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Abstract 

In this thesis, the elastic and plastic responses of gold nanocontacts (NC) was invesgated by 

microscopic nanomechanical measurement method (MNMM). Specifically, for the elastic 

response, we estimated the local Young's modulus of the internal local regions of the Au NCs. 

For the plastic response, we estimated the critical resolved shear stress (CRSS) required for slip 

to occur in the Au NCs. The Au NCs were fabricated using our developed in situ TEM holder, 

which is equipped with a quartz length-extension resonator (LER) as a force sensor for directly 

evaluating the force gradient (spring constant). 

For nanocrystals, the Young's modulus exhibits both orientation dependence and size 

dependence. In devices made from nanomaterials, distribution of local Young's modulus is non-

uniform. It is important to measure the local Young's modulus of nanocrystals. Our approach is 

based on the idea that under uniform shape and size conditions, a material with uniform Young's 

modulus will undergo uniform deformation under stress. However, if the Young's modulus is 

non-uniform, the deformation in different regions will vary. By measuring the local strain and 

its ratio to the overall strain, we can estimate the local Young's modulus for each region. Using 

our self-developed in situ TEM holder, we stretched Au NCs and observed their crystal structure 

through TEM, precisely measured the evolution of lattice spacing to obtain the local strain. 

Notably, the pixel size of the CCD we use is approximately ൬൯ pm, while the maximum elastic 

elongation of the Au lattice is less than ൫൪ pm, much smaller than the size of a single pixel. As 

a result, traditional methods cannot capture the stretching of the Au lattice. We fully utilized the 

large number of pixels in the TEM images and assumed that the TEM intensity follows a 

Gaussian distribution, enabling sub-pixel measurement of the Au lattice positions. In this way, 

we obtained the elongation of local regions during stretching. Additionally, we directly 

measured the force gradient (spring constant) applied to the Au NCs using FM method, and 

with the geometric information observed from TEM, we successfully estimated the local 
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Young's modulus and studied its size dependence. 

When the amount of stretching exceeds the material's elastic limit, it transitions from elastic 

deformation to plastic deformation. In nanocrystals, plastic deformation primarily occurs in the 

form of slip, and the necessary shear stress required for slip to occur in the slip direction is 

called as the CRSS. For bulk materials, the yield limit can be estimated by measuring the stress-

strain curve. However, for nanomaterials, both stress and strain are extremely small, making 

direct measurement very difficult. We captured the energy dissipation associated with plastic 

deformation to estimate the maximum elastic deformation of Au NCs. Using the geometric 

information observed through TEM and the mechanical response obtained from FM method, 

we estimated the yield stress of Au nanocontacts with various size and orientation. For [൫൫൪] Au 

NCs, with conductance values of ൰൪ 𝐺₀ and ൭൪ 𝐺₀, the yield stress was 2.0 ±  0.1 𝐺𝑃𝑎, 

regardless of size. In contrast, for [൫൫൫] Au NCs with conductance of ൭൪ 𝐺₀, the yield stress was 

3.0 ±  0.1 𝐺𝑃𝑎. Considering the partial slip system in FCC metals, we found that the Schmid 

factor for [൫൫൪] direction Au nanocontacts is √2/3 (≈ 0.47), the CRSS was calculated to be 

0.94 ±  0.1 𝐺𝑃𝑎 . Similarly, for [൫൫൫] direction Au nanocontacts, the Schmid factor is 

2√2/9 (≈ 0.31), yielding an estimated CRSS of 0.94 ±  0.1 𝐺𝑃𝑎. These two results are 

consistent. Therefore, we conclude that the CRSS for the {111}<൫൫൬>  slip system in Au NCs 

is 0.94 ±  0.1 𝐺𝑃𝑎. 

In conclusion, a method for estimating the elastic and plastic responses of nanomaterials has 

been proposed. We studied Au NCs as an example, and our results had shown unique properties 

from bulk Au. This method is expected to be improved by introducing aberration-correct device 

to obtain better TEM resolution. The understanding of mechanics in atomic scale provide 

essential information for fundamental understanding and applications such as atomic scale 

nanodevices. 

Keywords: nanomechanical, in-situ TEM, local Young's modulus, CRSS, dissipation energy. 
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Chapter ൫  Introduction  

Introduction 

This chapter introduces the background of this study. Section ൫.൫ presents the unique 

properties of nanomaterials and explains the necessity of studying mechanical 

properties at the nanoscale. Due to limitations in experimental techniques, early studies 

on the mechanical properties of nanomaterials were demined in theoretical and 

simulation levels. Section ൫.൬ reviews previous experimental studies on the mechanical 

properties of nanomaterials, highlighting advancements and limitations in previous 

experimental methods, and discusses the advantages and necessity of using in situ 

measurement techniques. 

൫.൫ Mechanical properties of nanomaterials 

Nanomaterials (particularly with sizes below ൫൪ nm) have attracted wide attention 

due to their potential in nanoscience and nanotechnology[൫–൭]. Nanomaterials are 

reported to have unique and novel physical and chemical properties, such as high 

stiffness, orientation dependency, excellent thermal and electrical conductivity[൮–൲]. 

These unique properties of nanomaterials have given them potential in applications as 

functional components in catalysts and nanoelectromechanical systems (NEMS) and so 

on[൲–൫൪]. Among these unique properties, the mechanical properties of nanomaterials 

have garnered significant attention due to their properties can be modulated by strain 

or stress during their application. However, the mechanisms behind the unique 

mechanical properties of nanomaterials, particularly how their properties are 

modulated, still remain unclear. Having a deeper understanding of the mechanical 
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properties of nanomaterials is crucial for the design and optimization of nanoscale 

devices. The nanomaterials have a very high surface-to-volume ratio and ultra small 

size, leading to surface effects and quantum confinement effect. Therefore, different 

with bulk counterparts, the nanomaterials show very unique and unpredictable 

mechanical properties, and have attracted significant research interest. In the early 

stage, due to the limitation of experimental technology, simulation and computational 

methods dominate the research on nanomaterials [൫൫–൫൯]. The deformation mechanisms 

of metallic nanowires with diameters smaller than ൫൪൪ nm were analyzed using first-

principles calculations and molecular dynamics methods. The study revealed that 

nanowires can deform through various ways, such as slip via perfect dislocation, partial 

dislocation, and the formation of deformation twins. The competition among these 

deformation ways is primarily governed by the Schmid factor and material properties. 

These simulations demonstrated that metallic nanomaterials exhibit exceptionally high 

strength, and predicted theoretically that their strength may have a significant 

dependence on temperature and geometry[൫൯]. However, the conclusions obtained from 

simulations and calculations are strongly dependent on the choice of models and 

parameters, and differing selections may even lead to opposite results. Zhou et al. 

studied the Young’s modulus of copper (Cu) as an example of face-center-cube (FCC) 

metal with different approaches, and their results have shown oppsite size dependency 

(as shown in Figure ൫.൫): when using embedded atom method (EAM), the Young’s 

modulus decrease while reducing the size; however, in the case that using Lennard-

Jones (L-J) potential, the Young’s modulus increases with size decreased[൫൰]. This 

highlights the emergency need for reliable experimental evidence to clear these conflics. 
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Figure ൫.൫ Zhou et al. obtained oppsite size denpency of Young’s modulus by 

choosing embedded atom method (EAM) potential and Lennard-Jones (L-J) 

potential[൫൰]. 

൫.൬ Previous experimental studies on the mechanical properties of 

nanomaterials 

With the development of advanced microscopy techniques such as scanning electron 

microscopy (SEM), atomic force microscopy (AFM), and transmission electron 

microscopy (TEM), experimental attempts to study the properties of nanomaterials 

have appeared[൫൱–൬൫]. Greer et al. studied the mechanical properties of Au nanopillars 

with diameters of hundreds of nanometers[൬൬]. As illustrated in Figure ൫.൬ (a), they 

grew [൪൪൫]-oriented Au on a MgO substrate and fabricated the Au nanopillars using 

focused ion beam (FIB) milling. They performed uniaxial compression tests on the 

nanopillars using a flat punch and measured the compressive stress, strain, and stiffness 
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of the pillars. Their results, as shown in Figure ൫.൬ (b), revealed a size-dependent 

stiffness, indicating that the stiffness of the nanopillars increases as their diameter 

decreases.  

 

 

Figure ൫.൬ (a) SEM image of the Au nanopillar. (b) Size dependency of stiffness by 

Greer et al.[൬൬].  

Wu et al. investigated Au nanowires with diameters ranging from ൮൪ to ൬൯൪ nm using 

an AFM-based method[൬൭]. In their experiments, both ends of nanowires are fixed, a 

cantilever was used to bend the nanowires at their midpoint. Their results showed that 

the Young’s modulus of the Au nanowires is independent of the diameter within this 

size range, as shown in Figure ൫.൭. Hoffmann et al. investigated the mechanical strength 

of silicon (Si) nanowires grown by the vapor−liquid−solid (VLS) method[൬൮]. These 

nanowires had diameters ranging from ൫൪൪ to ൬൪൪ nm and a typical length of ൬ μm. In 

the experiments, one end of the silicon nanowires was fixed to the grown substrate, and 

an AFM tip applied a load to the free end, bending the nanowires. The study revealed 

that the average strength was approximately ൫൬ GPa, which corresponds to ൰% of the 

Young's modulus of Si along the nanowire direction. 



൯ 

 

Figure ൫.൭ (a) Schematic of fixed wire in a lateral bending test with an AFM tip by 

Wu et al. (b) SEM image of a Au nanowire secured by Pt lines deposited through 

electron-beam-induced deposition, with scale bars of ൯൪൪ nm. (c) Young’s modulus 

values measured for Au nanowires ranging from ൮൪ nm to ൬൯൪ nm in diameter[൬൭].  

For nanomaterials with dimensions below ൫൪൪ nm, direct force measurement remains 

challenging. Previous studies utilized an integrated TEM-AFM system based on Si 

cantilevers to estimate the loading force on nanowires. Y. Lu et al. developed a TEM 

specimen holder to perform in situ tensile testing on Au nanowires (Figure ൫.൯)[൬൯]. 

During nanowire elongation, AFM probe deflection was employed to quantify the 
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loading force, while TEM imaging simultaneously captured real-time structure 

evolution. The strain-stress curve was obtained during the tensile testing. However, the 

force measurement was relay on the deformation of Si cantilever, due to the individual 

variation in the cantilever's Young’s modulus, the measurement accuracy is low for 

microforces at the nN level. 

 

Figure ൫.൮ (a) TEM combined with AFM based on Si-cantilever. (b)TEM images of 

Au nanowire during the tensile test. (c) Strain-stress curve of Au nanowire[൬൯]. 

 

TEM (or SEM) combined with Micromechanical Devices (MMDs) has also been 

applied in experimental approaches for loading force measurement. As shown in Figure 

൫.൯(a), Zhang et al. developed a pull-to-push chip, where a Si nanowire was placed 

across a gap in the chip[൬൰]. By pressing the chip with a punch, the gap widened, 

stretching the Si nanowire. As shown in Figure ൫.൯(b), the tensile process of the Si 

nanowire can be observed using TEM. In their experiment, the Si nanowires had a 

diameter of approximately ൫൪൪ nm. This method is applicable not only under SEM but 

also under an optical microscope. However, due to the significant height difference 

between the chip gaps (typically >൫൪൪ nm), this effect becomes non-negligible for 
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smaller samples (Figure ൫.൯(c)). Therefore, more suitable mechanical measurement 

methods are required for samples at the tens of nanometers or even nanometer scale. 

 

Figure ൫.൯ (a) Pull-to-push chip with a Si nanowire was placed across a gap in the 

chip. (b)TEM images of tensile process of Si nanowire[൬൰]. (c) Schematic diagram of 

the chip gap height difference. 

 

 

൫.൭ Purpose 

The purpose of this study is to investigate the mechanical response of Au 

nanocontacts, including both elastic and plastic response. As shown in the figure, the 



൲ 

two localized regions within the red box exhibit significant size differences. Due to the 

size effect in nanomaterials, I hypothesize that these regions have different local 

Young’s moduli. Estimating the local Young’s modulus is crucial for the design of 

nano-devices, such as NEMS. Therefore, the first purpose of this study is to estimate 

the local Young’s modulus of nanomaterials. 

 

 

Figure ൫.൰ (a) One non-uniform size specimen. (b) Size effect on nanomaterials[൬൱]. 

 

Figure ൫.൱(a) shows a typical strain-stress curve of metal materials. After reaching 

the yield stress, it starts to have plastic deformation. For the case of FCC crystals, slip 

always occurs on the {൫൫൫} atomic planes once the loading stress exceeds the elastic 

limit, regardless of the loading direction (Figure ൫.൱(b)). Whether plastic deformation 

takes place depends on whether the resolved shear stress on the slip plane reaches the 

critical threshold. The critical resolved shear stress (CRSS) is defined as the necessary 

stress in the slip direction to initiate slip deformation. The second objective of this 

study is to measure the CRSS of Au nanomaterials. 
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Figure ൫.൱ (a) A typical strain-stress curve of metal[൬൲]. (b) Size effect on 

nanomaterials. 
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Chapter ൬  Methodology  

Introduction 

This chapter introduces the experimental methods and principles. Section ൬.൫ 

discusses the birth of TEM, its importance in nanoscience research, as well as its 

structure and operating mode. Section ൬.൬ explains the principle and experimental setup 

for using the FM method to directly measure the sample's spring constant (force 

gradient). Section ൬.൭ introduces the method for capturing energy dissipation in 

nanocrystals during deformation. By modeling the interaction of the sample with the 

LER sensor as an external force, the non-conservative force components during the 

oscillation process are considered as the source of energy dissipation. Energy 

dissipation is directly captured through changes in the driving voltage used to excite 

the LER oscillation. Section ൬.൯ describes the working principle of the phase-locked 

loop used to control LER oscillation. 

൬.൫ Transmission electron microscopy (TEM) 

The invention of the optical microscope greatly advanced the study of cells, bacteria, 

and physiological functions of the human body. However, by the ൫൳൬൪s, the optical 

microscope could no longer meet the research needs. An optical microscope can 

achieve a magnification of approximately x൯൪൪ to x൫൪൪൪ by improving the quality of 

optical lenses, but cannot achieve the magnification of x൬൪൪൪. This limitation is due to 

the fact that the magnification of conventional optical microscopes is restricted by the 

wavelength of visible light. Optical microscopes use visible light to observe objects. 

According to theoretical calculation, the resolution of a conventional optical 
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microscope does not exceed ൬൪൪ μm. Researchers improved resolution by reducing the 

wavelength of the light source, such as using ultraviolet rays as beam source. They 

developed ultraviolet microscopes, however, the magnification is only about two to 

three times that of conventional optical microscopes. To study the structure of materials 

at a higher level, it is necessary to create microscopes with higher resolution. 

In ൫൳൬൱, de Broglie published a paper revealing the wave nature of electrons, 

showing that the electrons are also a light with wavelength of is several orders of 

magnitude smaller than that of visible light[൬൳,൭൪]. This discovery inspired the 

exploration of using electrons as a light source, leading to a rapid surge in related 

applications. The Transmission Electron Microscope (TEM) uses electron beams 

instead of visible light as its light source, achieving a magnification of ൫ million times 

with an acceleration voltage of ൬൪൪ kV. TEM is an essential tool for evaluating 

nanometer-scale materials and is widely used in understanding the physical properties 

of nanomaterials such as semiconductors, biomaterials, and metals. 

Since its invention in the ൫൳൭൪s, the TEM has undergone significant improvements 

and functional advancements. By the ൬൪൪൪s, the invention of spherical aberration 

correction equipment allowed TEM to achieve atomic-level resolution. Recently, 

techniques have been developed to install force sensors, such as cantilevers and AFM 

probes into specimen holders, enabling simultaneous mechanical measurement while 

observating specimen structures. The main purpose of using TEM in this study is to 

obtain real-space images to understand the crystal structure of specimens. TEM can 

also be used to obtain electron diffraction images of periodic regions, as well as to 

observe in situ chemical reactions and biological materials. 
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൬.൫.൫ Structure of Transmission Electron Microscope (TEM) 

In an electron microscope, instead of visible light, electron beams emitted from an 

electron gun, and these beams are focused by electromagnetic lenses to adjust the light 

path to focus on the specimen. The electron gun can be categorized based on the method 

of electron emission into types such as thermionic emission, field emission, thermal 

field emission, and Schottky emission. 

A thermionic emission electron gun heats a cathode, such as tungsten or LaB₆, to 

release thermal electrons. For field emission electron gun, places a sharply pointed 

tungsten cathode in a strong electric field, utilizing the tunneling effect to emit 

electrons from the cathode tip. Field emission guns have advantages over thermionic 

emission guns, offering lower current levels and higher brightness. Furthermore, 

electrons are emitted from a tiny area on the cathode, resulting in minimal variation in 

initial velocity, so the electron beam has a stable wave length, this can improve the 

imaging resolution. 

For the Schottky electron gun, by heating the emitter to a temperature lower than 

that required for effective thermionic emission (~൫൲൪൪ K) while applying a strong 

electric field to have the Schottky effect to release electrons. Generally, for the 

thermionic emission, Schottky, and field emission electron guns, the brightness 

increases with both the electron energy width and beam diameter decrease. 

The electron beam used in TEM is typically accelerated by a voltage ranging from 

tens to hundreds of kV. Similar to optical microscopes, the image resolution of a TEM 

can be approximated by the following Rayleigh criterion[൭൫]: 

𝑔(𝑥) =
𝜔

2𝜋
න 𝑓(𝑥 − 𝑥ᇱ)𝑑t

஠
ఠ

ି
஠
ఠ

 ൬.൫ 

Here, λ represents the wavelength of the electron beam, μ is the refractive index of 
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the medium, and β is the acceptance angle of the objective lens. Since Equation (൬.൫) 

represents the resolution limit, a smaller λ results in higher image resolution. In the 

case of a TEM with an accelerating voltage of ൬൪൪ kV, the wavelength of the electron 

beam is ൪.൪൪൬൯൫ nm, which is shorter than the diameter of an atom, thereby achieving 

atomic-scale resolution. 

As shown in Figure ൬.൫, a comparison is made between the structure of a typical 

TEM[൭൬] (Figure ൬.൫(a)) and that of an optical microscope (Figure ൬.൫(b)). A typical 

TEM consists of an electron gun, a vacuum system, electromagnetic lenses, a 

goniometer, apertures, and an image recording system. 

The electron gun acts as the source of the electron beam. The vacuum system is used 

to maintain a high vacuum in the TEM chamber, reducing the effect of gas molecules 

on both the electrons (by increasing their mean free path) and the specimens (by 

minimizing electron-beam-induced deposition). The electromagnetic lenses in the TEM 

are used for electron focusing and, as shown in Figure ൬.൫ (a), are divided into 

condenser lenses, objective lenses, intermediate lenses, and projector lenses. 

The goniometer is used to fix the sample holder within the TEM chamber and allows 

mechanical movement of the sample in three axes, enabling the generation of the image 

or diffraction pattern of the sample through the objective lens. Various types of sample 

holders can be inserted into the goniometer. Apertures are used to filter the electron 

beam, and the image recording system is used to capture the image generated by the 

electrons. 
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Figure ൬.൫(a) Schematic structure of a typical TEM. (b) Schematic structure of a 

typical optical microscope. 

 

൬.൫.൬ TEM Imaging Modes 

TEM imaging is performed using transmitted electrons. The basic imaging process 

is as follows: 

i. The electron gun emits and accelerates electrons, which are then focused by the 

condenser lenses. 

ii. The incident electrons interact with the sample, with some electrons passing 

through or being scattered by the sample. 

iii. These transmitted/scattered electrons are focused by the objective lens, and with 

the assistance of intermediate and projector lenses, a TEM image is obtained. 
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TEM has two operating modes, imaging mode and diffraction mode, as shown in 

Figure ൬.൬(a) and (b). The diffraction pattern is formed on the back focal plane by the 

objective lens, while the image is generated on the image plane (referred to as the 

intermediate image). The focus of the intermediate lens can adjust the image or 

diffraction pattern shown on the second intermediate image, and then it can be 

magnified by the projection lens. Therefore, imaging and diffraction modes are 

controlled by the intermediate lens. Finally, the image or diffraction pattern is 

displayed on a screen and recorded by a camera. In this study, TEM images representing 

the atomic structure of the sample are obtained using the imaging mode and recorded 

with a CCD camera. 

For obtaining the atomic structure of the sample, high-resolution transmission 

electron microscopy (HR-TEM) is used in the experiment. The imaging contrast of HR-

TEM is caused by the interference between the scattered electron wave and the 

transmitted electron wave. When the sample is extremely thin, the amplitude of the 

incident electron wave does not change, but the phase of the wave slightly changes 

after interaction. In this case, the interaction between the sample and the incident 

electron wave, along with the interference of the transmitted electron wave, results in 

a phase shift. This phase shift is relative to the peak of the incident wave at the position 

of the atomic columns. By recording the amplitude of the phase interference, HR-TEM 

images are captured with a CCD camera, representing the projected structure of the 

sample. 
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Figure ൬.൬ (a) Imaging mode of TEM. (b) Diffraction mode. By adjusting the 

intermediate lens, the imaging or diffraction pattern is displayed on the plane of the 

second intermediate image when the imaging or diffraction mode is adjusted. 

 

൬.൬ Method for measuring spring constant 

In this study, we used a Length Extension Resonator (LER) as mechanical sensor to 

detect mechanical responses based on the Frequency Modulation (FM) method. LER 

has high spring constant of ൫൪൯ N/m, so it can be oscillated with a low oscillation 

amplitude of about ൭൪pm. With such low amplitude, the TEM image will not be blurred 

due to LER oscillation. The LER used in this study is a STATEK (൭EXW-൫൪൱൭) model 

(as shown in Figure ൬.൭), with a spring constant of approximately ൳.൬×൫൪൯൳.൬×൫൪൯ N/m 

per rod and a resonance frequency around ൫ MHz. 
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Figure ൬.൭ Illustration and photograph of the Length Extension Resonator (LER). 

 

 

Figure ൬.൮ Schematic of the LER rod oscillation. 

 

The rod-shaped resonator (approximately ൬.൱ mm in length) in LER is made of quartz 

and serves as the actual oscillate part. On both sides of the rod, gold electrodes are 

deposited so we can apply voltage on it. Hereafter, this rod-shaped resonator will be 

referred to as the “rod.” Since quartz is spontaneously polarized, it exhibits the 

(inverse) piezoelectric effect. As shown in Figure ൬.൭, the gold electrode on both sides 

of the rod is the same, here we call them as Electrode A and Electrode B depending on 

their function. Electrode A is used for electrical excitation; when an AC voltage is 
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applied, the inverse piezoelectric effect causes the polarized quartz lattice to experience 

an electric field force, generating stress along the rod axis. Consequently, the rod 

deformed in the frequency of the applied voltage (as shown in Figure ൬.൮). Due to this 

deformation of the rod, induced charges appear on Electrode B. This induced charge is 

proportional to the oscillation amplitude (in length). We measured the oscillation 

amplitude in experiment, and studied relationship between it to this induced charge on 

Electrode B. Detailed methods are provided in Chapter ൭. 

Next, we will use an oscillation model to explain the principle of using the LER as a 

sensor to measure the spring constant of the sample through the FM method. 

 

Figure ൬.൯ Oscillation model of LER rod. 

 

Consider the oscillation model of the LER shown in Figure ൬.൯. Let the spring 

constant (force-displacement gradient) of the support at the center of the rod be 𝑘௖, 

and its displacement from the equilibrium position be 𝑞௖. The displacements of the two 

rods from their equilibrium positions are 𝑞ଵ and 𝑞ଶ. The spring constant and effective 

mass of each rod are represented as 𝑘௅ாோ and 𝜇∗, respectively. An external force 𝐹௧௦ 

acts on the left rod, with a displacement gradient 𝑘௧௦. As will be discussed later, if a 

metallic NC is attached there, this gradient corresponds to the equivalent spring 
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constant of the metallic NC. From this model, we can derive following equations of 

oscillation: 

⎩
⎨

⎧𝜇∗
𝜕ଶ𝑞ଵ

𝜕𝑡ଶ
= −𝑘௧௦𝑞ଵ − 𝑘௅ாோ(𝑞ଵ − 𝑞஼)

𝜇∗
𝜕ଶ𝑞ଶ

𝜕𝑡ଶ
= −𝑘௅ாோ(𝑞ଶ − 𝑞஼)

 

൬.൬ 

Considering the force balance at the central point c, the following relationship can 

be obtained: 

−𝑘஼𝑞஼ = −𝑘௅ாோ(𝑞ଵ − 𝑞஼) − 𝑘௅ாோ(𝑞ଶ − 𝑞஼) 

𝑞஼ =
𝑞ଵ − 𝑞ଶ

2 +
𝑘஼

𝑘௅ாோ

 

 

൬.൭ 

𝜅 is defined as follow: 

κ =
1

2 +
𝑘஼

𝑘௅ாோ
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then we can obtain ω଴
ଶ =

௞ಽಶೃ

ఓ∗  , and equation (൬.൬) can be rewritten as: 

⎩
⎪
⎨

⎪
⎧𝜕ଶ𝑞ଵ

𝜕𝑡ଶ
= −ω଴

ଶ ൬
𝑘௧௦

𝑘௅ாோ
+ 1 − κ൰ 𝑞ଵ + ω଴

ଶκ𝑞ଶ

𝜕ଶ𝑞ଶ

𝜕𝑡ଶ
= ω଴

ଶκ𝑞ଵ − ω଴
ଶ(1 − κ)𝑞ଶ

 

൬.൯ 

here, if we make the following definitions: 

 

𝑴 ≡ ω଴
ଶ ቌ

𝑘௧௦

𝑘௅ாோ
+ 1 − κ    − κ 

−κ          1 − κ
ቍ 

൬.൰ 
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𝑸 ≡ ൬
𝑞ଵ

𝑞ଶ
൰ ൬.൱ 

then, equation (൬.൯) can be expressed in matrix form as follows: 

𝜕ଶ

𝜕𝑡ଶ
𝑸 = −𝑴𝑸 

൬.൲ 

assuming the displacement of the rods follows simple harmonic oscillation, it can be 

expressed as 𝑞௜ = 𝐴cos(ω௜𝑡 − 𝜙௜). Furthermore, if the frequencies of the two rods are 

same, i.e., −ω = ωଵ = ωଶ, then we have: 

𝜕ଶ

𝜕𝑡ଶ
𝑸 = −ωଶ𝑸 = −𝑴𝑸 

൬.൳ 

Therefore, ωଶ is the eigenvalue of 𝑴 with 𝑸 as the eigenvector. From det det (𝑴 −

ωଶ𝑬) = 0, we obtain: 

ተተ

𝑘௧௦

𝑘௅ாோ
+ 1 − κ −

ωଶ

ω଴
ଶ     − κ

−κ          1 − κ −
ωଶ

ω଴
ଶ

ተተ = 0 

൬.൫൪ 

ω±
ଶ = ω଴

ଶ ቐ൬
𝑘௧௦

𝑘௅ாோ
+ 1 − κ൰ ± ඨ(

𝑘௧௦

𝑘௅ாோ
)ଶ + κଶቑ 

൬.൫൫ 

 

The frequencies indicated by the plus and minus signs correspond to the resonant 

oscillate in opposite phase and in phase, respectively. In the limit of 𝑘௧௦ → 0, ωା
ଶ = ω଴

ଶ, 

ωି
ଶ = (1 − ͪκ)ω଴

ଶ. κ including the spring constant 𝑘௖ of the beams fixing part appears 



൬൫ 

only in the solution of the same phase. This is because when the beam vibrates in the 

opposite phase, the force applied to the fixing part is canceled. Since the oscillation of 

the opposite phase is used in this study, ωା
ଶ  is expressed as ωଶ and will be discussed 

below. When the spring constant of the beam is sufficiently larger than the spring 

constant of the external force (𝑘௅ாோ ≫ 𝑘௧௦), we can obtain: 

ωଶ ≈ ω଴
ଶ ൜൬

𝑘௧௦

2𝑘௅ாோ
+ 1 − κ൰ + κൠ = ω଴

ଶ ൬
𝑘௧௦

2𝑘௅ாோ
+ 1൰ 

 

 

ω ≈ ω଴ ൬
𝑘௧௦

4𝑘௅ாோ
+ 1൰ 

൬.൫൬ 

Therefore, the relationship between the external force gradient (equivalent spring 

constant) 𝑘௧௦ and the frequency shift of the LER 𝛥𝑓 is expressed as follows: 

𝛥𝑓 =
1

2𝜋
(ω − ω଴) =

𝑘௧௦

2 × 2𝑘௅ாோ
𝑓଴ 

൬.൫൭ 

The effective spring constant of the LER is shown to be ൬ time of the equivalent spring 

constant of one rod. 
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൬.൭ Method for measuring energy dissipation 

 

Figure ൬.൰ LER oscillation model. 

 

To estimate the energy dissipation caused by internal friction within the LER and  

our specimen NC, we considered the model shown in Figure ൬.൰. For simplicity, we 

focus on the left rod of the LER to which the NC is connetcted. Let 𝑞 represent the 

displacement of the rod from its equilibrium position on the left side, with 𝜇∗ denoting 

effective mass. Here, 𝑘௅ாோ  and 𝑘ே஼  are the spring constant of the LER and NC, 

respectively. 𝐹஽௜௦௦ ௅ாோ (in blue color) is the dissipative force inside the LER due to 

internal friction. 𝐹 (in red color) is the force that driving the LER oscillation, it is 

caused by the driving voltage. From this model, we derived the following motion 

equation: 

𝜇∗
𝜕ଶ𝑞

𝜕𝑡ଶ
+ 𝑘௅ாோ𝑞 + 𝑘ே஼𝑞 + 𝐹஽௜௦௦ ௅ாோ  = 𝐹 

൬.൫൮ 

Generally, the energy dissipation 𝐷𝑖𝑠𝑠௅ாோ  produced in one oscillation cycle can be 

estimated by the integral of 𝐹 with respect to displacement 𝑞: 
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𝐷𝑖𝑠𝑠௅ாோ = ර 𝐹 𝑑𝑞

= ර 𝜇∗
𝜕ଶ𝑞

𝜕𝑡ଶ
+ 𝑘௅ாோ𝑞 + 𝑘ே஼𝑞 + 𝐹஽௜௦௦ ௅ாோ 𝑑𝑞

= ර 𝐹஽௜௦௦ ௅ாோ 𝑑𝑞 

൬.൫൯ 

here, 𝜇∗ డమ௤

డ௧మ
, 𝑘௅ாோ𝑞 and 𝑘ே஼𝑞 are all conservative terms, so their loop integral is ൪, 

then the dissipation is only determined by the dissipative force inside LER. However, 

we do not know the 𝐹஽௜௦௦ ௅ாோ directly, so we turn to estimate the energy dissipation 

through the definition of the quality factor Q. 

𝑄 ≡ 2𝜋 ×
𝑠𝑡𝑜𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 

𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛
 

൬.൫൰ 

here, the stored energy including the potential energy stored in the spring and the 

kinetic energy of the oscillator within the oscillation model illustrated in Figure ൬.൰, 

therefore, 𝑠𝑡𝑜𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 ≈ 𝑘௅ாோ𝐴𝑚𝑝ଶ/2. Here, 𝐴𝑚𝑝 is the oscillation amplitude of 

LER. The energy dissipation 𝐷𝑖𝑠𝑠௅ாோ is determined by: 

𝐷𝑖𝑠𝑠௅ாோ = 2𝜋

𝑘௅ாோ𝐴𝑚𝑝ଶ

2
𝑄

= 𝜋
𝑘௅ாோ𝐴𝑚𝑝ଶ

𝑄
 

൬.൫൱ 
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Figure ൬.൱ LER oscillation model, where the sample NC also exhibits energy 

dissipation. 

 

Next, consider the scenario where the sample NC also exhibits energy dissipation, as 

illustrated inFigure ൬.൱. Under the condition that other parameters such as amplitude 

and frequency remain unchanged, the energy dissipation from NC absorbs a portion of 

the oscillation energy. Therefore, an additional driving voltage ∆𝑉  is required to 

compensate for this energy loss and maintain the oscillation of LER. Specifically, in 

the absence of energy dissipation from NC, the driving voltage for LER is 𝑉଴; however, 

when energy dissipation from NC is present, the driving voltage for LER needs to be 

increased by an additional voltage∆𝑉, resulting in a total driving voltage of 𝑉଴ + ∆𝑉. 

This additional driving voltage ∆𝑉  is precisely used to counteract the energy loss 

caused by the dissipation from NC, ensuring that the oscillation state of LER remains 

consistent. 

𝐷𝑖𝑠𝑠௅ாோ + 𝐷𝑖𝑠𝑠ே஼ = 𝐷𝑖𝑠𝑠௅ாோ

∆𝑉 + 𝑉଴

𝑉଴
 

                             = 𝜋
௞ಽಶೃ஺௠௣మ

ொ
(

∆௏ା௏బ

௏బ
) 

 

൬.൫൲ 

Assuming the driving voltage and the energy dissipation have a linear relationship, then 

Equation ൬.൫൱ holds. As discussed earlier, when the energy dissipation is𝐷𝑖𝑠𝑠௅ாோ, the 

corresponding driving voltage is 𝑉଴ . Based on the linear proportionality, the total 

dissipation when the driving voltage increases to ∆𝑉 + 𝑉଴  can be estimated as 

𝐷𝑖𝑠𝑠௅ாோ
∆௏ା௏బ

௏బ
. Therefore, the energy dissipation on the specimen NC can be estimated 

by the changes in the driving voltage, as shown in Equation ൬.൫൳: 
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𝐷𝑖𝑠𝑠ே஼ = 𝜋
𝑘௅ாோ𝐴𝑚𝑝ଶ

𝑄
(
∆𝑉

𝑉଴
) 
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൬.൮ The equivalent circuit and frequency characteristics of the LER 

As a sensor, the LER converts between electrical responses mechanical responses. 

To use the LER for measuring mechanical oscillations, we developed an electrical 

model of the LER and analyzed its electrical characteristics. Typically, the equivalent 

circuit of the LER, as shown in the Figure ൬.൲. 

 

Figure ൬.൲ (a) Equivalent circuit of the LER. (b) Dominant current path during 

series resonance. (c) Dominant current path during parallel resonance. 

In Figure ൬.൲ (a), the upper part of the equivalent circuit is a typical RCL series 

circuit, while the down part, 𝐶଴, is the parasitic capacitance. Parasitic capacitance is 

the capacitance generated in a circuit due to factors such as capbles. This capacitance 

is unintended in the design but can have a significant impact on circuit performance, 

particularly in high-frequency circuits. The impedance 𝑍 of the RCL series circuit in 
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the upper part is given by: 

𝑍ோ஼௅ = 𝑅 +
1

𝑗ω𝐶
+ 𝑗ω𝐿 = 𝑅 + 𝑗(−

1

ω𝐶
+ ω𝐿) 

൬.൬൪ 

The LER is a parallel combination of the RCL circuit and parasitic capacitance shown 

in Figure ൬.൲ (a), so the overall impedance of the LER 𝑍௅ாோ is given by: 

1

𝑍௅ாோ
=

1

𝑍ோ஼௅
+ 𝑗ω𝐶଴ 

 

 

𝑍௅ாோ =
1

1
𝑍ோ஼௅

+ 𝑗ω𝐶଴

=  
൬𝑅 +

1
𝑗ω𝐶ଵ

+ 𝑗ω𝐿൰
1

𝑗ω𝐶଴

𝑅 +
1

𝑗ω𝐶ଵ
+ 𝑗ω𝐿 +

1
𝑗ω𝐶଴
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The LER impedance is related to the frequency of the applied voltage (𝑓 =  𝜔/2𝜋, 

usually expressed by angular frequency  𝜔  in circuit analysis). The frequency 

characteristics of the LER impedance are analyzed as follows: the real part of the 

impedance is determined by the equivalent resistance and is independent of frequency. 

After simplification, the imaginary part of the impedance is given as: 

Im[𝑍௅ாோ] =
൜൬

𝐿
𝐶଴

−
1

ωଶ𝐶଴𝐶ଵ
൰ ቀω𝐿 −

1
ω𝐶ଵ

−
1

ω𝐶଴
ቁ −

𝑅ଶ

ω𝐶଴
ൠ

𝑅ଶ + ቀω𝐿 −
1

ω𝐶ଵ
−

1
ω𝐶଴

ቁ
ଶ  

൬.൬൬ 

We noticed that under high-frequency conditions, have ω𝐶଴ ≫ 𝑅ଶ. Under this condition, 

we calculate the frequencies that make the imaginary part becomes zero: 
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൬
𝐿

𝐶଴
−

1

ωଶ𝐶଴𝐶ଵ
൰ ൬ω𝐿 −

1

ω𝐶ଵ
−

1

ω𝐶଴
൰ = 0 

൬.൬൭ 

therefore, 

𝑓௥ =
1

2𝜋ඥ𝐿ଵ𝐶ଵ

 
൬.൬൮ 

 

𝑓௔ =
1

2𝜋ට𝐿ଵ
𝐶଴𝐶ଵ

𝐶଴+𝐶ଵ

 
൬.൬൯ 

These are the series resonance frequency 𝑓௥ and the parallel resonance frequency 𝑓௔, 

respectively. When the frequency lies between 𝑓௥ and 𝑓௔, the circuit exhibits inductive 

behavior. On the other hand, when the frequency higher than 𝑓௔, the circuit exhibits 

capacitive behavior. When the circuit transitions from inductive to capacitive, the phase 

shifts by ൫൲൪°.  

൬.൯ The mechanism of Phase-Locked Loop (PLL) 

As described in the above section, achieving resonant driving (i.e., locking the LER 

oscillator in the resonant state is a critical step in measuring the sample's spring 

constant using the FM method. The amplitude and phase characteristics of voltage-

modulated resonators like the LER are shown in Figure ൬.൳(a) illustrates the 

distribution of the oscillator's amplitude and phase difference as a function of the 

driving frequency, with the horizontal axis representing the shift from the resonance 

frequency; Figure ൬.൳(b) corresponds to the phase difference between the oscillator's 
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input (driving signal) and output (induced signal). The key point is that the phase 

difference becomes zero in the resonant state. Therefore, in experiments, resonant 

driving can be achieved by locking the phase difference to zero. 

 

Figure ൬.൳ The corresponding amplitude and phase difference of the oscillator under 

various driving frequency. (a) The amplitude reaches its peak at resonance. Here, the 

horizontal axis representing the shift from the resonance frequency. (b)The phase 

difference between the oscillator's input (driving signal) and output (induced signal) 

with various driving frequency. The phase difference became ൪ at resonance. 
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Figure ൬.൫൪ Schematic diagram of a PLL including phase detector, PID controller 

and build-in oscillator. The PLL generates a driving signal that has same phase and 

frequency of its LER induced signal. 

 

We built a closed-loop control system with negative feedback as depicted in Figure 

൬.൫൪, the PLL receives the induced signal from the LER, and using this signal to control 

a built-in oscillator that generates a driving signal synchronized with the LER induced 

signal's phase. The PLL operates by receiving an input signal, typically from a 

reference source, and using this signal to control an oscillator that generates an output 

signal synchronized with the input signal's phase. The process begins with a phase 

detector that measures the phase difference between the LER induced signal and the 

driving signal generated by the built-in oscillator. The measured phase difference is 

then compared to a predefined phase setpoint (usually ൪ degree), resulting in an error 

signal. This error signal is fed into a proportional-integral-derivative (PID) controller, 

which processes it to produce a feedback signal. This feedback signal adjusts the 

frequency of the built-in oscillator to minimize the phase difference. Through this 

continuous adjustment, the built-in oscillator locks onto the LER induced signal's phase, 

ensuring the driving signal maintains the same frequency and phase evolution. This 

mechanism allows for precise synchronization and signal generation. 
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Chapter ൭  Experiment setup 

Introduction 

This chapter introduced the experimental setups used in this study. In Chapter ൭.൫, 

we introduce the UHV TEM machine used in this study and the importance of ultra-

high vacuum for this study. In Chapter ൭.൬, we introduce microscopic nanomechanics 

measurement method (MNMM) to realize TEM observation of nanomaterials 

simultaneously with measuring the mechanical properties. In Chapter ൭.൭, we introduce 

the mechanical measurement system, including the frequency and amplitude control of 

LER. This allows us to measure the spring constant of the specimens. Also, we 

estimated the oscillation amplitude of LER resonator from FFT pattern. In Chapter ൭.൮, 

we introduce the electrical measurement system. This allowed us to estimate the crows-

section area of the specimens. In Chapter ൭.൯, we introduce the motion control system 

of the specimens substrate, that allows us to move the specimens inside the TEM. 
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൭.൫ Ultra-high vacuum TEM 

In previous in-situ TEM observations, contaminants on the sample surface increase 

over time during observation. It is thought that these contaminants are composed of 

hydrocarbon residual gas molecules in the sample chamber. It decomposes and 

evaporate under electron beam irradiation, and then redeposit onto the sample surface, 

forming a contamination layer. These contamination layers can accumulate charge, 

affecting the electron beam and hindering the acquisition of structural information. 

More importantly, as the size of the specimen decreases, the surface properties are more 

sensitive to such contamination due to the increased surface-to-volume ratio, especially 

affecting mechanical properties. Figure ൭.൫(a) and (b) show typical TEM images of a 

clean and a contaminated sample surface, respectively. The surface atoms of a clean 

Au nanocrystal are orderly arranged, it can be seen that their interfaces are sharp, while 

the edges of a contaminated Au nanocrystal are smooth. The presence of contamination 

layers may affect the mechanical properties of Au nanocrystals. UHV-TEM can 

maintain an ultra-high vacuum (UHV) condition in the sample chamber at ൫൪-൱ Pa order. 

In such UHV conditions, the evaporated molecules consisting of carbon atoms are 

hardly redeposited on the surface, and the contamination layer can be reduced to keep 

the sample surface clean.  



൭൬ 

 
Figure ൭.൫ (a) The TEM image of a clean Au nanocrystal shows an orderly atomic 

arrangement, with sharp edges visible at the red arrow. (b) A typical TEM image of Au 

crystals covered by contaminants, where the edges appear smooth．  

In this study, we used the UHV-TEM (JEM൬൪൪൪FXVB) manufactured by JEOL Ltd. 

as shown in Figure ൭.൬. The sample chamber of the TEM is evacuated by an ion pump 

and a titanium sublimation pump, and the maximum ultimate vacuum of the sample 

chamber reaches the order of ൫൪-൱ Pa. The spherical aberration of the objective lens is 

൪.൱൪൯ mm, and the point resolution of the high-resolution image is ൪.൬൫ nm. The 

electron gun is a field emission type. The accelerating voltage during structural 

observation is ൬൪൪ kV, the measurement environment is room temperature (൭൪൪ K), and 

the ultra-high vacuum (൱×൫൪-൱ Pa). 



൭൭ 

 

Figure ൭.൬ Photograph of UHV-TEM used in this study．  
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൭.൬ Microscopic nanomechanical measurement method 

In this study, we used MNMM method to realize TEM observation of nanomaterials 

simultaneously with measuring the mechanical properties. By designing a TEM holder 

equipped with a force sensor of a length extension resonator (LER). the equivalent 

spring constant (corresponding to the force gradient) of the observed nanomaterial can 

be directly evaluated from the resonance frequency shift of the LER. Such a frequency 

modulation (FM) method is superior not only to provide a direct, elastic response, but 

also to provide energy dissipation from changes in the driving voltage to the LER.  

 
Figure ൭.൭ (a) Photograph of the developed TEM holder. Inset is an enlargement of 

the sample stage of the TEM holder. (b) An illustration of the sample stage in the TEM 

holder. 

 

Figure ൭.൭(a) and (b) respectively show the actual photo and schematic diagram of 

the TEM sample holder we developed. The head part of the sample holder consists of 

a LER, a polyether ether ketone (PEEK) substrate that carries the LER, a counter 
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electrode made of ൫൪൪ μm diameter gold wire, a driving mechanism for the substrate, 

and BNC wires. The LER has advantages of high stiffness (k଴ = 7.5 × 10ହ N/m) and 

high resonance frequency (f଴ ≈ ൫ MHz), which provide a high Q-factor and low noise 

level. Au wires or other nanomaterials can be suspended between the fixed electrode 

and the tip of the LER, allowing for visual observation through TEM. Using the FM 

method, the equivalent spring constant can be obtained from the shift in the LER's 

resonance frequency, while energy dissipation is measured by increasing the sinusoidal 

driving voltage applied to the LER (hereafter referred to as the driving voltage). During 

the experiment, the frequency and amplitude of the driving voltage are feedback-

controlled by a PLL to maintain the LER's resonance and amplitude stability. The 

advantage of the LER lies in its ability to achieve a very small amplitude (about ൭൪ 

pm), ensuring clear visibility of atomic arrangements in TEM images. 

The LER is mounted on a white PEEK substrate, and its position can be finely 

adjusted in three directions using a tubular piezoelectric ceramic, with an adjustment 

range of about ±൫ μm in the x, y, and z directions. Additionally, the tubular piezoelectric 

ceramic is mechanically connected to an ultrasonic linear motor (TULA൯൪, 

Technohands) via a connecting rod, allowing coarse axial movement of the PEEK 

substrate and LER. Since vibrations generated by the ultrasonic motor are easily 

transmitted through the connecting rod, a coupling connector is designed to selectively 

decouple or couple the connecting rod from the ultrasonic motor, and graphite (low 

friction) guide rails are used to minimize vibrations transmitted through the connecting 

rod. The coarse adjustment range in the y direction is ൯ mm. This design enables large-

distance movement of the substrate while minimizing vibrations caused by the moving 

structure, resulting in clear TEM images. 
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Figure ൭.൮ Schematic diagram of connection between LER and MFLI. 

൭.൭ Mechanical measurement system 

We use the LER as the force sensor to measure the mechanical responds of Au NC 

using the FM method. Using the FM method, the equivalent spring constant can be 

obtained from the shift in the LER's resonance frequency, while energy dissipation is 

measured by the extra driving voltage applied to the LER. In this study, the MFLI lock-

in amplifier from Zurich Instruments was used to control the oscillation of the LER. 

The signal output (Signal Output V) of the MFLI is used to apply an driving voltage to 

the LER, which is a sinusoidal AC voltage signal. The MFLI adjusts the frequency of 

the driving voltage to maintain the resonance of the LER, and adjusts the amplitude of 

the driving voltage to control the mechanical oscillation amplitude of the LER (the 

mechanical oscillation amplitude of the rod). The detailed adjustment method will be 

described in later sections. The signal input (Signal Input) of the MFLI can read both 

current and voltage signals from external sources. In this study, a charge amplifier 

(HQA-൫൯M-൫൪T, FEMTO Messtechnik GmbH, with a conversion ratio of ൫൪ V/pC) was 

used to convert the induced charge of the LER into a voltage signal, which was then 
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read through the voltage input of the Signal Input. 

 

Figure ൭.൯ The sweep result was fitted by dash lines, and the quality factor Q, 

resonance frequency and the phase was calculated. 

 

Parameters including the resonance frequency, quality factor Q, and phase difference 

(the phase difference of input and output at resonance) are essential for setting up the 

PLL. The MFLI instrument has a built-in parameter sweeper function which can scan 

the frequency of the output signal within a specified range while continuously 

measuring the LER's response data (such as amplitude and phase difference). The 

output signal was scanned around ൫ MHz, and the amplitude and phase were measured. 

As shown by the dashed line in Figure ൭.൯, the measurement results were fitted using 

the [Math] function, and the quality factor Q of the LER was calculated to be ൰൯൪൪, 

with a resonance frequency of ൳൳൳ kHz and a phase difference of -൫൪൪° at resonance. It 

should be noted that for voltage-controlled resonators such as the LER, resonance 

generally occurs at the point where the phase difference is ൪. However, in the scan 

results shown in the figure, the phase difference is shifted by -൫൪൪°. This shift is 

introduced by the amplifier that converts the LER's induced charge into a voltage signal. 
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During the process of converting the charge into a voltage signal, the amplifier causes 

the phase of the signal to shift backward by approximately ൳൪°. 

 

 
Figure ൭.൰ Schematic diagram of oscillation control system. 

 

The oscillation control system is shown in Figure ൭.൰. The oscillator outputs an initial 

driving voltage to the LER, cause an electric field that make quartz crystal to deform. 

This leads to forced oscillation of the LER rod driven by the driving voltage. The LER 

oscillates at its resonant frequency when the driving voltage is applied to one electrode 

of the LER. The sinusoidal electric charge, induced by the deformation of the quartz 

crystal due to the piezoelectric effect, is monitored through the other electrode, and is 

proportional to the amplitude of the LER oscillation. This induced charge is converted 

into a voltage signal (hereafter referred to as the LER induced voltage) using a charge 

amplifier. The MFLI input reads the LER induced voltage, and use demodulator to 

separate it into the phase and amplitude signals. When the Au wires at the tip of the 



൭൳ 

LER makes contact with the fixed Au wire, the spring constant changes, leading to a 

shift in the LER's resonant frequency. The built-in PLL of the MFLI adjusts the driving 

voltage frequency, locking the phase to the resonance phase to keep the LER in a 

resonant state. On the other hand, the LER oscillation amplitude is controlled by PID 

to lock it at setpoint. 

 

Figure ൭.൱ (a) TEM image of thin amorphous carbon before oscillation. (b) The FFT 

pattern of the captured TEM image (a). The FFT pattern of thin amorphous carbon 

exhibits a uniform ring before oscillation. (c) A TEM image of the same thin amorphous 

carbon acquired during oscillation. (d) The FFT pattern of the TEM image (c) during 

oscillation. White fringes appear in the FFT pattern, corresponding to the LER 

oscillation. The LER induced voltage from the charge amplifier was ൮൪൪ mV. 
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We calibrated the relationship between the LER induced voltage and the LER 

amplitude. The LER induced voltage was locked at ൬൪൪ mV, ൭൪൪ mV, ൭൯൪ mV, and ൮൪൪ 

mV, then we measured the corresponding LER amplitude. Conventionally, accurately 

measuring the LER amplitude has been challenging since it is extremely small (pm 

order). In this study, we aimed to precisely measure the LER sensitivity by estimating 

the LER amplitude from TEM images. In detail, as shown in Figure ൭.൱(a) we observed 

a thin layer of amorphous near the tip of the LER, its FFT pattern of thin amorphous 

carbon exhibits as a uniform ring (Figure ൭.൱(b)). When the LER oscillate with large 

amplitude, the TEM image of the amorphous became blurred (Figure ൭.൱(c)), and white 

periodic stripes appeared in the Fourier transform (FFT) pattern, as shown in Figure 

൭.൱(d). A contrast of a FFT pattern can be expressed as follow: 

 

𝑓(𝑥) = ෍ 𝛼௜sin(𝑘௜𝑥 + 𝛿௜) +

௜

𝐶 ൭.൫ 

where 𝛼௜ is the intensity of the wave component i, 𝑘௜ is the wave number, 𝛿௜ is the 

arbitrary phase and 𝐶 is the background intensity. Here we assume that 𝛼௜ does not 

strongly depend on i, because the contrast of TEM image of amorphous carbon is almost 

uniform. 

Consider that the sample position is shifted by 𝑥ᇱ = 𝐴 sin(𝜔𝑡)  due to the LER 

oscillation where 𝐴  is the oscillation amplitude and 𝜔  is the angular oscillation 

frequency of the LER. Thus, the time-averaged contrast of FFT pattern over the one 

cycle, 𝑔(𝑥) can be described as follow: 

𝑔(𝑥) =
𝜔

2𝜋
න 𝑓(𝑥 − 𝑥ᇱ)𝑑t
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Since 𝑑𝑥ᇱ = 𝐴𝜔 cos 𝜔𝑡𝑑t, equation ൭.൬ can be expressed as below: 
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𝑔(𝑥) =
𝜔

𝜋
න 𝑓(𝑥 − 𝑥ᇱ)
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ඥ𝐴ଶ − 𝑥ᇱଶ
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The FFT pattern during the oscillation can be obtained: 

𝑔(𝑥) = ෍ 𝐽଴(𝑘௜𝐴)𝛼௜ sin(𝑘௜𝑥 + 𝛿௜)

௜

+ 𝐶 ൭.൮ 

here 𝐽଴(𝑘௜𝐴) represents the zero-order Bessel function of the first kind. It indicates 

that the FFT pattern intensity 𝑔(𝑥)  is expressed by multiplying the 𝑓(𝑥)  with 

|𝐽଴(𝑘௜𝐴)|. It can be seen from equation ൭.൮, when |𝐽଴(𝑘௜𝐴)| takes its zero point ( in 

other worlds, when |𝐽଴(𝑘௜𝐴)| = 0 ), FFT pattern intensity 𝑔(𝑥) takes its local minima. 

The local minima of FFT pattern intensity 𝑔(𝑥) is the dark fringes in FFT pattern. 

Therefore, the oscillation amplitude A can be estimated by the distance of the dark 

fringes in FFT pattern. 

 

Figure ൭.൲ (a)Function |𝐽଴(𝑥)| and its zero points. (b) The intensity profile of the 

white fringes. This profile was extracted from the blue-boxed region of the FFT pattern 

in the inset. 

 

The absolute value of the zeroth-order first kind Bessel function (|𝐽଴(𝑥)|) is shown 

in Figure ൭.൲(a). |𝐽଴(𝑥)| function has fixed zero points, for example |𝐽଴(2.4048)| =



൮൬ 

|𝐽଴(5.5201)| = |𝐽଴(8.6537)| = 0. As shown in the Figure ൭.൲(b), from the FFT pattern 

extracted a region with a length of ൫൯൪ pixels that perpendicular direction to the white 

fringes, and the plotted intensity profile of this region. According to equation ൭.൮, by 

fitting the amplitude 𝐴, making the local minima of the intensity profile be aligned 

with the zeros points of the function |𝐽଴(𝑘𝐴)|, the LER oscillation amplitude can be 

estimated. 

 

Figure ൭.൳ (a) The fitted |𝐽଴(𝑘௜𝐴)| and the FFT pattern profile from experiments. (b) 

The relationship between the LER induced voltage and the mechanical oscillation 

amplitude. The induced charge generated by the mechanical oscillation of the LER is 

converted into voltage of the LER through an amplifier. 

 

More specifically, as shown in Figure ൭.൲(b), there is a first minimum point to the 

right of the center at k/৳π = ൪.൭൭൯ ৲/nm in the profile curve. This point should 

correspond to the point where 𝐴𝐾 =  2.4048   ( because|𝐽଴(2.4048)| = 0 ) in Figure 

൭.൲(a), allowing us to calculate 𝐴 =
ଶ.ସ଴ସ଼

ͪ஠ ଴.ଷଷହ ଵ/୬୫
= 1.1466 nm. When calculating the 

amplitude, A, it is important not only to fit one minimum point but also to align the 

positions of all minimum points with the experimental data as closely as possible. I 

wrote a Python program that uses ቚ𝐽଴ ቀ
୩

ଶగ
2𝜋𝐴ቁቚ + 0.1 as the objective function to fit 
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the experimental profile. I used the least squares fitting method. The fit result was 

shown in Figure ൭.൳(a). The estimated LER amplitude was ൫.൫൮൰൰ nm. This analysis is 

reasonable, since the intensity modulation in the FFT pattern is well reproduced by the 

Bessel function (Figure ൭.൳(a)). Then, since the LER induced voltage was ൯൪൪ mV, the 

sensitivity was estimated to be ൬.൬ nm/V. For more fitting points, the LER induced 

voltage was locked at ൬൪൪ mV, ൭൪൪ mV, ൭൯൪ mV and ൮൪൪ mV, and the corresponding 

LER amplitudes were obtained through the above method. These results showed a 

linear relationship between the LER oscillation amplitude and LER induced voltage as 

shown in Figure ൭.൳(b), indicating that the sensitivity was ൬.൬ nm/V. Now, we can 

estimate the LER oscillation amplitude (in length) by LER induced voltage. 

൭.൮ Electrical measurement system 

The mean free path refers to the average distance an electron can travel freely before 

undergoing a scattering event. During this process, the electron is not disturbed by 

impurities, lattice vibrations, or other defects. When the size of a metallic material is 

much smaller than the electron's mean free path, the probability of electrons scattering 

(such as interacting with lattice vibrations, impurities, or defects) as they pass through 

the material is significantly reduced. Electrons experience almost no scattering during 

transmission, as known as ballistic conduction. The conductance can be described by 

the Landauer formula: 

𝐺 =
2𝑒ଶ

ℎ
෍ 𝑇௡ ൭.൯ 

 

Here, 𝑇௡ represents the transmission probability of the n-th conduction mode. Under 

ideal conditions (i.e., 𝑇௡ ≈ 1), the total conductance can be approximately expressed 
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as: 

𝐺 =
2𝑒ଶ

ℎ
𝑁 ൭.൰ 

N is the number of conduction modes, which is proportional to the cross-sectional area. 

Therefore, the cross-sectional area of the NC is proportional to its conductivity value. 

As shown in the Figure ൭.൫൪, a gold foil is attached to the ൫൪ μm diameter gold wire. 

Appliy bias voltage through this gold foil, and the current flows through the NC. The 

counter part Au wire was connected to the conductivity measurement equipment. This 

current flowing through the NC was converted by a current amplifier (FEMTO DLPCA-

൬൪൪), and then measured by MFLI Aux port. The current amplifier, as shown in Figure 

൭.൫൫, has a gain and measurable range from ൫൪൭ to ൫൪൫൫ V/A and ±൫൪ V, respectively. We 

made a LABView program to read this signal from MFLI Aux port, calculate the 

conductance value by the bias voltage and the current amplifier parameter the 

conductance value is displayed in real-time on the LABView panel, as shown in Figure 

൭.൫൬. 

 

 

Figure ൭.൫൪ A photo of the PEEK board that carries LER and one gold foil. The gold 

foil lead connected to an Au wire (diameter: ൫൪ μm), used for measuring conductivity. 
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Figure ൭.൫൫ The current amplifier used in this study. 

 

Figure ൭.൫൬ (a) The LABView program for calculating the conductance and display 

in real-time on the panel. Pulled data from MFLI through data streaming node [Demod 

Sample ൪], read the Aux input by [Aux In ൪]. (b) The conductance value is displayed 

in real-time on the LABView panel. 
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൭.൯ Motion control part of sample platform 

Both the Au sample and the LER sensor are install on a PEEK substrate, we need to 

move this substrate to make the two Au wires touch to fabricate Au nanocontact. The 

position of the PEEK substrate can be driven by both coarse and fine motions. The 

motion control unit in our TEM holder is shown in Figure ൭.൫൭, for coarse motion, a 

ultrasonic motor (TULA൯൪, Technohands) was used to push or pull the sample substrate. 

The ultrasonic motor operates by utilizing the piezoelectric effect of piezoelectric 

ceramics to convert ultrasonic vibrations into linear or rotary motion. The movement 

principle is piezoelectric ceramic vibrates and reaches the drive shaft, pulls the friction 

body by changing the duty ratio of going and return, using this action to moving the 

unite distance. With small movement controlled by high vibration frequency, actuator 

can move smoothly. The moving range of coarse motion can be hundreds of μm, and 

the minimum step length can be as low as ൯൪ nm. 

 

Figure ൭.൫൭ The motion control unit in our TEM holder. 

 

For fine motions, as shown in Figure ൭.൫൭, a tube piezo, which fixed with the sample 

substrate, enables movement and positioning. This tube piezo can deform in x,y,z 

directions when voltage applied. Here, we use three Aux output ports to control the 

voltages dring this tube piezo. The voltage output range of MFLI Aux output is ±൫൪V, 
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however, it needs a much higher voltage (over ൫൪൪ V) to have enough deform on tube 

piezo. We use a piezo driver (MESS-TEK M-൬൰൲൪) to amplify the control voltage from 

MFLI Aux output by ൭൪ times and apply it to the tube piezo. The deformation 

coefficient of the tube piezo is ൬.൰൱ nm/V.  
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Chapter ൮  Elastic properties of Au nanocontacts 

Introduction 

This chapter introduces the study of the elastic properties and local Young’s modulus 

of nanocrystals. Section ൮.൫ provides an overview of research on Young’s modulus at 

the nanoscale and explains the necessity of measuring the local Young’s modulus of 

nanomaterials. Section ൮.൬ explains the principles for measuring the local Young’s 

modulus. Section ൮.൭ briefly describes the experimental setup and raw data, including 

the process of cross-sectional area reduction during the stretching process. Section ൮.൮ 

provides a detailed description of the method for accurately measuring lattice spacing 

using TEM images and shows the evolution of lattice spacing under tensile stress. 

Section ൮.൯ presents the measurement results of the local Young’s modulus, compares 

them with previous studies, and discuss. Section ൮.൰ summarizes this chapter. 

൮.൫ Previous studies on the Young's modulus of nanomaterials 

Young's modulus can describe a material's elastic property. As shown in Figure ൮.൫, 

when a force is applied to an object, it elongates from its original length 𝐿 to 𝐿 + 𝛥𝐿. 

To evaluate the elastic response without being affected by the size and shape, we focus 

on the force applied per unit area (stress) and the elongation for per unit length (strain). 

Young's modulus is defined as the ratio of stress to strain, it can represent the material's 

inherent elastic property. Young's modulus is an important parameter for understanding 

such an elastic response. Conventionally, the modulus is measured by applying the 

loading force and measuring displacement, which is called the stretching test. This test 

can be performed without taking care of the stretching direction for bulk materials, 
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because the orientation dependence of Young’s modulus can be ignored owing to the 

polycrystallinity of bulk materials. On the other hand, Young's modulus of 

nanomaterials has been suggested to depend not only on the size but also on the 

orientation, since the nanomaterials tend to be monocrystalline[൭൭,൭൮]. In calculation, 

Young's moduli of a single gold (Au) crystal show a pronounced elastic anisotropy. Liu 

et al. reported that Young's modulus of a single Au crystal was calculated to be ൱൬.൬, 

൫൪൮.൫, and ൫൯൱.൫ GPa for the [൫൪൪], [൫൫൪], and [൫൫൫] directions, respectively, based on 

their molecular static calculations[൭൯]. Meanwhile, Young’s modulus of Au nanowires 

with the axis of the [൫൪൪], [൫൫൪], and [൫൫൫] directions with a diameter of about ൬.൬൳ nm 

have been calculated to be ൯൭.൭൲, ൫൫൫.൰൭, and ൫൭൯.൯൳ GPa, respectively[൭൰]. The size 

dependence of elastic properties has been discussed based on theoretical 

calculations[൭൱]. As the diameter of a nanowire decreases, the surface-to-volume ratio 

significantly increases, enlarging the influence on the surface properties. Two possible 

surface mechanical responses have been pointed out: softening and hardening. 

Softening is caused by a reduction in the coordination number of surface atoms, and 

hardening is by the redistribution of electrons of the surface atoms[൫൰,൭൲–൮൪]. However, 

due to a lack of experimental results, no clear conclusion has been reached on Young's 

modulus size dependence of metallic nanocontacts (NCs) with diameters of ൫൪ nm or 

less, where surface effects are expected to appear[൮൫]. 

 

Figure ൮.൫ Schematic diagram of the deformation of an object with a uniform cross-

sectional area under applied force. 
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In experiments, the estimation of Young's modulus of nanomaterials is typically 

conducted using the bending test method. Wu et al. utilized nanowire bending under 

lateral load exerted by an atomic force microscope (AFM) tip to estimate the Young's 

modulus of Au nanowires [൬൭]. They found that the Young’s modulus remained 

consistent irrespective of diameters ranging from ൬൯൪ nm to ൮൪ nm, suggesting that the 

surface effects might not be crucial enough to lead to the size dependence of the 

Young's modulus within such a size range. Apparent Young's moduli of Ag and Pd 

nanowires, measured using atomic force microscopy, have been reported to be close to 

bulk values (൱൰ GPa for Ag and ൫൰ GPa for Pb) for diameters larger than ൱൪ nm and ൫൪൪ 

nm, respectively. On the other hand, their Young's moduli tended to increase with 

decreasing diameter, which was explained by the effect of surface tension [൮൬]. The 

Young’s modulus of Ag nanowires with diameters between ൭൮ and ൫൭൪ nm was also 

reported to increase as the diameter decreased by achieving the in-situ tensile testing 

in a scanning electron microscope (SEM) [൮൭]. However, the size dependence of Young's 

modulus is controversial. Some reported that Young's modulus increased with 

decreasing size [൬൪,൮൭–൮൯], while others reported that it decreased [46,47]. 

In many cases, the size dependence of Young's modulus has been investigated for 

nanowires larger than ൫൪ nm in diameter. Simply, the ratio of surface atoms to total 

atoms is inversely proportional to diameter: assuming an atom diameter of about ൪.൬ 

nm, the ratio drops to about ൪.൫ for nanowires with a diameter of ൫൪ nm. To clarify the 

surface effect more clearly, it is necessary to examine the size dependence of Young's 

modulus for nanowires with a diameter of ൫൪ nm or less, where the ratio of surface 

atoms to total atoms is large enough. However, few such experimental results have been 

obtained. One of the reasons is that it is required to measure the dimensions of the 
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nanowire at an atom level.  

൮.൬ Principles of estimating the local Young's modulus 

 

Figure ൮.൬ Schematic diagram of out idea to of estimating the local Young's modulus 

from the local strain. (a) One nanomaterial object was divide into several local regions. 

(b) Elastic response under applied force with uniform Young's modulus and consistent 

local elongation. (c) In the case of non-uniform local Young's modulus, the local strain 

distribution will be uneven. The local Young's modulus can be estimated by the ratio 

of local strain to total strain. 
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Figure ൮.൭ (a) Schematic illustrations of FM method for measuring the spring 

constant of the NC using the shift in resonance frequency. kLER is the spring constant 

of the LER, and km is the equivalent spring constant of the Au NC and two metal (Au) 

wires. The resonance curve shifts by ∆f owing to the NC formation, as shown in the 

graph of the oscillation amplitude as a function of the oscillation frequency (b) 

Schematic of two Au wires supporting an NC: The NC section is marked in orange with 

a spring constant 𝑘ே஼. The Au wires supporting the NC are marked in yellow with 

spring constants 𝑘୵ͩ and 𝑘୵ͪ.  

 

As described in the methods of Chapter ൬, the spring constant of the NCs can be 

measured by the FM method, as shown in Figure ൮.൬(a). An Au wire of ൫൪ µm in 
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diameter was attached to the LER, which oscillated at the resonance frequency (𝑓଴). 

The Au NC was formed by contacting the Au wire attached to the counter electrode. 

When contacting, the resonance frequency was shifted by ∆𝑓  due to a serial couple 

of LER and the Au contact including two Au wires supporting it, which can be regarded 

as two metal probes, as shown in Figure ൮.൭(b). Therefore, the equivalent spring 

constant of the Au contact and two metal probes,  𝑘௠ , can be estimated by 𝑘௠ =

2𝑘௅ாோ∆𝑓/𝑓଴ (see the more detail in Experiment). 

In mechanical property measurements such as tensile and compression tests, the 

applied force extends over the entire object being measured, including the probes. For 

example, if a nanomaterial is a measurement target, the elastic property is measured 

including two metal probes supporting it. The estimated equivalent spring constant 

(𝑘୫) can be expressed by a series coupling of the spring constant of the nanomaterial 

(𝑘୒େ) and the spring constant of two Au wires supporting it (𝑘୵ͩ and 𝑘୵ͪ) as follows 

(Figure ൮.൭ (b)): 

1

𝑘௠
=

1

𝑘ே஼
+

1

𝑘௪ଵ
+

1

𝑘௪ଶ
 ൮.൫ 

 

This equation indicates that the contribution of two Au wires must be eliminated 

from the measured spring constant to determine the elastic properties of the 

nanomaterial. Such consideration applies to all mechanical property measurement 

methods, such as silicon cantilever-based methods. However, it is not easy to evaluate 

the spring constant of the tips of two Au wires. In the case of the MNMM, the two Au 

wires that support the NC are very sharp; their equivalent spring constants have the 

same order as the NC (~ tens N/m). As can be seen from equation ൮.൫, the influence of 

the equivalent spring constant of the two Au wires cannot be ignored for this reason. 
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As mentioned above, Zhang et al. overcome this problem by comparing the spring 

constant before and after a {൫൫൫} layer was introduced in stretching. However, their 

method does not apply to other materials and stretching directions. 

In this study, a new method for estimating Young's modulus of nanomaterials is 

proposed. Young’s modulus (𝑌) is defined to be a proportional coefficient by assuming 

a linear relationship between strain (𝜖) and stress (𝜎) as follows: 

𝜎 ≡ 𝑌𝜖 ൮.൬ 

 

Accordingly, Young’s modulus can be obtained when the values of strain and stress 

are obtained. Equation ൮.൬ is valid for any region designated between two planes 

perpendicular to the stretching direction in the process of elastic deformation. 

Therefore, the local Young's modulus in a region (𝑌௟௢௖௔௟) can be determined from the 

force (𝐹) applied to this region as follows: 

𝐹

𝑆௟௢௖௔௟
= 𝑌௟௢௖௔௟

∆𝑙௟௢௖௔௟

𝑙௟௢௖௔௟
 ൮.൭ 

 

Here, 𝑆௟௢௖௔௟   is the cross-sectional area of the region, 𝑙௟௢௖௔௟  is the length of the 

region at the force equilibrium point, and ∆𝑙௟௢௖௔௟ is the change in 𝑙௟௢௖௔௟. The force (𝐹) 

applied to this region can be evaluated from the product of the measured equivalent 

spring constant (𝑘௠) and the piezo elongation (∆𝐿௣௜௘௭௢) from the force equilibrium point 

in the MNMM, which corresponds to the total change of 𝑙௟௢௖௔௟   over the stretched 

regions: 

𝐹 = 𝑘௠∆𝐿௣௜௘௭௢ ൮.൮ 
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In the experiment, since the piezo produces displacement at a constant rate, its 

elongation can be obtained by a product of the ratio and the elongation time within one 

elastic elongation process. Therefore, the local Young's modulus can be obtained as 

follows: 

𝑌௟௢௖௔௟ = 𝑘௠

𝑙௟௢௖௔௟

𝑆௟௢௖௔௟

∆𝐿௣௜௘௭௢

∆𝑙௟௢௖௔௟
 ൮.൯ 

 

During stretching, the metal NC is elastically stretched and then relaxed by plastic 

deformation. Such elastic and plastic deformation occurs repeatedly. Equation (൯) 

indicates that the local Young's modulus can be estimated when measuring the ratio of 

the piezo elongation to the displacement of the local region ∆𝐿௣௜௘௭௢/∆𝑙௟௢௖௔௟  at any time 

interval of the elastic deformation process. 

൮.൭ Experimental Setup 

The design of the in-situ TEM holder equipped with LER and the sample preparation 

is briefly explained in Chapter ൬ (Figure ൭.൭). In this holder, the LER is mounted on a 

polyetherketoneketone (PEEK) board substrate. The Au ⟨111⟩ NC was fabricated in the 

following procedure: An Au wire with a diameter of ൫൪൪ μm was set with the fixed 

electrode, and an Au wire with ൫൪ μm in diameter and approximately ൫൯൪ μm in length 

was attached to the LER tip. The height difference between the two Au wires was 

adjusted so that they could be in contact with each other. This contact could form the 

Au NC. To make the Au wires clean, they were baked in advance at ~൫൪൪ °C for at 

least ൬൮ h in a vacuum chamber. Afterward, they were irradiated with an intense 

electron beam (~10൪ௗA/cm൬) in an ultrahigh vacuum (UHV)-TEM to remove residual 
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contaminations adsorbed on them.  

In the experiment, the Au NCs are stretched and thinned by using a tube piezo. Figure 

൮.൮(a) shows a typical TEM image of the Au ⟨111⟩ NC. It exhibits an "hourglass" shape, 

which is constructed by two truncated triangular pyramids composed of three different 

{൫൫൫} surfaces joined to face each other [൮,൮൲]. When the Au NC was stretched at a 

constant rate by the piezo in the stretching process, it became thinner by repeating the 

elastic and plastic deformations. In the case of Au ⟨111⟩ NCs, a new layer of the {൫൫൫} 

lattice plane is introduced at the narrowest constriction during plastic deformation to 

maintain the "hourglass" shape. In the previous study [൮], it has been pointed out that 

the new layer of the {൫൫൫} lattice plane was introduced by the migration of surface 

atoms, which moved from the bulk part supporting the Au NC. Compared with the TEM 

image of Figure ൮.൮(a), three layers of the {൫൫൫} lattice planes were introduced at the 

narrowest constriction in the TEM image of Figure ൮.൮(b). 
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Figure ൮.൮ (a)(b) TEM images of the Au ⟨111⟩ NC taken before and after plastic 

deformation, respectively, during the stretching process. The white scale bar indicates 

൫ nm. (c) Time evolution of electrical conductance, spring constant, and the piezo 

displacement during the stretching process. The piezo displacement increased at a 

constant rate of ൬൬ pm/s. The two elastic stages labelled "a" and "b" correspond to the 
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TEM images in (a) and (b), respectively. 

 

The cross-sectional area of the narrowest constriction in the Au NC can be estimated 

by electrical conductance as reported previously [൮൳]. When the diameter at the 

narrowest constriction is small enough (a few nm), the conductance has been pointed 

out to be proportional to the cross-sectional area and satisfy the Sharvin formula  𝑆 =

 𝜆௙
ଶ𝐺௖/𝜋  (where 𝜆௙  is the Fermi wavelength of Au (൪.൯൬ nm), and 𝐺௖  is the 

conductance value in units of 𝐺଴ (𝐺௖  = 2𝑒ଶ/ℏ)) [൯൪]. Figure ൮.൮(c) shows the time 

evolution of electrical conductance when the Au ⟨111⟩ NC was stretched at a constant 

rate. In Figure ൮.൮(c), the conductance plateau corresponds to the elastic deformation 

in the stretching process, while the conductance jumps to the plastic deformation. To 

estimate Young’s modulus of the Au NC, we performed our analysis in the region of 

the elastic response.  

Figure ൮.൮(c) also shows the time evolution of the measured spring constant and total 

stretching distance (corresponding to the piezo displacement). The measured spring 

constant was almost kept constant in the elastic stage indicated by “a”, decreased 

abruptly at the moment of plastic deformation and then maintained a constant value in 

the next elastic stage indicated by “b”. The TEM images in elastic stages “a” and “b” 

are shown in Fig. ൭(a) and (b), respectively. The piezo displacement increased at a 

constant rate of ൬൬ pm/s. Considering Eq. (൯), Young's modulus of a certain region, 

designated between two planes perpendicular to the stretching direction in the Au ⟨111⟩ 

NC, can be obtained by the ratio of the piezo elongation (∆𝐿௣௜௘௭௢) to the displacement 

of this local region (∆𝑙௟௢௖௔௟) in the elastic deformation process, which can be obtained 

from the TEM image. 
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൮.൮ Measurement of local spacings in TEM images 

Since the displacement of a local region in the Au ⟨111⟩ NC is at a sub-angstrom 

level, it needs to measure the elastic displacement with high accuracy. First, the 

intensity profile along the {൫൫൫} lattice planes, corresponding to darker fringes in the 

TEM image, was obtained by averaging the intensity of pixels along the fringe parallel 

to the {൫൫൫} lattice fringe (Figure ൮.൯(a) and (b)). Second, the lattice plane positions 

were determined at a sub-pixel level by fitting a Gaussian function to the intensity 

profile so that each lattice plane position corresponded to the bottom of each valley in 

the intensity profile (Figure ൮.൯(c)). Although the pixel size was ൬൯ pm in the TEM 

image of Figure ൮.൯, the lattice plane position was identified with at least a few pm 

levels of accuracy by developing a Python program to fit the Gaussian function to the 

intensity profile. 

In the case of the Au ⟨111⟩ NC of an hourglass-like shape, the displacement of each 

{൫൫൫} lattice spacing depends not only on its cross-sectional area but also on the local 

Young's modulus, if the Young’s modulus changes depending on the size as previously 

reported [൮]. We tried to investigate each elastic displacement of each {൫൫൫} lattice 

spacing. Still, it was difficult because the spacing at equilibrium is ൪.൬൮ nm, and the 

maximum elastic strain is about ൯% at maximum, so the elastic displacement is only 

less than ൫൪ pm. In fact, the elastic displacement of the measured spacing was so 

broadly scattered from a time-proportional relationship that the ratio of the piezo 

elongation (∆𝐿௣௜௘௭௢ ) to the displacement of this local region (∆𝑙௟௢௖௔௟  ) could not be 

reasonably determined. 
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Figure ൮.൯ Procedure of measuring the {൫൫൫} lattice plane positions in HRTEM 

images. (a) A typical TEM image of the Au ⟨111⟩ NC. In the black rectangle area, the 

average value was taken in the vertical direction to obtain the intensity profile in the 

horizontal direction. The white scale bar indicates ൬ nm. (b) The intensity profile in the 

horizontal direction in the black rectangle area in (a). The minima (valleys) in the 



൰൫ 

profile correspond to the positions of individual {൫൫൫} atomic planes. (c) Magnified 

view of a single valley (blue box in b), representing one {൫൫൫} atomic plane. The profile 

was fitted with an inverted Gaussian function (red dashed line: center of the fitted 

function, representing the precise atomic plane position; pink regions: uncertainty in 

the fitted center position). 

Figure ൮.൰(a) shows a typical TEM image of the Au ⟨111⟩ NC. The positions of the 

{൫൫൫} lattice planes indicated by the green lines were identified at the sub-pixel level 

by the program. When the {൫൫൫} lattice planes were numbered from thickest to thinnest 

cross-sections, the elastic responses were investigated in the following three regions: 

൲ to ൳ (as region I), ൯ to ൰ (as region II), and ൪ to ൯ (as region III), respectively, as 

indicated by the black arrows from up to bottom in Figure ൮.൰(a). In these regions, the 

time evolution of the local interval was measured. Figure ൮.൰(b) shows the time 

evolution of the normalized local interval, which was obtained by dividing the 

measured width of the region by the number of the {൫൫൫} lattice spacing, as a function 

of the piezo displacement. In detail, the time evolution in interval of each region was 

automatically measured from eight consecutive TEM images during the elastic 

deformation process by developing the program, and plots of eight points for each 

region were obtained. In Figure ൮.൰(b), the ratio of the elongation in the local region to 

the total displacement (∆𝑙௟௢௖௔௟ ∆𝐿௣௜௘௭௢⁄ ) was determined to be ൪.൫൪൲, ൪.൪൯൯, and ൪.൪൬൰, 

respectively, for the region I, II, and III by linear fitting based on the least-squares 

method, although the displacement in the local spacing was scattered among ൲ data for 

each region. The equivalent spring constant was obtained by averaging the values in 

the corresponding elastic deformation process (see Figure ൮.൮(c)). 
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Figure ൮.൰  (a) A typical TEM image of the Au ⟨111⟩ NC, with the {൫൫൫} lattice 

planes indicated by the green line. The white scale bar indicates ൫ nm. The {൫൫൫} lattice 

planes were numbered from thick to thin parts. The black arrows indicate three local 

regions. (b) The ratio of the elongation in this spacing to the total displacement 

(∆𝑙௟௢௖௔௟ ∆𝐿௣௜௘௭௢)⁄  for these three local regions in the same elongation process. The red 

line was obtained by linear fitting to the data. 

൮.൯ Results and discussion 

As shown in above sections, the spring constant and local strain have been estimated. 

Before calculating the local Young's modulus using the equation ൮.൯, the cross-sectional 

area of the local region still needs to be estimated. The cross-section of the Au ⟨111⟩ 

NC, which is necessary to estimate Young’s modulus, was approximated by a triangle 

with a slight truncation as reported [൮]. Since the sharp angle of the hourglass-shaped 

Au ⟨111⟩ NC is fixed, the cross-sectional areas of the {൫൫൫} lattice planes that make up 

the local region are not uniform because of the conical shape. The cross-sectional area 

of a certain {൫൫൫} lattice plane can be estimated from the distance from the narrowest 

constriction by determining the cross-sectional area of the narrowest constriction from 

the conductance. To obtain Young's modulus in these three regions of the conical shape, 

Young's modulus was assumed to be constant in each region. To obtain Young's 

modulus, it is necessary to assume that this region is a cylinder and determine its length 

and average cross-sectional area. Considering that the equivalent spring constant of 

this local region is expressed as a series coupling of the equivalent spring constants of 

these {൫൫൫} lattice “slices” (𝑆௜), the average cross-sectional area (𝑆௟௢௖௔௟) is obtained as 

follows: 
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Based on equation ൮.൰, the average cross-sectional area was ൫.൯, ൬.൯, and ൮.൪ nm൬ for 

regions I, II, and III, respectively. Therefore, the Young’s modulus of this local region 

was estimated to be ൯൮ GPa, ൰൭ GPa, and ൲൭ GPa, respectively, for the three regions by 

substituting these values in equation ൮.൯. This indicates that Young’s modulus of the 

Au ⟨111⟩ NC decreased with decreasing diameter, which was in agreement with the 

previous result [൮]. 

 

Figure ൮.൱ Young’s modulus of the Au ⟨111⟩ NC as a function of the cross-sectional 

area. Black dots represent the estimated local Young’s modulus in this experiment. The 

red curve represents the size dependence of Young's modulus obtained from previous 

studies [൮]. 

 

The Young's moduli of the Au ⟨111⟩ NCs were also estimated in some local regions 

for each of nine different elastic stretching processes for checking reproducibility. 
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Figure ൮.൱ summarizes the Young’s modulus estimated at local regions in different 

elastic deformation processes. In Figure ൮.൱, the data points of (average cross-sectional 

area, Young's modulus) which were obtained in the three local regions as mentioned 

above were plotted as (൫.൯ nm൬, ൯൮ GPa), (൬.൯ nm൬, ൰൭ GPa) and (൮.൪ nm൬, ൲൭ GPa), 

respectively. Even though the range of the average cross-sectional area is limited to ൫.൯ 

to ൯ nm൬, the Young’s modulus shows a tendency to decrease with decreasing the cross-

sectional area. 

Previously, Zhang et al. found that Young's modulus of Au ⟨111⟩ NCs exhibited a 

decreasing trend with decreasing cross-sectional area, with the modulus approaching 

൲൪ GPa for cross-sectional areas below ൮ nm² and reducing to around ൰൪ GPa as the 

cross-sectional area decreased to ൬ nm² as indicated by the red curve in Figure ൮.൱ [൮]. 

This curve was obtained by assuming that Young’s modulus at the core and surface of 

the cross-section were ൫൫൳ GPa and ൬൬ GPa, respectively. Our estimated Young’s 

modulus was scattered but had a similar trend to that previously reported. 

It has been pointed out that below ൫൪ nm in diameter, the mechanical properties differ 

from those of the bulk due to surface effects. Theoretically, it is not clear whether the 

Young's modulus due to surface effects can be higher or lower depending on the 

pseudopotential used in calculation [൫൰]. It has also been pointed out that the effect of 

temperature cannot be neglected. Assuming absolute zero temperature, as in first-

principles calculations, Young's modulus is shown to be higher due to surface effects. 

On the other hand, at room temperature, entropy must be taken into account, and 

Young's modulus decreases due to surface effects [൯൫]. Experimentally, the Young's 

modulus of gold NCs smaller than ൫൪ nm in diameter has not been systematically 

evaluated except for the reports mentioned above. Notice that the surface effect on 

Young's modulus of nanocontacts remains controversial. 
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To improve the accuracy of the estimation of local Young's modulus of nanomaterials, 

it is important to recognize the three-dimensional (൭D) shape of the NC; TEM simply 

provides the projected information on the sample depth.  Meanwhile, it is known that 

when the diameter of the NC is less than ൯ nm, electrical conduction depends on the 

number of conduction channels in discrete states. This means that the minimum cross-

sectional area of the NC, which is proportional to the number of channels, can be 

determined. It is also obvious that the geometry of the NC should consist of surface 

indices with the lowest possible surface energy, since surface effects are dominant. 

From these two pieces of information, the ൭D shape of the NC can be estimated. If this 

is not the case, energy loss spectroscopy can be used to estimate the thickness of the 

irradiated region by measuring the ratio of incident electrons to inelastic electrons. By 

combining this technique with scanning transmission electron microscopy, a thickness 

map can be obtained to estimate the ൭D shape of the nanomaterial. By such technical 

improvements, the present method is expected to be utilized in the future, as it can 

appropriately evaluate size and orientation dependences of Young's modulus on the 

nanoscale. 

The elastic properties of nanomaterials have been estimated using stretching or 

bending tests and AFM. However, any method of measuring mechanical properties 

detects the mechanical response of the whole, including the target nanomaterial and its 

supporting materials; it is impossible to obtain the mechanical response of the 

nanomaterial alone. This means that it is imperative to eliminate any influence from 

the supporting materials. Recently, the spring constant of the atomic chain has been 

obtained by removing the contribution of the electrode supporting the atomic chain, 

which could be achieved by measuring the spring constants of Pt atomic chains of 

different lengths supported between electrodes of the same geometry [൯൬]. Also, the 
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equivalent spring constant of the nanomaterial alone could be obtained by assuming 

the bulk value of Young's modulus and calculating the equivalent spring constant of the 

electrode that supported it [൯൭]. Compared to these methods, our proposed method has 

the advantage that it requires only several atomically resolved TEM images during the 

process of elastic deformation to obtain Young's modulus in a certain region.  

Recently, Y. Bu et al. reported that the local atomic environment inhomogeneity was 

related to amorphization process in high-entropy alloys (HEAs). The method for 

measuring the local Young's modulus proposed in this study is expected to be applied 

to further research on the local physical and mechanical properties of HEAs [൯൮]. The 

mechanical properties of structurally heterogeneous materials such as HEAs have 

attracted much interest. Measurements from a macroscopic point of view have been 

achieved, while those from a nanoscale point of view have rarely been done. However, 

because material fracture starts locally, it is important to reveal the mechanical 

properties of such materials from a nanoscale point of view. The present proposed 

method would be one of the powerful tools to clarify local mechanical properties. 

Young's modulus of a local area could be determined by obtaining the ratio of local 

elongation measured in the TEM images to the total displacement estimated by the bias 

voltage applied to the piezo when using the MNMM. However, as shown in Figure ൮.൰, 

the local displacements in the seven or eight TEM images, which were retrieved during 

the stretching process, often deviated from a linear relationship to the total 

displacement. For thin or relatively long regions where the spring constant was low, 

this deviation tended to be small because of relatively large elongation, and thus, 

Young's modulus seemed to be estimated with high accuracy. It means that the spatial 

resolution of the TEM images should be crucial. In this sense, an aberration-corrected 

TEM effectively reduces the deviation in the measurement of the elongation of a certain 
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region during the stretching process, resulting in estimating Young's modulus with 

higher accuracy. In the near future, using aberration-corrected TEM, we expect that our 

proposed method will allow us to determine Young’s modulus of various nanomaterials 

more precisely. 

൮.൰ Conclusion 

We proposed a new method to measure Young's modulus of nanomaterials. By taking 

the TEM images simultaneously with measuring the spring constant using the MMNM, 

the equivalent spring constant of a local region can be obtained by determining the 

ratio of the displacement of the region to the total displacement of the nanomaterial 

and its supporting bases on both sides. The Young's modulus can be estimated by 

considering the cross-section and length of this region. The Young's modulus of the 

local region in the Au⟨111⟩NC was estimated by applying this method, which showed 

a similar size dependence of the Young's modulus as reported previously. This method 

is promising because it can reveal the mechanical properties of structurally 

heterogeneous materials such as HEAs from a local perspective. Thus, it is expected 

that the accuracy of this method will be improved in the near future by using aberration-

corrected TEM. 
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Chapter ൯  Plastic properties of Au nanocontacts 

In section ൯.൫ we introduce the background of investigating critical resolved shear 

stress (CRSS), including its definition and function in nanomaterial deformation. 

Section ൯.൬ presents the method and results of estimating the yield stress in the loading 

direction. This section presents the experimental procedure and raw data obtained by 

varying LER oscillation amplitude, and details the method of estimating the specimen's 

energy dissipation using the LER driving voltage. Section ൯.൭ introduces the estimation 

of CRSS for Au NCs using the yield stress and the slip system. Section ൯.൮ presents the 

CRSS results obtained from the experimental results, discussing them with previous 

experimental and theoretical results. Section ൯.൯ provides a summary of this chapter. 

൯.൫ Critical resolved shear stress (CRSS) 

Critical Resolved Shear Stress (CRSS) is the threshold stress required to start slip 

deformation in a material. As shown in Figure ൯.൫(a), when an external loading stress 

(σ) is applied along the direction indicated by the green arrow, a corresponding resolved 

shear stress (τ) develops on the slip plane (gray plane) along the slip direction (red 

arrow). Slip deformation occurs when the resolved shear stress satisfies the condition: 

τ ≥ CRSS (as shown in Figure ൯.൫(b)). 
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Figure ൯.൫ The critical resolved stress is the necessary stress on the slip direction to 

start slip deformation. (a) The geometric relationship between loading stress(𝜎) and 

resolved shear stress(𝜏). (b) process of simultaneously shifting the upper part of a 

crystal. 

The CRSS is an intrinsic property of the material, determined by factors such as 

crystal structure, temperature, and defect density, and is independent of the external 

loading direction. In contrast, the critical yield strength (i.e., the applied stress required 

to trigger plasticity) depends on both the CRSS and the geometric orientation of the 

slip system relative to the loading direction. When the resolved shear stress on the slip 

system reaches the critical value (CRSS), dislocations begin to glide, marking the onset 

of plastic deformation. The relationship between yield stress (normal stress) and CRSS 

is discussed in more detail in Section ൯.൭.൫. 

 

൯.൬ Estimation of yield stress 

In this study, our purpose is measurement of the CRSS in the slip deformation. To 

achieve this purpose, it is first necessary to determine the yield point of the material, 
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defined as the critical load in the direction of the applied force (green arrow in Figure 

൯.൫(a)) that plastic deformation begins. This critical load is commonly termed the yield 

stress. The reason we beginning with the measurement of yield stress lies in its direct. 

By measuring the yield stress, the CRSS in the slip direction can be effectively derived 

from the yield stress, if the geometric relationship between the loading direction and 

the slip system CRSS. 

Our specimen is in perfect crystal, its primary mechanism of plastic deformation is 

slipping deformation. During slip deformation, the yielding behavior of the material is 

governed by the stresses acting on the slip plane along the slip direction. Crucially, the 

CRSS and the yield stress are linked through geometric relationships intrinsic to the 

slip system. By measuring the yield stress in the direction of the loading force, we can 

estimate the CRSS using these geometric relationships. On the other hand, since 

metallic nanocontacts with size of only a few nanometers can be regarded as nearly 

perfect crystals with almost no defects, it is expected to have CSS values close to the 

ideal values[൯൯,൯൰]. 

At a scale of ൫൪nm or less, it is very difficult to directly measure the loading stress. 

As shown in Figure ൯.൬(a) and (b), J. Comtet et al. fabricated gold nanojunctions 

between a tuning fork and a gold substrate[൯൱]. In this experiment, the oscillation of 

the tuning fork essentially constitutes a periodic compressive-tensile dynamic loading 

process on the gold nanojunction. They used a piezo dither to excite the tuning fork, 

the periodic force applied on tuning fork is 𝐹∗ = 𝐹𝑒௜ఠ௧ .The oscillation of tuning fork 

is described as 𝑎∗ = 𝑎𝑒௜ఠ௧ାథ. They defined the complex mechanical impedance 𝑍∗ =

ி∗

௔∗
= (

ி

௔
)𝑒ି௜థ. The  imaginary part 𝑍ᇱᇱ = 𝐼𝑚(𝑍∗) characterizes the dissipative response 

of the Au junction, it can be measured by tracking the piezo driving voltage necessary 

to keep the oscillation amplitude of the tuning fork constant. When the driving 
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amplitude exceeds the elastic limit of the material, the gold nanojunction undergoes a 

transition from purely elastic deformation to deformation that includes plastic 

deformation. This plastic deformation process significantly increases the energy 

dissipation of the system. As shown in Figure ൯.൬ (c), the dissipative response  (red 

dots) while increasing the oscillation amplitude. The dissipation was found to suddenly 

increase at the amplitude of about ൫൰൪ pm (𝑎ఊ), corresponding to the elastic limit. This 

detection method, based on the abrupt change in energy dissipation, provides an 

effective experimental criterion for precisely determining the yield point of the metallic 

junction at the nanoscale. However, due to the lack of structural information on the Au 

nanojunctions, the direction of loading stress could not be determined, making it unable 

to estimate the CRSS through the geometric relationship between yield stress and CRSS. 

Therefore, we conducted experiments using our developed TEM holder equipped with 

LER. 
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Figure ൯.൬ (a) Schematic diagram of the experimental setup with a gold nanojunction 

fabricated between the tip of a tuning fork and a gold electrode. (b) Enlarged schematic 

view of the gold nanojunction. (c) Amplitude dependence of the complex resistance: 

the black line represents the real component, and the red line represents the imaginary 

component. 

As mentioned above, we can determine whether or not nanocrystals undergo plastic 

deformation (e.g., yielding) by measuring the energy dissipation during the 

deformation process. However, for nanocrystals with dimensions of only a few 

nanometers, the energy dissipation from a single plastic deformation event is extremely 

small, making direct measurement highly challenging. Our idea to solve this problem 
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is, we connect the LER oscillator to the nanocrystal, enabling repeated stretching and 

compression during oscillation. A lock-in amplifier can effectively extract the LER 

oscillation response signal. The LER oscillates the nanocrystal at ൫ MHz, and the 

sample's the dissipation response is also at ൫ MHz. Through phase-sensitive detection 

(PSD), the lock-in amplifier multiplies the input signal with a ൫ MHz reference signal, 

retaining only the signal components of the same frequency and converting them into 

low-frequency components. Subsequently, a low-pass filter removes the high-

frequency AC components, retaining only the low-frequency components, thereby 

extracting the target signal. Noise and other frequency interferences become AC signals 

after PSD and are filtered out by the low-pass filter. Since the lock-in amplifier locks 

onto the ൫ MHz reference frequency, it can precisely extract signals at this frequency, 

effectively denoising even in environments with strong noise. This mechanism endows 

it with excellent capability in measuring weak signals, ensuring the accurate extraction 

of LER oscillation response signals. Response with increasing LER oscillation 

amplitude 

In this study, an experiment was designed to estimate the maximum deformation that 

a nanocrystal can sustain within its elastic limit, which also called “the yield strain”. 

A feedback loop was installed to maintain a constant conductance of the nanocrystal 

(as shown in Figure ൯.൭(a)), keeping a consistent sample size since the conductance is 

proportional to the minimum cross-sectional area of the nanocrystal. Based on this 

setup, we increased the LER oscillation amplitude step-wisely (Figure ൯.൭(b)), starting 

from ൭൪ pm, while simultaneously measuring the driving voltage required to excite the 

LER oscillation (Figure ൯.൭(c)) and the equivalent spring constant of the nanocrystal 

(Figure ൯.൭(d)). Using the method described in Chapter ൬, the energy dissipation 

introduced from the nanocrystal was estimated by comparing the difference in driving 
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voltage between the LER in free oscillation (unconnected to the nanocrystal) and the 

LER connected to the nanocrystal. 

As shown in the Figure ൯.൮, we converted the raw data, which was a function of time 

as shown in Figure ൯.൭(b) and (c) into a function of the LER amplitude. Figure ൯.൮(a) 

shows the relationship of the LER amplitude and the driving voltage required to 

maintain the LER amplitude constant. The red dashed line represents the driving 

voltage when the LER is unconnected to the nanocrystal, while the black squares 

represent the driving voltage when the LER is connected to the nanocrystal. It can be 

observed that when the LER oscillation amplitude exceeds approximately ൫൫൪ pm 

(𝐴𝑚𝑝஼), an additional driving voltage is required when connected to the nanocrystal. 

Using the formula derived in Chapter ൬, the corresponding energy dissipation at each 

LER oscillation amplitude is calculated, as shown in Figure ൯.൮(b).  
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Figure ൯.൭ (a) Conductance maintained at a constant value. (b) Stepwise increase in 

the maximum displacement (LER amplitude). (c) (d) Driving voltage and equivalent 

spring constant corresponding to each value of the maximum displacement (LER 

amplitude). 
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When the LER amplitude is below the critical value,𝐴𝑚𝑝஼   (indicated by orange 

region), the energy dissipation under the influence of the LER on the nanocrystal is 

zero, indicating that only elastic deformation occurs, so we call it as the elastic region. 

Above 𝐴𝑚𝑝஼  (indicated by blue region), energy dissipation begins to increase with 

increasing the LER amplitude, indicating that the nanocrystal undergoes plastic 

deformation by the LER oscillations. We call it as the plastic region. By gradually 

increasing the deformation of the nanocrystal and capturing the corresponding energy 

dissipation, we determined the critical deformation (equal to LER amplitude) at which 

the nanocrystal yields, denoted as 𝐴𝑚𝑝஼ . 

 

 
Figure ൯.൮ (a) Dependence of the driving voltage on the LER oscillation amplitude. 

(b) Dependence of energy dissipation on the LER oscillation amplitude. (c) 

Dependence of the equivalent spring constant on the LER oscillation amplitude. Here 

LER oscillation amplitude is also the displacement of the nanocrystal. 
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൯.൬.൫ Equivalent spring constant (force gradient) 

As mentioned above, by estimating the maximum displacement in the elastic region, 

the system divides into the elastic region (orange) and the plastic region (blue). As 

shown in Figure ൯.൮(d), we measured the equivalent spring constant of Au nanocrystal 

using the FM method described in Chapter ൬. The dependence of the equivalent spring 

constant on the LER oscillation amplitude (deformation of Au nanocrystal) is shown in 

Figure ൯.൮(c). In the elastic region, the equivalent spring constant is almost constant at 

about ൫൪൪ N/m. In the plastic region, the equivalent spring constant decreases as the 

LER oscillation amplitude (maximum displacement) increases. This can be interpreted 

as the result of the energy that would normally be stored as elastic energy being unable 

to be stored due to structural relaxation caused by sliding deformation. In other words, 

we think that the equivalent spring constant has effectively decreased due to the 

decrease in elastic energy, which is determined by the amplitude and equivalent spring 

constant. 

൯.൬.൬ Quantized conductance and cross-sectional area 

In TEM images, only two-dimensional information can be obtained, we cannot get 

depth information. Therefore, in this study, the minimum cross-sectional area of gold 

nanocontacts was estimated from their electrical conductance, assuming that electrons 

pass through such a thin nanocontact ballistically due to quantum confinement effect. 

Under such an assumption, the conductance 𝐺 can be given by Landauer's formula, 

where the transmission coefficient for channel 𝑖 is denoted by 𝑇௜. 

𝐺 =
2𝑒ଶ

ℎ
෍ 𝑇௜

௡

௜ୀଵ

 ൯.൫ 

Since the size of metal nanocontacts is shorter than the mean free path of electrons, the 



൱൳ 

effects of scattering can be neglected (ballistic transport), 𝑇௜ = 1. The conductance of 

the metal nanocontact 𝐺௖  is given by: 

 

𝐺௖ = 𝑛 × 𝐺଴  ൯.൬ 

 

here, 𝑛 represents the number of channels, and 𝐺଴ is the quantum conductance unit 

defined as 𝐺଴ ≡ 2𝑒ଶ/ℎ. In the experiment, a bias voltage of ൫൪ mV was applied to the 

gold nanocontact, and the measured quantized conductance ,𝐺௖ , was analysed using the 

Sharvin equation, which express the relationship between the number of conductance 

channels and the minimum cross sectional area of the contact: 

S =  𝜆௙
ଶ𝐺௖/𝜋  ൯.൭ 

By substituting 𝐺௖   to equation ൯.൫൪, the minimum cross-sectional area can be 

estimated. Here, 𝜆௙ is assumed to be the Fermi wavelength of gold as ൪.൯൬ nm. 

൯.൬.൭ Results of yield Stress 

Assuming that the gold nanocontact is a cylindrical body with a uniform cross-

sectional area, the force applied in the tensile direction is: 

𝐹 =  𝑘𝑑  ൯.൮ 

here, 𝑘 is the equivalent spring constant, and 𝑑 is the displacement caused by the 

LER oscillation. Since tensile stress is the force per unit area, we can obtain: 

σ =  
𝐹

𝑆
 =  

𝑘𝑑

𝑆
  ൯.൯ 

When taking the maximum displacement in the elastic region (𝑑 = 𝐴𝑚𝑝௖), the yield 

stress 𝜎௖ is: 
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𝜎௖  =  
𝑘𝐴𝑚𝑝

𝑐

𝑆
  ൯.൰ 

It can be estimated from the three measured values: 𝐴𝑚𝑝௖  was determined from the 

amplitude dependence of energy dissipation. The cross-sectional area 𝑆 was obtained 

from the conductance values. The equivalent spring constant 𝑘 was directly obtained 

from the experimental results. 

൯.൭ Estimation of CRSS for Au nanocontacts 

This section determines the CRSS required for slip to occur, based on the geometric 

relationship between the yield stress 𝜎௖ and shear stress. 

൯.൭.൫ Geometric relationship between tensile stress and shear stress 

When a loading stress is applied to a crystal, then a shear stress will occur on a slip 

plane. As shown in Figure ൯.൯, if the angle between the loading stress and the shear 

stress is 𝜆, then the shear stress is given by 𝐹 cos 𝜆. If the angle between the loading 

stress and the normal to the slip plane is 𝜑, the area of the slip plane becomes 𝑆/ cos 𝜑. 

Therefore, the shear stress acting on the slip plane is: 

𝜏 =  
𝐹 cos 𝜆

S
cos 𝜑

=  
𝐹

S
(cos 𝜆 cos 𝜑)  

=  𝜎(cos 𝜆 cos 𝜑) ൯.൱ 

 

 

here, cos 𝜑 cos 𝜆 is called as Schmidt’s factor, it is determined by slip system ( slip 

plane and slip direction of the crystal). 
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Figure ൯.൯ Geometric relationship between loading stress and shear stress. 

 

൯.൭.൬ Slip system in nanocrystal 

 

The slip system of a crystal is defined by its slip plane and slip direction. The slip 

plane is often the crystal plane with the largest interplanar spacing, while the slip 

direction is the densest direction connecting the closest atoms. In other words, the slip 

system is determined by the crystal structure. The slip systems of typical metals are 

shown in Table ൯.൫. 

 

Lattice type Typical 

metals 

Slip plane Slip 

direction 

Number of 

slip systems 

face-centered 

cubic (fcc) 

Au・Ag・Cu {൫൫൫} <൫൫൪> ൮×൭=൫൬ 

body-centered 

cubic (bcc) 

W・α-Fe・

Cr 

{൫൫൪} 

{൫൫൬} 

{൫൬൭} 

<൫൫൫> ൰×൬=൰ 

൫൬×൫=൫൬ 

൬൮×൫=൬൮ 

Table ൯.൫ Slip systems of typical metals. 
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For FCC metallic materials with sizes smaller than a few nanometers, it has been 

reported that both tensile forces and surface tension act to induce partial slip along the 

{൫൫൫} <൫൫൬> direction[൯൲]. Furthermore, it has been observed that complete slip along 

{൫൫൫} <൫൫൪> occurs through the successive activation of two {൫൫൫} <൫൫൬> slips. Therefore, 

as the gold nanocontacts in this study have diameters ranging from approximately ൫.൳ 

nm to ൬.൰ nm, the slip system can be considered to be {൫൫൫} <൫൫൬>. 

In the experiment, gold nanocontacts with the axis of the [൫൫൪] and [൫൫൫] directions 

were fabricated. Figure ൮.൰ shows TEM images of the [൫൫൪] and [൫൫൫] gold nanocontacts. 

 

Figure ൯.൰ TEM images of [൫൫൪] and [൫൫൫] gold nanocontacts. 

൯.൮ Results and discussion 

൯.൮.൫ Results of this experiment 

In the experiment, ൮ [൫൫൪] gold nanocontacts with conductance of ൰൪ 𝐺଴, ൭ [൫൫൪] gold 

nanocontacts with conductance of ൭൪ 𝐺଴ , and ൭ [൫൫൫] gold nanocontacts with 

conductance of ൭൪ 𝐺଴  were fabricated, and their critical shear stresses were 

investigated. Figure ൯.൱ shows the dependence of the equivalent spring constant and 

the LER oscillation amplitude (maximum displacement) on the driving voltage. From 

the driving voltage, the energy dissipation per oscillation cycle was summarized in 

Figure ൮.൲( the method for estimating dissipation energy is described in section൬.൭ ). 
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Table ൮.൬ presents the maximum displacement in the elastic region determined from 

the dependence of energy dissipation on the LER oscillation amplitude (maximum 

displacement), along with the equivalent spring constant, cross-sectional area, and 

estimated yield stress. From the results, the yield stress of the [൫൫൪] gold nanocontacts 

with conductance of ൰൪ 𝐺଴  and ൭൪ 𝐺଴  was ൬.൪ ± ൪.൫ GPa, regardless of size. In 

contrast, the yield stress of the [൫൫൫] gold nanocontacts with conductance of ൭൪ 𝐺଴ was 

൭.൪ ± ൪.൫ GPa. 

The Schmid factor for the [൫൫൪] gold nanocontacts is √2/3  (= ൪.൮൱), and from 

Equation ൯.൫൭, the CRSS was calculated as ൪.൳൮ ± ൪.൫ GPa. Similarly, for [൫൫൫] gold 

nanocontacts, the Schmid factor is 2√2/9 (= ൪.൭൫), yielding an estimated critical shear 

stress of ൪.൳൮ ± ൪.൫ GPa. The CRSS is an inherent property of the material. From two 

different directions, we obtained consistent CRSS of ൪.൳൮GPa, proved the reliability of 

our method. 
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Figure ൯.൱ Graph of the LER amplitude dependence of additional energy dissipation 

per oscillation cycle (Ediss) and measured spring constant for different Au NCs. 

 

(a) Au <൫൫൪> NC of ൰൪ G൪ in conductance 

(b) Au <൫൫൪> NC of ൭൪ G൪ in conductance 

(c) Au <൫൫൫> NC of ൭൪ G൪ in conductance 
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Figure ൯.൲ Graph of the LER amplitude dependence of additional energy dissipation 

per oscillation cycle (Ediss) and measured spring constant for different Au NCs. Three 

Au <൫൫൪> NCs of ൭൪ G൪ are denoted by the colored squares, four Au <൫൫൪> NCs of ൰൪ 

G൪ by the colored diamonds, and three Au <൫൫൫> NCs of ൭൪ G൪ are denoted by the 

colored circles. 

 

orientation 
S Ac km yield stress 𝜎 

(nm൬) (pm) (N/m) (GPa) 

<൫൫൪> ൬.൳ ൲൱ ൰൮ ൫.൳ 

<൫൫൪> ൭.൪ ൳൰ ൯൳ ൫.൳ 

<൫൫൪> ൬.൳ ൫൪൫ ൯൳ ൬.൫ 

<൫൫൪> ൯.൮ ൫൪൭ ൫൪൱ ൬.൪ 

<൫൫൪> ൯.൭ ൫൪൪ ൫൪൰ ൬.൪ 

<൫൫൪> ൯.൭ ൫൫൫ ൫൪൬ ൬.൫ 

<൫൫൪> ൯.൬ ൫൪൪ ൫൪൬ ൬.൪ 

<൫൫൫> ൬.൳ ൫൪൭ ൲൯ ൭.൪ 

<൫൫൫> ൬.൳ ൳൰ ൳൫ ൭.൪ 

<൫൫൫> ൬.൳ ൳൲ ൲൱ ൭.൪ 

Table ൯.൬ The cross-sectional area, maximum elastic displacement, spring constant, 
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and estimated yield stress of gold nanocontacts. 

൯.൮.൬ CRSS from previous researches 

Previous research has investigated the CRSS of Au nanomaterials using both 

experimental and theoretical approaches. Heyer et al. fabricated the microshear 

specimen as shown in the Figure ൯.൳(a), experimentally investigated the critical shear 

stress of μm-scale Au single crystal[൯൳]. As illustrated in Figure ൯.൳(b), when a punch 

compress on the central part of the Au single crystal, its both sides will have shear 

deformation. The measured shear stress-displacement curve during the compression 

process is presented in Figure ൯.൳(c). For Au single crystals at the μm-scale, the critical 

shear stress was estimated to be ൰൭.൯ MPa experimentally. Geer et al. fabricated 

submicron-scale single-crystalline Au pillars with the axis of a <൪൪൫> orientation from 

single Au crystal. They investigated the stress-strain behavior of these pillars under 

compression. During testing, as illustrated in Figure ൯.൫൪(a), the axial compression 

induces shear deformation along {൫൫൫}-type planes. The corresponding stress-strain 

responses were obtained as shown in Figure ൯.൫൪(b). Their results revealed that the 

critical shear stress for slip initiation on {൫൫൫} planes in the rage of several hundred 

MPa. 

 

 

Figure ൯.൳ (a) Schematic of the microshear specimen produced by Heyer et al. (b) 
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The SEM image of the process of using a punch to compress the microshear specimen.  

(c)Stress-displacement curve[൯൳].  

 

 

Figure ൯.൫൪ (a) SEM images of submicron-scale single-crystalline gold pillars with 

a <൪൪൫> orientation Slip lines are clearly present in the deformed states. (b) The 

corresponding stress-strain curve during compression.  

 

Theoretically, the shear stress for the slip along the [൫൫ 2 ] direction on the (൫൫൫) 

surface,[൰൪] corresponding to CRSS, was predicted to be ൫.൱൭ or ൫.൱൲ GPa by molecular 

dynamics (MD) calculations with the embedded atom method (EAM) Au 

potential[൫൫,൰൫], while it was predicted to be ൫.൮൬ GPa by first principle calculation[൰൬]. 

The CRSS of the Au NCs with dimeters of ൫.൳ and ൬.൰ nm was estimated to be 

൪.൳൮±൪.൫GPa in this work. which were smaller than such theoretical values. This 

difference may be explained by the temperature effect. Iskandarov et al. reported that 

the CRSS of Cu crystal was about ൱൯% at ൭൪൪ K and about ൯൪% at ൲൪൪ K relative to 

the value at ൪ K by MD calculations [൱൪]. In our measurement, the Au NC was oscillated 

along the axis direction above the critical amplitude at ൫ MHz of the resonance 

frequency of LER, and the slip probably occurs continuously during the measurement. 

The temperature at the Au NC might be raised by heat generated by the slip 

considerably, resulting in reducing the CRSS value. 
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൯.൮.൭ Simple estimation of CRSS 

 

The assumption for perfect crystal is all atoms on both sides of a slip plane undergo 

simultaneous sliding. As shown in , the slip deformation finish in one step. The atomic 

bonds on both sides of the slip plane break and reform simultaneously, which requires 

a significant amount of energy for slip to occur, resulting in a high shear stress for a 

perfect crystal.  

 

Figure ൯.൫൫ Schematic diagram of slip in a perfect crystal. In a perfect crystal, slip is 

accomplished in only one step. 

For a crystal lattice, if a unit crystal has a structure that can be repeated perfectly, 

then we defined it as perfect crystal. In perfect  crystals, the mechanism of plastic 

deformation typically involves slip deformation occurring on close-packed planes.  

Next, we discuss the forces acting on atoms on both sides of the slip plane and 

estimate the CRSS in an ideal case. As shown in Figure ൯.൫൬ from (a) to (b) to (c), it 

represents the shear stress required to slip the upper part. In the process that the upper 

part slip by x relative to the down part, Figure ൯.൫൬(d) shows the relationship between 

the necessary shear stress τ and the slip dislocation x. In the states shown in Figure 

൯.൫൬(a) and (c), the upper and lower part are at equilibrium positions, so the shear stress 

τ is zero. During the transition from Figure ൯.൫൬ (a) to (b), the upper part tends to return 

to the equilibrium position (a), so τ takes a positive value to counter this tendency. This 
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process corresponds to the displacement range ൪≤x≤d/൬ in Figure ൯.൫൬(d). During the 

transition from Figure ൯.൫൬(b) to (c), the upper structure easily tends toward the 

equilibrium position (c), so a reverse force is needed to counter this, and τ takes a 

negative value. This process corresponds to the displacement range d/൬≤ x≤d in 

Figure ൯.൫൬(d). The intermediate state (b) is also an unstable position, where τ switchs 

from positive to negative, so τ = 0. 
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Figure ൯.൫൬ The process of simultaneously shifting the upper part of a crystal. 
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For simplicity, to satisfy the conditions described in the previous paragraph, we 

assume the relationship between shear stress τ and displacement x follows a sine 

function as below: 

𝜏 =  𝑘 sin ൬
2𝜋𝑥

𝑑
൰ ൯.൲ 

if we take the distance between the upper and down atomic planes as ℎ , and the 

displacement 𝑥 is small enough, then due to Hooke's law, we can describe the shear 

modulus as: 

𝜏 = 𝐺
𝑥

ℎ
= 𝑘

2𝜋𝑥

𝑑
 ൯.൳ 

 

we can obtain the spring constant: 

𝑘 =
𝑑

ℎ

𝐺

2𝜋
 ൯.൫൪ 

from above equations, the shear stress is: 

𝜏 =
𝑑

ℎ

𝐺

2𝜋
sin ൬

2𝜋𝑥

𝑑
൰ ൯.൫൫ 

for the upper part to entirely slip to the next equilibrium position, the applied stress 

must exceed the maximum value of this shear stress, otherwise, once the applied stress 

is released, the upper part will return to its original position. The CRSS required to 

complete the slip can be determined as the maximum value from equation ൯.൫൬: 

𝜏௖ =
𝑑

ℎ

𝐺

2𝜋
 ൯.൫൬ 

Approximately, use 𝑑 ≈  ℎ: 

𝜏௖ =
𝐺

2𝜋
 ൯.൫൭ 

Furthermore, by approximating π≈ ൭, the CRSS can be estimated as 1/6 of the shear 
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modulus. In other words, for a perfect crystal the necessary stress for the upper part to 

slip can be estimated to be ൫/൰ of the shear modulus. Table ൯.൭ lists the measured CRSS 

values for several metals, along with the calculated values derived from the 

aforementioned model. From Table ൯.൭, it can be observed that the CRSS obtained from 

experiments are ൬ to ൭ orders of magnitude lower than the theoretical values.  

 

metal 

Shear 

modulus 

G[GPa] 

Critical resolved shear stress [GPa] The ratio of calculated 

value to measured 

value 
G/൰ Measured value 

Au ൬൱.൰ ൮.൰ ൪.൪൪൪൳ ൯൫൪൪ 

Ag ൬൲.൲ ൮.൳ ൪.൪൪൪൭ ൫൬൳൪൪ 

Cu ൮൯.൯ ൱.൯ ൪.൪൪൪൯ ൫൯൮൪൪ 

Table ൯.൭ Calculated and measured values of the critical shear stress 

൯.൮.൮ Influence of dislocations on the CRSS of crystals 

However, the actual measured yield strength was found to be ൭ to ൮ orders of 

magnitude lower than the theoretical value. This discrepancy was resolved in ൫൳൭൮ 

when Taylor and other scientists proposed that the slip process in crystals occurs 

through the movement of dislocations (Figure ൯.൫൭)[൰൭]. Dislocations can begin to move 

under relatively low stress, causing the slip region to gradually expand until all atoms 

on the slip plane sequentially undergo relative displacement. This mechanism explains 

why real crystals require only very low shear stress to initiate slip. 
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Figure ൯.൫൭ Slip process in crystals occurs through the movement of dislocations. 

 

Lastly, we estimate the slip dissipation per oscillation cycle by using a simple model 

for the shear force exhibiting a curve as a function of the displacement caused by the 

LER oscillation. We roughly consider the stress-strain curve acting on the nanocrystal 

during one oscillation cycle. As shown in Figure ൯.൫൮, when the LER oscillates within 

the elastic region, the displacement remains smaller than the maximum elastic strain 

(𝜀஼ ), and the stress-strain curve follows path AD during a single oscillation cycle. 

However, once the displacement exceeds the maximum elastic displacement, plastic 

deformation occurs within a single oscillation cycle, and the stress-strain curve follows 

path FBCE. Specifically, after the stress reaches the critical value 𝜀஼  (point A), slip 

begins to occur, and strain continues to increase while the stress remains constant (A-

B). At point B, the displacement reaches its amplitude, corresponding to the peak strain, 

after which the motion reverses, and both stress and strain decrease proportionally (B-

C). The shear stress shows similar behavior in the opposite side (compression). In this 

case, the work done (energy dissipation) in one cycle corresponds to the area enclosed 
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by FBCE. In fact, the energy here should be calculated by the area enclosed by the 

force-displacement curve, while the original graph depicts stress-strain. The force-

displacement relationship can be derived from the stress-strain relationship, and for 

convenience, it will not be discussed separately here. This model was obtained by 

similarity to the strain-stress curve reported previously[൰൮]. In summary, when the LER 

amplitude is below the elastic deformation limit, the shear force remains linearly 

proportional to the displacement (as indicated by the orange arrow A-D), and thus no 

hysteresis occurs. However, once the amplitude exceeds the elastic deformation limit, 

the stress-strain relationship follows the cyclic path of B-C-E-F. In this case, the slip 

dissipation per oscillation cycle of the LER corresponds to the area enclosed by the 

displacement-shear force curve. This phenomenon indicates that the introduction of 

plastic deformation leads to energy dissipation, which is quantified by the hysteresis 

loop in the force-displacement curve[൰൬,൰൯]. 

 

 

Figure ൯.൫൮ Schematic of the stress-strain curve acting on the nanocrystal during one 

oscillation cycle. 
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Figure ൯.൫൯ Graph of slip dissipation per oscillation cycle as a function of LER 

amplitude. The black dots correspond to the experimental results, and the red curve is 

the calculated one based on the simple model in Figure ൯.൫൮. 

 

Figure ൯.൫൯ shows the amplitude dependence of the slip dissipation. Regardless of 

simple model, the calculated slip dissipation based on this simple model (red line) 

reproduces the experimental result well. It supports that the slip continuously occurred 

on the (൫൫൫) plane during the LER oscillation above the critical LER amplitude and the 

CSS value of 0.94 ± 0.1 𝐺𝑃𝑎 for Au NCs with a few nm in diameter. This study is so 

worth that it will enable us to understand the mechanism of the plastic deformation (the 

slip) more deeply by analyzing the dissipation energy using a model that considers the 

detailed plastic deformation process. 

൯.൯ Conclusion 

In this chapter, we investigated the critical resolved shear stress (CRSS) required for 

slip to occur on the slip plane in a perfect Au crystal. First, Au NC with diameters of 

less than a few nanometers were prepared by controlling two gold wires to touch 
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together. These NC are our specimen. An LER was used to oscillate the Au NC along 

the <൫൫൪> and <൫൫൫> orientations. This oscillation process is equivalent to repeated 

tensile and compressive loading, with the maximum tensile and compressive strain 

equal to the oscillation amplitude. In classical continuous tensile tests, when the 

maximum strain exceeds the elastic limit, plastic deformation occurs, accompanied by 

energy dissipation; otherwise, the sample undergoes only elastic deformation with 

negligible energy dissipation. Similarly, when the oscillation amplitude of the LER 

exceeds the elastic limit of the Au NC, plastic deformation occurs during oscillation, 

leading to energy dissipation. Due to the rapid and repeated nature of the oscillations, 

energy dissipation from plastic deformation continuously accumulates and can be 

captured by our instrument. Therefore, we use the presence or absence of energy 

dissipation as a criterion for determining whether plastic deformation has occurred, 

allowing us to identify the yield point of the sample, including both the yield stress and 

yield strain. 

In the experiment, we estimated the energy dissipation in the specimen through the 

driving voltage of the LER and estimated the yield stress of the Au NC along the <൫൫൪> 

and <൫൫൫> orientations to be ൬.൪±൪.൫ GPa and ൭.൪±൪.൫ GPa, respectively. Then, using 

the slip system of Au, which follows the geometric relationship between loading stress 

and shear stress in an FCC crystal, we calculated the CRSS required for slip on the 

{൫൫൫} plane to be ൪.൳൮ GPa. Notably, experiments along the <൫൫൪> and <൫൫൫> orientations 

determined a consistent CRSS of ൪.൳൮±൪.൫ GPa, this result follows the theoretical 

understanding that CRSS is the fundamental factor governing slip deformation. This 

further validates the effectiveness of our method. 
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Chapter ൰  Conclusion 

This study successfully developed and applied a microscopic nanomechanical 

measurement method (MNMM) to investigate the elastic and plastic responses of gold 

nanocontacts (NCs). The local Young's modulus of nanomaterial can be estimated by 

the ratio of local to the total elongation during elastic deformation. Results from this 

method also exhibits a size dependence consistent with previous method, validating the 

method’s reliability. Furthermore, we measured the critical resolved shear stress 

(CRSS) of gold nanocontacts with sizes smaller than ൫൪ nm using a home-made in-situ 

TEM holder equipped with a quartz length-extension resonator (LER) to detect slip 

dissipation. The CRSS is an inherent property of the material. From two different 

directions([൫൫൪] and [൫൫൫]), we obtained consistent CRSS of ൪.൳൮ ± ൪.൫ GPa, proved the 

reliability. The CRSS we observed is higher than the results for sizes greater than ൫൪൪ 

nm. I think this difference is due to the presence of dislocations in the larger specimen, 

which reduced the measured CRSS values.This new method provided valuable insights 

into the plastic deformation mechanisms at the nanoscale. 

This work represents a significant advancement in understanding the mechanical 

properties of nanomaterials, particularly at the atomic scale, and lays the foundation 

for future improvements using advanced TEM techniques, such as aberration-corrected 

TEM, to enhance measurement accuracy and broaden the method's applicability. 
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