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Adaptive Prior Scene-Object SLAM for Dynamic Environments

Haolan Zhang, Thanh Nguyen Canh, Chenghao Li, and Nak Young Chong

Abstract— Visual Simultaneous Localization and Mapping
(SLAM) plays a vital role in real-time localization for au-
tonomous systems. However, traditional SLAM methods, which
assume a static environment, often suffer from significant local-
ization drift in dynamic scenarios. While recent advancements
have improved SLAM performance in such environments,
these systems still struggle with localization drift, particularly
due to abrupt viewpoint changes and poorly characterized
moving objects. In this paper, we propose a novel scene-object-
based reliability assessment framework that comprehensively
evaluates SLAM stability through both current frame quality
metrics and scene changes relative to reliable reference frames.
Furthermore, to tackle the lack of error correction mechanisms
in existing systems when pose estimation becomes unreliable, we
employ a pose refinement strategy that leverages information
from reliable frames to optimize camera pose estimation, ef-
fectively mitigating the adverse effects of dynamic interference.
Extensive experiments on the TUM RGB-D datasets demon-
strate that our approach achieves substantial improvements in
localization accuracy and system robustness under challenging
dynamic scenarios.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) enables
autonomous systems to navigate unknown environments,
with visual SLAM gaining prominence due to the cost-
effectiveness of cameras. Traditionally, visual SLAM has
evolved into two methodologies: feature-based methods [1],
[2], [3], which extract and match distinctive keypoints, and
direct methods [4], [5], which operate on pixel intensities
directly without intermediate feature extraction. While these
approaches are effective in static environments, they face
significant challenges in dynamic scenarios due to moving
objects and abrupt viewpoint changes, leading to localization
drift.

Dynamic scenarios lead to incorrect feature matching
and localization drift. Early solutions focused on geomet-
ric approaches, such as RANSAC-based filtering (Sun et
al. [6]), probabilistic confidence scoring (Li et al. [7]),
and correlation-based graph segmentation (Dai e al. [8]).
More recent motion-based methods emerged, including PFD-
SLAM [9] with optical flow and particle filtering, as well
as StaticFusion [10] and Joint-VO-SF [11], which applied
K-means clustering for static probability estimation. While
effective in mildly dynamic scenes, these methods struggle
to handle large-scale dynamic changes.

*This work was supported by the Asian Office of Aerospace Research
and Development under Grant/Cooperative Agreement Award No. FA2386-
22-1-4042, and JST SPRING, Japan Grant Number JPMJSP2102.

The authors are with the School of Information Science, Japan Ad-
vanced Institute of Science and Technology, Ishikawa 923-1292, Japan.
{s2420423, thanhnc, chenghao.li, nakyoung}@jaist.ac. jp

To overcome these limitations, researchers have integrated
deep learning techniques. DS-SLAM [12] leverages SegNet
for semantic filtering, while DynaSLAM [13] combines
Mask R-CNN with geometric verification. Blitz-SLAM [14]
adopts a two-stage approach, first parsing scenes with deep
learning, followed by geometric validation. CFP-SLAM [15]
employs hierarchical processing based on object detection
and motion classification, and SG-SLAM [16] integrates se-
mantic understanding with geometric constraints in a graph-
based framework.

Building upon these approaches, recent works have ex-
plored object-centric and scene-centric strategies. Liu et
al. [17] introduces an object-centric method that evaluates
quality based on uncertainty, observation quality, and prior
information, implementing dual coupling where high-quality
objects contribute to camera pose estimation while low-
quality objects are only tracked afterward.

However, object-centric approaches struggle with fixed
quality thresholds that fail to adapt to scene variations, frame-
by-frame evaluation that ignores temporal consistency, and
the absence of error correction. Long et al. [18] introduced a
scene-centric method leveraging prior motion information to
enhance temporal consistency, but it struggles with sudden
motion changes, risks skipping critical frames due to reliance
on previous frames, and may misclassify scenes with low-
motion as static.

To overcome the limitations of both object-centric and
scene-centric approaches, we propose an Adaptive Prior
Scene-Object SLAM framework for dynamic environments
based on ORB-SLAM3 [19]. The key contributions are:

o A scene-object quality assessment mechanism that in-
tegrates frame-based metrics with dynamic changes
evaluation for reliable scene assessment.

o An adaptive benchmark update strategy that continu-
ously refines reference criteria based on scene quality.

o A direct fusion method to correct pose estimation errors
in problematic frames, enhancing robustness.

o Extensive experimental validation on the TUM RGB-
D dataset, demonstrating significant localization and
robustness improvements.

The remainder of this paper is organized as follows:
Section II presents our proposed framework, including the
scene-object quality assessment mechanism and pose refine-
ment strategy. Section III presents experimental results and
comparative analysis. Finally, Section IV concludes the paper
with discussions and future directions.



II. METHODOLOGY

Our proposed pipeline (Fig. 1) processes RGB-D im-
ages through an adaptive framework for robust localization
in dynamic environments. It combines feature extraction,
semantic segmentation, and Lucas-Kanade optical flow to
identify dynamic objects. Our approach consists of two key
components: a scene-object quality assessment mechanism
(Section II.A) and a pose refinement strategy (Section II.B).
The quality assessment establishes baseline criteria, evaluates
frames against benchmarks, and dynamically updates bench-
marks as environmental conditions change. When frames are
unreliable, the refinement strategy uses direct methods to
correct pose estimation, maintaining robustness in dynamic
scenarios.

A. Scene-Object Quality Assessment Mechanism

1) Initialization: The Scene-Object Quality Assessment
mechanism begins with an initialization phase to establish
reliable baseline criteria. Our system quantifies frame quality
using four metrics: Object Confidence Score (S..,f): mea-
sures detection confidence across all objects, Spatial Dis-
tribution Score (S;p4tiq1): assesses object size and position
within the frame, Feature Quality Score (Sfcqture: €val-
vates feature response strength and distribution uniformity,
and Depth Quality Score (S;.p¢): analyzes depth coverage,
consistency and smoothness. The overall initial quality is
calculated as:

SInitial = f(Sconf7 Sspatiab Sfeaturea Sdepth) (l)

The function f(-) is a weighted combination:

f(Sconfa Sspatial7 Sfeaturea Sdepth) = Z wzsh Z W;
% 7

2
where w; is the weight for each component S;.
During initialization, the system selects the frame with the
highest quality score (Synitiqi) as the reference, provided:

3)

where th, is the minimum quality threshold, thy is the
maximum frame count, and Ny,;tq; 1S the reference frame
number.

If no suitable frames are found, the system adaptively
adjusts thresholds:

Stnitial = ths and Nrpiiar < thy

max(O,ﬁ—l)

thy = min(thfmm, thy-e ) 4)

ths = max(thsmin, 8 - ths - log(t%f)) )
where 7 is the current frame number and S is a decay control
coefficient that moderates the rate.

The initialization phase establishes a baseline for scene
evaluation by analyzing object confidence, spatial distribu-
tion, feature quality, and depth information across initial
frames. The highest-scoring frame becomes our reference
benchmark, with adaptive initialization thresholds that adjust
to maintain relevance as environmental conditions change.

—_

2) Scene Decision: Following initialization, our system
evaluates each incoming frame to determine scene relia-
bility. The final scene quality score combines the current
frame quality assessment (S,tq;) and the change evaluation
(Schange) relative to the reference frame:

Sfinal = WbaseStotal + Wchangeschange (6)
where S;,iq1 follows the same evaluation method as Sr,;itial
described in the initialization phase (Section IL.A.1). Wy
and Wepqange Will be defined in Eq. 8 and Eq. 9. The Schange
component quantifies the deviation from the reference frame:

Schange = f(SmCa de Sdec) @)
where f(-) follows the same weighted combination function
as defined in Eq. 2, applied to the change score components.
This change score integrates three key residual measure-
ments: Motion Residual (S,,.) evaluates the average mo-
tion deviation between frames, considering both point-level
motion magnitude and grid-level motion across valid grids.
Depth Residual (S;.) captures changes in depth information
by evaluating average depth change and the standard devia-
tion of depth changes. Detection Residual (S;..) measures
changes in object detection by quantifying both object count
differences and the average IoU (Intersection over Union)
change between corresponding objects.

To enhance robustness in challenging scenarios, we intro-
duce the Dynamic_ratio metric, representing the proportion
of dynamic objects in the scene:

®)

Whase = maz (0, Wyyse — a - Dynamic_ratio)

Wchange =1~ Whase )
where a is a robust factor. Our system identifies and applies
specialized processing for three distinct scenarios: Highly
Static Scenes (Dynamicratio < thsatic and Syeqture >
Sstatic), where we boost the final score. Highly Dynamic
Scenes (Dynamic_ratio > thqynamic), prioritizing change
evaluation. And High Confidence Detections (Sconr >
thoy;), amplifying scores for scenes with reliable object
detections. Here, thgiqtic 1S the upper threshold for static
scene classification, thgynamic is the lower threshold for
dynamic scene classification, Ss;q4c is the minimum feature
quality required for static scenes and th.y; is the confidence
threshold for reliable object detection.

While evaluating incoming frames, our system simultane-
ously performs dynamic benchmark updates:
1 > Stnitial & F' is good scene uPd—ate> Srnitial = Sfotal

(10)

where F is the i_th frame and S¢,,, is the frame quality
score of the frame F*. When S; , , is greater than the initial
quality benchmark S7,;1i; and the frame F? is good scene,
then the system updates the initial quality benchmark to
match the quality score of frame F*.

é;i
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Fig. 1.

Overview of our proposed adaptive prior scene-object SLAM framework: The framework is composed of three main units: Dynamic

Observation module, Scene-Object Quality Assessment module, and Pose Refinement module.

After computing the final score Sfnqi, our system deter-
mines scene reliability:

GOOD
BAD

Scene-Object Quality = { if Sy inal 2 thaig fer
otherwise

(1D
where thg; f fer is the threshold value that determines whether
a scene has sufficient quality for conventional tracking meth-
ods. This binary classification triggers different processing
strategies: for reliable frames, conventional feature-based
tracking continues, while problematic frames activate our
pose refinement mechanism described in Section II.B.

B. Pose Refinement Strategy

When a frame is classified as problematic based on our
quality assessment, we employ a direct method to refine
the camera pose estimate. Unlike feature-based methods that
rely on sparse correspondences, our approach utilizes dense
information from both intensity and depth images, making it
more robust in challenging scenarios.

The pose refinement process begins by selecting appropri-
ate reference frames:

HHDz - DTHZ + ”Mz - Mr””g S thk:eyframes (12)

where D; and M, represent the depth and motion characteris-
tics of the current frame, while D,. and M,. correspond to pre-
viously identified good frames. The threshold thjey frames

determines the maximum allowable combined difference for
selecting a reliable reference frame.

Following previous RGB-D SLAM approaches [10], [18],
our direct method minimizes the intensity and depth residuals
between image pairs. Specifically, for a pixel p in frame A,
the intensity and depth residuals with respect to frame B are
defined as:

i = Ig(W(2), T(€), Da)) — Ta(2%)) (13)

Dp(W(ah, T(€), Da)) — [T(€)n (ahy, Dala?y))]-
(14)
where I4 and Ip are RGB images, D4 and Dp are depth
images, W is the warping function that projects pixels from
frame A to frame B based on the transformation 7'(¢) and
7! represents the inverse projection from 2D to 3D space,
z¥ is the 2D coordinate of pixel p in frame A, and | - |,
denotes the z-component of the transformed 3D point.

The combined cost function incorporates both residuals:

D =

D = Claqwyry(§)) + Cwprp(§)) (15)
where w) and w?, are pixel-specific weights, a; is a scale
parameter to weight photometric residuals so that they are
comparable to depth residuals. C/(+) is a robust cost function.

We adapt the optimization approach from [18] with mod-



Fig. 2. Scene quality assessment results on the fr3/w/rpy, showing
detected problematic frames: (a) feature-poor ceiling, (b) rapid roll
rotation.

ifications to handle dynamic environments more effectively:

N,K

p=1,k=1

(16)

where 7;(p) represents pixel-specific weights that assign
lower values to foreground (Potential Dynamic objects) pix-
els and higher values to background (Static) pixels. By =
e~ Mte—te) js a time-decay factor that gives higher priority
to more recent reference frames with & is being the index of
reference frames and K is the number of reference frames.
[D] refers to the result from Eq. 15.

The final camera pose is computed as a weighted combi-
nation:

Trina = Wdiff * Tfeature + (1 - wdiff) “Tdirect a7

where wg; ¢ = e~ #(Serange) adapts the weighting based on
the quality difference score and p is a decay parameter that
controls the sensitivity of the weighting to scene changes.
Tfeature Tepresents the pose estimated by the [19] method,
while Ty;,cqt 1S the pose obtained through our direct method
optimization. This adaptive weighting mechanism ensures
that when the deviation from the reference benchmark is
small, the system relies more on the feature-based pose;
conversely, when the deviation is large, it gives greater
weight to the direct method result. This approach provides
smooth transitions between estimation methods and enhances
system stability in challenging scenarios.

III. EXPERIMENTAL RESULTS

We evaluated our method on the TUM RGB-D datasets,
widely used for benchmarking SLAM systems in dynamic
environments.

A. Evaluation of Scene-Object Quality Assessment Mecha-
nism

Our assessment mechanism identified 30 problematic
frames out of 900 in the fr3/w/rpy sequence. As Fig. 2

shows, these frames occurred when the camera moved toward
the feature-poor ceiling (a) or during rapid roll rotations (b).

These results demonstrate the effectiveness of our as-
sessment mechanism in identifying frames where traditional
feature-based methods are prone to failure. The proposed
quality metrics successfully capture geometric constraints
(e.g., sparse features in ceiling views) and dynamic chal-
lenges (e.g., motion blur due to rapid rotation), validating
the robustness of our approach.

B. Comparison with State-of-the-Art Methods

Fig. 3 illustrates the integration of our system with ORB-
SLAM3 on the TUM RGB-D dataset. The left panel presents
the current frame with our Scene-Object Quality Assess-
ment in action, where dynamic objects (e.g., people) are
detected (green bounding boxes), segmented (red masks),
and estimated using Lucas-Kanade optical flow to mitigate
their impact on pose estimation. The scene quality score
(0.36) and frame assessment (GOOD SCENE) are displayed
in the upper corners, alongside individual quality metrics:
confidence (Sconf), spatial distribution (Sgpatiar), and feature
quality (Sfeqture) Shown as white text. The right panel shows
ORB-SLAM3’s sparse mapping results, including the 3D
point cloud and camera pose. This visualization highlights
how our framework enhances ORB-SLAM3 by improving
scene quality assessment and handling dynamic objects,
enabling more robust tracking in complex environments.

We evaluated our system against several state-of-the-art
SLAM methods for dynamic environments based on ORB-
SLAM2 [20], including DynaSLAM [13], Blitz-SLAM [14],
and SG-SLAM [16]. Table I present the results for Absolute
Trajectory Error (ATE) and Relative Pose Error (RPE) in
translation and rotation. As shown in Table I, our method
achieves competitive ATE performance and excels in frame-
to-frame consistency and it consistently outperforms compet-
ing methods in translational and rotational RPE across most
sequences. Notably, in challenging scenarios with complex
camera motions, our system maintains high relative pose
accuracy, demonstrating the effectiveness of our scene qual-
ity assessment and pose refinement strategies in dynamic
environments.

We furtuer evaluated our system against DN-SLAM [21]
based on ORB-SLAM3 [19], as shown in Table II. Our
method achieves a 92%-97% reduction in ATE over ORB-
SLAM3 across dynamic sequences and performs comparably
to DN-SLAM in absolute trajectory accuracy, with superior
relative pose performance, particularly in the challenging
fr3/w/rpy sequence (RMSE: 0.025 vs. 0.065). These re-
sults demonstrate the effectiveness of our quality assessment
and pose refinement strategies. Fig. 4 compares estimated
trajectories between ORB-SLAM3 (top) and our method
(bottom) across four TUM sequences with three line tyrpes:
ground truth (black lines), estimated (blue lines), and differ-
ence (red lines). Our method shows superior tracking accu-
racy, with reduced error in all sequences. It maintains near-
perfect alignment with ground truth in fr3/w/zyz and ac-
curately tracks complex movements in fr3/w/hal f sphere



ORB-SLAM3: Current Frame

Fig. 3.

ORB-SLAM3: Map Viewer
[JFollow Camera ;
Camera View
Top View

[Dshow Points
[TIShow KeyFrames
[CIshow Graph .
[Tshow Inertial Graph
[Jiocalization Mode *

Reset

Stop
[_Jstep By Step

Step

[_Ishow LBA opt.

Visualization of our Scene-Object Quality Assessment integrated with ORB-SLAM3.

ytml

ORB-SLAM3

yiml

6 -14 -12 -lo -08 -06

ximl

04 -02 00

— ground truth
— estimated
26 { — difference

yim)

Ours

04 02 -10 08
xim) x(m)

fir3/w/rpy fr3/w/xyz

-175 -150 -125 -100 -075 -050 -025 000 025
xml

Ji3/w/ halfsphere

076
x(m]

fr3/w/ static
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and fr3/w/rpy under dynamic conditions.

Our experiments confirm that our scene quality assessment
and pose refinement strategies enhance SLAM performance
in dynamic environments. While achieving competitive abso-
lute trajectory accuracy, our method excels in frame-to-frame
consistency, as demonstrated by superior RPE metrics across
most sequences.

IV. CONCLUSIONS

In this paper, we presented an adaptive prior scene-object
SLAM framework for dynamic environments. Our qual-
ity assessment mechanism effectively identifies problematic
frames, while our direct pose refinement strategy corrects
tracking errors when traditional methods fail. Experimental
results show significant improvements over state-of-the-art
methods, particularly in maintaining consistent tracking.

For future work, we plan to enhance the system by
incorporating line and plane features [22] to improve quality
assessment, especially in texture-poor environments. We also

aim to develop a global temporal management strategy
for good and bad frames based on data association [23],
enabling comprehensive optimization across the entire tra-
jectory rather than just frame-to-frame refinement. These
advancements will further enhance system robustness in
complex dynamic scenarios and support longer-term consis-
tent mapping.
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