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Voronoi game on graphs and its complexity

Sachio Teramoto and Ryuhei Uehara

Schoo] of Information Science, Fapan Advanced Institute of Science and Technology (JAIST),
1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan, {s-teramo,uehara}@jaist.ac.jp

Abstract. The Voronoi game is a two-person game which is a model for a competitive facility location. The game
is done on a continruous domain, and only two special cases (1-dimensional case and 1-round case) are well inves-
tigated. We introduce the discrete Yoronoi game of which the game arena is given as a graph. We first show the
best straiegy when the game arena is a large complete k-ary tree. We also show that the discrete Voronei game is
NP-hard on a given general graph, even in 1-round casce.

Key words: Voronoi Game, NP-completeness.,

1 Introduction

The Voronoi game is an idealized model for a competitive facility location, which was proposed by Ahn, Cheng,
Cheong, Golin, and Oostrum [1]. The Voronoi game is played on a bounded continuous arena by two players. Two
players ‘W (white) and B (black) put » points alternately, and the continuous field is subdivided according to the
nearest neighbor rule. At the final step, the player who dominates larger area wins.

The Voronoi game is a natural game, but the general case seems to be very hard to analyze from the theoretical
point of view, Hence, in [1}, Ahn et al. investigated the case that the game field is a bounded 1-dimensional continuous
domain. On the other hand, Cheong, Har-Peled, Linial, and Matou3ek [2], and Fekete and Meijer [3] deal with a 2-
dimensional case, but they restrict themselves to one-round game; first, ‘W puts all » points, and next B puts all n
points,

In this paper, we introduce dzscrete Voronoi game. Two players alternately occupy n vertices on a graph, which
is a bounded discrete arcna. (Hence the graph conlains at least 2n vertices.) This restriction seems to be appropriate
since real estates are already bounded in general, and we have to build shops in the bounded area. More precisely, the
discrete Voronoi game is played on a given finite graph G, instead of a bounded continuous arena. Each vertex of G
can be assigned to nearest vertices occupied by ‘W or B, according to the nearest neighbor rule. (Hence some vertex
can be “tie” when it has the same distance from a vertex occupied by “W and another vertex occupied by B.) Finally,
the player who dominates larger area (or a latger number of vertices) wins. We note that two players can tie in some
cases.

We first consider the case that the graph G is a complete k-ary tree. A complete k-ary tree is a natural generalization
of a path which is the discrete analogy of 1-dimensional continuous domain. We also mention that complete k-ary trees
form very natural and nontrivial graph class. In [1], Ahn ct al, showed that the second player B has an advaniage on
a 1-dimensional continuous domain, In contrast to the fact, we first show that the first player ‘W has an advantage for
the discrete Voronoi game on a complete k-ary tree, when the tree is sufficiently large (comparing to » and k). More
prec:lscly, we show that ‘W has a winning strategy if (1) 2n <k, or (2) kis odd and the complete k-ary tree contains at
least 4n? vertices. On the other hand, when k is even and 2n > k, two players tie if they do their best.

Next, we show the hardness results of the discrete Voronoi game. When we admit a general graph as a game
arena, the discrete Voronol game becomes intractable even in the strongly restricted case. We consider the following
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strongly restricted case; the game arena is an arbitrary graph, the first player ‘W occupies just one vertex which is
predetermined, the second player B occupies n vertices in any way. The decision problem for the strongly restricted
discrete Voronoi game is defined as follows; the problem is to determine if 8 has a winning strategy for given graph &
with the occupied vertex by “W. This restricted case seems to be advantageous for 8. However, the decision problem
is AP-complete. This result is also quite different from the previously known resulls in the 2-dimensional problem
(i.e. B can always dominate the fraction % + & of the 2-dimensional domain) by Cheong et al. {2] and Fekete et al. [3].

2  Problem definitions

In this section, we formulate the discrete Voronoi game on a graph. Let denote a Voronoi game VG(G,n), where G is
the game arena, and the players play 7 rounds. Hereafter, the game arena intends an undirected and unweighted simple
graph G = (V, E) with N = V| vertices.

For each round, the two players, ‘W (white) and B (black), alternately occupy.an empty vertex on the graph G (W
always starts the game, as in Chess). The empty vertex is defined as a vertex which has not been occupied so far. This
implies that ‘W and B cannot occupy a same vertex simultaneously. Hence it is implicitly assumed that the game arena
G contains at least 2n vertices. _

Let W; (resp. B;) be a set of vertices occupied by player ‘W (resp. 8) at the end of the i-th round. We define the
distance d{v,w) between two vertices v and w as the number of edges along the shortest path between them if such
path exisis, otherwise d(v,w) = ca. Each verlex of ¢ can be assigned to the nearest. vertices occupied by ‘W and 5,
according to the nearest neighbor rule. So, we define a dominance set “V(A, B) (ot Voronoi regions) of a subsetACV
against a subset BCV, where ANB =@ as

VA, B ={uecV| r‘l"eli}tld(u,v) <{rvlé§d(u,w)}.

The dominance sets ‘V(W;, By) and V(&;, W;) represent the sets of vertices dominated at the end of the i-th round by
W and B, respectively. Let Vay and Vg denote V(W,, By) and “V(B,, Wy), respectively. Since some vertex can be
“fie” when it has theé same distance from 2 vertex occupied by ‘W and another vertex occupied by B, there may exist
set N; of neutral vertices, N; 1= {u € V | minyew, d(it,v) = minyeg, d(u, w)), which does not belong to both of V(W B;)
and V(B;, W).

Finally, the player who dominates larger number of vertices wins, in the discrete Voronoi game. More precisely,
W wins if [Vayl > ['Val, B wins (or W loses) if ['Vay| < |'Vgl, and tie otherwise, since the outcome for each piayer,
W or B, is the size of the dominance set [Vl or ['Vgi. In our model, note that any vertices in N, do not contribute to
the outcomes “Vqy and Vg of both players (see Fig. 1).

Istround 20 round 3rd round
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Fig. 1. Example'for a discrete Voronoi game VG(G,3), where G is the 15x 15 grid graph; each bigger circle is a vertex occupied by
W, each smaller circle is an emply verlex dominated by W, each bigger black square is a vertex occupied by B, each smaller black
square is an empty veriex dominated by B, and the other are nentral vertices. In this example, the 2nd player 8 won by 108-96.

3 Discrete Vorenoi game on a completfe k-ary tree

Tn this section, we consider the case that the game arena G is a complete k-ary tree, which is a rooted tree whose inner
vertices have exactly k children, and all leaves are in a same level, or the highest level.




Firstly, we show a simple observation for Voronoi games VG(T, n) which are satisfied 2r < £. In this game of a few
rounds, ‘W occupies the.root of T° with his first move, and then ‘W can dominate ai least —Nful»n + 1 vertices. Since B

dominate at most 2=Lp, vertices, "W wins. More precisely, we show the following algorithm as “W*s winning strategy.
x P Y

Algorithm 1: Simple strategy

StageI: (“W’s fist move) ‘W occupies the root of T;
Stage Il: ‘W occupies the empty children of the root for bis remaining rounds;

In the strategy of Algorithm 1, W alternately pretends to occupy the empty children of root, though ‘W may
occupy any vertex. This strategy is obviously well-defined and winning strategy for ‘W, whenever the garoe arena T'
is satisfied 2n < k.

Propositior 1. Let VG(G,n) be the discrete Voronoi game such that G is a complete k-ary tree with 2n < k. Then the
first player ‘W always wins.

‘We next turn to more general case. We call a k-ary tree an odd (resp. even) if k odd (resp. even). Let T be a complete
ot

k-ary tree as a game arena, ¥ be the nurmober of vertices of T, and H be the height of T'. Note that N = kff_l and

H ~ log, N*. For this game, we show the following theorem.

Theorem 1. In the discrete Voronoi game VG(G,n) where G is a complete k-ary tree such that N > 4n?, the first player
W always wins if G is odd k-ary tree, otherwise the game ends in tie when the players do their best.

In section 3.1, we first show winning strategy for the first player ‘W when £ is odd and the complete k-ary tree
contains at least 4n? vertices. In idea of any winning strategy, it is necessary to deliberate the relation between the
number of children k and the game round n. Indeed, ‘W chooses one of two strategies according to the relation
between & and #. We next consider the even k-ary tree in section 3.2, which completes the proof of Theorem 1.

3.1 Discrete Yoronoi game on a Jarge complete odd L-ary tree

We generalize the simple strategy to Voronoi games VG(T,n) on a large complete k-ary tree, where 2n > k and k is
odd (k > 3). We define that a level £ is keylevel if the number & of vertices satisfies n < k¥ < 2n, and a vertex v is a’
key-vertex if v is in the keylevel. Let T; denote the nurnber of vertices in the subtree rooted at a vertex in level i (i.e.,
T =N, T; = ki1 +1). Let (V{, V... V5 ) be a family of vertices in the keylevel / such that set V} consists of
vertices which have the same parent for each 7.

Fig. 2. The notations on the game arena 7.

As menticned above, a winning sirategy is sensitive for the relation between &, %, and n.S0, we firstly introduce
a magic number ¢ = %’;—, I <@ <k (see Fig. 2). We note that since k is odd, we have neither ¢ = 1 nor @ = k. By
assumption, we have that the game arena T is sufficiently large such that the subtrees rooted at level 1 contain sufficient
vertices comparing to the number of vertices between level 0 and level k. More precisely, by assumption N > 4n?, we
have Hz2hand N = %2. We define y := H —2h, and hence v > 0.

The winning strategy for "W chooses one of two strategies according to the condition whether the magic number
o is greater than 1+ 2 — 45 + m or not. The strategy is shown in Algorithm 2.

£ 1.

* In this paper, we denote by f(x) ~ g(x) when limy_,z, ®
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Algorithm 2: Keylevel strategy for ‘W

ifw>l+%—ﬁ+mmen

Stage (a)-I:

‘W occupies an empty key-vertex so that at least one vertex is occupied in each V;‘;

(Stage (a)-I ends after the last key-vertex is occupied by either ‘W or B. Note that
the game may finish in Stage (a)-I.)

end

tage {a)-I1:

‘W occupies an emply vertex which is a child of the vertex v, such that v is occupied by 5, and v has the minimum
level greater than or equal to &;

(‘W dominates as much vertices as possible from B.)

2]

end
else
Stage (b)-I:
‘W occupics an empty vertex in level h—1;
(Stage (b)-I ends when such empty vertices are not exists.)
end
Stage (h)-11:
‘W occupies an emply key-veriex whose parent is not occupied by ‘W,
(Stage (b)-II ends when such empty key-vertices are not exist.)
end
Stapge (b)-1X:
if there exists an empty vertex v in level h+ 1 such that the parent of v is occupied by B then W occupies v;
else ‘W occupies an empty key-vertex in level 2+ 1 whose parent is occupied by ‘W,
end
end

Lemma 1. The keylevel sirategy is well-defined in a discrete Voronoi game VG(T,n), where T is a sufficient large
complete k-ary tree so that N = 4n2.

Proaf. By assumption, there exists the keylevel .

In the Stage (a)-I, if B occupied a key-vertex in Vf’ and ‘W has not occupied any vertex in V!‘, W occupies an
empty key-vertex in Vf* rather than occupies the other empty key-vertices. This implies that ‘W can occupy at least one
key-vertex in each Vf‘,i =1,2,...,k""L. Since the situation ‘W follows the Stage (a)-II is happened when B occupies

at least one key-vertex, there exists such a children. If W follows the case (b), then this is cbviously well-defined. So,
the keylevel strategy is well-defined. |

Lemma 2. The keylevel strategy is a winning strategy for ‘W in a discrete Voronoi game VG(T,n), where T is a
sufficient large complete odd k-ary tree so that N > 4n?.

Proof. We first argue that W follows the case @,ora>1+ % - k—f—l + W%i::ﬁ ‘When the game ends in the Stage
{(a)-1 (i.e., B never occupies any key-vertices, or does not oceupy so many key-vertices), the best strategy of B follows,
occupying all vertices in level 1 —1 for the first k! rounds, and then occupying a child of key-vertex dominated by
‘W to dominate as much vertices as possible with his remaining moves. In fact, the winner dominates more leaves than

that of the opposite. So, il is not so significant to occupy the verlices in z level strictly greater than A+ 1, and strictly
less than h—1,

Now, we estimate their outcomes [Vayl and |Vg|. Firstly, ‘W dominates T}, vertices and B dominates (¥ —n)T), +

’j:’—_‘ll vertices. Since B dominates the subtrees of ‘W with his remaining n— k%! vertices,

[Vayl = 1Ty~ (= k") Thoa,

't

Vsl < &= T+ 1=K Tpr +




: — 2__1 1
Since2nmakhanda>1+k k_1+m,
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Voyl =1Vl = 0T~ 20— K") Thoy ~ K ~m) T =7 —+
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1 1
= m(l—'ﬁ) > 0.

Next, we consider the case that ‘W follows Stage (a)-II. At level greater than k, there are three types of B's
occupation (see Fig. 3). In cases (2) and (3) of Fig. 3, B has no profits. Therefore, when B uses his best strategy, we

empty vertex

........................... IeVeI h

........................... Ievel h + 1 *
m @ @ ’

Fig.3. B's occupations at the level greater than k.

can assume that B only occupies vertices under ‘W’s vertices. This implies that B tries to perform the similar strategy
of ‘W, that is to occupy much key-vertices. More precisely, 8 chooses his move from following ways at every round:

— B occupies an empty key-vertex, or
~ occupies a vertex v in level i + 1, where the parent of v is a key-vertex of ‘W, or
~ occupies a vertex w in level A + 1, where the parent of w is a key-vertex of B.

This implies that almost all key-vertices are occupied by either W or B, and then the subtree of T consisted by the
vertices in level O through k=~ 1 is negligible small so that these vertices cannot have much effect on outcomes of ‘W
and B. It is not significant to the occupation of these vertices for both players.

Let x; (resp. y;) be the number of vertices occupied by W (tesp. B) in level i, Let ¥; (xesp. y7) be the number of
vertices occupied by B in higher (resp. lower) than or equal to level i.

‘When Stage (2)-1 ends, "W has x;, key-vertices and B has y; key-vertices. Note that x,+y, <k and yy, < [-’:‘;'I <
Xp < 1. X1 1s the number of vertices occupied in Stage (a)—II Let yh 1 be the number of occupations used to dominate
vertices of ‘W’s dominance set by Binlevel £+ 1, and y, o1 D€ YR+l — ), - (see Fig. 4). Note that xp ~yn 2 ¥}, — Xa+1
(it has equahty ity 41 +Vh TV = 0) Now, we estimate their outcomes. Since ‘W can dominate at least xyTh+

(xne1— ), e I)Th“ vertices, and *W dominates y;,T;, + (yh +1 — *r=1)Tpe1 vertices, the difference between the outcomes
of Wand 8 is

[V —1Val = 2 Th + (Xpe1 ")’;,+1-)Th+1 -yTn— 0’;1“ = X+1)Tha1
= (k(xh =31 =20 —Imi)) They > The1 > 0.



nd

-------- Ievel h
level b 4+ 1

Fig. 4. The notations in the case (a) of keylevel strategy.

“W can dominates at least Ty vertices more than that of 8, which is more vertices dominated by B using yg vertices

between level O and k. So, ‘W wins when e > 1+ 2~ 1 + Iﬁr%k-_l)'

We next argue that ‘W follows the case (b), ora < 1 + % ~ k_lf + Wv'zk"—'ﬂ When xj,_; = &1, the best strategy for .
B is to occupied as much key-vertex as possible. So, the differences of outcomes are estimated as follow; '

[Vayl ~ Vgl = (& —2n) T+ 2(n— k1) Tppy +

k-1
kh_
2 (" =21 B - DT +2- 7
-1 1 -1 1Kv-1 1 1
> —— = —— = — —
22 T M T I TR ST k- (kh 2+ )
>0

Finally, we consider the case of @ <1+ 2 — A5 + W”(—kT and xp.; < k"1 (of xp-1 + yp-1 = K*1), In this case,
the similar arguments in which ‘W follows Stage (a)-IT can be applied. Each xy_1,xp, and x;H.l is the number of
vertices occupied in Stage (b)-1, (b)-II, and (b)-III, respcctively. As mentioned above, y;_, and y;, , should be O to
maximize his outcome [Vg|. Let y, be the number of key-verlices occupied by B whose parent is occupied by ‘W, and
¥y, =¥n—¥;- Fig. 5 shows these notations. If ‘W does not follows Stage (b)-III, then ‘W wins since xp-1 —Yp-1 = ¥}, —%n

/ y;‘! m h- y;:{ EEVEE h

/ i

Th=d yh_ level h — 1

IR

Fig. 5. The notations in the case (b) of keylevel strategy,

and k(xp—1 — yn-1) —2(xp — yp) > 0. If ‘W follows Stage (b)-1I1, then we have yp—1 +¥;, +¥}, <n, X +Y} = Yp-1, and
Xl > %k"“l > yp—1 by the keylevel strategy. We can estimate the outcome of ‘W as follows;

[Vayl=1Val = xp-1 Tt + (x5 ~ 293, ¥ YT + 22041 The1
> kX1 + X5 — 20—y

-l 1
> K20 — gy — ok > k 1 KG-D
> 0.

Therefore, the first player ‘W wins when he follows case (b) in the keylevel strategy. This completes the proof of
Lemma 2. 0
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3.2 Discrete Voronoi game on a large complete even k-ary tree

‘We consider the case that the game arena T is a large complete even k-ary tree. We assume that the game VG(T, 1) is
sufficed k£ > 2n, since ‘W always wins if & < 2n as mentioned above. Moreover, we assume that game arena T contains
at least 4n? vertices. Hence the first player ‘W always loses if he occupies the root of 7', since the second player 8 can
use the keylevel strategy of ‘W and ‘W cannot drive 8 in disadvantage.

In fact, since T is an even k-ary tree, B can take the symmetric moves of ‘W if ‘W does not occupy the root.
Therefore, B never loses. However, we can show that “W also never loses if he follows the keylevel strategy,

If 3 has a winning strategy, then the strategy must not be the symmetric strategy of ‘W, However, such a strategy
does not exist, since ‘W can occupy at least half of vertices on the important level, although the important level is
varied by the condition ¢ > 1+ % 2 kll + Wﬁ This implies that ‘W can dominate at least half vertices of T if he
follows the keylevel strategy. Therefore, if both players do their best, then the game always ends in tie.

4 NP-hardness for general graphs

In this section, we show that the discrete Voronoi game is intractable on general graphs even if we restrict ourselves to
the one-round case. To show this, we consider the following special case:

Problem 1:

Input: A graph G = (V,E}, avertex u € V, and n.

Output: Determine whether B has the winning strategy on G by n occupations after just one occupation of # by
W.

That is, "W first occupies u, and never occupy any more, and B can occupy n vertices in any way. Then we have
the following Theorem:

Fheorem 2. Problem 1 is NP-complete.

Progf. It is clear Problem 1 is in A'P. Hence we prove the completeness by showing the polynomial time reduction
from a restricted 3SAT such that each variable appears at most three times in a given formuia [5, Proposition 9.3]. Let
F be a given formula with the set W of variables {x,x2,...,%,} and the set C of clauses {c1,ca,....Cr), Where n = |[WY
and m = |C|. Each clause contains at most 3 literals, and each variable appears at most 3 times. Hence we have 31 > m.

Now we show a construction of G. Let W* = {x | x; e W}, W™ = ={x | xeW],¥:= {y’ lie{1,2,...,n),j€1,2,3},

{z’lie{l 2,...,n},j€ 1,23}, C' == {c},¢h,. e, D —{dl,dz, .,d25-2}. Then the set of vertices of G is defined
by Vi={wUWrUW- UYUZUCUC UD, The set of edges E is defined by the union of the following edges;
{tmz) | z € Z}, {by], zl}lyJeYz’ €Zwithl <i<nl<j<3}, iy ixr eW+yfeyW;th1 <i<nl<j<3}

{{x; ,yj}tx e W+ y’eruh I<i<n1<j<3} {{xf et 3] € W¥,c; € Cif ¢j conlains literal x;), {{x],c;} | 2] €
w- cJEC IfC_, contains literal %}, {{cj,c Yejec, c @C’ with 1< j<m}, {{c u}lc eC’ with1< j<m), and {{u,di}|
dieDwith 1 <i<2n-2}.

An example of the reduction for the formula F = (£ v xz V x3) A (2 V 3 V £y is depicted in Fig. 6: Small whitc
and black circles are the vertices in Z and ¥, respectively, large black circles are the vertices in W+ U W™, black and
white rectangles are the vertices in € and C’, respectively, two white large diamonds are the same vertex u, and small
diamonds are the vertices in [). It is easy to see that G contains 10n +2m — 1 vertices, and hence the reduction can be
done in polynomial time.

Now we show that F is satisfiable if and enly if B has a winning strategy. We first observe that for 8, occupying
the vertices in W* U W™ gives more outcome than occupying the vertices in ¥ UZU C'UC’. More precisely, occupying
either x or x; for each i with | <i < n, B dominates all vertices in W* U W~ UY, and it is easy to see that any other
ways a.rchwe less outcome. Therefore, we can assume that B occupies one of x;" and x;” for each i with 1 <i<n.

When there is an assignment {a;,az,...,a,) that satisfies F, B can also donunates all vertices in C by occupying
x; if @; = 1, and occupying x7 if g; = 0. Hence, B dominates 5n+ m vertices in the case, and then ‘W dominates all
vertices in Z, €’ and D, that is, "W dominates 1+ 3n+m+2n -2 = Sn+m~— 1 vertices. Therefore, B wins if F is
satisfiable.

On the ofher hand, if F is vnsatisfiable, B can dominate at most 5rz+m— I vertices. In the case, the vertex in C
corresponding to the unsatisfied clause is dominated by u. Thus ‘W dominates at least 5n+ m vertices, and hence W
wins if F is unsatisfiable.

Therefore, Problem 1 is AP-complete. o



Fig. 6. Reduction from F = (£] Vxa Vx3) A{p vV £3 V X))

Next we show that the discrete Voronoi game is NP-hard even in the one-round case. More precisely, we show the
NP-completeness of the following problem:

Problem 2:

Input: A graph G = (V, E), a vertex set § € V with n:=|{5|.

Ountput: Determine whether B has the winning strategy on G by n occupations after n occupations of the vertices
in § by ‘W.

Corollary 1. Problem 2 is NP-complete.

Proof. We use the same reduction in the proof of Theorem 2, Let S be the set that contains u and (n— 1) vertices in D.
Then we immediately have N'P-completeness of Problem 2, O

Corollary 2. The (n-round) discrete Voronoi game on a general graph is NP-hard.

5 Concluding Remarks and Further Researches

We give winning strategies for the first player ‘W on the discrete Voronoi game VG(T,n), where T is a large complete
k-ary tree with odd k. It seems that ‘W has an advantage even if the complete k-ary tree is not large, which is a future
work.

In our strategy, il is essential that cach subtree of the same depth has the same size. Therefore, considering general
trees is the next problem. The basic case is easy: When » = 1, the discrete Voronoi game on a tree i5 essentially
equivalent to find a median vertex of a tree. The deletion of a median vertex partitions the (ree so that no component
contains more than #/2 of the original » vertices. It is well known that a tree has either one or two median vertices,
which can be found in lingar time (see, ¢.g. [4]). In the former case, ‘W wins by occupying the median vertex. In the
later case, two players tie. This algorithm corresponds to our Algorithm 1.

We also show that the discrete Voronoi game is intractable on a general graph even if we restrict 10 the one-round
case. We conjecture that the discrete Voronoi game on 2 general graph is PS PACE-complete in n-round case.
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