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Abstract

In this thesis, the elastic and plastic responses of gold nanocontacts (NC) was invesgated by
microscopic nanomechanical measurement method (MNMM). Specifically, for the elastic
response, we estimated the local Young's modulus of the internal local regions of the Au NCs.
For the plastic response, we estimated the critical resolved shear stress (CRSS) required for slip
to occur in the Au NCs. The Au NCs were fabricated using our developed in situ TEM holder,
which is equipped with a quartz length-extension resonator (LER) as a force sensor for directly

evaluating the force gradient (spring constant).

For nanocrystals, the Young's modulus exhibits both orientation dependence and size
dependence. In devices made from nanomaterials, distribution of local Young's modulus is non-
uniform. It is important to measure the local Young's modulus of nanocrystals. Our approach is
based on the idea that under uniform shape and size conditions, a material with uniform Young's
modulus will undergo uniform deformation under stress. However, if the Young's modulus is
non-uniform, the deformation in different regions will vary. By measuring the local strain and
its ratio to the overall strain, we can estimate the local Young's modulus for each region. Using
our self-developed in situ TEM holder, we stretched Au NCs and observed their crystal structure
through TEM, precisely measured the evolution of lattice spacing to obtain the local strain.
Notably, the pixel size of the CCD we use is approximately 25 pm, while the maximum elastic
elongation of the Au lattice is less than 10 pm, much smaller than the size of a single pixel. As
a result, traditional methods cannot capture the stretching of the Au lattice. We fully utilized the
large number of pixels in the TEM images and assumed that the TEM intensity follows a
Gaussian distribution, enabling sub-pixel measurement of the Au lattice positions. In this way,
we obtained the elongation of local regions during stretching. Additionally, we directly
measured the force gradient (spring constant) applied to the Au NCs using FM method, and

with the geometric information observed from TEM, we successfully estimated the local



Young's modulus and studied its size dependence.

When the amount of stretching exceeds the material's elastic limit, it transitions from elastic
deformation to plastic deformation. In nanocrystals, plastic deformation primarily occurs in the
form of slip, and the necessary shear stress required for slip to occur in the slip direction is
called as the CRSS. For bulk materials, the yield limit can be estimated by measuring the stress-
strain curve. However, for nanomaterials, both stress and strain are extremely small, making
direct measurement very difficult. We captured the energy dissipation associated with plastic
deformation to estimate the maximum elastic deformation of Au NCs. Using the geometric
information observed through TEM and the mechanical response obtained from FM method,
we estimated the yield stress of Au nanocontacts with various size and orientation. For [110] Au
NCs, with conductance values of 60 G, and 30 Gy, the yield stress was 2.0 + 0.1 GPa,
regardless of size. In contrast, for [111] Au NCs with conductance of 30 G, the yield stress was
3.0 £ 0.1 GPa.Considering the partial slip system in FCC metals, we found that the Schmid
factor for [110] direction Au nanocontacts is V2/3 (~ 0.47), the CRSS was calculated to be
0.94 + 0.1 GPa. Similarly, for [111] direction Au nanocontacts, the Schmid factor is
2V2/9 (= 0.31), yielding an estimated CRSS of 0.94 + 0.1 GPa. These two results are
consistent. Therefore, we conclude that the CRSS for the { 111}<112> slip system in AuNCs

is 094 + 0.1 GPa.

In conclusion, a method for estimating the elastic and plastic responses of nanomaterials has
been proposed. We studied Au NCs as an example, and our results had shown unique properties
from bulk Au. This method is expected to be improved by introducing aberration-correct device
to obtain better TEM resolution. The understanding of mechanics in atomic scale provide
essential information for fundamental understanding and applications such as atomic scale

nanodevices.

Keywords: nanomechanical, in-situ TEM, local Young's modulus, CRSS, dissipation energy.
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Chapter 1 Introduction

Introduction

This chapter introduces the background of this study. Section 1.1 presents the unique
properties of nanomaterials and explains the necessity of studying mechanical
properties at the nanoscale. Due to limitations in experimental techniques, early studies
on the mechanical properties of nanomaterials were demined in theoretical and
simulation levels. Section 1.2 reviews previous experimental studies on the mechanical
properties of nanomaterials, highlighting advancements and limitations in previous
experimental methods, and discusses the advantages and necessity of using in situ

measurement techniques.

1.1 Mechanical properties of nanomaterials

Nanomaterials (particularly with sizes below 10 nm) have attracted wide attention
due to their potential in nanoscience and nanotechnology[l-3]. Nanomaterials are
reported to have unique and novel physical and chemical properties, such as high
stiffness, orientation dependency, excellent thermal and electrical conductivity[4—8].
These unique properties of nanomaterials have given them potential in applications as
functional components in catalysts and nanoelectromechanical systems (NEMS) and so
on[8—10]. Among these unique properties, the mechanical properties of nanomaterials
have garnered significant attention due to their properties can be modulated by strain
or stress during their application. However, the mechanisms behind the unique
mechanical properties of nanomaterials, particularly how their properties are

modulated, still remain unclear. Having a deeper understanding of the mechanical



properties of nanomaterials is crucial for the design and optimization of nanoscale
devices. The nanomaterials have a very high surface-to-volume ratio and ultra small
size, leading to surface effects and quantum confinement effect. Therefore, different
with bulk counterparts, the nanomaterials show very unique and unpredictable
mechanical properties, and have attracted significant research interest. In the early
stage, due to the limitation of experimental technology, simulation and computational
methods dominate the research on nanomaterials [11-15]. The deformation mechanisms
of metallic nanowires with diameters smaller than 100 nm were analyzed using first-
principles calculations and molecular dynamics methods. The study revealed that
nanowires can deform through various ways, such as slip via perfect dislocation, partial
dislocation, and the formation of deformation twins. The competition among these
deformation ways is primarily governed by the Schmid factor and material properties.
These simulations demonstrated that metallic nanomaterials exhibit exceptionally high
strength, and predicted theoretically that their strength may have a significant
dependence on temperature and geometry[15]. However, the conclusions obtained from
simulations and calculations are strongly dependent on the choice of models and
parameters, and differing selections may even lead to opposite results. Zhou et al.
studied the Young’s modulus of copper (Cu) as an example of face-center-cube (FCC)
metal with different approaches, and their results have shown oppsite size dependency
(as shown in Figure 1.1): when using embedded atom method (EAM), the Young’s
modulus decrease while reducing the size; however, in the case that using Lennard-
Jones (L-J) potential, the Young’s modulus increases with size decreased[16]. This

highlights the emergency need for reliable experimental evidence to clear these conflics.



1.7}

16}
5 — EAM Potential
159V - L-J Potential

14}
1.3}F
1.2}
1.1F
T0E s ——e——re—s o
09F ~ . | | | | | o
0 5 10 15 20 25 30 35 40
Number of Layers

Y/§'7bulk

Bulk

Figure 1.1 Zhou et al. obtained oppsite size denpency of Young’s modulus by
choosing embedded atom method (EAM) potential and Lennard-Jones (L-J)

potential[16].

1.2 Previous experimental studies on the mechanical properties of
nanomaterials

With the development of advanced microscopy techniques such as scanning electron
microscopy (SEM), atomic force microscopy (AFM), and transmission electron
microscopy (TEM), experimental attempts to study the properties of nanomaterials
have appeared[17-21]. Greer et al. studied the mechanical properties of Au nanopillars
with diameters of hundreds of nanometers[22]. As illustrated in Figure 1.2 (a), they
grew [001]-oriented Au on a MgO substrate and fabricated the Au nanopillars using
focused ion beam (FIB) milling. They performed uniaxial compression tests on the
nanopillars using a flat punch and measured the compressive stress, strain, and stiffness
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of the pillars. Their results, as shown in Figure 1.2 (b), revealed a size-dependent
stiffness, indicating that the stiffness of the nanopillars increases as their diameter

decreases.
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Figure 1.2 (a) SEM image of the Au nanopillar. (b) Size dependency of stiffness by

Greer et al.[22].

Wu et al. investigated Au nanowires with diameters ranging from 40 to 250 nm using
an AFM-based method[23]. In their experiments, both ends of nanowires are fixed, a
cantilever was used to bend the nanowires at their midpoint. Their results showed that
the Young’s modulus of the Au nanowires is independent of the diameter within this
size range, as shown in Figure 1.3. Hoffmann et al. investigated the mechanical strength
of silicon (Si) nanowires grown by the vapor—liquid—solid (VLS) method[24]. These
nanowires had diameters ranging from 100 to 200 nm and a typical length of 2 um. In
the experiments, one end of the silicon nanowires was fixed to the grown substrate, and
an AFM tip applied a load to the free end, bending the nanowires. The study revealed
that the average strength was approximately 12 GPa, which corresponds to 6% of the

Young's modulus of Si along the nanowire direction.
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Figure 1.3 (a) Schematic of fixed wire in a lateral bending test with an AFM tip by
Wu et al. (b) SEM image of a Au nanowire secured by Pt lines deposited through
electron-beam-induced deposition, with scale bars of 500 nm. (c¢) Young’s modulus

values measured for Au nanowires ranging from 40 nm to 250 nm in diameter[23].

For nanomaterials with dimensions below 100 nm, direct force measurement remains
challenging. Previous studies utilized an integrated TEM-AFM system based on Si
cantilevers to estimate the loading force on nanowires. Y. Lu et al. developed a TEM
specimen holder to perform in situ tensile testing on Au nanowires (Figure 1.5)[25].

During nanowire elongation, AFM probe deflection was employed to quantify the
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loading force, while TEM imaging simultaneously captured real-time structure
evolution. The strain-stress curve was obtained during the tensile testing. However, the
force measurement was relay on the deformation of Si cantilever, due to the individual
variation in the cantilever's Young’s modulus, the measurement accuracy is low for

microforces at the nN level.
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Figure 1.4 (a) TEM combined with AFM based on Si-cantilever. (b)TEM images of

Au nanowire during the tensile test. (c) Strain-stress curve of Au nanowire[25].

TEM (or SEM) combined with Micromechanical Devices (MMDs) has also been
applied in experimental approaches for loading force measurement. As shown in Figure
1.5(a), Zhang et al. developed a pull-to-push chip, where a Si nanowire was placed
across a gap in the chip[26]. By pressing the chip with a punch, the gap widened,
stretching the Si nanowire. As shown in Figure 1.5(b), the tensile process of the Si
nanowire can be observed using TEM. In their experiment, the Si nanowires had a
diameter of approximately 100 nm. This method is applicable not only under SEM but
also under an optical microscope. However, due to the significant height difference

between the chip gaps (typically >100 nm), this effect becomes non-negligible for



smaller samples (Figure 1.5(c)). Therefore, more suitable mechanical measurement

methods are required for samples at the tens of nanometers or even nanometer scale.

(b)

(©)

Large height difference (>100nm)

Figure 1.5 (a) Pull-to-push chip with a Si nanowire was placed across a gap in the
chip. (b)TEM images of tensile process of Si nanowire[26]. (¢) Schematic diagram of

the chip gap height difference.

1.3 Purpose

The purpose of this study is to investigate the mechanical response of Au

nanocontacts, including both elastic and plastic response. As shown in the figure, the



two localized regions within the red box exhibit significant size differences. Due to the
size effect in nanomaterials, I hypothesize that these regions have different local
Young’s moduli. Estimating the local Young’s modulus is crucial for the design of
nano-devices, such as NEMS. Therefore, the first purpose of this study is to estimate

the local Young’s modulus of nanomaterials.
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Figure 1.6 (a) One non-uniform size specimen. (b) Size effect on nanomaterials[27].

Figure 1.7(a) shows a typical strain-stress curve of metal materials. After reaching
the yield stress, it starts to have plastic deformation. For the case of FCC crystals, slip
always occurs on the {111} atomic planes once the loading stress exceeds the elastic
limit, regardless of the loading direction (Figure 1.7(b)). Whether plastic deformation
takes place depends on whether the resolved shear stress on the slip plane reaches the
critical threshold. The critical resolved shear stress (CRSS) is defined as the necessary
stress in the slip direction to initiate slip deformation. The second objective of this

study is to measure the CRSS of Au nanomaterials.
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Chapter 2 Methodology

Introduction

This chapter introduces the experimental methods and principles. Section 2.1
discusses the birth of TEM, its importance in nanoscience research, as well as its
structure and operating mode. Section 2.2 explains the principle and experimental setup
for using the FM method to directly measure the sample's spring constant (force
gradient). Section 2.3 introduces the method for capturing energy dissipation in
nanocrystals during deformation. By modeling the interaction of the sample with the
LER sensor as an external force, the non-conservative force components during the
oscillation process are considered as the source of energy dissipation. Energy
dissipation is directly captured through changes in the driving voltage used to excite
the LER oscillation. Section 2.5 describes the working principle of the phase-locked

loop used to control LER oscillation.

2.1 Transmission electron microscopy (TEM)

The invention of the optical microscope greatly advanced the study of cells, bacteria,
and physiological functions of the human body. However, by the 1920s, the optical
microscope could no longer meet the research needs. An optical microscope can
achieve a magnification of approximately x500 to x1000 by improving the quality of
optical lenses, but cannot achieve the magnification of x2000. This limitation is due to
the fact that the magnification of conventional optical microscopes is restricted by the
wavelength of visible light. Optical microscopes use visible light to observe objects.

According to theoretical calculation, the resolution of a conventional optical

10



microscope does not exceed 200 um. Researchers improved resolution by reducing the
wavelength of the light source, such as using ultraviolet rays as beam source. They
developed ultraviolet microscopes, however, the magnification is only about two to
three times that of conventional optical microscopes. To study the structure of materials

at a higher level, it is necessary to create microscopes with higher resolution.

In 1927, de Broglie published a paper revealing the wave nature of electrons,
showing that the electrons are also a light with wavelength of is several orders of
magnitude smaller than that of visible light[29,30]. This discovery inspired the
exploration of using electrons as a light source, leading to a rapid surge in related
applications. The Transmission Electron Microscope (TEM) uses electron beams
instead of visible light as its light source, achieving a magnification of 1 million times
with an acceleration voltage of 200 kV. TEM is an essential tool for evaluating
nanometer-scale materials and is widely used in understanding the physical properties

of nanomaterials such as semiconductors, biomaterials, and metals.

Since its invention in the 1930s, the TEM has undergone significant improvements
and functional advancements. By the 2000s, the invention of spherical aberration
correction equipment allowed TEM to achieve atomic-level resolution. Recently,
techniques have been developed to install force sensors, such as cantilevers and AFM
probes into specimen holders, enabling simultaneous mechanical measurement while
observating specimen structures. The main purpose of using TEM in this study is to
obtain real-space images to understand the crystal structure of specimens. TEM can
also be used to obtain electron diffraction images of periodic regions, as well as to

observe in situ chemical reactions and biological materials.
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2.1.1 Structure of Transmission Electron Microscope (TEM)

In an electron microscope, instead of visible light, electron beams emitted from an
electron gun, and these beams are focused by electromagnetic lenses to adjust the light
path to focus on the specimen. The electron gun can be categorized based on the method
of electron emission into types such as thermionic emission, field emission, thermal

field emission, and Schottky emission.

A thermionic emission electron gun heats a cathode, such as tungsten or LaBs, to
release thermal electrons. For field emission electron gun, places a sharply pointed
tungsten cathode in a strong electric field, utilizing the tunneling effect to emit
electrons from the cathode tip. Field emission guns have advantages over thermionic
emission guns, offering lower current levels and higher brightness. Furthermore,
electrons are emitted from a tiny area on the cathode, resulting in minimal variation in
initial velocity, so the electron beam has a stable wave length, this can improve the

imaging resolution.

For the Schottky electron gun, by heating the emitter to a temperature lower than
that required for effective thermionic emission (~1800 K) while applying a strong
electric field to have the Schottky effect to release electrons. Generally, for the
thermionic emission, Schottky, and field emission electron guns, the brightness

increases with both the electron energy width and beam diameter decrease.

The electron beam used in TEM is typically accelerated by a voltage ranging from
tens to hundreds of kV. Similar to optical microscopes, the image resolution of a TEM

can be approximated by the following Rayleigh criterion[31]:

g(x) =%fa;f(x—x’)dt 2.1

Here, A represents the wavelength of the electron beam, p is the refractive index of

12



the medium, and f is the acceptance angle of the objective lens. Since Equation (2.1)
represents the resolution limit, a smaller 4 results in higher image resolution. In the
case of a TEM with an accelerating voltage of 200 kV, the wavelength of the electron
beam is 0.00251 nm, which is shorter than the diameter of an atom, thereby achieving

atomic-scale resolution.

As shown in Figure 2.1, a comparison is made between the structure of a typical
TEM[32] (Figure 2.1(a)) and that of an optical microscope (Figure 2.1(b)). A typical
TEM consists of an electron gun, a vacuum system, electromagnetic lenses, a

goniometer, apertures, and an image recording system.

The electron gun acts as the source of the electron beam. The vacuum system is used
to maintain a high vacuum in the TEM chamber, reducing the effect of gas molecules
on both the electrons (by increasing their mean free path) and the specimens (by
minimizing electron-beam-induced deposition). The electromagnetic lenses in the TEM
are used for electron focusing and, as shown in Figure 2.1 (a), are divided into

condenser lenses, objective lenses, intermediate lenses, and projector lenses.

The goniometer is used to fix the sample holder within the TEM chamber and allows
mechanical movement of the sample in three axes, enabling the generation of the image
or diffraction pattern of the sample through the objective lens. Various types of sample
holders can be inserted into the goniometer. Apertures are used to filter the electron
beam, and the image recording system is used to capture the image generated by the

electrons.

13
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Figure 2.1(a) Schematic structure of a typical TEM. (b) Schematic structure of a

typical optical microscope.

2.1.2 TEM Imaging Modes
TEM imaging is performed using transmitted electrons. The basic imaging process

is as follows:

i. The electron gun emits and accelerates electrons, which are then focused by the

condenser lenses.
ii. The incident electrons interact with the sample, with some electrons passing
through or being scattered by the sample.

iii. These transmitted/scattered electrons are focused by the objective lens, and with

the assistance of intermediate and projector lenses, a TEM image is obtained.
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TEM has two operating modes, imaging mode and diffraction mode, as shown in
Figure 2.2(a) and (b). The diffraction pattern is formed on the back focal plane by the
objective lens, while the image is generated on the image plane (referred to as the
intermediate image). The focus of the intermediate lens can adjust the image or
diffraction pattern shown on the second intermediate image, and then it can be
magnified by the projection lens. Therefore, imaging and diffraction modes are
controlled by the intermediate lens. Finally, the image or diffraction pattern is
displayed on a screen and recorded by a camera. In this study, TEM images representing
the atomic structure of the sample are obtained using the imaging mode and recorded

with a CCD camera.

For obtaining the atomic structure of the sample, high-resolution transmission
electron microscopy (HR-TEM) is used in the experiment. The imaging contrast of HR-
TEM is caused by the interference between the scattered electron wave and the
transmitted electron wave. When the sample is extremely thin, the amplitude of the
incident electron wave does not change, but the phase of the wave slightly changes
after interaction. In this case, the interaction between the sample and the incident
electron wave, along with the interference of the transmitted electron wave, results in
a phase shift. This phase shift is relative to the peak of the incident wave at the position
of the atomic columns. By recording the amplitude of the phase interference, HR-TEM
images are captured with a CCD camera, representing the projected structure of the

sample.

15
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Figure 2.2 (a) Imaging mode of TEM. (b) Diffraction mode. By adjusting the
intermediate lens, the imaging or diffraction pattern is displayed on the plane of the

second intermediate image when the imaging or diffraction mode is adjusted.

2.2 Method for measuring spring constant

In this study, we used a Length Extension Resonator (LER) as mechanical sensor to
detect mechanical responses based on the Frequency Modulation (FM) method. LER
has high spring constant of 10° N/m, so it can be oscillated with a low oscillation
amplitude of about 30pm. With such low amplitude, the TEM image will not be blurred
due to LER oscillation. The LER used in this study is a STATEK (3EXW-1073) model
(as shown in Figure 2.3), with a spring constant of approximately 9.2x1059.2x10° N/m

per rod and a resonance frequency around 1 MHz.
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The rod-shaped resonator (approximately 2.7 mm in length) in LER is made of quartz
and serves as the actual oscillate part. On both sides of the rod, gold electrodes are
deposited so we can apply voltage on it. Hereafter, this rod-shaped resonator will be

(13

referred to as the “rod.” Since quartz is spontaneously polarized, it exhibits the
(inverse) piezoelectric effect. As shown in Figure 2.3, the gold electrode on both sides

of the rod is the same, here we call them as Electrode A and Electrode B depending on

their function. Electrode A is used for electrical excitation; when an AC voltage is
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applied, the inverse piezoelectric effect causes the polarized quartz lattice to experience
an electric field force, generating stress along the rod axis. Consequently, the rod
deformed in the frequency of the applied voltage (as shown in Figure 2.4). Due to this
deformation of the rod, induced charges appear on Electrode B. This induced charge is
proportional to the oscillation amplitude (in length). We measured the oscillation
amplitude in experiment, and studied relationship between it to this induced charge on

Electrode B. Detailed methods are provided in Chapter 3.

Next, we will use an oscillation model to explain the principle of using the LER as a

sensor to measure the spring constant of the sample through the FM method.

VA e

Figure 2.5 Oscillation model of LER rod.

Consider the oscillation model of the LER shown in Figure 2.5. Let the spring
constant (force-displacement gradient) of the support at the center of the rod be k.,
and its displacement from the equilibrium position be q.. The displacements of the two
rods from their equilibrium positions are q; and q,. The spring constant and effective
mass of each rod are represented as k;pr and u*, respectively. An external force Fig
acts on the left rod, with a displacement gradient k;;. As will be discussed later, if a

metallic NC is attached there, this gradient corresponds to the equivalent spring
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constant of the metallic NC. From this model, we can derive following equations of

oscillation:
(.0%q 2.2
U 9t2 = —ktsqr — kier(q1 — 9c)
. a2612
i b5 = —kier(q2 — qc)

Considering the force balance at the central point ¢, the following relationship can

be obtained:

—kcqc = —kipgr(q1 — ac) — kier(q2 — a¢)

qc = q1 — Q>
c = —
k
2+ =5
kier
2.3
Kk is defined as follow:
o 1 2.4
=—
2+
kier
then we can obtain w3 = kZER , and equation (2.2) can be rewritten as:
(9%q, _ 2<kt5+1 ) e 2.5
atz - Wo kLER K41 WoK(q;
0%q,
gz = W0k — w5 (1~ 1942
here, if we make the following definitions:
kg +1—x Cx 2.6
M = 2| Kier
—K 1—-x

19



Q= (CI1) 2.7

then, equation (2.5) can be expressed in matrix form as follows:

92 M 2.8
¢ =~Me

assuming the displacement of the rods follows simple harmonic oscillation, it can be

expressed as q; = Acos(w;t — ¢;). Furthermore, if the frequencies of the two rods are

same, i.e., —W = w; = W,, then we have:
02 5 M 2.9
—_— = —W ——
3¢z Q Q

2

Therefore, w* is the eigenvalue of M with Q as the eigenvector. From det det(M —

w?E) = 0, we obtain:

2 2.1
kkts +1—K—oo—2 - K 0
LER wg _
w? =0
—K l-xk——
Wo

2.11

k
0i = 0f <i+1—K>+ ()2 4 K2
LER

The frequencies indicated by the plus and minus signs correspond to the resonant
oscillate in opposite phase and in phase, respectively. In the limit of k;; = 0, w2 = w3,

w? = (1 —2K)w3. x including the spring constant k., of the beams fixing part appears
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only in the solution of the same phase. This is because when the beam vibrates in the
opposite phase, the force applied to the fixing part is canceled. Since the oscillation of
the opposite phase is used in this study, w2 is expressed as w? and will be discussed
below. When the spring constant of the beam is sufficiently larger than the spring

constant of the external force (k;gg > kts), We can obtain:

k k
oozzooz{< L +1—K)+K}=w2( L +1)
O W\2ker O\2kgr

©~w ( Kis +1> 2.12
- 0 4'kLER

Therefore, the relationship between the external force gradient (equivalent spring

constant) ks and the frequency shift of the LER Af is expressed as follows:

ks 2.13

1
Af = — (0 — wg) = fo

The effective spring constant of the LER is shown to be 2 time of the equivalent spring

constant of one rod.
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2.3 Method for measuring energy dissipation

L L/ q

KLER knc
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Figure 2.6 LER oscillation model.

To estimate the energy dissipation caused by internal friction within the LER and
our specimen NC, we considered the model shown in Figure 2.6. For simplicity, we
focus on the left rod of the LER to which the NC is connetcted. Let g represent the
displacement of the rod from its equilibrium position on the left side, with y* denoting
effective mass. Here, k;zz and ky. are the spring constant of the LER and NC,
respectively. Fpies 1gr (in blue color) is the dissipative force inside the LER due to
internal friction. F (in red color) is the force that driving the LER oscillation, it is
caused by the driving voltage. From this model, we derived the following motion

equation:

. 0%q 2.14
u W + kigrq + kncq + Fpiss Ler = F

Generally, the energy dissipation Diss gz produced in one oscillation cycle can be

estimated by the integral of F with respect to displacement q:
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DiSSLER = deq
2.15

d%q
= jgﬂ*ﬁ + kierq + kncq + Fpiss Ler A9
= jg Fpiss Ler dq

a2 . . : .
here, u* a_tz’ k;rrq and kycq are all conservative terms, so their loop integral is 0,

then the dissipation is only determined by the dissipative force inside LER. However,
we do not know the Fp;es gr directly, so we turn to estimate the energy dissipation

through the definition of the quality factor Q.

stored energy 2.16

=2 X
¢ d dissipation

here, the stored energy including the potential energy stored in the spring and the
kinetic energy of the oscillator within the oscillation model illustrated in Figure 2.6,
therefore, stored energy ~ k zrAmp?/2. Here, Amp is the oscillation amplitude of

LER. The energy dissipation Diss;gr is determined by:

kLERAmpz 2.17
Diss =27 2 =T kLERAmpZ
LER — -
Q Q

/LSS q

—
N
kier kne KN
 SVAVAVAVAVA Tk VAVAVAVIN
U g
N
LY
77777777 T — N

+ F])l',xs LER F
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Figure 2.7 LER oscillation model, where the sample NC also exhibits energy

dissipation.

Next, consider the scenario where the sample NC also exhibits energy dissipation, as
illustrated inFigure 2.7. Under the condition that other parameters such as amplitude
and frequency remain unchanged, the energy dissipation from NC absorbs a portion of
the oscillation energy. Therefore, an additional driving voltage AV is required to
compensate for this energy loss and maintain the oscillation of LER. Specifically, in
the absence of energy dissipation from NC, the driving voltage for LER is V{; however,
when energy dissipation from NC is present, the driving voltage for LER needs to be
increased by an additional voltageAV, resulting in a total driving voltage of V, + AV.
This additional driving voltage AV is precisely used to counteract the energy loss
caused by the dissipation from NC, ensuring that the oscillation state of LER remains

consistent.

) ) ) AV +V,
Diss;gr + Dissyc = Diss;gg
Yo 2.18

k 2 A
=1 LERAMD ( V+V0)
Q Vo

Assuming the driving voltage and the energy dissipation have a linear relationship, then
Equation 2.17 holds. As discussed earlier, when the energy dissipation isDiss;gg, the
corresponding driving voltage is V,. Based on the linear proportionality, the total

dissipation when the driving voltage increases to AV +V, can be estimated as

AV+V,

Diss;gr . Therefore, the energy dissipation on the specimen NC can be estimated

by the changes in the driving voltage, as shown in Equation 2.19:
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kzrAmp? AV 2.19

Di = —
ISSye =T 0 7

2.4 The equivalent circuit and frequency characteristics of the LER

As a sensor, the LER converts between electrical responses mechanical responses.
To use the LER for measuring mechanical oscillations, we developed an electrical
model of the LER and analyzed its electrical characteristics. Typically, the equivalent

circuit of the LER, as shown in the Figure 2.8.

(a) R c L
o—— +—o
Co
| |
[
(b)

=HES)

Figure 2.8 (a) Equivalent circuit of the LER. (b) Dominant current path during

series resonance. (¢) Dominant current path during parallel resonance.

In Figure 2.8 (a), the upper part of the equivalent circuit is a typical RCL series
circuit, while the down part, Cy, is the parasitic capacitance. Parasitic capacitance is
the capacitance generated in a circuit due to factors such as capbles. This capacitance
is unintended in the design but can have a significant impact on circuit performance,

particularly in high-frequency circuits. The impedance Z of the RCL series circuit in
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the upper part is given by:

Z —R+L+'ooL—R+'(—L+ooL) 2.20
RCL = jwC ] = J wC

The LER is a parallel combination of the RCL circuit and parasitic capacitance shown

in Figure 2.8 (a), so the overall impedance of the LER Z; g is given by:

! ! + jwC
= Jw
ZLER ZRCL 0

1 . 1 2.21
7 _ 1 _ <R+ij1+]o)L>ij0
LER_L+ c, R+ — 4 ol + —

Zno, 10 YR Al TR Yo

The LER impedance is related to the frequency of the applied voltage (f = w/2m,
usually expressed by angular frequency w in circuit analysis). The frequency
characteristics of the LER impedance are analyzed as follows: the real part of the
impedance is determined by the equivalent resistance and is independent of frequency.

After simplification, the imaginary part of the impedance is given as:

{(L_ 1 )(wL— 1 _ 1 )_RZ} 2.22
CO w2 CO Cl (DCl (DCO (DCO
Im[Z, ] = 1 1 \2
2 - =
R*+ (wL w(Cy ooCO)

We noticed that under high-frequency conditions, have wC, >» R?. Under this condition,

we calculate the frequencies that make the imaginary part becomes zero:

26



L 1 1 1 2.23
() o)
Co w?CyC, wC; wC,

therefore,

1 2.24

fr = 2L, Cy

1 2.25

Coly
N

These are the series resonance frequency f, and the parallel resonance frequency f,

fa =

respectively. When the frequency lies between f, and f,, the circuit exhibits inductive
behavior. On the other hand, when the frequency higher than f,, the circuit exhibits

capacitive behavior. When the circuit transitions from inductive to capacitive, the phase

shifts by 180°.

2.5 The mechanism of Phase-Locked Loop (PLL)

As described in the above section, achieving resonant driving (i.e., locking the LER
oscillator in the resonant state is a critical step in measuring the sample's spring
constant using the FM method. The amplitude and phase characteristics of voltage-
modulated resonators like the LER are shown in Figure 2.9(a) illustrates the
distribution of the oscillator's amplitude and phase difference as a function of the
driving frequency, with the horizontal axis representing the shift from the resonance

frequency; Figure 2.9(b) corresponds to the phase difference between the oscillator's
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input (driving signal) and output (induced signal). The key point is that the phase
difference becomes zero in the resonant state. Therefore, in experiments, resonant

driving can be achieved by locking the phase difference to zero.
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Figure 2.9 The corresponding amplitude and phase difference of the oscillator under
various driving frequency. (a) The amplitude reaches its peak at resonance. Here, the
horizontal axis representing the shift from the resonance frequency. (b)The phase
difference between the oscillator's input (driving signal) and output (induced signal)

with various driving frequency. The phase difference became 0 at resonance.
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Figure 2.10 Schematic diagram of a PLL including phase detector, PID controller

and build-in oscillator. The PLL generates a driving signal that has same phase and

frequency of its LER induced signal.

We built a closed-loop control system with negative feedback as depicted in Figure
2.10, the PLL receives the induced signal from the LER, and using this signal to control
a built-in oscillator that generates a driving signal synchronized with the LER induced
signal's phase. The PLL operates by receiving an input signal, typically from a
reference source, and using this signal to control an oscillator that generates an output
signal synchronized with the input signal's phase. The process begins with a phase
detector that measures the phase difference between the LER induced signal and the
driving signal generated by the built-in oscillator. The measured phase difference is
then compared to a predefined phase setpoint (usually 0 degree), resulting in an error
signal. This error signal is fed into a proportional-integral-derivative (PID) controller,
which processes it to produce a feedback signal. This feedback signal adjusts the
frequency of the built-in oscillator to minimize the phase difference. Through this
continuous adjustment, the built-in oscillator locks onto the LER induced signal's phase,
ensuring the driving signal maintains the same frequency and phase evolution. This

mechanism allows for precise synchronization and signal generation.
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Chapter 3 Experiment setup

Introduction

This chapter introduced the experimental setups used in this study. In Chapter 3.1,
we introduce the UHV TEM machine used in this study and the importance of ultra-
high vacuum for this study. In Chapter 3.2, we introduce microscopic nanomechanics
measurement method (MNMM) to realize TEM observation of nanomaterials
simultaneously with measuring the mechanical properties. In Chapter 3.3, we introduce
the mechanical measurement system, including the frequency and amplitude control of
LER. This allows us to measure the spring constant of the specimens. Also, we
estimated the oscillation amplitude of LER resonator from FFT pattern. In Chapter 3.4,
we introduce the electrical measurement system. This allowed us to estimate the crows-
section area of the specimens. In Chapter 3.5, we introduce the motion control system

of the specimens substrate, that allows us to move the specimens inside the TEM.
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3.1 Ultra-high vacuum TEM

In previous in-situ TEM observations, contaminants on the sample surface increase
over time during observation. It is thought that these contaminants are composed of
hydrocarbon residual gas molecules in the sample chamber. It decomposes and
evaporate under electron beam irradiation, and then redeposit onto the sample surface,
forming a contamination layer. These contamination layers can accumulate charge,
affecting the electron beam and hindering the acquisition of structural information.
More importantly, as the size of the specimen decreases, the surface properties are more
sensitive to such contamination due to the increased surface-to-volume ratio, especially
affecting mechanical properties. Figure 3.1(a) and (b) show typical TEM images of a
clean and a contaminated sample surface, respectively. The surface atoms of a clean
Aunanocrystal are orderly arranged, it can be seen that their interfaces are sharp, while
the edges of a contaminated Au nanocrystal are smooth. The presence of contamination
layers may affect the mechanical properties of Au nanocrystals. UHV-TEM can
maintain an ultra-high vacuum (UHV) condition in the sample chamber at 10”7 Pa order.
In such UHV conditions, the evaporated molecules consisting of carbon atoms are
hardly redeposited on the surface, and the contamination layer can be reduced to keep

the sample surface clean.
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Figure 3.1 (a) The TEM image of a clean Au nanocrystal sho

arrangement, with sharp edges visible at the red arrow. (b) A typical TEM image of Au

crystals covered by contaminants, where the edges appear smooth.

In this study, we used the UHV-TEM (JEM2000FXVB) manufactured by JEOL Ltd.
as shown in Figure 3.2. The sample chamber of the TEM is evacuated by an ion pump
and a titanium sublimation pump, and the maximum ultimate vacuum of the sample
chamber reaches the order of 107 Pa. The spherical aberration of the objective lens is
0.705 mm, and the point resolution of the high-resolution image is 0.21 nm. The
electron gun is a field emission type. The accelerating voltage during structural
observation is 200 kV, the measurement environment is room temperature (300 K), and

the ultra-high vacuum (7x10-7 Pa).
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Figure 3.2 Photograph of UHV-TEM used in this study.
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3.2 Microscopic nanomechanical measurement method

In this study, we used MNMM method to realize TEM observation of nanomaterials
simultaneously with measuring the mechanical properties. By designing a TEM holder
equipped with a force sensor of a length extension resonator (LER). the equivalent
spring constant (corresponding to the force gradient) of the observed nanomaterial can
be directly evaluated from the resonance frequency shift of the LER. Such a frequency
modulation (FM) method is superior not only to provide a direct, elastic response, but

also to provide energy dissipation from changes in the driving voltage to the LER.

Figure 3.3 (a) Photograph of the developed TEM holder. Inset is an enlargement of
the sample stage of the TEM holder. (b) An illustration of the sample stage in the TEM

holder.

Figure 3.3(a) and (b) respectively show the actual photo and schematic diagram of
the TEM sample holder we developed. The head part of the sample holder consists of

a LER, a polyether ether ketone (PEEK) substrate that carries the LER, a counter
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electrode made of 100 um diameter gold wire, a driving mechanism for the substrate,
and BNC wires. The LER has advantages of high stiffness (ko = 7.5 X 105 N/m) and
high resonance frequency (f, =1 MHz), which provide a high Q-factor and low noise
level. Au wires or other nanomaterials can be suspended between the fixed electrode
and the tip of the LER, allowing for visual observation through TEM. Using the FM
method, the equivalent spring constant can be obtained from the shift in the LER's
resonance frequency, while energy dissipation is measured by increasing the sinusoidal
driving voltage applied to the LER (hereafter referred to as the driving voltage). During
the experiment, the frequency and amplitude of the driving voltage are feedback-
controlled by a PLL to maintain the LER's resonance and amplitude stability. The
advantage of the LER lies in its ability to achieve a very small amplitude (about 30

pm), ensuring clear visibility of atomic arrangements in TEM images.

The LER is mounted on a white PEEK substrate, and its position can be finely
adjusted in three directions using a tubular piezoelectric ceramic, with an adjustment
range of about £1 um in the x, y, and z directions. Additionally, the tubular piezoelectric
ceramic is mechanically connected to an ultrasonic linear motor (TULASO,
Technohands) via a connecting rod, allowing coarse axial movement of the PEEK
substrate and LER. Since vibrations generated by the ultrasonic motor are easily
transmitted through the connecting rod, a coupling connector is designed to selectively
decouple or couple the connecting rod from the ultrasonic motor, and graphite (low
friction) guide rails are used to minimize vibrations transmitted through the connecting
rod. The coarse adjustment range in the y direction is 5 mm. This design enables large-
distance movement of the substrate while minimizing vibrations caused by the moving

structure, resulting in clear TEM images.
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Figure 3.4 Schematic diagram of connection between LER and MFLI.

3.3 Mechanical measurement system

We use the LER as the force sensor to measure the mechanical responds of Au NC
using the FM method. Using the FM method, the equivalent spring constant can be
obtained from the shift in the LER's resonance frequency, while energy dissipation is
measured by the extra driving voltage applied to the LER. In this study, the MFLI lock-
in amplifier from Zurich Instruments was used to control the oscillation of the LER.
The signal output (Signal Output V) of the MFLI is used to apply an driving voltage to
the LER, which is a sinusoidal AC voltage signal. The MFLI adjusts the frequency of
the driving voltage to maintain the resonance of the LER, and adjusts the amplitude of
the driving voltage to control the mechanical oscillation amplitude of the LER (the
mechanical oscillation amplitude of the rod). The detailed adjustment method will be
described in later sections. The signal input (Signal Input) of the MFLI can read both
current and voltage signals from external sources. In this study, a charge amplifier
(HQA-15M-10T, FEMTO Messtechnik GmbH, with a conversion ratio of 10 V/pC) was
used to convert the induced charge of the LER into a voltage signal, which was then
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read through the voltage input of the Signal Input.
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Figure 3.5 The sweep result was fitted by dash lines, and the quality factor Q,

resonance frequency and the phase was calculated.

Parameters including the resonance frequency, quality factor Q, and phase difference
(the phase difference of input and output at resonance) are essential for setting up the
PLL. The MFLI instrument has a built-in parameter sweeper function which can scan
the frequency of the output signal within a specified range while continuously
measuring the LER's response data (such as amplitude and phase difference). The
output signal was scanned around 1 MHz, and the amplitude and phase were measured.
As shown by the dashed line in Figure 3.5, the measurement results were fitted using
the [Math] function, and the quality factor Q of the LER was calculated to be 6500,
with a resonance frequency of 999 kHz and a phase difference of -100° at resonance. It
should be noted that for voltage-controlled resonators such as the LER, resonance
generally occurs at the point where the phase difference is 0. However, in the scan
results shown in the figure, the phase difference is shifted by -100°. This shift is

introduced by the amplifier that converts the LER's induced charge into a voltage signal.
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During the process of converting the charge into a voltage signal, the amplifier causes

the phase of the signal to shift backward by approximately 90°.

Phase difference
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Charge
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Figure 3.6 Schematic diagram of oscillation control system.

The oscillation control system is shown in Figure 3.6. The oscillator outputs an initial
driving voltage to the LER, cause an electric field that make quartz crystal to deform.
This leads to forced oscillation of the LER rod driven by the driving voltage. The LER
oscillates at its resonant frequency when the driving voltage is applied to one electrode
of the LER. The sinusoidal electric charge, induced by the deformation of the quartz
crystal due to the piezoelectric effect, is monitored through the other electrode, and is
proportional to the amplitude of the LER oscillation. This induced charge is converted
into a voltage signal (hereafter referred to as the LER induced voltage) using a charge
amplifier. The MFLI input reads the LER induced voltage, and use demodulator to

separate it into the phase and amplitude signals. When the Au wires at the tip of the

38



LER makes contact with the fixed Au wire, the spring constant changes, leading to a
shift in the LER's resonant frequency. The built-in PLL of the MFLI adjusts the driving
voltage frequency, locking the phase to the resonance phase to keep the LER in a
resonant state. On the other hand, the LER oscillation amplitude is controlled by PID

to lock it at setpoint.

Figure 3.7 (a) TEM image of thin amorphous carbon before oscillation. (b) The FFT
pattern of the captured TEM image (a). The FFT pattern of thin amorphous carbon
exhibits a uniform ring before oscillation. (c) A TEM image of the same thin amorphous
carbon acquired during oscillation. (d) The FFT pattern of the TEM image (c) during
oscillation. White fringes appear in the FFT pattern, corresponding to the LER

oscillation. The LER induced voltage from the charge amplifier was 400 mV.
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We calibrated the relationship between the LER induced voltage and the LER
amplitude. The LER induced voltage was locked at 200 mV, 300 mV, 350 mV, and 400
mV, then we measured the corresponding LER amplitude. Conventionally, accurately
measuring the LER amplitude has been challenging since it is extremely small (pm
order). In this study, we aimed to precisely measure the LER sensitivity by estimating
the LER amplitude from TEM images. In detail, as shown in Figure 3.7(a) we observed
a thin layer of amorphous near the tip of the LER, its FFT pattern of thin amorphous
carbon exhibits as a uniform ring (Figure 3.7(b)). When the LER oscillate with large
amplitude, the TEM image of the amorphous became blurred (Figure 3.7(c)), and white
periodic stripes appeared in the Fourier transform (FFT) pattern, as shown in Figure

3.7(d). A contrast of a FFT pattern can be expressed as follow:

flx) = ZQisin(kix+6i) +C 31

i
where «; is the intensity of the wave component i, k; is the wave number, §; is the
arbitrary phase and C is the background intensity. Here we assume that «; does not
strongly depend on 7, because the contrast of TEM image of amorphous carbon is almost
uniform.

Consider that the sample position is shifted by x' = Asin(wt) due to the LER
oscillation where A is the oscillation amplitude and w is the angular oscillation
frequency of the LER. Thus, the time-averaged contrast of FFT pattern over the one

cycle, g(x) can be described as follow:

g(x) =%fa;f(x—x’)dt 3.2

Since dx' = Aw cos wtdt, equation 3.2 can be expressed as below:
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The FFT pattern during the oscillation can be obtained:

g(x) = Z]O (k;A)a; sin(k;x + 6;) + C

3.3

3.4

here J,(k;A) represents the zero-order Bessel function of the first kind. It indicates

that the FFT pattern intensity g(x) is expressed by multiplying the f(x) with

|Jo(k;A)|. It can be seen from equation 3.4, when |J,(k;A)| takes its zero point ( in

other worlds, when |J,(k;A)| = 0 ), FFT pattern intensity g(x) takes its local minima.

The local minima of FFT pattern intensity g(x) is the dark fringes in FFT pattern.

Therefore, the oscillation amplitude A can be estimated by the distance of the dark

fringes in FFT pattern.
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Figure 3.8 (a)Function |Jy(x)| and its zero points. (b) The intensity profile of the

white fringes. This profile was extracted from the blue-boxed region of the FFT pattern

in the inset.

The absolute value of the zeroth-order first kind Bessel function (|/,(x)|) is shown

in Figure 3.8(a). |Jo(x)|function has fixed zero points, for example |J,(2.4048)| =
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|Jo(5.5201)| = |J,(8.6537)| = 0. As shown in the Figure 3.8(b), from the FFT pattern
extracted a region with a length of 150 pixels that perpendicular direction to the white
fringes, and the plotted intensity profile of this region. According to equation 3.4, by
fitting the amplitude A, making the local minima of the intensity profile be aligned

with the zeros points of the function |J,(kA)|, the LER oscillation amplitude can be

estimated.
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Figure 3.9 (a) The fitted |Jy(k;A)| and the FFT pattern profile from experiments. (b)
The relationship between the LER induced voltage and the mechanical oscillation
amplitude. The induced charge generated by the mechanical oscillation of the LER is

converted into voltage of the LER through an amplifier.

More specifically, as shown in Figure 3.8(b), there is a first minimum point to the

right of the center at &2z = 0.335 [/mm in the profile curve. This point should

correspond to the point where AK = 2.4048 ( because|/,(2.4048)| = 0) in Figure

2.4048

——— — = 1.1466 nm. When calculating the
2m 0.335 1/nm

3.8(a), allowing us to calculate A =

amplitude, 4, it is important not only to fit one minimum point but also to align the
positions of all minimum points with the experimental data as closely as possible. I
wrote a Python program that uses |]0( 27‘[A)| + 0.1 as the objective function to fit
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the experimental profile. I used the least squares fitting method. The fit result was
shown in Figure 3.9(a). The estimated LER amplitude was 1.1466 nm. This analysis is
reasonable, since the intensity modulation in the FFT pattern is well reproduced by the
Bessel function (Figure 3.9(a)). Then, since the LER induced voltage was 500 mV, the
sensitivity was estimated to be 2.2 nm/V. For more fitting points, the LER induced
voltage was locked at 200 mV, 300 mV, 350 mV and 400 mV, and the corresponding
LER amplitudes were obtained through the above method. These results showed a
linear relationship between the LER oscillation amplitude and LER induced voltage as
shown in Figure 3.9(b), indicating that the sensitivity was 2.2 nm/V. Now, we can

estimate the LER oscillation amplitude (in length) by LER induced voltage.

3.4 Electrical measurement system

The mean free path refers to the average distance an electron can travel freely before
undergoing a scattering event. During this process, the electron is not disturbed by
impurities, lattice vibrations, or other defects. When the size of a metallic material is
much smaller than the electron's mean free path, the probability of electrons scattering
(such as interacting with lattice vibrations, impurities, or defects) as they pass through
the material is significantly reduced. Electrons experience almost no scattering during
transmission, as known as ballistic conduction. The conductance can be described by

the Landauer formula:

2e?
G :Tz T, 3.5

Here, T, represents the transmission probability of the n-th conduction mode. Under

ideal conditions (i.e., T, = 1), the total conductance can be approximately expressed
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as:

G=——N 3.6

N is the number of conduction modes, which is proportional to the cross-sectional area.
Therefore, the cross-sectional area of the NC is proportional to its conductivity value.
As shown in the Figure 3.10, a gold foil is attached to the 10 pm diameter gold wire.
Appliy bias voltage through this gold foil, and the current flows through the NC. The
counter part Au wire was connected to the conductivity measurement equipment. This
current flowing through the NC was converted by a current amplifier (FEMTO DLPCA-
200), and then measured by MFLI Aux port. The current amplifier, as shown in Figure
3.11, has a gain and measurable range from 103 to 10! V/A and 10 V, respectively. We
made a LABView program to read this signal from MFLI Aux port, calculate the
conductance value by the bias voltage and the current amplifier parameter the
conductance value is displayed in real-time on the LABView panel, as shown in Figure

3.12.

Figure 3.10 A photo of the PEEK board that carries LER and one gold foil. The gold

foil lead connected to an Au wire (diameter: 10 um), used for measuring conductivity.
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Figure 3.12 (a) The LABView program for calculating the conductance and display
in real-time on the panel. Pulled data from MFLI through data streaming node [Demod
Sample 0], read the Aux input by [Aux In 0]. (b) The conductance value is displayed

in real-time on the LABView panel.
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3.5 Motion control part of sample platform

Both the Au sample and the LER sensor are install on a PEEK substrate, we need to
move this substrate to make the two Au wires touch to fabricate Au nanocontact. The
position of the PEEK substrate can be driven by both coarse and fine motions. The
motion control unit in our TEM holder is shown in Figure 3.13, for coarse motion, a
ultrasonic motor (TULAS5O0, Technohands) was used to push or pull the sample substrate.
The ultrasonic motor operates by utilizing the piezoelectric effect of piezoelectric
ceramics to convert ultrasonic vibrations into linear or rotary motion. The movement
principle is piezoelectric ceramic vibrates and reaches the drive shaft, pulls the friction
body by changing the duty ratio of going and return, using this action to moving the
unite distance. With small movement controlled by high vibration frequency, actuator
can move smoothly. The moving range of coarse motion can be hundreds of pm, and

the minimum step length can be as low as 50 nm.

Figure 3.13 The motion control unit in our TEM holder.

For fine motions, as shown in Figure 3.13, a tube piezo, which fixed with the sample
substrate, enables movement and positioning. This tube piezo can deform in X,y,z
directions when voltage applied. Here, we use three Aux output ports to control the

voltages dring this tube piezo. The voltage output range of MFLI Aux output is £10V,
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however, it needs a much higher voltage (over 100 V) to have enough deform on tube
piezo. We use a piezo driver (MESS-TEK M-2680) to amplify the control voltage from
MFLI Aux output by 30 times and apply it to the tube piezo. The deformation

coefficient of the tube piezo is 2.67 nm/V.
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Chapter 4 Elastic properties of Au nanocontacts

Introduction

This chapter introduces the study of the elastic properties and local Young’s modulus
of nanocrystals. Section 4.1 provides an overview of research on Young’s modulus at
the nanoscale and explains the necessity of measuring the local Young’s modulus of
nanomaterials. Section 4.2 explains the principles for measuring the local Young’s
modulus. Section 4.3 briefly describes the experimental setup and raw data, including
the process of cross-sectional area reduction during the stretching process. Section 4.4
provides a detailed description of the method for accurately measuring lattice spacing
using TEM images and shows the evolution of lattice spacing under tensile stress.
Section 4.5 presents the measurement results of the local Young’s modulus, compares

them with previous studies, and discuss. Section 4.6 summarizes this chapter.

4.1 Previous studies on the Young's modulus of nanomaterials

Young's modulus can describe a material's elastic property. As shown in Figure 4.1,
when a force is applied to an object, it elongates from its original length L to L + AL.
To evaluate the elastic response without being affected by the size and shape, we focus
on the force applied per unit area (stress) and the elongation for per unit length (strain).
Young's modulus is defined as the ratio of stress to strain, it can represent the material's
inherent elastic property. Young's modulus is an important parameter for understanding
such an elastic response. Conventionally, the modulus is measured by applying the
loading force and measuring displacement, which is called the stretching test. This test

can be performed without taking care of the stretching direction for bulk materials,
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because the orientation dependence of Young’s modulus can be ignored owing to the
polycrystallinity of bulk materials. On the other hand, Young's modulus of
nanomaterials has been suggested to depend not only on the size but also on the
orientation, since the nanomaterials tend to be monocrystalline[33,34]. In calculation,
Young's moduli of a single gold (Au) crystal show a pronounced elastic anisotropy. Liu
et al. reported that Young's modulus of a single Au crystal was calculated to be 72.2,
104.1, and 157.1 GPa for the [100], [110], and [111] directions, respectively, based on
their molecular static calculations[35]. Meanwhile, Young’s modulus of Au nanowires
with the axis of the [100], [110], and [111] directions with a diameter of about 2.29 nm
have been calculated to be 53.38, 111.63, and 135.59 GPa, respectively[36]. The size
dependence of elastic properties has been discussed based on theoretical
calculations[37]. As the diameter of a nanowire decreases, the surface-to-volume ratio
significantly increases, enlarging the influence on the surface properties. Two possible
surface mechanical responses have been pointed out: softening and hardening.
Softening is caused by a reduction in the coordination number of surface atoms, and
hardening is by the redistribution of electrons of the surface atoms[16,38—40]. However,
due to a lack of experimental results, no clear conclusion has been reached on Young's
modulus size dependence of metallic nanocontacts (NCs) with diameters of 10 nm or

less, where surface effects are expected to appear[41].

Loading force, F

Original length, L »

Figure 4.1 Schematic diagram of the deformation of an object with a uniform cross-

Cross-section area, .S

sectional area under applied force.
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In experiments, the estimation of Young's modulus of nanomaterials is typically
conducted using the bending test method. Wu et al. utilized nanowire bending under
lateral load exerted by an atomic force microscope (AFM) tip to estimate the Young's
modulus of Au nanowires [23]. They found that the Young’s modulus remained
consistent irrespective of diameters ranging from 250 nm to 40 nm, suggesting that the
surface effects might not be crucial enough to lead to the size dependence of the
Young's modulus within such a size range. Apparent Young's moduli of Ag and Pd
nanowires, measured using atomic force microscopy, have been reported to be close to
bulk values (76 GPa for Ag and 16 GPa for Pb) for diameters larger than 70 nm and 100
nm, respectively. On the other hand, their Young's moduli tended to increase with
decreasing diameter, which was explained by the effect of surface tension [42]. The
Young’s modulus of Ag nanowires with diameters between 34 and 130 nm was also
reported to increase as the diameter decreased by achieving the in-situ tensile testing
in a scanning electron microscope (SEM) [43]. However, the size dependence of Young's
modulus is controversial. Some reported that Young's modulus increased with

decreasing size [20,43-45], while others reported that it decreased [46,47].

In many cases, the size dependence of Young's modulus has been investigated for
nanowires larger than 10 nm in diameter. Simply, the ratio of surface atoms to total
atoms is inversely proportional to diameter: assuming an atom diameter of about 0.2
nm, the ratio drops to about 0.1 for nanowires with a diameter of 10 nm. To clarify the
surface effect more clearly, it is necessary to examine the size dependence of Young's
modulus for nanowires with a diameter of 10 nm or less, where the ratio of surface
atoms to total atoms is large enough. However, few such experimental results have been

obtained. One of the reasons is that it is required to measure the dimensions of the
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nanowire at an atom level.

4.2 Principles of estimating the local Young's modulus

(a)
(b) Original length, L elongation, AL
uniform
Young’s modulus Loading
Force
(©
Noun-uniform .
; Loading
Young’s modulus Force

i-

Figure 4.2 Schematic diagram of out idea to of estimating the local Young's modulus
from the local strain. (a) One nanomaterial object was divide into several local regions.
(b) Elastic response under applied force with uniform Young's modulus and consistent
local elongation. (c) In the case of non-uniform local Young's modulus, the local strain
distribution will be uneven. The local Young's modulus can be estimated by the ratio

of local strain to total strain.
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Figure 4.3 (a) Schematic illustrations of FM method for measuring the spring
constant of the NC using the shift in resonance frequency. kLER is the spring constant
of the LER, and km is the equivalent spring constant of the Au NC and two metal (Au)
wires. The resonance curve shifts by Af owing to the NC formation, as shown in the
graph of the oscillation amplitude as a function of the oscillation frequency (b)
Schematic of two Au wires supporting an NC: The NC section is marked in orange with

a spring constant kyc. The Au wires supporting the NC are marked in yellow with

As described in the methods of Chapter 2, the spring constant of the NCs can be

measured by the FM method, as shown in Figure 4.2(a). An Au wire of 10 pm in



diameter was attached to the LER, which oscillated at the resonance frequency (fy).
The Au NC was formed by contacting the Au wire attached to the counter electrode.
When contacting, the resonance frequency was shifted by Af due to a serial couple
of LER and the Au contact including two Au wires supporting it, which can be regarded
as two metal probes, as shown in Figure 4.3(b). Therefore, the equivalent spring
constant of the Au contact and two metal probes, k;,,, can be estimated by k,, =

2k; R Af /fo (see the more detail in Experiment).

In mechanical property measurements such as tensile and compression tests, the
applied force extends over the entire object being measured, including the probes. For
example, if a nanomaterial is a measurement target, the elastic property is measured
including two metal probes supporting it. The estimated equivalent spring constant
(km) can be expressed by a series coupling of the spring constant of the nanomaterial
(knc) and the spring constant of two Au wires supporting it (k,,, and k) as follows
(Figure 4.3 (b)):

1 1 1 1

— =y 4.1

km B kNC kwl kWZ

This equation indicates that the contribution of two Au wires must be eliminated
from the measured spring constant to determine the elastic properties of the
nanomaterial. Such consideration applies to all mechanical property measurement
methods, such as silicon cantilever-based methods. However, it is not easy to evaluate
the spring constant of the tips of two Au wires. In the case of the MNMM, the two Au
wires that support the NC are very sharp; their equivalent spring constants have the
same order as the NC (~ tens N/m). As can be seen from equation 4.1, the influence of

the equivalent spring constant of the two Au wires cannot be ignored for this reason.
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As mentioned above, Zhang et al. overcome this problem by comparing the spring
constant before and after a {111} layer was introduced in stretching. However, their

method does not apply to other materials and stretching directions.

In this study, a new method for estimating Young's modulus of nanomaterials is
proposed. Young’s modulus (Y) is defined to be a proportional coefficient by assuming

a linear relationship between strain (€) and stress (o) as follows:

og=Ye 4.2

Accordingly, Young’s modulus can be obtained when the values of strain and stress
are obtained. Equation 4.2 is valid for any region designated between two planes
perpendicular to the stretching direction in the process of elastic deformation.
Therefore, the local Young's modulus in a region (Yjycq;) can be determined from the

force (F) applied to this region as follows:

F Allocal

S = Yiocal I 4.3
local local

Here, S;ocq; is the cross-sectional area of the region, [y, 1s the length of the
region at the force equilibrium point, and Al;,.,; is the change in l;,.q;. The force (F)
applied to this region can be evaluated from the product of the measured equivalent
spring constant (k,,) and the piezo elongation (ALy,,,) from the force equilibrium point
in the MNMM, which corresponds to the total change of [;,.,; over the stretched
regions:

F= kmALpiezo 4.4
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In the experiment, since the piezo produces displacement at a constant rate, its
elongation can be obtained by a product of the ratio and the elongation time within one
elastic elongation process. Therefore, the local Young's modulus can be obtained as

follows:

llocal ALpiezo

4.5
" Slocal Allocal

Yiocar = k

During stretching, the metal NC is elastically stretched and then relaxed by plastic
deformation. Such elastic and plastic deformation occurs repeatedly. Equation (5)
indicates that the local Young's modulus can be estimated when measuring the ratio of
the piezo elongation to the displacement of the local region ALp;e,o/Aljocq; at any time

interval of the elastic deformation process.

4.3 Experimental Setup

The design of the in-situ TEM holder equipped with LER and the sample preparation
is briefly explained in Chapter 2 (Figure 3.3). In this holder, the LER is mounted on a
polyetherketoneketone (PEEK) board substrate. The Au (111) NC was fabricated in the
following procedure: An Au wire with a diameter of 100 um was set with the fixed
electrode, and an Au wire with 10 um in diameter and approximately 150 pm in length
was attached to the LER tip. The height difference between the two Au wires was

adjusted so that they could be in contact with each other. This contact could form the

Au NC. To make the Au wires clean, they were baked in advance at ~100 °C for at

least 24 h in a vacuum chamber. Afterward, they were irradiated with an intense

electron beam (~100 A/cm?) in an ultrahigh vacuum (UHV)-TEM to remove residual
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contaminations adsorbed on them.

In the experiment, the Au NCs are stretched and thinned by using a tube piezo. Figure
4.4(a) shows a typical TEM image of the Au (111) NC. It exhibits an "hourglass" shape,
which is constructed by two truncated triangular pyramids composed of three different
{111} surfaces joined to face each other [4,48]. When the Au NC was stretched at a
constant rate by the piezo in the stretching process, it became thinner by repeating the
elastic and plastic deformations. In the case of Au (111) NCs, a new layer of the {111}
lattice plane is introduced at the narrowest constriction during plastic deformation to
maintain the "hourglass" shape. In the previous study [4], it has been pointed out that
the new layer of the {111} lattice plane was introduced by the migration of surface
atoms, which moved from the bulk part supporting the Au NC. Compared with the TEM
image of Figure 4.4(a), three layers of the {111} lattice planes were introduced at the

narrowest constriction in the TEM image of Figure 4.4(b).

56



Cond. [GO]
)

—

(=]
.
L
5

wn
(=3

Spring Const.[N/m]
8

o
S
Ll
L]
(X 1]

[
(=]

400 -

200

Piezo disp. [pm]

(1 1 1 1
0 5 10 15
Elongation time [s]

Figure 4.4 (a)(b) TEM images of the Au (111) NC taken before and after plastic
deformation, respectively, during the stretching process. The white scale bar indicates
1 nm. (c) Time evolution of electrical conductance, spring constant, and the piezo
displacement during the stretching process. The piezo displacement increased at a

constant rate of 22 pm/s. The two elastic stages labelled "a" and "b" correspond to the
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TEM images in (a) and (b), respectively.

The cross-sectional area of the narrowest constriction in the Au NC can be estimated
by electrical conductance as reported previously [49]. When the diameter at the
narrowest constriction is small enough (a few nm), the conductance has been pointed
out to be proportional to the cross-sectional area and satisfy the Sharvin formula § =

AfZGC/n (where Ay is the Fermi wavelength of Au (0.52 nm), and G, is the
conductance value in units of G, (G, = 2e?/h)) [50]. Figure 4.4(c) shows the time
evolution of electrical conductance when the Au (111) NC was stretched at a constant
rate. In Figure 4.4(c), the conductance plateau corresponds to the elastic deformation
in the stretching process, while the conductance jumps to the plastic deformation. To
estimate Young’s modulus of the Au NC, we performed our analysis in the region of

the elastic response.

Figure 4.4(c) also shows the time evolution of the measured spring constant and total
stretching distance (corresponding to the piezo displacement). The measured spring
constant was almost kept constant in the elastic stage indicated by “a”, decreased
abruptly at the moment of plastic deformation and then maintained a constant value in
the next elastic stage indicated by “b”. The TEM images in elastic stages “a” and “b”
are shown in Fig. 3(a) and (b), respectively. The piezo displacement increased at a
constant rate of 22 pm/s. Considering Eq. (5), Young's modulus of a certain region,
designated between two planes perpendicular to the stretching direction in the Au (111)
NC, can be obtained by the ratio of the piezo elongation (ALp;ez,) to the displacement

of this local region (Alj,cq;) in the elastic deformation process, which can be obtained

from the TEM image.
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4.4 Measurement of local spacings in TEM images

Since the displacement of a local region in the Au (111) NC is at a sub-angstrom
level, it needs to measure the elastic displacement with high accuracy. First, the
intensity profile along the {111} lattice planes, corresponding to darker fringes in the
TEM image, was obtained by averaging the intensity of pixels along the fringe parallel
to the {111} lattice fringe (Figure 4.5(a) and (b)). Second, the lattice plane positions
were determined at a sub-pixel level by fitting a Gaussian function to the intensity
profile so that each lattice plane position corresponded to the bottom of each valley in
the intensity profile (Figure 4.5(c)). Although the pixel size was 25 pm in the TEM
image of Figure 4.5, the lattice plane position was identified with at least a few pm
levels of accuracy by developing a Python program to fit the Gaussian function to the

intensity profile.

In the case of the Au (111) NC of an hourglass-like shape, the displacement of each
{111} lattice spacing depends not only on its cross-sectional area but also on the local
Young's modulus, if the Young’s modulus changes depending on the size as previously
reported [4]. We tried to investigate each elastic displacement of each {111} lattice
spacing. Still, it was difficult because the spacing at equilibrium is 0.24 nm, and the
maximum elastic strain is about 5% at maximum, so the elastic displacement is only
less than 10 pm. In fact, the elastic displacement of the measured spacing was so
broadly scattered from a time-proportional relationship that the ratio of the piezo
elongation (ALpiez,) to the displacement of this local region (Aljeq) could not be

reasonably determined.
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Figure 4.5 Procedure of measuring the {111} lattice plane positions in HRTEM
images. (a) A typical TEM image of the Au (111) NC. In the black rectangle area, the
average value was taken in the vertical direction to obtain the intensity profile in the
horizontal direction. The white scale bar indicates 2 nm. (b) The intensity profile in the

horizontal direction in the black rectangle area in (a). The minima (valleys) in the
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profile correspond to the positions of individual {111} atomic planes. (c) Magnified
view of a single valley (blue box in b), representing one {111} atomic plane. The profile
was fitted with an inverted Gaussian function (red dashed line: center of the fitted
function, representing the precise atomic plane position; pink regions: uncertainty in

the fitted center position).

Figure 4.6(a) shows a typical TEM image of the Au (111) NC. The positions of the
{111} lattice planes indicated by the green lines were identified at the sub-pixel level
by the program. When the {111} lattice planes were numbered from thickest to thinnest
cross-sections, the elastic responses were investigated in the following three regions:
8 to 9 (as region I), 5 to 6 (as region II), and 0 to 5 (as region III), respectively, as
indicated by the black arrows from up to bottom in Figure 4.6(a). In these regions, the
time evolution of the local interval was measured. Figure 4.6(b) shows the time
evolution of the normalized local interval, which was obtained by dividing the
measured width of the region by the number of the {111} lattice spacing, as a function
of the piezo displacement. In detail, the time evolution in interval of each region was
automatically measured from eight consecutive TEM images during the elastic
deformation process by developing the program, and plots of eight points for each
region were obtained. In Figure 4.6(b), the ratio of the elongation in the local region to
the total displacement (Al;pcq;/ALpjezo) Was determined to be 0.108, 0.055, and 0.026,
respectively, for the region I, II, and III by linear fitting based on the least-squares
method, although the displacement in the local spacing was scattered among 8 data for
each region. The equivalent spring constant was obtained by averaging the values in

the corresponding elastic deformation process (see Figure 4.4(c)).
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Figure 4.6 (a) A typical TEM image of the Au (111) NC, with the {111} lattice
planes indicated by the green line. The white scale bar indicates 1 nm. The {111} lattice
planes were numbered from thick to thin parts. The black arrows indicate three local
regions. (b) The ratio of the elongation in this spacing to the total displacement
(Alipcar/ALpjezo) for these three local regions in the same elongation process. The red

line was obtained by linear fitting to the data.

4.5 Results and discussion

As shown in above sections, the spring constant and local strain have been estimated.
Before calculating the local Young's modulus using the equation 4.5, the cross-sectional
area of the local region still needs to be estimated. The cross-section of the Au (111)
NC, which is necessary to estimate Young’s modulus, was approximated by a triangle
with a slight truncation as reported [4]. Since the sharp angle of the hourglass-shaped
Au (111) NC is fixed, the cross-sectional areas of the {111} lattice planes that make up
the local region are not uniform because of the conical shape. The cross-sectional area
of a certain {111} lattice plane can be estimated from the distance from the narrowest
constriction by determining the cross-sectional area of the narrowest constriction from
the conductance. To obtain Young's modulus in these three regions of the conical shape,
Young's modulus was assumed to be constant in each region. To obtain Young's
modulus, it is necessary to assume that this region is a cylinder and determine its length
and average cross-sectional area. Considering that the equivalent spring constant of
this local region is expressed as a series coupling of the equivalent spring constants of
these {111} lattice “slices” (S;), the average cross-sectional area (S),.4;) 1S obtained as

follows:
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Based on equation 4.6, the average cross-sectional area was 1.5, 2.5, and 4.0 nm? for
regions I, I, and III, respectively. Therefore, the Young’s modulus of this local region
was estimated to be 54 GPa, 63 GPa, and 83 GPa, respectively, for the three regions by
substituting these values in equation 4.5. This indicates that Young’s modulus of the
Au (111) NC decreased with decreasing diameter, which was in agreement with the

previous result [4].
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Figure 4.7 Young’s modulus of the Au (111) NC as a function of the cross-sectional
area. Black dots represent the estimated local Young’s modulus in this experiment. The
red curve represents the size dependence of Young's modulus obtained from previous

studies [4].

The Young's moduli of the Au (111) NCs were also estimated in some local regions

for each of nine different elastic stretching processes for checking reproducibility.
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Figure 4.7 summarizes the Young’s modulus estimated at local regions in different
elastic deformation processes. In Figure 4.7, the data points of (average cross-sectional
area, Young's modulus) which were obtained in the three local regions as mentioned
above were plotted as (1.5 nm?, 54 GPa), (2.5 nm?, 63 GPa) and (4.0 nm?, 83 GPa),
respectively. Even though the range of the average cross-sectional area is limited to 1.5
to 5 nm?, the Young’s modulus shows a tendency to decrease with decreasing the cross-

sectional area.

Previously, Zhang et al. found that Young's modulus of Au (111) NCs exhibited a
decreasing trend with decreasing cross-sectional area, with the modulus approaching
80 GPa for cross-sectional areas below 4 nm? and reducing to around 60 GPa as the
cross-sectional area decreased to 2 nm? as indicated by the red curve in Figure 4.7 [4].
This curve was obtained by assuming that Young’s modulus at the core and surface of
the cross-section were 119 GPa and 22 GPa, respectively. Our estimated Young’s

modulus was scattered but had a similar trend to that previously reported.

It has been pointed out that below 10 nm in diameter, the mechanical properties differ
from those of the bulk due to surface effects. Theoretically, it is not clear whether the
Young's modulus due to surface effects can be higher or lower depending on the
pseudopotential used in calculation [16]. It has also been pointed out that the effect of
temperature cannot be neglected. Assuming absolute zero temperature, as in first-
principles calculations, Young's modulus is shown to be higher due to surface effects.
On the other hand, at room temperature, entropy must be taken into account, and
Young's modulus decreases due to surface effects [51]. Experimentally, the Young's
modulus of gold NCs smaller than 10 nm in diameter has not been systematically
evaluated except for the reports mentioned above. Notice that the surface effect on

Young's modulus of nanocontacts remains controversial.
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To improve the accuracy of the estimation of local Young's modulus of nanomaterials,
it is important to recognize the three-dimensional (3D) shape of the NC; TEM simply
provides the projected information on the sample depth. Meanwhile, it is known that
when the diameter of the NC is less than 5 nm, electrical conduction depends on the
number of conduction channels in discrete states. This means that the minimum cross-
sectional area of the NC, which is proportional to the number of channels, can be
determined. It is also obvious that the geometry of the NC should consist of surface
indices with the lowest possible surface energy, since surface effects are dominant.
From these two pieces of information, the 3D shape of the NC can be estimated. If this
is not the case, energy loss spectroscopy can be used to estimate the thickness of the
irradiated region by measuring the ratio of incident electrons to inelastic electrons. By
combining this technique with scanning transmission electron microscopy, a thickness
map can be obtained to estimate the 3D shape of the nanomaterial. By such technical
improvements, the present method is expected to be utilized in the future, as it can
appropriately evaluate size and orientation dependences of Young's modulus on the

nanoscale.

The elastic properties of nanomaterials have been estimated using stretching or
bending tests and AFM. However, any method of measuring mechanical properties
detects the mechanical response of the whole, including the target nanomaterial and its
supporting materials; it is impossible to obtain the mechanical response of the
nanomaterial alone. This means that it is imperative to eliminate any influence from
the supporting materials. Recently, the spring constant of the atomic chain has been
obtained by removing the contribution of the electrode supporting the atomic chain,
which could be achieved by measuring the spring constants of Pt atomic chains of

different lengths supported between electrodes of the same geometry [52]. Also, the
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equivalent spring constant of the nanomaterial alone could be obtained by assuming
the bulk value of Young's modulus and calculating the equivalent spring constant of the
electrode that supported it [53]. Compared to these methods, our proposed method has
the advantage that it requires only several atomically resolved TEM images during the

process of elastic deformation to obtain Young's modulus in a certain region.

Recently, Y. Bu et al. reported that the local atomic environment inhomogeneity was
related to amorphization process in high-entropy alloys (HEAs). The method for
measuring the local Young's modulus proposed in this study is expected to be applied
to further research on the local physical and mechanical properties of HEAs [54]. The
mechanical properties of structurally heterogeneous materials such as HEAs have
attracted much interest. Measurements from a macroscopic point of view have been
achieved, while those from a nanoscale point of view have rarely been done. However,
because material fracture starts locally, it is important to reveal the mechanical
properties of such materials from a nanoscale point of view. The present proposed

method would be one of the powerful tools to clarify local mechanical properties.

Young's modulus of a local area could be determined by obtaining the ratio of local
elongation measured in the TEM images to the total displacement estimated by the bias
voltage applied to the piezo when using the MNMM. However, as shown in Figure 4.6,
the local displacements in the seven or eight TEM images, which were retrieved during
the stretching process, often deviated from a linear relationship to the total
displacement. For thin or relatively long regions where the spring constant was low,
this deviation tended to be small because of relatively large elongation, and thus,
Young's modulus seemed to be estimated with high accuracy. It means that the spatial
resolution of the TEM images should be crucial. In this sense, an aberration-corrected

TEM effectively reduces the deviation in the measurement of the elongation of a certain
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region during the stretching process, resulting in estimating Young's modulus with
higher accuracy. In the near future, using aberration-corrected TEM, we expect that our
proposed method will allow us to determine Young’s modulus of various nanomaterials

more precisely.

4.6 Conclusion

We proposed a new method to measure Young's modulus of nanomaterials. By taking
the TEM images simultaneously with measuring the spring constant using the MMNM,
the equivalent spring constant of a local region can be obtained by determining the
ratio of the displacement of the region to the total displacement of the nanomaterial
and its supporting bases on both sides. The Young's modulus can be estimated by
considering the cross-section and length of this region. The Young's modulus of the
local region in the Au(111)NC was estimated by applying this method, which showed
a similar size dependence of the Young's modulus as reported previously. This method
is promising because it can reveal the mechanical properties of structurally
heterogeneous materials such as HEAs from a local perspective. Thus, it is expected
that the accuracy of this method will be improved in the near future by using aberration-

corrected TEM.
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Chapter 5 Plastic properties of Au nanocontacts

In section 5.1 we introduce the background of investigating critical resolved shear
stress (CRSS), including its definition and function in nanomaterial deformation.
Section 5.2 presents the method and results of estimating the yield stress in the loading
direction. This section presents the experimental procedure and raw data obtained by
varying LER oscillation amplitude, and details the method of estimating the specimen's
energy dissipation using the LER driving voltage. Section 5.3 introduces the estimation
of CRSS for Au NCs using the yield stress and the slip system. Section 5.4 presents the
CRSS results obtained from the experimental results, discussing them with previous

experimental and theoretical results. Section 5.5 provides a summary of this chapter.

5.1 Critical resolved shear stress (CRSS)

Critical Resolved Shear Stress (CRSS) is the threshold stress required to start slip
deformation in a material. As shown in Figure 5.1(a), when an external loading stress
(o) is applied along the direction indicated by the green arrow, a corresponding resolved
shear stress (1) develops on the slip plane (gray plane) along the slip direction (red
arrow). Slip deformation occurs when the resolved shear stress satisfies the condition:

T = CRSS (as shown in Figure 5.1(b)).
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Figure 5.1 The critical resolved stress is the necessary stress on the slip direction to
start slip deformation. (a) The geometric relationship between loading stress(o) and
resolved shear stress(z). (b) process of simultaneously shifting the upper part of a

crystal.

The CRSS is an intrinsic property of the material, determined by factors such as
crystal structure, temperature, and defect density, and is independent of the external
loading direction. In contrast, the critical yield strength (i.e., the applied stress required
to trigger plasticity) depends on both the CRSS and the geometric orientation of the
slip system relative to the loading direction. When the resolved shear stress on the slip
system reaches the critical value (CRSS), dislocations begin to glide, marking the onset
of plastic deformation. The relationship between yield stress (normal stress) and CRSS

is discussed in more detail in Section 5.3.1.

5.2 Estimation of yield stress

In this study, our purpose is measurement of the CRSS in the slip deformation. To

achieve this purpose, it is first necessary to determine the yield point of the material,
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defined as the critical load in the direction of the applied force (green arrow in Figure
5.1(a)) that plastic deformation begins. This critical load is commonly termed the yield
stress. The reason we beginning with the measurement of yield stress lies in its direct.
By measuring the yield stress, the CRSS in the slip direction can be effectively derived
from the yield stress, if the geometric relationship between the loading direction and

the slip system CRSS.

Our specimen is in perfect crystal, its primary mechanism of plastic deformation is
slipping deformation. During slip deformation, the yielding behavior of the material is
governed by the stresses acting on the slip plane along the slip direction. Crucially, the
CRSS and the yield stress are linked through geometric relationships intrinsic to the
slip system. By measuring the yield stress in the direction of the loading force, we can
estimate the CRSS using these geometric relationships. On the other hand, since
metallic nanocontacts with size of only a few nanometers can be regarded as nearly
perfect crystals with almost no defects, it is expected to have CSS values close to the

ideal values[55,56].

At a scale of 10nm or less, it is very difficult to directly measure the loading stress.
As shown in Figure 5.2(a) and (b), J. Comtet et al. fabricated gold nanojunctions
between a tuning fork and a gold substrate[57]. In this experiment, the oscillation of
the tuning fork essentially constitutes a periodic compressive-tensile dynamic loading
process on the gold nanojunction. They used a piezo dither to excite the tuning fork,
the periodic force applied on tuning fork is F* = Fe!®! The oscillation of tuning fork

is described as a* = ae!®**?. They defined the complex mechanical impedance Z* =
Z—: = (g)e'i‘p. The imaginary part Z'' = Im(Z*) characterizes the dissipative response
of the Au junction, it can be measured by tracking the piezo driving voltage necessary

to keep the oscillation amplitude of the tuning fork constant. When the driving
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amplitude exceeds the elastic limit of the material, the gold nanojunction undergoes a
transition from purely elastic deformation to deformation that includes plastic
deformation. This plastic deformation process significantly increases the energy
dissipation of the system. As shown in Figure 5.2 (c), the dissipative response (red
dots) while increasing the oscillation amplitude. The dissipation was found to suddenly
increase at the amplitude of about 160 pm (a, ), corresponding to the elastic limit. This
detection method, based on the abrupt change in energy dissipation, provides an
effective experimental criterion for precisely determining the yield point of the metallic
junction at the nanoscale. However, due to the lack of structural information on the Au
nanojunctions, the direction of loading stress could not be determined, making it unable
to estimate the CRSS through the geometric relationship between yield stress and CRSS.
Therefore, we conducted experiments using our developed TEM holder equipped with

LER.
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Figure 5.2 (a) Schematic diagram of the experimental setup with a gold nanojunction
fabricated between the tip of a tuning fork and a gold electrode. (b) Enlarged schematic
view of the gold nanojunction. (¢c) Amplitude dependence of the complex resistance:
the black line represents the real component, and the red line represents the imaginary

component.

As mentioned above, we can determine whether or not nanocrystals undergo plastic
deformation (e.g., yielding) by measuring the energy dissipation during the
deformation process. However, for nanocrystals with dimensions of only a few
nanometers, the energy dissipation from a single plastic deformation event is extremely

small, making direct measurement highly challenging. Our idea to solve this problem
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is, we connect the LER oscillator to the nanocrystal, enabling repeated stretching and
compression during oscillation. A lock-in amplifier can effectively extract the LER
oscillation response signal. The LER oscillates the nanocrystal at 1 MHz, and the
sample's the dissipation response is also at 1 MHz. Through phase-sensitive detection
(PSD), the lock-in amplifier multiplies the input signal with a | MHz reference signal,
retaining only the signal components of the same frequency and converting them into
low-frequency components. Subsequently, a low-pass filter removes the high-
frequency AC components, retaining only the low-frequency components, thereby
extracting the target signal. Noise and other frequency interferences become AC signals
after PSD and are filtered out by the low-pass filter. Since the lock-in amplifier locks
onto the 1 MHz reference frequency, it can precisely extract signals at this frequency,
effectively denoising even in environments with strong noise. This mechanism endows
it with excellent capability in measuring weak signals, ensuring the accurate extraction
of LER oscillation response signals. Response with increasing LER oscillation

amplitude

In this study, an experiment was designed to estimate the maximum deformation that
a nanocrystal can sustain within its elastic limit, which also called “the yield strain”.
A feedback loop was installed to maintain a constant conductance of the nanocrystal
(as shown in Figure 5.3(a)), keeping a consistent sample size since the conductance is
proportional to the minimum cross-sectional area of the nanocrystal. Based on this
setup, we increased the LER oscillation amplitude step-wisely (Figure 5.3(b)), starting
from 30 pm, while simultaneously measuring the driving voltage required to excite the
LER oscillation (Figure 5.3(c)) and the equivalent spring constant of the nanocrystal
(Figure 5.3(d)). Using the method described in Chapter 2, the energy dissipation

introduced from the nanocrystal was estimated by comparing the difference in driving
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voltage between the LER in free oscillation (unconnected to the nanocrystal) and the

LER connected to the nanocrystal.

As shown in the Figure 5.4, we converted the raw data, which was a function of time
as shown in Figure 5.3(b) and (c) into a function of the LER amplitude. Figure 5.4(a)
shows the relationship of the LER amplitude and the driving voltage required to
maintain the LER amplitude constant. The red dashed line represents the driving
voltage when the LER is unconnected to the nanocrystal, while the black squares
represent the driving voltage when the LER is connected to the nanocrystal. It can be
observed that when the LER oscillation amplitude exceeds approximately 110 pm
(Amp), an additional driving voltage is required when connected to the nanocrystal.
Using the formula derived in Chapter 2, the corresponding energy dissipation at each

LER oscillation amplitude is calculated, as shown in Figure 5.4(b).
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Figure 5.3 (a) Conductance maintained at a constant value. (b) Stepwise increase in
the maximum displacement (LER amplitude). (c) (d) Driving voltage and equivalent
spring constant corresponding to each value of the maximum displacement (LER
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When the LER amplitude is below the critical value,Amp, (indicated by orange

region), the energy dissipation under the influence of the LER on the nanocrystal is

zero, indicating that only elastic deformation occurs, so we call it as the elastic region.

Above Amp, (indicated by blue region), energy dissipation begins to increase with

increasing the LER amplitude, indicating that the nanocrystal undergoes plastic

deformation by the LER oscillations. We call it as the plastic region. By gradually

increasing the deformation of the nanocrystal and capturing the corresponding energy

dissipation, we determined the critical deformation (equal to LER amplitude) at which

the nanocrystal yields, denoted as Ampe.
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Figure 5.4 (a) Dependence of the driving voltage on the LER oscillation amplitude.

(b) Dependence of energy dissipation on the LER oscillation amplitude.

(c)

Dependence of the equivalent spring constant on the LER oscillation amplitude. Here
LER oscillation amplitude is also the displacement of the nanocrystal.
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5.2.1 Equivalent spring constant (force gradient)

As mentioned above, by estimating the maximum displacement in the elastic region,
the system divides into the elastic region (orange) and the plastic region (blue). As
shown in Figure 5.4(d), we measured the equivalent spring constant of Au nanocrystal
using the FM method described in Chapter 2. The dependence of the equivalent spring
constant on the LER oscillation amplitude (deformation of Au nanocrystal) is shown in
Figure 5.4(c). In the elastic region, the equivalent spring constant is almost constant at
about 100 N/m. In the plastic region, the equivalent spring constant decreases as the
LER oscillation amplitude (maximum displacement) increases. This can be interpreted
as the result of the energy that would normally be stored as elastic energy being unable
to be stored due to structural relaxation caused by sliding deformation. In other words,
we think that the equivalent spring constant has effectively decreased due to the
decrease in elastic energy, which is determined by the amplitude and equivalent spring

constant.

5.2.2 Quantized conductance and cross-sectional area

In TEM images, only two-dimensional information can be obtained, we cannot get
depth information. Therefore, in this study, the minimum cross-sectional area of gold
nanocontacts was estimated from their electrical conductance, assuming that electrons
pass through such a thin nanocontact ballistically due to quantum confinement effect.
Under such an assumption, the conductance G can be given by Landauer's formula,

where the transmission coefficient for channel i is denoted by T;.

2e2
G :TZ Ti 51
i=1

Since the size of metal nanocontacts is shorter than the mean free path of electrons, the

78



effects of scattering can be neglected (ballistic transport), T; = 1. The conductance of

the metal nanocontact G, is given by:
G. =n X Gy 5.2

here, n represents the number of channels, and G, is the quantum conductance unit
defined as G, = 2e?/h. In the experiment, a bias voltage of 10 mV was applied to the
gold nanocontact, and the measured quantized conductance ,G., was analysed using the
Sharvin equation, which express the relationship between the number of conductance
channels and the minimum cross sectional area of the contact:

S= A’G./m 5.3

By substituting G, to equation 5.10, the minimum cross-sectional area can be

estimated. Here, Ay is assumed to be the Fermi wavelength of gold as 0.52 nm.

5.2.3 Results of yield Stress

Assuming that the gold nanocontact is a cylindrical body with a uniform cross-

sectional area, the force applied in the tensile direction is:
F = kd 5.4

here, k is the equivalent spring constant, and d is the displacement caused by the

LER oscillation. Since tensile stress is the force per unit area, we can obtain:
F
c = — = — 5.5
S

When taking the maximum displacement in the elastic region (d = Amp,), the yield

stress o, 1is:
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kAmp,
o, = S 5.6

It can be estimated from the three measured values: Amp, was determined from the
amplitude dependence of energy dissipation. The cross-sectional area S was obtained
from the conductance values. The equivalent spring constant k was directly obtained

from the experimental results.

5.3 Estimation of CRSS for Au nanocontacts

This section determines the CRSS required for slip to occur, based on the geometric

relationship between the yield stress g, and shear stress.

5.3.1 Geometric relationship between tensile stress and shear stress

When a loading stress is applied to a crystal, then a shear stress will occur on a slip
plane. As shown in Figure 5.5, if the angle between the loading stress and the shear
stress is A, then the shear stress is given by F cosA. If the angle between the loading
stress and the normal to the slip plane is ¢, the area of the slip plane becomes S/ cos ¢.

Therefore, the shear stress acting on the slip plane is:

_ FcosA F a
T = T = g(cos cos @)
cos @
= o(cosAcos @) 5.7

here, cos¢ cosA is called as Schmidt’s factor, it is determined by slip system ( slip

plane and slip direction of the crystal).
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Figure 5.5 Geometric relationship between loading stress and shear stress.

5.3.2 Slip system in nanocrystal

The slip system of a crystal is defined by its slip plane and slip direction. The slip
plane is often the crystal plane with the largest interplanar spacing, while the slip
direction is the densest direction connecting the closest atoms. In other words, the slip
system is determined by the crystal structure. The slip systems of typical metals are

shown in Table 5.1.

Lattice type Typical Slip plane Slip Number of
metals direction slip systems
face-centered | Ay - Ag* Cu {111} <110> 4x3=12

cubic (fcc)

body-centered | W . o-Fe - {110} <l11> 6x2=6

cubic (bcc) {112} 12x1=12
Cr

{123} 24x1=24

Table 5.1 Slip systems of typical metals.
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For FCC metallic materials with sizes smaller than a few nanometers, it has been
reported that both tensile forces and surface tension act to induce partial slip along the
{111} <112> direction[58]. Furthermore, it has been observed that complete slip along
{111} <110> occurs through the successive activation of two {111} <112> slips. Therefore,
as the gold nanocontacts in this study have diameters ranging from approximately 1.9

nm to 2.6 nm, the slip system can be considered to be {111} <112>.

In the experiment, gold nanocontacts with the axis of the [110] and [111] directions

were fabricated. Figure 4.6 shows TEM images of the [110] and [111] gold nanocontacts.

(b)

Figure 5.6 TEM images of [110] and [111] gold nanocontacts.

5.4 Results and discussion

5.4.1 Results of this experiment

In the experiment, 4 [110] gold nanocontacts with conductance of 60 G, 3 [110] gold
nanocontacts with conductance of 30 G,, and 3 [l11] gold nanocontacts with
conductance of 30 G, were fabricated, and their critical shear stresses were
investigated. Figure 5.7 shows the dependence of the equivalent spring constant and
the LER oscillation amplitude (maximum displacement) on the driving voltage. From
the driving voltage, the energy dissipation per oscillation cycle was summarized in

Figure 4.8( the method for estimating dissipation energy is described in section2.3 ).
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Table 4.2 presents the maximum displacement in the elastic region determined from
the dependence of energy dissipation on the LER oscillation amplitude (maximum
displacement), along with the equivalent spring constant, cross-sectional area, and
estimated yield stress. From the results, the yield stress of the [110] gold nanocontacts
with conductance of 60 G, and 30 G, was 2.0 £ 0.1 GPa, regardless of size. In
contrast, the yield stress of the [111] gold nanocontacts with conductance of 30 G, was

3.0 £ 0.1 GPa.

The Schmid factor for the [110] gold nanocontacts is v2/3 (= 0.47), and from
Equation 5.13, the CRSS was calculated as 0.94 + 0.1 GPa. Similarly, for [111] gold
nanocontacts, the Schmid factor is 2v/2/9 (= 0.31), yielding an estimated critical shear
stress of 0.94 = 0.1 GPa. The CRSS is an inherent property of the material. From two
different directions, we obtained consistent CRSS of 0.94GPa, proved the reliability of

our method.
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Figure 5.7 Graph of the LER amplitude dependence of additional energy dissipation

per oscillation cycle (£ . ..) and measured spring constant for different Au NCs.
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Figure 5.8 Graph of the LER amplitude dependence of additional energy dissipation
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colored circles.

. . S Ac km yield stress o
orientation
(nm?)  (pm) (N/m) (GPa)
<110> 2.9 87 64 1.9
<110> 3.0 96 59 1.9
<110> 2.9 101 59 2.1
<110> 5.4 103 107 2.0
<110> 5.3 100 106 2.0
<110> 5.3 111 102 2.1
<110> 5.2 100 102 2.0
<111> 2.9 103 85 3.0
<111> 2.9 96 91 3.0
<111> 2.9 98 87 3.0

Table 5.2 The cross-sectional area, maximum elastic displacement, spring constant,
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and estimated yield stress of gold nanocontacts.

5.4.2 CRSS from previous researches

Previous research has investigated the CRSS of Au nanomaterials using both
experimental and theoretical approaches. Heyer et al. fabricated the microshear
specimen as shown in the Figure 5.9(a), experimentally investigated the critical shear
stress of um-scale Au single crystal[59]. As illustrated in Figure 5.9(b), when a punch
compress on the central part of the Au single crystal, its both sides will have shear
deformation. The measured shear stress-displacement curve during the compression
process is presented in Figure 5.9(c). For Au single crystals at the pm-scale, the critical
shear stress was estimated to be 63.5 MPa experimentally. Geer et al. fabricated
submicron-scale single-crystalline Au pillars with the axis of a <001> orientation from
single Au crystal. They investigated the stress-strain behavior of these pillars under
compression. During testing, as illustrated in Figure 5.10(a), the axial compression
induces shear deformation along {111}-type planes. The corresponding stress-strain
responses were obtained as shown in Figure 5.10(b). Their results revealed that the
critical shear stress for slip initiation on {111} planes in the rage of several hundred

MPa.
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Figure 5.9 (a) Schematic of the microshear specimen produced by Heyer et al. (b)
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The SEM image of the process of using a punch to compress the microshear specimen.

(c)Stress-displacement curve[59].
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Figure 5.10 (a) SEM images of submicron-scale single-crystalline gold pillars with
a <001> orientation Slip lines are clearly present in the deformed states. (b) The

corresponding stress-strain curve during compression.

Theoretically, the shear stress for the slip along the [112] direction on the (111)
surface,[60] corresponding to CRSS, was predicted to be 1.73 or 1.78 GPa by molecular
dynamics (MD) calculations with the embedded atom method (EAM) Au
potential[11,61], while it was predicted to be 1.42 GPa by first principle calculation[62].
The CRSS of the Au NCs with dimeters of 1.9 and 2.6 nm was estimated to be
0.94+0.1GPa in this work. which were smaller than such theoretical values. This
difference may be explained by the temperature effect. Iskandarov et al. reported that
the CRSS of Cu crystal was about 75% at 300 K and about 50% at 800 K relative to
the value at 0 K by MD calculations [70]. In our measurement, the Au NC was oscillated
along the axis direction above the critical amplitude at 1 MHz of the resonance
frequency of LER, and the slip probably occurs continuously during the measurement.
The temperature at the Au NC might be raised by heat generated by the slip

considerably, resulting in reducing the CRSS value.

87



5.4.3 Simple estimation of CRSS

The assumption for perfect crystal is all atoms on both sides of a slip plane undergo
simultaneous sliding. As shown in , the slip deformation finish in one step. The atomic
bonds on both sides of the slip plane break and reform simultaneously, which requires
a significant amount of energy for slip to occur, resulting in a high shear stress for a

perfect crystal.

slip

— —

Figure 5.11 Schematic diagram of slip in a perfect crystal. In a perfect crystal, slip is

accomplished in only one step.

For a crystal lattice, if a unit crystal has a structure that can be repeated perfectly,
then we defined it as perfect crystal. In perfect crystals, the mechanism of plastic

deformation typically involves slip deformation occurring on close-packed planes.

Next, we discuss the forces acting on atoms on both sides of the slip plane and
estimate the CRSS in an ideal case. As shown in Figure 5.12 from (a) to (b) to (c), it
represents the shear stress required to slip the upper part. In the process that the upper
part slip by x relative to the down part, Figure 5.12(d) shows the relationship between
the necessary shear stress 7 and the slip dislocation x. In the states shown in Figure
5.12(a) and (c), the upper and lower part are at equilibrium positions, so the shear stress
t is zero. During the transition from Figure 5.12 (a) to (b), the upper part tends to return

to the equilibrium position (a), so 7 takes a positive value to counter this tendency. This
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process corresponds to the displacement range 0 <<x<:d/2 in Figure 5.12(d). During the

transition from Figure 5.12(b) to (c), the upper structure easily tends toward the

equilibrium position (c), so a reverse force is needed to counter this, and 7 takes a
negative value. This process corresponds to the displacement range d/2<<x<d in

Figure 5.12(d). The intermediate state (b) is also an unstable position, where 7 switchs

from positive to negative, so 7 = 0.
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Figure 5.12 The process of simultaneously shifting the upper part of a crystal.
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For simplicity, to satisfy the conditions described in the previous paragraph, we
assume the relationship between shear stress 7 and displacement x follows a sine

function as below:

2
”x) 5.8

T= ksm(T

if we take the distance between the upper and down atomic planes as h, and the

displacement x is small enough, then due to Hooke's law, we can describe the shear

modulus as:
7= G% = k? 5.9
we can obtain the spring constant:
k= %% 5.10
from above equations, the shear stress is:

for the upper part to entirely slip to the next equilibrium position, the applied stress
must exceed the maximum value of this shear stress, otherwise, once the applied stress
is released, the upper part will return to its original position. The CRSS required to

complete the slip can be determined as the maximum value from equation 5.12:

= 5.12
T hon
Approximately, use d = h:
G
=— 5.13
= o

Furthermore, by approximating =« = 3, the CRSS can be estimated as 1/6 of the shear
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modulus. In other words, for a perfect crystal the necessary stress for the upper part to
slip can be estimated to be 1/6 of the shear modulus. Table 5.3 lists the measured CRSS
values for several metals, along with the calculated values derived from the
aforementioned model. From Table 5.3, it can be observed that the CRSS obtained from

experiments are 2 to 3 orders of magnitude lower than the theoretical values.

Shear Critical resolved shear stress [GPa] The ratio of calculated
metal modulus value to measured
G/6 Measured value
G[GPa] value
Au 27.6 4.6 0.0009 5100
Ag 28.8 4.9 0.0003 12900
Cu 45.5 7.5 0.0005 15400

Table 5.3 Calculated and measured values of the critical shear stress

5.4.4 Influence of dislocations on the CRSS of crystals

However, the actual measured yield strength was found to be 3 to 4 orders of
magnitude lower than the theoretical value. This discrepancy was resolved in 1934
when Taylor and other scientists proposed that the slip process in crystals occurs
through the movement of dislocations (Figure 5.13)[63]. Dislocations can begin to move
under relatively low stress, causing the slip region to gradually expand until all atoms
on the slip plane sequentially undergo relative displacement. This mechanism explains

why real crystals require only very low shear stress to initiate slip.
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Figure 5.13 Slip process in crystals occurs through the movement of dislocations.

Lastly, we estimate the slip dissipation per oscillation cycle by using a simple model
for the shear force exhibiting a curve as a function of the displacement caused by the
LER oscillation. We roughly consider the stress-strain curve acting on the nanocrystal
during one oscillation cycle. As shown in Figure 5.14, when the LER oscillates within
the elastic region, the displacement remains smaller than the maximum elastic strain
(&c), and the stress-strain curve follows path AD during a single oscillation cycle.
However, once the displacement exceeds the maximum elastic displacement, plastic
deformation occurs within a single oscillation cycle, and the stress-strain curve follows
path FBCE. Specifically, after the stress reaches the critical value & (point A), slip
begins to occur, and strain continues to increase while the stress remains constant (A-
B). At point B, the displacement reaches its amplitude, corresponding to the peak strain,
after which the motion reverses, and both stress and strain decrease proportionally (B-
C). The shear stress shows similar behavior in the opposite side (compression). In this

case, the work done (energy dissipation) in one cycle corresponds to the area enclosed
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by FBCE. In fact, the energy here should be calculated by the area enclosed by the
force-displacement curve, while the original graph depicts stress-strain. The force-
displacement relationship can be derived from the stress-strain relationship, and for
convenience, it will not be discussed separately here. This model was obtained by
similarity to the strain-stress curve reported previously[64]. In summary, when the LER
amplitude is below the elastic deformation limit, the shear force remains linearly
proportional to the displacement (as indicated by the orange arrow A-D), and thus no
hysteresis occurs. However, once the amplitude exceeds the elastic deformation limit,
the stress-strain relationship follows the cyclic path of B-C-E-F. In this case, the slip
dissipation per oscillation cycle of the LER corresponds to the area enclosed by the
displacement-shear force curve. This phenomenon indicates that the introduction of
plastic deformation leads to energy dissipation, which is quantified by the hysteresis

loop in the force-displacement curve[62,65].
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Figure 5.14 Schematic of the stress-strain curve acting on the nanocrystal during one

oscillation cycle.
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Figure 5.15 Graph of slip dissipation per oscillation cycle as a function of LER
amplitude. The black dots correspond to the experimental results, and the red curve is

the calculated one based on the simple model in Figure 5.14.

Figure 5.15 shows the amplitude dependence of the slip dissipation. Regardless of
simple model, the calculated slip dissipation based on this simple model (red line)
reproduces the experimental result well. It supports that the slip continuously occurred
on the (111) plane during the LER oscillation above the critical LER amplitude and the
CSS value of 094+ 0.1 GPa for Au NCs with a few nm in diameter. This study is so
worth that it will enable us to understand the mechanism of the plastic deformation (the
slip) more deeply by analyzing the dissipation energy using a model that considers the

detailed plastic deformation process.

5.5 Conclusion

In this chapter, we investigated the critical resolved shear stress (CRSS) required for
slip to occur on the slip plane in a perfect Au crystal. First, Au NC with diameters of

less than a few nanometers were prepared by controlling two gold wires to touch
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together. These NC are our specimen. An LER was used to oscillate the Au NC along
the <110> and <I111> orientations. This oscillation process is equivalent to repeated
tensile and compressive loading, with the maximum tensile and compressive strain
equal to the oscillation amplitude. In classical continuous tensile tests, when the
maximum strain exceeds the elastic limit, plastic deformation occurs, accompanied by
energy dissipation; otherwise, the sample undergoes only elastic deformation with
negligible energy dissipation. Similarly, when the oscillation amplitude of the LER
exceeds the elastic limit of the Au NC, plastic deformation occurs during oscillation,
leading to energy dissipation. Due to the rapid and repeated nature of the oscillations,
energy dissipation from plastic deformation continuously accumulates and can be
captured by our instrument. Therefore, we use the presence or absence of energy
dissipation as a criterion for determining whether plastic deformation has occurred,
allowing us to identify the yield point of the sample, including both the yield stress and

yield strain.

In the experiment, we estimated the energy dissipation in the specimen through the
driving voltage of the LER and estimated the yield stress of the Au NC along the <110>
and <111> orientations to be 2.0+0.1 GPa and 3.0+0.1 GPa, respectively. Then, using
the slip system of Au, which follows the geometric relationship between loading stress
and shear stress in an FCC crystal, we calculated the CRSS required for slip on the
{111} plane to be 0.94 GPa. Notably, experiments along the <110> and <I11> orientations
determined a consistent CRSS of 0.94+0.1 GPa, this result follows the theoretical
understanding that CRSS is the fundamental factor governing slip deformation. This

further validates the effectiveness of our method.
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Chapter 6 Conclusion

This study successfully developed and applied a microscopic nanomechanical
measurement method (MNMM) to investigate the elastic and plastic responses of gold
nanocontacts (NCs). The local Young's modulus of nanomaterial can be estimated by
the ratio of local to the total elongation during elastic deformation. Results from this
method also exhibits a size dependence consistent with previous method, validating the
method’s reliability. Furthermore, we measured the critical resolved shear stress
(CRSS) of gold nanocontacts with sizes smaller than 10 nm using a home-made in-situ
TEM holder equipped with a quartz length-extension resonator (LER) to detect slip
dissipation. The CRSS is an inherent property of the material. From two different
directions([110] and [111]), we obtained consistent CRSS of 0.94 + 0.1 GPa, proved the
reliability. The CRSS we observed is higher than the results for sizes greater than 100
nm. I think this difference is due to the presence of dislocations in the larger specimen,
which reduced the measured CRSS values.This new method provided valuable insights
into the plastic deformation mechanisms at the nanoscale.

This work represents a significant advancement in understanding the mechanical
properties of nanomaterials, particularly at the atomic scale, and lays the foundation
for future improvements using advanced TEM techniques, such as aberration-corrected

TEM, to enhance measurement accuracy and broaden the method's applicability.
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