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More Human-Like Gameplay by Blending Policies
From Supervised and Reinforcement Learning

Tatsuyoshi Ogawa

Abstract—Modeling human players’ behaviors in games is a key
challenge for making natural computer players, evaluating games,
and generating content. To achieve better human—computer inter-
action, researchers have tried various methods to create human-like
artificial intelligence. In chess and Go, supervised learning with
deep neural networks is known as one of the most effective ways to
predict human moves. However, for many other games (e.g., Shogi),
it is hard to collect a similar amount of game records, resulting
in poor move-matching accuracy of the supervised learning. We
propose a method to compensate for the weakness of the supervised
learning policy by Blending it with an AlphaZero-like reinforce-
ment learning policy. Experiments on Shogi showed that the Blend
method significantly improved the move-matching accuracy over
supervised learning models. Experiments on chess and Go with a
limited number of game records also showed similar results. The
Blend method was effective with both medium and large numbers of
games, particularly the medium case. We confirmed the robustness
of the Blend model to the parameter and discussed the mechanism
why the move-matching accuracy improves. In addition, we showed
that the Blend model performed better than existing work that tried
to improve the move-matching accuracy.

Index Terms—Board game, human-likeness, player modeling,
reinforcement learning, supervised learning.

1. INTRODUCTION

S PERFORMANCE of artificial intelligence (AI) has im-
proved, Al can be used for a variety of targets, such as
object detection in image processing and question answering in
natural language processing. As a target for Al, games have a
long history. This is mainly because games have clear rules, are
easy to measure players’ strength, and are inherently interesting.
Game Al has become strong enough to defeat human champions.
However, game Al is not yet a good enough human oppo-
nent, and cannot always teach humans the appropriate moves
and advice. This is because strong game Al’s value functions
(predicting win rates) and policies (predicting actions) are not
designed for humans. In fact, Mcllroy-Young et al. [1] have
shown that the policies of strong game Al are very different
from those of humans. This becomes problems when humans
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try to learn from or enjoy playing against game Als. In addition,
Yannakakis and Togelius [2] stated that human-like agents are
important when designing games and generating game content.
The reason is that nonhuman-like agents might give wrong
estimation (e.g., whether a level can be cleared). Human-likeness
is not only a problem for games, but for Al as a whole, in terms
of what kind of action is human-like and natural.

If we have human-like game Al, there are many possible

applications. In the following, we illustrate three examples.

1) Human players can enjoy playing against human-like
game Al as opponents that have various skill levels to
serve a wide range of players.

2) Human-like game Al is also useful as teacher Al. For
example, when recommending moves to human players,
it is preferable to suggest safer moves that are more likely
to lead to wins. In contrast, the best moves of strong game
Al may be risky and cause players to lose due to a single
mistake in the succeeding moves.

3) Human players sometimes solve problems, such as chess
mating problems to improve their game skills, and human-
like AI can be used to generate good problems. Human-
like AI policy can estimate the difficulty of the problems
more accurately than strong game Al

Human-like game Al can be created through various ap-

proaches, including machine learning. For example, Fujii
et al. [3] introduced biological constraints into reinforcement
learning to train human-like Al in Infinite Mario Bros. When
a certain amount of human game records are available, it is
straightforward to employ supervised learning to train game Al
that mimics human behaviors. One of the most representative
examples in recent years is Maia, human-like chess Al created
by Mcllroy-Young et al. [1]. Maia used neural networks with
similar structures to those used in AlphaZero [4], where the
former was trained using human game records while the latter
using self-play games. In their experiments, Maia had higher
move-matching accuracy with human moves than AlphaZero.
In addition, their experiments showed that incorporating the
neural networks into tree search decreased the move-matching
accuracy. Regarding the incorporation into tree search, Jacob
et al. [5] showed different results that tuning parameters appro-
priately could further improve the move-matching accuracy.

With a large number of game records, supervised learning can

imitate human moves to some extent. However, most games do
not have as many game records as Maia (chess). In such cases, it
is unclear whether supervised learning can predict human moves
well. In this study, we follow Maia’s procedure, but create each
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model with 1% the number of games to be learned and call it
Maia-S (S stands for the initial of “small data’). We also create
a model trained on a wide range of data, six times as many as
Maia-S, and call it Maia-S-Wide. Moreover, we propose Blend
model for chess, Go, and Shogi (Japanese chess-like game) that
blends Maia-like and AlphaZero-like game Al policies to create
more human-like game Al

This article is extended from a preliminary version studying
Shogi [6] by applying the Blend model to chess (Section IV) and
Go (Section V) to test the generalization ability. In addition, we
propose Maia-S-Wide in Section III and conduct experiments
on all three games, chess, Go, and Shogi (Section IV to VI).
We also compare the original Maia with the Blend model using
Maia in Section IV, compare kullback-leibler (KL)-regularized
search [5] with the Blend model using Maia-S-Wide in Sec-
tion V, and analyze the Blend model using Maia-S-Wide in detail
in Section VI.

The rest of this article is organized as follows. Section II
introduces related research. Section III proposes Maia-S, Maia-
S-Wide, and the Blend model. Sections IV-VI show the experi-
mental results of applying these proposed methods to the target
games, chess, Go, and Shogi. Finally, Section VII concludes this
article and discusses future research directions.

II. RELATED RESEARCH

In the field of games, researchers have tried to create game-
playing programs for various purposes. Roughly speaking, in the
early stages, more focus was put on creating strong programs.
As superhuman programs have been achieved in many games,
where the programs’ strategies or behaviors are sometimes very
different from those of human players, research on human-like
game-playing programs attracts more and more attention. The
following provides a brief review of research on creating game-
playing programs.

In the era when game-playing programs were still much
weaker than human players, mimicking human players was an
effective way to create strong programs. To create strong Go
programs, Coulom [7] proposed a new Bayesian technique for
supervised learning for training a model to predict the prob-
ability distribution of human players’ moves. He used strong
human players’ games to train the prediction model and then
combined the model into a Gao program based on Monte Carlo
tree search (MCTS). The Go program’s strength was greatly
improved. Similarly, some other researchers strengthened their
game Al by incorporating move prediction models [8] or evalu-
ation functions trained using human players’ games [9].

Reinforcement learning is another effective way to create
strong game-playing programs, with the advantage of requiring
no human game records. AlphaZero [4] is one of the most famous
reinforcement learning methods, which achieved superhuman
levels of play by learning from self-play games. AlphaZero used
a policy network to predict probabilities of moves and a value
network to predict win rates for given positions. The training data
of the networks came from self-play games played by a variant of
MCTS that incorporates the networks. AlphaZero beated world
champion game Al in chess, Go, and Shogi.
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Well-trained reinforcement learning programs can play clev-
erly, but the strategies or behaviors are sometimes not like
humans. With respect to human-likeness, Togelius et al. [10]
introduced the concept of “believability.” Believability refers to
the ability to make a character or bot seem as if it were controlled
by a human being. Various approaches have been proposed to
achieve human-like characteristics [3], [11], [12].

For chess, a program called Maia [1] was explicitly designed
to imitate human players’ moves. This chess Al used deep neural
networks for supervised learning. Human players were divided
into nine groups according to their ratings (numerical strength).
Each neural network corresponded to a rating range and was
trained using 12 million games from the players in the rating
range. Their results showed that moves in a rating range were
nearly best predicted by the neural network of the corresponding
rating range, where the move-matching accuracy was about
50% [1]. Mcllroy-Young et al. [1] claimed that using neural
networks alone obtained higher move-matching accuracy than
combining the neural networks into tree search as AlphaZero
did. However, Jacob et al. [5] showed that even with the same
training model as Maia, combining the model into search was
stronger and had higher move-matching accuracy if parameters
were adjusted properly.

As another approach to create human-like Al, Kinebuchi
and Ito [13] proposed to improve move-matching accuracy of
Shogi Al by considering the flow of preceding moves. Similar
to Maia, they also targeted players in a wide range of skill
levels. They represented the flow by combining a search-based
value function [9] using a transition probability function [8].
Linear combination was used and the weight was trained using
human moves. Their proposed method predicted human moves
significantly better than each function alone.

III. PROPOSED METHOD

In this study, we propose to combine two policies to create
a more human-like policy. The following explains our motiva-
tions. It is well-known that supervised learning requires a huge
amount of data; or if the amount is not high, the data should
have high quality. Previous studies used 12 million amateur
game records in chess [1], [5] or 73000 professional game
records in Go [5] to train a policy. However, in many games,
only a relatively small number of amateur game records are
available. In such cases, the policies obtained from supervised
learning are imperfect in terms of human-likeness. The reason
is that when there are not many similar positions, generalization
is insufficient, and high probabilities may be assigned to bad
moves that human players would not play. In Section VI-C, we
present concrete ratios of such positions. We aim to obtain more
human-like policies in such cases. If there are other policies
that can compensate for this imperfection, it is valuable to
incorporate such policies.

We use move-matching accuracy as a measure of human-
likeness.! For a given set of positions with humans’ moves,
move-matching accuracy of a model is the ratio that the model’s

!Other measures of human-likeness also exist. For example, we used likeli-
hood in addition to move-matching accuracy in our previous work [6]. Since the
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moves match the humans’ moves. In this study, models select
the move with the highest probability for a given position.

We model our problem using a finite Markov decision process
(S, A, T, R) with the following components.

1) State space S = {s1,..., 5|5/}

2) Action space A = {a1,..., a4}

3) Transition function T : S x A — S.

4) Reward function R : S x A — R.

Then, the conditional probability Pr(A =a|S = s) that a
player chooses action a given state s is called policy 7(als) :
SxA—[0,1].

We propose to blend two policies 71 and 75 to create a human-
like policy that takes advantage of each. The new policy Tpena
is calculated as follows:

P o = mi(als)® x 7r2(a|3)(1_") (1
and
PS a
Tlend (@]8) = —3——— )
ZL:‘l Ps,ai

where v € [0, 1] is used to represent the importance of 1. While
this formula blends the two policies as a weighted geometric
mean, it is possible to blend the two policies as a weighted
arithmetic mean like

P o =axm(als) + (1 —a) x ma(als) (3)
or a more general form from both (1) and (3) like
P.o = (axm(als)? + (1 —a) x ma(als)®)P. (4

In this article, we use formula (1) because preliminary exper-
iments showed that (1)’s move-matching accuracy was higher
than (3) and was about the same as (4).

In this study, we focus on two policies for Blend: one from
AlphaZero-like reinforcement learning and the other from Maia-
like supervised learning. AlphaZero-like policies are strong but
not human-like. Maia is basically human-like, but it can make
mistakes that humans rarely make. We consider that Blend can
prevent nonhuman-like mistakes and create policies that are
basically human-like.

Maia used 12 million game records to train each of their nine
policies, but many other games do not have such a large number
of game records. It still remains an issue how to create human-
like game Al when the number of game records is small. In this
study, we follow Maia’s procedure but create each policy with
1% of the number of games to be learned, which we call Maia-S.
With only this number of data, policies may not learn well. We
suspect that including more data, even from other rating ranges,
helps policies to learn better. Therefore, we create another policy
trained using game records from a wide rating range (e.g., 1100-
1999 in chess), which we call Maia-S-Wide.

By adjusting the «, i.e., the importance of 7, on a group
or individual basis, it is possible to create penq Suitable for
that group or individual. In (1), consider the case where 7 is a
Maia-like policy and 75 is an AlphaZero-like policy. We expect

general tendency of the two measures is similar, we present only move-matching
accuracy in this paper to make the results easier to understand.

a larger « fits players with lower ratings and a smaller « fits
players with higher ratings.

In the following sections, we will apply the Blend model to
chess, Go, and Shogi and create the necessary Maia-S and Maia-
S-Wide policies. We divide our analysis into two parts: common
fundamental analysis and specific analysis for each game. In the
fundamental analysis, we aim to answer the following research
questions.

1) How many differences are in move-matching accuracy

between Maia-S and Maia-S-Wide?

2) How much improvement does the move-matching accu-

racy of the Blend model have over each individual policy?

3) How does the move-matching accuracy change according

to players’ ratings?

4) How does the move-matching accuracy change for the

individual policies and the Blend models?

Although we use Maia-like supervised learning policies and
AlphaZero-like reinforcement learning policies in our Blend
models and experiments on chess, Go, and Shogi, we consider
that our approach is general and can be applied to other games
or even other tasks, explained as follows. For the supervised
learning part, policies can be trained as long as humans’ game-
play (behavioral) data (state and action pairs) are available. For
the reinforcement learning part, policies can be trained using
policy-based algorithms as long as the game (the task) can be
modeled as a Markov decision process. With these two kinds of
policies, we can blend them, aiming to create more human-like
policies.

IV. CHESS

We chose chess, Go, and Shogi as our targets, and this section
presents the analyses on chess. Chess is one of the most popular
games in the world. Every day, many players play chess (e.g.,
on online platforms), and the games are saved. Such plenty
of human data serves as a good testbed for studying human-
likeness. Moreover, the game records contain players’ ratings
(indicators of skill levels), which further enables the possibility
to investigate the tendencies of players at different skill levels.

In our Blend model for chess, we employed an existing
reinforcement learning policy [Leela Chess Zero’s (Lc0) policy
network] and trained our own supervised learning policies. For
the latter, we trained Mais-S (using 1% games of the original
Maia for each rating range) and Maia-S-Wide (using six times
as many games as each Maia-S policy but with a wider rating
range). Section I'V-A describes the data and model settings. In
Section IV-B, we then apply the Blend model to chess for basic
analysis: We compare Maia-S, Maia-S-Wide, and AlphaZero-
like policies with Blend model combining the policies. In the
individual analysis in Section IV-C, we compare the original
Maia with the Blend model using Maia.

A. Data and Model Settings

We used games played on Lichess for training Maia-S-
1100, Maia-S-1900, and Maia-S-Wide and for evaluating move-
matching accuracy in chess. Lichess is a popular chess platform
that adopts the Glicko-2 rating system (an extension of the well-
known Elo rating system) to evaluate players’ skill levels. On
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this platform, players can choose HyperBullet (30 s), Bullet (1
min), Blitz (3-8 min), Rapid (815 min), and Classical (longer).
The time shown in parentheses is the thinking time per player
per game, and when a player runs out of this time limit, he or
she loses the game immediately.

We employed Maia’s codes® to create our Maia-S-1100,
Maia-S-1900, and Maia-S-Wide policies. In our work, some
settings were the same as theirs but the others differed, explained
as follows. Settings that were the same as the original Maia were

1) we ignored Bullet and HyperBullet games since the move
quality was generally lower,

2) we discarded the first 10 plies to ignore frequent patterns
in the opening,

3) we discarded moves played when the remaining time was
less than 30 s to ensure better move quality,

4) we separated players into nine groups according to their
ratings, which were 1100-1199, 1200-1299,..., 1900—
1999, and

5) we collected game records for each rating range where
both players were in the same group.

Our Maia-S and Maia-S-Wide differed from the original Maia
mainly in the amount of training data, and the learning settings
were also adjusted accordingly. In more detail, Maia-S-1100 and
Maia-S-1900 used 120000 game records to train each policy,
which was 1% of Maia. Maia-S-Wide used 80000 game records
from each of the nine rating ranges, i.e., a total of 720 000 games.
The reason for using 80000 games instead of 120000 games
from each rating range was to have the same number of games
as in the experiments for Go and Shogi. The game records were
those played on Lichess in December 2019. In total, 90% of data
in each group were training data, 5% were validation data, and
the remaining 5% were test data for evaluation.’

The changes of learning settings were as follows.

1) For Maia-S, the total steps of training was 50000, i.e., 1/8

of Maia.

2) For Maia-S-Wide, the total steps of training were 100 000,
i.e., 1/4 of Maia. From preliminary experiments, we de-
termined that these numbers of steps were sufficient.

3) The scheduling of the learning rate defined in terms of the
number of steps also changed to fit the lower number of
steps.

More specifically, we let the scheduling be the same as Maia
in terms of the ratio of steps. The learning rate started at 0.1 and
was divided by 10 at 1/5, 1/2, and 9/10 of the total steps.

These Maia-S policies served as one of the two policies (say
1) in our Blend model. For the other policy 72, we employed an
AlphaZero-based program, Lc0.* More specifically, we used the
neural network’s policy and did not incorporate the network into
tree search. As (1) shows, the Blend model includes the param-
eter, a € [0, 1], that determines the influence of ;. The larger

2[Online]. Available: https://github.com/CSSLab/maia-chess

3In preliminary experiments, we ran several trials to train different Maia-S
models for each rating range using different separations of training data, valida-
tion data, and test data while keeping the same ratios of 90%, 5%, and 5%. The
results of the move-matching accuracy for these Maia-S models and the Blend
models were similar (explained in Appendix A). Therefore, in this article, we
present the results of a single trial for each model, which we consider to be
reliable enough.

4[Online]. Available: https://github.com/LeelaChessZero/IcO
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Fig. 1. Move-matching accuracy of Maia-S models, Lc0, and Blend models.

The 95% confidence interval of each data point (i.e., move-matching accuracy
for a rating range) is approximately +0.002, calculated based on the test data.

the value of «, the greater the influence of 7. We performed
preliminary experiments to find promising « settings using a
grid search with 0.01 increments. In the following sections,
each of the Blend model used a setting of a with the highest
move-matching accuracy in each rating range’s validation data.

B. Fundamental Analysis

In this section, we provide fundamental analyses of the ex-
perimental results. Fig. 1 shows the move-matching accuracy of
Maia-S-1100, Maia-S-1900, Maia-S-Wide, Lc0, and the Blend
models tested on the test data of all the nine rating groups 1100 to
1900. The x-axis represents ratings and the y-axis represents the
move-matching accuracy. The types of lines represent the types
of the models. Specifically, the chain lines represent supervised
learning policies, such as Maia-S and Maia-S-Wide, the dotted
line represents Lc0, and the solid lines represent their Blend
models. The colors of the lines represent the rating of the human
games used in the training data for the corresponding policy.
Specifically, yellow represents using the training data of rating
1100, blue represents using the training data of rating 1900, red
represents using the training data of rating 1100 to 1900, and
black was Lc0, which did not use human game records for its
training data.

From the move-matching accuracy of Maia-S-1100 (yellow
chain curve) and Maia-S-1900 (blue chain curve), we observed
that Maia-S followed the same tendency as Maia: each model
has the highest move-matching accuracy in a test rating range
that is close to the trained rating range.

Maia-S-Wide (the red chain curve) had higher move-matching
accuracy than Maia-S: 0.020 higher than Maia-S-1100 for the
rating 1100 data, and 0.009 higher than Maia-S-1900 for the rat-
ing 1900 data. Maia-S-Wide had about the same move-matching
accuracy regardless of the rating of the data. We considered such
improvement in accuracy to be contributed from the increase
amount of training data for supervised learning.


https://github.com/CSSLab/maia-chess
https://github.com/LeelaChessZero/lc0
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Fig. 2. Move-matching accuracy of Blend (Maia-S-Wide, Lc0) to the rating

1100 and 1900 data for different v using validation data.

The move-matching accuracy of LcO (the black dotted curve)
increased as the rating of the test data increased, though it was
not as high as Maia-S-Wide even for the rating 1900 data. The
results showed that LcO, which was trained without human game
records, played less human-like, especially for human players
with lower ratings.

The move-matching accuracy of the Blend (Maia-S-1100,
Lc0) model (the yellow solid curve) was 0.015 higher than
Maia-S-1100 with the best o of 0.69 for the rating 1100 data.
The move-matching accuracy of the Blend (Maia-S-1900, Lc0)
model (the blue solid curve) was 0.038 higher than Maia-S-1900
with the best a of 0.53 for the rating 1900 data. These results
showed that as the player’s rating increased, so did the effective-
ness of the Blend model. This was also the same tendency as in
Lc0. We considered this was because we were able to increase the
move-matching accuracy for the more difficult moves mentioned
earlier.

The move-matching accuracy of the Blend (Maia-S-Wide,
Lc0) model (the red solid curve) was 0.004 higher than Maia-
S-Wide with the best « of 0.85 for the rating 1100 data, and
was 0.034 higher than Maia-S-Wide with the best a of 0.56
for the rating 1900 data. As the same tendency using Maia-S,
although with a smaller increase in move-matching accuracy,
the effectiveness of the Blend model also increased as the
players’ rating increased. We considered this was also because
we were able to increase the move-matching accuracy for the
more difficult moves mentioned earlier.

We investigated the robustness of the Blend model to o, i.e.,
the influence of 7. We targeted the Blend (Maia-S-Wide, Lc0)
model, which had the highest move-matching accuracy over
the validation data in chess. Fig. 2 shows the move-matching
accuracy of the Blend (Maia-S-Wide, L.c0) model for the rating
1100 and 1900 data with different . The x-axis represents o and
the y-axis represents the move-matching accuracy. The colors
of the lines represent the players’ rating. Specifically, yellow
represents the validation data for the rating 1100 players, and
blue represents the validation data for the rating 1900 players.

Maia-1100 -+- Maia-1900
Blend Blend
(Maia-1100, Lc0) ~ (Maia-1900, Lc0)
e LcO
30.501
S
=}
(S}
[}
©
()]
£
§ 0.454
©
€
@
>
o
=
0.40
1100 1300 1500 1700 1900
Rating of player being predicted
Fig. 3.  Move-matching accuracy of Maia models, Lc0, and Blend models.

The 95% confidence interval of each data point (i.e., move-matching accuracy
for a rating range) is approximately +0.002, calculated based on the test data.

The dots represent the best « for the validation data. The best
« for the rating 1100 was higher than the rating 1900. Namely,
m1,1.e., Maia-S-Wide, should be weighted more than LcO when
predicting low-rated players’ moves compared to high-rated
players’.

Generally speaking, the appropriate o depends on the target
of imitation. When we want to imitate stronger players, the
reinforcement learning policy (Lc0) should be weighted higher
(i.e., smaller ). Regarding the robustness, even if o deviates
from the optimal value by 0.1, the move-matching accuracy only
drops about 0.001 to 0.002. Therefore, « is not a very sensitive
parameter, although it needs to be optimized depending on the
target data.

C. Effectiveness of the Blend Model on the Original Maia

In this section, we compare the original Maia policies with
the Blend models that used them. The original Maia learned
100 times more game records than Maia-S. Fig. 3 shows the
move-matching accuracy of Maia, Lc0, and the Blend model
tested on the test data of all the nine rating groups 1100 to 1900.
The x-axis represents ratings and the y-axis represents the move-
matching accuracy. The types of lines represent the types of the
models. Specifically, the dashed lines represent Maia, supervised
learning policies, and the dotted line represents LcO, and the
solid lines represent their Blend models. The colors of the lines
represent the rating of the human games used in the training
data for the corresponding policy. Specifically, yellow represents
using the training data of rating 1100, blue represents using the
training data of rating 1900, and black represents LcO, which
did not use human game records for its training data.

The move-matching accuracy of the Blend (Maia-1100, Lc0)
model (the yellow solid curve) was 0.002 higher than Maia-1100
with the best a of 0.91 for the rating 1100 data. The move-
matching accuracy of the Blend (Maia-1900, LcO) model (the
blue solid curve) was 0.011 higher than Maia-1900 with the
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best o of 0.68 for the rating 1900 data. Even for the original
Maia that already used a huge amount of game records to train
the policies, the Blend models were still able to improve the
move-matching accuracy, though the improvement was smaller
than Blend models using Maia-S compared to Maia-S. These
results showed that as the player’s rating increased, so did
the effectiveness of the Blend model. This was also the same
tendency as in LcO. We considered this was also because we
were able to improve the accuracy of matching moves that
were difficult even for models with 12 million game records
learned.

V. Go

This section presents the analyses on the game of Go. Go
is one of the most challenging games to play despite its simple
rules. The complexity of Go is higher than that of chess, and one
key point to creating clever game Al is the evaluations of board
positions. The game has been actively studied for a long time
for various purposes, such as creating strong game Al [4], [7],
solving smaller boards [14], and teaching human players [15],
[16].

In our Blend model for Go, we employed an existing rein-
forcement learning policy (KataGo’ policy network) and trained
our own supervised learning policies. For the latter, we trained
Mais-S using 120000 games (the same number of games as
Maia-S in chess) and Maia-S-Wide using 720000 games (siox
times as many games as each Maia-S policy but with a wider
rank range). Section V-A describes the data and model settings.
In Section V-B, we then apply the Blend model to Go for basic
analysis: We compare Maia-S, Maia-S-Wide, and AlphaZero-
like policies with Blend model combining the policies. In the
individual analysis in Section V-C, we compare our Blend model
with KL-regularized search, where both methods try to solve
the problem that Maia policies sometimes make mistakes even
amateurs do not make.

A. Data and Model Settings

We used games played on Fox Go’ for training Maia-S and
Maia-S-Wide in Go and for evaluating move-matching accuracy.
Fox Go is a popular Go platform employed a common ranking
system to evaluate player’s skill levels from beginners (such as
18-kyu or 18 k) to experts (such as 9-dan or 9 d).® The board
size of 19 x 19 is the most popular, and players can choose the
thinking time settings of 20 min 60 s, 5 min 30 s, and 1 min
20 s. In Fox Go, 20 min 60 s means a main time of 20 min
and three times of 60-s byo-yomi. In this rule, each player is
first given 20 min to play, and once the 20 min are used up, the
player must play each move in 60 s; if the player goes over 60 s
three times, the player loses. The same applies to other thinking
time.

3[Online]. Available: https://github.com/featurecat/go-dataset

The level of players are defined using kyu and dan ranks. Beginners start
from 18-kyu (18 k) on Fox Go, and the best kyu grade is 1-kyu (1 k). The next
grade to 1-kyu is 1-dan (1 d), and very strong players may receive 7-9 dan.
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We employed Leela Zero’s codes’ to create our supervised
learning model, Maia-S and Maia-S-Wide policies. We sepa-
rated players into twelve groups according to their rank, which
were, 6k, 5k,...,2k, 1k, 1d,2d,..., 8d, and 9 d. We collected
game records for each rank where both players were in the
same group. We removed potentially defective game records
that contained two continuous moves from the same player or
starting from the second player, where a possible reason was
that the pass moves were not saved.

The following explains the details of the training data for
Maia-S and Maia-S-Wide. We trained Maia-S-3 k and Maia-
S-6 d using 120000 games of 3 k players and 6 d players,
respectively. For Maia-S-Wide, we used 80000 game records
from each of the ranks between 3 k and 6 d, which contained a
total of 720000 games. The reason for the number of games per
rank was to keep the total number consistent for both chess and
Shogi. In each group, 90% of the game records were the training
data, 5% were the validation data, and 5% were the test data.
From the validation and test data, we randomly sampled 50 000
positions for each set.

The learning settings for Maia-S and Maia-S-Wide were as
follows. For Maia-S, the total steps of training were 120000
steps. For Maia-S-Wide, the total steps of training were 520 000
steps. We determined these numbers of steps by checking the
validation loss trend in our preliminary experiments. Regarding
the structure of the neural network based on ResNet [17], the
number of residual blocks was 6 and the number of filters was
128. All other settings are defaults.

These Maia-S policies served as one of the two policies (say
1) in our Blend model. For the other policy 72, we employed an
AlphaZero-based program, KataGo.® Similar to the experiments
on chess in Section IV, we used the policy of KataGo’s neural
network and tuned the parameter « for the Blend model using
each rank’s validation data.

B. Fundamental Analysis

In this section, we provide fundamental analyses of the ex-
perimental results. Fig. 4 shows the move-matching accuracy of
Maia-S-3 k, Maia-S-6 d, Maia-S-Wide, KataGo, and the Blend
models tested on the test data of all the 15 rank groups 6 k to
9 d. The x-axis represents rank and the y-axis represents the
move-matching accuracy. The types of lines represent the types
of the models. Specifically, the chain lines represent supervised
learning policies, such as Maia-S and Maia-S-Wide, the dotted
line represents KataGo, and the solid lines represent their Blend
models. The colors of the lines represent the rank of the human
games used in the training data for the corresponding policy.
Specifically, yellow represents using the training data for 3 k
players, blue represents using the training data for 6 d players,
red represents using the training data for 3 k to 6 d players, and

7[Online]. Available: https:/github.com/leela-zero/leela-zero, which is an
AlphaZero-like implementation but also provides codes for supervised learning.

8The main reason for sampling 50 000 positions instead of using the whole 5%
of the game records was to reduce the experiment time as one of the compared
approaches, KL-regularized search, was time-consuming (for comparison, other
approaches were based on the outputs of neural networks).

9[Online]. Available: https://github.com/lightvector/KataGo


https://github.com/featurecat/go-dataset
https://github.com/leela-zero/leela-zero
https://github.com/lightvector/KataGo
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Fig. 4. Move-matching accuracy of Maia-S models, KataGo, and the Blend
models. The 95% confidence interval of each data point (i.e., move-matching
accuracy for a rank) is approximately +0.004, calculated based on the test data.

black represents KataGo, which did not use human game records
for its training data.

From the move-matching accuracy of Maia-S-3 k (yellow
chain curve) and Maia-S-6 d (blue chain curve), we observed
that Maia-S followed the same tendency as Maia in chess: each
model has the highest move-matching accuracy in a test rank
that is close to the trained rank.

Maia-S-Wide (the red chain curve) had about the same move-
matching accuracy as Maia-S: 0.007 higher than Maia-S-3 k
for the 3 k data but 0.002 lower than Maia-S-6 d for the 6 d
data. Maia-S-Wide had about the same move-matching accuracy
regardless of the ranks that were covered by the training data. We
considered such improvement in accuracy to be contributed from
the increase amount of training data for supervised learning.

The move-matching accuracy of KataGo (the black dotted
curve) increased as the rank of the test data increased, though it
was not as high as Maia-S-6 d even for the 6 d data. The results
showed that KataGo, which was trained without human game
records, played less human-like, especially for human players
with lower ranks.

The move-matching accuracy of the Blend (Maia-S-3 k,
KataGo) model (the yellow solid curve) was 0.020 higher than
Maia-S-3 k with the best a of 0.78 for the 3 k data. The
move-matching accuracy of the Blend (Maia-S-6 d, KataGo)
model (the blue solid curve) was 0.057 higher than Maia-S-6 d
with the best a of 0.58 for the 6 d data. These results showed
that as the player’s rank increased, so did the effectiveness of the
Blend model. This was also the same tendency as in KataGo.
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Fig.5. Move-matching accuracy of Blend (Maia-S-Wide, KataGo) to 3 k and

6 d data for different o using validation data.

We considered this was because we were able to increase the
move-matching accuracy for the more difficult moves mentioned
earlier.

The move-matching accuracy of the Blend (Maia-S-Wide,
KataGo) model (the red solid curve) was 0.009 higher than Maia-
S-Wide with the best v of 0.85 for the 3 k data, and was 0.060
higher than Maia-S-Wide with the best « of 0.54 for the 6 d
data. The tendency was the same, but stronger when Maia-S was
used: the effectiveness of the Blend model also increased as the
players’ rank increased. We considered this was also because we
were able to increase the move-matching accuracy for the more
difficult moves mentioned earlier.

We investigated the robustness of the Blend model to «,
i.e., the influence of 7;. We targeted the Blend (Maia-S-Wide,
KataGo) model, which had the highest move-matching accuracy
over the validation data in Go. Fig. 5 shows the move-matching
accuracy of the Blend (Maia-S-Wide, KataGo) model for 3 k
and 6 d data with different «. The x-axis represents « and the
y-axis represents the move-matching accuracy. The colors of the
lines represent the players’ rank. Specifically, yellow represents
the validation data for 3 k players (low-rank players), and blue
represents the validation data for 6 d players (high-rank players).
The dots represent the best « for the validation data. The best
« for 3 k was higher than 6 d. Namely, 71, i.e., Maia-S-Wide,
should be weighted more than KataGo when predicting low-rank
players’ moves compared to high-rank players’.

Generally speaking, the appropriate o depends on the target
of imitation. When we want to imitate stronger players, the
reinforcement learning policy (KataGo) should be weighted
higher (i.e., smaller «). Regarding the robustness, even if «
deviates from the optimal value by 0.1, the move-matching
accuracy only drops about 0.001 to 0.002. Therefore, « is not
a very sensitive parameter, although it needs to be optimized
depending on the target data.
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Fig. 6. Move-matching accuracy of Maia-S-Wide model, KataGo, Blend

model, and KL-regularized search. The 95% confidence interval of each data
point (i.e., move-matching accuracy for a rank) is approximately +0.004,
calculated based on the test data.

C. Comparison With KL-Regularized Search

In addition to our Blend model, the KL-regularized search [5]
is another approach aiming to improve Maia’s move-matching
accuracy to human players. Our Blend model combines two poli-
cies from different neural networks, while the KL-regularized
search incorporates neural networks into tree search. The KL-
regularized search has one parameter, cpqc;. AS Cpyct approaches
00, the policy after search gets closer to the policy from the neural
network; as ¢, approaches 0, the policy after search becomes
greedy and always selects the move leading to the highest value
estimated by the neural network. We conducted preliminary
experiments on c,.; with settings of 0.5, 1, 2, 5, 10, and oo.
For each rank, KL-regularized search used the ¢, with the
highest move-matching accuracy. To reduce computation time,
we measured move-matching accuracy only for 6k, 3k,3d, 6d,
and 9 d.

In the following, we compare our Blend model with the KL-
regularized search, where both used the Maia-S-Wide neural
network. Fig. 6 shows the move-matching accuracy of Maia-
S-Wide, KataGo, the Blend model, and KL-regularized search
tested on the test data of 6 k to 9 d. The x-axis represents rank and
the y-axis represents the move-matching accuracy. The types of
lines represent the types of the models. Specifically, the chain
line represents Maia-S-Wide policy, the dotted line represents
KataGo, the solid line represents their Blend models, and the
dashed line represents KL-regularized search using the Maia-
S-Wide network. The colors of the lines represent the rank of
the human games used in the training data for the corresponding
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policy. Specifically, red represents using the training data for 3 k
to 6 d players, and black represents KataGo, which did not use
human game records for its training data.

The move-matching accuracy of KL-regularized search (the
red dashed curve) was the same as Maia-S-Wide (i.e., Cpyer =
oo) for the 3 k data and was 0.008 higher than Maia-S-Wide
with the best ¢pyc¢ 0f 1 for the 6 d data. Compared to our Blend
model (the red solid curve), the improvement over Maia-S-Wide
was limited. The differences between the Blend model and
the KL-regularized search were especially significant for high-
ranked players. We considered the results reasonable, explained
as follows. Since Maia-S-Wide was trained on amateur game
records (relatively poor-quality data), difficult moves that were
seldomly played in those games were still hardly selected even
with search. In contrast, these difficult moves may be selected
in our Blend model owing to KataGo’s policy.

VI. SHOGI

This section presents the analyses on Shogi. Shogi is a
Japanese chess-like game. The main difference between Shogi
and chess is allowing captured pieces to be returned to the board
by the capturing player, because of this rule, the pieces involved
in the games are never reduced, making the endgames remain
complex. Shogi has been actively investigated in the research
field of games for a long time [18], which is also one of the three
targets of AlphaZero [4].

In our Blend model for Shogi, we employed an existing
reinforcement learning policy (DLshogi’s policy network) and
trained our own supervised learning policies. For the latter, we
trained Mais-S (using 1% games of the original Maia for each
rating range) and Maia-S-Wide (using six times as many games
as each Maia-S policy but with a wider rating range). Section
VI-A describes the data and model settings. In Section VI-B,
we then apply the Blend model to Shogi for basic analysis:
we compare Maia-S, Maia-S-Wide, and AlphaZero-like policies
with Blend model combining the policies. In the individual
analysis in Section VI-C, we investigate the mechanism why
the Blend modes can better predict human moves.

A. Data and Model Settings

Shogi-Quest is a popular Shogi platform that adopts the Elo
rating system to evaluate players’ skill levels. On this platform,
players can choose 2, 5, or 10-min games. These minutes are
the thinking time per player, and when a player runs out of this
time limit, he or she loses the game immediately.

To create Maia-S and Maia-S-Wide in Shogi, we collected
10-min games and did some filtering on the game records, similar
to Maia in chess. The three conditions are explained as follows.

1) Weeliminated games where players lost due to running out
of the time. The reason for this was that there may be noisy
behaviors specific to be losing the game by out-of-time,
such as moving the piece that was easiest to operate.

2) We eliminated games with a player rating difference of
50 or more. The reason for this was that rating difference
could adversely affect the learning of the value function
as well as the policy function, as the stronger player may
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win from an extremely disadvantageous situation, making
the data noisy.

3) We used the positions in which the number of moves was

after the 50th move.

The reason for excluding the early positions was that there
are many similar positions in the early stages of the game, and
having many similar data may harm the learning process.

We obtained 760000 games that satisfied all the three condi-
tions. We further divided the games into six groups so that each
group has the same number of games. In more detail, for each
game, we calculated the average rating of the two players. We
then sorted all games according to the average ratings. The 1/6
of games with the lowest ratings became Group 1, the next 1/6
became Group 2, and so on. The rating range for each group was
as follows.

1) Group 1: R1433-R1591.

2) Group 2: R1592-R1655.

3) Group 3: R1656-R1708.

4) Group 4: R1709-R1768.

5) Group 5: R1769-R1855.

6) Group 6: R1856-R2140.

As a result, we used about 120000 games for training each
Maia-S-1 and Maia-S-6. This is about 1% the number of games
compared to Maia’s 12 million. For Maia-S-Wide, we used all
game records. In total, 90% of data in each group were training
data, 5% were validation data, and the remaining 5% were
test data for evaluation. We performed multitask supervised
learning, such as Maia, in which the policy and value were
simultaneously trained using a single network. We referred
to the python-dlshogi2 library'® for the network structure and
learning options. The major difference from the library was
that we included past positions in the network’s input instead
of only inputting the current position. This is because in Maia’s
study, move-matching accuracy was significantly improved after
including the recent history of 12 plies. In our preliminary
experiment, a model that included the last 12 positions improved
move-matching accuracy by 0.012 compared to a model based
only on the current positions. Thus, we adopted the model that
includes the last 12 positions. We performed ten epochs of
training for each group. This is because we observed that the
loss often converged at around ten epochs.

These Maia-S policies served as one of the two policies (say
m1) in our Blend model. For the other policy 7o, we employed
an AlphaZero-based program, DLshogi.!! Similar to the exper-
iments on chess in Section IV, we used the policy of DLshogi’s
neural network and tuned the parameter « for the Blend model
using each group’s validation data.

B. Fundamental Analysis

In this section, we provide fundamental analyses of the ex-
perimental results. Fig. 7 shows the move-matching accuracy
of Maia-S-1, Maia-S-6, Maia-S-Wide, DLshogi, and the Blend

10[Online]. Available: https://github.com/Tadao Yamaoka/python-dlshogi2
"[Online]. Available: https:/github.com/TadaoYamaoka/DeepLearning
Shogi
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Fig. 7. Move-matching accuracy of Maia-S models, DLshogi, and Blend

models. The 95% confidence interval of each data point (i.e., move-matching
accuracy for a group) is approximately +0.002, calculated based on the test data.

models tested on the test data of all the six groups. The x-axis
represents rating group and the y-axis represents the move-
matching accuracy. The types of lines represent the types of
the models. Specifically, the chain lines represent supervised
learning policies, such as Maia-S and Maia-S-Wide, the dotted
line represents DLshogi, and the solid lines represent their Blend
models. The colors of the lines represent the group of the human
games used in the training data for the corresponding policy.
Specifically, yellow represents using the training data for group
1 players (low-rated players), blue represents using the training
data for group 6 players (high-rated players), red represents
using the training data for group 1 to 6, and black represents
DLshogi, which did not use human game records for its training
data.

From the move-matching accuracy of Maia-S-1 (yellow chain
curve) and Maia-S-6 (blue chain curve), we observed that Maia-
S followed the same tendency as Maia in chess: each model has
the highest move-matching accuracy in a test group that is close
to the trained group.

Maia-S-Wide (the red chain curve) had higher move-matching
accuracy than Maia-S: 0.050 higher than Maia-S-1 for group 1
data, and 0.051 higher than Maia-S-6 for group 6 data. Maia-S-
Wide had about the same move-matching accuracy regardless
of the ratings that were covered by the training data. We consid-
ered such improvement in accuracy to be contributed from the
increase amount of training data for supervised learning.

The move-matching accuracy of DLshogi (the black dotted
curve) increased as the rating of the test data increases, and it
was higher than the move-matching accuracy of Maia-S-Wide
for group 6 data. The results showed that DLShogi, which was
trained without human game records, played less human-like,
especially for human players with lower ratings.


https://github.com/TadaoYamaoka/python-dlshogi2
https://github.com/TadaoYamaoka/DeepLearningShogi
https://github.com/TadaoYamaoka/DeepLearningShogi
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Fig. 8. Move-matching accuracy of Blend (Maia-S-Wide, DLshogi) to group

1 and group 6 data for different o using validation data.

The move-matching accuracy of the Blend (Maia-S-1, DL-
shogi) model (the yellow solid curve) was 0.029 higher than
Maia-S-1 with the best o of 0.64 for group 1 data. The
move-matching accuracy of the Blend (Maia-S-6, DLshogi)
model (the blue solid curve) was 0.052 higher than Maia-S-6
with the best « of 0.48 for group 6 data. These results showed
that as the player’s rating increased, so did the effectiveness of
the Blend model. This was also the same tendency as in DLshogi.
We considered this was because we were able to increase the
move-matching accuracy for the more difficult moves mentioned
earlier.

The move-matching accuracy of the Blend (Maia-S-Wide,
DLshogi) model (the red solid curve) was 0.003 higher than
Maia-S-Wide with the best o of 0.89 for group 1 data, and was
0.020 higher than Maia-S-Wide with the best a of 0.63 for group
6. As the same tendency using Maia-S, although with a smaller
increase in move-matching accuracy, the effectiveness of the
Blend model also increased as the players’ rating increased. We
considered this was also because we were able to increase the
move-matching accuracy for the more difficult moves mentioned
earlier.

We investigated the robustness of the Blend model to a,
i.e., the influence of ;. We targeted the Blend (Maia-S-Wide,
DLshogi) model, which had the highest move-matching ac-
curacy over the validation data in Shogi. Fig. 8 shows the
move-matching accuracy of the Blend (Maia-S-Wide, DLshogi)
model for group 1 and group 6 data with different a. The
x-axis represents o and the y-axis represents the move-matching
accuracy. The colors of the lines represent the players’ group,
i.e., the players’ rating. Specifically, yellow represents the val-
idation data for group 1 players (low-rated players), and blue
represents the validation data for group 6 players (high-rated
players). The dots represent the best « for the validation data.
The best « for Group 1 was higher than Group 6. Namely, 7,
i.e., Maia-S-Wide, should be weighted more than DLshogi when
predicting low-rated players’ moves compared to high-rated
players’.

IEEE TRANSACTIONS ON GAMES, VOL. 16, NO. 4, DECEMBER 2024

All sampled positions
n=8926

Maia-S-Wide=Human
56.2%

Blend=Human
58.4%

Fig.9.  Venndiagram of Maia-S-Wide and the Blend model’s prediction results
of the all experimented positions.

Generally speaking, the appropriate o depends on the target
of imitation. When we want to imitate stronger players, the
reinforcement learning policy (DLshogi) should be weighted
higher (i.e., smaller «). Regarding the robustness, even if «
deviates from the optimal value by 0.1, the move-matching
accuracy only drops about 0.001 to 0.002. Therefore, « is not
a very sensitive parameter, although it needs to be optimized
depending on the target data.

C. Analysis of Mechanisms of Blend Model

We investigate the mechanism why the Blend model improves
move-matching accuracy. We used test data from Group 6 in
Section VI-A, which had the highest move-matching accuracy
and better blend effects. For our verification experiments, we
randomly sampled approximately 9000 positions where the final
wins/losses were unknown.'?

Fig. 9 shows the Venn diagram of the prediction results of all
the experimented positions (n = 8926). The chain-line circle on
the left contains positions that Maia-S-Wide’s moves matched
humans’, which was 56.2% of the experiments positions. The
solid-line circle on the right contains positions that the Blend
model’s moves matched humans’, which was 58.4% of the
experiments positions. In these positions, the Blend model im-
proved move-matching accuracy by 2.2% (58.4% minus 56.2%).
The amount of improvement matched the results in Fig. 7.

We further looked into these positions and the moves of Maia-
S-Wide and Blend. Among moves that Maia-S-Wide predicted
to play, we observed some bad moves that human players could
easily avoid after a bit of searching (thinking). We assumed that
the main reason for the improved move-matching accuracy of

12The judgment was based on YaneuraOu + Suisho with 100000 search nodes,
the same setting as described in Appendix B.
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Fig. 10. Venn diagram of Maia-S-Wide and the Blend model’s prediction
results of the experimented positions with Lossyaia > 500.

the Blend model was the ability to eliminate these bad moves.
In other words, even if the Maia-S-Wide policy assigns the
highest probability to such a bad move, if the AlphaZero-like
DLshogi policy evaluates the move with a low probabiilty, the
Blend model will also assign a low probability according to (1)
and choose another move. We hypothesized that move-matching
accuracy for the Blend model would be improved in this way.

To verify our assumption, we defined the loss of a move and
used it as an indicator to determine whether a move is bad or not.
The detailed definition of loss is explained in Appendix B. The
minimum value of a loss is 0. The larger the loss, the worse the
move generally is. The average loss of Group 6 human players’
moves was about 300. In this work, we used a threshold of 500
to indicate bad moves.

In the following, we focus on positions that Maia-S-Wide
made bad moves, i.e., LosSyaia > 500. Fig. 10 shows the Venn
diagram of the prediction results of the experimented positions
with LosSyaia > 500 (n = 1466). Similar to Fig. 9, the chain-
line and solid-line circles contain positions that Maia-S-Wide’s
and Blend’s moves matched humans’, respectively. The 1466
positions that Maia-S-Wide played bad moves were only 1/6
of the sampled positions. However, in these positions, the Blend
model improved move-matching accuracy by 1.5% (6.8% minus
5.3%), which accounts for the majority of the 2.2% improvement
shown in Fig. 9.

From these results, we confirmed that avoiding Maia-S-
Wide’s bad moves contributed significantly to the Blend model’s
improvement in the move-matching accuracy.

VII. CONCLUSION

Modeling human players’ behaviors in games is a key chal-
lenge for making natural computer players, evaluating games,
and generating content. Researchers have tried various methods
to create human-like Al. For chess, a supervised learning ap-
proach called Maia is known as one of the most successful ways.
Maia employed a huge amount of training data (human game
records) and achieved high move-matching accuracy without
game tree search. For many games, however, it is hard to collect
a similar amount of game records as in the case of chess.

Our main contribution in this study was to propose a com-
bination of supervised and reinforcement learning policies to

compensate for the weakness of each other—supervised learn-
ing models, especially when using small- or medium-scale
training data, sometimes play bad moves, and reinforcement
learning models’ moves sometimes are not human-like. More
specifically, the proposed model, Blend, combined Maia-like
supervised learning policies and AlphaZero-like reinforcement
learning policy, and succeeded in significantly improving the
move-matching accuracy in chess, Go, and Shogi.

For Maia-like supervised learning policies, we created Maia-
S following Maia’s procedure but using only 1% of the game
records. Our experiments showed that the Blend model improved
the move-matching accuracy by 0.003-0.029 for intermediate
players and 0.020-0.060 for advanced players. In more detail,
the move-matching accuracy of the Blend model was 0.471 for
chess intermediate players (rating 1100-1199), 0.507 for chess
advanced players (rating 1900-1999), 0.510 for Go interme-
diate players (rank 3 k), 0.534 for Go advanced players (rank
6 d), 0.569 for Shogi intermediate players (rating 1433-1591),
and 0.585 for Shogi advanced players (rating 1856-2140). The
experiments also showed that the Blend model was robust to
the parameter « € [0,1] — even when « deviated 0.1 from
the best setting, the move-matching accuracy decreased only
0.001-0.002.

In addition, using Shogi as an example, we analyzed why the
Blend model worked well compared to Maia-like supervised
learning policies. We confirmed that blending helped prevent
mistakes that humans very rarely make, but supervised learning
does.

Some other worth-mentioning contributions are presented as
follows.

1) The Blend model helped improve the move-matching ac-
curacy over the original Maia trained using a huge amount
of data. Our experiments in chess showed improvements
of 0.002-0.011.

2) The Blend model had higher move-matching accuracy
than KL-regularized search, one of the improvement meth-
ods of Maia. Our experiments in Go showed that the
Blend model’s move-matching accuracy was 0.004—0.105
higher.

3) Among Maia-like policies, we showed that Maia-S-Wide,
trained using six times as many games as Maia-S that
contained a wider range of strength, had higher move-
matching accuracy than Maia-S.

Regarding future research, we consider several directions.
First, we plan to improve the Blend method to make it match
more humans’ moves. One possible way is to blend three or more
policies, e.g., blending Maia-S, Maia-S-Wide, and AlphaZero-
like policies. Another possible way is to look into the positions
and moves that the Blend method cannot predict well, analyze
the features of these positions or moves, and then come up with
other methods to resolve the mismatches.

Second, we plan to apply the Blend method to other tasks.
The concept of Blend is general and can be applied to one-player
games, imperfect information games, real-time games, or even
nongame tasks as long as supervised and reinforcement learning
policies (probability distribution of actions) are available. To
obtain supervised learning policies, one needs to prepare some
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Fig. 11. Move-matching accuracy of Maia-S-1100, Maia-S-Wide, and their
Blend models on rating 1100 data for each trial.

training data. In the case of board games, at least a few thousand
games may be required according to our experience. To obtain
reinforcement learning policies, one needs to model the task as
Markov decision processes.

Finally, it should be mentioned that although our paper aimed
at obtaining human-like policy, we only evaluated its move-
matching accuracy. It remains for future work to determine how
human players can actually recognize the proposed method as
human-like and whether the proposed method reaches the same
skill level as the trained players.

APPENDIX A
EXPERIMENT OF MULTIPLE TRIALS ON CHESS

In this section, we provide the results of the move-matching
accuracy obtained from multiple supervised learning trials and
the Blend method using each supervised learning model. In more
detail, we separated the collected game records into training,
validation, and test data, where the ratios were 90%, 5%, and 5%,
respectively, as described in Section IV-A. In this experiment, we
prepared three different separations for each set of the collected
game records (Maia-S-1100, Maia-S-1900, and Maia-S-Wide)
to investigate the robustness of the supervised learning models
and the Blend method.

Fig. 11 shows the move-matching accuracy of the super-
vised learning models and the Blend models tested on rating
1100 data for each trial. The x-axis represents trials and the
y-axis represents the move-matching accuracy. The error bars
represent the 95% confidence intervals calculated from the test
data for each trial. The types of lines represent the types of
the models. Specifically, the chain lines represent supervised
learning policies, such as Maia-S and Maia-S-Wide, and the
solid lines represent their Blend models. The colors of the bars
represent the rating of the human games used in the training
data for the corresponding policy. Specifically, yellow represents
using the training data of rating 1100, and red represents using
the training data of rating 1100 to 1900. The results showed
that different trials obtained similar move-matching accuracy,
though the deviations of the Maia-S-1100 models were relatively
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Fig. 12.  Move-matching accuracy of Maia-S-1900, Maia-S-Wide, and their
Blend models on rating 1900 data for each trial.

big. Nevertheless, the Blend model in each trial outperformed
the corresponding Maia-S model.

We also conducted experiments on rating 1900 data, and the
results are shown in Fig. 12. The only difference in represen-
tation between Figs. 11 and 12 is that yellow bars becomes
blue bars, which means using the training data of rating 1100
and 1900, respectively. Similar to Fig. 11, the move-matching
accuracy of different trials was similar, except that the deviations
of the Maia-S-1900 models were relatively big. Also, the Blend
model in each trial was clearly better than the corresponding
Maia-S model. From these results, we concluded the results of
one trial to be reliable enough.

APPENDIX B
THE DEFINITION OF LOSS

In Section VI-C, we made an assumption that the Blend
model can eliminate supervised learning models’ bad moves
that require a bit of searching (thinking) because AlphaZero-like
policies are incorporated. To verify our assumption, we define
the loss of a move to evaluate how bad the move is.

For a given position, let moveyym,, be the human move,
movey,i, be the move that Maia-S-Wide assigns the highest
probability to, movepysnegi be the move that DLshogi assigns
the highest probability to, and movegjepg be the move that the
Blend model assigns the highest probability to. Also, let the
evaluation of each move (CP: centipawn) be CPyyman, CPMuaias
CPpLshogi> and CPpieng. We then define the best evaluation at the
position CPges and move m’s loss Loss,,, as follows:

CPgest = max({CPHumam CPwMaia, CPDLshogiy CPBlend})
Loss,,, = CPgest — CP,,.

In other words, the larger the loss is, the worse the move is,
and the best move’ loss is 0. The main reason for focusing
on these four kinds of moves instead of all legal moves is to
reduce the computation time. In Shogi, the average number
of legal moves is 92 [18], and evaluating all legal moves is
time-consuming. In addition, we consider that the sets of these
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four kinds of moves are likely to contain promising (the best)
moves.

The remaining task to calculate the loss of a move is to
obtain the CP evaluations, which we need a strong Shogi engine.
DLshogi is strong but is used in our proposed method, so it
would be unfair to evaluate the proposed method on that basis.
YaneuraOu + Suisho [19] is a Shogi engine that has strength
similar to DLshogi. This Shogi engine uses YaneuraOu’s «f3
search and an evaluation function called Suisho. To obtain the CP
of each move, we employed YaneuraOu + Suisho with 100000
search nodes and default values for the rest of the settings.
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