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Abstract: Message-passing (MP) is a powerful tool for finding an approximate solution in

optimization. We generalize it to nonlinear product-sum form, and numerically show the fast

convergence for the minimum feedback vertex set and the minimum vertex cover known as

NP-hard problems. From the linearity of MP in a logarithmic space, it is derived that an

equilibrium solution exists in a neighborhood of random initial values. These results will give

one of the reason why the convergence is very fast in collective computation based on a common

mathematical background.

Key Words: message-passing, product-sum form, optimization, fast convergence, collective

computation, linearity in a logarithmic space

1. Introduction
In complex optimization, one of the important issue is investigating how fast an approximate solution

can be obtained. For example, by learning of connection weight parameters on a neural network,

it is the task to search a target function from input to output in a high-dimensional pattern space

in order to minimize the square error between output and teacher signals. In general, there are

many local minima obtained by learning of neural network. Surprisingly, it has been shown with

much interest that any target function can be realized in a sufficiently small neighborhood of random

weight parameters on a neural network with sufficiently wide hidden layers through learning based

on signal propagation [1–4]. Instead of the complicated analysis [3, 4], as an intuitive explanation,

the elementary proof has been presented by applying a linear theory [1, 2]. In other words, for the

mapping function of input and output patterns, any solution exists in the neighborhood of random

weights on a neural network, therefore the fast convergence is expected by learning of random neural

network without wandering in the seach space forever.

On the other hand, from statistical physics approach, similar but different propagation methods

called message-passing (MP) have been developed [5]. Although there are some types of MP with a

same name: belief propagation (BP), they are not equivalent. One is well-known BP [6] to decode
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low-density parity-check codes [7] or to restore a damaged image on a graphical model [5, 8]. This

type of MP is represented by sum-product or max-sum form [9]. Another is to approximately solve

combinatorial optimization problems [10, 11]. That type of MP is represented by product-sum form

as mentioned later. Through iterations of MP for minimizing a free-energy, the former performs

propagation of a belief of state, while the later performs interactions among states. These different

objectives may appear as sum-product or max-sum and product-sum forms, respectively. Here, a

state means ±1 spin in Ising model [5, 12], or nodes’ label such as root identifier excluded in feedback

vertex set (FVS) [11] or covered/uncovered node’s state as the candidate included/excluded in a set

of vertex cover (VC) [10]. FVS is a set of nodes that are necessary to form loops, while VC is a

set of covered nodes that are at least one of end-nodes for each link. Their approximate solutions

are applicable to extract influencers [13] and to enhance robustness of connectivity [14] in complex

networks. Theoretically an unique solution is assured by MP on only a tree, however practically a

good solution is obtained by MP on a network with (long) loops in many cases. In general, on a

loopy network, there can be many equilibrium solutions or sometimes more complex oscillations by

MP depending on initial values.

In this paper, not only the fast convergence by MP in product-sum form is numerically shown, but

also it is derived as a reason of fast convergence that the solution exists in a neighborhood of random

initial values, based on a common mathematical background of linear theory [1]. We take particular

note of that approximately solving optimization problems by MP and learning of neural network are

related as propagation methods for collective computation, in spite of studying in different research

fields of information science or machine learning and statistical physics or network science.

2. Message-passing in product-sum form

We briefly review the statistical physics approaches [10, 11] to find approximate solutions for some of

combinatorial optimizations such as the minimum FVS and VC problems. However, to seek common

ground, the representations are slightly modified for generalizing them to MP in product-sum form.

Note that the left-hand side in MP equation is updated by substituting the right-hand side, repeatedly.

2.1 For the minimum feedback vertex set
By using a cavity method [5, 12] for estimating the minimum FVS known as NP-hard [15], it is

assumed that nodes v ∈ ∂u are mutually independent of each other, when node u is removed. Here,

∂u denotes the set of connecting neighbor nodes of u. In the cavity graph, if all nodes v ∈ ∂u are

either empty (Av = 0) or roots (Av = v), the added node u can be a root (Au = u). There are the

following exclusive states [11].

State Au = 0: u is empty. Since u is unnecessary as a root, it belongs to FVS.

State Au = u: u becomes its own root.

The state Av = v of v ∈ ∂u is changeable to Av = u, when node u is added.

State Au = w: one node w ∈ ∂u becomes the root of u, when it is added, if w is occupied and all

other w′ ∈ ∂u\w are either empty or roots.

For a link u → v, v ∈ ∂u, the corresponding probabilities to the above states are represented by

the following MP equations [11].

q0u→v =
e−x

zFV S
u→v (t)

=
Πw∈∂u\v

du−1
√
e−x

zFV S
u→v (t)

, (1)

quu→v =
Πw′∈∂u\v

(
q0w′→u + qw

′

w′→u

)
zFV S
u→v

, (2)
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qwu→v =
(1− q0w→u)Πw′∈∂u\v,w(q

0
w′→u + qw

′

w′→u)

zFV S
u→v

, w ∈ ∂u\v, (3)

where du denotes the degree of node u, ∂u\v is the subset of ∂u except v, and x > 0 is a parameter of

inverse temperature to give a penalty e−x for minimizing the size of FVS. We have the normalization

constant

zFV S
u→v

def
= e−x +

Πw′∈∂u\v

(
q0w′→u + qw

′

w′→u

)
×

1 +
∑

w∈∂u\v

1− q0w→u

q0w→u + qww→u

 , (4)

to satisfy

q0u→v + quu→v +
∑

w∈∂u\v

qwu→v = 1. (5)

Note that there are du−1 links of w′ → u except v → u, and that the multiplication term ×1 of Eq. (5)

is hidden in the numerator of the right-hand side of Eq. (1). 1− q0w→u = q1w→u +
∑

w′∈∂w\u q
∗w′

w→u is

also a sum form. Thus, the right-hand sides of Eqs. (1)–(3) are product-sum forms.

The 0 state probability of u included in FVS is given by [11]

q0u
def
=

e−x

e−x +
{
1 +

∑
w∈∂i

1−q0w→u

q0w→u+qww→u

}
Πv∈∂i (q0v→u + qvv→u)

. (6)

2.2 For the minimum vettex cover
In the cavity graph for estimating the minimum VC known as NP-hard [15], since at least one end-

node of each link should be covered, the following three exclusive states at node u are considered for

a link u→ v, v ∈ ∂u [10].

Sate 0: u is uncoverd, when there are no uncovered nodes w ∈ ∂u\v.

Sate 1: u is coverd, when two or more nodes w ∈ ∂u\v are uncovered.

Sate ∗w: As joker state, u is sometimes covered and sometimes uncovered, when only one node

w ∈ ∂u\v is uncovered but other w′ ∈ ∂u\v, w are covered or joker states.

The corresponding probabilities are represented by the following MP equations [10].

q0u→v =
Πw′∈∂u\v(1− q0w′→u)

zV C
u→v

, (7)

q1u→v =
e−x

[
1−Πw′∈∂u\v(1− q0w′→u)−

∑
w∈∂u\v q

0
w→uΠw′∈∂u\v,w(1− q0w′→u)

]
zV C
u→v

,

=
Πw′∈∂u\v

du−1
√
e−x(the numerator of above equation)

zV C
u→v

, (8)

q∗wu→v =
e−xq0w→uΠw′∈∂u\v,w(1− q0w′→u)

zV C
u→v

,

=

du−1
√
e−xq0w→uΠw′∈∂u\v,w

[
du−1

√
e−x(1− q0w′→u)

]
zV C
u→v

, w ∈ ∂u\v, (9)

with the normalization constant

zV C
u→v

def
= e−x

[
1− (1− ex)Πw′∈∂u\v(1− q0w′→u)

]
, (10)
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to satisfy q0u→v + q1u→v +
∑

w∈∂u\v q
∗w
u→v = 1. From this normalization condition and 1 − q0u→v =

q1u→v +
∑

w∈∂u\v q
∗w
u→v, the right-hand sides of Eqs. (7) and (9) are product-sum forms. The right-

hand sides of Eqs. (8) may be not exactly the form. However, Eq. (7) is essential and other ancillary

Eqs. (8) and (9) are not, since zV C
u→v in Eq. (10) is represented by only the 0 state’s probabilities.

The 1 state probability of u included in VC is given by [10]

q1u
def
=

e−x
{
1−Πv∈∂u(1− q0v→u)−

∑
w∈∂u q

0
w→uΠw′∈∂u\w(1− q0w′→u)

}
e−x {1− (1− ex)Πv∈∂u(1− q0v→u)}

. (11)

2.3 For more general cases
We consider a set Ωu = {αu, βu, γu, . . . , κu, . . . , ωu} of states in any order. The number |Ωu| can
be different for each node u. In the case of minumum FVS, the states are αu = 0, βu = u, and

γu, . . . , ωu ∈ ∂u\v. In the case of minumum VC, the states are αu = 0, and γu, . . . , ωu are jokers ∗ of

w ∈ ∂u\v. βu = 1 is an exception by q1u→v = 1− (q0u→v +
∑

w∈∂u\v q
∗w
u→v).

Then, by an inspiration from [16], Eqs. (1)–(4) or Eqs. (7)(9)(10) are generalized as MP in product-

sum form. In the following example, we set that only one state αu has a penalty term e−x to minimize

its probability.

qαu
u→v(t+ 1) =

e−x

zu→v(t)
Πw′∈∂u\v

 ∑
δ∈Sαu

qδw′→u(t)

 ,

=
1

zu→v(t)
Πw′∈∂u\v

 du−1
√
e−x

∑
ϵ∈Sαu

qϵw′→u(t)

 , (12)

...

qκu
u→v(t+ 1) =

1

zu→v(t)
Πw′∈∂u\v

 ∑
δ′∈Sκu

qδ
′

w′→u(t)

 , (13)

...

qωu
u→v(t+ 1) =

1

zu→v(t)
Πw′∈∂u\v

 ∑
δ′′∈Sωu

qδ
′′

w′→u(t)

 , (14)

where Sαu
, . . . , Sκu

, . . . , Sωu
⊂ Ωu, w

′ ∈ ∂u\v, and zu→v(t) is defined to satisfy the normalization

condition
∑

κu∈Ωu
qκu
u→v(t) = 1 at each time t. We emphasize the dependence of iteration time step

t ≥ 0 in the representation of Eqs. (12)–(14).

3. Numerical and theoretical analysises

3.1 Simulation results for fast convergence of MP
We numerically investigate the convergence of MP Eqs. (1)–(3) or (7)–(9) for the minimum FVS or VC

problem. It is evaluated by the cosine similarity Sim(t) between the state probabilities at iteration

times t− 1 and t,

Sim(t)
def
=

∑N
u=1

∑
e:u→v

∑
κu∈Ωu

qκu
e (t− 1)× qκu

e (t)√∑N
u=1

∑
e:u→v

∑
κu∈Ωu

qκu
e (t− 1)2 ×

√∑N
u=1

∑
e:u→v

∑
κu∈Ωu

qκu
e (t)2

.

When Sim(T ) approaches to 1, the state probabilities {qκu
e (T )} converge around a time T .

The following results are averaged over 100 samples from initial {qκu
e (0)} of uniform random num-

bers in the interval (0, 1). We set the parameter of inverse temperature as x = 7. Note that the unit
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Fig. 1. Similarity between the state probabilities at iteration times t−1 and
t by simple MP for the minimum FVS in real networks distinguished by color
lines. Inset show the enlarged part to see the convergent curves.

Fig. 2. Similarity between the state probabilities at iteration times t−1 and
t by simple MP for the minimum VC in real networks distinguished by color
lines. Inset show the enlarged part to see the convergent curves.

time consists of the updating by MP in order of random permutations of N nodes and du links to

avoid vibration behaviour as few as possible instead of synchronously simultaneous updating of all.

Figures 1 and 2 show the time evolutions of Sim(t) by MP for the minimum FVS and VC problems,

respectively, on real networks with thousands nodes and links as shown in Table I. Each colored curves

are quickly converged until only several iterations less than around ten. Moreover, the variance

indicated by vertical line is very small in 100 samples. Such small variance on each colored line means

that similar Sim(t) is obtained at each time t from any initial value, because the time-course can

reach an equilibrium solution in the neighborhood of random initial value as discussed in the next

section. In other words, without almost depending on the topological difference, Sim(t) behaves

similarly even for the convergence to different equilibrium solutions which depend on initial values.

On the other hand, there are different shapes of curves for FVS and VC in Figs. 1 and 2. Depending
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Table I. Data source. Name of network, numbers N , M
def
=
∑N

u=1 du/2 of
nodes and links, diameter D as the maximum shortest path length between two
nodes, access destination. Polblogs – PGP are Scale-Free networks whose de-
gree distributions follow power-law, while Cost2666 and Janos-us-ca are planar
communication networks.

Name N M D URL

Polblogs 1222 16714 8 http://www-personal.umich.edu/∼mejn/netdata/

AirTraffic 1226 2408 17 https://data.europa.eu/data/datasets

/12ec37d3-ada7-4d4c-84ef-f347b1d8dedf?locale=fi

Hamster 1788 12476 14 https://networkrepository.com/soc-hamsterster.php

Gnutella 6299 20776 9 http://snap.stanford.edu/data/p2p-Gnutella08.html

LastFM 7624 278060 15 http://snap.stanford.edu/data/feather-lastfm-social.html

Hepth 8638 24806 18 http://snap.stanford.edu/data/ca-HepTh.html

PGP 10680 24316 24 https://deim.urv.cat/∼alexandre.arenas/data/welcome.htm

Cost266 37 56 8 http://sndlib.zib.de/download/sndlib-networks-native.zip

Janos-us-ca 39 61 10 http://sndlib.zib.de/download/sndlib-networks-native.zip

Table II. Cosine similarities between {qκu
e (T ∗)} and {q̃κu

e (0)} (1st column),
and between {qκu

e (T ∗)} and {q̃κu
e (T ∗)} (2nd column). The results are averaged

over 100 samples.

(a) FVS

Polblog Airtraffic Hamster GNUtella LastFM Hepth PGP

{qκu
e (T ∗)} and {q̃κu

e (0)} 0.768 0.883 0.874 0.936 0.934 0.949 0.877

{qκu
e (T ∗)} and {q̃κu

e (T ∗)} 0.998 0.993 0.998 0.998 0.995 0.997 0.996

(b) VC

Polblog Airtraffic Hamster GNUtella LastFM Hepth PGP

{qκu
e (T ∗)} and {q̃κu

e (0)} 0.770 0.879 0.864 0.944 0.940 0.944 0.960

{qκu
e (T ∗)} and {q̃κu

e (T ∗)} 0.988 0.991 0.998 0.995 0.996 0.997 0.994

on data in Table I, these colored curves are also slightly different in each of Figs. 1 and 2. The tested

networks are Scale-Free (SF) commonly but with different total numbers N , M of nodes and links,

and the diameter D. Other topological properties may be different, however not only huge candidates

of topological measures can be considered such as clustering coefficient, average length of the shortest

paths, degree-degree correlations, modularity or motifs, and so on, but also it is unestimable which are

determinant in advance. The reasons of different shapes of curves are considered from the differences

of sum terms or of number of states with penalty in Eqs. (1)–(3) and (7)–(9) and of some topological

properties, although the detail mechanism are unknown at the current stage. Note that these number

of products are same as du − 1 links at node u.

In addition, the existing of equilibrium solution is investigated by random perturbation for Figs. 1

and 2. After obtaining an convergent {qκu
e (T ∗)} from any {qκu

e (0)} of uniform random numbers

in the interval (0, 1), another {q̃κu
e (0)} is set by adding uniform random numbers in the interval

(−ε, ε) to {qκu
e (T ∗)}. From {q̃κu

e (0)}, the corresponding convergent {q̃κu
e (T ∗)} is recalculated. Then,

we compute the cosine similarities between {qκu
e (T ∗)} and {q̃κu

e (0)}, and between {qκu
e (T ∗)} and

{q̃κu
e (T ∗)}. The increased similarities from first to second columns in Table II(a)(b) exhibit that, as

equilibrium solutions, same convergent values are almost reached from the neighborhood of them.

Here, we set a sufficient large iteration time T ∗ = 100 and a small perturbation parameter ε = 0.4.

Note that we have also similar results of slightly larger similarities for ε = 0.2 as closer {q̃κu
e (0)}

to {qκu
e (T ∗)}. For Figs. 1 and 2, it is intractable to more regorously analyze the stabilities even

under a special perturbation of Gaussian distribution, because the sizes of Jacobian matrix [10] are

too large in the linear approximations of Eqs. (1)–(3) and (7)–(9) as nonlinear mappings around

equilibrium solutions whose number is unknown. In the case of FVS, some extensions are required

involving complex calculations with not only 0 states in the case of VC but also other u and w states,
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w ∈ ∂u\v, the analysis will be a further study. However, for Cost266 and Janos-us-ca with small sizes

in Table I, we calculate it in the case of VC which has only essential variables of 0 states. Under the

perturbation of Gaussian distribution in applying the derivation for VC [10], we confirm the stabilities

of equilibrium solutions by obtaining that the largest eigenvalues of the following Jacobian matrix

J are less than 1 for all 100 trials of random initial values after T ∗ = 10, 100, and 1000 iterations,

respectively.

Ju→v,w→u
def
=

{
e−xΠw′∈∂u\v,w(1− q0w′→u(T

∗))

(zV C
u→v(T

∗))2

}2

, for w ∈ ∂u\v,

Ju→v,w→u′
def
= 0, otherwise for u′ ̸= u, u′ = u and w = v, or u′ = u and w /∈ ∂u.

If an equilibrium solution (or very close solutions) is obtained by MP even from different initial

values, it may be difficult to distinguish the nodes included or excluded in FVS or VC by ambiguous

values of 0 < q0u or q1u < 1. Thus, in practical point of view, decimation process [11] is usually

performed for finding the candidate of FVS or VC one by one (or the candidates of some nodes at

once for efficiency), in which the unit time consists of T > 1 rounds of updating by MP in order of

random permutations of N nodes and du links. At each time by decimation process, the selected

node u with the highest q0u or q1u defined by Eq. (6) or (11) is removed as candidate of FVS or VC.

As the candidates, we can also select the highest top dozens of nodes at once. After removing the

selected nodes, T rounds of updating are performed again at next time. Such process is repeated until

satisfying the condition of no loop or covering one of end-nodes for each link. The obtained results

with decimation are labels 0/1 of nodes included/excluded in FVS or VC, they may differ form an

equilibrium solution with ambiguous values in (0, 1) by simple MP without decimation.

Figures 3 and 4 show the time evolution of average frequency of selected nodes in the highest top

10 at time t by MP with decimation over 100 samples of different random initial values. Commonly,

the frequency tends to increase as larger t, however there are slightly different shapes of curves with

different lengths of bars as the variances. For these differences, the reasons are also considered from

the differences of sum terms or of number of states with penalty in Eqs. (1)–(3) and (7)–(9) and

of some topological properties. Here, the maximum frequency 100
100 means that all selected nodes

are completely overlapped, while the minimum frequency 1
100 means that selected nodes are non-

overlapped and appeared for only one sample. A value between the maximum and the minimum gives

the commonality of nodes selected with decimation over samples. In other words, it is corresponded

to the variety of intermediate stages until reaching a solution in ranging from unique to quite different

according to initial values.

In fact, as visualized examples in Fig. 5 from top to bottom, different sets of VC are found by

decimation process for T = 10 on real communication networks (see Table I). The candidate node is

chosen one by one at each time. Consequently, the solutions of VC depend on initial values of state

probabilities. Note that the feasible solution by MP with decimation [10] is nearly optimal [13], since

its size is almost half of that by a 2-approximation algorithm theoretically guaranteed in computer

science [17].

3.2 Linear theory for mesagge-passing in product-sum form
In this subsection, for MP Eqs. (12)–(14) in product-sum form without round and decimation process,

we study how far is the equilibrium solution from initial values in the logarithmic space of state

probabilities {qκu
e }. Since Eqs. (12)–(14) are generalizations of Eqs. (1)–(3) or Eqs. (7) and (9), the

same discussion is true for the case of minimum FVS [11] or VC [10]. The linear theory is applied by

a similar but slightly different way to learning of multilayer neural networks [1] (See Appendix A.1 for

the brief review). In advance, we should take care of that only the existence of solution is discussed

in a neighborhood of random initial values without taking into account dynamics of the trajectory to

it as similar to the case of learning of neural networks [1].

To eliminate the denominator zu→v of partition function in the right-hand side of Eqs. (12)–(14),

we consider the logarithm of ratio qκu
e:u→v(t + 1)/qωu

e:u→v(t + 1) in the left-hand side. Then, from the

right-hand side,
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Fig. 3. Average frequency of selected nodes as FVS in top 10 by MP with
decimation in real networks distinguished by color lines. The vertical bar
denotes the variance over 100 samples.

Fig. 4. Average frequency of selected nodes as VC in top 10 by MP with
decimation in real networks distinguished by color lines. The vertical bar
denotes the variance over 100 samples.

bε(t)
def
=

∑
w′∈∂u\v

log

∑δ′u∈Sκu
q
δ′u
w′→u(t)∑

δ′′u∈Sωu
q
δ′′u
w′→u(t)

 , (15)

is obtained as each element of K-dimensional vector b(t). The number ε depends on link e : u → v

and state κu ∈ Ωu\ωu. There exist du links emanated from node u, which has |Ωu| states. The total

number K of variables is
∑N

u=1 du× (|Ωu|−1), where −1 is the reducing due to the denominator w.r.t

ωu in each element of b(t). In the case of minimum FVS or VC, the states are 0, u or exception 1, and

w or ∗w, w ∈ ∂u\v, we have |Ωu| − 1 = 1+ 1+ du − 1− 1 = du or du − 1 and therefore K =
∑N

u=1 d
2
u

or
∑N

u=1 du(du − 1).

We also consider a (K + 2M)-dimensional vector
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Fig. 5. Different sets of VC colored by red from top to bottom according to
initial values on real communication networks in (a) EU and (b) USA.

y(t)
def
=

{
log qα1

e1 (t+ 1), . . . , log qω1
e1 (t+ 1), . . . , log qαu

e (t+ 1), . . . , log qωu
e (t+ 1),

. . . , log qαN
e2M (t+ 1), . . . , log qωN

e2M (t+ 1),
}
, (16)

and a K × (K + 2M) block-diagonal matrix Q, whose submatrix is same as

Q(e)
def
=


1 0 . . . 0 −1

0 1 . . . 0 −1
...

...
. . .

...
...

0 0 . . . 1 −1

 (17)

except the size (|Ωu| − 1)× |Ωu| for link e : u→ v.
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Based on the above preparations, the logarithm of ratio of Eqs. (12) or (13) and (14) becomes the

following systems of linear equations.



Q(e1)

. . . 0
Q(e)

0 . . .

Q(e2M )





log qα1
e1 (t+ 1)
...

log qω1
e1 (t+ 1)
...

log qαu
e (t+ 1)
...

log qωu
e (t+ 1)
...

log qαN
e2M (t+ 1)

...

log qωN
e2M (t+ 1)



=



b1(t)
...

bε(t)
...

bK(t)

 .

We assume that directional links are properly ordered as e1 : 1 → v′ ̸= 1, . . . , e : u → v, . . . , e2M :

N → v′′ ̸= N with numbering nodes from 1 to N . Note that the ±1 elements of Q(e) correspond

to + log qκu
e (t + 1) and − log qωu

e (t + 1) as the state probability and the constraint of normalization,

respectively, for each link. As the matrix-vector form, we have

Qy(0) = b(0), (18)

Qy(∞) = b(∞), (19)

where {qκu
u→v(∞)} means an equilibrium solution for MP Eqs. (12)–(14). Note that the topological

network structure is embedded in Q whose block-diagonal sizes are allocated by |Ωu| − 1 (= du or

du − 1: number of links at u in the case of the minimum FVS or VC) of the submatrix Q(e) for links

e : u→ v, u = 1, 2, . . . , N , and its connecting neighbor nodes v ∈ ∂u.

By substituting Eq. (18) from Eq. (19), we have

Q∆y = b(∞)− b(0)
def
= ∆b, (20)

where ε-th element of ∆y
def
= y(∞)− y(0) is ∆yε = log rκu

e from introducing the change rate rκu
e

def
=

qκu
e (∞)/qκu

e (1) and

log qκu
e (∞) = log qκu

e (1) + log rκu
e .

Remember the definition of y(t) by Eq. (16).

When we consider a vector n(q) in the null space {n|Qn = 0,n ≥ 0} of Q, ∆y + n(q) is also the

solution of Eq. (20) because of Q(∆y + n(q)) = ∆b. Since there is only one pair of ±1 elements in

each row of Q, n(q) is uniquely determined as n(q) = {ce1 , . . . , ce1 , . . . , ce, . . . , ce, . . . , ce2M , . . . , ce2M },
whose elements are divided by 2M blocks with any constants ce ≥ 0. In other words, through

multiplying Q(e) of Eq. (17),

(log qκu
e + ce)− (log qωu

e + ce) = log

(
qκu
e × ece

qωu
e × ece

)
= log

(
qκu
e

qωu
e

)
,

means that the adding of n(q) to ∆y corresponds to any scalar multiples. However, they disappear

by the above division to eliminate zu→v for each link e : u→ v.

In taking into account stochastic variations of initial values {qκu
e (0)} generated uniformly at random

in the interval (0, 1) for e ∈ {e1, . . . , e2M} and κu ∈ Ωu, u ∈ {1, 2, . . . , N}, we discuss how high is the

change rate for an equilibrium solution of MP Eqs. (12)–(14). Essentially, each element qκu
e (t) is a

probability variable in (0, 1) at any time t ≥ 0, the amount of |qκu
e (∞) − qκu

e (0)| is small at most 1.

For the random initial values, ||∆b||2 is averagely bounded as O(1), since the variance of logarithm
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of finite random variable becomes a constant (see Appendix A.2). Remember that ∆b is defined

by Eqs. (15) and (20). When ϵ̃ ≤ qκu
e < 1 is assumed for each link e : u → v and state κu ∈ Ωu,

|Sκu |×ϵ̃
|Sωu | ≤

∑
δ′u∈Sκu

q
δ′u
w′→u

(0)∑
δ′′u∈Sωu

q
δ′′u
w′→u

(0)
<

|Sκu |
|Sωu |×ϵ̃ is obtained in the right-hand side of Eq. (15). Thus, bε(0) have

a finite variance, while bε(∞) is a constant on the assumption of an equilibrium solution.

Moreover, it is known that the generalized inverse matrix Q† gives a solution of Eq. (20) with the

minimum L2-norm ||∆y||2 in many solutions for the underconstraint based on a landscape K× (K+

2M) matrix Q,

∆y = Q†∆b = QT (QQT )−1∆b, (21)

where QQT becomes a K × K block-diagonal matrix, whose each block is (|Ωu| − 1) × (|Ωu| − 1)

submatrix as follows 
2 1 . . . 1

1 2 . . . 1
...

...
. . .

...

1 1 . . . 2

 . (22)

In general, for a block-diagonal matrix, the inverse matrix is obtained as



B1

. . . 0
Bi

0 . . .

B2M



−1

=



B−1
1

. . . 0
B−1

i

0 . . .

B−1
2M


,

B−1
i denotes the inverse of Bi for 1 ≤ i ≤ 2M . In considering the order of (QQT )−1 in Eq. (21), as

k
def
= |Ωu| − 1, the inverse of k × k submatrix of Eq. (22) is given by

2 1 . . . 1

1 2 . . . 1
...

...
. . .

...

1 1 . . . 2


−1

=
1

k + 1


k −1 . . . −1

−1 k . . . −1
...

...
. . .

...

−1 −1 . . . k

 .

From Eq. (21) and the above discussion, ∆y is of order 1
min{|Ωu|} at most even in the logarithmic

space whose element is ∆yε
def
= log(qκu

e (∞)/qκu
e (1)), because the submatrix of Eq. (22) is of order

Table III. Correspondence in linear theories for MP in product-sum form
and learning of neural network.

MP in product-sum form Learnig of neural network

K + 2M > K p > n

log ϵ̃ ≤ y(0)ε
def
= log qκu

e (1) < 0, ε = 1, . . . ,K + 2M −∞ < v(0)i <∞, i = 1, . . . , p

logarithmic change rate vector ∆y difference vector ∆v

interactions with adjacent links ∆b
def
= b(∞)− b(0) error e

def
= f∗ −Xv(0)

bε(0) defined by Eq. (15) vi(0) generated from a Gausian distribution

landscape K × (K + 2M) block-diagonal matrix Q landscape n× p matrix X

with submatrix Q(e) with row vector Xs of sample input

qκu
e (0) is chosen uniformly at random Xsi = φ(wi · xs) is an iid variable

∆b = Q∆y e = X∆v

∆y = Q†∆b ∆v = X†e

{n(q)|Qn(q) = 0} {n(x)|Xn(x) = 0}
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1
k+1 = 1

|Ωu| . According to |Ωu| = du + 1 or du for the minimum FVS or VC, the convergence of state

probability may be faster on link e : u→ v emanated from node u with as higher degree du, although

it is not determined by only the probabilities on link e : u→ v but depends on ones (especially at the

times 0 and ∞) on adjacent links w′ → u with the complex cooperative or competitive interactions

embedded in ∆b.

Thus, a solution {qκu
e (∞)} exists in a neighborhood of any random initial {qκu

e (0)} with high

probability. Table III show the correspondence in linear theories for our MP in product-sum form

and learning of neural networks. Particularly, the following difference is remarkable. Once a network

is given, the matrix Q is fixed in the case of MP from initial values chosen uniformly at random.

However even if a neural network is given topologically, the matrix X is variational because of the

connection weights chosen from a Gaussian distribution in the case of learning of neural networks [1].

4. Conclusion
We study the fast concergence by MP generalized in product-sum form for finding an approximate

solution of combinatorial optimization problems such as the minimum FVS [11] or VC [10]. Actually,

the numerical results show the very fast convergence by MP until only several iterations less than

around ten even for large networks with thousands nodes and links. The key contribution is to

generalize the MP equations into a unified product-sum form. We emphasize that the MP is different

from BP [6] in sum-product or max-sum form [9] on a graphical model, rather its mathmatical

framework is related to that in learning of nueral networks [1]. As similar but slightly different way to

learning of nueral networks, a linear theory is applied, and it is derived as a reason of fast converegence

that the equilibrium solution of MP exist in a neighborhood of initial values in the logorithmic space.

In addition, the effect of degree distribution on the convergence may be important from the fact that

the logarithm of change rate ∆y is order 1
min{|Ωu|} , especially Ωu = du or du − 1 for the minimum

FVS or VC.

To more deeply understand the mechanism, there still remain several issues as follows. Even

belonging in a same form of product-sum, MP Eqs. (1)–(3) and (7) and (9) are not completely same,

and produce slightly different behavior in Figs. 1 and 2 or in Figs. 3 and 4. Also, varieties of topological

network structure seem to affect them as shown by color lines in these Figures for SF networks of

even similar power-law degree distributions such as examples in Table I but with different N , M , and

D. Since there exist uncountably many network structures away from SF networks, it will requires

further studies to discover the reason of differences. As the first step, for a fixed network structure

e.g. randomized networks under a degree distribution by eliminating other topological properties, it

may be useful to discuss relations between the convergent behavior and typical sum-forms or number

of states with penalty in classifying what types of product-sum forms can be considered.

On the other hand, it will be expected that our discussion is applied to other MP equations for such

as the minimum dominating set [18] or community detection [19]. Instead of the cluster variation

method [6] for a loopy network, the extended development of MP by considering primitive cycles [19]

may be useful even with complex calculations to treat the independence more accurately for finding an

unique solution. However it is out from our approach, or we consider the existence of many solutions

positively, because they are feasible solutions near the optimal as proper approximations. In addition,

other development of elegant algorithms may be possible from information geometric perspective of

MP in product-sum form (see Appendix A.3).
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Appendix

A.1 Linear theory for learning of neural networks
As a citation, we briefly explain the linear theory for a neural network with one hidden layer [1] to

understand similarity and difference to our discussion. The scalar output is given by

f(x;θ)
def
=

p∑
i=1

viφ(wi · x),

where φ(z) is a bunded activation function, wi · x is the inner product of input x and fixed weight

wi as d-dimensional vectors in Rd, and v = (v1, . . . , vi, . . . , vp)
T is a p-dimensional variable vector in

Rp learned as weight parameters between hidden and output layers. To simplify the discussion, each

element of wi between input and hidden layers is fixed and set by a random Gaussian distribuion in

the interval (−∞,+∞) with a finite variance σ2
w/p.

By considering a sample set of n inputs alltogether, the input-output relation is represented by the

follwing systems of linear equatios.

f = Xv,

where we assume n < p, X is a landscape n× p matrix, whose element is

Xsi = φ(wi · xs), s = 1, . . . , n; i = 1, . . . , p.

Inputs x1, . . . ,xn in the training data are randomly and independently generated with bounded |xsi|
for each element. Therefore, X has stochastic variations.

Since the optimal parameters v∗ have to satisfy Xv∗ = f∗ given as the teacher signal vector, we

have

f∗ = X(v(0) +∆v),

where ∆v
def
= v∗ − v(0), and v(0) denotes any initial random vector. For the error vector e

def
=

f∗ −Xv(0), the above equation is rewritten as

e = X∆v, (A-1)

By using the generalized inverse matrix X† def
= XT (XXT )−1 of X, we obtain

∆v = X†e.

Note that, in general for fewer constraints than variables, the exising of some solutions is possible,

and that X† gives one of them as the minimum L2-norm ||e||2 for ||XX†e− e||2 = 0.

The minimum norm solution of Eq. (A-1) is written as

∆v = XT (XXT )−1e, (A-2)

and the generalized solutions are given by ∆v+n(x), where n(x) is an arbitrary null vector belonging

to the null space {n(x)|Xn(x) = 0}.
Moreover, since the elements of XXT are sum of p iid variables, the inverse (XXT )−1 is of order

1/p. From Eq. (A-2) and ||v0||2 = σ2
v = O(1), we have

||∆v||2 = O

(
1
√
p

)
.

Thus, a solution v0 +∆v exists in a (1/
√
p)-neighborhood of any random initial vector v0 with high

probability. Such discussion is extended to learning of multilayer neural networks with variable weight

parameters between layers [1].
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A.2 Bounded variance of logarithmic function
We show that, for a random variable x, the mean and variance of its logarithmic function are bounded.

We set 0 < ϵ̃ ≤ x ≤ Xmax ≈ 1/ϵ̃ and ϵ̃≪ 1. At least, in computer simulation with the calculation of

log x, 0 < ϵ̃ ≤ x is necessary. For example, log ϵ̃ ≈ −700 when ϵ̃ ≈ 10−320 in IEEE754 double-precision

floating-point number is applied.

The mean is defined as

µq =
1

Xmax − ϵ̃

∫ Xmax

ϵ̃

log xdx

=
1

Xmax − ϵ̃
[x log x− x]

Xmax

ϵ̃ ≈ Xmax(log(Xmax)− 1)

Xmax − ϵ̃
,

where we assume that the distribution of x is uniformly at random.

Similarly, the variance is defined as

σ2
q =

1

Xmax − ϵ̃

∫ Xmax

ϵ̃

(log x− µq)
2
dx

=
1

Xmax − ϵ̃

∫ Xmax

ϵ̃

(log x)2dx− 2µq

Xmax − ϵ̃

∫ Xmax

ϵ̃

log xdx+
1

Xmax − ϵ̃

∫ Xmax

ϵ̃

µ2
qdx.

The third and second terms of above right-hand side are

Xmax − ϵ̃

Xmax − ϵ̃
µ2
q − 2µq × µq = −µ2

q.

For a permutation integral, we set z = log x. Then, the first term is

1

Xmax − ϵ̃

∫ logXmax

log ϵ̃

z2ezdz =
1

Xmax − ϵ̃

[
(z2 − 2z + 2)ez

]logXmax

log ϵ̃

≈ 1

Xmax − ϵ̃
(logXmax)

2Xmax.

Therefore, we obtain the bounded constant value

σ2
q ≈ 1

Xmax − ϵ̃
(logXmax)

2Xmax − µ2
q.

A.3 Information geometric perspective
In the (m − 1)-dimensional statistical manifold over the finite discrete set χ = {1, 2, . . . , x, . . . ,m},
we consider a n-dimensional submanifold called exponential family SE = {pE(x; θ)|x ∈ χ, θi ∈ R}
with parameter θ = (θ1, . . . , θi, . . . , θn), n < m− 1. The probability distribution is represented in the

following normal form [20].

pE(x; θ)
def
= exp

{
C(x) +

n∑
i=1

Fi(x)θ
i − ψ(θ)

}
,

ψ(θ)
def
= log

{∑
x∈χ

exp

(
C(x) +

n∑
i=1

Fi(x)θ
i

)}
.

Without loss of generality, we chose C(x) = log p0(x) = 0, Fi(x) = log pi(x)− log p0(x) = log pi(x),

where p0(x) is the uniform distribution, and pi(x) > 0 is a function on x ∈ χ for each i = 1, 2, . . . , n.

Then, pE(x; θ) is rewritten as

pE(x; θ) =
Πn

i=1pi(x)
θi∑

x∈χ Πn
i=1pi(x)

θi .

Moreover, after easy calculations with logarithmic transformation, we obtain the system of linear

equations [21]
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n∑
i=1

(Fi(x)− Fi(m)) θi = log

(
pE(x; θ)

pE(m; θ)

)
,

Fi(x)− Fi(m) = log

(
pi(x)

pi(m)

)
.

For each link u → v, qκu
u→v in Eq. (13) is corresponded to pE(x; θ) in the mapping of n and

ku − 1 = |∂u\v|, χ = {1, . . . , x, . . . ,m} and Ωu = {αu, . . . , κu, . . . , ωu}, Fi(x) and the logarithm of

the numerator in the right-hand side of Eqs. (12) (13) or (14), with θ = (1, 1, . . . , 1). In other words,

the basis function Fi(x) is arranged according to the updating by MP Eqs. (12) (13) or (14) which

depends on the state prababilities on other adjecent links w → u, w ∈ ∂u\v.
Thus, from the above explanation, we can regard {qκu

u→v(t)} for each link e : u→ v as an exponential

family. However, it is different from the information geometric explanation for the sum-product or

max-sum form [9] of MP called BP applied to a graphical model [6], in which the parameter θ is

arranged according to the updating of MP [22].

On the other hand, another example of exponential family is Boltzman machine [20, 23] as one of

the well-known stochastic neural networks. Moreover, such as EM, independent component analysis,

and natural gradient method, elegant algorithms have been provided from information geometric

foundations [24].
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d’Alché Buc, E. Fox, and R. Garnett (eds), pp. 8572–8583, 2019.
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