
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Automated Cyber Defense Based on Reinforcement

Learning Techniques

Author(s) Nguyen, Thanh Cong

Citation

Issue Date 2025-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/20030

Rights

Description
Supervisor: BEURAN, Razvan Florin, 先端科学技術

研究科, 修士 (情報科学)

Master’s Thesis

Automated Cyber Defense Based on Reinforcement
Learning Techniques

2310435 NGUYEN Thanh Cong

Supervisor BEURAN Razvan
Main Examiner BEURAN Razvan

Examiners TAN Yasuo
LIM Yuto
UDA Satoshi

Graduate School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology

(Information Science)
August 2025

Abstract

In light of increasingly sophisticated and complex cybersecurity threats,
developing autonomous cyber defense agents has become a critical and urgent
area of research. Traditional human-based defense systems can no longer
cope with the speed and scale of modern attacks. Recent studies show
that intelligent agents using artificial intelligence can provide flexible defense
capabilities by handling key tasks like monitoring, detection, and threat
response. However, current defensive agents are trained in nearly perfect
environments that do not mirror real-world conditions. Intrusion detection
information can be imperfect and often includes specific error rates. In
particular, AI-based anomaly detection models frequently misclassify normal
user actions as anomalous.

This thesis focuses on developing cyber defense agents that operate in
these imperfect environments through a multi-agent reinforcement learning
(MARL) approach. Current research often concentrates on training cyber
agents for only one side, either attack or defense, causing agents to focus
too heavily on single strategies and restricting their adaptability. To address
this limitation, we propose competitive training involving two adversarial
agents trained simultaneously, allowing them to learn from and counteract
each other in dynamic scenarios.

The research contributes a specialized simulation environment extending
the Network Attack Simulator (NASim) with competitive agents and realistic
IDS integration. We implement and compare Multi-Agent Proximal Policy
Optimization (MAPPO) with centralized training and Independent Proximal
Policy Optimization (IPPO) with decentralized training across clean baseline
and operational noise scenarios simulating real-world sensor uncertainty.

Our evaluation employs exploitability metrics against worst-case adver-
saries using specialized cybersecurity metrics: True Block Rate (TBR), Hosts
Compromised (HC), and Decoy Interaction Ratio (DIR). Testing encom-
passes simulation and realistic implementations using Snort IDS, iptables,
Docker-based decoys, and Metasploit frameworks.

The results demonstrate significant defensive improvements over unpro-
tected baselines. In clean conditions, MAPPO and IPPO achieved approxi-
mately 79% reduction in compromised hosts against random attackers (from
3.8 to 0.8 hosts) while maintaining perfect 100% true block rates. Against
sophisticated trained adversaries, both approaches limited compromise to a
single host, showing robust defensive capabilities. The deception strategy

I

proved effective with decoy interaction ratios reaching 26-40% against ran-
dom attackers, successfully redirecting attack attempts from critical assets.

Important algorithmic differences emerged under operational noise condi-
tions simulating realistic IDS false positives. When facing worst-case trained
attackers, IPPO demonstrated superior robustness by limiting compromises
to approximately two hosts compared to MAPPO’s three hosts. IPPO main-
tained perfect detection accuracy (100% TBR) while MAPPO experienced
slight degradation to 96.1% in realistic environments. These findings suggest
that IPPO’s decentralized training approach provides greater resilience to
sensor uncertainty, particularly against sophisticated adversaries trained to
exploit observation noise.

Critical validation came through successful simulation-to-real transfer,
with performance metrics remaining within 5% between settings, confirming
our simulation captures essential cyber defense dynamics. This enables prac-
tical training of defensive agents that maintain capabilities when deployed
operationally, addressing the significant training-deployment gap challenge
in cybersecurity applications.

The comparative analysis reveals that while both approaches perform
similarly under ideal conditions, IPPO demonstrates greater robustness
under uncertainty with superior stability against sophisticated attacks in
noisy conditions. In contrast, MAPPO achieves better coordination through
centralized training. These findings demonstrate that competitive train-
ing between adversarial agents produces robust defensive capabilities that
transfer effectively to realistic environments, providing practical insights
for deploying autonomous cyber defense systems that handle real-world
complexities while maintaining operational effectiveness against evolving
threats.

Keywords: autonomous agents, cyber defense, competitive training.

II

Acknowledgment

Firstly, I sincerely thank my supervisor, Associate Professor Razvan Beuran.
His unchanging support, helpful guidance, and continuous encouragement
played a key role throughout my research journey. I want to thank the faculty
members and my colleagues in the lab at the Japan Advanced Institute
of Science and Technology (JAIST). Their helpful discussions and support
during critical times were key in dealing with the more complicated parts
of this research. Lastly, I acknowledge JAIST for providing an exceptional
research environment and the essential resources that enabled me to complete
this thesis.

III

IV

Contents

Abstract I

Acknowledgment III

Contents V

List of Figures IX

List of Tables XI

Chapter 1 Introduction 1
1.1 Cybersecurity Challenges . 1
1.2 Reinforcement Learning for Cyber Defense 1
1.3 Problem Statement . 2
1.4 Thesis Contributions . 3
1.5 Thesis Outline . 4

Chapter 2 Background and Related Work 5
2.1 Reinforcement Learning . 5

2.1.1 Markov Decision Processes 5
2.1.2 Partially Observable Markov Decision Processes 6
2.1.3 Reinforcement Learning Paradigm 6

2.2 Deep Reinforcement Learning Methods 7
2.2.1 Value-Based Reinforcement Learning 7
2.2.2 Policy-Based Reinforcement Learning 7
2.2.3 Actor–Critic Methods 8

2.3 Multi-Agent Reinforcement Learning (MARL) 9
2.3.1 MARL Overview . 9
2.3.2 MARL System Types 9
2.3.3 MARL Training–Execution Paradigms 10

2.4 Game-Theoretic Foundations for Competitive Learning 12
2.4.1 Nash Equilibrium . 12
2.4.2 Exploitability Metric 12

V

2.5 Related Work . 13
2.5.1 Competitive Training for Cyber Defense 13

2.5.1.1 Direct Adversarial Training Approaches 13
2.5.1.2 Strategic Frameworks Based on Uncertainty . 16

2.5.2 Reinforcement Learning Training Environment for Cy-
ber Defense . 17

2.5.3 Summary and Research Gap Identification 18

Chapter 3 Research Methodology 21
3.1 Problem Formulation for Cyber Defense 21

3.1.1 State Space . 22
3.1.2 Action Space . 24
3.1.3 Reward Functions . 25
3.1.4 Observation Space . 27
3.1.5 Learning Objective . 28

3.2 Competitive Agent Design . 28
3.2.1 Network Structure . 29
3.2.2 Key Architectural Decisions 30
3.2.3 Action Processing . 30
3.2.4 Learning Algorithm . 30
3.2.5 Training Setup . 31

3.3 System Flow and Architecture 32
3.3.1 Simulation Environment 32
3.3.2 Real Environment . 33

Chapter 4 Experimental Evaluation 39
4.1 Experiment Setup . 39

4.1.1 Experiment Scenarios 39
4.1.2 Network Environment Configuration 40
4.1.3 Attack Tools and Capabilities 41
4.1.4 Training and Evaluation Method 41

4.2 Training Results and Analysis 42
4.2.1 Training Results . 42
4.2.2 Exploitability and Worst-Case Analysis 42

4.3 Experiment Results and Analysis 45
4.3.1 Performance Metrics 45
4.3.2 Experiment Results . 50

4.3.2.1 Baseline Scenario Analysis 50
4.3.2.2 Operational Noise Scenario Analysis 52

4.4 Comparative Analysis . 53
4.4.1 Simulation-to-Real Transfer 53

VI

4.4.2 IPPO and MAPPO Performance Comparison 54

Chapter 5 Conclusion 57
5.1 Summary of Findings . 57
5.2 Limitations of the Study . 58
5.3 Directions for Future Research 58

References 59

This thesis was prepared according to the curriculum for the Collaborative
Education Program organized by Japan Advanced Institute of Science and
Technology and Le Quy Don Technical University.

VII

VIII

List of Figures

2.1 MARL training-execution paradigms (based on [1]) 11
2.2 Attacker-defender interaction with IDS 14
2.3 Fictitious play training with opponent sampling (based on [2]) 15

3.1 POMDP components for cyber defense 22
3.2 Attack progression through network topology 23
3.3 Attack sequence to compromise internal hosts 25
3.4 Actor network architecture . 29
3.5 Critic network architecture . 30
3.6 Simulation training architecture 32
3.7 Real environment evaluation flow architecture 37

4.1 Network topology overview . 40
4.2 IPPO training curves . 43
4.3 MAPPO training curves . 44
4.4 Worst case analysis for IPPO - Baseline Scenario 46
4.5 Worst case analysis for MAPPO - Baseline Scenario 47
4.6 Worst case analysis for Operational Noise Scenario - IPPO . . 48
4.7 Worst case analysis for Operational Noise Scenario - MAPPO 49
4.8 Defensive performance across attack scenarios showing robust

capabilities with minimal sim-to-real degradation. 52
4.9 Decoy interaction effectiveness showing MAPPO’s superior

real-environment deception performance. 53
4.10 True blocking rate showing MAPPO maintains perfect 100%

accuracy across all scenarios, while IPPO experiences slight
degradation to 98.0% under operational noise in real environ-
ments. 54

IX

X

List of Tables

2.1 Comparison of research approaches in automated cyber defense 19

3.1 Attacker and defender action spaces 24
3.2 Learning algorithm parameters 31
3.3 Reconnaissance actions and tools 34
3.4 Exploitation actions and tools 34
3.5 Defender actions and tools . 35

4.1 Network configuration and host details 41
4.2 Available attack tools . 41
4.3 Performance evaluation overview 51

XI

XII

Chapter 1

Introduction

1.1 Cybersecurity Challenges

Though the enhanced global interconnectedness of the digital era has count-
less benefits, it simultaneously escalates the vulnerability of systems to
cyberattacks [3]. Such attacks target a system’s confidentiality, integrity,
or availability, posing massive threats to individuals and organizations.
Defending teams struggle increasingly to cope with the growing volume
of cyberattacks. Contributing factors include the rising sophistication of
cybercrimes, widespread availability of attack tools, and a considerable
shortage of skilled cybersecurity specialists [4].

Critical bottlenecks also emerge from dependence on human intervention.
When specialists must investigate events and make decisions—particularly
in high-attack-rate environments—the resulting latency enables hackers to
inflict substantial damage [5]. To address these challenges, security teams
must automate their workflows, including event monitoring, risk identifi-
cation, and policy enforcement. Note, though, that standard automation
tools are typically rule-based and rigid. These pre-specified directives cannot
deal effectively with sophisticated, complete, and constantly changing issues.
Their inflexibility can cause other problems, like service disruption, primarily
if the system must deal with false alerts, like alarms caused by intrusion
detection systems (IDS) [6].

1.2 Reinforcement Learning for Cyber Defense

Autonomous cyber defense agents offer promising solutions for reducing
defender workloads while enhancing security capabilities. Machine learning
(ML) methods have gained significant traction in combating the ever-evolving
threat landscape, with reinforcement learning (RL) emerging as a particularly
valuable approach within cybersecurity. This learning paradigm involves
an agent attempting to develop optimal policies through environmental
interaction, maximizing cumulative rewards over time. Such capability

1

enables intelligent decision-making and appropriate response selection. Be-
yond cybersecurity, RL has demonstrated revolutionary potential across
diverse industries. Notable achievements include DeepMind’s AlphaGo [7],
which mastered complex strategy games, and autonomous robots executing
sophisticated physical tasks without explicit programming [8]. Current
applications span energy optimization in data centers, automated financial
trading strategies, and intelligent transportation systems [9–11]. The funda-
mental strength of RL lies in its capacity to develop optimal policies through
environmental trial-and-error learning, presenting significant potential for
addressing complex operational challenges.

Despite effectiveness in controlled scenarios, Single Agent Reinforcement
Learning (SARL) faces significant constraints in real-world cybersecurity
contexts. A critical limitation stems from the assumption that environmental
changes result solely from the agent’s actions. However, cybersecurity
environments continuously evolve through the dynamic interplay of defensive
measures and adversarial countermeasures [12].

Multi-Agent Reinforcement Learning (MARL) addresses cybersecurity
challenges by enabling multiple independent agents to interact within shared
environments. This approach enhances both operational flexibility and inter-
agent collaboration, supporting coordinated network defense efforts while
enabling competitive interactions against adversarial actors in realistic, dy-
namic scenarios. Within cybersecurity contexts, MARL proves particularly
valuable for developing decentralized defense architectures. Here, distributed
intelligent agents monitor and protect distinct network segments while shar-
ing critical threat intelligence and coordinating defensive responses. Such
coordination strengthens overall system resilience, maintaining operational
effectiveness even when individual agents become compromised [13].

1.3 Problem Statement

While recent cybersecurity research has demonstrated RL’s effectiveness
in developing autonomous defensive agents, training agents exclusively in
offensive or defensive roles presents fundamental limitations. Such separation
constrains post-training policies, optimizing agents primarily against specific
opponent behaviors rather than addressing underlying system vulnerabilities.
This narrow focus ultimately diminishes overall defensive strategies.

Competitive multi-agent learning models have emerged to address these
limitations by simultaneously training offensive and defensive agents. How-
ever, existing competitive training approaches suffer from a critical gap:
simulation environment limitations that present idealized scenarios while

2

omitting the unpredictable elements and noise characteristics of real-world
operations. For instance, IDS alerts contain false positives and negatives
that simplified simulations typically ignore. This gap becomes problematic
when trained agents encounter authentic operational environments, where
noise-handling difficulties can compromise system stability and cybersecurity
performance.

Furthermore, most current research lacks comprehensive evaluation across
simulated and real environments, limiting our understanding of how well
these agents transfer from controlled training scenarios to authentic opera-
tional contexts. We address these critical gaps by developing competitive
training environments incorporating realistic noise characteristics and evalu-
ating agent performance across simulation and real-world testbeds.

This research investigates competitive learning methodologies for develop-
ing autonomous cyber defense agents. We propose a MARL framework that
concurrently trains defensive and offensive agents within realistic simulation
environments. Such simulations enable attack agents to explore innovative
intrusion techniques while continuously challenging defensive capabilities
in authentic operational contexts. Correspondingly, defense agents must
adapt continuously, enhancing their threat detection and response capabil-
ities against evolving attack patterns in realistic settings. By leveraging
competitive training within realistic simulations, this approach enables the
development of robust defenses capable of handling diverse cyber threats.
Through examining attacker-defender interactions, we aim to enhance the
effectiveness and resilience of cybersecurity practices.

1.4 Thesis Contributions

The scientific contributions of this thesis to autonomous cyber defense,
particularly through reinforcement learning, are as follows:

1. Development of a Realistic Simulation Environment for Com-
petitive Cyber Training: This work develops a competitive network
simulation with simulated IDS, including realistic false positives. The
environment enables direct transfer to real deployments, matching
actual network conditions rather than idealized scenarios.

2. Implementation and Training of a Cyber Defense Agent
Through Competitive Learning: The research establishes defense
agent training using multi-agent reinforcement learning against adap-
tive attackers. Agents learn to counter various attack strategies through
competitive training in simulated networks.

3

3. Creation of a Real Environment Experiment Setup: This contri-
bution presents a real testbed using standard cybersecurity tools: Snort
IDS, iptables, Docker honeypots, Nmap, and Metasploit. The setup
includes configurable false positives to evaluate agent performance
under realistic sensor noise.

4. Evaluation of Agent Performance in Both Simulation and Real
Environments: The study examines trained agents in simulated and
real networks using Snort IDS. Results demonstrate agents successfully
transfer from simulation to real environments while handling IDS noise
and dynamic attacks.

1.5 Thesis Outline

The rest of this thesis is organized as follows:

• Chapter 2 – Background and Related Work: Establishes foun-
dational concepts underlying this research, covering Reinforcement
Learning (RL), Multi-Agent Reinforcement Learning (MARL), and
essential game-theoretic principles. Additionally, this chapter analyzes
existing literature on DRL applications within cyber defense, identify-
ing research gaps that this thesis addresses.

• Chapter 3 – Research Methodology: Presents the technical frame-
work, formulating cyber defense challenges as Partially Observable
Markov Decision Processes (POMDPs), describing competitive agent
architectures for autonomous cyber defense, explaining the evaluation
methodology, and describing the training and testing flow in detail.

• Chapter 4 – Experimental Evaluation: Details the training pro-
cess for competitive agents, reports research outcomes, and analyzes
agent performance across simulated and real-world contexts.

• Chapter 5 – Conclusion: Concludes by summarizing key findings,
discussing research limitations, and proposing promising directions for
future autonomous cyber defense research.

4

Chapter 2

Background and Related Work

This chapter presents the theoretical foundations essential for autonomous
cyber defense development. Beginning with Reinforcement Learning (RL),
we examine how agents acquire decision-making capabilities through envi-
ronmental interaction. The Markov Decision Process (MDP) framework
provides a mathematical structure for RL applications, while various rein-
forcement learning methods offer distinct approaches to complex problems.

Our discussion progresses to Multi-Agent Reinforcement Learning (MARL),
where multiple decision-makers operate simultaneously. This complexity
requires specialized architectures, each offering particular advantages for
different operational scenarios.

We then explore Game-Theoretic Foundations for Competitive Learning,
establishing Nash Equilibrium concepts and exploitability metrics that guide
optimal policy development in adversarial cybersecurity contexts.

Finally, we review related work in competitive cyber defense training,
analyzing existing approaches and identifying critical gaps in simulation
realism and sim-to-real transfer that motivate our research contributions.

2.1 Reinforcement Learning

2.1.1 Markov Decision Processes

Markov Decision Processes (MDPs) give us the math to handle decisions
over time when outcomes are uncertain. An MDP has five parts: states
S (all possible situations), actions A (what the agent can do), transitions
P (s′|s, a) (how likely each next state is), rewards R(s, a) (immediate payoff),
and discount factor γ ∈ [0, 1] (how much future rewards count compared to
immediate ones).

MDPs assume the Markov property: what happens next depends only on
where you are now and what you do, not on how you got there. As defined
in [14]:

5

P (s′, r|s, a) = P (St+1 = s′, Rt+1 = r|St = s, At = a)

This makes problems much easier since we don’t need to track history.
The goal is to find a policy π∗ that gets the most long-term reward.

2.1.2 Partially Observable Markov Decision Processes

Sometimes agents can’t see everything in their environment. Partially
Observable Markov Decision Processes (POMDPs) handle this problem by
adding observations to MDPs. A POMDP uses (S,A, T,R,Ω, O, γ), where
Ω is what the agent can observe (often incomplete), T (s′ | s, a) shows how
states change, and O(o | s′, a) tells us what the agent sees after taking action.

Since agents don’t know the exact state, POMDPs use belief states,
probability distributions showing how likely each state is. When agents get
new observations, they update these beliefs using Bayes’ rule [15]:

b′(s′) = ηO(o|s′, a)
∑
s∈S

T (s′|s, a)b(s)

Here η normalizes so probabilities add up to 1.
Despite their theoretical elegance, modern POMDP algorithms typically

avoid explicit belief distribution maintenance due to computational com-
plexity. Large or continuous state spaces render belief distributions compu-
tationally prohibitive, creating storage and update challenges that exemplify
the curse of dimensionality [16]. Therefore, researchers employ approximate
strategies using model-free reinforcement-learning methods based on deep
neural networks that directly learn internal representations of relevant history
from observation sequences [17].

2.1.3 Reinforcement Learning Paradigm

Reinforcement Learning represents a machine learning paradigm where
agents learn through trial-and-error interaction rather than explicit instruc-
tion. Unlike supervised algorithms that rely on labeled examples, RL agents
receive reward signals indicating decision quality, driving the discovery of
effective strategies for objective accomplishment [18].

The learning process centers on an agent that takes actions within
an environment, receiving both state transitions and reward feedback for
each decision. The agent gradually improves its policy through repeated
interactions to maximize cumulative rewards. The goal is to maximize
expected cumulative reward [19]:

6

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =
∞∑
k=0

γkRt+k+1

where Gt is the cumulative reward at time t, and γ (discount factor)
determines the importance of future rewards.

2.2 Deep Reinforcement Learning Methods

2.2.1 Value-Based Reinforcement Learning

Value-based methods estimate the value of specific states or actions to derive
optimal policies. These methods develop a value function that predicts the
expected cumulative reward associated with being in a given state or taking
a specific action.

Q-learning stands out among value-based methods for its ability to learn
action values through experience. The Q-learning update rule [19] is:

Q(s, a)← Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
where α is the learning rate, s′ is the next state after taking action a in state
s, and maxa′ Q(s′, a′) is the estimated maximum future reward obtainable
from s′.

Deep Q-Networks (DQN) extend this concept by using neural networks to
approximate the Q-function, making it practical for high-dimensional state
spaces where tabular methods would be infeasible.

2.2.2 Policy-Based Reinforcement Learning

While value-based methods learn to evaluate actions, policy-based ap-
proaches directly optimize the decision-making strategy itself. These meth-
ods parameterize the policy πθ(a | s) and use gradient ascent to improve the
expected return [19,20]:

J(θ) = Eτ∼πθ

[
R(τ)

]
= Es0,a0,...

[∞∑
t=0

γt r(st, at)
]
.

Using the policy gradient theorem [19], the gradient of the objective is:

∇θJ(θ) = Eτ∼πθ

[∞∑
t=0

∇θ log πθ(at | st)Gt

]
,

7

Proximal Policy Optimization (PPO) is a prominent algorithm, which
restricts each update to a small "trust region." As proposed by Schulman et
al. [21], PPO maximizes the following clipped surrogate objective:

LCLIP(θ) = Et

[
min

(
rt(θ) Ât, clip(rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
,

where
rt(θ) =

πθ(at | st)
πθold(at | st)

, Ât ≈ Gt − Vϕ(st),

and ϵ is a small clipping parameter. This clipping prevents substantial policy
updates, effectively balancing exploration and exploitation.

2.2.3 Actor–Critic Methods

Actor–critic methods combine the complementary strengths of value-based
and policy-based approaches by maintaining two parameterized functions: a
policy (the "actor") and a value estimator (the "critic"). The actor selects
actions according to πθ(a | s), while the critic estimates the state-value
function Vϕ(s) (or the action-value function Qϕ(s, a)). At each time step
t, the critic computes a temporal-difference (TD) error [19],

δt = rt + γ Vϕ(st+1)− Vϕ(st),

which serves both to update the critic by minimizing the squared error,

ϕ ← ϕ− β∇ϕ

(
1
2
δ2t
)
,

and to inform the actor’s policy gradient,

θ ← θ + α δt∇θ log πθ(at | st).

One prominent variant, Advantage Actor–Critic (A2C), replaces the
raw TD error with an advantage estimate, Ât = rt + γ Vϕ(st+1) − Vϕ(st),
thereby reducing variance and improving sample efficiency. In Asynchronous
Advantage Actor–Critic (A3C), multiple actor–critic agents run in parallel on
independent environment instances; each agent applies its local gradients to
a shared set of parameters, stabilizing learning through decorrelated updates
and enhancing exploration.

Actor-critic methods work well because the critic helps the actor learn
faster than policy methods, while keeping training more stable than pure
value methods. They handle mixed action types well—like robots needing
continuous motor control and discrete grip decisions, or cars that steer
smoothly but change lanes in steps.

8

But actor-critic has problems too. If the critic gives bad value estimates,
training becomes unstable. Getting the learning rates (α, β) right takes
careful tuning, and choosing good advantage estimates greatly matters.
Running multiple actors in parallel can cause issues with outdated gradients,
plus the extra computation costs can be high.

Actor-critic bridges value and policy approaches effectively. These meth-
ods work in many areas, from robot control tasks to complex games like
StarCraft II. Researchers keep improving them with better variance reduction
and new architectures.

2.3 Multi-Agent Reinforcement Learning
(MARL)

2.3.1 MARL Overview

Multi-Agent Reinforcement Learning (MARL) generalizes single-agent RL
to domains where a population of decision-makers interacts in a shared,
stochastic game. As defined in [1], a finite-horizon stochastic game is defined
by the tuple ⟨S, {Ai}Ni=1, P, {ri}Ni=1, γ⟩, where N agents jointly influence the
transition kernel

P
(
st+1

∣∣ st, at

)
, at = (a1t , . . . , a

N
t) ∈ A1 × · · · × AN ,

and each agent i receives a possibly distinct reward rit = ri(st, at). Agents
observe oit = O(st, i) and select actions according to stochastic policies πθi(a

i
t |

oit). The objective of agent i is to maximize its discounted return [1]:

J i(θi) = E
[T−1∑
t=0

γ t rit

]
.

When all agents share the same reward function, the game reduces to a
Decentralized Partially Observable Markov Decision Process (Dec-POMDP);
when rewards sum to zero, the game is competitive. MARL thereby subsumes
cooperative control (multi-robot manipulation, formation flight), fully com-
petitive games (poker, Go), and mixed-motive scenarios (autonomous traffic
and smart-grid markets) [1].

2.3.2 MARL System Types

Multi-Agent Systems (MASs) can be classified into three main categories
based on task characteristics. This classification relies on the reward struc-
ture and the agents’ motivations within the environment [1].

9

In a Fully Cooperative setting, all agents share a common goal and must
coordinate to maximize a shared reward. The success of the entire system
depends on the collective performance of all agents, with the main challenges
being coordination and credit assignment. Formally, the reward structure is
represented by all agents receiving the same global reward signal [1]:

r1t = · · · = rNt ≡ rt

Real-world examples include the assembly of machine systems, while
a common application in Multi-Agent Reinforcement Learning (MARL) is
warehouse-robot routing [1].

Conversely, the agents’ goals are directly opposed in a Fully Competitive
setting. This is often called a zero-sum environment, where one agent’s gain is
exactly another’s loss. An agent’s core challenge is outperforming opponents,
which emphasizes the importance of opponent modeling. Mathematically,
the sum of rewards for all agents at any given time is zero [1]:

N∑
i=1

rit = 0

A sumo wrestling match is a clear example, and in the multi-agent
reinforcement learning (MARL) domain, this setting is familiar in two-player
games such as capture-the-flag or micromanagement scenarios in real-time
strategy games like StarCraft II.

The Mixed-Motive setting is the most complex and general scenario,
incorporating cooperative and competitive elements. Agents in this setting
must balance their individual goals with the group’s objectives. They may
need to form alliances to collaborate with specific agents while competing
against others. As a result, the rewards for each agent usually include both
common components—shared with their allies—and private components
unique to them. A good analogy for this dynamic is a soccer match, where
teammates work together to score against the opposing team [1].

2.3.3 MARL Training–Execution Paradigms

The training of multiple agents continues to present significant computational
challenges, particularly due to the exponential growth of state and action
space with the increasing number of agents. As a result, even contemporary
deep learning techniques can encounter limitations. Training–Execution
Paradigm for developing agent policies in a multi-agent context can be
classified into three types: Decentralized Training - Decentralized Execution,

10

Centralized Training - Centralized Execution, and Centralized Training -
Decentralized Execution [1].

Training is the phase when agents collect data to improve their skills and
behavior based on the rewards they receive. In contrast, "test time" is when
we evaluate the learned policy without making any changes. There are two
main types of agent training: centralized and distributed [22].

Centralized training involves agents improving their policies by sharing
information during training. However, this shared data is usually ignored
during testing. In contrast, distributed training occurs when individual
agents update their policies independently, creating unique strategies without
depending on external information.

In distributed training scenarios, agents learn independently without
exchanging explicit information. Each agent i possesses a policy πi : Oi →
P (Ui) that translates local observations into a distribution of individual
actions, with no shared information between agents.

The Decentralized Training - Decentralized Execution paradigm presents
a fundamental challenge, as each agent perceives the environment as non-
stationary. This perception arises because agents are unaware of each
other’s knowledge and joint actions. Limited information in the distributed
context exposes independent learners to several challenges. Alongside non-
stationarity, environments might present stochastic transitions or rewards,
complicating the learning process. Additionally, the pursuit of an optimal
policy can influence the decisions of other agents, resulting in action shad-
owing, thus affecting the exploration-exploitation balance.

(a) Decentralized training
- decentralized execution

(b) Centralized training -
centralized execution

(c) Centralized training -
decentralized execution

Figure 2.1: MARL training-execution paradigms (based on [1])

Overall, the evolving landscape of multi-agent training methodologies

11

continues to adapt and refine approaches, addressing challenges and leverag-
ing innovations for improved performance in complex environments.

2.4 Game-Theoretic Foundations for Competi-
tive Learning

The adversarial nature of cyber operations, with an attacker and a defender
having opposing objectives. Game theory provides the mathematical foun-
dations to analyze these interactions and define what constitutes an optimal
strategy for each agent in such a competitive setting. In this section, we
introduce the core concepts that underpin our competitive learning approach.
First, we will discuss the Nash Equilibrium idea, representing a pair of
stable, optimal policies for both agents. Following that, we will introduce
Exploitability, a critical metric that measures how close any given policy is
to this optimal solution.

2.4.1 Nash Equilibrium

In game theory, a Nash Equilibrium represents a stable state in a competitive
game where no player can improve their outcome by unilaterally changing
their strategy. This state is reached when both agents’ policies are the best
possible response to each other [23]. Formally, for a two-player game, a pair
of policies (π1

∗, π
2
∗) is a Nash Equilibrium if for every state s and any alteive

policies π1 and π2, the following conditions hold:

v1(s, π1
∗, π

2
∗) ≥ v1(s, π1, π2

∗) (2.1)
v2(s, π1

∗, π
2
∗) ≥ v2(s, π1

∗, π
2) (2.2)

In competitive reinforcement learning, the Nash Equilibrium represents
the optimal solution the learning process aims to converge upon. Instead
of getting trapped in "strategic cycles" where agents constantly exploit
temporary weaknesses, algorithms must guide the agents’ policies toward this
equilibrium [24]. The policy found at this point is the optimal minmax policy,
which guarantees the best possible outcome against a worst-case opponent.

2.4.2 Exploitability Metric

In addition to finding the Nash Equilibrium, a key challenge is evaluating
how close any given agent’s policy is to this optimal state. Exploitability is a
formal metric used for this purpose. It is defined as the difference between the

12

expected return of the optimal (minmax) policy and the expected return of
the policy being evaluated, when both are playing against a "worst-case" or
"best-response" opponent. In essence, it measures how much potential value
an agent loses by using a sub-optimal policy compared to the guaranteed
value of the minmax policy.

This can be formally expressed [23] as:

expl(πi) = E[G|πi
∗, π

−i
∗]− E[G|πi, π−i

∗] (2.3)

where G is the return from a single game, πi is the policy being evaluated,
πi
∗ is the optimal minmax policy, and π−i

∗ represents the opponent’s optimal
best-response policy. A policy with zero exploitability is considered a perfect
minmax policy and thus a component of a Nash Equilibrium. Therefore,
competitive training aims to drive the exploitability of an agent’s policy as
close to zero as possible.

2.5 Related Work

This section examines literature relevant to autonomous cyber defense agent
training. Our structured review covers four key areas: broad Applications of
Deep Reinforcement Learning in Cyber Defense, demonstrating RL automa-
tion of defense tasks; Competitive training for Cyber Defense, analyzing
adversarial and multi-agent approaches for enhanced defensive robustness;
RL Training Environments for Cyber Defense, evaluating prominent platform
capabilities and limitations; and Summary with Research Gap Identification,
synthesizing findings to identify current approach limitations that motivate
our contributions.

2.5.1 Competitive Training for Cyber Defense

This section examines competitive training approaches for cyber defense,
analyzing how adversarial multi-agent frameworks enhance defensive robust-
ness through strategic co-evolution. We review developments from early
game-theoretic models to contemporary Nash equilibrium-based training,
identifying current limitations and research gaps.

2.5.1.1 Direct Adversarial Training Approaches

The survey by Nguyen and Reddi [25] has a part on Game-Theoretic
Approaches, which is directly related to this topic. Among the surveyed
works, the research by Zhu et al. [26] stands out by modeling the interactions

13

between an attacker and a defender as a competitive game between two
agents. In their framework, each agent learns to counter the other based
on private information; the defender is unaware of the specific attacks
being launched, and the attacker does not know the precise defense con-
figuration. An Intrusion Detection System (IDS) provides information to
the defender, who computes a corresponding utility value to adapt their
strategy. Figure 2.2 illustrates this interaction process between the attacker
and defender. However, their IDS assumption provides complete knowledge,
yielding deterministic utility feedback that ignores real-world system noise
like false negatives and positives. While this idealization simplifies defense
problems, it fails to capture operational uncertainties our work addresses.
Additionally, their motivating scenario focuses on single vulnerability classes
(exemplified by Heartbleed attacks) rather than diverse threat ranges. Since
defenders treat attacker strategies as black boxes, learning becomes one-sided
adaptation to non-stationary opponents rather than guaranteed competitive
co-evolution where both agent policies mutually adapt.

Figure 2.2: Attacker-defender interaction with IDS

Building on these foundations, Kunz et al. [27] also explore competitive
agent training by extending the CyberBattleSim environment to support a
trainable blue agent and joint red-blue training scenarios. However, similar to
the previously discussed works, this framework also operates with an idealized
defender model. The defender’s observation space provides ground-truth
information, such as a definitive list of infected nodes, and its reward is a
direct negation of the attacker’s success. This setup does not incorporate the
challenge of processing imperfect information, such as the false positives (FP)
common in real-world Intrusion Detection Systems. Additionally, the authors
acknowledge that their choice of the abstract CyberBattleSim environment
prioritizes rapid experimentation with RL algorithms over the real-world
transferability of the trained agents. While this approach is valuable for
exploring agent training methodologies, the significant gap between this
simulated environment and the complexities of a live network is a crucial
consideration.

14

More recently, the work of McDonald et al. [2] provides a proof-of-
concept for applying competitive Reinforcement Learning (RL) to find game-
theoretic optimal policies within an Autonomous Cyber Operations (ACO)
environment. Using the CybORG simulator [28], they implement a fictitious
play algorithm with opponent sampling, where Red and Blue agents are
trained simultaneously against a growing pool of past opponent policies.
This training process is illustrated in Figure 2.3. Their work demonstrates
that this approach can steer agents from strategic cycles towards a Nash
Equilibrium. A key contribution is using exploitability as a metric to validate
that the learned policies converge towards optimal play formally.

Figure 2.3: Fictitious play training with opponent sampling (based on [2])

Despite training methodology advances, environmental idealizations per-
sist. Endpoint monitoring device notifications reach Blue agents as de-
terministic facts, ignoring noise and false alarms characteristic of real In-
trusion Detection Systems. Moreover, real-world agent testing remains
unimplemented. Authors acknowledge that CybORG environments, despite
simulator improvements, lack sufficient realism for practical trained model
deployment. This highlights ongoing challenges in bridging simulated train-
ing environments with operational network defense complexities.

15

2.5.1.2 Strategic Frameworks Based on Uncertainty

A complementary line of research explores game-theoretic frameworks that
explicitly model uncertainty about adversary capabilities. Sengupta and
Kambhampati [29] propose Bayesian Stackelberg Markov Games (BSMGs)
for Moving Target Defense scenarios, where defenders must adapt their
configurations under incomplete information about different attacker types.
Their framework addresses a key limitation in prior work by modeling at-
tacker uncertainty through probability distributions over adversary capabil-
ities, while maintaining a strong threat model where all attacker types know
the defender’s policy. The proposed BSS-Q learning algorithm converges to
Strong Stackelberg Equilibrium and demonstrates superior performance com-
pared to single-agent RL methods that ignore adversarial strategic behavior.
Though this work focuses on proactive defense mechanisms like configuration
switching rather than reactive intrusion detection, it establishes important
theoretical foundations for competitive learning under uncertainty.

Another approach to multi-agent coordination focuses on distributed
response mechanisms for large-scale network threats. Malialis and Kudenko
[30] address DDoS defense through Coordinated Team Learning (CTL),
where multiple reinforcement learning agents collaborate hierarchically to
throttle malicious traffic at different network points. Their framework
demonstrates scalability to over 100 learning agents through task decom-
position and team-based rewards, showing significant performance improve-
ments over traditional rate-limiting approaches like AIMD (Additive Increase
Multiplicative Decrease). The hierarchical communication structure enables
decentralized response without single points of control, though the approach
assumes attackers with sending rates distinguishable from legitimate users.
While not employing competitive training between attacker and defender
agents, this work illustrates the potential for coordinated multi-agent defense
strategies in realistic network scenarios.

In the domain of cyber-physical systems, game-theoretic actor-critic
approaches have shown promise for handling unknown adversarial behaviors.
Feng and Xu [31] formulate cyber defense as a continuous-time zero-sum
game between defender and attacker policies, developing a game-theoretical
actor-critic neural network architecture that learns optimal defense strategies
online. Their framework employs two actor networks—one approximating
the worst-case attack policy and another learning the optimal defense re-
sponse—trained simultaneously through deep reinforcement learning. The
approach demonstrates convergence to stable defense policies even against
completely unknown attack strategies, though evaluation remains limited to
cyber-physical system simulations rather than network security scenarios.

16

This work contributes to the theoretical understanding of simultaneous
policy learning in adversarial settings, though without our approach’s explicit
competitive training dynamics.

Our work directly addresses these gaps through CMARL-ACD (Compet-
itive Multi-Agent Reinforcement Learning for Autonomous Cyber Defense),
a novel framework that combines competitive training between adversarial
agents with realistic operational constraints. We introduce a competitive
training framework that not only pits attacker and defender agents against
each other but also does so in an environment with realistic sensor imper-
fections, explicitly modeling IDS false positives. Moreover, we also test
our agents on an emulated environment that reflects the real one using
operational tools like Snort and Metasploit, demonstrating our approach’s
practical effectiveness and transferability.

2.5.2 Reinforcement Learning Training Environment for
Cyber Defense

Training environments prove essential for all cybersecurity Reinforcement
Learning methods. Recent environmental advances trade realism against
experimentation speed. Microsoft’s CyberBattleSim provides high-level com-
puter system and security principle abstractions, enabling extensive attack
and defense tactic experimentation while limiting focus on real-world agent
transferability.

Another significant training platform is the Network Attack Simulator
(NASim) [32], which provides a lightweight, fast simulation environment
specifically designed for network penetration testing scenarios. NASim
models networks as directed graphs where nodes represent hosts with varying
operating systems, services, and vulnerabilities, while edges define network
connectivity and access permissions. The environment supports flat network
topologies and more complex multi-subnet configurations, making it suitable
for evaluating diverse attack strategies and defense mechanisms. Unlike
more complex simulators, NASim prioritizes computational efficiency and
simplicity, enabling rapid experimentation with different network config-
urations and attack scenarios. The platform implements a state-action
framework where attackers perform reconnaissance, exploitation, and lateral
movement actions, while defenders can monitor network activity and deploy
countermeasures. This makes NASim particularly valuable for developing
and testing multi-agent reinforcement learning approaches in cybersecurity,
as it provides a controlled yet realistic enough environment for competitive
training between attacker and defender agents.

17

Conversely, platforms like CybORG [28] prioritize higher fidelity for suc-
cessful real network deployment. CybORG provides standardized interfaces
for simulated and emulated environments, facilitating sim-to-real transfer.
However, environmental observation mechanisms often abstract real-world
security operations. CybORG provides defending agents with consolidated
observation objects per timestep, generated by filtering and merging endpoint
monitoring tool data like Velociraptor. While such tools see practical use,
many defenders primarily respond to continuous alert streams from Intrusion
Detection Systems (IDS) or SIEM systems. Critically, these practical alerts
frequently contain false alarms, creating challenges our work addresses.

2.5.3 Summary and Research Gap Identification

Recent advances in applying Deep Reinforcement Learning (DRL) to cyber
defense have demonstrated the potential of autonomous agents to detect,
respond to, and adapt against sophisticated threats in dynamic environments.
Despite these advances, a critical gap persists in the realism of training
and evaluation environments. Many prior studies, including those leveraging
competitive multi-agent training, rely on idealized simulation settings where
defenders receive deterministic, noise-free information from sensors such as
Intrusion Detection Systems (IDS). This assumption overlooks the preva-
lence of false positives and negatives in real-world IDS deployments, which
can significantly impact the effectiveness and robustness of learned defense
strategies. Furthermore, most competitive training frameworks are validated
exclusively in abstract or highly simplified environments, leaving the sim-to-
real transfer of agent policies largely unaddressed. Another limitation is the
lack of a comprehensive evaluation in operational or emulated environments.
While platforms like CybORG [28] have improved simulation fidelity, they
still abstract many complexities of real-world network defense, and few
works have demonstrated the deployment or effectiveness of trained agents
in practical enterprise settings.

There is a pressing need for competitive training frameworks that explic-
itly model sensor imperfections—such as IDS alert noise—and for systematic
evaluation of agent performance in both simulated and realistic (emulated)
environments. Addressing these gaps is essential for developing autonomous
cyber defense agents that are robust, transferable, and effective in real-world
operational contexts.

Our work addresses this gap through a two-stage process. First, we
model an imperfect Intrusion Detection System directly within our simu-
lation environment by embedding alert noise with false-positive IDS rules.
After training our agents under these conditions, we conduct comprehensive

18

evaluations within the simulation and in an emulated environment to evaluate
the sim-to-real transfer. This evaluation integrates an operational Snort IDS,
allowing us to demonstrate that the policies learned by our agents remain
effective in a practical enterprise setting.

Table 2.1 compares our research contributions with existing works in
automated cyber defense and reinforcement learning. This comparison
highlights the key differentiators and advancements our work introduces to
address the research gaps mentioned above.

Table 2.1: Comparison of research approaches in automated cyber defense

Criteria [2] [27] [30] [29] [31] [26] CMARL-ACD

IDS Integration ✓ ✓ ✓ ✓
Real/Emulated Evaluation ✓ ✓
Sim-to-Real Transfer ✓
Industry Tools ✓

Competitive Training ✓ ✓ ✓ ✓ ✓
Noise/Uncertainty ✓ ✓ ✓
Multi-stage Attacks ✓ ✓ ✓ ✓
Large Scale Experiment ✓

Multi-agent Learning ✓ ✓ ✓ ✓ ✓ ✓
Action Space Realism ✓ ✓ ✓ ✓ ✓
Environment Realism ✓ ✓ ✓ ✓ ✓

19

20

Chapter 3

Research Methodology

This chapter presents our methodology for training and evaluating au-
tonomous cyber defense agents. Our approach centers on competitive envi-
ronments where attacker and defender agents co-evolve through continuous
interaction across simulated and real environments.

For simulation training, we extend Network Attack Simulator (NASim),
an open-source cybersecurity simulation platform designed for reinforcement
learning research [32], with competitive multi-agent capabilities. Our en-
hanced platform incorporates attacking agents, defensive agents, and realistic
benign traffic patterns. We implement a testbed for real-world validation
using industry-standard tools, including Snort IDS, Metasploit, and iptables
firewall rules. Central to both environments is an integrated Intrusion
Detection System (IDS) model that generates alerts with false positives,
mirroring real-world security operation uncertainties.

We examine two Multi-Agent Reinforcement Learning (MARL) frame-
works: MAPPO for centralized training and IPPO for fully decentralized
learning, with tailored self-play implementation. Experimental methodology
tests these approaches across clean baseline and noisy sensor uncertainty
environments, evaluating performance in simulation and realistic conditions.
Our metrics capture agent performance and robustness, particularly defensive
agent handling of sensor noise and sim-to-real adaptation.

3.1 Problem Formulation for Cyber Defense

We formulate cyber defense as a competitive multi-agent Partially Observable
Markov Decision Process (POMDP), capturing fundamental network secu-
rity characteristics: adversarial attacker-defender dynamics and incomplete
information security decision-making.

Figure 3.1 illustrates how we model this cyber defense environment as a
POMDP. The following sections detail each component of this environment:
state space, action space, reward functions, observation space, and learning
objectives.

21

Figure 3.1: POMDP components for cyber defense

3.1.1 State Space

The full state space S captures the complete network topology and security
state, including:

• Network topology (hosts, subnets, connections)
• Service configurations on each host
• Operating system on each host
• Attacker’s discovery state on each host
• Privilege levels achieved by the attacker on each host
• Active decoy services on each host
• Alerts generated by the IDS on each host

While the environment maintains complete state information, agents
observe only partial state aspects, mirroring information asymmetries char-
acteristic of real-world cybersecurity operations.

Network Topology captures the structural organization of the network:
hosts, subnets, and their interconnections. This topology essentially defines
available attack paths and establishes defensive boundaries.

Attackers begin from external hosts beyond network perimeters, pene-
trating systems through subnet progression. Subnet 0 serves as the internet-
facing entry point, requiring initial attacker targeting of contained hosts.
Distinct host values assigned through scenario configuration files drive at-
tacker and defender reward calculations. Figure 3.2 illustrates this attack
progression.

Service Configurations specifies which services operate on each host—web
servers, SSH daemons, and similar applications. Running services poten-

22

Figure 3.2: Attack progression through network topology

tially introduce vulnerabilities, enabling unauthorized attackers to access.
Vulnerable web servers might allow remote code execution, while unpatched
SSH services could permit unauthorized authentication attempts. Defenders
must prioritize protection efforts based on service criticality and vulnerability
exposure.

Operating Systems information determines exploit compatibility per
host. Vulnerability existence alone doesn’t guarantee exploitation suc-
cess—attackers require OS-specific exploits. Windows-targeted exploits
prove ineffective against Linux systems running identical vulnerable services.

Attacker’s Discovery State tracks the attacker’s identification of net-
work hosts. Reconnaissance marks discovered hosts as "on" while undis-
covered hosts remain "off." Binary tracking provides attackers with network
exploration progress overviews, identifying surveyed areas versus unexplored
territories.

Privilege Levels measures attacker control extent over compromised
hosts, ranging from no access through user privileges to root/administrator
rights. Enhanced privileges enable broader attacker actions and potential
host leveraging as lateral movement pivot points.

23

Active Decoy Services monitors defender honeypot deployments for
attacker mislead and detection. While decoys mimic legitimate services, they
generate high-confidence alerts when accessed, providing reliable attacker
presence indicators.

IDS Alerts encompasses Intrusion Detection System notifications identi-
fying potentially malicious behavior. Alerts inevitably include false posi-
tives—benign activities mistakenly flagged as threats—reflecting imperfect
real-world security system detection capabilities.

3.1.2 Action Space

We partition the action space between attackers (Red team) and defenders
(Blue team), with each side possessing specialized capabilities. Attackers
conduct reconnaissance to identify hosts and services, exploit discovered
vulnerabilities, and escalate their privileges. Defenders deploy decoy services
and implement traffic blocking measures. Table 3.1 details these action
spaces.

Table 3.1: Attacker and defender action spaces

Red Action Space (Attacker) Blue Action Space (Defender)

Service Scan Deploy Decoy Service
Probes a specific host to discover open
ports and running services.

Sets up a honeypot service on a host to
deceive and lure the attacker.

OS Scan Block IP Address
Scans a host to identify its operating sys-
tem.

Deploys a firewall rule to block traffic from
a specific IP address identified as mali-
cious.

Subnet Scan Do Nothing (NoOp)
Scans a subnet to discover active hosts and
their IP addresses.

Takes no action for one timestep, which
can be a strategic choice to conserve re-
sources.

Exploit
Attempts to use a known vulnerability to
gain initial access to a host.
Privilege Escalation
Attempts to gain root/administrator priv-
ileges on a previously compromised ma-
chine.
Do Nothing (NoOp)
Takes no offensive action for one timestep.

Attackers follow structured progressions to compromise internal network

24

hosts, beginning with reconnaissance activities (service scans, OS scans) tar-
geting Subnet 0 perimeter hosts, then exploiting system vulnerabilities before
conducting subnet scans identifying additional connected network targets.
Lateral movement to other subnet hosts requires successful compromise of
the current subnet system. Figure 3.3 demonstrates this attack sequence.

Figure 3.3: Attack sequence to compromise internal hosts

3.1.3 Reward Functions

Reward functions establish zero-sum competitive environments between at-
tackers and defenders while maintaining asymmetric objectives.

The attacker’s reward function, shown in Equation 3.1, comprises two
primary elements: the value obtained from successful operations and the
costs associated with action execution.

RR(s, aR, s
′) = V (aR, s

′)− C(aR) (3.1)

where the following notations are used:

• V (aR, s
′) is the value gained from the action, which includes:

V (aR, s
′) =

∑
h∈Hnew

vdisc
h +

∑
h∈Hcomp

vh · (1− Idecoy(h)) (3.2)

where:

– Hnew is the set of newly discovered hosts

– vdisc
h is the discovery value of host h

– Hcomp is the set of successfully compromised hosts

– vh is the value of host h

25

– Idecoy(h) is an indicator function that equals 1 if h is a decoy
service, 0 otherwise

• C(aR) is the cost associated with executing action aR

The defender’s reward function (Equation 3.3) exhibits greater complex-
ity, incorporating defensive action values, action costs, IP blocking decision
rewards/penalties, time-based compromised system penalties, and attacker-
decoy interaction rewards.

RB(s, aB, s
′) = V (aB, s

′)− C(aB) +Rblock +Rtime +Rdecoy (3.3)

where the following notations are used:

• V (aB, s
′) is the value gained from the defender’s action

• C(aB) is the cost of executing the defensive action aB
• Rblock represents the reward/penalty from IP blocking:

Rblock =

{
pcorrect · rcorrect if block targets attacker
−pwrong if block targets innocent

(3.4)

where pcorrect is the reward factor for correct blocks, rcorrect is the reward
for correct blocks, and pwrong is the penalty for incorrect blocks

• Rtime represents the time-based penalty for compromised hosts:

Rtime = −
∑

h∈Hcomp

min(vh · α · e−β∆th , rmax) (3.5)

where:

– Hcomp is the set of compromised hosts

– vh is the value of host h

– ∆th is the number of timesteps host h has been compromised

– α and β are adjustment parameters (default: α = 1.0, β = 0.1)

– rmax is the maximum penalty per host

• Rdecoy represents the reward when the attacker interacts with decoy
services:

Rdecoy = rdecoy · Itriggered (3.6)

where rdecoy is the reward value and Itriggered equals 1 if a decoy is
triggered, 0 otherwise

26

3.1.4 Observation Space

The observation function O models incomplete information accessible to
both agents, establishing realistic attacker-defender information asymmetries
mirroring actual cybersecurity operation visibility limitations.

Defender’s Observation Space The defender’s observational capabilities
include:

• Complete visibility of system configuration (services, operating sys-
tems, processes)

• Knowledge of host values and discovery values
• Awareness of monitoring status and deployed decoy services
• Access to alerts for all IP monitoring (primary detection mechanism)
• Cannot directly observe which hosts are compromised
• Cannot determine which hosts the attacker has discovered or can reach
• Cannot see the attacker’s privilege levels on hosts

Attacker’s Observation Space The attacker’s observational capabilities
include:

• Knowledge of which hosts they have compromised
• Awareness of which hosts they’ve discovered and can reach
• Visibility of their access level on hosts
• Information about services, operating systems, and processes, but only

after performing appropriate scans
• Cannot see host values unless they’ve successfully exploited the host
• Cannot determine monitoring status or identify which services are

decoys
• No visibility into generated alerts

This observation model captures key real-world cybersecurity dynamics:

1. Attackers possess direct operational progress knowledge while lacking
defensive countermeasure insight

2. Defenders maintain comprehensive infrastructure knowledge but de-
pend on alert systems for attacker presence identification

3. Effective defense requires alert correlation with potentially compro-
mised systems for appropriate response implementation

Rather than providing unrealistic defender omniscience regarding attacker
activities, our simulation enforces alert-based detection reliance, creating
challenging, authentic detection scenarios.

27

3.1.5 Learning Objective

Within our competitive multi-agent framework, both attackers and defenders
strive to optimize their cumulative discounted rewards across time [19]:

max
πi

E

[
∞∑
t=0

γtRi(st, a
i
t, st+1)

]
(3.7)

Here, πi denotes the policy for agent i (attacker or defender), ait represents
agent i’s action at timestep t, and γ serves as the discount factor balancing
immediate against future rewards.

While both agents pursue reward maximization, our research emphasizes
robust defensive policy development. Defenders must master several capa-
bilities:

1. Accurately detect attacker activities in the presence of sensor noise
2. Deploy decoys strategically to divert and identify attackers
3. Block malicious traffic with minimal impact on benign users
4. Balance immediate defensive responses with long-term security objec-

tives

Conventional reinforcement learning typically optimizes for average-case
scenarios. Cybersecurity demands preparation for worst-case situations
and sophisticated adversaries. Consequently, we assess defensive policies
on average performance and exploitability—vulnerability to optimal attack
strategies.

Adversarial contexts necessitate multi-agent reinforcement learning algo-
rithms explicitly modeling competitive dynamics. We train defensive agents
against increasingly capable attackers, developing policies resisting diverse
attack strategies, including sophisticated adaptive attacks approximating
worst-case scenarios. This methodology ensures defensive policy effectiveness
against previously unencountered attack patterns.

3.2 Competitive Agent Design

We construct competitive agents using Independent Proximal Policy Opti-
mization (IPPO) and Multi-Agent Proximal Policy Optimization (MAPPO)
architectures. This dual approach enables comparisons between decentralized
and centralized training strategies for attacker and defender agents.

Agent architectures utilize deep neural networks with shared structural
foundations for attacker and defender agents. Principal IPPO-MAPPO
distinctions involve critic design and training information sharing protocols.

28

3.2.1 Network Structure

Both policy and value networks follow the same architectural pattern:

• Policy Networks: Input → [256] → [512] → [512] → [256] → Action
Logits

• Value Networks: Input → [256] → [512] → [512] → [256] → State
Value

• Activation Function: Hyperbolic tangent (tanh) activation function
for all hidden layers

The detailed architectures of our actor and critic networks are illustrated
in Figures 3.4 and 3.5, respectively.

Figure 3.4: Actor network architecture

Actor networks process state observations through fully-connected layers
with tanh activation functions, transforming high-dimensional observation
spaces into action probabilities for stochastic policy selection during training
and evaluation phases. The final layers output action logits processed
through softmax functions, generating valid action probability distributions.

29

Figure 3.5: Critic network architecture

Critic networks employ similar architectural foundations while serving
fundamentally different purposes—estimating state values for policy gradient
computation. Unlike actor network probabilistic outputs, critics produce
single scalar values representing expected returns from current states. Such
value estimation proves essential for PPO algorithm advantage calculation.

3.2.2 Key Architectural Decisions

Our design prioritizes independence and specialization, with each agent
maintaining distinct policy networks without attacker-defender parameter
sharing. IPPO employs independent critics observing only individual agent
state information, while MAPPO uses centralized critics accessing both agent
information during training. Agents receive specialized observations filtered
and customized for specific roles and capabilities.

3.2.3 Action Processing

Action masking guarantees agent selection of valid actions only, preventing
impossible operation attempts. This proves crucial in cybersecurity contexts
where actions become available only under specific conditions (host exploita-
tion requiring prior discovery and vulnerability identification).

3.2.4 Learning Algorithm

Our training process incorporates several essential components:

30

Table 3.2: Learning algorithm parameters

Component Configuration

Optimization PPO with clipped objective
Advantage Estimation GAE with γ = 0.99, λ = 0.95
Exploration Entropy bonus (coefficient = 0.1)
Value Loss Smooth L1 Loss
Optimizer Adam (learning rate = 3× 10−4)

3.2.5 Training Setup

Agent training uses IPPO and MAPPO algorithms with network infras-
tructure designed to provide sufficiently complex environments for realistic
attack simulation while maintaining computational efficiency. The com-
petitive training process enables agents to develop sophisticated strategies
through adversarial interaction, with specific experimental configurations and
scenario descriptions detailed in Chapter 4.

We implement competitive training paradigms where attacker and de-
fender agents learn concurrently through repeated interactions, generating
natural curricula that progressively intensify task difficulty:

1. Both agents initiate training with random policies, facilitating initial
exploration.

2. As attacker capabilities advance, defenders must evolve more sophisti-
cated defensive strategies.

3. Conversely, attackers must uncover increasingly complex attack pat-
terns as defensive capabilities improve.

4. This adversarial co-evolution persists until convergence, producing
progressively more robust policies.

During training, models are periodically saved to create comprehensive
agent pools for evaluation purposes. We employ exploitability metrics to
assess defensive model effectiveness, using worst-case performance analysis
to identify robust defensive strategies capable of handling sophisticated
adversaries. This methodology proves essential in adversarial environments
where preparation for challenging scenarios remains critical.

The experimental evaluation chapter provides the specific implementation
details of model saving intervals, evaluation episodes, and exploitability
calculations.

31

3.3 System Flow and Architecture

3.3.1 Simulation Environment

The training process in our simulator follows the architecture illustrated in
Figure 3.6. Our simulation environment extends the Network Attack Simula-
tor (NASim) with Multi-Agent Reinforcement Learning (MARL) capabilities
for competitive training between attacker and defender agents.

Figure 3.6: Simulation training architecture

The system consists of several key components working in coordination.
Initially, attacker and defender policies are initialized to begin training.
During action execution, agent actions are collected simultaneously by the
Multi-agent coordination component, which determines the execution order
for each agent. To prevent logical errors in action sequences, we establish the
rule that the defender executes first, followed by the attacker’s turn. These
actions are then executed sequentially in the competitive environment.

The execution results are subsequently forwarded to the IDS simulator
component, which determines whether to generate IDS alerts for the de-
fender and constructs complete observations for both attacker and defender

32

agents. This information is finally stored in the replay buffer to support
training through multi-agent reinforcement learning algorithms. Models are
periodically saved into policy pools throughout the training process for later
evaluation.

3.3.2 Real Environment

Infrastructure Setup We implemented real environments using virtual
machines managed through Virsh (Virtual Shell) for realistic setting eval-
uation. All virtual machines ran Ubuntu 20.04 LTS, providing consistent
experimental platforms. This setup created controlled yet realistic network
environments where attack and defense components could be deployed and
evaluated.

Attack Implementation Attacker implementations utilized industry-
standard penetration testing tools, executing realistic attack scenarios. Net-
work reconnaissance used Nmap, providing detailed host availability and
open service information. Actual exploit attempts were executed through
the Metasploit Framework, a comprehensive penetration testing platform
enabling realistic target system vulnerability exploitation.

Attack methodology follows systematic approaches mirroring real-world
adversarial behavior. Modern cyber attacks typically begin with extensive
reconnaissance to understand target environments before exploitation. This
enables attacker identification of vulnerable services, network topology un-
derstanding, and appropriate exploitation vector selection based on discov-
ered systems and configurations.

Our implementation captures realistic attack progression through careful
tool selection and configuration. Nmap, widely regarded as the industry
standard for network discovery, provides comprehensive scanning capabil-
ities including port enumeration, service detection, and operating system
fingerprinting. Such capabilities enable attackers to build accurate target
environment pictures and identify potential attack vectors.

The specific attack actions implemented in CMARL-ACD can be catego-
rized into reconnaissance and exploitation phases, as shown in the following
tables. The reconnaissance phase, detailed in Table 3.3, encompasses the
initial discovery activities that form the foundation of any successful attack
campaign.

Reconnaissance activities serve multiple critical attack lifecycle functions.
Service scanning provides essential running service and version information,
enabling an attacker to identify known vulnerabilities and select appropriate
exploits. Operating system detection allows targeted exploitation strategies

33

Table 3.3: Reconnaissance actions and tools

Action Tool Description

Service Scan Nmap Discovers open ports and services.
OS Scan Nmap Identifies operating system.
Subnet Scan Nmap Map network topology.

leveraging OS-specific vulnerabilities and behaviors. Subnet scanning reveals
overall network architecture, helping attackers understand potential target
scope and plan lateral movement strategies.

Following successful reconnaissance, attackers transition to exploitation
phases, attempting to compromise identified targets using gathered recon-
naissance intelligence. This phase requires sophisticated tools and techniques
as attackers must exploit vulnerabilities while potentially evading defensive
measures. The exploitation actions, presented in Table 3.4, represent com-
mon attack vectors encountered in real-world scenarios.

Table 3.4: Exploitation actions and tools

Action Tool Description

e_ssh Metasploit SSH service exploitation.
e_ftp Metasploit FTP service exploitation.
e_http Metasploit HTTP service exploitation.
pe_tomcat Metasploit Tomcat privilege escalation.
pe_daclsvc Metasploit DACLSVC privilege escalation.

Exploitation actions represent carefully selected common attack vector
subsets, providing a realistic representation of attacker capability while
maintaining computational efficiency in the simulation environment. SSH
exploitation targets commonly exposed enterprise services, often providing
initial target system foothold access. FTP exploitation leverages file transfer
service vulnerabilities, frequently containing misconfigurations or outdated
software versions. HTTP exploitation targets web applications and services,
representing prevalent attack vectors in modern cybersecurity incidents.

Privilege escalation actions complete attack chains by enabling the at-
tacker to gain elevated access following initial compromise. Tomcat privilege
escalation targets widely deployed Java application servers, while DACLSVC
exploitation targets Windows service vulnerabilities. Such privilege es-
calation techniques prove essential for attackers to achieve their ultimate
objectives, whether data exfiltration, system control, or lateral movement.

34

Tool and technique combinations enabled accurate, sophisticated attack
pattern simulation similar to real-world environments, providing realistic
testing grounds for our defensive approaches.

Defense Implementation Defender components used production-grade
security tools, focusing on two primary defensive strategies: traffic filtering
and deception. Such strategies represent fundamental modern cybersecurity
operation approaches, providing reactive and proactive defense capabilities.

Traffic filtering through IP blocking provides immediate threat mitiga-
tion by preventing further communication from identified malicious sources,
serving as a critical first-line defense, enabling rapid detection of threats, and
limiting attacker network resource access. IP blocking effectiveness depends
heavily on accurate threat detection and timely response, making it well-
suited for machine learning-based defensive system integration.

Complementing traffic filtering, decoy deployment creates attractive tar-
gets, redirecting attackers from genuine assets while providing early compro-
mise attempt warnings. Deception technologies gain significant cybersecurity
attention due to sophisticated attack detection capabilities that might bypass
traditional security measures. Creating realistic but non-critical targets
enables defenders to observe attacker behavior, gather attack technique
intelligence, and buy valuable time for additional protective measures im-
plementation.

Integrating defensive strategies in our environment realistically represents
modern security operations. Table 3.5 summarizes specific defensive actions
available to our agents and production tools used for implementation.

Table 3.5: Defender actions and tools

Action Tool Description

Deploy Decoy Docker Containerized honeypot services.
Block IP iptables Firewall rules for IP blocking.

Specific tool choices for defensive actions reflect industry best practices,
ensuring realistic performance characteristics. IP blocking actions executed
through iptables, the standard Linux firewall framework, allow precise net-
work traffic filtering control. Iptables implementation provides robust packet
filtering capabilities with minimal performance overhead, suiting real-time
defensive operations. Implementation supports individual IP blocking and
subnet-based filtering, enabling defender threat response at various scales,
from single compromised hosts to entire malicious networks.

35

We leveraged Docker containers with specific images tailored to simulate
vulnerable services for decoy deployment. Containerization approaches en-
abled rapid decoy deployment and reconfiguration across networks, providing
agile deception capabilities that adapt to changing attack patterns. Docker’s
lightweight containerization ensures rapid decoy service deployment without
significant resource consumption, allowing defenders to create extensive
deception networks when needed.

Each decoy service is configured to appear authentic while logging all
interaction attempts for analysis. Decoys were designed to closely mimic real
services to attract the attacker’s attention while providing clear malicious
activity indicators. This approach enables defenders to distinguish between
legitimate traffic and potential attacks, providing valuable attacker tactic
intelligence and enabling informed defensive decisions.

Intrusion Detection System The Intrusion Detection System (IDS) was
a critical real-environment implementation component. We deployed Snort,
an industry-standard open-source IDS, to monitor network traffic and detect
potentially malicious activities. Snort was configured with custom rules iden-
tifying common attack patterns, including port scanning, vulnerable service
connection attempts, and exploitation signatures. Snort-generated alerts fed
into defensive agent observation spaces, providing real-time potential threat
information.

In the Operational Noise Scenario, we introduced realistic false positives
by configuring Snort with strict detection rules. We implemented rules that
generate alerts when three SSH connection attempts occur within 10-second
windows. This threshold was intentionally selected, creating ambiguity and
potentially representing normal user behavior (connection retries during
legitimate access) or potential attacker brute force attempts. This config-
uration created challenging environments where defenders must distinguish
between benign and malicious activities despite sensor uncertainty, mirroring
real-world security operation challenges.

The complete evaluation flow in the real environment is illustrated in
Figure 3.7. Similar to the simulation environment, attacker and defender
actions are collected by the coordination component and executed within
the competitive environment. However, instead of simulating action logic
against the environment, the competitive environment utilizes tool executors
containing essential tools for direct interaction with the real environment,
including Nmap, Metasploit, Docker scripts, and iptables. The competitive
environment employs these tools to interact with the real environment and
receive accurate action results.

36

Figure 3.7: Real environment evaluation flow architecture

Additionally, the real environment is continuously monitored by Snort to
detect attacker activities, with alert information from the Snort IDS updated
in real-time to the environment. Final results are sent back to the agents
to inform subsequent actions. During execution, a Normal user scheduler
component regularly performs connections and utilizes services on the real
network system, creating noise to evaluate the defender’s robustness against
environmental disturbances.

37

38

Chapter 4

Experimental Evaluation

This chapter evaluates our multi-agent reinforcement learning approaches
for autonomous cyber defense. Building upon Chapter 3 methodology, we
assess IPPO and MAPPO architecture performance across clean baseline
environments and operational noise scenarios simulating real-world sensor
uncertainty. Evaluations compare the algorithm’s defensive capabilities
against various attacker profiles, including random and worst-case trained
adversaries, measuring effectiveness in simulated and real network environ-
ments.

Primary evaluation goals determine which defensive approaches demon-
strate superior robustness against sophisticated attackers while maintaining
effectiveness under sensor noise and false positives. We analyze agent
capabilities in protecting critical network assets, deploying strategic decoys,
and accurately identifying malicious traffic. Evaluations provide insights
into practical applicability for real-world cybersecurity operations while
highlighting learning architecture trade-offs in adversarial settings.

4.1 Experiment Setup

This section details the experimental configurations used to evaluate our
multi-agent reinforcement learning approaches. The experimental setup
builds upon the methodology outlined in Chapter 3, providing concrete
implementation parameters and evaluation protocols.

4.1.1 Experiment Scenarios

Agent training and evaluation are conducted across two contrasting scenarios
designed to assess defensive capabilities under different operational condi-
tions:

1. Baseline Scenario: A pristine environment featuring perfect obser-
vations and noise-free detection, enabling agents to develop optimal

39

strategies under ideal conditions. IDS rules deliver completely accurate
detections without false positives or negatives.

2. Operational Noise Scenario: A realistic environment incorporating
imperfect observations and intrusion detection system noise. SSH-
related IDS rules specifically generate false positives, introducing un-
certainty for defenders about whether detected SSH activities represent
genuine attacks or legitimate system operations.

4.1.2 Network Environment Configuration

Our experimental evaluation uses a network infrastructure for a compact yet
sufficiently complex realistic attack simulation. The network comprises four
internal subnets plus one internet-facing subnet (subnet 0), with simulated
environments including five hosts distributed across subnets, each featuring
distinct operating systems, services, and assigned values. Table 4.1 details
this network configuration, while Figure 4.1 illustrates the overall topology
and connectivity patterns.

Figure 4.1: Network topology overview

Network structures implement hierarchical connectivity patterns with
subnet one connecting to the Internet and remaining subnets arranged in
tiered connections. This architecture compels attacker network pivoting,
replicating lateral movement patterns characteristic of real-world attacks.

40

Table 4.1: Network configuration and host details

Host ID OS Services Subnet Reward

Simulation Real

(1,0) Linux Linux HTTP, SSH, Tomcat 1 10
(2,0) Linux Linux SSH, FTP, Tomcat 2 40
(3,0) Windows Linux FTP 3 70
(3,1) Windows Linux FTP, HTTP, DACLSVC 3 70
(4,0) Windows Linux SSH, FTP 4 100

4.1.3 Attack Tools and Capabilities

The attacker agent can access several exploits and privilege escalation tech-
niques, as detailed in Table 4.2.

Table 4.2: Available attack tools

Tool Type Name Cost Privilege

Exploits e_ssh 3 user
e_ftp 1 root
e_http 2 user

Privilege Escalation pe_tomcat 1 root
pe_daclsvc 1 root

For scenario simplification, attack tools target any operating system
running corresponding services or processes, irrespective of Linux or Win-
dows distinctions in the simulation environment. In the real environment
deployment, all hosts uniformly run Linux operating systems to simplify
infrastructure management while preserving the essential attack-defense
dynamics. This abstraction enables focus on fundamental attack-defense
dynamics rather than OS-specific vulnerability details.

4.1.4 Training and Evaluation Method

Episodes are limited to 150 timesteps, providing adequate time for complex
attack sequences while preserving manageable training durations. Dur-
ing training, defender and attacker agent models are saved every 100,000
timesteps, creating comprehensive agent pools at various development stages.
This approach enables evaluation of capability evolution throughout training.

41

For exploitability analysis, each defender model is evaluated against
a pool of attackers across 50 episodes, extracting worst-case performance
scores. Defenders with the highest worst-case performance demonstrate the
greatest robustness and superior ability to handle challenging adversarial
scenarios. Following worst-case score determination, exploitability values are
calculated by computing relative distances between the best defender’s worst-
case values and other defender values, quantifying defender vulnerability
compared to the most robust defender.

4.2 Training Results and Analysis

4.2.1 Training Results

Figures 4.2 and 4.3 present training curves demonstrating agent perfor-
mance evolution over time, revealing competitive attacker-defender dynamics
with shifting advantage periods as agents develop strategies and counter-
strategies. Both attacker and defender agents eventually achieve convergence
and stabilization, though the required training duration varies by scenario.
The Baseline Scenario required 400,000 training timesteps, while the Opera-
tional Noise Scenario required 3 million timesteps for proper convergence.

Training curves reveal MAPPO’s superior stability compared to IPPO,
exhibiting minimal amplitude fluctuations during training. IPPO displays
considerably larger training oscillations by contrast. This disparity reflects
MAPPO’s theoretical stability advantages over IPPO given our specific
problem formulation and environmental conditions.

Particularly interesting observations emerged during Operational Noise
Scenario training regarding attacker behavioral evolution. Initially, attackers
attempted diverse exploits targeting various services. After experiencing re-
peated defensive blocks, they gradually focused on vulnerabilities associated
with false positives, especially SSH services. We configured IDS to generate
SSH connection false positives, incorrectly classifying legitimate user SSH
activities as malicious attacks. Attackers learned to exploit this confusion
by targeting SSH vulnerabilities more frequently, capitalizing on defender
uncertainty, and distinguishing legitimate from malicious SSH traffic.

4.2.2 Exploitability and Worst-Case Analysis

Figures 4.4, 4.5, 4.6, and 4.7 present the worst-case performance and ex-
ploitability results for our defensive agents across both scenarios. These fig-
ures illustrate how the defensive capabilities evolved throughout the training

42

(a
)

B
as

el
in

e
Sc

en
ar

io
(b

)
O

pe
ra

ti
on

al
N

oi
se

Sc
en

ar
io

F
ig

ur
e

4.
2:

IP
P

O
tr

ai
ni

ng
cu

rv
es

43

(a)
B

aseline
Scenario

(b)
O

perationalN
oise

Scenario

F
igure

4.3:
M

A
P

P
O

training
curves

44

process and provide insight into the robustness of each approach.
Baseline scenario results (Figures 4.4 and 4.5) show worst-case perfor-

mance progression as training advances, with both IPPO and MAPPO
defenders improving over time. Exploitability curves demonstrate defender
checkpoint vulnerability compared to the most robust model, with lower
values indicating stronger defensive capabilities against worst-case attackers.

Figures 4.6 and 4.7 show identical metrics for the Operational Noise
Scenario, revealing sensor uncertainty effects on defensive approach learning
and robustness. Results enable IPPO and MAPPO architecture resilience
comparisons when facing additional intrusion detection system false pos-
itive challenges. MAPPO algorithm values show minimal variation after
reaching optimal points, demonstrating approach stability. IPPO exhibits
significant fluctuations with higher amplitude, indicating less stability than
MAPPO methods. MAPPO stability advantages prove vital in cybersecurity
applications where consistent defense performance remains critical for oper-
ational deployment. Centralized MAPPO training provides more reliable
convergence properties under noisy conditions, potentially suiting real-world
security environments where sensor reliability cannot be guaranteed and
defensive consistency remains paramount.

4.3 Experiment Results and Analysis

4.3.1 Performance Metrics

We employ specialized metrics explicitly designed for cyber defense eval-
uation to assess actual model effectiveness in network defense domains.
Metrics focus on defensive capabilities against attackers while maintaining
normal network operations without disrupting legitimate users. Domain-
specific evaluation criteria rather than general reinforcement learning metrics
enable a better understanding of CMARL-ACD’s performance in operational
security environments.

We report three complementary metrics computed per episode and aver-
aged over the evaluation set:

Hosts Compromised (HC) This metric counts the number of unique
hosts on which the attacker executed at least one successful exploit.
A lower value is better, indicating a more effective defense.

Decoy Interaction Ratio (DIR) This metric measures the effectiveness
of the defender’s decoys by calculating the proportion of the attacker’s
exploit actions that were successfully diverted to a decoy instead of a

45

F
igure

4.4:
W

orst
case

analysis
for

IP
P

O
-

B
aseline

Scenario

46

F
ig

ur
e

4.
5:

W
or

st
ca

se
an

al
ys

is
fo

r
M

A
P

P
O

-
B

as
el

in
e

Sc
en

ar
io

47

F
igure

4.6:
W

orst
case

analysis
for

O
perationalN

oise
Scenario

-
IP

P
O

48

F
ig

ur
e

4.
7:

W
or

st
ca

se
an

al
ys

is
fo

r
O

pe
ra

ti
on

al
N

oi
se

Sc
en

ar
io

-
M

A
P

P
O

49

real asset. It is calculated as:

DIR =
attacker exploits on decoys

total attacker exploits performed

True Blocking Rate (TBR) This metric measures the precision of the
defender’s blocking actions, reflecting how often a block action correctly
targets the attacker. It is calculated as:

TBR =
malicious IPs correctly blocked
total block actions performed

These metrics provide comprehensive defensive agent performance views,
enabling tracking of system protection effectiveness while maintaining normal
system functionality without disrupting legitimate users. True Block Rate
measures defensive action precision, ensuring accurate agent distinction
between malicious and benign traffic. Hosts Compromised metrics directly
quantify the defender’s primary objectives of preventing successful attacks.
Decoy Interaction Ratio evaluates the effectiveness of the deception strategy,
which is designed to redirect attacker efforts from critical assets. This
balanced metric set ensures the determination of defensive approach security
effectiveness and operational impact.

4.3.2 Experiment Results

The results of our experiments are displayed in Figures 4.8, 4.9 and 4.10,
which provide key insights into defensive approach effectiveness across differ-
ent scenarios and against various attacker models. In addition, the numerical
results are presented in Table 4.3.

4.3.2.1 Baseline Scenario Analysis

In clean baseline scenarios (Table 4.3 and Figure 4.8), IPPO and MAPPO
defensive agents demonstrated strong capabilities. Without defenders, at-
tackers successfully compromised significant host numbers—3.8 average for
random attackers, and precisely one host for trained attackers. Deploying
our defensive agents, both MAPPO and IPPO, substantially reduced com-
promised host numbers against random attackers to 0.64 hosts, representing
83% successful attack reductions, against worst-case trained attackers. Both
defensive approaches limited compromise to single hosts, indicating robust
defensive capabilities even against sophisticated adversaries.

Deception strategy effectiveness appeared evident in decoy interaction
ratios (DIR), reaching 36% against random attackers, as illustrated in

50

Ta
bl

e
4.

3:
P
er

fo
rm

an
ce

ev
al

ua
ti

on
ov

er
vi

ew

D
ef

en
d
er

A
tt

ac
ke

r
E
nv

ir
on

m
en

t
B

as
el

in
e

S
ce

n
ar

io
O

p
er

at
io

n
al

N
oi

se
S
ce

n
ar

io

H
C

↓
D

IR
↑

T
B

R
↑

H
C

↓
D

IR
↑

T
B

R
↑

N
on

e
R

an
do

m
Si

m
ul

at
io

n
3.

80
2

0%
N

/A
3.

80
2

0%
N

/A
R

ea
l

3.
81

0%
N

/A
3.

81
0%

N
/A

M
A

P
P

O
Si

m
ul

at
io

n
1

0%
N

/A
3

0%
N

/A
R

ea
l

1
0%

N
/A

3
0%

N
/A

IP
P

O
Si

m
ul

at
io

n
1

0%
N

/A
3

0%
N

/A
R

ea
l

1
0%

N
/A

3
0%

N
/A

M
A

P
P

O
R

an
do

m
Si

m
ul

at
io

n
0.

64
36

%
10

0%
0.

72
36

.7
1%

10
0%

R
ea

l
0.

64
36

%
10

0%
0.

94
31

.8
5%

10
0%

W
or

st
-c

as
e

Si
m

ul
at

io
n

1
0%

10
0%

3
0%

10
0%

R
ea

l
1

0%
10

0%
3

0%
10

0%

IP
P

O
R

an
do

m
Si

m
ul

at
io

n
0.

64
36

%
10

0%
0.

68
36

.9
9%

10
0%

R
ea

l
0.

64
36

%
10

0%
0.

9
26

.7
%

98
.0

%
W

or
st

-c
as

e
Si

m
ul

at
io

n
1

0%
10

0%
2

0%
10

0%
R

ea
l

1
0%

10
0%

2
0%

10
0%

N
ot

e:
H

C
=

H
os

ts
C

om
pr

om
is

ed
(a

ve
ra

ge
nu

m
be

r)
,D

IR
=

D
ec

oy
In

te
ra

ct
io

n
R

at
io

,T
B

R
=

T
ru

e
B

lo
ck

in
g

R
at

e;
th

e
ar

ro
w

sy
m

bo
l↓

in
di

ca
te

s
th

at
lo

w
er

is
be

tt
er

,a
nd
↑

in
di

ca
te

s
th

at
hi

gh
er

is
be

tt
er

.

51

Random
Baseline

Random
Operational Noise

Worst-case
Baseline

Worst-case
Noise

0

1

2

3

4 3.
8

3.
8

1

3

0.
64

0.
72 1

3

0.
64 0
.9
4

1

3

0
.6
4

0
.6
8 1

2

0
.6
4 0
.9 1

2

Attack Scenarios

H
os

ts
C

om
pr

om
is

ed
(L

ow
er

is
B

et
te

r)

No Defender
MAPPO Sim
MAPPO Real

IPPO Sim
IPPO Real

Figure 4.8: Defensive performance across attack scenarios showing robust
capabilities with minimal sim-to-real degradation.

Figure 4.9. This shows effective attack attempt redirection, with both IPPO
and MAPPO achieving similar deception success rates in baseline scenarios.
Both algorithms achieved perfect true block rates (TBR) in this scenario,
with 100% malicious traffic identification accuracy, as shown in Figure 4.10.
Results confirm that under ideal conditions with accurate sensor data, IPPO
and MAPPO can protect critical network assets and correctly identify attack
patterns.

4.3.2.2 Operational Noise Scenario Analysis

Operational noise scenarios (Table 4.3 and Figure 4.8) reveal more significant
algorithm differences when facing imperfect sensor data. Baseline vulnerabil-
ity without defenders increased to 3 compromised hosts for trained attackers,
highlighting increased scenario challenges. Against random attackers, both
MAPPO and IPPO continued performing well, maintaining low compromise
rates (0.68-0.94 hosts) and high decoy interaction ratios (26.7-36.99%), as
detailed in Figure 4.9. However, IPPO demonstrated superior robustness
when facing worst-case trained attackers, limiting compromises to 2 hosts in
both simulation and real environments, while MAPPO allowed three host
compromises. Regarding detection accuracy, both algorithms maintained
high true block rates across scenarios, with IPPO showing slight degradation
to 98.0% in real operational noise scenarios while MAPPO maintained

52

Simulation;
Baseline

Real;
Baseline

Simulation;
Operational

Noise

Real;
Operational

Noise

0

20

40 36 36 36
.7
1

31
.8
5

36 36 36
.9
9

26
.7

Environment and Scenario

D
ec

oy
In

te
ra

ct
io

n
R

at
io

(%
)

MAPPO
IPPO

Figure 4.9: Decoy interaction effectiveness showing MAPPO’s superior real-
environment deception performance.

perfect 100% accuracy, as illustrated in Figure 4.10. These findings suggest
both approaches provide robust sensor uncertainty resilience, with IPPO
showing slightly better performance against sophisticated attacks despite
minor accuracy trade-offs.

4.4 Comparative Analysis

4.4.1 Simulation-to-Real Transfer

Critical evaluation aspects involved determining simulation-trained policy
transfer to realistic environments. Both algorithms demonstrated excellent
sim-to-real transfer, with minimal performance differences between simu-
lation and real-world results. In baseline scenarios, performance metrics
remained identical between simulation and real environments, showing strong
consistency. More significant differences emerged in operational noise sce-
narios, but overall trends remained consistent, validating our simulation
approach. Close simulation-real environment result alignment proves par-
ticularly noteworthy for baseline scenarios. For instance, hosts compromised
(HC) metrics averaged across both algorithms against random attackers show
a 0.25 difference between simulation (0.7 average) and real environments
(0.92 average) in the Operational Noise Scenario. Decoy interaction ratios
(DIR) show some variation, with an average decrease from 36.85% in sim-
ulation to 29.28% in real environments under operational noise conditions,

53

Sim
Baseline

Real
Baseline

Sim
Noise

Real
Noise

90

95

100

10
0

10
0

10
0

10
0

10
0

10
0

10
0

98

Environment and Scenario

Tr
ue

B
lo

ck
in

g
R

at
e

(%
) MAPPO

IPPO

Figure 4.10: True blocking rate showing MAPPO maintains perfect 100%
accuracy across all scenarios, while IPPO experiences slight degradation to
98.0% under operational noise in real environments.

indicating some degradation in deception strategy effectiveness when trans-
ferred to real environments.

Successful transfer indicates that CMARL-ACD’s simulation environment
captures essential cyber defense problem dynamics, enabling practical de-
fensive agent training in realistic settings. Performance metric consistency
between simulation and real-world deployment suggests defenders trained
using our approach can maintain protective capabilities when deployed in
operational environments. This proves crucial for practical cybersecurity
applications, where training-deployment environment gaps often lead to
significant performance degradation. Our results demonstrate that when
properly implemented, IPPO and MAPPO approaches can overcome sim-
to-real gaps and provide effective defense against various real-world attack
strategies.

4.4.2 IPPO and MAPPO Performance Comparison

IPPO and MAPPO comparisons across both scenarios yield several im-
portant insights. Both approaches performed identically well in baseline
scenarios with perfect observation data, without any performance differences.
However, differences became apparent when introducing operational noise.
IPPO demonstrated greater robustness against worst-case trained attackers
in operational noise scenarios, limiting compromises to 2 hosts compared to
MAPPO’s 3 hosts, suggesting better uncertainty generalization capabilities.
However, MAPPO maintained higher decoy interaction ratios in simulation

54

under noise conditions (36.71% vs. 36.99%), though both experienced degra-
dation in real environments. Both algorithms maintained high true block
rates across scenarios, with IPPO achieving 98.0% accuracy in real opera-
tional noise environments while MAPPO maintained perfect 100% accuracy,
demonstrating robust precision in identifying malicious traffic. Results
partially align with theoretical expectations: decentralized approaches like
IPPO show slightly better robustness against sophisticated attackers under
noise, while both approaches demonstrate similar coordination capabilities.

55

56

Chapter 5

Conclusion

This research developed and evaluated autonomous cyber defense agents
using multi-agent reinforcement learning (MARL). We formulated cyber
defense challenges as competitive, partially observable Markov Decision
Processes (POMDPs) reflecting real-world network security’s adversarial and
information-asymmetric nature. Primary contributions involved creating
simulation environments and training defensive agents using decentralized
(IPPO) and centralized (MAPPO) architectures. Agent testing across clean
baseline and noisy sensor uncertainty scenarios enabled rigorous robustness
and practical applicability assessment.

5.1 Summary of Findings

Experimental evaluation yielded several key findings contributing to au-
tonomous cyber defense. In clean baseline scenarios without sensor noise,
IPPO and MAPPO demonstrated high effectiveness, reducing host com-
promises by approximately 83% while proving capability against worst-case
adversaries. Introducing operational noise revealed important performance
differences: MAPPO maintained perfect 100% blocking precision across
all scenarios, while IPPO experienced slight degradation to 98% in real
operational environments, though IPPO demonstrated superior robustness
against sophisticated worst-case attackers. Competitive training paradigms
successfully fostered arms races, producing intelligent attackers adapting
strategies to exploit environmental weaknesses like false positive patterns.
Critical outcomes included successful sim-to-real policy transfer, where
simulation-trained agents performed consistently in realistic environments,
validating our simulation methodology for deployable agent creation.

Research confirms MARL as a viable, robust approach for training
autonomous cyber defense agents. Findings highlight clear trade-offs between
evaluated centralized and decentralized methods. Centralized MAPPO
demonstrated advantages in maintaining perfect blocking precision (100

57

5.2 Limitations of the Study

Despite promising results, this study presents several limitations, offering
future work avenues. Key limitations involve environmental scale and
complexity; our network topology simplifies large-scale enterprise networks,
with agent scalability untested in such settings.

Additionally, while representative, both attacker and defender action
spaces remained discrete, failing to capture the full nuanced range of real-
world cyber operations. The study assumed static environments, whereas real
networks prove dynamic with emerging devices, patches, and vulnerabilities
over time. Benign user traffic models remained simplistic, where more
complex behavior models could introduce new defensive agent challenges.

5.3 Directions for Future Research

Building on findings and limitations, we propose several future research
directions. Primary directions involve improving scalability through Hierar-
chical Reinforcement Learning (HRL) techniques for managing larger, more
complex network environments. Critical research avenues include agents
handling continuous and expanded action spaces, enabling more nuanced
defensive maneuvers beyond discrete actions.

Incorporating lifelong or continual learning could address static environ-
ment limitations, allowing agent adaptation to new threats and network
changes without complete retraining. For practical deployment, exploring
human-in-the-loop frameworks and explainable AI (XAI) proves critical for
building trust and ensuring human analysts understand and validate agent
decisions. Extensions could involve developing advanced deception strategies,
such as dynamically managed decoys or honeynets, actively manipulating
attacker beliefs and actions.

To facilitate future research and enable reproducibility, we plan to make
the CMARL-ACD framework and all experimental code publicly available
as open-source software. This will include the extended NASim simulation
environment, competitive training implementations, real-world evaluation
testbed configurations, and comprehensive documentation. Open-sourcing
this work aims to accelerate research progress in autonomous cyber defense
and provide the cybersecurity research community with validated tools for
developing and evaluating multi-agent reinforcement learning approaches in
realistic adversarial environments.

58

References

[1] L. Yuan, Z. Zhang, L. Li, C. Guan, and Y. Yu, “A survey of progress on
cooperative multi-agent reinforcement learning in open environment,”
2023. [Online]. Available: https://arxiv.org/abs/2312.01058

[2] G. Mcdonald, L. Li, and R. Al Mallah, “Finding the optimal security
policies for autonomous cyber operations with competitive reinforcement
learning,” IEEE Access, 2024.

[3] W. Alhasan, M. Wannous, A. Abualkishik, M. R. Al Nasar, L. Ali,
and H. Al-Zoubi, “An in-depth examination of cybersecurity: Unveiling
contemporary trends and recent advancements in the world of cyber
threats,” in 2024 2nd International Conference on Cyber Resilience
(ICCR), 2024, pp. 1–11.

[4] P. Rathod, N. Polemi, M. Lehto, K. Kioskli, J. Wessels, and R. Lugo,
“Leveraging the european cybersecurity skills framework(ecsf) in eu
innovation projects: Workforce development through skilling, upskilling,
and reskilling,” in 2024 IEEE Global Engineering Education Conference
(EDUCON), 2024, pp. 1–9.

[5] A. Babar, L. Li, A. Taylor, and M. Zulkernine, “Towards autonomous
network defense: Reinforcement learning environment for a defense
agent,” in 2024 IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE), 2024, pp. 168–169.

[6] V. Khatri, G. Agarwal, A. K. Gupta, and A. Sanghi, “Machine learning
and artificial intelligence in cybersecurity: Innovations and challenges,”
in 2024 Second International Conference on Advanced Computing &
Communication Technologies (ICACCTech), 2024, pp. 732–737.

[7] A. Shaheen, A. Badr, A. Abohendy, H. Alsaadawy, and N. Alsayad,
“Reinforcement learning in strategy-based and atari games: A
review of google deepminds innovations,” 2025. [Online]. Available:
https://arxiv.org/abs/2502.10303

[8] K. Kurach, A. Raichuk, P. Stańczyk, M. Zając, O. Bachem, L. Espeholt,
C. Riquelme, D. Vincent, M. Michalski, O. Bousquet et al., “Google
research football: A novel reinforcement learning environment,” in

59

https://arxiv.org/abs/2312.01058
https://arxiv.org/abs/2502.10303

Proceedings of the AAAI conference on artificial intelligence, vol. 34,
no. 04, 2020, pp. 4501–4510.

[9] Y. Ran, H. Hu, X. Zhou, and Y. Wen, “Deepee: Joint optimization
of job scheduling and cooling control for data center energy efficiency
using deep reinforcement learning,” in 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), 2019, pp. 645–
655.

[10] D. Katsikas, N. Passalis, and A. Tefas, “Bi-directional knowledge transfer
for continual deep reinforcement learning in financial trading,” in 2024
IEEE 34th International Workshop on Machine Learning for Signal
Processing (MLSP), 2024, pp. 1–6.

[11] M. Li, M. Ma, L. Wang, Z. Pei, J. Ren, and B. Yang, “Multiagent deep re-
inforcement learning based incentive mechanism for mobile crowdsensing
in intelligent transportation systems,” IEEE Systems Journal, vol. 18,
no. 1, pp. 527–538, 2024.

[12] V. Mavroudis, G. Palmer, S. Farmer, K. S. Whitehead, D. Foster,
A. Price, I. Miles, A. Caron, and S. Pasteris, “Guidelines for applying
rl and marl in cybersecurity applications,” 2025. [Online]. Available:
https://arxiv.org/abs/2503.04262

[13] Y. Tang, J. Sun, H. Wang, J. Deng, L. Tong, and W. Xu, “A method of
network attack-defense game and collaborative defense decision-making
based on hierarchical multi-agent reinforcement learning,” Computers &
Security, vol. 142, p. 103871, 2024.

[14] Artificial Intelligence School, “Introduction to q-learning,” https:
//artificialintelligenceschool.com/introduction-to-q-learning/, accessed:
2025-01-27.

[15] Wikipedia, “Partially observable markov decision process,” https://en.
wikipedia.org/wiki/Partially_observable_Markov_decision_process,
accessed: 2025-01-27.

[16] S.-K. Kim, A. Bouman, G. Salhotra, D. D. Fan, K. Otsu, J. Burdick,
and A.-a. Agha-mohammadi, “Plgrim: Hierarchical value learning for
large-scale exploration in unknown environments,” in Proceedings of the
international conference on automated planning and scheduling, vol. 31,
2021, pp. 652–662.

60

https://arxiv.org/abs/2503.04262
https://artificialintelligenceschool.com/introduction-to-q-learning/
https://artificialintelligenceschool.com/introduction-to-q-learning/
https://en.wikipedia.org/wiki/Partially_observable_Markov_decision_process
https://en.wikipedia.org/wiki/Partially_observable_Markov_decision_process

[17] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement
learning for multiagent systems: A review of challenges, solutions, and
applications,” IEEE transactions on cybernetics, vol. 50, no. 9, pp. 3826–
3839, 2020.

[18] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[19] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA: MIT Press, 2018.

[20] H. Zhang and T. Yu, “Taxonomy of reinforcement learning algorithms,”
Deep reinforcement learning: Fundamentals, research and applications,
pp. 125–133, 2020.

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017. [Online]. Available:
https://arxiv.org/abs/1707.06347

[22] S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning:
a survey,” Artificial Intelligence Review, vol. 55, no. 2, pp. 895–943,
2022.

[23] J. F. Nash Jr, “Equilibrium points in n-person games,” Proceedings of
the national academy of sciences, vol. 36, no. 1, pp. 48–49, 1950.

[24] D. Fudenberg and D. K. Levine, The theory of learning in games. MIT
press, 1998, vol. 2.

[25] T. T. Nguyen and V. J. Reddi, “Deep reinforcement learning for cyber
security,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 34, no. 8, pp. 3779–3795, 2023.

[26] M. Zhu, Z. Hu, and P. Liu, “Reinforcement learning algorithms for
adaptive cyber defense against heartbleed,” in Proceedings of the first
ACM workshop on moving target defense, 2014, pp. 51–58.

[27] T. Kunz, C. Fisher, J. La Novara-Gsell, C. Nguyen, and L. Li, “A multia-
gent cyberbattlesim for rl cyber operation agents,” in 2022 International
Conference on Computational Science and Computational Intelligence
(CSCI). IEEE, 2022, pp. 897–903.

61

https://arxiv.org/abs/1707.06347

[28] M. Standen, M. Lucas, D. Bowman, T. J. Richer, J. Kim, and D. Mar-
riott, “Cyborg: A gym for the development of autonomous cyber agents,”
arXiv preprint arXiv:2108.09118, 2021.

[29] S. Sengupta and S. Kambhampati, “Multi-agent reinforcement learning
in bayesian stackelberg markov games for adaptive moving target de-
fense,” arXiv preprint arXiv:2007.10457, 2020.

[30] K. Malialis and D. Kudenko, “Distributed response to network intrusions
using multiagent reinforcement learning,” Engineering Applications of
Artificial Intelligence, vol. 41, pp. 270–284, 2015.

[31] M. Feng and H. Xu, “Deep reinforecement learning based optimal defense
for cyber-physical system in presence of unknown cyber-attack,” in 2017
IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,
2017, pp. 1–8.

[32] J. Schwartz and H. Kurniawatti, “Network attack simulator (NASim),”
https://networkattacksimulator.readthedocs.io/, 2019, a lightweight,
fast simulation environment for network penetration testing scenarios.

62

https://networkattacksimulator.readthedocs.io/

	Abstract
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	 Introduction
	Cybersecurity Challenges
	Reinforcement Learning for Cyber Defense
	Problem Statement
	Thesis Contributions
	Thesis Outline

	 Background and Related Work
	Reinforcement Learning
	Markov Decision Processes
	Partially Observable Markov Decision Processes
	Reinforcement Learning Paradigm

	Deep Reinforcement Learning Methods
	Value-Based Reinforcement Learning
	Policy-Based Reinforcement Learning
	Actor–Critic Methods

	Multi-Agent Reinforcement Learning (MARL)
	MARL Overview
	MARL System Types
	MARL Training–Execution Paradigms

	Game-Theoretic Foundations for Competitive Learning
	Nash Equilibrium
	Exploitability Metric

	Related Work
	Competitive Training for Cyber Defense
	Direct Adversarial Training Approaches
	Strategic Frameworks Based on Uncertainty

	Reinforcement Learning Training Environment for Cyber Defense
	Summary and Research Gap Identification

	 Research Methodology
	Problem Formulation for Cyber Defense
	State Space
	Action Space
	Reward Functions
	Observation Space
	Learning Objective

	Competitive Agent Design
	Network Structure
	Key Architectural Decisions
	Action Processing
	Learning Algorithm
	Training Setup

	System Flow and Architecture
	Simulation Environment
	Real Environment

	 Experimental Evaluation
	Experiment Setup
	Experiment Scenarios
	Network Environment Configuration
	Attack Tools and Capabilities
	Training and Evaluation Method

	Training Results and Analysis
	Training Results
	Exploitability and Worst-Case Analysis

	Experiment Results and Analysis
	Performance Metrics
	Experiment Results
	Baseline Scenario Analysis
	Operational Noise Scenario Analysis

	Comparative Analysis
	Simulation-to-Real Transfer
	IPPO and MAPPO Performance Comparison

	 Conclusion
	Summary of Findings
	Limitations of the Study
	Directions for Future Research

	References

