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Abstract: Message-passing (MP) is a powerful tool for finding an approximate solution in
optimization. We generalize it to nonlinear product-sum form, and numerically show the fast
convergence for the minimum feedback vertex set and the minimum vertex cover known as
NP-hard problems. From the linearity of MP in a logarithmic space, it is derived that an
equilibrium solution exists in a neighborhood of random initial values. These results will give
one of the reason why the convergence is very fast in collective computation based on a common
mathematical background.

Key Words: message-passing, product-sum form, optimization, fast convergence, collective
computation, linearity in a logarithmic space

1. Introduction

In complex optimization, one of the important issue is investigating how fast an approximate solution
can be obtained. For example, by learning of connection weight parameters on a neural network,
it is the task to search a target function from input to output in a high-dimensional pattern space
in order to minimize the square error between output and teacher signals. In general, there are
many local minima obtained by learning of neural network. Surprisingly, it has been shown with
much interest that any target function can be realized in a sufficiently small neighborhood of random
weight parameters on a neural network with sufficiently wide hidden layers through learning based
on signal propagation [1-4]. Instead of the complicated analysis [3, 4], as an intuitive explanation,
the elementary proof has been presented by applying a linear theory [1, 2]. In other words, for the
mapping function of input and output patterns, any solution exists in the neighborhood of random
weights on a neural network, therefore the fast convergence is expected by learning of random neural
network without wandering in the seach space forever.

On the other hand, from statistical physics approach, similar but different propagation methods
called message-passing (MP) have been developed [5]. Although there are some types of MP with a
same name: belief propagation (BP), they are not equivalent. One is well-known BP [6] to decode
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low-density parity-check codes [7] or to restore a damaged image on a graphical model [5, 8]. This
type of MP is represented by sum-product or max-sum form [9]. Another is to approximately solve
combinatorial optimization problems [10, 11]. That type of MP is represented by product-sum form
as mentioned later. Through iterations of MP for minimizing a free-energy, the former performs
propagation of a belief of state, while the later performs interactions among states. These different
objectives may appear as sum-product or max-sum and product-sum forms, respectively. Here, a
state means £1 spin in Ising model [5, 12], or nodes’ label such as root identifier excluded in feedback
vertex set (FVS) [11] or covered/uncovered node’s state as the candidate included/excluded in a set
of vertex cover (VC) [10]. FVS is a set of nodes that are necessary to form loops, while VC is a
set of covered nodes that are at least one of end-nodes for each link. Their approximate solutions
are applicable to extract influencers [13] and to enhance robustness of connectivity [14] in complex
networks. Theoretically an unique solution is assured by MP on only a tree, however practically a
good solution is obtained by MP on a network with (long) loops in many cases. In general, on a
loopy network, there can be many equilibrium solutions or sometimes more complex oscillations by
MP depending on initial values.

In this paper, not only the fast convergence by MP in product-sum form is numerically shown, but
also it is derived as a reason of fast convergence that the solution exists in a neighborhood of random
initial values, based on a common mathematical background of linear theory [1]. We take particular
note of that approximately solving optimization problems by MP and learning of neural network are
related as propagation methods for collective computation, in spite of studying in different research
fields of information science or machine learning and statistical physics or network science.

2. Message-passing in product-sum form

We briefly review the statistical physics approaches [10, 11] to find approximate solutions for some of
combinatorial optimizations such as the minimum FVS and VC problems. However, to seek common
ground, the representations are slightly modified for generalizing them to MP in product-sum form.
Note that the left-hand side in MP equation is updated by substituting the right-hand side, repeatedly.

2.1 For the minimum feedback vertex set

By using a cavity method [5, 12] for estimating the minimum FVS known as NP-hard [15], it is
assumed that nodes v € Ju are mutually independent of each other, when node u is removed. Here,
Ou denotes the set of connecting neighbor nodes of u. In the cavity graph, if all nodes v € Ju are
either empty (A4, = 0) or roots (4, = v), the added node u can be a root (4, = u). There are the
following exclusive states [11].

State A, = 0: u is empty. Since v is unnecessary as a root, it belongs to FVS.

State A, = u: u becomes its own root.
The state A, = v of v € Ju is changeable to A, = u, when node u is added.

State A, = w: one node w € du becomes the root of u, when it is added, if w is occupied and all
other w’ € du\w are either empty or roots.

For a link uw — v, v € Ju, the corresponding probabilities to the above states are represented by
the following MP equations [11].

_ dy—1/"_
e ” Hweau\v e~®

0
Ty = = , (1)
R0 2V (t)

Hw’eau\v (%9;’—)11, + q$’—>u)

q'gﬁv - ~FVS ’ (2)
uU—v
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(1 - qO u)Hw’Eau\v w(qgﬂ uw T qzﬁ’, u)
qw ., = w— JFVS - —4= . w € Ju\v, (3)
u v

where d,, denotes the degree of node u, du\v is the subset of du except v, and = > 0 is a parameter of
inverse temperature to give a penalty e™* for minimizing the size of FVS. We have the normalization
constant

def _ 4 qw u
2551)/5 =€ * + Hw/Eau\U <q2}/—)u + qzﬁ’%u) X 1 + Z i — ) (4)
to satisfy
0 u w
Qv t Quoso T Z Qo = 1. (5)
wedu\v

Note that there are d,, —1 links of w’ — w except v — wu, and that the multiplication term x1 of Eq. (5)
is hidden in the numerator of the right-hand side of Eq. (1). 1 —¢%_,, = ¢ ., + 2w €ow\u g, is
also a sum form. Thus, the right-hand sides of Eqs. (1)—(3) are product-sum forms.

The 0 state probability of u included in FVS is given by [11]

—T

@ 3 (6)
“ 145, ’
e~r+ {1 + Zweaz qﬁ]ﬁu-t,-q_%%u } Hani (qg—>u + q5—>u)

2.2 For the minimum vettex cover

In the cavity graph for estimating the minimum VC known as NP-hard [15], since at least one end-
node of each link should be covered, the following three exclusive states at node u are considered for
a link u — v, v € du [10].

Sate 0: w is uncoverd, when there are no uncovered nodes w € du\v.
Sate 1: w is coverd, when two or more nodes w € du\v are uncovered.

Sate xw: As joker state, u is sometimes covered and sometimes uncovered, when only one node
w € du\v is uncovered but other w’ € du\v,w are covered or joker states.

The corresponding probabilities are represented by the following MP equations [10].

0 - Hw’EBu\v( - qu_m) 7
Qy—v = vVC ’ ( )
Zu%v

- [1 - Hw’eau\v(l - qg}’au) - Zweau\v qgfﬁunwleau\vku o qgﬁ’ﬂu)]

1 —
Qy—y = ZVC ’
uUu—rv
 ycouw ™ ~v/e~*(the numerator of above equation) (8)
= VG ’
u—rv

e_mqg;ﬁuﬂw '€dul\w, w(]- - Q?U’—>u)

q*w _
- 9

uU—v Zng

dU7V1 e_xqg)ﬁunw’eau\v w |: dui\/l e—x(l - q'[ol)/*)u):|

= VO . w € du\v, (9)
u—rv
with the normalization constant
def _
2 S E e 1= (1= ) yeouno(l — 4] » (10)

487



to satisfy ¢_,, + ql_, + Zweau\v q:*, = 1. From this normalization condition and 1 — ¢, =
Goyy + > weouw Gussys the right-hand sides of Eqs. (7) and (9) are product-sum forms. The right-
hand sides of Egs. (8) may be not exactly the form. However, Eq. (7) is essential and other ancillary
Egs. (8) and (9) are not, since zV'S, in Eq. (10) is represented by only the 0 state’s probabilities.

The 1 state probability of u included in VC is given by [10]

ql déf e ” {]- - Hveau(l - QS—>u) - Zweau anunw’eau\w(l - q?v’—>u)}
“ e {1 — (1 —e")leou(l = q) )}

(11)

2.3 For more general cases
We consider a set 0, = {@u, Bu, Yu,- -+, Kus - - -, Wy} Of states in any order. The number |Q,| can
be different for each node u. In the case of minumum FVS, the states are o, = 0, 8, = u, and
Yy -+ -y Wy € Ou\v. In the case of minumum VC, the states are a,, = 0, and 7, . .., w, are jokers x of
w € du\v. B, = 1is an exception by q;_,, = 1 = (¢00 + X pcaui Tuse)-

Then, by an inspiration from [16], Egs. (1)—(4) or Egs. (7)(9)(10) are generalized as MP in product-
sum form. In the following example, we set that only one state a,, has a penalty term e~” to minimize
its probability.

—T

e
G (t+1) = T | 32 dheu® ]
u—v §€Sa,
1 w1
= 7Hw’€8u\v ‘ le_m Z qfu/—>u(t> ) (12)
Zu‘}’U(t) GESa
1 /
qz:v(t + 1) = 7Hw/€8u\v Z q’i}’%u(t) ) (13)
Zu—m(t) s'es
W 1 5"
Qu—sv (t + 1) = Hw’eau\v qu/—)u(t) ) (14)
ZU—”)(t) 5§ €S,
where Sy, ..., Skyy- 38w, C Qu, w' € Qu\v, and z,_,,(t) is defined to satisfy the normalization

condition », o gy, (t) = 1 at each time t. We emphasize the dependence of iteration time step
t > 0 in the representation of Eqgs. (12)-(14).

3. Numerical and theoretical analysises

3.1 Simulation results for fast convergence of MP

We numerically investigate the convergence of MP Egs. (1)—(3) or (7)—(9) for the minimum FVS or VC
problem. It is evaluated by the cosine similarity Sim(t) between the state probabilities at iteration
times ¢t — 1 and ¢,

N K K
. def Zuzl Ze:u—w EKAuEQu qe" (t - 1) X g™ (t)
Sim(t) = = = :
\/Zu:l Ze:u—w Zmueﬂu qgu (t - 1)2 X \/Zuzl Ze:u—w EmuEQu q’gu (t)Q

When Sim(T) approaches to 1, the state probabilities {¢5*(T)} converge around a time 7.
The following results are averaged over 100 samples from initial {¢5(0)} of uniform random num-

bers in the interval (0,1). We set the parameter of inverse temperature as x = 7. Note that the unit
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Fig. 1. Similarity between the state probabilities at iteration times ¢t — 1 and
t by simple MP for the minimum FVS in real networks distinguished by color
lines. Inset show the enlarged part to see the convergent curves.
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Fig. 2. Similarity between the state probabilities at iteration times ¢t — 1 and
t by simple MP for the minimum VC in real networks distinguished by color
lines. Inset show the enlarged part to see the convergent curves.

time consists of the updating by MP in order of random permutations of N nodes and d,, links to
avoid vibration behaviour as few as possible instead of synchronously simultaneous updating of all.
Figures 1 and 2 show the time evolutions of Sim(t) by MP for the minimum FVS and VC problems,
respectively, on real networks with thousands nodes and links as shown in Table I. Each colored curves
are quickly converged until only several iterations less than around ten. Moreover, the variance
indicated by vertical line is very small in 100 samples. Such small variance on each colored line means
that similar Sim(t) is obtained at each time ¢ from any initial value, because the time-course can
reach an equilibrium solution in the neighborhood of random initial value as discussed in the next
section. In other words, without almost depending on the topological difference, Sim(t) behaves
similarly even for the convergence to different equilibrium solutions which depend on initial values.
On the other hand, there are different shapes of curves for FVS and VC in Figs. 1 and 2. Depending
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Table I. Data source. Name of network, numbers N, M = 2ef Zi\rzl dy/2 of
nodes and links, diameter D as the maximum shortest path length between two
nodes, access destination. Polblogs — PGP are Scale-Free networks whose de-
gree distributions follow power-law, while Cost2666 and Janos-us-ca are planar
communication networks.

Name N M D | URL

Polblogs 1222 16714 8 | http://www-personal.umich.edu/~mejn/netdata/
AirTraffic | 1226 ~ 2408 17 | https://data.europa.eu/data/datasets
/12ec37d3-ada7-4d4c-84ef-£347b1d8dedf ?locale=fi
Hamster 1788 12476 14 | https://networkrepository.com/soc-hamsterster.php
Gnutella 6299 20776 9 | http://snap.stanford.edu/data/p2p-Gnutella08.html
LastFM 7624 278060 15 | http://snap.stanford.edu/data/feather-lastfm-social.html

Hepth 8638 24806 18 | http://snap.stanford.edu/data/ca-HepTh.html

PGP 10680 24316 24 | https://deim.urv.cat/~alexandre.arenas/data/welcome.htm
Cost266 37 56 8 | http://sndlib.zib.de/download /sndlib-networks-native.zip
Janos-us-ca | 39 61 10 | http://sndlib.zib.de/download/sndlib-networks-native.zip

Table II. Cosine similarities between {¢5*(7™*)} and {¢5=(0)} (1st column),
and between {¢5(T*)} and {5 (T*)} (2nd column). The results are averaged
over 100 samples.

(a) FVS
Polblog Airtraffic Hamster GNUtella LastFM Hepth PGP
{g5=(T*)} and {g5=(0)} 0.768 0.883 0.874 0.936 0.934 0.949 0.877
{¢5«(T*)} and {g5=(T*)} | 0.998 0.993 0.998 0.998 0.995 0.997  0.996
(b) VC
Polblog Airtraffic Hamster GNUtella LastFM Hepth PGP
{gE+(T*)} and {¢5(0)} 0.770 0.879 0.864 0.944 0.940 0.944  0.960
{¢5=(T*)} and {g5=(T*)} | 0.988 0.991 0.998 0.995 0.996 0.997 0.994

on data in Table I, these colored curves are also slightly different in each of Figs. 1 and 2. The tested
networks are Scale-Free (SF) commonly but with different total numbers N, M of nodes and links,
and the diameter D. Other topological properties may be different, however not only huge candidates
of topological measures can be considered such as clustering coefficient, average length of the shortest
paths, degree-degree correlations, modularity or motifs, and so on, but also it is unestimable which are
determinant in advance. The reasons of different shapes of curves are considered from the differences
of sum terms or of number of states with penalty in Eqgs. (1)—(3) and (7)—(9) and of some topological
properties, although the detail mechanism are unknown at the current stage. Note that these number
of products are same as d,, — 1 links at node wu.

In addition, the existing of equilibrium solution is investigated by random perturbation for Figs. 1
and 2. After obtaining an convergent {q*(T*)} from any {g%(0)} of uniform random numbers
in the interval (0,1), another {¢5=(0)} is set by adding uniform random numbers in the interval
(—e,¢e) to {¢5=(T™)}. From {¢5(0)}, the corresponding convergent {G*(7*)} is recalculated. Then,
we compute the cosine similarities between {¢f*(7*)} and {¢f=(0)}, and between {g¢f*(7*)} and
{@5=(T*)}. The increased similarities from first to second columns in Table II(a)(b) exhibit that, as
equilibrium solutions, same convergent values are almost reached from the neighborhood of them.
Here, we set a sufficient large iteration time T* = 100 and a small perturbation parameter ¢ = 0.4.
Note that we have also similar results of slightly larger similarities for ¢ = 0.2 as closer {¢5+(0)}
to {q5«(T*)}. For Figs. 1 and 2, it is intractable to more regorously analyze the stabilities even
under a special perturbation of Gaussian distribution, because the sizes of Jacobian matrix [10] are
too large in the linear approximations of Egs. (1)-(3) and (7)-(9) as nonlinear mappings around
equilibrium solutions whose number is unknown. In the case of FVS, some extensions are required
involving complex calculations with not only 0 states in the case of VC but also other u and w states,
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w € Ju\v, the analysis will be a further study. However, for Cost266 and Janos-us-ca with small sizes
in Table I, we calculate it in the case of VC which has only essential variables of 0 states. Under the
perturbation of Gaussian distribution in applying the derivation for VC [10], we confirm the stabilities
of equilibrium solutions by obtaining that the largest eigenvalues of the following Jacobian matrix
J are less than 1 for all 100 trials of random initial values after T* = 10, 100, and 1000 iterations,

respectively.

e e_wa’ u\v,w 1- 0/ T ’
df{ €ou\v, ( qw%u( ))} , for weau\%

= (2VC (T%))2

Ju—)v,w—>u -
u—v

Ju—svw—u’ def 0, otherwise for u' # u, v’ =wand w = v, or v’ = v and w ¢ Ju.

If an equilibrium solution (or very close solutions) is obtained by MP even from different initial
values, it may be difficult to distinguish the nodes included or excluded in FVS or VC by ambiguous
values of 0 < ¢2 or ¢l < 1. Thus, in practical point of view, decimation process [11] is usually
performed for finding the candidate of FVS or VC one by one (or the candidates of some nodes at
once for efficiency), in which the unit time consists of 7' > 1 rounds of updating by MP in order of
random permutations of N nodes and d, links. At each time by decimation process, the selected
node u with the highest ¢° or ¢! defined by Eq. (6) or (11) is removed as candidate of FVS or VC.
As the candidates, we can also select the highest top dozens of nodes at once. After removing the
selected nodes, T rounds of updating are performed again at next time. Such process is repeated until
satisfying the condition of no loop or covering one of end-nodes for each link. The obtained results
with decimation are labels 0/1 of nodes included/excluded in FVS or VC, they may differ form an
equilibrium solution with ambiguous values in (0,1) by simple MP without decimation.

Figures 3 and 4 show the time evolution of average frequency of selected nodes in the highest top
10 at time ¢t by MP with decimation over 100 samples of different random initial values. Commonly,
the frequency tends to increase as larger ¢, however there are slightly different shapes of curves with
different lengths of bars as the variances. For these differences, the reasons are also considered from
the differences of sum terms or of number of states with penalty in Egs. (1)—(3) and (7)—(9) and
of some topological properties. Here, the maximum frequency % means that all selected nodes
are completely overlapped, while the minimum frequency ﬁ means that selected nodes are non-
overlapped and appeared for only one sample. A value between the maximum and the minimum gives
the commonality of nodes selected with decimation over samples. In other words, it is corresponded
to the variety of intermediate stages until reaching a solution in ranging from unique to quite different
according to initial values.

In fact, as visualized examples in Fig. 5 from top to bottom, different sets of VC are found by
decimation process for 7' = 10 on real communication networks (see Table I). The candidate node is
chosen one by one at each time. Consequently, the solutions of VC depend on initial values of state
probabilities. Note that the feasible solution by MP with decimation [10] is nearly optimal [13], since
its size is almost half of that by a 2-approximation algorithm theoretically guaranteed in computer
science [17].

3.2 Linear theory for mesagge-passing in product-sum form
In this subsection, for MP Eqs. (12)—(14) in product-sum form without round and decimation process,
we study how far is the equilibrium solution from initial values in the logarithmic space of state
probabilities {g5}. Since Egs. (12)—(14) are generalizations of Eqgs. (1)—(3) or Egs. (7) and (9), the
same discussion is true for the case of minimum FVS [11] or VC [10]. The linear theory is applied by
a similar but slightly different way to learning of multilayer neural networks [1] (See Appendix A.1 for
the brief review). In advance, we should take care of that only the existence of solution is discussed
in a neighborhood of random initial values without taking into account dynamics of the trajectory to
it as similar to the case of learning of neural networks [1].

To eliminate the denominator z,_,, of partition function in the right-hand side of Eqs. (12)-(14),
we consider the logarithm of ratio ¢& ., (t +1)/¢¥% _,,(t + 1) in the left-hand side. Then, from the
right-hand side,
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’

1)
e 25,8, Qur—u(t)
def Z log 61, €Sk, Tw' —u

51/{ ) (15)
w’€du\v Z&;’ESwu qw’—)u(t)

is obtained as each element of K-dimensional vector b(¢). The number ¢ depends on link e : v — v
and state k, € Qy,\w,. There exist d, links emanated from node w, which has |2,| states. The total
number K of variables is Zi\’:l dy X (]| —1), where —1 is the reducing due to the denominator w.r.t
wy in each element of b(t). In the case of minimum FVS or VC, the states are 0, u or exception 1, and
w or xw, w € Ju\v, we have [Q,|-1=1+1+d, —1—1=d, or d, — 1 and therefore K = EUN:1 d?
or YN du(d, —1).

We also consider a (K + 2M)-dimensional vector
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def {logq2t(t+1),...,log g (t + 1),.

y(t)

,log qg™

...7logq€2M(t—0— 1),...,logq€2M(t+ 1),},

(t+1),

,Jog g (t + 1),

and a K x (K + 2M) block-diagonal matrix Q, whose submatrix is same as

(@)
—

def
Qe =

except the size (|Q,] — 1) x |Q,] for link e : u — v.
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Based on the above preparations, the logarithm of ratio of Egs. (12) or (13) and (14) becomes the
following systems of linear equations.

log g2t (t 4+ 1)

1

log ¢ (t + 1)

1

Q(er) : bi(t)
' O log g2 (t+ 1) :

: = | b0
O log g¥»(t +1) :

Q(eann) : b (t)

log ggy, (t+1)

€2 M

log qepy, (t+1)

€2M

We assume that directional links are properly ordered as e; : 1 — v' #£ 1,...,e:u — v,... e :
N — v"” # N with numbering nodes from 1 to N. Note that the £1 elements of Q. correspond
to +loggh(t + 1) and —logg¥+(t 4+ 1) as the state probability and the constraint of normalization,
respectively, for each link. As the matrix-vector form, we have

Qy(0) = b(0), (18)
Qy(o0) = b(0), (19)
where {gf+, (00)} means an equilibrium solution for MP Egs. (12)—(14). Note that the topological
network structure is embedded in @ whose block-diagonal sizes are allocated by |Q2,| — 1 (= d, or
d,, — 1: number of links at u in the case of the minimum FVS or VC) of the submatrix Q(e) for links
e:u—v,u=1,2,...,N, and its connecting neighbor nodes v € Ju.
By substituting Eq. (18) from Eq. (19), we have

QAy = b(c0) — b(0) % Ab, (20)

def

def (00) — y(0) is Ay, = logrs from introducing the change rate v+ =

where e-th element of Ay = y
g (00)/qe (1) and
log g5+ (00) = log g5 (1) + log rie.

Remember the definition of y(t) by Eq. (16).

When we consider a vector n(?) in the null space {n|On = 0,n > 0} of Q, Ay + n(? is also the
solution of Eq. (20) because of Q(Ay + n(?) = Ab. Since there is only one pair of +1 elements in
each row of Q, n{® is uniquely determined as n(? = {co,, ..., CoryevvyCorervsCorerrsConnryennsConnr bs
whose elements are divided by 2M blocks with any constants c. > 0. In other words, through
multiplying Q) of Eq. (17),

Ku s oCe K
(log g;™ + ce) — (log g + c.) = log <qe> = log (qiu) ,

ge™ X ece »

means that the adding of n{?® to Ay corresponds to any scalar multiples. However, they disappear
by the above division to eliminate z,_,, for each link e : u — v.

In taking into account stochastic variations of initial values {¢%(0)} generated uniformly at random
in the interval (0,1) for e € {e1,...,eap} and k,, € Qy, u € {1,2,..., N}, we discuss how high is the
change rate for an equilibrium solution of MP Egs. (12)—(14). Essentially, each element ¢+ (t) is a
probability variable in (0,1) at any time ¢ > 0, the amount of |g5*(c0) — ¢5+(0)| is small at most 1.
For the random initial values, ||Abl|; is averagely bounded as O(1), since the variance of logarithm
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of finite random variable becomes a constant (see Appendix A.2). Remember that Ab is defined
by Egs. (15) and (20). When € < ¢f+ < 1 is assumed for each link e : u — v and state K, € Q,,

5
c / 7 0 . . . . .
‘S‘g"'fe < ;6“65”“ q}“/f“i ; ‘SIS“TXlg is obtained in the right-hand side of Eq. (15). Thus, b.(0) have
wu 51/ €Swy, quﬁ—)u 0 wu

a finite variance, while b (00) is a constant on the assumption of an equilibrium solution.

Moreover, it is known that the generalized inverse matrix QF gives a solution of Eq. (20) with the
minimum Le-norm ||Ayl||z in many solutions for the underconstraint based on a landscape K x (K +
2M) matrix Q,

Ay = QTAb = QT (0QT) ' Ab, (21)

where QQT becomes a K x K block-diagonal matrix, whose each block is (|Q,] — 1) x (|]Qu] — 1)
submatrix as follows

2 1 ... 1
12 ... 1

(22)
11 ... 2

In general, for a block-diagonal matrix, the inverse matrix is obtained as

(=

= B! :
0 0

Bonr Bg_z\%[

B;l denotes the inverse of B; for 1 < i < 2M. In considering the order of (QQT)~! in Eq. (21), as

ke |2, — 1, the inverse of k x k submatrix of Eq. (22) is given by

-1

2 1 ... S P |
12 ... 1 T R |
11 ... 2 1 -1 ... k

From Eq. (21) and the above discussion, Ay is of order m at most even in the logarithmic

space whose element is Ay, def log(gk+(c0)/qk= (1)), because the submatrix of Eq. (22) is of order

Table III. Correspondence in linear theories for MP in product-sum form
and learning of neural network.

MP in product-sum form Learnig of neural network
K+2M > K p>n
log € < y(0). def logghi+(1) <0, e=1,..., K+2M —o0 < v(0); <oo, i=1,...,p
logarithmic change rate vector Ay difference vector Av
interactions with adjacent links Ab o b(c0) — b(0) error e & = Xv(0)
b-(0) defined by Eq. (15) v;(0) generated from a Gausian distribution
landscape K x (K + 2M) block-diagonal matrix Q landscape n x p matrix X
with submatrix Q. with row vector X of sample input
g5+ (0) is chosen uniformly at random Xsi = p(w; - ) is an iid variable
Ab= QAy e=XAv
Ay = QfTAb Av = XTe
{n@|on@ =0} {n@®)|Xn@® =0}
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ﬁ = ﬁ According to |Q,| = d, + 1 or d, for the minimum FVS or VC, the convergence of state

probability may be faster on link e : v — v emanated from node v with as higher degree d,,, although
it is not determined by only the probabilities on link e : © — v but depends on ones (especially at the
times 0 and oo) on adjacent links w’ — u with the complex cooperative or competitive interactions
embedded in Ab.

Thus, a solution {g5“(c0)} exists in a neighborhood of any random initial {¢5+(0)} with high
probability. Table III show the correspondence in linear theories for our MP in product-sum form
and learning of neural networks. Particularly, the following difference is remarkable. Once a network
is given, the matrix Q is fixed in the case of MP from initial values chosen uniformly at random.
However even if a neural network is given topologically, the matrix X is variational because of the
connection weights chosen from a Gaussian distribution in the case of learning of neural networks [1].

4. Conclusion

We study the fast concergence by MP generalized in product-sum form for finding an approximate
solution of combinatorial optimization problems such as the minimum FVS [11] or VC [10]. Actually,
the numerical results show the very fast convergence by MP until only several iterations less than
around ten even for large networks with thousands nodes and links. The key contribution is to
generalize the MP equations into a unified product-sum form. We emphasize that the MP is different
from BP [6] in sum-product or max-sum form [9] on a graphical model, rather its mathmatical
framework is related to that in learning of nueral networks [1]. As similar but slightly different way to
learning of nueral networks, a linear theory is applied, and it is derived as a reason of fast converegence

that the equilibrium solution of MP exist in a neighborhood of initial values in the logorithmic space.
In addition, the effect of degree distribution on the convergence may be important from the fact that
the logarithm of change rate Ay is order m, especially Q,, = d,, or d,, — 1 for the minimum
FVS or VC.

To more deeply understand the mechanism, there still remain several issues as follows. Even
belonging in a same form of product-sum, MP Egs. (1)—(3) and (7) and (9) are not completely same,
and produce slightly different behavior in Figs. 1 and 2 or in Figs. 3 and 4. Also, varieties of topological
network structure seem to affect them as shown by color lines in these Figures for SF networks of
even similar power-law degree distributions such as examples in Table I but with different N, M, and
D. Since there exist uncountably many network structures away from SF networks, it will requires
further studies to discover the reason of differences. As the first step, for a fixed network structure
e.g. randomized networks under a degree distribution by eliminating other topological properties, it
may be useful to discuss relations between the convergent behavior and typical sum-forms or number
of states with penalty in classifying what types of product-sum forms can be considered.

On the other hand, it will be expected that our discussion is applied to other MP equations for such
as the minimum dominating set [18] or community detection [19]. Instead of the cluster variation
method [6] for a loopy network, the extended development of MP by considering primitive cycles [19]
may be useful even with complex calculations to treat the independence more accurately for finding an
unique solution. However it is out from our approach, or we consider the existence of many solutions
positively, because they are feasible solutions near the optimal as proper approximations. In addition,
other development of elegant algorithms may be possible from information geometric perspective of
MP in product-sum form (see Appendix A.3).
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Appendix

A.1 Linear theory for learning of neural networks
As a citation, we briefly explain the linear theory for a neural network with one hidden layer [1] to
understand similarity and difference to our discussion. The scalar output is given by

p
F(@:0) =S vip(w; - x),
=1

where ¢(z) is a bunded activation function, w; - « is the inner product of input @ and fixed weight
w; as d-dimensional vectors in R, and v = (v1,...,v;,. .., vp)T is a p-dimensional variable vector in
RP learned as weight parameters between hidden and output layers. To simplify the discussion, each
element of w; between input and hidden layers is fixed and set by a random Gaussian distribuion in
the interval (—o0, +00) with a finite variance o2 /p.

By considering a sample set of n inputs alltogether, the input-output relation is represented by the
follwing systems of linear equatios.

J=Xv,

where we assume n < p, X is a landscape n X p matrix, whose element is
Xsi=plw;-xs), s=1,...,n;i=1,...,p.

Inputs 1, ..., &, in the training data are randomly and independently generated with bounded |z ;|
for each element. Therefore, X has stochastic variations.
Since the optimal parameters v* have to satisfy Xv* = f* given as the teacher signal vector, we
have
7 =X(w(0) + Av),

where Av & p* — v(0), and v(0) denotes any initial random vector. For the error vector e o

f*— Xwv(0), the above equation is rewritten as
e=XAuv, (A-1)
By using the generalized inverse matrix X1 % X7 (XXT)~! of X, we obtain
Av = XTe.

Note that, in general for fewer constraints than variables, the exising of some solutions is possible,
and that X gives one of them as the minimum Ly-norm ||e||» for || X XTe — e||» = 0.
The minimum norm solution of Eq. (A-1) is written as

Av=XT(xXT) e, (A-2)

and the generalized solutions are given by Av+n®) where n(® is an arbitrary null vector belonging
to the null space {n(®|Xn(® = 0}.

Moreover, since the elements of X X7 are sum of p iid variables, the inverse (X X7)~1! is of order
1/p. From Eq. (A-2) and ||vgl|s = 02 = O(1), we have

||Av||2=0<;§).

Thus, a solution vg + Aw exists in a (1/,/p)-neighborhood of any random initial vector vo with high
probability. Such discussion is extended to learning of multilayer neural networks with variable weight
parameters between layers [1].
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A.2 Bounded variance of logarithmic function
We show that, for a random variable x, the mean and variance of its logarithmic function are bounded.
Weset 0 < € <z < Xppar = 1/€ and € < 1. At least, in computer simulation with the calculation of
log z, 0 < € < x is necessary. For example, log € ~ —700 when € ~ 107320 in IEEE754 double-precision
floating-point number is applied.

The mean is defined as

1 Xrnaz
Bg = Xmm_g/g log xdx
1 X oz (10g(Xmaz) — 1
—= ~ = [:C logx — x]?'maz ~ max( Og( maf) )’

Xmaa: —€ Xmaa: —€

where we assume that the distribution of x is uniformly at random.
Similarly, the variance is defined as

1

Xmaz
2
ol = — log x — dx
q Xma:re/g ( g ,LLq)

1 Xmax 2 Xmax 1 Xmaz

The third and second terms of above right-hand side are

Xmaz —€ 2 2
— U — 2l X = —pu:.
Xmax _ g/"tq lu’q Mq /J’q

N

For a permutation integral, we set z = log x. Then, the first term is

log X
1 & Amas 1 log Xomax
- 22efdz = ———— [(22 — 22+ 2)6Z]10 S
Xmaa: — € log & Xmaac — € g

Q

1
~N~ 00 = 1 Xmaa: 2Xmaz'
X - z(log )

Therefore, we obtain the bounded constant value

2 1 2 2
e m(log){maz) Xmaz — Pg-
A.3 Information geometric perspective
In the (m — 1)-dimensional statistical manifold over the finite discrete set x = {1,2,...,z,...,m},
we consider a n-dimensional submanifold called exponential family Sg = {pr(z;0)|r € x,0° € R}
with parameter 8 = (6%,...,0% ... ,0™), n < m — 1. The probability distribution is represented in the
following normal form [20].

pe(;0) def exp {C(m) + ZFZ(QL')QZ — 1/1(9)} ,

¥(6) def log {Z exp (C(m) + Z Fz(x)(9’> } :
zEX i=1
Without loss of generality, we chose C(x) = log po(z) = 0, Fi(z) = logp;(x) —log po(z) = log p;i(x),
where po(x) is the uniform distribution, and p;(z) > 0 is a function on = € x for each i = 1,2,...,n.
Then, pg(x;0) is rewritten as

I pi(2)”
Za:éx 7 pi (m)eZ

Moreover, after easy calculations with logarithmic transformation, we obtain the system of linear

pe(r;0) =

equations [21]
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> (R(e) ~ Fm) o' = log 2D,

pt pe(m;0)

Fy(z) — Fi(m) = log <;i(<;>)> '

For each link u — v, ¢i», in Eq. (13) is corresponded to pg(z;0) in the mapping of n and
ky —1=|0u\v|, x ={1,...,2,...,m} and Q, = {au, .., Ku,-..,wy}, Fi(z) and the logarithm of
the numerator in the right-hand side of Egs. (12) (13) or (14), with 8 = (1,1,...,1). In other words,
the basis function F;(x) is arranged according to the updating by MP Egs. (12) (13) or (14) which
depends on the state prababilities on other adjecent links w — u, w € du\v.

Thus, from the above explanation, we can regard {¢%»,, (¢)} for each link e : u — v as an exponential
family. However, it is different from the information geometric explanation for the sum-product or
max-sum form [9] of MP called BP applied to a graphical model [6], in which the parameter 0 is
arranged according to the updating of MP [22].

On the other hand, another example of exponential family is Boltzman machine [20, 23] as one of
the well-known stochastic neural networks. Moreover, such as EM, independent component analysis,
and natural gradient method, elegant algorithms have been provided from information geometric

foundations [24].
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