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Abstract—The optimal execution problem involves planning
a stock execution strategy that minimizes trading costs for a
specific quantity of stock over a certain timeframe. To tackle
this problem, advanced techniques like Deep Reinforcement
Learning (DRL), especially the Deep Q-Network (DQN) which
employs deep learning to approximate the ) value function, have
been introduced to identify the most efficient execution strate-
gies. However, DRL methods face challenges such as learning
instability and the extensive data requirements. Therefore, we
propose to use prioritized experience replay and to incorporate
a strategy derived from the insights of the financial field into
the DQN during learning process. Particularly, we introduce
a time-weighted average price (TWAP) strategy that has been
proven to be optimal under specific conditions as a heuristic
policy. This approach is expected to be able to enhance the
stability and performance of policy learning. We have conducted
numerical experiments in various noise-prone environments to
assess the effectiveness of our approach. The findings indicate
that our proposed method consistently outperforms conventional
benchmarks by reducing costs in all tested environments.

Index Terms—optimal execution problem, DQN, DDQN,
TWAP

I. INTRODUCTION

In practical asset management, the essential process of
making investment decisions and executing trades [1], known
as optimal execution, is crucial for the efficiency and suc-
cess of investment operations. Portfolio managers in asset
management companies decide on asset allocations, which
traders then execute in the market with precision to mini-
mize market impact and execution costs'. Given the large
volumes of assets these companies often manage [2], executing
large orders without significantly affecting market prices is
a significant challenge, as large trades can lead to adverse
price changes and increased costs [3], [4]. Optimizing trad-
ing strategies to minimize transaction costs is increasingly
recognized for its importance, with rising trading volumes
highlighting the significant impact of these costs on the
overall performance of investment portfolios [5], [6]. The
concept of the optimal execution problem (OEP) aims to
identify execution strategies that enable traders to purchase
or sell a predetermined quantity of stocks within a specific

Isee https://www.am.mufg.jp/english/service/investment.html for an exam-
ple of the investment process at an actual asset management company.

timeframe, with the goal of minimizing associated transaction
costs. This area of study was first addressed in [3], which
applied stochastic dynamic programming to derive analytical
solutions for OEP under certain conditions, such as assuming
that price movements follow a random walk process. Since
this study, there has been significant advancement in extending
analytical solutions beyond the initial constraints set by [3], to
incorporate more complex and realistic models of market price
dynamics. Despite these advances, the challenge of deriving
optimal execution strategies that are universally applicable
remains difficult. The use of stochastic dynamic programming,
while powerful, often face limitations when applied to more
generalized conditions, as noted in subsequent studies by [4],
[7]. These studies emphasize the complex nature of financial
markets and the difficulties inherent in capturing the lots
of factors that influence stock price movements [8] within
analytical models.

Considering difficulties associated with deriving analytical
solutions for the OEP, alternative approaches using reinforce-
ment learning have been proposed. These methods, particularly
beneficial due to their minimal assumptions about market
price dynamics, represent a significant shift from traditional
analytical strategies. Notably, [9], [10] employed @-learning,
a foundational reinforcement learning algorithm [11], in their
empirical investigations of OEP, demonstrating its applicability
in this context. While reinforcement learning has enabled
flexible configurations, J-learning algorithms have other chal-
lenges, primarily due to the “curse of dimensionality.” This
challenge arises from the algorithm’s need to maintain and
update a comprehensive list of action values (Q-values) for
every possible state-action pair, leading to exponential in-
creases in computational and memory demands as the number
and complexity of states and actions increase. In response
to these challenges, Deep Q-Network (DQN [12]) and its
variants, such as the Double Deep Q-Network (DDQN [13])
have been proposed. DQN utilizes deep learning techniques to
approximate the ()-function, significantly reducing the compu-
tational burden associated with traditional @)-learning. DDQN
enhances the accuracy of policy estimation by employing a
dual-network architecture, which includes both a ()-network
and a target Q-network. This approach effectively mitigates



the overestimation bias often encountered in DQN, thereby
refining the execution strategy development process for OEP
[14], [15].

However, to apply DQN and DDQN to the OEP, it is
important to recognize the challenges inherent in their learning
processes. Both DQN and DDQN need a lot of amount of
datasets to achieve acceptable levels of performance. This
requirement can be a significant hurdle, especially in financial
markets where data quality and availability might vary. As a
result, it has been observed that, in practice, the performance of
DQN and DDQN can be disappointing and prone to instability
[16]. This underscores the need for refinement in these models
to enhance their robustness and reliability in OEP.

Therefore, this study aims enhancing the stability and effi-
ciency of DDQN’s learning process. Specifically, we propose
a new approach that integrates prioritized experience replay
and probabilistic action selection, guided by a heuristic policy,
during the training phase of the DDQN algorithm. This method
is designed to optimize the balance between exploration of new
strategies and exploitation of known rewarding actions, aiming
to diminish the volume of data required for effective training
and speed up the learning convergence. A key element of our
approach is the incorporation of the Time-weighted Average
Price (TWAP) strategy as the heuristic policy. The TWAP
strategy, which has been identified as optimal under certain
market conditions [3], serves as a foundational guideline
for action selection in the OEP. By embedding this strategy
into the training process, we seek to provide a structured
framework that aids the DDQN in navigating the complexities
of the financial markets, thereby enhancing the stability and
reliability of the optimal execution strategies it generates.

The results of the numerical experiments show that our
proposed method can consistently reduce the execution costs
compared to existing methods across all experimental settings.
Furthermore, in experiment with more complex settings, our
proposed method can reduce the standard deviation of the
execution costs in test samples with 5 trials with different
seeds, indicating the stability of the learning process. Addi-
tionally, by observing the average reward during learning for
these experimental settings, we find that our proposed method
exhibit greater stability throughout the learning process.

The structure of this paper is as follows: We begin by
reviewing the existing literature on the application of machine
learning methods within the domain of asset management.
Next, we introduce the problem formulation and propose our
methodology. Subsequently, we present the findings derived
from our experiments. Finally, we conclude.

II. RELATED WORK

With the development of machine learning techniques, these
technologies have gained significant attention for their applica-
tion in the actual investment process [17], [18].Their ability to
analyze vast datasets, identify patterns, and make predictions
has opened new avenues for optimizing investment strategies,
enhancing investment decision-making, and improving the
efficiency of trade executions in asset management [19]. This

integration of machine learning is transforming the landscape
of asset management business, offering more sophisticated
methods for managing assets and navigating complex market
dynamics [8], [20].

Machine learning methods offer a significant advantage over
traditional time series analysis when dealing with the stock
market’s nonlinear, noisy, and complex data [8], [20]. These
advanced techniques are capable of capturing intricate patterns
within the financial data that traditional models might over-
look, leading to more effective and reliable market predictions.
Promisingly, deep learning models, guided by financial market
heuristics and designed with specialized network structures
and learning methods, have been proposed to further refine
these predictions and enhance investment strategies [21], [22].

For example, the RIC-NN framework [21] is designed to
improve stock return predictions by combining heuristics with
learning techniques. It employs a nonlinear approach to incor-
porate multiple predictive factors, uses a ranked information
coefficient to prevent overfitting by determining optimal train-
ing stop points, and leverages deep transfer learning to apply
insights across different markets. [22] enhances deep learning-
aided stock prediction by focusing on the prediction of residual
factors distribution, vital for risk hedging. It introduces a
computationally efficient way to extract residual information
for use with prediction models and a new neural network
architecture that embeds key financial heuristics like amplitude
and time-scale invariance [23].

Building on these studies, this research constructs a deep
reinforcement learning method that incorporates heuristics
in financial markets, while also focusing on another critical
process in asset management: optimal execution.

III. PROBLEM FORMULATION

Let P, € RT denote the stock price at discrete time ¢ €
[1,T 4 1]. The optimal execution problem (OEP) seeks to
find a strategy for purchasing stocks at each time ¢ such that
the total execution cost is minimized when the objective is to
purchase N > 0 stocks by time 7'. Formally, the OEP can be
formulated as follows:

Problem 1 (Optimal Execution Problem (OEP)):

T
min E[Y " NiPri] (1)
¢ t=1
T
st,» Ny=N (2)
t=1

The solution N} to this problem is referred to as the optimal
execution strategy.

There are cases where the optimal execution strategy can be
analytically determined when specific constraints are imposed
on the OEP [3]. For instance, if the price dynamics of the stock
P, follow the random walk, and the conditional expectation
of the disturbance term ¢, satisfies the following:

Piy1 =P+ 0Ny + ¢ 3)
Elet| Py, N¢] =0 4



In this case, the optimal execution strategy is obtained as the
Time-Weighted Average Price (TWAP) as shown in [3].

Definition 1 (Time-Weighted Average Price (TWAP)): The
Time-Weighted Average Price (TWAP) is an execution strategy
which uniformly distributes purchases over time and does not
depend on time.

N[ =

Ny = 5)

Proposition 1 (Optimlity of TWAP): TWAP is the optimal
execution strategy if equation (3) and (4) are satisfied.

Proof 1: see [3] for proof.

Based on the proposition, we use TWAP as a heuristic
strategy in the proposed method described in the next section.

IV. PROPOSED METHOD

In this paper, we employ prioritized experience replay, an
enhancement over the conventional experience replay used
in DDQN [13] as described in previous research [14]. Ad-
ditionally, we incorporate demonstration data guided by a
heuristic policy into the learning process. This approach aims
to stabilize the learning trajectory and decrease the volume of
data needed for effective training.

Below, we will first introduce the foundational concepts
of reinforcement learning. In the framework of reinforcement
learning, an agent is designed to learn how to take optimal
actions within a given environment by receiving and inter-
preting rewards. Let us define S 3 s, as the set of states,
A > a as the set of actions, and 7 as the reward. The
decision-making strategy of the agent, known as the policy, is
represented by the probability of choosing a particular action
a when in state s. This policy can be mathematically denoted
by w(a|s) = Pr(A; = a|Sy = s), where Sy and A; are the
random variables representing the state and action at time step
t, respectively. Following this policy, the agent performs an
action, subsequently receiving a reward r as a consequence of
its interaction with the environment.

Reinforcement learning is fundamentally concerned with
discovering a policy that optimizes the expected (discounted)
cumulative reward Cy beginning from time step ¢ = 0. The
mathematical formulation of this objective is given by:

T
. ¢
Th_r)ré<> tz::l’y rt] (6)

In this expression, v € [0,1) represents the discount factor,
a parameter that modulates the influence of future rewards
on the current decision-making process. The discount factor
essentially dictates the degree of importance the agent assigns
to immediate versus long-term rewards, thereby guiding its
strategy in navigating the environment and optimizing its
actions for maximal cumulative reward.

In the domain of reinforcement learning, various algorithms
have been employed to optimize decision-making processes.
Among these, methods leveraging the action value function,
denoted as Q™ (s, a), have received considerable attention and
have been the subject of extensive research [24]. The function

max Cy = E,
™

Algorithm 1 DDQN with heuristics policy (with e-greedy)

Input: k: mini-batch size, M: replay buffer size, w, Wxed:
weights for initial deep network (random), 7: frequency at
which to update wgxeq, €, €p: thresholds for action selection,
a: degree of priority
Initialize replay buffer H
for episode € {1,2,...} do
for t € {1..T} do
if p1 ~U(0,1) < € then
Q¢ ~ Trandom
else if po ~ 1(0,1) < €5, then
Q¢ ~ Theuristic
else
a; = arg max, Qw(st, a)
end if
Play action a; and observe (s',r)
Store (s, a,r,s’) into H with maximal priority,
overwriting oldest transition if over capacity
for j =1to k do
Sample transition j ~ P(j) = p§/ >, pf'
Compute error .
0j = Qu(Sm, am) — (Tj +ymaxees Qu)
Update transition priority p; < [d;]
end for
Calculate loss I(w)
Perform a gradient descent step to update w
if t mod 7 = 0 then
Wixed < W
end if
s+ ¢
end for
end for

Q7 (s, a) quantifies the expected discounted cumulative reward
of taking an action a in a state s, under a given policy 7. It
is expressed as:

Q™ (s,a) = ET[Cy|S: = s, A; = a (7)

where C; represents the cumulative reward from time step
t. The objective in this approach is to identify the optimal
policy 7* that maximizes Q™ (s, a) for all state-action pairs.
A notable advancement in this area is the development of
DQN, which utilize deep neural networks to approximate the
action value function Q™ (s,a). DQN enhances the stability
of learning by employing a technique known as experience
replay, allowing for the efficient reuse of past experiences.
This approach has been successfully implemented across a
diverse range of applications, demonstrating the versatility
and effectiveness of DQN in solving complex decision-making
tasks [25].

In this research, we utilize DDQN that enhances the estima-
tion of optimal action values through deep learning techniques.
DQN begins by initializing the parameters wgy of a model Qw,
which serves as an estimator for action values. At each iter-
ation k = 1,2, ..., the model undertakes the following steps.



For a subset of experience data (S, Gm, Tm, Sh,), randomly
selected from the historical dataset D where m € {1,..., M},
the target value q,, for each data point is computed as:

A 1 ’
m = Tm w\om> . 8
q Tm 7 MAX Qo (5, @) @®)

Subsequently, the parameters w are refined through stochastic
gradient descent to minimize the loss function, which quanti-
fies the approximation error as follows:

1
2M
A distinctive attribute of DQN, and by extension DDQN, is the
implementation of experience replay. This technique involves
randomly sampling from the historical data D to update the
model, as opposed to using the data in the sequence it was
observed. The rationale behind experience replay is to mitigate
the strong correlations that often exist between sequentially
close data points, thereby enhancing the robustness and effec-
tiveness of the learning process.

One of the challenges with DQN is its tendency to overesti-
mate the value of the objective variable with a high probability.
DDQN addresses this issue to a certain extent by altering the
estimation process. In the context of DDQN, the evaluation
mechanism, originally depicted in equation (8), is redefined
as follows:

M
l(w) = Z (QW(S‘"M am) - CIm)Z- )
m=1

(action selection) a* = arg max Q(s!, ,a’),  (10)
a’€A
(value evaluation) ¢, = rm +vQ(s),, a*). (11)

This method involves a bifurcation of the estimation process
into “action selection” and “value evaluation” phases. To
mitigate the overestimation bias, DDQN employs two distinct
function approximators: Q,, for action selection and Qwﬁxed
for value evaluation. Here, Qwﬁm refers to the action value
estimate derived from a previously fixed parameter set wyixed-
Despite these improvements, it is important to note that
DDQN, much like its predecessor, can still exhibit instability
in learning and often necessitates a substantial volume of data
to achieve satisfactory performance, as indicated by recent
studies [16].

To enhance the efficiency of the learning process, this study
advocates for the implementation of prioritized experience
replay, as introduced by [26]. Unlike conventional experience
replay, where experiences are sampled uniformly at random
from the replay buffer without assessing their learning value,
prioritized experience replay optimizes the learning process
by focusing more on experiences that are regard as crucial for
learning and less on those that are not. In this approach, the
selection probability of each experience data is determined by:
12)

po(m) = —zr—

Zm:l Um
where v,,, represents the priority assigned to the m-th experi-
ence, ensuring that experiences with higher learning value are

sampled more frequently. The priority value v, is defined as:

U = (|0m] + €)° (13)

based on the magnitude of the approximation error 4,,,, which
is calculated as:

Oy = Qw(sm, m) — Gm.- (14)

In this formulation, € > 0 is a small hyperparameter introduced
to prevent any experience from having a nearly zero selection
probability, while « is another hyperparameter that modulates
the influence of the priority value. Setting o = 0 reverts the
selection probability p, (m) to a uniform distribution, aligning
it with the traditional experience replay mechanism. This
prioritization strategy aims to make the learning process more
targeted and efficient by emphasizing experiences that offer
significant learning opportunities.

We assume that the utilization of a near-optimal policy,
when available, as a benchmark for exploring the adjacent
decision space can significantly stabilize the learning process
and diminish the volume of data necessary for effective train-
ing. This strategy enables the agent to augment its historical
dataset D with experience tuples (S, an, Tm, Sh, ), Where the
actions aj, are derived from adhering to a heuristic policy 7.
By incorporating experiences guided by 7}, into the learning
dataset, the agent can more effectively navigate towards opti-
mal decision-making, leveraging the insights provided by the
heuristic policy to expedite its learning trajectory and enhance
the overall efficiency of the learning process.

In summary, if e-greedy is adopted as the policy of the agent
during learning, the whole algorithm of our proposed method
can be written as Algorithm 1.

V. EXPERIMENT

In this section, we conduct numerical experiments to eval-
uate the effectiveness of the proposed method.

A. Experimental settings

Aligned with the framework outlined in Problem 1, we con-
duct experiments under a unified set of parameters: 7' = 10,
N =20, P, = 100, and 6 = 10. We also investigate the impact
of distinct noise terms &; through the following experimental
settings:
Setting 1:
Setting 2:

Et = 0.

gr ~ N (O, 32)

Setting 3: &, ~ N(3,3?).

Setting 4: &, ~ N (—3,3?).

Within these experimental frameworks, Settings 1 and 2, char-
acterized by E[e;| P, N¢] = 0, suggest that the TWAP strategy
is the optimal execution strategy, as supported by proposition
1. Conversely, Settings 3 and 4, where E[e;| P;, N;] # 0, imply
the potential for strategies that may surpass the efficacy of
TWAP.

B. Training
The configuration of states, actions, and rewards within
experiments was defined as follows:

State:
The state at time ¢, denoted by s, is characterized by



TABLE I: Mean and standard deviation between trials of the
reward at test in each setting. 10,000 episodes were tested for
each of 5 trials of different seeding.

TWAP DDQN Proposed method
Setting 1~ -4200 -4256 £+ 15.1 -4252 £+ 24.6
Setting 2 -4200 -4292 £+ 65.4 -4256 £ 442
Setting 3 -4530 -4667 £ 90.0 -4588 £ 78.1
Setting 4  -3870  -3968 + 122.9 -3915 + 48.2

a triplet including the current time step ¢, the price
P4, and the remaining shares W; to be executed.
Action:
The action at time ¢, represented by a;, involves
selecting the number of shares N, to be executed
at time t, where N; € [0, W;].
Reward:
The reward at time ¢, r; is defined as the negative
product of the number of shares executed at time
t and the price at the next time step, —N;FP;1,
reflecting the actual cost.

Regarding the neural network architecture, a fully connected
network was employed, consisting of 6 layers with 16 nodes
each. The Adam optimizer [27] was used for optimization
purposes, with a learning rate set to 0.0001. To ensure the
stability of the learning process, the discount factor v was
fixed at 0.99, a decision informed by insights gleaned from
preliminary experimental evaluations.

The agent employing the conventional method employs an
e-greedy approach with € = 0.1 for action selection during the
learning phase. In contrast, the agent in our proposed method
opts for an action derived from the TWAP strategy with a 10%
probability, as an alternative to the standard greedy action. This
is formalized as follows for the action a; at time ¢:

W, . .
_ T A with probability 0.1,
9t = Y arg max Q(st,a), otherwise.
acA

Here, Q(st, a) represents the estimated value of taking action
a in state s; at time step ¢. The training regimen spanned over
10,000 episodes, which equates to a total of 100,000 steps,
ensuring a comprehensive learning experience for the agent.

C. Results and discussion

Table I presents a comparison of the average rewards ob-
tained at test time for the TWAP strategy, the existing DDQN
method, and the proposed method across various experimental
settings.

We can confirm that the proposed method was effective
in reducing the execution costs associated with the OEP,
outperforming the existing DDQN-based approach. Notably, in
experimental settings 3 and 4, where TWAP may not represent
the optimal strategy, the proposed method demonstrated lower
standard deviations in cost, indicating more stable learning
outcomes. This stability suggests a consistent performance
across different trials, reinforcing the robustness of the pro-
posed method.

Moreover, the proposed method was found to devise strate-
gies that surpassed the performance of TWAP in these settings.
Evidence of this was seen in several trials where the proposed
method achieved higher average rewards at test time over
10,000 episodes, surpassing the benchmarks set by TWAP.
This emphasizes the proposed method’s capability not just to
replicate heuristic policies effectively but to explore and iden-
tify superior strategies that align closely with such heuristic
guidelines.

In the subsequent analysis, we move onto experimental set-
tings 3 and 4, where the TWAP strategy might not represent the
optimal approach for execution. Figure 1 illustrates the reward
trajectories for both the existing DDQN and proposed methods
throughout the training phase. To smooth out fluctuations and
provide a clearer view of the trends, moving averages with
a window size of n = 100 were calculated. The average
outcomes across five distinct seed values are depicted by solid
lines, while the variability in these results is captured by the
inclusion of error bars representing standard deviations.

Figure 1a shows the rewards of the existing method and the
proposed method in the experimental setting 3. Comparing the
two method might appear difficult at first glance; however,
a focused examination of the error bars provides valuable
insights. These error bars illustrate that the proposed method
demonstrates enhanced stability in the learning process com-
pared to its existing counterparts, as evidenced by the reduced
variability in rewards across training sessions.

Furthermore, Figure 1a also shows the performance of the
proposed and existing methods in experimental setting 4. The
solid lines represent the average rewards over time, with the
proposed method generally keeping higher rewards than the
existing method. This superiority is complemented by the
error bars, which further clarify to the proposed method’s
increased learning stability. The smaller range of the error
bars associated with the proposed method suggests a more
consistent learning outcome, emphasizing its effectiveness and
reliability in these experimental scenarios.

VI. CONCLUSION

The contributions of this study are summarized as follows:

« We have developed a variant of the DDQN that integrates
prioritized experience replay alongside a heuristic policy,
specifically the TWAP, for addressing the OPE—a signif-
icant challenge within the financial domain.

o Through numerical experiments, it was demonstrated that
our proposed method not only enhances the stability of
the learning process but also reduces the volume of data
required for effective training.

o Furthermore, our findings indicate that the proposed
method is capable of identifying superior strategies, even
in scenarios where the heuristic policy (TWAP) may not
be inherently optimal.

For future research, we plan to use real-world data to
estimate environments and apply the proposed method. Addi-
tionally, we will compare our method with similar approaches,
such as Deep Q-learning from Demonstrations (DQfD [16]),



-4600

Py o "'*\’\ A "W'MJ""\\/" ‘ﬁ'w\f
4800 ke VAl LA W '
—-5000 -
—5200 1
-5400
-5600

—— Existing method

—-5800 Proposed method

0 2000 4000 6000 8000 10000
episode

(a) Setting 3

-4600
-4800 1
—— Existing method
Proposed method
-5000

—4200 1 'J"V'ﬁ iy van\\‘ wﬂwvvw\!
—4400 fj/

0 2000 4000 6000 8000 10000
episode

(b) Setting 4

Fig. 1: Comparison of rewards during learning between the existing and proposed methods in (a) experimental setup 3 and (b)
experimental setup 4. Moving averages (n = 100) were computed, with the mean of the results for five different seed values

shown as a solid line and the standard deviation as an error bar.

and explore new strategies that integrate heuristic policies
within policy-based reinforcement learning frameworks.
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