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IRAF-SLAM: An Illumination-Robust and Adaptive Feature-Culling
Front-End for Visual SLAM in Challenging Environments

Thanh Nguyen Canh®, Student Member, IEEE, Bao Nguyen Quoc, Haolan Zhang®,

Bupesh Rethinam Veeraiah, Xiem HoangVan

Abstract— Robust Visual SLAM (vSLAM) is essential for
autonomous systems operating in real-world environments,
where challenges such as dynamic objects, low texture, and
critically, varying illumination conditions often degrade per-
formance. Existing feature-based SLAM systems rely on fixed
front-end parameters, making them vulnerable to sudden
lighting changes and unstable feature tracking. To address these
challenges, we propose “IRAF-SLAM?”, an Illumination-Robust
and Adaptive Feature-Culling front-end designed to enhance
vSLAM resilience in complex and challenging environments.
Our approach introduces: (1) an image enhancement scheme
to preprocess and adjust image quality under varying lighting
conditions; (2) an adaptive feature extraction mechanism that
dynamically adjusts detection sensitivity based on image en-
tropy, pixel intensity, and gradient analysis; and (3) a feature
culling strategy that filters out unreliable feature points using
density distribution analysis and a lighting impact factor.
Comprehensive evaluations on the TUM-VI and European
Robotics Challenge (EuRoC) datasets demonstrate that IRAF-
SLAM significantly reduces tracking failures and achieves su-
perior trajectory accuracy compared to state-of-the-art vSLAM
methods under adverse illumination conditions. These results
highlight the effectiveness of adaptive front-end strategies
in improving vSLAM robustness without incurring signifi-
cant computational overhead. The implementation of IRAF-
SLAM is publicly available at https: //thanhnguyencanh.
github.io/IRAF-SLAM/,

Index Terms— Robust Front-End, Illumination Adaptation,
Feature Culling, Visual SLAM

I. INTRODUCTION

Visual Simultaneous Localization and Mapping (vSLAM)
is a foundational technology for autonomous robots, aug-
mented reality (AR), virtual reality (VR), and unmanned
aerial vehicles (UAVs), enabling these systems to perceive
and navigate unknown environments [1]. Despite significant
advancements in SLAM algorithms, including landmark sys-
tems such as ORB-SLAM [2] and VINS-Mono [3], achieving
robust performance in diverse real-world conditions remains
an open challenge.

A critical factor limiting vSLAM robustness is sensitivity
to environmental variations, particularly dynamic illumina-
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tion. Real-world scenarios frequently involve challenging
lighting conditions, such as shadows, overexposure, low-light
environments, and abrupt illumination transitions caused by
artificial or natural light sources. These variations severely
impact feature-based SLAM systems, which rely on con-
sistent keypoint detection and descriptor matching. Fixed-
parameter front-ends fail to adapt to such changes, resulting
in reduced feature repeatability, frequent tracking failures,
and increased localization drift [4], [5].

Direct methods like LSD-SLAM [6], DSO [7], and
SVO [8] assume photometric constancy, making them in-
herently vulnerable to lighting variations. Recent efforts to
mitigate these issues include image preprocessing techniques
and deep learning-based illumination enhancement [9], [10].
However, such approaches often introduce significant com-
putational overhead, require large-scale training datasets, and
struggle with generalization across different environments.

Feature-based SLAM  systems, including Mono
SLAM [11], PTAM [12], and the ORB-SLAM family [2],
typically employ static thresholds in their feature extraction
pipelines, relying on detectors like FAST [13] and
descriptors such as BRIEF [14] or ORB [15]. This static
design limits adaptability in dynamic lighting scenarios.
Recent studies [16] have proposed adaptive low-light
enhancement methods to improve front-end performance,
while works such as [17], [18] introduced improved ORB
feature extraction through image enhancement and adaptive
thresholding. However, these approaches either lack a
comprehensive feature reliability assessment.

To address these limitations, we propose IRAF-SLAM, an
Ilumination-Robust and Adaptive Feature-Culling front-end
framework designed, which is built upon ORB-SLAM3 [2]
to enhance vSLAM resilience under challenging lighting
conditions. IRAF-SLAM integrates three key components:
(1) An image enhancement pipeline combining Gaussian
filtering, adaptive gamma correction, and unsharp masking
to improve visual quality and feature visibility under varying
illumination, (2) An adaptive FAST thresholding mechanism
that dynamically adjusts feature detection sensitivity based
on intra-image gradient variation and entropy analysis across
sub-regions, and (3) A feature culling strategy that evaluates
feature point stability through density distribution assessment
and a lighting influence factor, effectively eliminating un-
reliable keypoints before pose estimation. This framework
effectively mitigates the failure of feature extraction in ad-
verse lighting scenarios, enhancing both tracking robustness
and localization accuracy without incurring significant com-
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Overview of the proposed IRAF-SLAM Architecture: The system comprises three core modules: Image

Preprocessing - enhances input image quality to improve feature visibility under varying illumination conditions; Adaptive
Thresholding - dynamically adjusts FAST detector sensitivity based on scene characteristics; and Feature Culling - filters
out unstable features prior to tracking, mapping, and loop closing within the ORB-SLAM3 framework.

putational overhead. The main contributions of this paper are
as follows:

o We design a robust feature extraction mechanism that
combines adaptive image enhancement techniques with
dynamic thresholding to improve feature stability under
illumination variations.

« We introduce a novel feature culling strategy based on
spatial density analysis and lighting impact evaluation
to filter unreliable keypoints.

o We integrate the proposed methods into ORB-SLAM3
and perform extensive evaluations on TUM-VI [19]
and EuRoC [20] datasets, demonstrating substantial im-
provements in tracking stability and trajectory accuracy
compared to state-of-the-art vSLAM systems.

The remainder of this paper is organized as follows:
Section [[I] presents the IRAF-SLAM architecture, including
the image enhancement process, adaptive thresholding, and
feature culling strategies. Section [[T]] details the experimental
setup and results. Finally, Section[[V]concludes the paper and
discusses future work.

II. METHODOLOGY

The architecture of IRAF-SLAM is illustrated in Fig.
This framework extends the standard ORB-SLAM3 pipeline
by integrating three lightweight yet effective modules to
enhance robustness in environments with challenging illu-
mination. The process begins with an image preprocessing
stage, which improves visual quality through Gaussian filter-
ing, adaptive gamma correction, and sharpening adjustment
(detailed in Section [[I-A). The enhanced image is then
forwarded to the feature extraction phase, where an adaptive
thresholding mechanism dynamically modifies the FAST
detector’s sensitivity based on both global image statistics
and localized variations (Section [[I-B). Following feature

extraction, a feature culling strategy evaluates the reliability
of detected keypoints, discarding those deemed unstable
before passing data to the standard ORB-SLAM3 tracking,
local mapping, and loop closing modules (Section [[I-C).

A. Image Preprocessing

To mitigate the adverse effects of poor or uneven lighting
on feature detection, we propose an image enhancement
pipeline consisting of three sequential modules: Gaussian Fil-
tering, Adaptive Gamma Correction, and Sharpening Adjust-
ment. The input image is first processed using a Gaussian fil-
ter to suppress high-frequency noise and reduce illumination-
induced variations. In cases of overly bright regions, a
dimming operation is applied by inverting pixel intensities,
followed by adaptive gamma correction to adjust contrast
dynamically based on the image’s brightness distribution.
Finally, unsharp masking is employed to enhance edge details
and improve feature prominence.

1) Gaussian Filtering: Gaussian filtering [21] is applied
as the first step to suppress high-frequency noise and smooth
intensity variations caused by inconsistent lighting. This
enhances the reliability of subsequent gradient and entropy
computations. The Gaussian filter for each pixel (x,y) is

defined as:
1 22 4y
—_ 1
oma? P ( 202 ) 0

Ggauss (177 y) =

where o controls the degree of smoothing. The filtered image
Tpiurrea 1s Obtained by convolving the input image I with the
Gaussian kernel G:

Iblurred(xv y) = I(l‘, y) * Ggauss (ZE, y)- 2



2) Adaptive Gamma Correction: To address global bright-
ness imbalances, we employ Adaptive Gamma Correction
with Weighted Distribution (AGCWD), which is inspired
by references [17], [22]. This technique dynamically adjusts
contrast and brightness based on histogram analysis. Given a
grayscale image I(z,y) with size of N x M, the histogram
H (%) for intensity level i is defined as:

= Z5(I($,y) - i)v

where § is the Kronecker delta function. The histogram is
normalized to form a probability distribution for a grayscale
level i:
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A weighted distortion is given by:
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where P,,,. and P,,;, are the maximal and minimal value
of P(#), respectively, and A is the smoothness factor. The
cumulative distribution function (CDF) is then:

L= P
Cw(z) = —<9285 .. (6)
g 0" Pu(k)

The adaptive gamma value for each intensity level is
defined by:

Cu(i)), ()

where 7 is a predefined lower bound. Finally, the adjusted
intensity follows the gamma correction formula:

I(z,y)\""
Iyamma(®, =255- .

In addition, to classify the image as over-bright or dim,
the mean intensity p is computed as:

1
= N.Mzzy:””)’ ©)

and the brightness deviation is evaluated as:

~(?) = max(r,1 —

®)

M — [expected

t= (10)

Mexpected
If |t| exceeds a threshold, the image is classified as bright or
dim, triggering corresponding enhancement strategies.

3) Sharpening Adjustment: To restore edge sharpness
potentially diminished by smoothing and gamma correction,
we apply unsharp masking. This technique enhances edges
by amplifying the difference between the original image and
its blurred version. The sharpening process is defined as:

Gmask(may) = I(xay) - Iblurred(x,y)' (11)
The final enhanced images can be represented by:

I’(l’, y) = Iblured(gja y) +€- (Igamma(xv y) - Igauss(xa y))
+n- Gmask(xa Z/)
(12)
where € and n are scaling factors controlling the influence
of gamma correction and sharpening, respectively.

B. Adaptive Thresholding

To ensure robust feature detection across varying illu-
mination conditions, we introduce a dynamic thresholding
mechanism based on both global and local image statistics.
We compute two global metrics from the enhanced image:

255

=~ P(i) log(P(i)),
1=0

where P (%) is the normalized histogram bin of intensity level

1, and
Fy(D) = 5 S+ (0,

where I, and I, are image gradients computed via Sobel
filters.
The global adaptive FAST threshold is then given by:

(13)

(14)

Ff =a-F,(I)+p-Fy,(I), (15)
where o and [ are empirically determined weights. For
finer control, the image is partitioned into subregions, each
processed independently to account for localized lighting
variations. Each subregion is first converted to grayscale
(G(z,y)). Then, we compute the optimal threshold toptimal
by maximizing the between-class variance o2 (t):

e P(t) — pa (1))

7= B (T PO

(16)

where:

t

Pit) = S PG), () = S i+ PLi)
3 1=0

The optimal threshold is selected as:

255

=0

to = argmax o2(t). (17

Next, we determine the local adaptive threshold Fi/ for
each subregion based on the difference between the central
pixel intensity [,, and t,:

Fl =6 |1, —t, (18)

where Im =G subregi,;n,sz'ze7 subregion_size
sity at the subregion center, J is a scaling factor. To ensure
that the threshold remains within a stable and effective range,
we define the final threshold using a clipping function:

) is the inten-

F, = clip (F}, F}

tm1n7th) 9 (19)

where Ftl min 1S @ minimum predefined threshold value.
This chpped thresholding mechanism ensures that feature
detection remains adaptive to local lighting variations while
preserving global stability, effectively balancing responsive-
ness and robustness in challenging environments.
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C. Feature Culling Strategy

To enhance the robustness of feature tracking, we propose
a feature culling strategy that evaluates the stability of
detected keypoints based on two complementary factors:
density distribution and lighting influence. The goal is to
eliminate unreliable features that could degrade pose esti-
mation accuracy, particularly under challenging illumination
conditions.

1) Density Distribution Assessment:: We utilize a Quad-
Tree structure to partition the image into sub-regions of
variable size, allowing adaptive spatial analysis of keypoint
distribution. The density D within each sub-region is defined
as:

N keypoint

D= ; (20)

Aregion
where Nieypoine i the number of keypoints detected in the
sub-region, and Agion is the measure of its sub-region
size. Regions exhibiting excessively low keypoint densities
are indicative of unstable detection zones due to noise or
insufficient texture.

2) Lighting Influence Evaluation:: The stability of key-
points is also affected by local lighting conditions. Areas
with consistent brightness and moderate contrast tend to yield
more reliable features. We quantify lighting stability using:

1

Clighl - 1 + e—P(Hc—H:h) 9

2n

where H. represents the local contrast value, Hy is a
predefined contrast threshold, and p controls the sensitivity
of the sigmoid function. Lower Cjigp¢ values indicate regions
prone to lighting instability.

3) Stability Score Computation:: The overall stability
score S for each keypoint is computed by combining density
and lighting factors:

1
S =wj - <m> + wsy - (]— - Clighl)7 (22)

where:
o Dy is the optimal keypoint density.
o k adjusts the sharpness of the density penalty.
o w; and wy are weighting factors satisfying w; +ws = 1.
Keypoints with stability scores below a predefined thresh-
old Spin are culled prior to pose estimation, ensuring that

only reliable features contribute to the SLAM pipeline.
This dual-criteria culling strategy effectively mitigates the
impact of noisy, clustered, or illumination-affected keypoints,
leading to improved tracking robustness and reduced drift in
challenging environments.

III. EXPERIMENTAL RESULTS

A. Experimental Environment

(b) Our Method

Fig. 3: The example of feature extraction results

To evaluate the effectiveness and robustness of the pro-
posed IRAF-SLAM system, we conducted experiments on a
workstation running Ubuntu 20.04, equipped with an Intel®
Core™ {7-13700KF processor and 32 GB of RAM. We
selected two widely used benchmark datasets for validation:
the TUM-VI Dataset [19], which provides synchronized
stereo images and IMU measurements recorded in various
indoor and outdoor environments under challenging lighting
and motion conditions, and the EuRoC MAV Dataset [20],
which includes sequences captured by a micro aerial vehicle
(MAV) equipped with stereo cameras and IMU sensors in a
large machine hall and a Vicon motion capture room. The
EuRoC sequences are categorized by difficulty levels—easy,
medium, and hard—and present challenges such as low
texture, motion blur, and abrupt illumination changes. All



TABLE I: Comparison on the Euroc dataset for the RMSE ATE (m) with available ground-truth data

Dataset DSO [24] | SVO [8] | DSM [25] | ORB-SLAM3 [2] | HE-SLAM [26] | CLAHE-SLAM [27] | AFE-SLAM [18] Our
MHO1 0.046 0.100 0.039 0.017 0.022 0.030 0.018 0.018
MHO02 0.046 0.120 0.036 0.032 0.047 0.047 0.032 0.019
MHO03 0.172 0.410 0.055 0.028 0.036 0.037 0.028 0.025
MHO04 3.810 0.430 0.057 0.088 0.125 0.139 0.087 0.056
MHO05 0.110 0.300 0.067 0.103 0.045 0.061 0.041 0.044
V101 0.089 0.070 0.095 0.033 0.033 0.033 0.033 0.035
V102 0.107 0.210 0.059 0.018 0.016 0.016 0.016 0.012
V201 0.044 0.110 0.056 0.022 0.023 0.022 0.023 0.017
V202 0.132 0.110 0.057 0.037 0.027 0.040 0.017 0.017

sequences were processed in monocular mode to specifically
assess the performance of our front-end enhancements under
adverse visual conditions.

(b) Our Method

Fig. 4: The example of feature matching results

B. Feature Extraction Evaluation

To evaluate the effectiveness of the proposed image en-
hancement and adaptive thresholding modules, we conducted
a detailed analysis of feature extraction and matching perfor-
mance under challenging illumination conditions. Fig. [2] il-
lustrates the distribution of detected keypoints across various
lighting scenarios in the LOL [23] low-light sequences. The
comparison includes keypoints extracted from original bright
and dark images, as well as from enhanced images pro-
cessed by our method. The proposed enhancement pipeline
significantly increases the number of stable keypoints in both
dark and overly bright images. In addition, as shown in
Fig. 3| our method produces a denser and more uniformly
distributed set of keypoints compared to ORB-SLAM3, par-
ticularly in low-texture and poorly illuminated areas. This
indicates that the combination of preprocessing and adaptive
control enhances feature visibility without introducing noise.
Fig. [ presents a qualitative comparison of feature matching
between consecutive frames. The proposed method achieves
more consistent and accurate correspondences, especially in
scenes affected by lighting variations. This improvement in
feature matching directly contributes to enhanced tracking
stability and reduced drift in the SLAM pipeline.

C. Localization Evaluation

To validate the localization performance of our proposed
IRAF-SLAM system, we perform extensive evaluations
against the baseline ORB-SLAM3 and some state-of-the-
art vslam methods. Fig. [5] shows the top-down trajectory
plots for representative sequences from both datasets. On the
TUM VI dataset (Fig. [5h), our method significantly reduces
drift compared to ORB-SLAM3, particularly in cluttered and
poorly illuminated regions. In the EuRoC dataset (Fig. [5b),
our approach also demonstrates closer alignment with the
ground truth, especially during sharp turns and in fast-
motion segments. Inset zooms highlight areas where ORB-
SLAM3 produces discontinuous or inaccurate paths, while
our approach maintains smooth, accurate trajectories. Further
analysis is provided in Fig.[6] which shows per-axis trajectory
profiles in z, y, and z. Across both datasets, IRAF-SLAM
maintains more stable and precise estimation in all three
axes. This is particularly evident in the z-axis where ORB-
SLAM3 frequently underestimates vertical motion due to
missed or unstable features, while our method closely follows
the ground truth profile. Fig. [7] presents the Absolute Pose
Error (APE) over time. On the TUM VI dataset (Fig. [7h), our
approach reduces the average APE by approximately 35%
compared to ORB-SLAM3. Similarly, on EuRoC (Fig. [/b),
we observe a reduction of 30—40% in mean APE and
a significant drop in peak error values, indicating higher
resilience to visual degradation.

To benchmark our method more broadly, Table | compares
RMSE ATE on EuRoC sequences against state-of-the-art
approaches including DSO [24], SVO [8], DSM [25], HE-
SLAM [26], CLAHE-SLAM [27], and AFE-SLAM [18].
Our approach achieves the best or second-best performance
on 7 out of 8 sequences. Notably, in the MHO3 sequence,
our method achieves an RMSE of 0.025m, outperforming
ORB-SLAM3 (0.028m) and all other methods. On the most
difficult sequences like MH04 and MHOS, our system re-
mains competitive, showing robust performance even under
large illumination variation and fast motion. Table [II] quan-
titatively compares Mean ATE and RMSE ATE on 21 TUM
VI sequences. On average, IRAF-SLAM achieves a 26.5%
reduction in Mean ATE and a 28.4% reduction in RMSE
ATE compared to ORB-SLAMS3. In difficult sequences such
as room2, magistrale2, and corridor4, improvements exceed
70%. For instance, in magistrale2, Mean ATE improves from
0.2885 to 0.0634 (a 78% drop), and RMSE ATE drops from
0.3429 to 0.0542 (an 84% reduction).
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TABLE II: Comparison on the TUM-VI dataset for the mean
ATE (m) and RMSE ATE (m) using monocular mode

Dataset ORB-SLAM3 [2] Our Proposed
) Mean ATE ‘ RMSE ATE Mean ATE ‘ RMSE ATE

rooml 0.0799 0.0897 0.0987 0.1401
room?2 0.2401 0.3375 0.0424 0.0563
room3 0.2314 0.2890 0.0650 0.0714
room4 0.0812 0.0873 0.0812 0.0873
room5 0.2106 0.2865 0.2060 0.2354
room6 0.2304 0.2843 0.0900 0.1080
corridorl 0.2298 0.2615 0.2246 0.2538
corridor2 0.1597 0.1814 0.0547 0.0617
corridor3 0.1436 0.1624 0.3348 0.3842
corridor4 0.4965 0.605 0.5727 0.6989
corridor5 0.1485 0.2044 0.1903 0.2629
outdoorl 0.1000 0.1478 0.0894 0.1089
outdoor2 0.1473 0.1965 0.0640 0.0703
outdoor8 0.6533 0.7317 0.6445 0.7133
magistralel 0.1348 0.1497 0.1523 0.1702
magistrale2 0.2885 0.3429 0.4174 0.5386
magistrale3 0.6312 0.7238 0.0516 0.0568
magistrale6 0.6574 0.7732 0.5382 0.6326
slides1 0.0565 0.0615 0.0513 0.0592
slides2 0.0605 0.0544 0.0634 0.0542
slides3 0.0514 0.0554 0.0505 0.0552

IV. CONCLUSIONS

In this paper, we introduced IRAF-SLAM, a robust visual
SLAM front-end designed to enhance localization perfor-
mance in environments affected by poor or unstable illumina-
tion. Our method integrates an image enhancement pipeline,
adaptive FAST thresholding based on entropy and gradient
cues, and a spatio-temporal feature culling strategy informed
by keypoint density and lighting influence. These modules
are seamlessly integrated into the ORB-SLAM3 pipeline
and significantly improve its front-end resilience without
compromising real-time operation. Extensive experiments on

the TUM VI and EuRoC datasets confirm the effectiveness
of our approach. These results validate that enhancing front-
end robustness—especially under dynamic lighting and low-
contrast conditions—has a direct and measurable impact on
SLAM accuracy and stability. In future work, we aim to ex-
tend IRAF-SLAM to stereo and visual-inertial configurations
to further improve robustness in scale estimation and tracking
during aggressive motion. We also plan to explore adaptive
parameter tuning via reinforcement learning and integrate
semantic priors to refine keypoint selection in dynamic and
cluttered scenes.
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