements (3+), 

excluding Ce, which typically has a 4+ oxidation state. Notably, Ba is highly prevalent, 

similar to the La–BaO combination observed in BaO. The diversity of the elements 

associated with Ba further substantiates the strong synergy between La and Ba. Previous 

study demonstrated that using BaO and La2O3 as mixed supports results in a 

complementary effect, where the high C2 selectivity of BaO at high temperatures and the 

high activity of La2O3 at low temperatures collectively enhance C2 yields.10 

TiO2: Alkaline metals, particularly Cs, are significantly more prevalent in this support 

(Cs >> K > Li). Although a Cs–TiO2 combination has not been reported for OCM, Cs is 

known to enhance the photocatalytic activity of TiO2 by promoting its reduction.27, 28 This 

suggests that Cs may also facilitate the redox activity of TiO2 in OCM. Cs is frequently 

associated with elements that prefer a 4+ oxidation state, such as Hf and Ce, followed by 

other rare earth elements.29,30 

ZrO2: Similar to TiO2, alkaline metals are frequently observed in ZrO2; however, Cs is 

considerably less prevalent than in TiO2. In addition, alkaline earth metals and early 

transition metal elements are more prevalent. Figure 3.6b shows that alkaline metals and 

alkaline earth metals frequently appear alongside early transition metal elements. This 

suggests that ZrO2, which exhibits minimal intrinsic OCM activity on its own, benefits 

from elemental combinations capable of forming oxometalate anions that are active in 

OCM.30,31 

We also analyzed the design rules for the catalysts in the bottom 10% based on the 

predicted C2 yields (Figure 3.8). In contrast to high-performance catalysts, the design 

rules for low-performance catalysts show less dependence on the support, with late 
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transition metals being predominant. These elements are known to catalyze nonselective 

combustion, suggesting that they are generally effective in methane combustion, 

irrespective of the support. 

 

 

Figure 3.6. Design rules in high-performance catalysts. The characteristics of catalysts 

with predicted C2 yields in the top 10% for each support are summarized as follows: (a) 

Heatmaps presented in a periodic table format show the frequency of individual elements 

in the high-performance catalysts. Elements with higher frequencies (indicated by darker 

red) are more likely to contribute to high performance when combined with the 

corresponding support. (b) Pie charts for the top three most frequent elements in (a), 

showing the frequency of appearances of secondary elements associated with these main 
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elements. A selective association between a main element and a specific secondary 

element suggests synergy between them. 

 

 

Figure 3.7. Pie chart illustrating the frequency of secondary elements associated with Cs–

CaO. 

 

 
Figure 3.8. Design rules for low-performance catalysts. The characteristics of catalysts 

with predicted C2 yields in the bottom 10% for each support are summarized. Heatmaps 

presented in a periodic table format show the frequency of individual elements in the low-

performance catalysts. Elements with higher frequencies (shown in darker blue) are more 

likely to contribute to low performance when paired with the corresponding support. 

3.3.3. Transferability of design hypotheses 
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Experienced catalyst researchers often apply the knowledge and insights gained from 

existing catalytic systems when developing catalysts for new systems. This transfer 

requires a certain degree of intuition, and replicating this process through data science is 

a key aspect of catalyst informatics. To demonstrate this concept, we aimed to transfer 

the design hypotheses across various catalyst families. 

The underlying concept was to leverage the similarities in design hypotheses across 

different catalyst supports. Specifically, the design hypothesis obtained for one support 

was transformed into features to facilitate the development of a design hypothesis for 

another support through AFE. The most straightforward approach is to directly use the 

predicted C2 yields for one support as a feature, as indicated by the correspondence of 

predicted yields across the various supports (cf. Figure 3.5). In addition, we explored the 

use of descriptors obtained for one support as features through dimensional reduction. 

This approach is based on the assumption that the similarities observed between elements 

or elemental combinations on one support are applicable to another support, irrespective 

of the C2 yields. We reduced the original eight features to two using two distinct methods. 

The first method employs principal component analysis (PCA), which maximizes the 

variance in a higher-dimensional space to effectively represent the distribution of 

elemental combinations within the original feature space. The second method uses t-

distributed stochastic neighbor embedding (t-SNE),32 which prioritizes preserving the 

local relationships between elemental combinations in the original space to effectively 

capture their similarities. The features derived from design hypotheses across different 

catalyst families are referred to as “design hypothesis features” to distinguish them from 

the standard features derived from the XenonPy elemental physical properties. 
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Figure 3.9 compares the MAECV scores of the ML models that incorporate at least one 

design hypothesis feature from other supports with those that do not use such features. 

This comparison includes three catalyst families: CaO, La2O3, and ZrO2. The design 

hypothesis features selected through AFE, along with their ranking based on permutation 

feature importance, are also shown. For CaO and La2O3, incorporating design hypotheses 

from other supports significantly reduced the MAECV scores, surpassing the fluctuations 

(indicated by the error bars in Figure 3.9) observed with genetic algorithm-based feature 

selection. In both cases, the predicted C2 yield of BaO was the most important descriptor, 

which aligns with the high correlation between the predicted C2 yields of these supports, 

as shown in Figure 3.5. In addition, although less critical, the t-SNE feature of TiO2 was 

selected for both supports. For ZrO2, transferring design hypotheses from other supports 

did not result in lower MAECV scores, which is consistent with its distinct design 

hypothesis compared with those of other supports, as discussed in Section 3.2. Notably, 

only t-SNE features were selected from the dimensionally reduced features, and none of 

the PCA features were selected. This suggests that the local relationships or similarities 

between elemental combinations are more effective for transferring knowledge than their 

distribution in the original feature space. This finding is promising for catalyst 

development because local similarities are more accessible than distributions in feature 

space. 

In summary, we demonstrated that, within the context of AFE, knowledge can be 

effectively transferred between different catalyst families. This indicates that when a 

catalytic system exhibits similarities with a target system, insights gained from the former 

can facilitate the acquisition of knowledge for the latter, thereby potentially accelerating 

active learning to develop a robust design hypothesis. 
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Figure 3.9. Results of knowledge transfer between catalyst families within the context of 

data science. Design hypotheses obtained from other supports were transformed into 

various features (referred to as design hypothesis features) and used in ML model 

development with AFE. For CaO and La2O3, models incorporating design hypothesis 

features (red bars) exhibit lower MAECV scores than models without these features (blue 

bars), indicating effective knowledge transfer. In contrast, ZrO2, which lacks similarity 

with other supports, does not exhibit a reduction in MAECV scores. Error bars represent 

the standard deviation of MAECV values from three independent feature selection runs. 

The selected design hypothesis features and their permutation feature importance 

rankings are also shown. 

 

3.4. CONCLUSION 

The empirical aspects of catalyst development often lead to a focus or bias toward 

specific compositions, resulting in fragmented knowledge that is difficult to integrate. 

However, in catalyst informatics, the iterative updating of descriptors and ML models, 

combined with strategic data addition, can generate more comprehensive and applicable 
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catalyst knowledge. In this study, active learning was implemented using HTE and AFE 

to acquire comprehensive knowledge on BaO-, CaO-, La2O3-, TiO2-, and ZrO2-supported 

catalysts for OCM. The knowledge acquired was then used to extract catalyst design rules 

and evaluate the potential for knowledge transfer across different catalyst families. 

Active learning was conducted for each catalyst family, beginning with the previously 

acquired training data. A design hypothesis comprising an ML model and descriptors was 

generated using AFE, which produced numerous catalyst features and selected the most 

plausible ones within the context of supervised ML. Challenging catalysts were identified 

using FPS and experimentally tested to enhance the training data and refine the design 

hypothesis. This process was repeated five to six times, resulting in a robust design 

hypothesis applicable to all compositions and yielding comprehensive catalyst knowledge 

for each support. 

The established design hypotheses were employed to identify catalyst design rules and 

assess their similarities and differences across the supports. Synergistic combinations 

commonly observed in high-performance catalysts were identified, including alkaline 

earth metals for CaO, La for BaO, Ba for La2O3, Cs for TiO2, and alkali metals for ZrO2, 

along with some novel findings. 

Finally, a method for transferring catalyst knowledge between different supports using 

AFE was introduced, leveraging the similarities between the design hypotheses. Notably, 

the descriptors or model outputs refined through active learning on one support were 

adapted into features that enhanced the predictive accuracy of the ML models for other 

supports. 

In summary, this study established a scientific data framework for acquiring 

comprehensive catalyst knowledge to facilitate the design of novel and diverse high-
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performance catalysts. Transferring validated design hypotheses across different catalytic 

systems can enhance model reliability and reduce the need for extensive active learning. 
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ABSTRACT 

Experienced catalyst designers can identify high-performance catalysts by applying 

their knowledge of correlations between catalyst composition, structure, and 

performance—gained through prior development experience—and by leveraging insights 

into similarities between elements to extrapolate to unknown catalyst systems. This 

transfer of experience effectively shortens the knowledge-gathering process, embodying 

the essence of "intuition." Reproducing this intuitive process through data science is the 

ultimate goal of catalyst informatics. 

In this chapter, we explored the potential for transferring design hypotheses from 

established catalyst supports to novel supports, specifically Y2O3. We evaluated the 

effectiveness of several approaches within active learning cycles: integrating feature 

values from other supports, applying dimensionality reduction techniques like principal 

component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), and 

using a physical filter to refine the data. These strategies were implemented to derive 

robust design hypotheses with limited data, demonstrating that design principles from 

known supports can guide predictions for new supports. The findings highlight that 

incorporating diverse knowledge sources can extend the predictive power of machine 

learning models, enhancing the adaptability and efficiency of catalyst design frameworks. 

This chapter thus contributes to a broader understanding of knowledge transfer and its 

role in developing data-driven, flexible approaches for catalyst discovery and 

optimization.  
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4.1. INTRODUCTION 

In traditional catalyst design, manually evaluating a vast number of combinations 

requires considerable time and resources.1,2 The trial-and-error approach makes 

identifying optimal catalyst designs challenging and often reduces efficiency. To address 

these challenges, data-driven catalysis research, or catalyst informatics, uses data science 

techniques like machine learning (ML) and visualization to accelerate catalyst 

development and uncover critical trends and patterns within catalyst data.3 However, 

catalyst informatics is constrained by the scarcity of suitable data and the complexity of 

designing descriptors that accurately capture intricate structure–function relationships.4 

To address data scarcity, the Taniike group has implemented high-throughput 

experimentation (HTE) to prepare and evaluate catalysts, generating datasets under 

consistent conditions suitable for machine learning across various catalytic processes.5–7 

Additionally, to overcome the challenges in descriptor design, automatic feature 

engineering (AFE) and active learning have been explored to streamline catalyst 

discovery.8 Active learning is especially promising for its efficient use of limited datasets, 

enabling effective catalyst optimization while reducing the number of experimental trials. 

farthest point sampling (FPS) is used here to obtain catalytic data that more efficiently 

expresses the target catalytic space than random selection.9–11 FPS adds catalysts that are 

least similar to those in the training data within the selected feature space, which aids in 

efficiently excluding models lacking global characteristics. While AFE has shown 

promise in enhancing the efficiency and sustainability of chemical processes, integrating 

new data over five to six cycles using FPS remains both time- and cost-intensive. This 

challenge partly stems from the difficulty in determining the nature of the correlations 

between the features and catalyst performance. Since AFE-generated features are 
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typically derived from basic elemental properties, they may lack a direct link to 

observable phenomena in catalytic reactions. Even when features are closely related to 

catalytic reactions, their creation involves mathematical manipulation to form multi-

dimensional features, making interpretation subjective and preventing them from serving 

as definitive evidence. Furthermore, AFE-generated features often diverge from 

established catalyst design principles, making it unclear how these features contribute 

specifically to reactions. A drawback of using features that are not human-guided is that 

it becomes difficult to understand the rationale behind the selection of each feature, 

leaving the model’s progression as the main method for assessing feature reliability. 

Additionally, about five cycles of active learning are generally required to develop a 

robust design hypothesis. A faster approach to select effective catalysts from a large pool 

of candidates is essential for achieving optimal catalyst design. Adjustments in feature 

selection criteria and the integration of specific support features hold promising potential 

for improving catalyst performance. However, determining the most effective approaches 

remains challenging and underscores the need for comprehensive comparison and 

evaluation. 

This chapter focuses on optimizing the catalyst design process through active learning 

by comparing the effectiveness of four approaches. One approach, used as a baseline, 

involves applying active learning without any particular adjustments. Another approach, 

the support-feature-based approach, incorporates key aspects of design hypotheses from 

other supports as features to create a new design hypothesis. The hypothesis here is that 

a robust design hypothesis can be constructed by drawing on key insights from well-

established design hypotheses of other supports. In this study, values from eight features 

in the design hypotheses of other supports were reduced to two dimensions using t-
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distributed stochastic neighbor embedding (t-SNE) and principal component analysis 

(PCA), with predicted values analyzed to refine the hypotheses further.12 

The third approach involves using a genetic algorithm (GA) to select feature 

combinations, where thresholds on scores and prediction performance metrics are set to 

identify feature combinations that can yield realistic predictions early in the process. The 

fourth approach combines both the second and third approaches to maximize 

effectiveness. 

As data for the new support, Y2O3 was selected as the target catalyst. This choice was 

based on its proximity to the previously evaluated supports in the periodic table, as well 

as the high likelihood of it exhibiting new characteristics. These characteristics are 

expected to allow effective utilization of the design hypotheses developed for other 

supports. A total of 140 catalyst candidates were randomly selected and divided into 

seven groups. One group was used as the original data, five groups were used for 

conducting five cycles of active learning, and the final group was reserved for testing. 

Using different approaches, hypothesis accuracy was evaluated in each cycle. These 

approaches aim to derive the most robust hypothesis with minimal data. By comparing 

test scores and results from active learning simulations, the most effective approach for 

establishing robust hypotheses with the smallest dataset can be identified. 

 

4.2. METHOD 

In active learning, data is added not only to validate the primary hypothesis but also to 

eliminate alternative hypotheses that could explain the original data and to expand the 

exploration space.13 When training data is limited, AFE may generate multiple design 

hypotheses with similar scores, considered as alternative hypotheses. While a larger 
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dataset increases the likelihood of obtaining a global design hypothesis, getting sufficient 

data can be challenging. In this study, we proposed a more efficient active learning 

process by reusing design hypotheses from other supports and restricting the 

combinations of features selected by the GA. To evaluate the performance of these 

modified approaches, I used a dataset of 140 randomly selected catalysts. While active 

learning is necessary to eliminate inaccurate or less robust hypotheses, we examined 

whether the enhanced GA could derive a global design hypothesis even with a smaller 

dataset. The 140 randomly selected catalysts were divided into seven parts of 20 each: 

one part served as the original data, five parts were used to vary data volume as additional 

catalysts, and the remaining part was used as test data. 

 

4.2.1. Automatic feature engineering 

AFE automates the design of physically meaningful features for a given catalyst dataset 

within the framework of supervised ML.8 This process involves a structured pipeline of 

feature assignment, synthesis, and selection. First, physical quantities of elements are 

assigned to the catalysts, with their elemental compositions represented through 

commutative operations. Higher-order features involving nonlinear and combinatorial 

effects are then synthesized from these assigned primitive features using mathematical 

operations. Finally, a specified number of features (descriptors) that optimize the score of 

the supervised ML are selected from the large synthesized array of features. 

In this study, we utilized 58 parameters of elements from XenonPy, normalized 

according to the literature.14 These parameters were assigned to each catalyst using five 

commutative operations (maximum, minimum, average, product, and standard deviation), 

yielding 290 primary features. These primary features were further synthesized into 3,480 
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features using 12 functional forms (x, sqrt(x), x2, x3, ln(x), exp(x), and their reciprocals, 

where x represents each primary feature). A genetic algorithm-based approach was 

employed to select eight features that minimized the mean absolute error (MAE) in leave-

one-out cross-validation (LOOCV) using Huber regression.15 This process involved 

assessing approximately 4,000,000 models per dataset with various feature combinations 

and selecting the combination of features (X) and model (f(X)) that yielded the lowest 

cross-validation (CV) score as the most plausible design hypothesis. Huber regression, 

which is a form of multiple linear regression, was employed to prevent overfitting owing 

to its reduced number of parameters and ensure robustness against outliers, such as 

experimental failures. The number of selected features was empirically determined to 

balance the CV score and the cost of feature selection. Further details on AFE and 

parameter selection are provided in previous study. 

 

4.2.2. High-throughput experimentation 

The catalysts proposed in Section 2.3 were prepared and evaluated using the same 

experimental methods and conditions, which are briefly described as follows. 

 

4.2.2.1. Materials 

The metal precursors used were LiNO3, NaNO3, Mg(NO3)2, KNO3, Ca(NO3)2·4H2O, 

Ti(OiPr)4, VOSO4·xH2O (x = 3–5), Mn(NO3)2·6H2O, Fe(NO3)3·9H2O, Co(NO3)2·6H2O, 

Ni(NO3)2·6H2O, Cu(NO3)2·3H2O, Zn(NO3)2·6H2O, Sr(NO3)2, Y(NO3)3·6H2O, 

ZrO(NO3)2·xH2O (x = 2), (NH4)6Mo7O24·4H2O, Pd(OAc)2, CsNO3, Ba(NO3)2, 

La(NO3)3·6H2O, Ce(NO3)3·6H2O, Nd(NO3)3·6H2O, Eu(NO3)3·5H2O, Tb(NO3)3·5H2O, 

Hf(OEt)4, and (NH4)10H2(W2O7)6. These materials were purchased from one of the 
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following suppliers: Sigma-Aldrich, Kanto Chemical, Wako Pure Chemical Industries, 

Alfa-Aesar, or Sumitomo Chemical. 

To investigate new support materials, I selected Y2O3 as the subject of this research. 

Y2O3 has high thermal stability, making it suitable for reactions under high-temperature 

conditions in OCM. Due to its resistance to decomposition and activity degradation, it is 

expected to have a long lifespan as a catalyst.16 Y2O3 (5.01 g/mL, Sigma-Aldrich) was 

used as the reagent for Y2O3 in this study. 

 

4.2.2.2. Preparation of catalysts 

The catalysts were prepared using a parallelized wet impregnation method, in which 

support powder was impregnated with an aqueous solution of specified metal precursors 

at 50 °C for 6 h. The loading amount of elements was fixed at 0.37 mmol/g-support per 

selection within M1–3. Following impregnation, the powder was vacuum-dried and 

calcined in air at 1000 °C for 3 h. For precursors that contained metal alkoxides, 

impregnation was performed in two steps: first, with an aqueous solution of the other 

precursors, followed by impregnation with an ethanol solution of the metal alkoxides. 

 

4.2.2.3. Evaluation of catalysts 

The catalysts were evaluated for OCM using a custom-built HTE system. This system 

operates through a combination of a gas mixer, flow distributor, electric furnace-bearing 

reactors, autosampler, and quadrupole mass spectrometer (QMS), enabling the 

performance of 20 catalysts to be automatically assessed under a programmed sequence 

of reaction conditions. The catalysts were secured in beds 1 cm in height within reaction 

tubes made of fused quartz, which had inner diameters of 4 and 2 mm, using quartz wool. 
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After inline activation at 1000 °C for 3 h in an oxygen stream, the 20 catalysts were tested 

under 135 conditions varying in temperature (700, 750, 800, 850, and 900 °C), total gas 

flow rates (10, 15, and 20 mL/min/channel), CH4/O2 ratios (2, 4, and 6 mol/mol), and Ar 

partial pressures as a balancing gas (0.15, 0.40, and 0.70 atm). Each catalyst was labeled 

according to the highest C2 yield achieved among all 135 conditions. 

 

4.2.3. Improvements to the catalyst search process 

We tested whether adding feature values derived from predictions on other supports to 

the original dataset and performing feature selection could lead to earlier identification of 

robust design hypotheses compared to normal approaches. The additional features from 

other supports included predicted C2 yield, as well as PCA and t-SNE results based on the 

five final design hypothesis equations from BaO, CaO, La2O3, TiO2, and ZrO2 families. 

PCA and t-SNE were used to reduce the dimensionality of each support's final hypothesis 

equations, allowing key information to be retained and incorporated into the feature set. 

PCA achieves dimensionality reduction by creating a new set of orthogonal axes that 

maximize variance within the original dataset, projecting the data onto these axes to 

reduce its dimensions. It defines new variables, or principal components, in order of 

decreasing variance, capturing as much of the original data's variability as possible with 

the fewest components. The second technique, t-distributed stochastic neighbor 

embedding (t-SNE), focuses on preserving the local relationships between elemental 

combinations in the original space to capture their similarities effectively.46  

In this study, high-dimensional data from each support’s final hypothesis equation was 

transformed into lower dimensions using PCA and t-SNE, retaining essential features and 

adding them as new features to the dataset. The features derived from design hypotheses 
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across different catalyst families are referred to as “design hypothesis features” to 

distinguish them from the standard features derived from the XenonPy elemental physical 

properties. 

As an approach to restrict the models being selected, two conditions were applied after 

GA selected eight features. The first condition limited the score value, with the MAE 

(mean absolute error) required to be 10% or less or no more than 1.5 times the highest 

elite score. The second condition excluded feature combinations that produced predicted 

C2 yield values outside the acceptable range (-20% to 50%) for the 4,059 catalysts during 

the GA process, with MAE used as the scoring metric. By adding these conditions, we 

aim to narrow down effective features even with limited data, avoid local overfitting, and 

derive design hypotheses suitable for catalyst performance prediction. This approach is 

expected to generate design hypotheses applicable to catalyst development from the 

outset. 

 

4.3. RESULTS AND DISCUSSION 

4.3.1. Outcomes of feature engineering for Y2O3 support 

Figure 4.1 is a graph showing the CH4 conversion and C2 selectivity of the catalysts 

used in this study, and you can see the performance of each catalyst along with its name. 

The Y2O3 support demonstrates strong CH4 conversion performance. The figure also 

indicates that a composition capable of enhancing selectivity is necessary. 

It is anticipated from previous reports that repeating the active learning loop five times 

would exhibit behavior suggesting convergence of the design hypothesis. I derived 

design hypothesis for the Y2O3 support by randomly selecting catalysts across five cycles 

without adding feature values or applying physical filter. I compiled the MAE during 
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cross-validation (MAECV), selected features, and MAE during training (MAEtrain) for 

Y2O3-supported catalysts across these active learning cycles, as shown in Table 4.1. The 

MAECV values were closely aligned with MAEtrain across all cycles, indicating minimal 

overfitting. Both metrics remained within a narrow range of 0.4–1.8%, comparable to the 

experimental error (1.5–2% for C2 yields). 

When examining the features selected in each cycle, we found that while some features, 

such as vdw_radius_std, reappeared in different combinations, no single feature was 

consistently selected across all cycles. Since the order of features follows their importance, 

it is clear that vdw_radius_std does not dominate the design hypothesis. This suggests 

that, at this stage, no dominant feature drives robust design hypotheses for Y2O3; instead, 

effective design relies on a balanced mix of various feature combinations. The diversity 

of features selected across cycles also indicates that a single, robust feature set has not yet 

emerged, showing ongoing competition among different feature combinations. 

Table 4.1 presents these observations by tracking the development of design hypotheses 

for Y2O3-supported catalysts through each active learning cycle. The consistent alignment 

of MAECV and MAEtrain values across cycles suggests that overfitting is effectively 

managed. However, the variation in MAEtest highlights gaps in the coverage of the catalyst 

search space, likely due to the random selection of catalysts. 
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Figure 4.1. Scatter plot of 140 catalysts experimentally tested in previous and current 

studies. The x-axis represents CH4 conversion (%), the y-axis represents predicted C2 

selectivity (%), and the color of the dot indicates the C2 yield (%). 

 

Table 4.1. Development of design hypotheses for Y2O3-based catalysts throughout the 

active learning cycles. This table shows the scores and selected features of the design 

hypotheses obtained in each individual active learning cycle. 

Cycle MAECV
a Selected featuresb 

0 0.65%  

1. (gs_mag_moment_max)3 

2. 1/(dipole_polarizability_ave) 

3. 1/ln(atomic_radius_rahm_ave) 

4. 1/ln(gs_est_bcc_latcnt_ave) 

5. 1/ln(mendeleev_number_min) 

6. 1/(Polarizability_min)1/2 

7. exp(thermal_conductivity_ave) 

8. ln(hhi_r_max) 

1 0.83%  
1. (atomic_radius_rahm_min)3 

2. 1/exp(num_d_valence_max) 
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3. 1/ln(en_pauling_pro) 

4. 1/ln(first_ion_en_pro) 

5. 1/ln(thermal_conductivity_pro) 

6. 1/(hhi_r_ave)1/2 

7. exp(num_f_valence_min) 

8. (gs_mag_moment_ave)1/2 

2 1.48% 

1. (electron_negativity_min)2 

2. (hhi_r_std)2 

3. 1/exp(num_valance_pro) 

4. heat_capacity_molar_min 

5. (atomic_radius_rahm_min)1/2 

6. (bulk_modulus_max)1/2 

7. (gs_energy_pro)1/2 

8. (thermal_conductivity_pro)1/2 

3 1.62%  

1. 1/exp(atomic_radius_rahm_min) 

2. 1/ln(heat_capacity_molar_min) 

3. 1/ln(mendeleev_number_pro) 

4. (boiling_point_pro)1/2 

5. (bulk_modulus_max)1/2 

6. (gs_energy_pro)1/2 

7. (thermal_conductivity_min)1/2 

8. (thermal_conductivity_pro)1/2 

4 1.82% 

1. (boiling_point_ave)3 

2. (num_s_unfilled_ave)3 

3. (thermal_conductivity_max)2 

4. 1/(atomic_radius_min) 

5. 1/ (atomic_volume_min)1/2 

6. 1/ (gs_volume_per_min)1/2 

7. ln(melting_point_ave) 

8. (Polarizability_min)1/2 

5 2.12% 

1. 1/(dipole_polarizability_max) 

2. 1/(lattice_constant_std)1/2 

3. exp(atomic_volume_max) 

4. exp(num_d_valence_ave) 

5. ln(Polarizability_min) 

6. ln(num_f_unfilled_ave) 

7. ln(vdw_radius_min) 

8. ln(vdw_radius_mm3_pro) 
a The MAE of C2 yields during CV is shown in parentheses. 

b Eight features were selected to minimize the MAECV value and are listed in order of 

permutation feature importance. The features are described in the same manner as 

XenonPy, and their meanings can be found in the Table S1. 

 

4.3.1.1. Other support features 
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Next, feature selection was performed by adding feature values from other supports 

(Table 4.2). Compared to the normal approach described above, adding feature values 

from other supports resulted in a decrease of about 0.1 in the final MAECV value. 

 

Table 4.2. Development of design hypotheses for Y2O3-based catalysts 

throughout the active learning cycles. Additional feature values from other 

supports have been added. 

Cycle MAECV
a Selected featuresb 

0 0.37%  

1. 1/(first_ion_en_max) 

2. 1/exp(en_allen_min) 

3. 1/(BaO_PCA1)1/2 

4. 1/(num_s_valence_ave)1/2 

5. hhi_p_min 

6. hhi_r_max 

7. ln(c6_gb_ave) 

8. (thermal_conductivity_ave)1/2 

1 0.86%  

1. (La2O3_tSNE2)3 

2. (TiO2_C2y)2 

3. 1/(hhi_r_ave) 

4. 1/ln(gs_mag_moment_std) 

5. 1/ln(sound_velocity_max) 

6. dipole_polarizability_std 

7. exp(hhi_p_min) 

8. (Polarizability_pro)1/2 

2 1.47%  

1. (CaO_C2y)3 

2. (thermal_conductivity_ave)3 

3. 1/ln(heat_of_formation_std) 

4. exp(density_ave) 

5. (BaO_tSNE2)1/2 

6. (bulk_modulus_max)1/2 

7. (gs_energy_pro)1/2 

8. (vdw_radius_pro)1/2 

3 1.59%  

1. (CaO_C2y)3 

2. (heat_of_formation_min)3 

3. (thermal_conductivity_ave)3 

4. 1/exp(BaO_tSNE2) 

5. 1/exp(bulk_modulus_max) 

6. exp(ZrO2_PCA1) 

7. exp(num_f_valence_ave) 

8. (gs_energy_pro)1/2 
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4 1.83%  

1. (thermal_conductivity_ave)2 

2. 1/(covalent_radius_cordero_ave) 

3. 1/exp(bulk_modulus_max) 

4. 1/exp(gs_energy_pro) 

5. 1/ln(electron_negativity_std) 

6. CaO_C2y 

7. ln(covalent_radius_pyykko_triple_ave) 

8. (Polarizability_min)1/2 

5 2.17%  

1. (BaO_tSNE2)3 

2. 1/ln(CaO_PCA2) 

3. 1/ln(thermal_conductivity_ave) 

4. exp(fusion_enthalpy_pro) 

5. ln(ZrO2_PCA2) 

6. num_f_valence_std 

7. (ZrO2_C2y)1/2 

8. (vdw_radius_max)1/2 
a The MAE of C2 yields during CV is shown in parentheses. 

b Eight features were selected to minimize the MAECV value and are listed in order of 

permutation feature importance. The features are described in the same manner as 

XenonPy, and their meanings can be found in the Table S1. 

4.3.1.2. Introducing filter for model selection 

Furthermore, feature selection was performed by using GA to select only feature 

combinations with a certain level of accuracy (Table 4.3). Compared to the normal 

approach in Table 4.1, The MAECV value for 0 cycle has decreased. Since only feature 

combinations that yield realistic predicted values for all 4059 M1-M2-M3 combinations 

are selected, the MAECV value of the final design hypothesis is relatively high. 

 

Table 4.3. Development of design hypotheses for Y2O3-based catalysts throughout the 

active learning cycles. Additional feature values from filter added. 

Cycle MAECV
a Selected featuresb 

0 1.15%  

1. (Polarizability_min)2 

2. (boiling_point_max)2 

3. 1/exp(electron_negativity_max) 

4. 1/exp(hhi_p_min) 
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5. bulk_modulus_std 

6. first_ion_en_ave 

7. (first_ion_en_ave)1/2 

8. (icsd_volume_ave)1/2 

1 1.08%  

1. (hhi_p_min)2 

2. (mendeleev_number_max)3 

3. (vdw_radius_ave)3 

4. exp(boiling_point_max) 

5. exp(gs_energy_min) 

6. ln(Polarizability_min) 

7. (covalent_radius_pyykko_double_std)1/2 

8. (first_ion_en_pro) 1/2 

2 1.63%  

1. (first_ion_en_max)3 

2. (heat_of_formation_std)3  

3. (num_d_valence_max)2 

4. (thermal_conductivity_ave)2 

5. ln(heat_capacity_molar_min) 

6. (bulk_modulus_max)1/2 

7. (covalent_radius_slater_std)1/2 

8. (thermal_conductivity_ave)1/2 

3 1.61%  

1. (num_f_valence_ave)3 

2. 1/exp(bulk_modulus_max) 

3. ln(atomic_radius_max) 

4. (atomic_radius_rahm_min)1/2 

5. (gs_energy_pro)1/2 

6. (heat_capacity_molar_min)1/2 

7. (num_d_unfilled_ave)1/2 

8. (thermal_conductivity_pro)1/2 

4 1.87%  

1. (melting_point_std)2 

2. (num_f_valence_ave)3 

3. 1/exp(Polarizability_min) 

4. 1/exp(bulk_modulus_max) 

5. 1/exp(covalent_radius_cordero_ave) 

6. Polarizability_pro 

7. en_allen_ave 

8. ln(heat_capacity_molar_min) 

5 2.12%  

1. (num_f_valence_std)3 

2. 1/exp(num_valance_std) 

3. 1/ (covalent_radius_pyykko_double_min)1/2 

4. 1/ (gs_est_fcc_latcnt_min)1/2 

5. en_allen_ave 

6. (Polarizability_min)1/2 

7. (covalent_radius_pyykko_double_std)1/2 

8. (heat_capacity_molar_ave)1/2 
a The MAE of C2 yields during CV is shown in parentheses. 

b Eight features were selected to minimize the MAECV value and are listed in order of 

permutation feature importance. The features are described in the same manner as 

XenonPy, and their meanings can be found in the Table S1. 
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4.3.1.3. Other support features and filter 

Next, feature selection was performed using the filter approach after adding features 

derived from other supports (Table 4.4). Compared to other approaches, the MAECV value 

at 0 cycles was the highest, suggesting that a more robust model may have been obtained 

from the beginning. 

 

Table 4.4. Development of design hypotheses for Y2O3-based catalysts 

throughout the active learning cycles. Other supports feature approach and 

filter approach have been added. 

Cycle MAECV
a Selected featuresb 

0 0.85%  

1. (hhi_p_ave)3 

2. (hhi_r_max)3 

3. 1/exp(icsd_volume_ave) 

4. 1/ln(gs_mag_moment_std) 

5. covalent_radius_cordero_min 

6. exp(atomic_radius_rahm_ave) 

7. ln(fusion_enthalpy_min) 

8. (first_ion_en_pro)1/2 

1 1.13%  

1. (gs_energy_min)2 

2. 1/ln(hhi_r_ave) 

3. 1/(Polarizability_min)1/2 

4. exp(hhi_p_pro) 

5. hhi_r_pro 

6. (boiling_point_min)1/2 

7. (covalent_radius_pyykko_double_max)1/2 

8. (gs_mag_moment_max)1/2 

2 1.53%  

1. (CaO_C2y)2 

2. (thermal_conductivity_ave)3 

3. 1/exp(BaO_tSNE2) 

4. 1/exp(covalent_radius_cordero_std) 

5. 1/(thermal_conductivity_ave)1/2 

6. ln(bulk_modulus_max) 

7. ln(covalent_radius_pyykko_double_std) 

8. ln(melting_point_max) 

3 1.63%  

1. (CaO_C2y)2 

2. (thermal_conductivity_max)3 

3. 1/exp(thermal_conductivity_pro) 

4. exp(BaO_tSNE2) 
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5. ln(c6_gb_std) 

6. ln(molar_volume_std) 

7. (bulk_modulus_max)1/2 

8. (gs_energy_pro)1/2 

4 1.81% (%) 

1. (ZrO2_PCA2)3 

2. 1/(gs_volume_per_min) 

3. 1/exp(Polarizability_min) 

4. 1/exp(en_allen_ave) 

5. exp(dipole_polarizability_min) 

6. ln(c6_gb_min) 

7. ln(vdw_radius_mm3_pro) 

8. (atomic_number_max)1/2 
a The MAE of C2 yields during CV is shown in parentheses. 

b Eight features were selected to minimize the MAECV value and are listed in order of 

permutation feature importance. The features are described in the same manner as 

XenonPy, and their meanings can be found in the Table S1. 

 

4.3.2. Verification of the effectiveness of each approach 

To evaluate the effectiveness of each approach, the predictive behavior of design 

hypotheses through active learning cycle was analyzed. First, the 120 pre-evaluated 

catalysts were randomly split for training, while 20 catalysts were randomly selected for 

testing. By comparing the predicted values before and after each cycle, the stability of 

predictive accuracy in these approaches can be evaluated. Figure 4.2 displays the cycle 

number on the horizontal axis and the MAE value on the vertical axis. The MAE was 

calculated by comparing the predicted C2 yields of 4,059 catalysts between the design 

hypothesis obtained in one cycle and that from the previous cycle. Lower MAE values 

indicate greater similarity between the predictive behaviors of the two design hypotheses. 

In the early stages of active learning, MAE values decreased significantly, indicating the 

elimination of less robust design hypotheses as more data were incorporated. In the later 

stages, additional data led to minor changes in MAE, suggesting that the design 

hypotheses became similarly robust. Focusing on the differences between the approaches, 
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it is evident that using a filter results in significantly greater stability compared to either 

of the two approaches that do not use a filter. First, at cycle 0, the MAE value is 1% lower 

when using a filter compared to the non-filter approaches. As the number of cycles 

increases, this gap remains. Additionally, considering that the experimental error is 2%, 

it can be observed that when using a filter, stability improves to approximately the level 

of experimental error by cycle 2. On the other hand, when a filter is not used, the 

difference in predicted values does not fall below the experimental error threshold. 

 

Figure 4.2. The evolution of predictive behavior in design hypotheses through active 

learning is observed by calculating MAE values between the predicted C2 yields of 4,059 

catalysts across successive cycles. Lower MAE values indicate higher consistency in 

predictive behavior. In the initial stages, MAE values decreased as weaker hypotheses 

were eliminated with added data, while later cycles showed minimal MAE changes, 

indicating that the hypotheses had stabilized in robustness. It has also been shown that the 

accuracy of predictions can be significantly stabilized by filter. 

 

Next, Figure 4.3 presents the prediction accuracy for the test data, consists of 20 

catalysts, across different approaches and cycles. This figure illustrates how closely the 
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predicted C2 yield with the actual value, as represented by the MAE on the vertical axis. 

At cycle 0, the approach using other supports features performs worse than the normal 

approach. This suggests that adding additional features leads to a higher likelihood of 

obtaining local solutions that fit only specific catalysts, especially when training data is 

limited. On the other hand, the two approaches using the filter performed slightly better 

than the normal approach. From cycle 1, the approach using other supports features also 

outperformed the normal approach, achieving an accuracy level comparable to the filter-

based approaches. In addition, the two approaches utilizing the filter and other support 

features clearly have better initial predictions. This shows that combining a method that 

increases the number of features and a method that filters features is useful for feature 

selection. 

 

Figure 4.3. This graph shows the predictive performance of the test data. The vertical 

axis represents the MAE values for the observed and predicted yields of the 20 catalysts 

in the test data, while the horizontal axis indicates the number of cycles for each design 

hypothesis. Compared to the normal approach, other approaches show effectiveness from 

the cycle 1. Furthermore, the approach that combines both the filter and other support 

features proves to be more effective. 



102  

 

4.4. CONCLUSION 

In this chapter, different approaches that incorporate physical filter and other support 

features were evaluated through active learning to determine the most effective approach. 

First, the transferability of design hypotheses developed for known supports (BaO, CaO, 

La2O3, TiO2, ZrO2) to a new support (Y2O3) was introduced. Additionally, applying a 

physical filter allowed for the generation of a generalized design hypothesis that remains 

applicable even with limited data. The filter approach consistently had the effect of 

improving the stability of predictions. However, the combined approach proved to be 

more effective than either approach alone. Since one approach increases the number of 

features while the other reduces the number of models derived from these features, their 

combination can be considered highly effective. Utilizing these approaches together 

successfully reduced the amount of data required for active learning.  
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ABSTRACT 

Solid catalyst development has traditionally relied on trial-and-error approaches, 

limiting the broader application of valuable insights across different catalyst families. To 

overcome this fragmentation, we introduce a framework that integrates high-throughput 

experimentation (HTE) and automatic feature engineering (AFE) with active learning to 

acquire comprehensive catalyst knowledge. The framework is demonstrated for oxidative 

coupling of methane (OCM), where active learning is continued until the machine 

learning model achieves robustness for each of the BaO-, CaO-, La2O3-, TiO2-, Y2O3, and 

ZrO2-supported catalysts. The catalysts obtained were recommended to maximize the 

exploration range of OCM catalysts, providing a broad perspective on the synergistic 

combinations of these supports. This chapter includes novel catalysts, enabling the 

evaluation of the performance of a diverse range of compositional combinations. 
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5.1. INTRODUCTION 

Oxidative coupling of methane (OCM) is one of the most challenging catalytic 

reactions to develop. This process converts methane (CH4) directly into ethylene (C2H4) 

in a single step.1 As the primary component of natural gas and biogas, CH4 has garnered 

increasing attention amid the global expansion of natural gas exploration and extraction 

efforts.2,3 Consequently, interest in methane utilization via the OCM has grown.4 C2H4, 

the product of this reaction, serves as a essential feedstock for a wide range of 

petrochemical products. Currently, it is primarily produced from naphtha, a substance 

derived from petroleum. The industrial method for obtaining C2H4 from natural gas 

involves two steps.5,6 The first step involves converting natural gas into synthesis gas 

through reforming reactions. The second step is the conversion of synthesis gas into 

synthetic fuel through Fischer-Tropsch synthesis (FTS).7 However, due to the high cost 

of the FTS method, there is growing interest in the methane OCM reaction.8 One of the 

key challenges in the OCM reaction is the chemical inertness of CH4 compared to its 

products, making high yields difficult to achieve. As a result, the maximum yield for 

OCM is generally considered to be around 35%.9 

The reason why the development of solid catalysts is not easy is that the details of 

individual potential reactions are not clear,10,11 the roles of the constituent elements are 

often unclear,12 and the structure of the substance is indefinite,13 and on top of that, it is a 

typically complex substance with a large number of constituent components.14–16 It goes 

without saying that we are trying to find new and better ways to make catalysts. However, 

society's demand for catalysts is strong.17–19 Researchers want methods that go beyond 

the traditional framework and give them a new perspective on catalyst development. In 

this context, catalytic informatics is attracting a lot of attention.20–22 



107  

Data-driven catalysis research, also known as catalyst informatics, leverages data 

science techniques such as machine learning (ML) and visualization to accelerate the 

development and understanding of catalysts by revealing applicable trends and patterns 

hidden within catalyst data. However, catalyst informatics is constrained by the scarcity 

of catalyst data suitable for data science and the difficulty in handcrafting descriptors that 

capture the essence of intricate structure–function relationships.23,24 I used high-

throughput experimentation (HTE) to prepare and evaluate numerous solid catalysts, 

generating sized, qualified, and consistent datasets for various heterogeneous catalytic 

processes, including OCM. Furthermore, we recently introduced an automatic feature 

engineering (AFE) technique that programmatically designs descriptors to capture the 

essence of the target catalysis , beginning with the general physical properties of the 

elements, such as atomic radii and electronegativity. AFE generates predictive ML 

models with tailored descriptors without requiring researchers to make assumptions or 

hypotheses about the target system. 

In this study, the same active learning approach integrated with HTE and AFE was 

applied to six OCM catalyst families. We began with previously acquired OCM catalyst 

data for six supports (BaO, CaO, La2O3, TiO2, Y2O3, ZrO2) were evaluated for OCM. 

CaO and La2O3 were selected because they are the most extensively studied basic oxides 

in OCM and are likely to exhibit distinct catalyst designs. BaO was selected as the 

reference for these supports because it offers higher C2 yields and selectivities. In contrast, 

the redox-active supports TiO2 and ZrO2 were included to investigate potential 

relationships between the general physical properties and design hypotheses. 
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5.2. METHOD 

This study used previously acquired data to establish a design hypothesis for each of 

the six catalyst families corresponding to different support materials. However, similar to 

how researchers cannot dismiss alternative hypotheses when evidence is limited, AFE 

cannot overlook alternative design hypotheses (ML models with differently tailored 

descriptors that fit the training data) when the diversity of catalysts in the training data is 

restricted. Consequently, we implemented an active learning strategy (Figure 1). This 

strategy employs farthest point sampling (FPS) within the descriptor space established by 

AFE to propose catalysts that are maximally dissimilar to those included in the training 

data. These catalysts served as rigorous control experiments to validate the proposed 

design hypothesis. The performances of the proposed catalysts were assessed using HTE 

to reinforce the training data and update the design hypothesis via AFE. This iterative 

process aims to eliminate design hypotheses that do not generalize well across catalysts, 

resulting in a robust and experimentally validated design hypothesis. Further details are 

provided below. 

The catalyst used in this study was selected either by random sampling or through 

farthest point sampling (FPS) based on feature combinations obtained from automatic 

feature engineering (AFE).  
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Figure 5.1. Active learning cycle employed in this study. Automatic feature engineering 

(AFE) was applied to a given catalyst dataset to derive a design hypothesis (an machine 

learning model with tailored descriptors). Catalysts recommended by farthest point 

sampling (FPS) were assessed using high-throughput experimentation (HTE). The 

resulting data were integrated back into the dataset, and this iterative process continued 

until a robust design hypothesis was established to elucidate the relationship between 

catalyst compositions and performances. 

 

5.2.1. Dataset 

Taniike and his group accumulated OCM data for quaternary catalysts represented as 

M1–M2–M3/Support using a consistent experimental protocol involving HTE.25–28 M1–

M3 correspond to the supported elements, which can be selected (with duplication 

allowed) from the following: Li, Na, Mg, K, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, 

Mo, Pd, Cs, Ba, La, Ce, Nd, Eu, Tb, Hf, W, and none (where “none” indicates no addition 

of elements). The selected supports were MgO, Al2O3, SiO2, CaO, TiO2, ZrO2, BaO, 

La2O3, and CeO2. The loading amount of supported elements, except for the “none” 

option, was set at 0.37 mmol per gram of support for each selection. This resulted in a 

parameter space containing 4,060 catalysts per support, amounting to a total of 36,540 

catalysts. 
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In this study, we extracted 381 catalysts related to CaO, BaO, La2O3, TiO2, and ZrO2 

supports from the 636 quaternary catalysts we previously reported to establish design 

hypotheses through active learning.28–30 CaO and La2O3 were selected because they are 

the most extensively studied basic oxides in OCM and are likely to exhibit distinct 

catalyst designs.31 BaO was selected as the reference for these supports because it offers 

higher C2 yields and selectivities. In contrast, the redox-active supports TiO2 and ZrO2 

were included to investigate potential relationships between the general physical 

properties and design hypotheses. Among the 381 catalysts, 175 were obtained via 

random sampling from the entire space, whereas the remaining 206 were selected to 

validate various ML techniques.  

 

5.2.2. Automatic feature engineering 

AFE automates the design of physically meaningful features for a given catalyst dataset 

within the framework of supervised ML. This process involves a structured pipeline of 

feature assignment, synthesis, and selection. First, physical quantities of elements are 

assigned to the catalysts, with their elemental compositions represented through 

commutative operations. Higher-order features involving nonlinear and combinatorial 

effects are then synthesized from these assigned primitive features using mathematical 

operations. Finally, a specified number of features (descriptors) that optimize the score of 

the supervised ML are selected from the large synthesized array of features. 

In this study, we utilized 58 parameters of elements from XenonPy, normalized 

according to the literature.32 These parameters were assigned to each catalyst using five 

commutative operations (maximum, minimum, average, product, and standard deviation), 

yielding 290 primary features. These primary features were further synthesized into 3,480 
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features using 12 functional forms (x, sqrt(x), x2, x3, ln(x), exp(x), and their reciprocals, 

where x represents each primary feature). A genetic algorithm-based approach was 

employed to select eight features that minimized the mean absolute error (MAE) in leave-

one-out cross-validation (LOOCV) using Huber regression.33 This process involved 

assessing approximately 4,000,000 models per dataset with various feature combinations 

and selecting the combination of features (X) and model (f(X)) that yielded the lowest 

cross-validation (CV) score as the most plausible design hypothesis. Huber regression, 

which is a form of multiple linear regression, was employed to prevent overfitting owing 

to its reduced number of parameters and ensure robustness against outliers, such as 

experimental failures. The number of selected features was empirically determined to 

balance the CV score and the cost of feature selection. Further details on AFE and 

parameter selection are provided in previous study.26 

 

5.2.3. Farthest point sampling 

To validate and refine the design hypothesis presented in Section 5.2.2, we added either 

10 or 20 catalysts to each active learning cycle for experimental testing. Among these, 

90% were selected using FPS within the normalized eight-dimensional feature space 

established by AFE. The remaining 10% corresponded to the re-evaluation of the catalysts 

that exhibited the largest deviations between observed and predicted values in the last 

cycle. 
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5.2.4. High-throughput experimentation 

The catalysts proposed in Section 5.2.3 were prepared and evaluated using the same 

experimental methods and conditions as those employed when acquiring the original 

training data, which are briefly described as follows. 

 

5.2.4.1.  Materials 

The metal precursors used were LiNO3, NaNO3, Mg(NO3)2, KNO3, Ca(NO3)2·4H2O, 

Ti(OiPr)4, VOSO4·xH2O (x = 3–5), Mn(NO3)2·6H2O, Fe(NO3)3·9H2O, Co(NO3)2·6H2O, 

Ni(NO3)2·6H2O, Cu(NO3)2·3H2O, Zn(NO3)2·6H2O, Sr(NO3)2, Y(NO3)3·6H2O, 

ZrO(NO3)2·xH2O (x = 2), (NH4)6Mo7O24·4H2O, Pd(OAc)2, CsNO3, Ba(NO3)2, 

La(NO3)3·6H2O, Ce(NO3)3·6H2O, Nd(NO3)3·6H2O, Eu(NO3)3·5H2O, Tb(NO3)3·5H2O, 

Hf(OEt)4, and (NH4)10H2(W2O7)6. These materials were purchased from one of the 

following suppliers: Sigma-Aldrich, Kanto Chemical, Wako Pure Chemical Industries, 

Alfa-Aesar, or Sumitomo Chemical. 

The oxide supports and their precursors included Ca(OH)2 (3.0 m²/g, Wako Pure 

Chemical Industries), Ba(OH)2·8H2O (1.1 m²/g, Wako Pure Chemical Industries), La2O3 

(8.3 m²/g, Wako Pure Chemical Industries), Y2O3 (5.01 g/mL, Sigma-Aldrich) , TiO2 

(17.4 m²/g, anatase type, Kanto Chemical), and ZrO2 (3.2 m²/g, Kanto Chemical). 

 

5.2.4.2.  Preparation of catalysts 

The catalysts were prepared using a parallelized wet impregnation method, in which 

support powder was impregnated with an aqueous solution of specified metal precursors 

at 50 °C for 6 h. The loading amount of elements was fixed at 0.37 mmol/g-support per 
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selection within M1–3. Following impregnation, the powder was vacuum-dried and 

calcined in air at 1000 °C for 3 h. For precursors that contained metal alkoxides, 

impregnation was performed in two steps: first, with an aqueous solution of the other 

precursors, followed by impregnation with an ethanol solution of the metal alkoxides. 

 

5.2.4.3. Evaluation of catalysts 

The catalysts were evaluated for OCM using a HTE system. This system operates 

through a combination of a gas mixer, flow distributor, electric furnace-bearing reactors, 

autosampler, and quadrupole mass spectrometer (QMS), enabling the performance of 20 

catalysts to be automatically assessed under a programmed sequence of reaction 

conditions. The catalysts were secured in beds 1 cm in height within reaction tubes made 

of fused quartz, which had inner diameters of 4 and 2 mm, using quartz wool. After inline 

activation at 1000 °C for 3 h in an oxygen stream, the 20 catalysts were tested under 135 

conditions varying in temperature (700, 750, 800, 850, and 900 °C), total gas flow rates 

(10, 15, and 20 mL/min/channel), CH4/O2 ratios (2, 4, and 6 mol/mol), and Ar partial 

pressures as a balancing gas (0.15, 0.40, and 0.70 atm). Each catalyst was labeled 

according to the highest C2 yield achieved among all 135 conditions. 

 

5.3. RESULTS AND DISCUSSION 

5.3.1. Evaluated catalysts 

In this study, the catalysts evaluated from the BaO, CaO, La2O3, TiO2, Y2O3, and ZrO2 

families were proposed by FPS, based on AFE design hypotheses using past data as the 

original dataset. In contrast, the Y2O3 family was selected randomly. Additionally, among 
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the BaO catalysts, 40 catalysts were evaluated, selected in the order proposed by FPS, 

with predicted yields of 15% or higher. Randomly selected catalysts were chosen without 

human bias, while catalysts chosen by FPS are considered to comprehensively represent 

the entire catalysts space. Therefore, these catalysts can be seen as representative of the 

overall characteristics of their respective families. 

The top C2 yield and the corresponding conditions for all catalysts measured in this 

study are shown in Tables 5.1 to 5.6. Additionally, the distributions of C2 yield, CH4 

conversion, and C2 selectivity for each support are represented in histograms (Figures 5.1 

to 5.3).  

From these graph, BaO demonstrates balanced performance across all metrics, 

including C2 yield, CH4 conversion, and C2 selectivity, indicating its effectiveness in 

achieving both high yield and selectivity for C2 products. In contrast, Y2O3 exhibits 

efficient CH4 conversion but suffers from low C2 selectivity, suggesting it may not be 

suitable for efficient C2 product generation. 

These findings suggest that BaO outperforms other supports in C2 production, showing 

superior overall performance. In contrast, Y2O3 is characterized by high CH4 conversion 

yet limited C2 selectivity, highlighting its limitations in selective C2 production. 

For another catalysts, CaO and La2O3 show peaks at low C2 selectivity, likely due to 

their excessively high basicity. This high basicity may lead to decreased selectivity 

through several mechanisms: (1) promoting side reactions, such as complete combustion 

of methane (CH4) and carbon deposition, which lowers the C2 yield; (2) inhibiting C–C 

bond formation, which is essential for generating C2 products like ethylene and ethane; 

and (3) causing excessive catalytic activity on the surface, which accelerates CH4 

conversion but disrupts selective conversion to C2 products. These observations suggest 
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that the high basicity of CaO and La2O3 contributes to their low C2 selectivity, and 

optimizing C2 production may require adjusting the basicity or selecting a more suitable 

support material. 

 

Table 5.1. Development of design hypotheses for BaO-based catalysts throughout the 

active learning cycles. This table shows the scores and selected features of the design 

hypotheses obtained in each individual active learning cycle. Catalyst library. The 

composition, the best performance, and the corresponding temperature are shown.a,b,c 

No Cat. 
C2 yield 

(%) 

CH4 

conv. 

(%) 

C2 

sel. (%) 

Temp. 

(℃) 

1 Cs‒Cs‒Cs/BaO 20.61 40.28 51.16 850 

2 Ba‒Ba‒Ba/BaO 5.48 7.22 75.88 800 

3 Fe‒Ni‒Pd/BaO 3.87 56.80 6.81 900 

4 Pd‒Pd‒Pd/BaO 7.14 26.85 26.58 850 

5 Co‒Cu‒Pd/BaO 6.89 39.45 17.45 750 

6 Li‒Ni‒Pd/BaO 19.29 41.00 47.06 850 

7 K‒K‒K/BaO 9.75 27.33 35.67 900 

8 Co‒Co‒Co/BaO n.d. n.d. n.d. n.d. 

9 Y‒Zr‒Pd/BaO 14.10 32.64 43.20 800 

10 Mn‒Mn‒Mn/BaO 21.12 38.66 54.64 750 

11 Nd‒Nd‒Nd/BaO 17.27 28.33 60.95 800 

12 K‒Cs‒Cs/BaO 18.05 37.32 48.38 900 

13 Fe‒Ni‒Mo/BaO 19.68 35.52 55.40 850 

14 Mo‒Mo‒Mo/BaO 6.99 27.93 25.02 800 

15 Fe‒Pd‒W/BaO 11.54 26.94 42.83 850 

16 Cu‒Mo‒Pd/BaO 6.39 10.71 59.60 750 

17 Ni‒Ni‒Ni/BaO 5.22 30.20 17.30 850 

18 Mn‒Y‒Pd/BaO 18.56 38.50 48.20 800 

19 K‒Mo‒La/BaO 18.78 40.43 46.46 850 

20 Sr‒Zr‒La/BaO 20.05 29.78 67.33 800 

21 W‒W‒W/BaO 21.06 24.88 84.65 800 
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22 Mn‒Fe‒Pd/BaO 13.74 32.33 42.48 850 

23 Mn‒Fe‒Mo/BaO 17.03 42.14 40.42 850 

24 Mn‒Mn‒Zn/BaO 16.83 36.54 46.06 850 

25 Mn‒Co‒Hf/BaO 13.39 33.12 40.43 850 

26 Co‒Pd‒Cs/BaO 6.87 11.37 60.39 750 

27 Ni‒Mo‒Mo/BaO 18.31 38.91 47.05 850 

28 Mg‒Zn‒Zn/BaO 18.62 34.11 54.58 800 

29 Mn‒Ni‒Pd/BaO 9.75 31.00 31.44 850 

30 Ni‒Zn‒Sr/BaO 10.01 23.02 43.51 850 

31 Mn‒Fe‒Cs/BaO 17.55 35.89 48.89 850 

32 Mn‒Mn‒Fe/BaO 14.62 28.01 52.20 800 

33 Mg‒Mg‒none/BaO 16.96 36.09 47.00 850 

34 Zn‒Zn‒Ce/BaO 17.99 27.46 65.50 750 

35 K‒Fe‒Pd/BaO 7.28 16.15 45.12 850 

36 Mn‒Co‒Cu/BaO 7.83 30.91 25.33 850 

37 Sr‒Sr‒Cs/BaO 18.18 25.63 70.95 850 

38 Ca‒Co‒Ni/BaO 10.56 33.92 31.13 900 

39 Mn‒Y‒Pd/BaO 5.06 17.56 28.83 800 

40 Li‒Ni‒Pd/BaO 5.54 19.38 28.58 750 

41 Pd‒Cs‒Cs/BaO n.d. n.d. n.d. n.d. 

42 Cu‒Pd‒Cs/BaO 5.48 34.76 15.76 850 

43 Ni‒Cs‒Cs/BaO 7.65 30.09 25.42 850 

44 Cu‒Zn‒Zn/BaO 7.29 32.46 22.46 750 

45 Mn‒Cs‒Cs/BaO 10.63 32.70 32.52 800 

46 Co‒Cs‒Cs/BaO 13.08 34.09 38.37 850 

47 Mg‒Mg‒Mn/BaO 17.22 37.14 46.36 800 

48 Pd‒W‒W/BaO n.d. n.d. n.d. n.d. 

49 Ba‒Ce‒Ce/BaO 14.53 30.60 47.50 750 

50 Cu‒W‒W/BaO 7.43 29.83 24.90 850 

51 Na‒K‒none/BaO 17.40 35.07 49.63 800 

52 Na‒Cs‒Cs/BaO 16.50 22.59 73.06 800 

53 Mn‒Mn‒W/BaO 16.41 38.24 42.91 800 

54 K‒Zn‒Cs/BaO 18.53 36.27 51.09 800 

55 Hf‒Hf‒Hf/BaO 17.30 39.95 43.30 800 

56 Zn‒Mo‒Pd/BaO 11.72 36.44 32.16 850 
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57 Eu‒Eu‒Eu/BaO 19.43 37.03 52.46 750 

58 Zr‒Cs‒Cs/BaO 17.18 39.41 43.61 850 

59 Mo‒Mo‒Mo/BaO 18.94 38.98 48.59 850 

60 Mg‒Pd‒Ce/BaO n.d. n.d. n.d. n.d. 

61 Na‒Na‒Na/BaO 16.14 37.91 42.57 850 

62 Sr‒Ba‒Ba/BaO 15.24 38.02 40.08 800 

63 Co‒Mo‒Pd/BaO 9.48 19.11 49.61 800 

64 Na‒Mg‒Zn/BaO 15.99 22.93 69.76 800 

65 Na‒Ca‒Ti/BaO 14.81 36.43 40.66 800 

66 Nd‒none‒none/BaO 18.30 39.28 46.60 750 

67 Na‒Mg‒Ni/BaO 2.04 42.35 4.82 750 

68 K‒Cu‒Mo/BaO 7.11 30.31 23.44 750 

69 Na‒Mg‒Mg/BaO 14.75 34.85 42.33 800 

70 Zn‒Nd‒W/BaO 17.17 39.36 43.63 800 

71 Mn‒Mn‒Cu/BaO 6.97 33.59 20.75 850 

72 Ca‒none‒none/BaO 14.84 39.52 37.54 850 

73 Mg‒Ca‒Cu/BaO 5.66 33.94 16.66 850 

74 Mg‒Mg‒Nd/BaO 17.04 37.76 45.12 800 

75 Mg‒Nd‒none/BaO 17.46 38.16 45.75 750 

76 Mg‒Nd‒Nd/BaO 17.37 39.36 44.13 700 

77 Mn‒Mn‒none/BaO 11.26 33.09 34.03 750 

78 Mn‒none‒none/BaO 11.38 34.46 33.02 800 

79 Ca‒W‒none/BaO 17.70 39.16 45.21 850 

80 Pd‒W‒W/BaO n.d. n.d. n.d. n.d. 

a The catalyst composition is expressed in the form of M1–M2–M3/Support. The three 

active elements (M1–M3) are sorted along the atomic number. 

b The best C2 yield of individual catalysts is reported together with the corresponding 

parameters. The performance of 5 catalysts was not determined due to sintering at the 

calcination temperature. The corresponding cells are filled with n.d. 
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Table 5.2. Development of design hypotheses for BaO-based catalysts throughout the 

active learning cycles. This table shows the catalyst library. The composition, the best 

performance, and the corresponding temperature are shown.a,b,c 

No Cat. 

C2 

yield 

(%) 

CH4 

conv. (%) 

C2 

sel. (%) 

Temp. 

(℃) 

81 Fe‒Fe‒Fe/BaO 20.38 39.83 51.17 850 

82 K‒Fe‒Zn/BaO 17.77 39.49 45.00 850 

83 Fe‒Zn‒none/BaO 18.94 37.96 49.89 850 

84 Fe‒none‒none/BaO 19.42 38.73 50.14 850 

85 K‒Co‒Zn/BaO 10.44 29.60 35.27 850 

86 Li‒Fe‒Zn/BaO 13.95 34.82 40.06 850 

87 Cs‒none‒none/BaO 14.95 22.37 66.83 850 

88 Co‒Zn‒none/BaO 11.76 28.49 41.28 850 

89 Ca‒Fe‒Zn/BaO 19.63 38.68 50.75 850 

90 Mg‒K‒none/BaO 14.99 34.67 43.24 850 

91 Ti‒none‒none/BaO 17.32 24.60 70.41 850 

92 K‒Zn‒none/BaO 16.49 36.68 44.96 850 

93 Na‒none‒none/BaO 15.80 21.80 72.48 850 

94 Mo‒none‒none/BaO 20.14 40.60 49.61 850 

95 Ce‒none‒none/BaO 18.58 32.89 56.49 850 

96 Fe‒Ni‒Zn/BaO 15.30 30.25 50.58 850 

97 Eu‒Eu‒none/BaO 18.07 34.61 52.21 850 

98 K‒none‒none/BaO 16.77 31.40 53.41 850 

99 Li‒Co‒Zn/BaO 9.33 28.86 32.33 850 

100 Ba‒Ba‒Ba/BaO 13.10 35.75 36.64 850 

101 Zn‒Zn‒Zn/BaO 17.54 37.16 47.20 850 

102 Mo‒Mo‒Ce/BaO 13.03 18.24 71.44 800 

103 Zn‒Mo‒none/BaO 19.34 32.06 60.32 800 

104 Fe‒Mo‒Eu/BaO 19.82 36.95 53.64 850 

105 V‒Zn‒Zn/BaO 12.45 14.87 83.73 850 

106 Ti‒Mo‒Mo/BaO 14.11 25.08 56.26 800 

107 Ti‒Zn‒Mo/BaO 18.70 37.18 50.30 850 

108 V‒Hf‒Hf/BaO 16.11 35.48 45.41 850 

109 Fe‒Mo‒Mo/BaO 18.00 36.85 48.85 850 



119  

110 Mo‒Mo‒W/BaO 18.87 39.01 48.37 850 

111 Zr‒La‒La/BaO 19.58 38.05 51.46 800 

112 V‒La‒La/BaO 18.88 34.59 54.58 800 

113 Ti‒V‒W/BaO 16.32 22.22 73.45 850 

114 Ti‒W‒W/BaO 19.56 37.28 52.47 850 

115 Ti‒La‒La/BaO 19.34 35.10 55.10 800 

116 Na‒Tb‒Tb/BaO 15.95 32.02 49.81 800 

117 Li‒Ti‒Zr/BaO 16.15 35.60 45.37 750 

118 Fe‒Mo‒La/BaO 20.10 34.29 58.62 800 

119 Mn‒Mn‒Mn/BaO 11.39 29.89 38.11 850 

120 Mg‒Pd‒none/BaO n.d. n.d. n.d. n.d. 

a The catalyst composition is expressed in the form of M1–M2–M3/Support. The three 

active elements (M1–M3) are sorted along the atomic number. 

b The best C2 yield of individual catalysts is reported together with the corresponding 

parameters. The performance of 1 catalyst was not determined due to sintering at the 

calcination temperature. The corresponding cells are filled with n.d. 

 

Table 5.3. Development of design hypotheses for CaO-based catalysts throughout the 

active learning cycles. This table shows the catalyst library. The composition, the best 

performance, and the corresponding temperature are shown.a,b,c 

No Cat. 

C2 

yield 

(%) 

CH4 

conv. (%) 

C2 

sel. (%) 

Temp. 

(℃) 

121 W‒W‒W/CaO 12.77 43.47 29.38 800 

122 Cu‒Cu‒Cu/CaO 5.69 38.85 14.65 700 

123 Ni‒Cs‒W/CaO 3.64 36.58 9.95 700 

124 Ni‒Zn‒W/CaO 0.73 46.28 1.58 850 

125 Cs‒W‒W/CaO 13.75 44.2 31.11 750 

126 Hf‒Hf‒Hf/CaO 13.39 44.08 30.38 750 
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127 Mn‒Cs‒W/CaO 8.62 39.8 21.66 750 

128 Zn‒Cs‒W/CaO 12.91 43.56 29.64 800 

129 Eu‒Eu‒W/CaO 14.98 43.83 34.18 700 

130 Mg‒Ni‒Y/CaO 0.71 46.25 1.54 850 

131 Zn‒Pd‒Ce/CaO 4.19 43.15 9.71 800 

132 Fe‒Pd‒Nd/CaO 1.36 25.32 5.37 800 

133 Fe‒Zn‒Pd/CaO 5.86 41.16 14.24 850 

134 Ni‒Pd‒Nd/CaO 6.26 38.09 16.43 800 

135 Fe‒Ni‒Ce/CaO 0.88 32.12 2.74 800 

136 Co‒Ni‒Pd/CaO 1.07 48.45 2.21 750 

137 Mn‒Zn‒Ce/CaO 7.6 39.13 19.42 750 

138 Mn‒Pd‒Nd/CaO 8.12 39.64 20.48 800 

139 Co‒Pd‒Ce/CaO 0.82 25.01 3.28 850 

140 Ca‒Nd‒Tb/CaO 15.68 44.97 34.87 700 

141 Y‒Hf‒W/CaO 8.11 41.83 19.39 750 

142 Cu‒Y‒Hf/CaO 6.38 40.77 15.65 750 

143 Pd‒Tb‒Hf/CaO n.d. n.d. n.d. n.d. 

144 Eu‒Eu‒Eu/CaO 14.64 43.95 33.31 700 

145 Ni‒Y‒Pd/CaO n.d. n.d. n.d. n.d. 

146 Ni‒Tb‒W/CaO 1.41 23.52 5.99 700 

147 Ni‒Zn‒Y/CaO 1.03 25.6 4.02 800 

148 Ni‒Cu‒Hf/CaO 0.75 24.16 3.10 800 

149 Li‒La‒W/CaO 14.73 44.27 33.27 700 

150 Li‒Y‒La/CaO 10.18 40.72 25.00 700 

151 Ni‒Ni‒Ni/CaO 1.17 24.53 4.77 750 

152 Co‒Tb‒none/CaO 4.31 35.68 12.08 700 

153 Co‒Zn‒Tb/CaO 4.16 37.08 11.22 800 

154 Li‒Ce‒none/CaO 14.01 43.49 32.21 700 

155 Co‒Pd‒Cs/CaO 1.81 35.05 5.16 750 

156 Cu‒Ce‒none/CaO 6.75 38.98 17.32 750 

157 Mn‒Cu‒Tb/CaO 5.49 41.15 13.34 850 

158 Co‒Zn‒Ce/CaO 5.52 36.92 14.95 750 

159 Co‒Pd‒Tb/CaO 1.29 28.46 4.53 750 

160 Mn‒Pd‒Nd/CaO 1.25 35.07 3.56 700 

161 Li‒Pd‒W/CaO 0.54 51.11 1.06 800 
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162 Zn‒Zn‒Mo/CaO 12.41 42.93 28.91 800 

163 Cs‒Cs‒Cs/CaO 10.09 39.37 25.63 750 

164 Li‒Zn‒Mo/CaO 12.79 42.94 29.79 800 

165 Na‒Na‒Na/CaO 8.07 39.05 20.67 750 

166 Co‒Mo‒Pd/CaO 0.57 52.44 1.09 900 

167 Na‒Cs‒Cs/CaO 7.8 37.81 20.63 750 

168 Li‒Zn‒none/CaO 13.35 42.24 31.61 750 

169 Li‒Ni‒W/CaO 1.79 24.82 7.21 700 

170 Ni‒Pd‒Nd/CaO 1.14 35.81 3.18 800 

a The catalyst composition is expressed in the form of M1–M2–M3/Support. The three 

active elements (M1–M3) are sorted along the atomic number. 

b The best C2 yield of individual catalysts is reported together with the corresponding 

parameters. The performance of 2 catalysts was not determined due to sintering at the 

calcination temperature. The corresponding cells are filled with n.d. 

 

Table 5.4. Development of design hypotheses for La2O3-based catalysts throughout the 

active learning cycles. This table shows the catalyst library. The composition, the best 

performance, and the corresponding temperature are shown.a,b,c 

No Cat. 

C2 

yield 

(%) 

CH4 

conv. (%) 

C2 sel. 

(%) 

Temp. 

(℃) 

171 Y‒none‒none/La2O3 12.58 42.22 29.80 700 

172 Cu‒none‒none/La2O3 3.73 39.49 9.45 850 

173 Mg‒none‒none/La2O3 10.34 40.65 25.44 700 

174 Co‒W‒W/La2O3 1.35 41.47 3.26 700 

175 Pd‒W‒W/La2O3 0.39 50.17 0.78 900 

176 Zn‒none‒none/La2O3 15.21 45.06 33.75 700 

177 Mn‒Mn‒Mn/La2O3 10.62 41.23 25.76 750 

178 Zr‒none‒none/La2O3 12.9 43.62 29.57 700 
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179 W‒none‒none/La2O3 12.14 4.99 243.29 750 

180 Fe‒Sr‒Y/La2O3 15.01 44.4 33.81 750 

181 Ce‒Ce‒Ce/La2O3 13.79 41.58 33.16 700 

182 Zn‒Cs‒none/La2O3 14.84 45.38 32.70 700 

183 Ni‒Zn‒Cs/La2O3 11.61 31.68 36.65 800 

184 Ni‒Pd‒Ba/La2O3 1.22 25.64 4.76 800 

185 Ni‒Cs‒W/La2O3 1.19 37.45 3.18 750 

186 Cs‒Ce‒Ce/La2O3 12.96 42.96 30.17 700 

187 Na‒Ce‒Ce/La2O3 13.17 44.27 29.75 700 

188 Ba‒Ba‒Ba/La2O3 19.13 48.3 39.61 750 

189 Na‒W‒none/La2O3 19.37 49.19 39.38 800 

190 Ti‒Zr‒Ba/La2O3 8.28 28.4 29.15 800 

191 Li‒none‒none/La2O3 13.55 43.24 31.34 700 

192 Co‒Ni‒Zn/La2O3 0.6 28.59 2.10 700 

193 Ni‒none‒none/La2O3 0.65 40.27 1.61 800 

194 Co‒Cs‒Cs/La2O3 1.55 43.81 3.54 750 

195 Mg‒Zn‒Pd/La2O3 1.04 21.5 4.84 750 

196 Ca‒Co‒Zn/La2O3 6.66 38.01 17.52 750 

197 Tb‒none‒none/La2O3 8.48 8.9 95.28 750 

198 Co‒Pd‒Cs/La2O3 0.63 48.42 1.30 750 

199 Pd‒none‒none/La2O3 n.d. n.d. n.d. n.d. 

200 La‒Tb‒none/La2O3 13.26 43.24 30.67 700 

201 Cs‒none‒none/La2O3 11.37 41.01 27.72 700 

202 Mn‒Pd‒Cs/La2O3 1 42.82 2.34 800 

203 Zn‒Pd‒Ba/La2O3 1.04 27.72 3.75 850 

204 Na‒Co‒Pd/La2O3 0.8 31.93 2.51 750 

205 K‒Co‒Zn/La2O3 2.07 36.95 5.60 800 

206 Cs‒Cs‒Cs/La2O3 13.91 43.87 31.71 700 

207 Li‒Ni‒Pd/La2O3 0.81 24.59 3.29 850 

208 Co‒Zn‒Pd/La2O3 0.87 24.78 3.51 850 

209 Cs‒Ba‒Ba/La2O3 16.68 46.11 36.17 700 

210 Ti‒W‒W/La2O3 11.2 43.43 25.79 700 

211 Li‒Li‒Fe/La2O3 10.75 39.77 27.03 750 

212 Fe‒Pd‒Eu/La2O3 2.81 36.57 7.68 750 

213 Na‒K‒Ce/La2O3 8.69 27.02 32.16 750 
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214 Na‒none‒none/La2O3 12.15 41.22 29.48 700 

215 Pd‒Cs‒Cs/La2O3 n.d. n.d. n.d. n.d. 

216 K‒Fe‒Cs/La2O3 8.19 34.69 23.61 700 

217 Na‒Na‒Cs/La2O3 13.14 39.86 32.97 700 

218 K‒Fe‒Pd/La2O3 1.36 36.5 3.73 750 

219 Li‒Li‒Na/La2O3 12.35 39.59 31.19 700 

220 Cu‒Cs‒Cs/La2O3 3.51 18.08 19.41 800 

221 Co-Pd-Ce/La2O3 9.34 29.96 31.17 850 

222 Mn-Mn-Pd/La2O3 1.52 35.88 4.24 750 

223 Mn-Mn-Fe/La2O3 1.24 38.55 3.22 700 

224 Mn-Ni-Ce/La2O3 n.d. n.d. n.d. n.d. 

225 Fe-Cu-Cu/La2O3 5.56 24.24 22.95 750 

226 V-Mn-Cu/La2O3 6.4 36.69 17.43 800 

227 Mn-Mn-Ni La2O3 5.56 39.97 13.9 850 

228 Li-Cu-Cu/La2O3 2.2 18.74 11.74 750 

229 Li-Li-Mn/La2O3 10.24 39.54 25.9 700 

230 Na-W-none/La2O3 8.71 27.64 31.53 700 

a The catalyst composition is expressed in the form of M1–M2–M3/Support. The three 

active elements (M1–M3) are sorted along the atomic number. 

b The best C2 yield of individual catalysts is reported together with the corresponding 

parameters. The performance of 2 catalysts was not determined due to sintering at the 

calcination temperature. The corresponding cells are filled with n.d. 

 

Table 5.5. Development of design hypotheses for TiO2-based catalysts throughout the 

active learning cycles. This table shows the catalyst library. The composition, the best 

performance, and the corresponding temperature are shown.a,b,c 

No Cat. 

C2 

yield 

(%) 

CH4 

conv. (%) 

C2 

sel. (%) 

Temp. 

(℃) 



124  

231 Li‒Li‒Li/TiO2 13.21 42.55 31.05 850 

232 Pd‒none‒none/TiO2 0.53 75.9 0.70 900 

233 W‒none‒none/TiO2 7.91 37.01 21.37 800 

234 Cs‒Cs‒Cs/TiO2 13.46 47.37 28.41 900 

235 Ni‒Ni‒none/TiO2 3.61 23.39 15.43 750 

236 Ni‒Ni‒Pd/TiO2 0.82 31.76 2.58 700 

237 Na‒Na‒Na/TiO2 12.49 44.71 27.94 900 

238 Pd‒Pd‒Pd/TiO2 n.d. n.d. n.d. n.d. 

239 Pd‒Cs‒W/TiO2 12.81 36.54 35.06 850 

240 Ti‒Y‒Ce/TiO2 12.64 43.36 29.15 750 

241 K‒none‒none/TiO2 17.03 24.65 69.09 850 

242 K‒Ni‒W/TiO2 16.6 24.81 66.91 800 

243 K‒K‒Eu/TiO2 13.3 28.44 46.77 800 

244 Mg‒none‒none/TiO2 10.99 37.47 29.33 900 

245 Ba‒Ba‒Ba/TiO2 10.63 33.02 32.19 850 

246 Pd‒Pd‒Cs/TiO2 3.22 25.46 12.65 900 

247 Cu‒none‒none/TiO2 8.89 30.4 29.24 900 

248 K‒Pd‒W/TiO2 12.83 29.47 43.54 850 

249 Ni‒Pd‒W/TiO2 4.34 28.14 15.42 850 

250 Mg‒Ca‒Pd/TiO2 1.22 13.56 9.00 700 

251 Pd‒Cs‒Ce/TiO2 1.14 27.1 4.21 900 

252 Pd‒Ce‒W/TiO2 2.46 28.38 8.67 900 

253 Ca‒Ca‒Ca/TiO2 10.8 38.94 27.73 850 

254 Na‒Pd‒Ce/TiO2 0.82 22.46 3.65 700 

255 Na‒Mo‒Cs/TiO2 11.86 38.46 30.84 850 

256 Ca‒Cu‒none/TiO2 2.52 35.39 7.12 700 

257 Li‒Li‒Mg/TiO2 7.78 33.33 23.34 750 

258 Cs‒Ce‒W/TiO2 17.53 48.31 36.29 850 

259 Li‒Cu‒none/TiO2 7.92 40.54 19.54 850 

260 Na‒K‒Cu/TiO2 7.96 40.69 19.56 850 

261 Hf‒W‒none/TiO2 7.36 43.1 17.08 850 

262 Ti‒none‒none/TiO2 10.55 39.09 26.99 850 

263 Cu‒Cu‒Cu/TiO2 7.7 41.86 18.39 850 

264 Na‒Pd‒Hf/TiO2 0.5 34.87 1.43 900 

265 Li‒Na‒Sr/TiO2 10.61 43.32 24.49 900 
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266 K‒Pd‒Tb/TiO2 0.53 23 2.30 700 

267 K‒Ce‒Hf/TiO2 17.06 47.7 35.77 850 

268 Mo‒Pd‒Cs/TiO2 8.59 34.57 24.85 800 

269 Li‒Ti‒Pd/TiO2 0.97 29.27 3.31 900 

270 Li‒Zn‒Pd/TiO2 6.47 47.03 13.76 900 

271 Ti‒Ti‒Hf/TiO2 10.19 43.24 23.57 850 

272 Ba‒Hf‒Hf/TiO2 8.26 40.09 20.60 800 

273 Pd‒Hf‒Hf/TiO2 n.d. n.d. n.d. n.d. 

274 K‒Cs‒Cs/TiO2 17.1 44.25 38.64 850 

275 Mo‒W‒W/TiO2 6.09 42.14 14.45 800 

276 K‒Mo‒Pd/TiO2 9.26 35.88 25.81 800 

277 Mo‒Mo‒Pd/TiO2 1.33 22.73 5.85 700 

278 Hf‒Hf‒Hf/TiO2 6.98 40.39 17.28 800 

279 Pd‒Ba‒Hf/TiO2 1.47 18.93 7.77 700 

280 Pd‒W‒W/TiO2 3.44 20.89 16.47 900 

281 V‒Co‒Zr/TiO2 7.2 35.53 20.26 800 

282 Mo‒Mo‒Mo/TiO2 8.03 41.97 19.13 850 

283 Pd‒Tb‒Tb/TiO2 0.59 26.24 2.25 900 

284 Pd‒Cs‒Hf/TiO2 0.89 24.95 3.57 700 

285 Cs‒Hf‒Hf/TiO2 13.52 36.78 36.76 800 

286 Tb‒Tb‒Tb/TiO2 8.96 42.5 21.08 850 

287 Ba‒W‒W/TiO2 7.41 42.26 17.53 850 

288 Mo‒Hf‒Hf/TiO2 6.41 35 18.31 750 

289 Ni‒Zn‒La/TiO2 0.83 28.1 2.95 850 

290 Mn‒Nd‒W/TiO2 9.33 40.47 23.05 850 

291 Ca-none-none/TiO2 9.7 38.03 25.51 800 

292 K-W-none/TiO2 11.13 26.56 41.9 800 

293 Cs-W-none/TiO2 13.77 43.54 31.63 850 

294 Cs-Cs-La/TiO2 14.36 42 34.19 850 

295 Fe-Cs-none/TiO2 13.19 41.69 31.65 850 

296 K-Sr-Ba/TiO2 10.47 42.52 24.62 800 

297 Na-Cs-none/TiO2 11.37 32.03 35.49 900 

298 Zr-Cs-none/TiO2 11.82 36.74 32.17 850 

299 Na-Y-none/TiO2 9.27 36.74 25.24 800 

300 Ni-Zn-La/TiO2 3.43 19.9 17.23 850 
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a The catalyst composition is expressed in the form of M1–M2–M3/Support. The three 

active elements (M1–M3) are sorted along the atomic number. 

b The best C2 yield of individual catalysts is reported together with the corresponding 

parameters. The performance of 2 catalysts was not determined due to sintering at the 

calcination temperature. The corresponding cells are filled with n.d. 

 

Table 5.6. Development of design hypotheses for ZrO2-based catalysts throughout the 

active learning cycles. This table shows the catalyst library. The composition, the best 

performance, and the corresponding temperature are shown.a,b,c 

No Cat. 

C2 

yield 

(%) 

CH4 

conv. (%) 

C2 sel. 

(%) 

Temp. 

(℃) 

301 Cs‒Cs‒Cs/ZrO2 7.89 35.21 22.42 800 

302 W‒W‒W/ZrO2 6.63 36.18 18.31 750 

303 Ba‒Ba‒Ba/ZrO2 12.53 35.13 35.67 750 

304 K‒K‒K/ZrO2 9.47 26.97 35.10 750 

305 Li‒Li‒Li/ZrO2 8.65 36.28 23.84 800 

306 Cu‒none‒none/ZrO2 8.84 29.61 29.85 750 

307 Li‒Ti‒none/ZrO2 12.10 34.82 34.76 850 

308 Mg‒Zn‒Cs/ZrO2 7.30 27.70 26.35 750 

309 Ce‒Eu‒none/ZrO2 6.74 36.14 18.65 800 

310 Hf‒W‒W/ZrO2 6.77 27.14 24.95 800 

311 Li‒Cs‒W/ZrO2 14.64 22.07 66.34 750 

312 Mg‒Eu‒none/ZrO2 6.98 33.21 21.01 750 

313 Mo‒Pd‒Pd/ZrO2 6.61 37.65 17.55 800 

314 Mn‒Zn‒none/ZrO2 7.68 32.56 23.59 750 

315 K‒Cs‒Cs/ZrO2 n.d. n.d. n.d. n.d. 

316 Mg‒Mo‒Cs/ZrO2 9.33 36.38 25.64 800 

317 Li‒Ti‒W/ZrO2 9.13 31.61 28.87 850 
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318 Cs‒Cs‒Eu/ZrO2 9.07 34.35 26.40 750 

319 K‒Y‒La/ZrO2 10.91 19.48 56.01 750 

320 Li‒Mo‒Nd/ZrO2 11.17 35.88 31.13 850 

321 Ni‒Pd‒W/ZrO2 n.d. n.d. n.d. n.d. 

322 Cu‒Zn‒Pd/ZrO2 6.64 25.97 25.60 800 

323 Li‒Ni‒Pd/ZrO2 4.34 74.92 5.73 700 

324 Li‒Pd‒W/ZrO2 7.67 40.26 18.99 900 

325 Li‒Li‒Pd/ZrO2 n.d. n.d. n.d. n.d. 

326 Pd‒Hf‒W/ZrO2 3.71 11.81 31.73 900 

327 Ni‒Pd‒Hf/ZrO2 2.05 14.45 14.33 700 

328 Hf‒Hf‒Hf/ZrO2 5.45 36.95 14.85 800 

329 Fe‒Pd‒none/ZrO2 7.61 31.13 24.48 850 

330 Zn‒Zn‒W/ZrO2 6.42 31.85 20.63 750 

331 Li‒Li‒Hf/ZrO2 9.74 32.82 29.81 800 

332 Li‒Mo‒Pd/ZrO2 7.93 32.45 24.46 800 

333 Mn‒Zr‒Pd/ZrO2 3.10 13.01 24.91 800 

334 Li‒Li‒Zn/ZrO2 8.57 33.27 25.66 850 

335 Ni‒Cu‒W/ZrO2 1.87 29.70 6.40 900 

336 Zn‒Pd‒Tb/ZrO2 4.26 29.01 14.79 700 

337 Li‒Ni‒W/ZrO2 12.24 29.81 41.15 850 

338 Cu‒Zn‒Mo/ZrO2 0.00 0.00 0.00 0 

339 Zn‒Zn‒Hf/ZrO2 6.86 28.12 24.72 800 

340 K‒Cs‒Cs/ZrO2 6.69 31.51 21.19 750 

341 Mg‒none‒none/ZrO2 6.85 41.54 16.49 800 

342 La‒none‒none/ZrO2 5.73 40.98 13.98 750 

343 Mn‒Mn‒Mn/ZrO2 5.50 38.63 14.24 800 

344 Na‒Na‒Mg/ZrO2 9.91 28.62 34.63 800 

345 Ca‒none‒none/ZrO2 6.80 27.35 24.86 800 

346 Pd‒none‒none/ZrO2 n.d. n.d. n.d. n.d. 

347 Ti‒W‒W/ZrO2 4.98 37.39 13.32 750 

348 Ti‒none‒none/ZrO2 5.35 35.48 15.08 750 

349 Ce‒Hf‒none/ZrO2 5.60 39.08 14.33 750 

350 Li‒Li‒Pd/ZrO2 0.13 24.58 0.53 700 

351 Cu‒Pd‒Cs/ZrO2 5.27 48.07 10.97 900 

352 Ni‒Ni‒Ni/ZrO2 1.08 42.18 2.56 750 
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353 Li‒Cu‒Cu/ZrO2 7.89 24.65 31.98 700 

354 Cu‒Mo‒Pd/ZrO2 7.40 27.89 26.53 850 

355 Cu‒Cs‒Cs/ZrO2 6.49 14.86 43.68 800 

356 Mo‒Mo‒Mo/ZrO2 11.24 20.76 54.14 800 

357 Cu‒Pd‒Eu/ZrO2 7.39 28.87 25.60 750 

358 Cu‒Mo‒Mo/ZrO2 8.87 32.35 27.41 850 

359 Ce‒Ce‒Ce/ZrO2 6.94 31.40 22.09 800 

360 Li‒Ca‒Ca/ZrO2 10.88 28.55 38.12 750 

361 Li‒Cu‒Cs/ZrO2 3.66 21.71 16.84 900 

362 Li‒none‒none/ZrO2 5.54 33.77 16.41 750 

363 Li‒Cs‒Cs/ZrO2 6.37 45.63 13.96 800 

364 Cs‒none‒none/ZrO2 6.27 25.65 24.43 800 

365 Li‒Ni‒Cs/ZrO2 1.44 30.84 4.66 700 

366 Ni‒Zn‒Zn/ZrO2 1.24 24.01 5.16 700 

367 Na‒Na‒Cu/ZrO2 2.60 22.28 11.67 900 

368 Fe‒Cs‒Cs/ZrO2 5.76 41.17 13.99 750 

369 Mg‒Cs‒Cs/ZrO2 13.32 43.57 30.58 800 

370 Na‒Eu‒W/ZrO2 13.09 30.38 43.10 750 

a The catalyst composition is expressed in the form of M1–M2–M3/Support. The three 

active elements (M1–M3) are sorted along the atomic number. 

b The best C2 yield of individual catalysts is reported together with the corresponding 

parameters. The performance of 4 catalysts was not determined due to sintering at the 

calcination temperature. The corresponding cells are filled with n.d. 

 

Table 5.7. Development of design hypotheses for Y2O3-based catalysts throughout the 

active learning cycles. This table shows the scores and selected features of the design 

hypotheses obtained in each individual active learning cycle. Catalyst library. The 

composition, the best performance, and the corresponding temperature are shown.a,b,c 
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No. Cat. 
C2 yield 

(%) 

CH4 conv. 

(%) 
C2 sel. (%) Temp.(℃) 

371 Fe-Cs-none/Y2O3 6.14 37.24 16.48 750 

372 V-Mn-Hf/Y2O3 6.69 37.90 17.66 800 

373 Zn-Sr-W/Y2O3 5.15 28.77 17.90 700 

374 Mn-Ni-Mo/Y2O3 2.01 31.32 6.41 750 

375 Li-Fe-Eu/Y2O3 4.35 31.87 13.66 750 

376 Y-Nd-none/Y2O3 4.15 34.03 12.20 800 

377 Mn-Y-none/Y2O3 7.48 39.91 18.75 800 

378 Cs-Ce-none/Y2O3 12.44 37.19 33.45 750 

379 Mo-Eu-W/Y2O3 5.52 39.07 14.12 800 

380 Mg-Ni-La/Y2O3 15.13 39.86 37.97 750 

381 Y-Pd-none/Y2O3 n.d. n.d. n.d. n.d. 

382 K-Zn-Zr/Y2O3 4.32 36.30 11.90 700 

383 Sr-La-W/Y2O3 5.51 28.78 19.15 750 

384 Co-Cu-Hf/Y2O3 6.46 39.83 16.22 800 

385 Li-Sr-Mo/Y2O3 7.57 39.81 19.02 800 

386 Mg-Y-Pd/Y2O3 n.d. n.d. n.d. n.d. 

387 Fe-Ni-Tb/Y2O3 3.71 32.09 11.55 700 

388 Ti-Mo-none/Y2O3 6.49 34.40 18.88 750 

389 K-Ca-Mo/Y2O3 9.33 36.28 25.71 800 

390 Zn-Hf-none/Y2O3 5.70 37.17 15.33 750 

391 Cu-Sr-Y/Y2O3 5.73 38.42 14.93 750 

392 K-K-Cs/Y2O3 12.31 39.15 31.43 750 

393 K-Pd-Cs/Y2O3 0.40 47.54 0.84 700 

394 Zn-Sr-Ba/Y2O3 8.10 37.58 21.56 800 

395 Ba-W-none/Y2O3 8.33 25.18 33.10 750 

396 Ti-Eu-none/Y2O3 9.39 35.34 26.58 700 

397 K-Mo-none/Y2O3 12.19 36.24 33.65 750 

398 Na-Ti-Fe/Y2O3 15.75 40.50 38.89 750 

399 V-Ba-La/Y2O3 6.46 38.54 16.77 800 

400 Mn-Nd-Nd/Y2O3 6.43 36.49 17.61 750 

401 Zr-Zr-Hf/Y2O3 5.91 37.98 15.55 800 

402 Fe-Fe-Zn/Y2O3 4.54 37.79 12.02 800 

403 V-Ba-Tb/Y2O3 7.80 35.89 21.74 750 
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404 Zr-Pd-Ba/Y2O3 1.13 37.48 3.00 700 

405 Ca-Mn-Fe/Y2O3 6.59 37.33 17.67 800 

406 Ni-Sr-La/Y2O3 0.48 53.28 0.91 900 

407 Nd-Tb-W/Y2O3 2.29 30.26 7.58 700 

408 Na-Co-Ce/Y2O3 6.68 37.60 17.76 750 

409 Li-Ca-Cs/Y2O3 16.02 41.13 38.95 800 

410 Mn-Zn-Zr/Y2O3 5.09 34.13 14.91 700 

411 Ca-Mo-Ce/Y2O3 5.85 41.12 14.22 850 

412 K-Hf-Hf/Y2O3 8.73 36.70 23.79 750 

413 Ni-Ba-Ce/Y2O3 1.08 37.97 2.84 700 

414 Zn-Ba-Tb/Y2O3 14.94 38.19 39.12 700 

415 Ca-Cu-Mo/Y2O3 14.63 40.97 35.71 700 

416 Ni-Pd-La/Y2O3 n.d. n.d. n.d. n.d. 

417 Na-Ti-Ba/Y2O3 6.39 36.72 17.41 700 

418 Ni-Nd-none/Y2O3 1.32 48.87 2.70 750 

419 Cu-Cs-La/Y2O3 5.57 37.50 14.86 700 

420 Mn-Co-Zn/Y2O3 2.34 32.31 7.25 750 

421 Y-Y-Tb/Y2O3 16.67 35.38 47.12 750 

422 Pd-Cs-Nd/Y2O3 0.54 46.69 1.15 700 

423 Na-Mg-V/Y2O3 7.45 39.03 19.09 800 

424 Ni-Zr-La/Y2O3 n.d. n.d. n.d. n.d. 

425 Li-Co-Nd/Y2O3 1.83 32.89 5.57 750 

426 V-V-Ce/Y2O3 10.23 36.44 28.08 750 

427 Sr-Y-Cs/Y2O3 17.09 40.95 41.74 750 

428 Mg-Ni-Cs/Y2O3 n.d. n.d. n.d. n.d. 

429 Cu-Cs-Ba/Y2O3 5.56 37.52 14.82 750 

430 K-Ni-Pd/Y2O3 n.d. n.d. n.d. n.d. 

431 Mo-Cs-none/Y2O3 10.59 39.01 27.15 750 

432 Pd-Nd-Eu/Y2O3 n.d. n.d. n.d. n.d. 

433 Fe-Sr-Y/Y2O3 6.69 35.39 18.90 750 

434 Li-Zn-W/Y2O3 5.00 28.96 17.27 750 

435 Mn-Co-Cs/Y2O3 7.23 39.49 18.30 800 

436 Mn-Pd-Pd/Y2O3 3.15 34.83 9.05 700 

437 K-Ni-La/Y2O3 1.26 35.14 3.59 700 

438 Li-Y-Mo/Y2O3 10.94 38.24 28.60 700 
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439 Mg-Zr-Mo/Y2O3 6.72 40.20 16.72 800 

440 Li-Eu-W/Y2O3 2.48 31.60 7.84 700 

441 Na-V-Mn/Y2O3 7.16 37.49 19.10 800 

442 Li-Mg-Fe/Y2O3 5.53 36.05 15.33 750 

443 Fe-Zn-La/Y2O3 2.38 34.51 6.90 800 

444 K-K-Hf/Y2O3 10.34 37.26 27.76 700 

445 Cs-Nd-none/Y2O3 14.11 39.01 36.18 750 

446 Cs-Nd-Nd/Y2O3 12.56 39.43 31.85 700 

447 Mg-V-Y/Y2O3 17.41 41.83 41.62 750 

448 Cu-Pd-Tb/Y2O3 5.97 14.96 39.87 750 

449 V-La-none/Y2O3 5.62 35.56 15.80 750 

450 Ca-Y-Y/Y2O3 15.66 40.15 39.02 750 

451 Na-V-W/Y2O3 7.56 37.68 20.05 800 

452 Li-Ti-Fe/Y2O3 15.12 39.97 37.83 750 

453 Li-Na-Tb/Y2O3 16.85 40.61 41.49 750 

454 Li-Mg-Cu/Y2O3 3.70 31.69 11.67 750 

455 K-Mo-La/Y2O3 16.60 32.48 51.10 750 

456 Pd-Ce-none/Y2O3 0.42 49.51 0.85 700 

457 V-Cu-W/Y2O3 5.47 31.85 17.19 750 

458 K-V-Cs/Y2O3 6.72 39.23 17.12 800 

459 Na-V-Tb/Y2O3 7.33 39.19 18.70 800 

460 Sr-La-Eu/Y2O3 15.52 41.53 37.37 700 

461 Mg-Mn-Zn/Y2O3 2.87 37.80 7.59 850 

462 Sr-Nd-none/Y2O3 8.82 38.88 22.69 800 

463 Ce-Tb-W/Y2O3 5.32 33.43 15.92 750 

464 Mg-Cu-Ba/Y2O3 5.66 39.44 14.34 800 

465 Mg-Ba-Ba/Y2O3 6.38 38.63 16.53 750 

466 Co-Y-none/Y2O3 6.99 37.43 18.66 750 

467 Li-K-none/Y2O3 13.87 40.15 34.54 700 

468 Ni-Ni-Y/Y2O3 2.14 36.85 5.81 700 

469 Fe-Pd-Ba/Y2O3 5.64 37.37 15.10 800 

470 Ni-Ce-Nd/Y2O3 n.d. n.d. n.d. n.d. 

471 Li-Mg-Co/Y2O3 6.43 34.61 18.56 750 

472 Ca-Ba-W/Y2O3 12.77 37.37 34.18 750 

473 Na-Ba-Nd/Y2O3 7.55 34.53 21.88 700 
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371 Cs-Ba-W/Y2O3 12.56 29.11 43.15 750 

372 K-Cu-La/Y2O3 6.63 36.00 18.41 750 

373 Ti-V-W/Y2O3 13.68 38.69 35.35 700 

374 Y-Nd-Nd/Y2O3 3.07 37.19 8.26 850 

375 K-Mo-Mo/Y2O3 18.25 38.11 47.87 800 

376 Li-Tb-none/Y2O3 5.83 35.00 16.65 700 

377 V-Pd-Hf/Y2O3 4.42 40.84 10.83 900 

378 Mg-Zr-Ba/Y2O3 10.59 36.15 29.29 700 

379 Mn-Pd-La/Y2O3 4.11 36.49 11.26 750 

380 Sr-Cs-W/Y2O3 14.84 35.91 41.34 750 

381 Mg-V-Cu/Y2O3 4.06 37.56 10.82 800 

382 Na-Sr-Mo/Y2O3 9.42 35.24 26.74 700 

383 Li-Co-none/Y2O3 1.99 34.48 5.77 700 

384 Mn-Co-Mo/Y2O3 1.42 42.79 3.32 700 

385 Cu-Mo-none/Y2O3 6.59 38.26 17.21 750 

386 Cs-Ba-none/Y2O3 14.75 40.02 36.86 700 

387 Mn-Fe-Zn/Y2O3 3.36 29.62 11.33 750 

388 Zn-Ce-Tb/Y2O3 5.96 36.86 16.16 750 

389 Ca-V-W/Y2O3 6.93 37.68 18.40 800 

390 Mn-La-Tb/Y2O3 5.07 37.91 13.38 800 

391 Mg-Mg-Ba/Y2O3 15.24 40.13 37.97 750 

392 V-Zn-Hf/Y2O3 6.36 39.10 16.27 800 

393 Li-Mn-Eu/Y2O3 6.07 38.39 15.81 800 

394 Li-Y-W/Y2O3 7.70 32.95 23.36 750 

395 Sr-Mo-Pd/Y2O3 1.52 38.37 3.96 750 

396 Mo-Pd-Nd/Y2O3 0.96 39.24 2.43 700 

397 Ti-Y-Hf/Y2O3 5.50 35.74 15.39 750 

398 Na-Na-Co/Y2O3 1.86 37.41 4.97 700 

399 Na-Ti-Sr/Y2O3 6.84 36.25 18.87 750 

400 Ni-Pd-none/Y2O3 n.d. n.d. n.d. n.d. 

401 K-Eu-Tb/Y2O3 11.76 38.91 30.23 750 

402 Mg-Mn-Co/Y2O3 1.43 41.35 3.46 700 

403 K-Pd-Ba/Y2O3 1.30 39.32 3.30 700 

404 Mn-Ni-Pd/Y2O3 n.d. n.d. n.d. n.d. 

405 Fe-Ni-Nd/Y2O3 n.d. n.d. n.d. n.d. 
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406 Zn-Hf-W/Y2O3 6.56 35.33 18.57 750 

407 Co-Sr-Ce/Y2O3 13.66 39.47 34.62 750 

 

aThe catalyst composition is expressed in the form of M1–M2–M3/Support. The three 

active elements (M1–M3) are sorted along the atomic number. 

bThe best C2 yield of individual catalysts is reported together with the corresponding 

parameters. The performance of 4 catalysts was not determined due to sintering at the 

calcination temperature. The corresponding cells are filled with n.d. 

 

 

Figure 5.2. This figure presents a comparative histogram of C2 yield (%) for various 

support types used in catalytic reactions. Each line represents a different support type, 

identified by color and line style as indicated in the legend. The x-axis shows the range 

of C2 yield (%) values, while the y-axis displays the frequency, or the number of 

occurrences within each interval. The histogram reveals that Y2O3 has a prominent peak 
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around the 5% yield range, suggesting a higher frequency of occurrences at lower yields. 

In contrast, BaO shows a broader distribution with a peak around 15-20%, indicating a 

higher yield range compared to other supports. This comparison highlights the distinct 

yield profiles associated with each support type, illustrating their varying effectiveness in 

achieving C2 yield in catalytic processes. 

 

 

Figure 5.3. This figure presents a comparative histogram of CH4 conversion (%) for 

various support used in catalytic reactions. Each line represents a distinct support, 

identified by color and line style as shown in the legend. The x-axis displays the range of 

CH4 conversion (%) values, divided into specific intervals, while the y-axis represents the 

frequency (number of occurrences) within each interval. The histogram reveals that Y2O3 

shows a significant peak around the 40-45% conversion range, indicating a higher 

frequency of CH4 conversion within this interval. BaO exhibits a broader conversion 

range, with notable occurrences spanning from 30% to 40%. This comparison 
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underscores the unique conversion profiles of each support type, highlighting differences 

in their catalytic effectiveness for CH4 conversion. 

 

Figure 5.4. This figure presents a comparative histogram of C2 selectivity (%) for various 

support types used in catalytic reactions. Each line represents a distinct support type, 

identified by color and line style as indicated in the legend. The x-axis displays the range 

of C2 selectivity (%) values, divided into defined intervals, while the y-axis represents the 

frequency (number of occurrences) within each interval. The histogram reveals that Y2O3 

exhibits a prominent peak around 15-20% selectivity, whereas BaO demonstrates a 

broader selectivity distribution, spanning the range of 35-55%. This comparative view 

highlights the distinct selectivity profiles associated with each support type. 

 

5.4. CONCLUSION 
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In this chapter, the evaluation results of 490 catalysts were summarized across six 

supports: BaO, CaO, La2O3, TiO2, Y2O3, and ZrO2. These catalysts were selected either 

randomly or through Farthest Point Sampling (FPS) based on feature models generated 

by Automatic Feature Engineering (AFE). By analyzing the performance distributions 

and compositions of the top catalysts for each support, several insights into the design 

and optimization of OCM catalysts were obtained. 

The findings highlight the distinct advantages of specific supports in the oxidative 

coupling of methane (OCM). Among them, BaO demonstrated a balanced performance 

across C2 yield, CH4 conversion, and C2 selectivity, suggesting its suitability as a 

benchmark support material. Notably, the high C2 yield observed in BaO-based catalysts 

underscores its strong potential for C2 hydrocarbon production. In contrast, supports such 

as ZrO2 exhibited efficient CH4 conversion but lower C2 selectivity, indicating that not 

all supports perform optimally across all metrics. For other supports, the trend was split 

into two. 

The study also revealed that the choice of elements within catalyst compositions 

significantly affects performance. For instance, catalysts containing Ba and La displayed 

favorable activity, especially when paired with supports that provided an effective 

balance of basicity and redox properties. This balance proved essential for enhancing both 

methane conversion and C2 product selectivity, with Ba-enhanced catalysts showing 

particularly promising results in these areas. 

The use of high-throughput experimentation and catalyst informatics provided a 

systematic and data-driven approach to catalyst design, allowing for rapid and efficient 

exploration of catalyst compositions. This approach enabled the identification of 

promising design hypotheses for maximizing performance metrics in OCM. The ability 
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to predict and select catalysts based on data-driven models, as demonstrated by the AFE 

and FPS approach, marks a significant advancement in optimizing OCM catalysts. 
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Chapter 6 

General conclusion 
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The following is a summary of the work conducted in each chapter. 

In Chapter 2, we applies an adaptive design loop to BaO-supported catalysts, 

generating a validated design hypothesis over four cycles. It was also demonstrated 

that the system has the ability to accurately predict highly efficient catalysts.  

In Chapter 3 this approach is expand to multiple supports (BaO, CaO, La2O3, TiO2, 

ZrO2), revealing distinct design patterns, with single-element dominance (e.g., La on 

BaO) and multi-element combinations (e.g., alkaline earth metals with Cs on CaO), 

highlighting unique design rules for each support.  

In Chapter 4, active learning efficiency was explored to achieve high-accuracy 

learning with smaller datasets. It was tested whether design hypotheses from the five 

supports in Chapter 3 could guide predictions for Y2O3 supports. This approach 

confirmed the transferability of design insights across supports. 

Chapter 5 summarizes the performance of the catalysts evaluated in this thesis. 

I believe that the research conducted in this thesis highlights the advantages of applying 

catalyst informatics based on the elemental substitution strategy for catalyst development. 

This study provides a novel direction in catalyst research and development, with the 

potential to transform approaches. The proposed flamework has broad applicability across 

various catalyst systems. Further advancement of this research is expected to enhance the 

discovery of optimal compounds, enabling their rapid identification for a wide range of 

reactions within a short timeframe. To further realize this potential, it will be essential to 

develop methods for extracting information from a broader range of reactions and 

optimizing the transfer of relevant information between systems.
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Supporting information 

Table S1. XenonPy features used and their meanings.1 
 

feature description 

period Period in the periodic table 

atomic_number Number of protons found in the nucleus of an atom 

mendeleev_number Atom number in mendeleev’s periodic table 

atomic_radius Atomic radius 

atomic_radius_rahm Atomic radius by Rahm et al 

atomic_volume Atomic volume 

atomic_weight The mass of an atom 

icsd_volume Atom volume in ICSD database 

lattice_constant Physical dimension of unit cells in a crystal lattice 

vdw_radius Van der Waals radius 

vdw_radius_alvarez Van der Waals radius according to Alvarez 

vdw_radius_batsanov Van der Waals radius according to Batsanov 

vdw_radius_bondi Van der Waals radius according to Bondi 

vdw_radius_dreiding Van der Waals radius from the DREIDING FF 

vdw_radius_mm3 Van der Waals radius from the MM3 FF 

vdw_radius_rt Van der Waals radius according to Rowland and Taylor 

vdw_radius_truhlar Van der Waals radius according to Truhlar 

vdw_radius_uff Van der Waals radius from the UFF 

covalent_radius_bragg Covalent radius by Bragg 

covalent_radius_cordero Covalent radius by Cerdero et al 

covalent_radius_pyykko Single bond covalent radius by Pyykko et al 

covalent_radius_pyykko_double Double bond covalent radius by Pyykko et al 

covalent_radius_pyykko_triple Triple bond covalent radius by Pyykko et al 

covalent_radius_slater Covalent radius by Slater 

c6 C_6 dispersion coefficient in a.u 

c6_gb C_6 dispersion coefficient in a.u 

density Density at 295K 

proton_affinity Proton affinity 

dipole_polarizability Dipole polarizability 

electron_affinity Electron affinity 

electron_negativity Tendency of an atom to attract a shared pair of electrons 

en_allen Allen’s scale of electronegativity 

en_ghosh Ghosh’s scale of electronegativity 

en_pauling Pauling’s scale of electronegativity 

gs_bandgap DFT bandgap energy of T=0K ground state 

gs_energy DFT energy per atom (raw VASP value) of T=0K ground state 

gs_est_bcc_latcnt Estimated BCC lattice parameter based on the DFT volume 

gs_est_fcc_latcnt Estimated FCC lattice parameter based on the DFT volume 

gs_mag_moment DFT magnetic momenet of T=0K ground state 

gs_volume_per DFT volume per atom of T=0K ground state 

hhi_p Herfindahl−Hirschman Index (HHI) production values 
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hhi_r Herfindahl−Hirschman Index (HHI) reserves values 

specific_heat Specific heat at 20°C 

gas_basicity Gas basicity 

first_ion_en First ionisation energy 

fusion_enthalpy Fusion heat 

heat_of_formation Heat of formation 

heat_capacity_mass Mass specific heat capacity 

heat_capacity_molar Molar specific heat capacity 

evaporation_heat Evaporation heat 

linear_expansion_coefficient Coefficient of linear expansion 

boiling_point Boiling temperature 

brinell_hardness Brinell Hardness Number 

bulk_modulus Bulk modulus 

melting_point Melting point 

metallic_radius Single-bond metallic radius 

metallic_radius_c12 Metallic radius with 12 nearest neighbors 

thermal_conductivity Thermal conductivity at 25 °C 

sound_velocity Speed of sound 

vickers_hardness Value of Vickers hardness test 

Polarizability Ability to form instantaneous dipoles 

youngs_modulus Young’s modulus 

poissons_ratio Poisson’s ratio 

molar_volume Molar volume 

num_unfilled Total unfilled electron 

num_valance Total valance electron 

num_d_unfilled Unfilled electron in d shell 

num_d_valence Valance electron in d shell 

num_f_unfilled Unfilled electron in f shell 

num_f_valence Valance electron in f shell 

num_p_unfilled Unfilled electron in p shell 

num_p_valence Valance electron in p shell 

num_s_unfilled Unfilled electron in s shell 

num_s_valence Valance electron in s shell 

 

 

 

Reference 

(1) Yoshida, R. XenonPy Is a Python Software for Materials Informatics. 2018. 

 

 


