JAIST Repository

https://dspace.jaist.ac.jp/

Title	ドナー アクセプター型チオフェン共重合体の結晶構 造解析
Author(s)	茂村,雄也
Citation	
Issue Date	2006-03
Туре	Thesis or Dissertation
Text version	none
URL	http://hdl.handle.net/10119/3231
Rights	
Description	Supervisor:佐々木 伸太郎,材料科学研究科,修士

Japan Advanced Institute of Science and Technology

Crystal Structure Analysis of Thiophene Copolymers

of Electron Donor-Acceptor Type

Yuya Shigemura School of Materials Science, Japan Advanced Institute of Science and Technology February 14, 2006

Introduction

The molecular chain of polythiophene (PTh) takes all-*trans* planar conformation, and they are packed in the *pgg* manner (Figure 1). The setting angle (ϕ) between the molecular side and the ac plane is about 60°, namely, the packing is not of face-to-face stacking type. Positional disorders exist along the chain axis.

In this study, the crystal structure of copolymers that consist of electron-donating thiophene and the electron-accepting arylene group with nitro groups, P(p-NPh-co-Th), P(2NPh-co-Th), P(DNTh-co-Th), and P(DNTh-co-BiTh) (schema 1), were analyzed by X-ray diffraction technique.

Experimental

The samples were offered from Prof. Yamamoto (Chemical Resource Laboratory, Tokyo Institute of Technology). X-ray measurements were carried out with CuK α radiation. The diffraction curves were obtained by a powder diffractometer equipped with a scintillation counter in the range of $2\theta = 2-50^{\circ}$. Analysis was performed with linked-atom Rietveld method with standard bond lengths and bond angles.

Results and Discussion

As for the XRD curve of P(*p*-NPh-*co*-Th), the peaks were observed at $2\theta = 12^{\circ}$ ($d_1 = 7.4$ Å) and 24° ($d_2 = 3.7$ Å). Positional disorder along the chain axis was suggested by this feature. The structure to reproduce such an XRD curve was only the *pgg* type structure (Figure2). The setting angle is probably near to $\phi = 15^{\circ}$. The distinction between $\phi = 0.15^{\circ}$ was difficult.

As for the XRD curve of P(DNPh-*co*-Th), the peaks were observed at $2\theta = 11.6^{\circ}$ ($d_1 = 7.6$ Å) and 24.7° ($d_2 = 3.6$ Å). The sharp peak observed at $2\theta = 18^{\circ}$ was attributed to the remaining catalyst particles. The structure is similarly disturbed. The simulation suggested the *pgg* type structure (Figure 3). The setting angle was in the range of $\phi = 0.15^{\circ}$.

As for the XRD curve of P(DNPh-*co*-BiTh), the peaks were observed at $2\theta = 11.3^{\circ}$ ($d_1 = 7.8$ Å) and 24.7° ($d_2 = 3.6$ Å). The structure is disturbed too. The simulation suggested the *pgg* type structure (Figure 4). The setting angle was in the range of $\phi = 0.10^{\circ}$.

Because P(2NPh-*co*-Th) was amorphous, it was not able to evaluate the structure.

Conclusion

P(*p*-NPh-*co*-Th), P(DNPh-*co*-Th), and P(DNPh-*co*-BiTh) took disordered structure of the *pgg* type. The setting angles were much smaller than that in PTh. Basically the packing is close to the *cmm* type. Electron donor-acceptor interactions may play an important role.

Schema 1. Structural formulae of samples.

Figure 1. The pgg crystal structure of PTh.

Figure 2. A *pgg* packing model of P(*p*-NPh-*co*-Th) ($\phi = 15^{\circ}$), and the XRD profiles.

Figure 3. A *pgg* packing model of P(DNPh-*co*-Th) ($\phi = 15^{\circ}$), and the XRD profiles.

Figure 4. A *pgg* packing model of P(DNTh-*co*-BiTh) ($\phi = 10^{\circ}$), and the XRD profiles.