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ABSTRACT

We studied the mechanism of low-temperature-annealed Ohmic contacts to AlGaN/GaN heterostructures via formation and removal of
Ta/Al/Ta Ohmic-metals. Multi-probe Hall device measurements show one order increase in the sheet electron concentration after Ohmic-
metal formation compared with that before formation, indicating that high-density doping takes place in the AlGaN/GaN heterostructure
under the Ohmic-metal. However, after Ohmic-metal removal, the increased sheet electron concentration returns to the value before forma-
tion. Moreover, we formed Ni/Au Schottky contacts on the AlGaN/GaN heterostructures before Ohmic-metal formation and after Ohmic-
metal removal, and confirmed that the characteristics are almost the same. These results indicate that donors do not exist after Ohmic-metal
removal, suggesting that, although high-density doping takes place, high-density donors are not formed under the Ohmic-metal. The high-
density doping without high-density donors could be attributed to polarization doping, playing a significant role in Ohmic contact
formation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0080265

To date, there have been many attempts to obtain good Ohmic
contacts for wide-gap GaN-based devices.1 In particular, Ohmic-metal
structures for AlGaN/GaN heterostructures have been extensively
investigated, where an Ohmic contact is obtained by an electrical cou-
pling between the surface Ohmic-metal and the underlying two
dimensional electron gas (2DEG) through the AlGaN energy barrier.
In early studies, Ohmic contacts for AlGaN/GaN heterostructures are
obtained by high-temperature annealing at � 800�C for Ti-based2–7

and Ta-based8–11 multilayer structures. However, in order to reduce
the thermal budget, and to suppress rough surface morphology and
poor edge acuity of Ohmic-metals,12 lower-temperature annealing is
preferable. Recently, Ohmic contacts are obtained by low-temperature
annealing at 500–600 �C.13–19 Table I summarizes Ohmic contact
resistances Rc to AlGaN/GaN heterostructures, which are obtained by
high-temperature or low-temperature annealing for Ti-based or Ta-
based multilayer structures. This indicates that low Rc can be obtained
even by low-temperature annealing, being useful for low on-resistance

devices. For example, normally-off AlGaN/GaN MOSFETs with low
on-resistance� 4 Xmm were realized,20 where a Rc � 0:3 Xmm Ta-
based Ohmic contact annealed at 550 �C was employed.

As a formation mechanism of low-temperature-annealed
Ohmic contacts, metallic material penetration into the AlGaN/GaN
heterostructures, which is observed for high-temperature anneal-
ing3,21 with metallic temperature dependence of the contact resis-
tance,21 is not probable. In fact, for low-temperature annealing,
scanning transmission electron microscope (STEM) observations
indicate no metallic material penetration,15–18 and temperature
dependence of the contact resistance is not metallic.18 Thus, as a
plausible mechanism, donor doping by nitrogen vacancies in the
AlGaN layer is assumed,15,17,18 associated with a nanometer-order
thick metallic nitride layer between the AlGaN layer and the Ohmic-
metal. However, since the nanometer-order thick metallic nitride
layer requires generation of nitrogen vacancies �1020 cm�3 over a
micrometer-order thick AlGaN/GaN layer, it was pointed out that
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generation of nitrogen vacancies is quantitatively questionable.7

Moreover, it is difficult to directly observe nitrogen vacancies in
nitride materials; there is no direct observation of the nitrogen
vacancies.

When doping takes place in a semiconductor under an Ohmic-
metal, the electrical properties are modified from those before
Ohmic-metal formation. In order to measure the modified electrical
properties, the end contact resistance method12,22–31 and the floating
contact resistance method32–34 have been developed. However, these
methods can measure only the sheet resistance qs; the carrier concen-
tration and the carrier mobility cannot be evaluated. Recently, by
using multi-probe Hall devices, we developed a method to character-
ize the carrier concentration and the carrier mobility under an
Ohmic-metal.35 Applying the method, we observed significant increases
in the sheet electron concentration ns of AlGaN/GaN heterostructures
under low-temperature-annealed Ti-based Ohmic-metals, indicating
that high-density doping takes place under the Ohmic-metals. In addi-
tion, we found that the electron mobility ls is too high for ionized
impurity scattering,36 assuming donor doping by nitrogen vacancies or
diffused metal atoms. We consider that polarization doping due to a
strain induced by the Ohmic-metals has a contribution to the high-
density doping, because polarization doping is not associated with ion-
ized donor scattering, giving high ls even for high-density doping.

37–39

If high-density donors exist under an Ohmic-metal, we can
expect that the electrical properties even after Ohmic-metal removal
will be different from those before formation. In this work, we studied
the mechanism of low-temperature-annealed Ohmic contacts to
AlGaN/GaN heterostructures via formation and removal of Ta/Al/Ta
Ohmic-metals. By using multi-probe Hall devices, we characterized
electrical properties of AlGaN/GaN heterostructures before and after
Ohmic-metal formation, and also after Ohmic-metal removal.
Moreover, we formed and investigated Ni/Au Schottky contacts on
the AlGaN/GaN heterostructures before Ohmic-metal formation and
after Ohmic-metal removal.

We fabricated multi-probe Hall devices (Samples A, B, and C)
shown in Fig. 1, using an undoped-Al0:24Ga0:76N(20nm)/
GaN(3000nm) heterostructure grown by metal-organic chemical vapor
deposition on sapphire (0001). In order to define the channel regions,
device isolation was achieved by Bþ ion implantation. According to the
x-y coordinates shown in Fig. 1 with the origin at the center of the chan-
nel, the channel region is �320 � x � þ320lm and �10 � y
� þ10lm. The devices have measurement electrodes consisting of cur-
rent injection and voltage probe electrodes. Sample A is the device
before Ohmic-metal formation. Sample B is the device with a Ta/Al/Ta
Ohmic-metal of length L ¼ 200lm (�100 � x � þ100 lm) and
width W ¼ 20lm (�10 � y � þ10lm), formed by annealing at
575 �C giving Rc ’ 0:45 Xmm. Sample C is the device after Ohmic-
metal removal, where the metal and the measurement electrodes were
wet-etched by H2O2 : H2SO4 (1:9) and HF, and subsequently, the

measurement electrodes were re-formed. As defined in Fig. 1, we mea-
sured the voltage drop VL under no magnetic field B¼ 0 and VH under
magnetic field B ¼ 0:32 T as a function of the position x, applying mea-
surement current densities�45 � J0 � þ45mA=mm through the cur-
rent injection electrodes.

Figure 2 shows the measured VLðxÞ=J0 and VHðxÞ=J0 for
Samples A and B. For Sample A, a linear behavior for VLðxÞ=J0 and a
constant behavior for VHðxÞ=J0 are observed, giving qs ’ 530X=(,
ns ’ 0:73� 1013 cm�2, and ls ’ 1600 cm2=V-s. On the other hand,
for Sample B, VLðxÞ=J0 shows a nonlinear behavior and VHðxÞ=J0 is
not constant. In the Ohmic-metal region, the nonlinear behavior can
be analyzed by using the method reported in Ref. 35, where a trans-
mission line model gives

VLðxÞ
J0
¼ � qs

qs þ qm

� qmxþ qs
sinhð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqs þ qmÞ=qc

p
xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqs þ qmÞ=qc

p
coshð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqs þ qmÞ=qc

p
L=2Þ

 !
;

(1)

TABLE I. Summary of Ohmic contact resistances Rc to AlGaN/GaN heterostructures, obtained by high-temperature (HT) or low-temperature (LT) annealing for Ti-based or Ta-
based multilayer structures.

Ti-based Ta-based

HT (800–950 �C) 0.12–1.2Xmm (Refs. 2–7) 0.20–0.24Xmm (Refs. 8–11)
LT (500–600 �C) 0.21–0.65Xmm (Refs. 13 and 14) 0.24–0.80Xmm (Refs. 15–18)

FIG. 1. The schematic top view of multi-probe Hall devices.
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using the metal sheet resistance qm and specific contact resistivity qc,
and

VHð0Þ
jsð0ÞBW

’ lsqs ¼
1
qns

; (2)

with jsðxÞ ¼ �V 0LðxÞ=qs and the electron charge q. As shown in
Fig. 2, we can obtain good fitting for VLðxÞ=J0 using (1), leading to qs
’ ð4006 50Þ X=( and qc ’ ð4:96 0:7Þ � 10�6 X cm2. We also
obtain ns ’ ð9:36 1:2Þ � 1013 cm�2 and ls ’ ð1706 10Þ cm2=V-s
using (2). This indicates that ns significantly increases by Ohmic-metal
formation. In addition, the ns ’ 9:3� 1013 cm�2 after formation
is much larger than the maximum value in the 2DEG channel
� 1:3� 1013 cm�2 without parallel conduction in the AlGaN/GaN
heterostructures; above this value, conduction electrons exist in the
AlGaN layer. This suggests that parallel conduction occurs in the

20nm-thickness AlGaN layer with a sheet electron concentration of
� 8:0� 1013 cm�2, and thus, the doping concentration ND in the
AlGaN layer is � 4� 1019 cm�3.

In order to confirm ND in the AlGaN/GaN heterostructure
under the Ohmic-metal, we characterized the temperature depen-
dence of qc obtained from VLðxÞ=J0 measurements. Figure 3
shows the measured VLðxÞ=J0 for the temperature T¼ 250–320 K
with curves fitted by using (1), giving qc as a function of T
shown in Fig. 4. The result in Fig. 4 can be fitted by the field
emission (FE) model,40 as expected since the ND � 4� 1019 cm�3

satisfies the following criterion for the dominance of the

FE:41,42 kBT < 2E00=½ln ð4UB=EFÞ þ ð2E00=EFÞ1=2�, where kB is the
Boltzmann constant, E00 ¼ q�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ND=m�es

p
=2, �h is the Dirac con-

stant, m� is the semiconductor electron effective mass, es is
the semiconductor dielectric constant, UB is the barrier height,

FIG. 2. The measured VLðxÞ=J0 (left) and VHðxÞ=J0 (right) with the fitting curves for Samples A and B. The inset of the left figure: the measured VLðxÞ=J0 in a logarithmic
scale for Samples A and B.

FIG. 3. The measured VLðxÞ=J0 as a function of the position with the fitting curves at 250–320 K for Sample B.
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FIG. 4. The specific contact resistivity qc as a function of the temperature T with
the fitting curve for Sample B.

FIG. 5. The SEM image for (i) Sample A and (ii) Sample C. (iii) The EDS spectra measured at the cross mark positions in (i) and (ii).

FIG. 6. The measured VLðxÞ=J0 with the fitting curves for Samples A and C. The
inset: the measured VHðxÞ=J0 with the fitting curves for Samples A and C.
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and EF is the semiconductor Fermi energy. The fitting gives
ND ’ 4:2� 1019 cm�3 and UB ’ 0:42 eV.

For Sample A, before Ohmic-metal formation, and Sample C,
after Ohmic-metal removal, energy dispersive x-ray spectroscopy
(EDS) was carried out in a scanning electron microscope (SEM) oper-
ated at 15 keV. The SEM images are shown in Fig. 5(i) for Sample A
and in Fig. 5(ii) for Sample C. Figure 5(iii) shows the EDS spectra
measured at the cross mark positions in Figs. 5(i) and 5(ii). These
spectra almost coincide, and there is no peak of Ta, confirming that
the Ohmic-metal is completely removed by wet-etching. In addition,
atomic force microscopy (AFM) was carried out for the AlGaN surface

of Samples A and C, showing almost similar root mean square (RMS)
surface roughnesses of ’ 0:5 nm (Sample A) and ’ 0:4 nm (Sample
C). Figure 6 and the inset show the measured VLðxÞ=J0 and VHðxÞ=J0,
respectively, for Samples A and C. The results for Sample C are almost

FIG. 7. The relation between the sheet electron concentration and the electron
mobility for Samples A–C, where the values for Ti-based Ohmic contacts are simul-
taneously shown for comparison.

FIG. 8. The fabrication process of Ni/Au Schottky contacts on the AlGaN/GaN heterostructures before Ohmic-metal formation and after Ohmic-metal removal.

TABLE II. Summary of the 2DEG properties and the surface roughnesses of
Samples A and C.

Sample
qs

ðX=(Þ
ns

ð1013 cm�2Þ
ls

ðcm2=V sÞ

RMS surface
roughness

(nm)

A: before Ohmic-metal
formation

530 0.73 1600 0.5

C: after Ohmic-metal
removal

520 0.72 1650 0.4
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unchanged from those for Sample A, giving qs ’ 520 X=(,
ns ’ 0:72� 1013 cm�2, and ls ’ 1650 cm2=V-s, as listed in Table II
with the RMS surface roughnesses.

The obtained ns and ls are summarized in Fig. 7, where the val-
ues for Ti-based Ohmic contacts35 are simultaneously shown for com-
parison, showing that ns increases with a decrease in the contact
resistance Rc. After Ohmic-metal removal, the significantly increased
ns by Ohmic-metal formation returns to the value before formation.
This indicates that high-density doping in the semiconductor under
the Ohmic-metal dose not remain after Ohmic-metal removal.

In addition, we formed and electrically characterized Ni/Au
Schottky contacts (a diameter of 80 lm) on the AlGaN/GaN hetero-
structures before Ohmic-metal formation and after Ohmic-metal
removal, according to the process flow shown in Fig. 8. As shown in
Fig. 9, we find that the capacitance-voltage characteristics for both
Schottky contacts almost coincide even in the logarithmic scale, indi-
cating that the dielectric property after Ohmic-metal removal is
unchanged from that before Ohmic-metal formation. Moreover, as
shown in the inset of Fig. 9, the current-voltage characteristics are
almost similar. Both Schottky diodes have almost the same charac-
teristics with barrier heights ’ 1:6 eV, ideality factors ’ 1:3–1.4,
and series resistances � 30 X. Therefore, we can confirm that
donors do not exist after Ohmic-metal removal; although high-
density doping takes place, high-density donors are not formed
under the Ohmic-metal. Since polarization doping is not associ-
ated with donors, we consider that the high-density doping with-
out high-density donors is attributed to polarization doping due to
the strain induced by the Ohmic-metal. This has a similarity to
2DEG concentration enhancements due to strains induced by pas-
sivation films for AlGaN/GaN heterostructures.43

In summary, we investigated formation and removal of the low-
temperature-annealed Ta-based Ohmic-metals on the AlGaN/GaN
heterostructures. We find one order increase in ns after Ohmic-metal
formation compared with that before formation, indicating that high-
density doping takes place in the AlGaN/GaN heterostructure.
However, after Ohmic-metal removal, ns returns to the value before

Ohmic-metal formation. In addition, we find that the Ni/Au Schottky
contacts on the AlGaN/GaN heterostructures before Ohmic-metal for-
mation and after Ohmic-metal removal show the same characteristics.
These results indicate that donors do not exist after Ohmic-metal
removal, suggesting that, although high-density doping takes place,
high-density donors are not formed under the Ohmic-metal. The high-
density doping without high-density donors could be attributed to
polarization doping, playing a significant role in Ohmic contact
formation.
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