JAIST Repository

https://dspace.jaist.ac.jp/

Title LLM T VG DFPGAZE R K U EEALIZ B § S0 5%
Author(s) fr], ZEFH

Citation

Issue Date 2025-09

Type Thesis or Dissertation

Text version

author

URL http://hdl.handle.net/10119/20049
Rights

o Supervisor: HH J& 5, Skl E AR, 1 (R
Description

kd

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



A Study on FPGA Implementation and Optimization of LLM Edge
Inference

2330002 HE Jiaxiang

Recent advancements in large language models (LLMs) such as Chat-
GPT have demonstrated remarkable capabilities in natural language under-
standing and generation. However, these models demand substantial com-
putational resources and energy, limiting their deployment to data centers
equipped with high-end GPUs. Deploying LLMs on edge devices introduces
additional challenges, including limited memory, constrained computational
power, and strict energy budgets.

To address these issues, field-programmable gate arrays (FPGAs) have
emerged as promising platforms due to their parallelism, low power con-
sumption, and reconfigurability. While existing studies such as DFX and
FlightLLM have shown significant improvements in inference performance
using multi-FPGA systems for data centers. Building upon insights from
existing studies, this work explores a practical approach to adapting large
language model inference to the specific constraints of edge computing en-
vironments—namely, limited logic cell resources and memory bandwidth. It
aims to complement existing high-performance-oriented research and extend
the applicability of FPGA-based LLM inference to edge scenarios.

To effectively implement large language models (LLMs) on FPGAs, it
is essential to first establish a solid computational foundation. This work
begins with an overview of LLM architecture, focusing particularly on the
Transformer and LLaMA models, followed by a discussion of key hardware
concepts, including FPGAs, SoC FPGAs, OpenCL, and High-Level Synthesis
(HLS). It adopts a top-down approach, systematically addressing three key
questions: WHAT needs to be computed, WHERE it will be computed, and
HOW it will be programmed.

At the core of most modern LLMs lies the Transformer architecture, which
revolutionized sequence modeling through the use of self-attention mech-
anisms and feed-forward networks. These innovations enable the parallel
computation of token dependencies, significantly enhancing scalability and
performance. Key operations within a Transformer block include matrix
multiplications for linear projections (e.g., Query, Key, and Value), atten-
tion score calculation (via additional matrix multiplications and softmax),
and element-wise operations for activation functions and normalization lay-
ers. These operations represent the fundamental computational kernels that
must be efficiently mapped onto hardware for inference acceleration.



With the computational workload defined, the next step is selecting an ap-
propriate hardware platform. For edge computing scenarios, traditional FP-
GAs often require external processors to handle control flow and system-level
functions. System-on-Chip FPGAs (SoC FPGAs) address this limitation by
integrating a general-purpose processor (typically an ARM Cortex-A series
core) with reconfigurable FPGA fabric on a single chip. This architecture
supports a hardware-software co-design paradigm: the embedded CPU can
manage tasks such as model loading, 1/0O, and inference orchestration, while
the FPGA fabric accelerates compute-intensive LLM kernels. This integrated
approach reduces inter-chip communication overhead, improves latency, and
typically offers lower power consumption compared to multi-chip solutions.

OpenCL serves as the unifying programming model for the heterogeneous
SoC FPGA platform. It enables the separation of computation into ”host”
code, executed by the embedded CPU, and "kernel” code, executed on the
FPGA fabric. This abstraction simplifies development by allowing high-level
control flow on the CPU while delegating compute-intensive operations to
custom FPGA accelerators. Moreover, OpenCL ~ s hardware-agnostic inter-
face promotes portability and modularity in design.

While OpenCL defines the programming model, High-Level Synthesis
(HLS) tools—such as AMD " s Vitis HLS—enable the practical implemen-
tation of OpenCL kernels on FPGAs. HLS allows developers to describe
hardware logic in high-level languages like C/C++, significantly reducing
the complexity and time associated with traditional HDL-based design. HLS
compilers generate register-transfer level (RTL) code automatically, inferring
key hardware constructs such as pipelining, parallel data paths, and memory
access patterns from the high-level code. Additionally, developers can apply
directive-based optimizations (e.g., loop unrolling, pipelining, and dataflow
partitioning) to guide the synthesis process and exploit parallelism effectively.

The related work section reviews recent advancements in accelerating
Large Language Model (LLM) inference using FPGAs, specifically focusing
on two prominent works: DFX and Flight LLM. Both DFX and Flight LLM
conclusively demonstrate the viability and significant advantages of FPGA
acceleration for LLM inference, particularly within data center environments
where high-end FPGAs with abundant logic and HBM resources are avail-
able. However, their specific architectural choices and resource requirements
make them less suitable for deployment on resource-constrained edge devices.
Building upon the valuable insights gleaned from these pioneering works, this
study aims to tailor the approach for edge-specific constraints.

The primary purpose is to create a fully standalone edge AI device for
LLM inference. This capability is crucial for various intended use cases where
real-time, on-device processing is paramount. To meet these demands, the



core performance specifications for the device are: Response Time (less than
1 second), Context Length (200 characters or more) and Inference Speed (2
words per second).

The tinyllamas model is selected for its lightweight architecture, which
aligns well with our requirements in terms of model size and input sequence
length, as well as its high implementability on resource-constrained edge
devices. The AMD Xilinx Kria™ KV260 development board is chosen as the
hardware platform. The KV260’s SoC FPGA integrates an Arm CPU-based
Processing System (PS) and Programmable Logic (PL). To manage diverse
tasks and ensure flexible development, a Linux OS is employed. The model
implementation leverages AMD’s Petalinux in Symmetric Multiprocessing
(SMP) mode. Xilinx Runtime (XRT) acts as an open-source software stack,
managing the FPGA devices and mediating communication between the host
application and the custom accelerators on the FPGA.

Instead of a full model implementation on the FPGA, the approach in-
volves subdividing computational processes into fundamental, reusable tasks.
These basic operations, such as addition, scalar multiplication, matrix multi-
plication, normalization, Rotary Positional Embeddings (ROPE), and Soft-
max function, are implemented as independent accelerator kernels. Specif-
ically, these are: add_kernel, mul_kernel, matmul_kernel, rmsnorm _kernel,
rope_kernel, and softmax_kernel.

The system operates in three distinct phases after the execution of the
host application. Initialization Phase involves loading the tinyllamas model
weights, configuring OpenCL settings, loading and initializing the accelerator
kernels, and allocating necessary memory resources. In the Text Generation
Loop phase, the model predicts and outputs the next token based on the
input. It repeatedly calls the DecoderLayer function, converts tokens to
characters, prints them, and checks if the generated string has reached the
specified length. Upon completion, Termination Process phase outputs log
information (e.g., processing time), releases all used memory, and gracefully
terminates the program.

The evaluation focuses on two key aspects: hardware resource usage
and character generation time. The performance of individual accelerator
kernels is meticulously analyzed to identify areas for improvement, after
which targeted optimizations are applied. The system is then re-tested post-
optimization to validate the effectiveness of these methods and discuss the
results.

The FPGA hardware configuration is built using C-language-based source
code and compiled with the Vitis IDE’s High-Level Synthesis (HLS) tool.
All six accelerator kernels are integrated into a single XCLBIN file. This
compiled file is then copied to a specified location on the evaluation board’s



MicroSD card. Upon execution of the host application, the XCLBIN file is
read, and the PL of the FPGA is configured.

The results of the initial version of implementation revealed that the infer-
ence latency is approximately 1.5 times the target system specification. For
instance, generating 32 output tokens took 24209.4 ms, translating to an av-
erage latency of approximately 756 ms per token, well above the target 500ms
per word. This clearly indicated that significant performance optimization
for speed-up is essential. Analysis of individual accelerator kernel usage times
highlighted a critical bottleneck: the matmul kernel (matrix multiplication)
alone accounted for over 80% of the total execution time. Consequently, op-
timization efforts should be primarily focused on improving the performance
of the matmul_kernel.

The matmul_kernel is decomposed into four internal functions: stream_ in-
put_vector and stream_input_matrix for data input, compute_matrix_vector_
multiply for computation, and write_result_to_memory for data output. In
the initial implementation, the DATAFLOW pragma is applied to these func-
tions to enable function-level parallelization. Additionally, loop unrolling
(UNROLL) is attempted on the inner loop of the compute_matrix_vector_mul-
tiply function’s nested loop (matrix multiply execute). However, a critical
limitation is identified: due to the matmul_kernel’s design for versatility
across different vector and matrix sizes, the HLS tool could not determine the
exact number of loop iterations at compile time. This often resulted in the
UNROLL pragma being ignored, hindering the desired performance gains.

Two optimization approaches are explored for the matmul kernel. The
first approach, static dedicated kernelization, aimed to accelerate perfor-
mance through loop unrolling. However, this proved impractical as its on-
chip memory (BRAM) usage exceeded the FPGA’s constraints. The second
approach, pipelining, involved applying #pragma HLS PIPELINE to the in-
ternal loops of each function. This significantly improved the throughput of
data transfer and computation. Furthermore, the QKV calculation within
the DecoderLayer function is parallelized, and the matmul kernel is divided
into separate QQ, K, and V operations, enabling parallel execution and en-
hancing the overall efficiency of the accelerator.

Test results after optimization showed a maximum of 76.5% improvement
in token generation speed and a 43.3% reduction in average latency. These
achievements meet the initial system performance goals and demonstrated
the effectiveness of accelerating LLM inference processing on an embedded
FPGA.

This work establishes a foundation for deploying LLMs in resource-constr-
ained environments and identifies key optimization strategies for future re-
search. The results indicate strong potential for FPGA-based LLM infer-

4



ence in applications requiring local processing, power efficiency, and cost-
effectiveness, while highlighting opportunities for further improvements through
quantization, mixed-precision arithmetic, and advanced memory manage-
ment techniques.



