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Abstract—This paper addresses the design of practical short-
length coding schemes for Distributed Hypothesis Testing (DHT).
While most prior work on DHT has focused on information-
theoretic analyses—deriving bounds on Type-II error exponents
via achievability schemes based on quantization and quantize-
binning—the practical implementation of DHT coding schemes
has remained largely unexplored. Moreover, existing practi-
cal coding solutions for quantization and quantize-binning ap-
proaches were developed for source reconstruction tasks consid-
ering very long code lengths, and they are not directly applicable
to DHT. In this context, this paper introduces efficient short-
length implementations of quantization and quantize-binning
schemes for DHT, constructed from short binary linear block
codes. Numerical results show the efficiency of the proposed cod-
ing schemes compared to uncoded cases and to existing schemes
initially developed for data reconstruction. In addition to prac-
tical code design, the paper derives exact analytical expressions
for the Type-I and Type-II error probabilities associated with
each proposed scheme. The provided analytical expressions are
shown to predict accurately the practical performance measured
from Monte Carlo simulations of the proposed schemes. These
theoretical results are novel and offer a useful framework for
optimizing and comparing practical DHT schemes across a wide
range of source and code parameters.

Index Terms—Distributed Hypothesis Testing, short-length
codes, binary quantization, quantize-binning scheme, linear block
codes, Neyman-Pearson.

I. INTRODUCTION

In the era of 5th generation (5G) wireless communications
systems and beyond, the paradigm of communication sys-
tems is shifting to address emerging challenges and require-
ments. Historically, these systems were designed to ensure
reliable transmission, mostly focusing on minimizing error
probability or distortion between original and reconstructed
data [1], [2]. However, modern communication systems are
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now increasingly dedicated to specific tasks that require an
optimized design. Especially in the emerging field of goal-
oriented communications [3]–[5], the objective is no longer
to reconstruct the data but rather to apply specific tasks
directly upon the received data. While examples of such
tasks include regression, classification, and semantic analysis,
this paper focuses on the important case of decision-making.
Examples of applications include sensors embedded in the
human body for healthcare disease detection [6], underwater
activity monitoring [7], or traffic jam detection from route
planning of autonomous vehicles [8].

In Information Theory, the problem of decision-making
over coded data is formalized as distributed hypothesis testing
(DHT), first introduced in [9]. DHT considers a scenario
with two separate terminals: one observing a source X , and
the other observing a source Y . These sources are jointly
distributed according to the joint distribution PXY , which
depends on one of the two hypotheses, H0 or H1 [9]–[11].
The terminals transmit encoded messages under given rate
constraints, R1 for X and R2 for Y . The receiver then makes
a decision between H0 and H1, by applying a hypothesis test
over the received coded data. In this work, we focus on two
distinct setups. The first setup, referred to as the asymmetric
setup, assumes that the receiver has access to a coded version
of X , while Y is losslessly observed as side information at the
receiver. This setup is similar to the Wyner-Ziv setup for lossy
source coding [1]. The second setup, known as the symmetric
setup, assumes that both X and Y are encoded.

In both setups, the hypothesis testing performance is char-
acterized by two types of error probabilities: Type-I error
probability, denoted by αn, and Type-II error probability,
denoted by βn. A Type-I error occurs when H1 is chosen while
the true hypothesis is H0, whereas a Type-II error arises when
H0 is selected while H1 is true. The central question in the
framework of DHT is: how can one design coding schemes
so as to satisfy the rate constraints while ensuring optimal
decision-making at the receiver? Here, optimality is defined
as minimizing the Type-II error probability, βn, under a given
constraint on the Type-I error probability αn. Addressing this
question requires tackling both the information-theoretic limits
of the problem and the practical design of coding schemes.

A. Prior Works in Information Theory

In the information-theoretic analysis of DHT, the primary
objective is to characterize the achievable error exponent of the
Type-II error probability, while the Type-I error probability is
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kept below a prescribed threshold [9], [10]. The asymmetric
setup has been extensively studied, with several achievable
coding schemes proposed to refine lower bounds on the
error exponent. Ahlswede and Csiszár first introduced the
quantization scheme [9], which is optimal for a special case
known as testing against independence. Han enhanced the
quantization scheme by incorporating a joint typicality check
between the source and its quantized version [10]. However,
these approaches do not fully exploit the correlation between
sources X and Y .

To address this limitation, Shimokawa et al. proposed the
Shimokawa-Han-Amari (SHA) scheme, also known as the
quantize-binning scheme, which performs random binning
after the quantization [12]. This approach originates from
the Wyner-Ziv coding scheme [1] and achieves tighter lower
bounds on the error exponent. Further refinements to the SHA
scheme addressed the trade-off between binning errors and hy-
pothesis testing errors, as investigated for i.i.d. sources in [13]
and for non-i.i.d. sources in [14]. Most recently, Kochman and
Wang enhanced the SHA scheme by refining the entropy check
introduced by Shimokawa et al. [15]. Finally, the SHA scheme
has been generalized to more complex communication scenar-
ios, including discrete memoryless channels [16], multiple-
access channels [17], and two-hop relay networks [18].

The symmetric setup has received much less attention,
except in the specific case of zero-rate compression where one
or both coding rates asymptotically approach zero [10], [19]–
[22]. The zero-rate case has limited relevance for conventional
lossless or lossy compression, but it has important applications
in statistical hypothesis testing [10]. In this case, research has
focused on designing optimal testing schemes [22], [23] and
characterizing achievable error exponents [10], [19]–[23].

B. Prior works on practical coding schemes
While the information-theoretic performance of DHT has

been extensively studied, the design of practical coding
schemes for this setup has received considerably less atten-
tion. In fact, information-theoretic schemes are not directly
implementable and largely rely on impractical assumptions,
such as infinite block lengths, which are incompatible with the
finite and typically short sequences encountered in practical
decision-making scenarios. This gap in the literature serves as
the primary motivation of this paper, with a focus on binary
sources.

For data reconstruction, several practical coding techniques
have been proposed in the literature. They include binary quan-
tizers [24], binning schemes [25]–[28], and quantize-binning
schemes [29], all constructed using linear block codes. For
instance, in [26], [27], binning schemes based on Low-Density
Parity-Check (LDPC) codes are proposed, achieving lossless
compression near the Slepian-Wolf limit for correlated binary
sources. Similarly, binary quantization schemes have been
developed using LDPC codes [30], or Low-Density Generator
Matrix (LDGM) codes of which decoding is conducted by Bias
Propagation (BiP) algorithms [24], [31], [32]. Furthermore,
it was shown in [29], [33] that compound LDGM/LDPC
constructions for quantize-binning schemes can achieve the
Wyner-Ziv rate-distortion function for binary sources.

While these coding schemes are effective for source recon-
struction, they are less suitable for DHT due to their use of
belief propagation decoding algorithms which are designed
for very long sequences, often exceeding 103 to 104 bits. In
contrast, DHT involves short-length sequences, where only
a few dozen bits may suffice for accurate decision-making.
This raises an important question on how to design efficient
quantizers and quantize-binning schemes with short-length
codes. Another key issue is the design of effective hypothesis
tests over coded data, given that the methods proposed in
information-theoretic proofs of DHT are impractical. In this
paper, we address these issues and propose efficient short-
length coding schemes for DHT.

C. Contributions
In this paper, we introduce a first practical short-length

coding scheme for DHT in the asymmetric setup, where side
information Y is fully available at the decoder. We then extend
this scheme to the symmetric setup, where both the source
X and side information Y are compressed by independent
encoders. We propose practical quantization and quantize-
binning schemes for DHT in both asymmetric and symmetric
setups.

Based on the principles of practical Wyner-Ziv coding, our
schemes employ linear block codes designed specifically for
short block lengths (n < 100 bits). We first describe the
construction of the coding scheme and provide the hypothesis
test expression. We then derive exact analytical expressions for
the Type-I and Type-II error probabilities for the given code.
These analytical tools are novel, and enable the optimization
and comparison of the proposed schemes across a broad range
of source and code parameters.

The major contributions of this paper are summarized as
follows.

• We discuss and compare two uncoded schemes for DHT.
In the first scheme, called the truncation scheme, the
encoders transmit only the first l < n bits of their source
sequences to the receiver (Section III-A). In the second
scheme, called the separate scheme, each encoder inde-
pendently makes a local decision based on its observation
and transmits a single bit to the receiver (Section III-B).
While these schemes are not novel, they provide reference
points for evaluating the proposed quantizer and quantize-
binning schemes. They also allow us to compare decide-
and-compress versus compress-and-decide strategies, in
line with previous information-theoretic works that in-
vestigated estimate-and-compress versus compress-and-
estimate setups [34], [35].

• For both symmetric and asymmetric setups, we intro-
duce quantizer-alone (Section IV) and quantize-binning
schemes (Section V) for DHT, constructed with short-
length linear block codes (n < 100). Simulation results
show that the proposed constructions outperform solu-
tions initially proposed for long block lengths in [24],
[31], [32]. The simulation results also demonstrate the
superiority of the quantize-binning scheme over the
quantizer-alone and uncoded truncation schemes, partic-
ularly when code parameters are optimized.
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• We derive exact analytical expressions for the Type-
I and Type-II error probabilities of the quantizer-alone
and quantize-binning schemes in the asymmetric setup
(Propositions 1 and 2). Numerical results validate the
accuracy of the analytical error probability expressions
by comparison with Monte Carlo simulations.

D. Outline

The remainder of this paper is organized as follows. Sec-
tion II presents the DHT setup. Section III introduces the
uncoded schemes. Section IV presents the quantization scheme
and provides the analytical expressions for Type-I and Type-
II error probabilities. Section V describes the quantize-binning
scheme and provides the analytical expressions for Type-I and
Type-II error probabilities. Section VI presents the numerical
results.

II. DISTRIBUTED HYPOTHESIS TESTING

This section introduces the considered DHT setup and
presents existing information-theoretic coding schemes for this
problem.

A. Notation

Let J1,MK denote the set of integers from 1 to M . Random
variables are represented by uppercase letters, e.g., X , while
their realizations are in lowercase, e.g., x. Boldface letters,
e.g., Xn denote vectors of length n. The Hamming weight of
a vector xn is denoted as w(xn), and the Hamming distance
between two vectors xn and yn is d(xn,yn). The binomial
coefficient of two integers n, k, with k ≤ n, is expressed as(
n
k

)
.

B. Hypothesis Testing with binary sources

We consider two source vectors Xn and Yn of length
n. As in the conventional DHT setup [10], we assume that
the components of Xn and Yn are i.i.d., drawn according
to random variables X and Y , respectively. The pair (X,Y )
follows one of two possible joint distributions:

H0 : (X,Y ) ∼ P0,

H1 : (X,Y ) ∼ P1. (1)

In what follows, with a slight abuse of notation, we always
denote P0 (resp. P1) the random variable or vector probability
distribution under H0 (resp. H1). For instance, P0(x

n) is the
probability of vector xn under H0. We consider a general case
where the marginal distributions of X under H0 and H1 are
not necessarily identical. Therefore, the marginal distributions
of Y under H0 and H1 are not necessarily identical either.

In this work, we focus on binary sources, where X and Y
take values in the alphabet {0, 1} and follow the model Y =
X⊕Z, with Z being a binary random variable independent of
X . Let p = P(X = 1) and c = P(Z = 1), where 0 < c ≤ 1/2.
The hypotheses provided in (1) can then be expressed as:

H0 :(p = p0, c = c0)

H1 :(p = p1, c = c1). (2)

Decoder

Encoder 1

Encoder 2

Fig. 1: Distributed hypothesis testing scheme.

For convenience, we assume that 0 < p0 ≤ 0.5, p0 ≤ p1, and
c0 ≤ c1. This model has been studied from an information-
theoretic perspective in [23], [36]. Notably, when p0 = p1
and c1 = 1/2, the problem reduces to testing against indepen-
dence [9].

C. Coding schemes

Figure 1 illustrates the DHT setup. Encoder 1 and Encoder 2
send coded representations of Xn and Yn at rates R1 and R2,
respectively. The decoder uses the received coded information
to make a decision between H0 and H1. In this paper, two
setups are considered:

• Asymmetric setup: Xn is encoded at rate R1, while Yn

is fully available at the decoder.
• Symmetric setup: both Xn and Yn are encoded at rates

R1 and R2, respectively.
For a given block length n, the encoding functions are

defined as:

f
(n)
1 : {0, 1}n → J1, 2nR1K, (3)

f
(n)
2 : {0, 1}n → J1, 2nR2K, (4)

and the decision function as:

g(n) : J1, 2nR1K × J1, 2nR2K → {0, 1}. (5)

For given encoding and decision functions
(f

(n)
1 , f

(n)
2 , g(n)), we define Type-I error probability αn

and Type-II error probability βn as [23]

αn = P0

(
g(n)(f

(n)
1 (Xn), f

(n)
2 (Yn)) = 1

)
, (6)

βn = P1

(
g(n)(f

(n)
1 (Xn), f

(n)
2 (Yn)) = 0

)
. (7)

In the information-theoretic analysis, it is shown that the
Type-II error probability decays exponentially fast with the
blocklength n, characterized by an error exponent θ. This
regime is commonly referred to as the Stein regime [23]. For
a given value ϵ ∈ (0, 1) such that αn < ϵ, the error exponent
θ is defined as [23]

lim
n→∞

sup
1

n
log

1

βn
≥ θ. (8)

D. Short-length nature of DHT

Existing lower bounds on the error exponent θ are derived in
the asymptotic regime, i.e., by considering n → ∞ [12], [23],
[37], [38]. Therefore, they provide a scaling law βn ≈ e−nθ,
which characterizes the exponential decay of the Type-II error
probability. Here, we use this approximation to investigate
the block length n needed to achieve sufficiently low Type-II
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error probability. Among existing lower bounds on the error-
exponent for the asymmetric setup, the one provided in [36]
is based on a quantize-binning achievable coding scheme
and is simpler to evaluate than the one of the SHA scheme
in [12]. Specifying this bound for the DHT problem with
binary sources defined in (2) leads to

θ ≥ sup
δ∈[0,1]

min

{
R1 − [H2(p0 ∗ δ)−H2(δ)], (9)

(p0 ∗ δ) log
p0 ∗ δ
p1 ∗ δ

+ (1− (p0 ∗ δ)) log
1− (p0 ∗ δ)
1− (p1 ∗ δ)

}
.

Here, H2 is the binary entropy function, and ∗ is the binary
convolution operator defined as x ∗ y = (1 − x)y + (1 −
y)x, with 0 ≤ x, y ≤ 1. In addition, δ is a parameter of
the information-theoretic coding scheme. Consider parameters
p0 = 0.05, p1 = 0.5, δ = 0.1, r = 0.4. We observe that
βn drops from 10−6 with n = 50 to 10−12 with n = 100.
This highlights the importance of focusing on small values
of n (n < 100), motivating our study of short-length coding
schemes. Note that the approximation βn ≈ e−nθ provides a
lower bound on the DHT performance for a given n, but θ
was obtained under the conditions that (i) n → ∞, (ii) Type-I
error probability αn also converges to 0 as n → ∞. In this
paper, we will provide more accurate analytical expressions of
the Type-I and Type-II error probabilities for finite n, for the
proposed practical coding schemes.

E. Information-theoretic coding scheme

We now review the SHA quantize-binning achievable
scheme which have been proposed in the literature of DHT for
the asymmetric setup [12]. This will allow us to identify the
main steps of a practical coding for this problem. For brevity,
we do not provide here the corresponding lower bound on
the error exponent. Indeed, the bound has a quite complex
expression and is not essential to convey the main message of
this part. The quantize-binning scheme of [12], [37] operates
as follows.

• Codebook generation: Construct a random codebook

C = {un(m, ℓ) : m ∈ J1, ⌊2nR1⌋K, ℓ ∈ J1, ⌊2nr1⌋K}
(10)

by drawing all entries of all codewords i.i.d. according
to a chosen distribution PU |X

• Encoding: To encode xn, the encoder looks for indices
(m, ℓ) such that un(m, ℓ) and xn are jointly typical [12],
in the sense that ∀(a, b) ∈ {0, 1},∣∣∣∣N((a, b)n

|(xn,un(m, ℓ)))− PXU (a, b)

∣∣∣∣ ≤ µPXU (a, b),

(11)
where µ is a parameter and N((a, b)|(xn,un) is the
number of occurrences of the pair (a, b) in the pair of
sequences (xn,un). The codeword un can be interpreted
as a quantized version of xn. If successful, the encoder
picks one of these indices uniformly at random and sends
the index m to the receiver. Otherwise, it sends m = 0.

• Decoder: The decoder receives the message m from
the encoder, and it observes yn. If m = 0, the de-
coder declares Ĥ = H1. Otherwise, it first performs
an empirical entropy decoding step [12] to identify the
most likely sequence within the received bin, and then
decides between the two hypotheses using a typicality
check. Specifically, the decoder searches for an index
ℓ̂ ∈ J1, ⌊2nr1⌋K such that un(m, ℓ̂) has the lowest
empirical entropy He(u

n|yn) defined as

He(u
n|yn) = − 1

n

n∑
k=1

logPU |Y (uk|yk), (12)

where PU |Y is the conditional probability distribution of
U given Y under H0. The receiver then declares H0 if
the extracted sequence un(m, ℓ̂) and the side information
yn are jointly typical. in the sense of (11), where xn is
replaced by yn.

The information-theoretic coding scheme described above
relies on quantization and binning steps, which we aim to
implement in a practical form. In this work, we will rely on
linear block codes for both steps. In addition, the previous cri-
teria of joint typicality and empirical entropy in (11) and (12)
allow some error probability terms to vanish asymptotically in
the information-theoretic proof. In this work, we consider the
finite-length regime. Consequently, we adopt the Maximum
Likelihood (ML) estimator and the Neyman-Pearson (NP) test,
which are standard techniques in signal processing and are
known to be optimal under specific conditions, as detailed
later in the paper.

III. UNCODED SCHEMES

Before introducing the proposed practical quantization and
quantize-binning schemes, in this section we describe two
schemes that do not require coding. These schemes will serve
as baselines when evaluating the performance of our proposed
coding schemes. In this section, we also introduce the key
elements of the NP theory which will be essential in our
practical coding schemes.

A. Truncation scheme

The truncation scheme consists of sending the first l ≤ n
symbols of the source vector xn and yn at the coding rate
R1 = R2 = l/n at the decoder. In this part, we consider
equal rates for simplicity. Indeed, considering R1 ̸= R2 in the
truncation scheme would result in sending a different number
of symbols from xn and yn, which may not be efficiently
exploited by the NP test since the sources are i.i.d. Note that
in the upcoming quantization and quantize-binning schemes,
we will consider the general case R1 ̸= R2.

The decoder can then perform a standard NP test on the
pair (xl,yl). Under the constraint α

(t)
n < ϵ on Type-I error

probability for the truncation scheme, the NP lemma [39]
provides an optimal decision rule. Specifically, for a given
value µ ∈ R, the following NP test:

P1(x
l,yl) < µP0(x

l,yl), (13)
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where H0 is decided if the inequality is satisfied and H1 is
decided otherwise, minimizes the Type-II error probability β

(t)
n

under the constraint α(t)
n < ϵ. In (13), the threshold value µ

is chosen to satisfy this Type-I error constraint. Given that
p0 ≤ p1 and c0 ≤ c1, by expressing the joint probabilities
P0(x

l,yl) and P1(x
l,yl) under each hypothesis and taking the

logarithm in both sides of (13), the Neyman–Pearson test (13)
simplifies to

w(xl) log
p1(1− p0)

p0(1− p1)
+ w(zl) log

c1(1− c0)

c0(1− c1)
< τt, (14)

where zl = xl ⊕ yl, and τt is a threshold value chosen so as
to satisfy the Type-I error constraint. The threshold τt in (14)
can be expressed from the threshold µ in (13). However, in
NP tests, this expression is in general not provided nor used:
the value of τt is directly set so as to satisfy the Type-I error
probability constraint α(t)

n < ϵ from the test (14), without need
to come back to (13).

In the NP theory, the threshold value τt is often set from
analytical expressions of Type-I and Type-II error probabilities
of the considered test. For the truncation scheme, given that
p0 < p1 and c0 < c1, the analytical expressions of Type-I and
Type-II errors are given by

α(t)
n =

∑
(λ,j):

Tλ,j≥τt

(
l

λ

)
pλ0 (1− p0)

l−λ

(
l

j

)
cj0(1− c0)

l−j (15)

β(t)
n =

∑
(λ,j):

Tλ,j≤τt

(
l

λ

)
pλ1 (1− p1)

l−λ

(
l

j

)
cj1(1− c1)

l−j (16)

where the exponent (t) refers to the truncation scheme, and
Tλ,j = λ log2

p1(1−p0)
p0(1−p1)

+ j log2
c1(1−c0)
c0(1−c1)

.
In all the coding schemes introduced in the paper, we will

use the NP lemma to derive optimal tests that minimize Type-II
error probability under a constraint on Type-I error probability.
We will also aim to derive analytical expressions of Type-I and
Type-II error probability.

B. Separate scheme (local decisions)

When the marginal distributions of X and Y depend on
the hypothesis H0 or H1 (that is p0 ̸= p1), each encoder can
locally perform a Neyman–Pearson (NP) test [39] based on its
own observation xn, or yn. In this case, each encoder sends
one bit indicating its local decision, leading to coding rates
R1 = R2 = 1/n. For given threshold values µ1, µ2 ∈ R
chosen to satisfy the constraints α

(1)
n < ϵ and α

(2)
n < ϵ on

the Type-I error probabilities for Encoder 1 and Encoder 2,
respectively, we consider the following NP tests:

P1(x
n) < µ1P0(x

n), (17)
P1(y

n) < µ2P0(y
n), (18)

where in each case H0 is decided if the inequality is satisfied.
Given that p0 ≤ p1, and c0 ≤ c1, the tests described by (17)
and (18) are equivalent, respectively, to the conditions:

w(xn) < λ1, (19)

w(yn) < λ2, (20)

where λ1, λ2 ∈ N are threshold values.
The decoder decides hypothesis Hi if both encoders agree

on i, and otherwise follows Encoder 1’s decision. This choice
is motivated by the fact that according to the model defined
in (2), Y is a noisy version of X , so that P(Y = 1) >
P(X = 1) under both hypotheses H0 and H1. Note that
other strategies may be considered depending on the values
of p0, p1, c0, c1. The Type-I and Type-II error probabilities of
the separate scheme can be derived similarly to the truncation
scheme by following the standard NP arguments. This setup
offers the advantage of achieving very low communication
rates by transmitting just one bit of information to the decoder.
This constitutes a special case of the estimate-and-compress
setup introduced in [34] in the context of parameter estimation.

IV. QUANTIZATION SCHEME

In their seminal work [9], Ahlswede and Csiszár introduced
the first information-theoretic DHT scheme based only on a
quantizer. Here, we present a practical implementation of this
scheme for short-length sequences by utilizing linear block
codes.

A. Code construction for the symmetric setup

First, in this section, we consider the special case where
R1 = R2. To practically implement binary quantization for the
symmetric setup, we follow the approach of [24], [29], [32]
and consider a generator matrix Gq with dimension n×k of a
linear block code. According to the ML rule, for given source
sequences xn and yn, the encoders produce vectors uk

q and
tkq of length k bits as [40]

uk
q = arg min

uk∈{0,1}k
d
(
Gqu

k,xn
)
, (21)

tkq = arg min
tk∈{0,1}k

d
(
Gqt

k,yn
)
. (22)

The vectors uk
q and tkq are the compressed versions of xn and

yn, respectively. We further denote xn
q = Gqu

k
q , and yn

q =
Gqt

k
q .

In (21), and (22), the key difficulty lies in determining
the quantized vectors uk

q and tkq that achieve the minimum
Hamming distance. In [24], [29], [32], the matrix Gq is
constructed as an LDGM code, which enables the use of
a low complexity message-passing algorithm called BiP to
solve (21), (22). The schemes introduced in [24], [29], [32]
consider long codes (more than 103 bits). But at short length,
LDGM codes are penalized by their low minimum distances
between codewords. Instead, we opt to consider well-known
short linear block codes such as BCH, Reed-Muller, Polar
codes, since they have good minimum distance properties.
Unfortunately, their generator matrices are not sparse, which
prevents the use of the BiP algorithm.
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To find uk
q and tkq we reformulate problems (21) and (22)

as

xn
q = argmin

xn
q

d(xn
q ,x

n) s.t. Hqx
n
q = 0m, (23)

yn
q = argmin

yn
q

d(yn
q ,y

n) s.t. Hqy
n
q = 0m, (24)

where Hq is a parity check matrix of size m × n of the
code defined by Gq , with m = n − k. Once the closest
valid codewords xn

q and yn
q are identified, the corresponding

compressed vectors uk
q and tkq can be retrieved by solving

the linear systems Gqu
k
q = xn

q and Gqt
k
q = yn

q , typically via
Gaussian elimination.

Problems (23) and (24), which are equivalent to (21)
and (22), respectively, are a standard channel coding formu-
lation. In this sense, a natural approach might be to apply
Belief Propagation (BP) decoding [41] to (23) and (24), as
commonly done for LDPC codes in channel coding. However,
BP decoders perform poorly for binary quantization, especially
at short block lengths. This arises because, unlike in channel
decoding where the received vector is a noisy version of
a transmitted codeword, in binary quantization the source
vectors xn and yn are typically far from any valid codeword.
Consequently, BP often fails to converge to a valid solution
in this context.

In this work, we do not rely on BP decoders, which
are not well-suited to short codes or to binary quantization.
Instead, we propose solving problems (23) and (24) exactly
using Maximum Likelihood (ML) decoders tailored to the
considered codes. Specifically, we use generic syndrome-based
decoders with complexity in O(2m) [42, Section 3.1.4], which
can be applied to a broad range of short block codes, including
BCH and Reed-Muller codes. When applicable, code-specific
decoders such as the Berlekamp-Massey algorithm for BCH
codes [42, Section 3.2.2], or generic near-ML decoders such
as Linear-Programming (LP) decoders [43], can also be em-
ployed to further reduce complexity see Figures 5 and 8).

B. Hypothesis test for the symmetric setup

The codewords uk
q and tkq are transmitted to the decoder

at code rates R1 = R2 = k/n. The decoder first reconstructs
the quantized vectors xn

q = Gqu
k
q and yn

q = Gqt
k
q . It then

applies a NP test to the pair (xn
q ,y

n
q ). For a given threshold

value µq ∈ R set under the constraint α
(q)
n < ϵ on Type-I

error probability for the quantization scheme, the NP test can
be written as

P1

(
xn
q ,y

n
q

)
≤ µqP0

(
xn
q ,y

n
q

)
, (25)

where H0 is decided if the inequality is satisfied. Moreover,
while condition (12) arises in an asymptotic setting, the NP
test remains optimal for any finite n.

However, computing the joint distributions P0(x
n
q ,y

n
q ) and

P1(x
n
q ,y

n
q ) in (25) is non-trivial, as the underlying code Gq

introduces statistical dependencies within the vectors xn
q and

yn
q . To simplify the analysis, we model the vectors xn

q and
vn
q = xn

q ⊕ yn
q as realizations of i.i.d. Bernoulli random

variables: Xq ∼ Bern(p̂) with p̂ = p̂0 under H0 and p̂ = p̂1

under H1, and Vq ∼ Bern(ĉ) with ĉ = ĉ0 under H0 and ĉ = ĉ1
under H1.

Under these assumptions, the test (25) can be reformulated
as

w(xn
q ) log2

p̂1(1− p̂0)

p̂0(1− p̂1)
+ w(vn

q ) log2
ĉ1(1− ĉ0)

ĉ0(1− ĉ1)
≤ τq, (26)

where τq is the test threshold chosen to meet the Type-I error
probability requirement. The parameters (p̂0, ĉ0) and (p̂1, ĉ1)
are estimated through Monte Carlo simulations. In practice, the
numerical results presented later on in the paper demonstrate
that the proposed test provides accurate decisions under this
approximation (Figures 4 and Figure 5).

Remark: Note that when p0 ̸= p1, the NP test in (26)
cannot be simplified further. In this case, deriving closed-form
expressions of the Type-I and Type-II error probabilities is
very difficult, due to the log coefficients. Therefore, in the
theoretical analysis, we focus on symmetric source models
(p0 = p1), for which the test (26) reduces to comparing w(vn

q )
to a threshold value.

Finally, note that the coding scheme and the hypothesis test
introduced in this section can be straightforwardly generalized
to the case where R1 ̸= R2, by considering two generator
matrices G

(1)
q , G

(2)
q along with their parity check matrices

H
(1)
q , H

(2)
q . Therefore, the only formula that need to be

changed are the quantization rules (21) and (22). However
the hypothesis test itself does not change since it is applied
over vectors xn

q and yn
q of the same length.

C. Code construction and hypothesis test for the asymmetric
setup

In the asymmetric setup, the coding scheme is obtained in
a straightforward manner from the symmetric setup. In this
case, only xn is quantized and transmitted at rate R1 = k/n,
while yn is available at the decoder. Therefore, the decoder
first computes the quantized vector xn

q = Gqu
k
q . Then the NP

test remains the same as (26), except that yn
q is replaced by

yn in the expression of vn
q . Note that in the special case where

p0 = p1, the NP test (25) reduces to
n∑

i=1

(xq,i ⊕ yi) < λq, (27)

where λq is the threshold chosen so as to satisfy the Type-I
error probability constraint.

D. Theoretical analysis of the quantization scheme

In this section, we provide a theoretical analysis of the Type-
I and Type-II error probabilities for the proposed practical
quantization scheme under the asymmetric setup, focusing
on the special case where p0 = p1 = 1/2. We derive
exact analytical expressions for the error probabilities of the
scheme considering the generator matrix Gq . Extensions to
the symmetric setup and to cases where p0 ̸= p1 involve
significantly more complex analyses and are therefore left for
future work.

We begin by introducing the notation associated with the
code defined by the generator matrix Gq . Throughout the
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analysis, we assume that the all-zero codeword xn
q is trans-

mitted. Due to symmetry, the quantization error probability is
independent of the transmitted codeword [41].

Let C(q)
0 denote the decision region, or coset, corresponding

to xn
q = 0n, defined as

C(q)
0 :=

{
xn ∈ {0, 1}n : argmin

uk
d(Gqu

k,xn) = 0k

}
.

In other words, xn ∈ C(q)
0 implies that the solution of (23) for

xn
q is 0n. Next consider the set of integers {E(q)

γ }
γ∈J0,d(q)

maxK

where E(q)
γ is the number of sequences xn of Hamming weight

γ, also referred to as number of coset leaders of weight γ, that
belong to the coset C(q)

0 . In addition, d
(q)
max is the maximum

possible weight in C(q)
0 . The total number of coset leaders

is then given by N
(q)
0 =

∑d(q)
max

γ=0 E
(q)
γ . The reader is referred

to [42, Section 3.1.4] for more details about these concepts
which were originally introduced in the context of channel
coding.

With these definitions in place, we proceed to derive
the theoretical expressions for the Type-I and Type-II error
probabilities of the proposed quantization scheme under the
asymmetric setup.

Proposition 1: Consider the quantization scheme in the
asymmetric setup, with p0 = p1 = 0.5, and a fixed threshold
value λq . Type-I and Type-II error probabilities of this scheme
are given by

α(q)
n = 1− 1

N
(q)
0

λq∑
λ=0

d(q)
max∑

γ=0

n∑
j=0

E(q)
γ ∆λ,j,γ

(
n

j

)
cj0(1− c0)

n−j ,

(28)

β(q)
n =

1

N
(q)
0

λq∑
λ=0

d(q)
max∑

γ=0

n∑
j=0

E(q)
γ ∆λ,j,γ

(
n

j

)
cj1(1− c1)

n−j ,

(29)

where

∆λ,j,γ =
Γλ,j,γ∑max(λ,j)

i=0

(
λ
i

)(
n−λ
j−i

) , (30)

and, for γ = j + λ− 2u and 0 ≤ u ≤ min(λ, j) ≤ n,

Γλ,j,γ =

(
λ

u

)(
n− λ

j − u

)
. (31)

The terms ∆λ,j,γ in (28) and (29) represent the probabilities
of binary sequences xn and yn of Hamming weights λ and γ,
respectively, with Hamming distance j between xn and yn.
These terms appear due to the fact that a decision error can
occur if the side information vector yn is too far from xn

q ,
but yn is generated from a conditional distribution P (yn|xn),
and the distribution P (xn|xn

q ) is not i.i.d..
Proof : By symmetry due to the linear block code, the

quantizer error probability is independent of the transmitted

codeword [41]. Therefore, it is sufficient to consider the all-
zero codeword xn

q = 0n. From (27), we develop

α(q)
n = 1−

λq∑
λ=0

P0(w(Y
n) = λ) (32)

= 1−
λq∑
λ=0

d(q)
max∑

γ=0

E
(q)
γ

N
(q)
0

P0(w(Y
n) = λ|w(Xn) = γ)

= 1−
λq∑
λ=0

d(q)
max∑

γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

P0(d(X
n,Yn) = j)∆λ,j,γ

= 1−
λq∑
λ=0

d(q)
max∑

γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

(
n

j

)
cj0(1− c0)

n−j∆λ,j,γ .

This leads to (28). To obtain (29), we remark that β
(q)
n =∑λq

λ=0 P1(w(Y
n) = λ). Following the same steps as in (32),

and by replacing c0 by c1, the proof is completed. □
To the best of the authors’ knowledge, these theoretical

results are novel and differ from both the classical information-
theoretic analysis of DHT and existing results in channel cod-
ing. Especially, while error probability expressions are well-
established for linear block codes in the context of channel
coding, such analytical characterizations had not been derived
for the DHT problem, where the threshold parameter λq

impacts both Type-I and Type-II error probabilities. These new
analytical expressions enable the evaluation of decision per-
formance without relying on computationally intensive Monte
Carlo simulations. Consequently, they facilitate code design
by only considering the code parameters such as E

(q)
γ , N

(q)
0 ,

and d
(q)
max, as demonstrated in [44].

V. QUANTIZE-BINNING SCHEME

In their seminal work [12], Shimokawa et al. introduced the
quantize-binning scheme for DHT. This scheme leverages the
correlation between the sources X and Y to reduce the code
rate after compression. We now introduce a practical short-
length implementation of this scheme by using linear block
codes.

A. Code construction for the symmetric setup

In this part as well, we first assume that R1 = R2 for sim-
plicity. To practically implement the quantize-binning scheme,
we again consider the generator matrix Gq of size n× k of a
linear block code. Additionally, we consider the parity-check
matrix Hb of size ℓ × k of another linear block code. In
the symmetric setup, given the source vectors xn and yn,
the encoders apply the quantization method described by (21)
and (22) to obtain the sequences uk

q and tkq , respectively. Then,
the encoders use the parity check matrix Hb to compute the
syndromes

rℓ = Hbu
k
q , (33)

and
sℓ = Hbt

k
q , (34)
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both of length ℓ. This follows the same approach as in [25]–
[28], where binning is performed using the parity-check matrix
of an LDPC code. In contrast, and consistent with our earlier
discussion, we employ efficient short-length linear block codes
such as BCH, Polar codes, and Reed–Muller codes.

B. Hypothesis test for the symmetric setup

The syndromes rℓ and sℓ are then transmitted to the decoder
at rates R1 = R2 = ℓ/n. At the decoder, as discussed
in Section IV, we avoid using message-passing algorithms
such as BP decoders since they do not perform well with
short-length codes. Instead, we directly consider the ML rule.
Therefore, the decoder first identifies by exhaustive search,
vectors ûk

q and t̂kq as

(ûk
q , t̂

k
q ) = arg min

uk,tk
d
(
Gqu

k, Gqt
k
)

s.t. (35)

Hbu
k = rℓ, and Hbt

k = sℓ.

We then compute x̂n
q = Gqû

k
q and ŷn

q = Gq t̂
k
q , and, apply the

following NP test for a given threshold µq,b ∈ R,

P1

(
x̂n
q , ŷ

n
q

)
≤ µq,bP0

(
x̂n
q , ŷ

n
q

)
, (36)

where H0 is decided if the inequality is satisfied.
As in Section IV-A, we note that computing the joint

distributions P0(x̂
n
q , ŷ

n
q ) and P1(x̂

n
q , ŷ

n
q ) in (36) is difficult.

Therefore, we adopt the same assumptions as in Section IV-A.
Specifically, we assume that x̂n

q and v̂n
q = x̂n

q ⊕ ŷn
q are

the realizations of i.i.d. random variables X̂q ∼ Bern(p̂b)
(with p̂b = p̂0,b under H0, and p̂b = p̂1,b, under H1), and
V̂q ∼ Bern(ĉb) (with ĉb = ĉ0,b under H0, and ĉb = ĉ1,b, under
H1). The NP test (36) can then be rewritten as

w(x̂n
q ) log2

p̂1,b(1− p̂0,b)

p̂0,b(1− p̂1,b)
+ w(v̂n

q ) log2
ĉ0,b(1− ĉ0,b)

ĉ1,b(1− ĉ1,b)
≤ τq,b,

(37)

where τq,b is the test threshold chosen so as to satisfy the
Type-I error probability. The values p̂0,b, ĉ0,b, p̂1,b, and ĉ1,b
are estimated through Monte Carlo simulations.

Remark: Note that the quantize-binning scheme can be
straightforwardly generalized to the case where R1 ̸= R2,
by considering two different generator matrices G

(1)
q , G(2)

q in
(21) and (22) and two different parity check matrices H

(1)
b ,

H
(2)
b in (33) and (34).

C. Code construction and hypothesis test for the asymmetric
setup

In the asymmetric case, only xn is quantized and binned
into rℓ, according to (33). The vector rℓ is then transmitted
at rate R1 = ℓ/n, while yn serves as side information at the
decoder. At the receiver, the vector ûk is identified by solving
the ML rule

ûk
q = argmin

uk
d(Gqu

k,yn) s.t. Hbu
k = rℓ. (38)

through an exhaustive search. Next, in the asymmetric setup,
the NP test is the same as (36), except that ŷn

q is replaced by

yn in the derivation. In the special case where p0 = p1, this
test reduces to

n∑
i=1

(x̂q,i ⊕ yi) < λqb, (39)

where x̂n
q = Gqû

k, and λqb is the test threshold.

D. Theoretical analysis of the quantize-binning scheme

We now provide exact analytical expressions for the Type-I
and Type-II error probabilities of the quantize-binning scheme,
under the asymmetric setup and in the particular case where
p0 = p1 = 1/2. Extensions to the symmetric setup and the
general case where p0 ̸= p1 are considerably more complex
because in this case, the hypothesis test (37) does not simplify
further. These extensions are therefore left for future works.

As in Section IV-D, we assume that the all-zero codeword is
transmitted. We use the definitions introduced in Section IV-D
for C(q)

0 and E
(q)
γ associated with the generator matrix Gq .

Additional definitions are necessary for the quantize-binning
scheme, which corresponds to the concatenation of the two
codes used for quantization and binning.

We first define the decision region, or coset, C(qb)
0 as

C(qb)
0 :=

{
yn ∈ {0, 1}n : argmin

uk
d(Gqu

k,yn) = 0k

}
,

(40)
for the all-zero codeword of the quantize-binning scheme.
Importantly, the condition Hbu

k = rℓ on the syndrome is
not explicitly included in (40), as it is automatically satisfied
for uk = 0k due to the linearity of the code. Especially, a side
information vector yn belongs to C(qb)

0 if the solution of (38)
for this vector is ûk

q = 0k.

Next, we define the set of integers {E(qb)
ν }

ν∈J0,d(qb)
max K, where

E
(qb)
ν denotes the number of sequences yn with a Hamming

weight ν that belong to the decision region C(qb)
0 . These

quantities are also referred to as the number of coset leaders
of weight ν. Here, d

(qb)
max denotes the maximum possible

weight in C(qb)
0 . Additionally, we define the set of integers

{A(qb)
t }t∈J0,nK, where A

(qb)
t denotes the number of sequences

xn
q with a Hamming weight t that can be expressed as

xn
q = Gqu

k
q , for some uk

q satisfying Hbu
k
q = 0ℓ. Thus, the set

{A(qb)
t }t∈J0,nK corresponds to the code weight distribution [42,

Section 3.1.3] of the concatenated code.
Proposition 2: For the quantize-binning scheme considering

p0 = p1 = 1/2, and for a fixed threshold value λqb, Type-I
and Type-II error probabilities are given by

α(qb)
n = 1− PB(c0)− PB̄(c0), (41)

β(qb)
n = PB(c1) + PB̄(c1), (42)
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where

PB(δ) =

min(d(qb)
max,λqb)∑
ν=0

E
(qb)
ν(
n
ν

) d(q)
max∑
γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

Γν,j,γδ
j(1− δ)n−j ,

(43)

PB̄(δ) =

n∑
i=0

d(q)
max∑

γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

Γi,j,γδ
j(1− δ)n−j

 (44)

×

 n∑
t=1

λqb∑
ν=0

E
(qb)
ν(
n
ν

) A
(qb)
t Γi,ν,t(

n
i

)
 ,

where Γν,j,γ is defined in (31).
Proof : We consider the all-zero codeword xn

q = 0. Under
the hypothesis H0, we express

α(qb)
n = 1− P0(Ĥ0, B)− P0(Ĥ0, B̄), (45)

where B is the event that the correct sequence x̂n
q = xn

q

is retrieved by the decoder, while B̄ is the event that an
incorrect sequence x̂n

q ̸= xn
q is output by the decoder. In

addition, Ĥ0 is the event that the hypothesis H0 is chosen
by the decoder. We further denote PB(p0) = P0(Ĥ0, B) and
PB̄(p0) = P0(Ĥ0, B̄). We then express

PB(p0) =

n∑
ν=0

P0(w(Y
n) = ν)P0(Ĥ0, B|w(Yn) = ν) (46)

=

min(d(qb)
max,λqb)∑
ν=0

P0(w(Y
n) = ν)

E
(qb)
ν(
n
ν

) . (47)

By following the same steps as in the proof of Proposition 1,
we can show that

P0(w(Y
n) = ν) =

d(q)
max∑
γ=0

E
(q)
γ

N
(q)
0

n∑
j=0

Γν,j,γc
j
0(1− c0)

n−j , (48)

which provides (43). We then write

PB̄(p0) =

n∑
i=0

P0(w(Y
n) = i)P0(Ĥ0, B̄|w(Yn) = i), (49)

where P0(w(Y
n) = i) is given by (48). We develop

P0(Ĥ0, B̄|w(Yn) = i)

=

n∑
t=1

λqb∑
ν=0

P0(w(X̂
n
q ) = t, d(X̂n

q ,Y
n) = ν|w(Yn) = i)

(50)

=

n∑
t=1

λqb∑
ν=0

E
(qb)
ν(
n
ν

) A
(qb)
t Γi,ν,t(

n
i

) . (51)

This provides the expression of PB̄(c0) in (44).
We can derive the expression of β

(qb)
n in (42) by noticing

that β(qb)
n = PB(c1) + PB̄(c1) and using the same derivation

as above. This ends the proof. □
In this derivation, one key difficulty compared to the quan-

tization scheme lies in that under both hypothesis, even when
the sequence xn

q is decoded incorrectly, that is x̂n
q ̸= xn

q , the
pair (x̂n

q ,y
n) can still pass the NP test to decide H0. This is

because the decoding targets to minimize the distance between
x̂n
q and yn, distance which is then used for comparison in

the NP test. This introduces the sum over the distribution of
codewords characterized by the set of integers {A(qb)

t }t∈J0,nK.
To the best of the authors’ knowledge, these theoretical

results are new. It is important to note that the derivations
have been conducted exclusively for the asymmetric setup,
as extending them to the symmetric case appears to be pro-
hibitively complex. These analytical expressions are expected
to facilitate the optimization and comparison of practical
schemes across a wide range of source and code parameters.
For instance, optimizing E

(q)
γ , E(qb)

ν , and A
(qb)
t , could lead to

an optimal quantize-binning scheme for DHT. We leave such
optimization as future work.

VI. NUMERICAL RESULTS

We now evaluate and compare the decision performance of
the four proposed coding schemes: separate coding, truncation,
quantization, and quantize-binning. To this end, we provide
Receiver Operating Characteristic (ROC) curves which plot
the Type-II error probability versus the Type-I error proba-
bility for each scheme. ROC curves are a standard tool for
evaluating the performance of hypothesis tests and provide a
clear visualization of the trade-offs between Type-I and Type-
II errors.

A. Separate scheme versus truncation scheme

We begin by comparing the two uncoded schemes: the sepa-
rate scheme and the truncation scheme. The source parameters
are set to c0 = 0.1, p1 = 0.5, c1 = 0.35, while several values
of p0 ∈ {0.08, 0.2, 0.3} are considered. We fix the source
sequence length to n = 30 bits, and the truncation length to
l = 15 bits.

Figure 2 shows the ROC curves of the two uncoded schemes
for different values of p0. It can be observed that when
p0 is small, the separate scheme outperforms the truncation
scheme. This is because Encoder 1 has access to the full n-bits
sequence to decide between the two hypotheses characterized
by significantly different values, p0 = 0.08 and p1 = 0.5.
However, as p0 increases and approaches p1, the truncation
scheme becomes advantageous. Indeed, in this regime, it
becomes increasingly difficult for Encoder 1 in the separate
scheme to accurately distinguish between H0 and H1 based
solely on its local observations. In contrast, the truncation
scheme benefits from additional information through the val-
ues of c0 and c1, which improves the decision-making process.

In summary, while the separate scheme is rate-efficient,
transmitting only one bit of information, its decision accuracy
deteriorates as p0 approaches p1. Conversely, the truncation
scheme, though less rate-efficient due to the transmission
of truncated sequences at rates R1 = R2 = R = l/n,
achieves better decision accuracy via joint decoding as p0
increases. These observations motivate the development of
coding schemes aimed at further improving both Type-I and
Type-II error probabilities beyond the performance of the
truncation scheme.
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Fig. 2: ROC curves for separate and truncation schemes.
Source parameters are set to c0 = 0.1, p1 = 0.5 and c1 = 0.35,
p0 ∈ {0.08, 0.2, 0.3}, n = 30, l = 15.

B. Quantization scheme in the asymmetric setup

We now investigate the performance of the quantization
scheme in the asymmetric setup. We first assess the accuracy
of the theoretical analysis provided in Proposition 1. The
source parameters are set to p0 = 0.5, p1 = 0.5, c1 = 0.5, and
c0 ∈ {0.07, 0.1}. We first consider a (31,16) BCH code with
minimum distance dmin = 7, which gives a source length
n = 31 and k = 16 coded bits. For comparison, we also
consider the (32, 16) LDPC CCSDS code, and the (32, 16)
Polar code from [45], both with parameters n = 32 and
k = 16. For the three codes, the quantization operation (23),
is performed from ML decoding.

Figure 3 presents the ROC curves for both schemes with
the previous parameters and the three considered codes. The-
oretical curves are obtained via numerical evaluation of the
expressions in Proposition 1, while practical results are mea-
sured from Monte Carlo simulations averaged over 100, 000
trials per point. For all codes, the results indicate a close match
between theoretical and empirical Type-I and Type-II error
probabilities. This is because the error probability expressions
take into account the considered code through the terms E

(q)
γ .

Therefore, the theoretical expressions are found useful for the
design of DHT curves. Moreover, Figure 3 shows that the BCH
code outperforms the considered LDPC and Polar code in the
asymmetric setup for the considered values of c0.

C. Quantization scheme in the symmetric setup

We now investigate the symmetric setup, aiming to com-
pare the proposed quantization scheme against the truncation
scheme and existing quantization schemes based on LDGM
codes with BiP algorithms [24], [29], [32]. We also aim to
investigate the effect of different rates R1 ̸= R2. We first
consider a source length n = 31, and source parameters
p0 ∈ {0.05, 0.08}, p1 = 0.5, c0 = 0.1, c1 = 0.35. In order
to consider unequal rates R1 ̸= R2, we use kx (resp. ky) to
denote the number of coded bits for source X (resp. Y ). We
consider three different code constructions for the sources X
and Y , all such that R1+R2

2 = 0.51 bits/symbol.
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Fig. 3: ROC curves obtained from theoretical analysis (dashed
lines) and Monte Carlo simulations (plain lines), for the
(31, 16) BCH code, the (32, 16) CCSDS code, and the (32, 16)
Polar code, each used as quantizers in the assymetric setup.
Source parameters are set to p0 = 0.5, p1 = 0.5, c1 = 0.5,
and c0 ∈ {0.07, 0.1}.

kx
kx

kx
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kY

kY

Fig. 4: ROC curves for quantization from n = 31 bits,
compared to the truncation scheme in the symmetric setup.
Source parameters are set to p0 = 0.05, p1 = 0.5, c0 = 0.1,
c1 = 0.35. We consider three different BCH code construc-
tions for the sources X and Y , each verifying R1+R2

2 = 0.51
bits/symbol.

1) Both sources are quantized with the (31, 16) BCH code,
resulting in kx = ky = 16 bits

2) The source X is quantized with the (31, 11) BCH code,
and the source Y is quantized with the (31, 21) BCH
code, resulting in kx = 11 bits, ky = 21 bits.

3) The source X is quantized with the (31, 21) BCH code,
and the source Y is quantized with the (31, 11) BCH
code, resulting in kx = 21 bits, ky = 11 bits.

Figure 4 shows the ROC curves for the truncation scheme
with l = 16, and for the previous three code constructions
under ML decoding. For the three constructions, a clear
advantage is observed for the quantization scheme decoder
over the truncation scheme. Interestingly, we also observe that
each of the code constructions provides a different tradeoff
in terms of Type-I versus Type-II error probability. We also
observe that the curves for the quantization scheme in Figure 4,
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p0

p0
p0
p0
p0

Fig. 5: ROC curve for the (63, 45) BCH code and the (64, 43)
Polar code used as quantizers, compared to the truncation
scheme in the symmetric setup. Source parameters are set to
p0 ∈ {0.05, 0.1}, p1 = 0.5, c0 = 0.1, c1 = 0.35.

although averaged over 108 simulations, have some points of
irregularity. This comes from the test in equation (26) which
involves integer values w(xn

q ) and w(vn
q ), and from the low

source length n = 31, which limits the range of these values.
We next investigate the impact of code length in the sym-

metric setup. We consider a longer source sequence of n = 63
bits and consider the (63, 36) BCH code with minimum
distance 11. The source parameters are set to p0 ∈ {0.05, 0.1},
p1 = 0.5, c0 = 0.1, c1 = 0.35. For comparison, we also
consider the (64, 43) Polar code from [45]. For each code,
the quantization (23) is performed from ML decoding. For
the (63, 36) BCH code, we also make a comparison with LP
decoding from [43], and with BiP decoder with decimation
of [32].The LP decoder is implemented from the open-source
Julia optimization library SCIP. The ROC curves are shown
in Figure 5. As before, a clear performance gain is observed
for the quantization scheme with ML decoding over the
truncation scheme. For the (63, 36) BCH code, we observe
that the LP decoder provides the same performance as the
syndrome-based ML decoder, while the BiP decoder exhibits
a significant performance degradation compared to the other
two decoders. This performance gap is attributed to the fact
that the BCH code is not sparse, which lowers the efficiency
of message-passing algorithms such as BiP. Although LDGM
codes could be considered to address this issue, their typically
low minimum distance at short block lengths can severely
degrade performance. We also observe that the Polar code
shows lower performance not only compared to the BCH code,
but also compared to the truncation scheme. This comes from
the fact that the truncation scheme already performs well for
DHT, given that the purpose is not on reconstructing the source
but on making an accurate decision. This makes the DHT code
design problem challenging.

D. Quantize-binning scheme in the asymmetric setup

We now evaluate the performance of the quantize-binning
scheme in the asymmetric setup. As with the quantization

c0

c0
c0
c0

c0
c0

Fig. 6: ROC curves in the asymmetric case for the quantize-
binning scheme built from the (31, 16) BCH code for quanti-
zation and the (16, 5) Reed-Muller code for binning, compared
with the quantizer scheme with the (31, 11) BCH code. Source
parameters are set to p0 = 0.5, p1 = 0.5, c0 ∈ {0.01, 0.03},
c1 = 0.35.

scheme, we first investigate the accuracy of the theoretical
analysis of Proposition 2. The source parameters are set to
p0 = 0.5, p1 = 0.5, c0 ∈ {0.01, 0.03}, c1 = 0.35. We consider
a source length n = 31, using the BCH (31, 16)-code for
quantization and the (16, 5) Reed-Muller code for binning. We
also make a comparison with a quantizer alone, realized from
the (31, 11) BCH code. As a result, the final codeword length
is ℓ = 11 bits for the quantize-binning scheme, k = 11 bits
for the quantizer scheme, and l = 11 bits for the truncation
scheme. In all setups, the quantization (23) and the debinning
are realized with ML decoding.

Figure 6 shows the ROC curves for both schemes. Theoreti-
cal curves are obtained by numerical evaluation of the expres-
sions in Proposition 2, while practical performance is mea-
sured via Monte Carlo simulations. The results show that the
quantize-binning scheme provides a significant performance
improvement over the quantization scheme. Furthermore, the
theoretical Type-I and Type-II error probabilities closely match
the empirical results, validating the accuracy of the theoretical
analysis. In summary, the quantize-binning scheme effectively
improves the decision performance in the asymmetric setup
while maintaining a low transmission rate.

E. Quantize-binning scheme in the symmetric setup

In the symmetric setup, the source parameters are set to
p0 ∈ {0.05, 0.08}, p1 = 0.5, c0 = 0.1, c1 = 0.35. We
consider again the (31, 16) BCH code for the quantizers
and the (16, 5)-Reed-Muller code for the binning. We also
make a comparison with the truncation scheme with l = 11
transmitted bits. Figure 7 shows the ROC curves obtained
from Monte-Carlo simulations, averaged over 105 trials for
each point, for both the quantization scheme and the quantize-
binning scheme. As before, we observe that the quantize-
binning scheme outperforms the truncation scheme. These
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Fig. 7: ROC curves in the asymmetric case for the quantize-
binning scheme built from the (31, 16) BCH code for quanti-
zation and the (16, 5) Reed-Muller code for binning. Source
parameters are set to p0 ∈ {0.05, 0.08}, p1 = 0.5, c0 = 0.1,
c1 = 0.35.

results confirm the relevance of practical quantization-binning
schemes for DHT.
F. Extension to a Gaussian source model

We now show that the DHT coding schemes proposed in this
paper can be extended to Gaussian source models. To describe
this model, we first consider three sources Xp, Yp, Zp, taking
values in the binary alphabet {−1,+1}, with Yp = XpZp,
P(Xp = −1) = p, P(Zp = −1) = c. Next, the encoders
observe X = Xp+N1, Y = Yp+N2, where both N1 and N2

are independent random variables following the same Gaussian
distribution N (0, σ2). In this case, the hypothesis test is still
given by (2), as in the binary case.

For Monte Carlo simulations, we consider the symmetric
setup, with source parameters p0 = 0.05, p1 = 0.5, c0 = 0.1,
c1 = 0.35, σ = 0.5, and we evaluate the (31, 16) BCH code
and the (32, 16) Polar code for quantization. For Gaussian
sources, the quantization is still realized from equations (23)
and (24), where the Hamming distance is replaced by the
Euclidean distance. We use either the LP decoder from [43]
or the Ordered-Statistic decoder (OSD) of order 2 to im-
plement the quantization. We also make a comparison with
the truncation scheme where l = 16 symbols of X and Y
are one-bit quantized and transmitted. The ROC curves are
shown in Figure 8. For the BCH code, we first observe that
the quantization scheme shows better performance than the
truncation scheme. We also observe that the LP decoder, which
implements ML decoding, shows the best performance, while
the OSD provides a good tradeoff between complexity and
performance. Interestingly, the Polar code shows performance
close to the BCH code. This opens interesting perspectives for
other source models for DHT, and for investigating the tradeoff
between DHT coding scheme performance and complexity.

VII. CONCLUSION

In this paper, we proposed practical short-length coding
schemes for binary DHT in both asymmetric and symmetric
setups. We introduced two coding schemes, one built with

Fig. 8: ROC curve for Gaussian sources, for the quantization
scheme built from the BCH code (31, 16) and from the Polar
(32, 16) code. The source parameters are set to p0 = 0.05,
p1 = 0.5, c0 = 0.1, c1 = 0.35, σ = 0.5.

a binary quantizer, and the other built as a quantize-binning
scheme. Both schemes were constructed using short linear
block codes. For each considered scheme, in addition to
practical constructions, we derived theoretical expressions of
Type-I and Type-II error probabilities in the asymmetric case.
Simulation results demonstrated that the proposed quantiza-
tion and quantize-binning schemes outperform the baseline
truncation scheme, and further confirmed the accuracy of the
theoretical analyses. Future work will focus on leveraging
the theoretical error probability expressions to optimize the
code for DHT. In that purpose, we will investigate methods
derived from channel coding, such as for instance on the use of
genetic algorithms to build generator matrices or parity check
matrices that optimize a certain tradeoff between Type-I and
Type-II error probability. We will also investigate intermediate
block length between 100 and 1000 bits, aiming to develop
efficient low-complexity decoding solutions for DHT. For this,
we may consider the use of LDPC and Polar codes which may
become more competitive in this regime. Finally, we also aim
to consider more complex source models, and in particular to
generalize the results of Proposition 1 and 2 to asymmetric
sources where p0 ̸= p1.
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