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Abstract: In cluttered scenes, effective object manipulation often requires both precise grasping and proactive scene
rearrangement. We propose a dual-branch reinforcement learning framework that separately predicts grasp position and
orientation, trained via supervised pretraining and shaped rewards to ensure stable and sample-efficient learning. To
minimize unnecessary pushing, we model the coordination between grasp and push agents as a Stackelberg game, where
the push agent acts only when grasp success is unlikely, to enhance downstream grasp success.. Experimental results in
simulation show that our method improves grasp success and action efficiency, outperforming existing baselines in both

success rate and policy economy.

Keywords: Robotic manipulation; Deep reinforcement learning; Grasp planning; Stackelberg game; Multi-agent coor-

dination; Pushing and grasping; Cluttered environment.

1. INTRODUCTION

Manipulation in cluttered environments constitutes a
core challenge in robotic manipulation, where the pres-
ence of occlusions, ambiguous object geometries, and
physical interactions between objects significantly hinder
reliable execution [1] [2][3][4][5]. Unlike isolated set-
tings, cluttered scenes often restrict the robot’s ability to
directly access feasible grasp configurations, resulting in
high failure rates and reduced task efficiency [6][7].

Addressing these challenges requires more than reac-
tive grasp planning. A robotic system must actively mod-
ify the environment to expose graspable surfaces or iso-
late target objects. To this end, various studies have ex-
plored the integration of non-prehensile actions—such as
pushing—into grasping pipelines. These methods typi-
cally aim to improve grasp success by using pushing to
rearrange the scene, often within a reinforcement learn-
ing framework. While they differ in aspects such as
network architecture, reward design, or training strategy,
they share the common goal of enabling more effective
grasping in dense and cluttered environments [8] [9] [10]
[T1][12][13][18].

A representative and widely adopted approach in this
direction is Visual Pushing for Grasping (VPG), which
jointly learns pushing and grasping policies via self-
supervised Q-learning in cluttered scenes [13]. VPG
demonstrates that enabling a robot to perform pushing
actions before grasping can significantly improve over-
all manipulation success, particularly in densely piled en-
vironments. Despite its effectiveness, VPG exhibits two
key limitations. First, it discretizes grasp orientations into
a fixed set of angles, which restricts the policy’s flexibil-
ity in handling diverse object configurations [11]. Sec-
ond, it models pushing and grasping as loosely coupled
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modules, rather than relying on an explicit coordination
mechanism. This often results in redundant or unneces-
sary pushing actions that do not meaningfully improve
graspability. Several follow-up approaches attempt to sta-
bilize training via staged grasp-then-push schemes, but
may lack explicit coordination and offer limited gains in
action efficiency [12]. In contrast, multi-agent reinforce-
ment learning frameworks, such as those based on Stack-
elberg games, offer structured paradigms for agent coor-
dination, enabling one agent to optimize its behavior in
anticipation of the other’s response [14][15][16].

Our work focuses on this challenge within the context
of top-down grasping, a common formulation in tabletop
manipulation. In this setting, each grasp is defined by a
planar position on the heightmap and an in-plane rota-
tion angle (yaw), which captures the essential geometry
needed for parallel-jaw grasping while simplifying both
perception and control. This abstraction is well-suited to
RGB-D based systems and has been widely adopted in
recent robotic manipulation literature.

To overcome the limitations of previous push-grasp
frameworks, we propose a reinforcement learning ap-
proach that integrates fine-grained grasp modeling with
structured agent coordination. Specifically, the grasp-
ing policy is decomposed into two branches: one pre-
dicts pixel-wise grasp positions over the input heightmap,
while the other regresses a continuous grasp angle based
on a local height patch extracted around the selected loca-
tion. This decoupled architecture allows spatial and angu-
lar reasoning to be learned separately, resulting in more
expressive and adaptable grasp behavior across diverse
object configurations.

In parallel, we model the interaction between pushing
and grasping using a game-theoretic formulation. Rather
than relying on heuristic triggers or rigid switching, we
treat the pushing policy as a strategic leader in a Stack-
elberg game, selecting actions that improve the future
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Fig. 1.: Action Selection Pipeline. The grasp agent predicts a grasp position from the full heightmap and a grasp angle
from a cropped local patch. The proposed action is evaluated by a pretrained angle critic. If the Q-value is below a
threshold 7, a push is triggered at the same location; otherwise, the grasp is executed.

graspability of the scene [16][17]. The grasping agent,
acting as the follower, responds by estimating grasp suc-
cess given the modified environment. This asymmetric
decision structure allows the pushing agent to act effi-
ciently—only intervening when a grasp is predicted to
fail and when a push is expected to improve downstream
outcomes. The complete system architecture is depicted
in Fig. 1 and detailed in Section 2.

Together, these components form a flexible and ef-
ficient manipulation system capable of handling com-
plex, cluttered environments with reduced redundant ac-
tions and improved grasp success.Our work focuses on
2D top-down grasping, where each grasp is defined by
a position on the heightmap and an in-plane rotation an-
gle (yaw). This formulation simplifies grasp representa-
tion while capturing essential geometric information for
parallel-jaw grasping.

Our main contributions are summarized as follows:

« We propose a grasping policy with a dual-branch archi-
tecture that decouples position and angle prediction, en-
abling more expressive and continuous grasp action rep-
resentation.

e We introduce a structured coordination mechanism
between pushing and grasping policies by formulating
their interaction as a Stackelberg game, where the push
agent anticipates grasp outcomes to guide efficient pre-
manipulation.

e We pretrain the grasp policy components using suc-
cessful grasp-only experience collected in simulation,
improving policy initialization and training stability.

o Our method demonstrates improved grasp success and
manipulation efficiency in cluttered scenes, reducing re-
dundant actions compared to existing push-grasp base-
lines.

Underlying these design choices is a key insight: ro-
bust grasping capabilities can substantially reduce the
need for preparatory actions such as pushing. While
pushing is useful for resolving occlusions or reposition-
ing objects, excessive reliance on it can introduce in-
efficiencies. To mitigate this, we enhance the grasp-
ing agent’s spatial and angular reasoning through ar-

chitectural decoupling and targeted pretraining. By en-
abling the agent to handle complex configurations inde-
pendently, our system minimizes unnecessary interven-
tions and achieves more efficient.

2. METHOD

2.1 Overall Framework

We propose a grasp-centric reinforcement learning
framework that decouples position and angle prediction
into two separate branches via a modular grasp agent.
This design enables the network to specialize in spatial
and angular reasoning independently, which is critical for
robust robotic manipulation in cluttered environments.
To stabilize training, both branches are first pretrained
using self-supervised data collected in CoppeliaSim. To
minimize unnecessary interactions, the system triggers a
pushing action only when the predicted grasp quality is
low, a pushing action is conditionally triggered to im-
prove future graspability, thereby minimizing unneces-
sary interaction.

Fig. 1 illustrates the complete inference procedure of
our system. At each time step, a heightmap is captured
from the CoppeliaSim environment. The grasping agent
consists of two branches, each with its own convolutional
encoder: the position branch processes the full heightmap
to select a grasp point, while the angle branch takes a
cropped local patch centered at this location to predict
the grasp orientation. These two outputs jointly define
the candidate grasp action. To decide whether this grasp
should be executed, the system queries the angle critic
network trained during reinforcement learning. The local
patch and predicted angle are passed through the frozen
critic to estimate the expected Q-value. When the an-
gle critic predicts low Q-value for a proposed grasp, the
corresponding local patch is reused as input to the push
agent, which predicts a push direction. The push action
is then executed from the same (z,y) location, with the
predicted angle applied as the direction of motion. Oth-
erwise, the grasp is executed directly.
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Fig. 2.: Training pipeline of our method. The procedure consists of three stages: self-supervised pretraining using labeled
simulation data, grasping agent training with branch-specific reward signals, and delayed push agent training triggered
only when the grasping critic predicts low Q-values. Each component is optimized using a TD3-based actor-critic archi-

tecture.

2.2 Grasping and Pushing Networks

Our system consists of three neural networks: grasp-
ing actor’s two branches and a pushing angle prediction
network.

The grasping actor comprises a Position branch and
an Angle branch. The Position branch predicts per-pixel
grasp quality scores using two lightweight convolutional
layers applied to the full feature map. The Angle branch
takes a local patch centered at the selected grasp loca-
tion and regresses the grasp orientation as a 2D vector
[sin(20), cos(26)], allowing continuous and symmetric
angle representation.

The pushing angle prediction network shares the same
structure as the Angle branch but predicts the pushing di-
rection as [sin(@), cos(6)]. Since pushing lacks symme-
try, this formulation preserves the full directional reso-
Iution. All modules are kept lightweight to enable fast
inference and seamless integration with the robot control
loop.

2.3 Reward Formulation

To encourage cooperative behavior between the grasp-
ing and pushing agents, we formulate the reward design
under a Stackelberg game framework. In this setup, the
pushing agent acts as the leader, making decisions that
anticipate the optimal response of the grasping agent,
which serves as the follower.

Grasping reward. The grasping agent is supervised
via a reward vector R = [Rpos, Rang] € R¥, where each
component supervises one branch of the grasp policy.

Position reward. The position branch receives a dense
reward signal that evaluates the spatial plausibility of the
selected grasp location:

1.0 success

Rpos = Cdos .
Wit €~ ™™ 4 Wopen * (1 — Dpaen) — otherwise

(1)

Here, d..i, denotes the distance to the nearest ob-
ject center, encouraging the selection of positions physi-

cally close to objects, and Dy quantifies the local den-

sity within the cropped patch, penalizing grasp attempts
in cluttered regions. The two terms are combined with
weights wgise = 0.5 and wepen = 0.3.

We adopt an exponential decay for the distance term
to impose higher sensitivity near object centers—where
small deviations can significantly affect grasp success.
In contrast, the openness component uses a linear func-
tion to provide a stable and interpretable gradient reflect-
ing spatial clearance. This hybrid formulation ensures
that the overall reward remains differentiable and addi-
tive, while enabling distinct gradient behaviors: the ex-
ponential term yields sharp gradients in close-range sce-
narios, facilitating fine-tuned grasp localization; the lin-
ear term maintains consistent feedback about surround-
ing clutter. Together, they promote grasp locations that
are both reachable and minimally obstructed.

Angle reward. The angle branch receives a sparse,
occlusion-aware reward signal defined as:

1.0 success
A (1 =Eewne [I(F, > F)]) otherwise
2

In Eq. (2), L(6) refers to a sampled line segment along
the predicted grasp direction centered at the grasp loca-
tion. For each pixel p € L(6), z, is the height at p, and
z¢ 1s the height at the grasp center. The expectation com-
putes the fraction of occluding pixels where 2z, > z.. A
small scaling factor A = 0.2 is used to maintain smooth
gradients while avoiding undue influence on the critic’s
learning signal. This formulation encourages the agent
to prefer grasp orientations that approach from less oc-
cluded directions, improving feasibility and robustness in
cluttered scenes.

Pushing reward The pushing agent does not receive
immediate feedback from the environment. Instead, its
reward is computed based on grasp success over a look-
ahead window T":

Rang =

T
1
Rpush = T ;(graspt = success) 3)



This formulation quantifies how many objects are suc-
cessfully grasped within 7' = 3 steps following a push
action.

2.4 Training Procedure

Our training procedure is composed of three sequen-
tial stages, each designed to improve stability and effi-
ciency in learning cooperative behavior between agents.
The overall training pipeline is illustrated in Fig. 2.

1. Self-supervised pretraining. We first train the grasp-
ing agent via self-supervised learning using labeled data
collected in simulation. Grasp success or failure serves as
supervision for both the position scoring and angle pre-
diction networks. We use cross-entropy loss for the posi-
tion heatmap and regression loss for the angle output.
We construct a structured pretraining dataset by execut-
ing grasp attempts in simulation using a fixed policy that
always targets the tallest object in the scene. The center
pixel location and in-plane orientation (yaw) of the top-
most object are extracted from the simulator and used as
supervision targets, with the corresponding heightmap as
input. Each attempt is executed, and the outcome (suc-
cess or failure) is recorded automatically, enabling self-
supervised labeling without human annotation.

To ensure the effectiveness of pretraining, we retain only
successful grasp examples. This design choice is mo-
tivated by two key considerations. First, failure cases
generated by a fixed policy tend to be repetitive—often
resulting from identical infeasible configurations—and
thus contribute limited diversity. Second, successful ex-
amples offer diverse, high-quality demonstrations of fea-
sible grasps, guiding the network toward actionable pat-
terns. This positive learning bias improves the stability of
subsequent reinforcement learning.

2. Grasping agent After pretraining, the grasping pol-
icy is further optimized via reinforcement learning and is
composed of two decoupled branches: a position network
that evaluates grasp quality over the entire heightmap,
and an angle network that predicts an optimal grasp orien-
tation from a local patch centered at the selected location.
Although both branches contribute to the final action,
their decoupling introduces a structural credit assignment
challenge: a suitable grasp position might still result in
failure if paired with a poor angle prediction, making
it difficult for the position network to receive appropri-
ate feedback. To mitigate this, we apply the shaped re-
wards described in Subsection 2.3. The position reward is
weighted such that its components sum to approximately
1.0 (wgist = 0.5, Wopen = 0.3), ensuring well-scaled gra-
dients and preserving learning signal integrity. This de-
sign adheres to the stationarity principle in reinforcement
learning [19], promoting stable training dynamics, and
supports more accurate credit assignment [20] by iso-
lating each branch’s contribution to the final outcome.
Overall, this structure enhances training robustness and
enables the agent to learn more resilient grasp strategies
in cluttered environments.

3. Pushing agent Once the grasping agent is sufficiently
trained, the pushing agent is activated only when the an-

gle critic predicts a low Q-value for the current grasp can-
didate. Inspired by Stackelberg game theory [21], we
model the pushing agent as a strategic leader and the
grasping agent as a reactive follower. In this asymmet-
ric framework, the push policy selects actions that re-
shape the scene in anticipation of the follower’s grasp
response. To reflect this hierarchy, the pushing agent is
optimized using a delayed reward signal based on the
grasp outcomes within a look-ahead window. Specif-
ically, we evaluate the average grasp success over the
subsequent 7' timesteps and backpropagate this signal
through the pushing policy using TD3. This design aligns
with the principles of Stackelberg multi-agent reinforce-
ment learning frameworks [17], allowing the leader to
improve downstream task performance while avoiding re-
dundant interventions.

The proposed dual-agent framework integrates grasp
position and angle reasoning with strategic push-grasp
coordination under a Stackelberg formulation. Each
component—pretraining, branch-specific reward shap-
ing, and hierarchical policy learning—has been designed
to enhance sample efficiency and decision robustness in
cluttered manipulation tasks. In the following section,
we evaluate our approach through a series of simulation-
based experiments, examining both individual compo-
nent performance and the effectiveness of the overall sys-
tem.

3. EXPERIMENTS

3.1 Experimental Setup

All experiments are conducted in the CoppeliaSim
simulation environment. A fixed RGB-D camera is
mounted 0.5 meters above the workspace center, captur-
ing orthographic top-down views. The depth image is
projected into a 100 x 100 heightmap, which serves as the
primary input to both the grasp and push policies. Each
training episode corresponds to one simulated scene. At
the start of an episode, 25 blocks with randomized dimen-
sions are dropped from a height of 0.3 meters, forming
cluttered configurations. The episode ends when either
all objects are successfully removed from the workspace
or 10 consecutive grasp attempts fail, at which point the
episode is considered complete.

The robot performs top-down parallel-jaw grasps us-
ing a fixed gripper width of 6 cm, with the grasp point and
in-plane rotation predicted by the learned policy. Push
actions are defined as 10 cm linear motions centered at
grasp candidates with low predicted Q-values; the direc-
tion of the push is predicted by the push agent. To support
grasp angle prediction, a 24 x 24 local heightmap patch is
cropped around each candidate position. This patch size
reflects the physical scale of the task: the gripper width
corresponds to roughly 12 pixels, and the push length
spans about 20 pixels. The expanded receptive field al-
lows the network to consider not only the target object
but also surrounding context, which is crucial for infer-
ring feasible grasp orientations.
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Fig. 3.: Grasp success rate curves for each stage of our framework.

3.2 Evaluation Metrics

We evaluate our method based on several metrics
that capture both the effectiveness and efficiency of the
learned policies:

« Grasp Success Rate In one episode the proportion of
successful grasp attempts over all grasp executions.

« Action Efficiency Defined as the ratio of successfully
grasped objects to the total number of executed actions
(grasp + push). This metric captures the policy’s ability
to complete the task with minimal redundant actions.

« Completion The percentage of episodes in which all
objects are successfully removed from the workspace. An
episode is marked incomplete if no object is grasped after
10 consecutive attempts.

3.3 Quantitative Results

We evaluate the manipulation performance across the
three learning stages of our framework using grasp suc-
cess rate curves.

Validation after Pretraining Fig. 3a shows the grasp
success rate evaluated over 100 episodes after pretrain-
ing. While the average success rate remains around 25%,
indicating that the network has learned a basic grasping
strategy, performance exhibits high variance. In some
episodes, the success rate drops to zero due to cluttered
scenes and the lack of adaptability. This instability stems
from the deterministic nature of the pretraining policy,
which always targets the tallest object, making the net-
work highly sensitive to scene randomness.

Grasp Agent Training Fig. 3b illustrates the grasp
success rate during Grasp agent training. The training
begins with a noticeable performance advantage, indicat-
ing that the pretrained position and angle networks pro-
vide a good initialization for policy learning. As training
progresses, the success rate steadily improves, eventually
stabilizing around 65%. This suggests that the combi-
nation of branch-specific rewards and a dual-critic TD3
architecture enables effective and stable policy refine-
ment. Overall, the grasp agent successfully learns to han-
dle cluttered scenes through a decoupled, well-initialized
learning structure.

Push Agent Training Fig. 3c shows that once the push
agent begins training, the grasp success rate steadily in-
creases from around 60% to approximately 80%. This in-
dicates that the learned push actions effectively enhance
graspability by improving scene conditions, ultimately
leading to more successful grasp executions.

Comparison with Baselines Table 1 summarizes sys-

tem performance across various configurations. The Pre-
trained Only baseline achieves 27.3% grasp success, in-
dicating that while fixed-policy pretraining offers a use-
ful initialization, it lacks adaptability in complex en-
vironments. Introducing reinforcement learning in the
Grasp Agent Only setup significantly improves grasp suc-
cess to 63.8%, with a task completion rate of 93.2%.
These results highlight the benefits of our dual-branch
architecture and dense reward design in enabling robust
grasp behavior. Further gains are realized by incorporat-
ing the push agent. The Full System-0.7 configuration,
using a Q-threshold of 0.7, achieves 81.5% grasp suc-
cess and 76.4% action efficiency—demonstrating that the
agent learns to intervene selectively and meaningfully,
enhancing graspability while minimizing redundant ac-
tions. Raising the threshold to 0.8 (Full System-0.8) in-
creases grasp success to 86.0%, but also leads to more
frequent pushing and reduced action efficiency (68.2%).
This reflects a fundamental trade-off between reliability
and operational economy. Our selected threshold strikes
a practical balance, reinforcing the value of Stackelberg
coordination in regulating intervention frequency based
on grasp confidence.

Fig. 4 presents representative simulated cases. In ex-
amples (1) and (2), the grasp agent successfully selects
and executes grasps on isolated blocks. In contrast, ex-
amples (3) and (4) depict scenarios where the grasp can-
didates are located in cluttered regions. In these cases, the
angle critic predicts low graspability, prompting the push
agent to rearrange the scene. These examples demon-
strate how the system prioritizes direct grasps when fea-
sible and resorts to pushing only when necessary to im-
prove grasp conditions.

In summary, our experiments confirm that fine-grained
grasp modeling combined with structured push-grasp co-
ordination leads to improved performance and efficiency
in cluttered environments. We now conclude with a sum-
mary of our contributions and insights.

4. CONCLUSION

We presented a dual-branch reinforcement learning
framework for robotic manipulation in cluttered envi-
ronments, addressing both fine-grained grasp modeling
and strategic push-grasp coordination. By decoupling
grasp position and orientation into separate prediction
branches, our method enabled more expressive and flex-



Table 1.: Performance comparison with baseline, ablated versions, and prior methods under push and no-push settings.

Method Completion (%) | Grasp Success (%) | Action Efficiency (%)
VPG (Grasp Only) 90.5 55.8 55.8
VPG 100 67.7 60.9
Pretrained Only (Ours) 38.6 27.3 27.3
Grasp Agent Only (Ours) 93.2 63.8 63.8
Full System-0.7 (Ours) 100 81.5 76.4
Full System-0.8 (Ours) 100 86.2 73.9
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Fig. 4.: Action visualization for grasp and push.
Each case shows CoppeliaSim environment, predicted
heatmap, and the final action.

ible grasping. Self-supervised pretraining further en-
hances stability and provides a better initialization for re-
inforcement learning.

To minimize unnecessary pushing, we introduced a
Stackelberg game-based formulation, where the push
agent acts as a strategic leader and intervenes only when
the grasp Q-value is low. This structured coordination
improved both grasp success and action efficiency. Ex-
tensive experiments in simulation demonstrated that our
approach outperforms existing push-grasp baselines in
terms of grasp success, scene completion, and policy
economy. Qualitative results confirmed that the system
selectively pushes only when necessary, reducing redun-
dant actions and improving task efficiency.

(1]

(2]

(3]

[4]

(7]

(8]

[9]

[10]

(11]

Mohammed, M.Q.; Kwek, L.C.; Chua, S.C.; Al-
Dhagm, A.; Nahavandi, S.; Eisa, T.A.E.; Miskon,
M.E.; Al-Mhiqani, M.N.; Ali, A.; Abaker, M. et al.
Review of Learning-Based Robotic Manipulation in
Cluttered Environments. Sensors; 2022; 22, 7938.
[DOL: https://dx.doi.org/10.3390/s22207938]

R. Newbury et al., “Deep learning approaches to
grasp synthesis: A review,” IEEE Trans. Robot., to
be published, doi: 10.48550/arXiv.2207.02556.

C. Li, N. Y. Chong,“Monozone-Centric Instance
Grasping Policy in Large-Scale Dense Clutter”
IEEE/ASME Trans. Mechatron., earliy access,
2025.

P. Zhou, Z. Gao, C. Li, and N. Y. Chong, “An effi-
cient deep reinforcement learning model for online
3d bin packing combining object rearrangement and
stable placement,” in 2024 24th International Con-
ference on Control, Automation and Systems (IC-
CAS), 2024, pp. 964-969.

H. Zhang, J. Tang, S. Sun, X. Lan, Robotic Grasp-
ing from Classical to Modern: A Survey, arXiv
Preprint arXiv:2202.03631, 2022.

S. Kumra, S. Joshi, and F. Sahin, “GR-ConvNet
v2: A real-time multi-grasp detection network for
robotic grasping,” Sensors, vol. 22, no. 16, 2022,
Art. no. 6208.

M. B. Imtiaz, Y. Qiao, and B. Lee, “Prehensile
and non-prehensile robotic pick-and-place of ob-
jects in clutter using deep reinforcement learning,”
Sensors, vol. 23, no. 3, p. 1513, Jan. 2023, doi:
10.3390/s23031513.

M. Zhao, G. Zuo, S. Yu, D. Gong, Z. Wang, and O.
Sie, “Positionaware pushing and grasping synergy
with deep reinforcement learning in clutter,” CAAI
Trans. Intell. Technol., 2023, to be published, doi:
10.1049/CIT2.12264.

H. Zhang et al., “Reinforcement learning based
pushing and grasping objects from ungraspable
poses,” 2023, arXiv:2302.13328.

Y. Deng, X. Guo, Y. Wei, K. Lu, B. Fang, D. Guo,
H. Liu, and F. Sun, “Deep reinforcement learn-
ing for robotic pushing and picking in cluttered
environment,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Macau, China, Jan. 2019, pp.
619-626, doi: 10.1109/IROS40897.2019.8967899.
A. A. Shahid, L. Roveda, D. Piga, and F. Braghin,
“Learning continuous control actions for robotic



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

grasping with reinforcement learning,” in Proc.
IEEE Int. Conf. Syst., Man, Cybern. (SMC), Oct.
2020, pp. 4066-4072.

Y. Wang, K. Mokhtar, C. Heemskerk, and H.
Kasaei, “Self-supervised learning for joint pushing
and grasping policies in highly cluttered environ-
ments,” in Proc. IEEE Int. Conf. Robot. Automat.,
2024, pp. 13840-13847.

A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez,
and T. Funkhouser, “Learning synergies between
pushing and grasping with selfsupervised deep re-
inforcement learning,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Sys-
tems (IROS). IEEE, 2018, pp. 4238—4245.

M. Wen et al., “Multi-agent reinforcement learning
is a sequence modeling problem,” in Proc. Int. Conf.
Neural Inf. Process.Syst., 2022,pp. 16509-16521.
J. J. Koh, G. Ding, C. Heckman, L. Chen, and
A. Roncone, “Cooperative control of mobile robots
with stackelberg learning,” in 2020 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Sys-
tems(IROS). IEEE, 2020, pp. 7985-7992.

Zhang B, Li L, Xu Z et al (2023a) Inducing stack-
elberg equilibrium through spatio-temporal sequen-
tial decision-making in multi-agent reinforcement
learning. In: Proceedings of the Thirty-Second In-
ternational Joint Conference on Artificial Intelli-
gence, [JCAI ’23.

K. Zhang, Z. Yang, and T. Basar, “Multi-agent re-
inforcement learning: A selective overview of the-
ories and algorithms,” in Handbook of Reinforce-
ment Learning and Control. Cham, Switzerland:
Springer, 2021, pp. 321-384. [Online].

D. Morrison, P. Corke, and J. Leitner, “Closing the
loop for robotic grasping: A real-time, generative
grasp synthesis approach,” in Proc. Robot.: Sci.
Syst. Conf., 2018.

Y. Bengio, M. Delalleau, and A. Le Roux, “Meta-
learning for stochastic gradient MCMC,” in Pro-
ceedings of the 36th International Conference on
Machine Learning (ICML), Long Beach, CA, USA,
2019, pp. 524-533.

R. S. Sutton and A. G. Barto, Reinforcement Learn-
ing: An Introduction, 2nd ed. Cambridge, MA,
USA: MIT Press, 2018.

H. von Stackelberg, *Market Structure and Equi-
librium*. Vienna, Austria: Springer, 1952. (Origi-
nally published in German as *Marktform und Gle-
ichgewicht*, 1934.)



