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Abstract. We study some counting and enumeration problems for chordal
graphs, especially concerning independent sets. We first provide the following
efficient algorithms for a chordal graph: (1) a linear-time algorithm for counting
the number of independent sets; (2) a linear-time algorithm for counting the num-
ber of maximum independent sets; (3) a polynomial-time algorithm for counting
the number of independent sets of a fixed size. With similar ideas, we show that
enumeration (namely, listing) of the independent sets, the maximum independent
sets, and the independent sets of a fixed size in a chordal graph can be done in
constant amortized time per output. On the other hand, we prove that the follow-
ing problems for a chordal graph are#P-complete: (1) counting the number of
maximal independent sets; (2) counting the number of minimum maximal inde-
pendent sets. With similar ideas, we also show that finding a minimum weighted
maximal independent set in a chordal graph isNP-hard, and even hard to approx-
imate.
Keywords: chordal graph, counting, enumeration, independent set,NP-
completeness,#P-completeness, polynomial time algorithm.

1 Introduction

How can we cope with computationally hard graph problems? There are several pos-
sible answers, and one of them is to utilize the special graph structures arising from a
particular context. This has been motivating the study of special graph classes in algo-
rithmic graph theory [3, 13]. This paper deals with counting and enumeration problems
from this perspective. Recently, counting and enumeration of some specified sets in a
graph have been widely investigated, e.g., in the data mining area. In general, however,
from the graph-theoretic point of view, those problems are hard even if input graphs
are quite restricted. For example, counting the number of independent sets in a planar
bipartite graph of maximum degree 4 is#P-complete [21]. Therefore, we wonder what
kind of graph structures makes counting and enumeration problems tractable.

In this paper, we consider chordal graphs. Achordal graphis a graph in which every
cycle of length at least four has a chord. From the practical point of view, chordal graphs



Table 1.Summary of the results. We denote the number of vertices and edges byn andm respec-
tively. The running times for enumeration algorithms refer to amortized time per output.

Chordal graphs Counting [ref.] Enumeration [ref.]
independent sets O(n + m) [this paper] O(1) [this paper]
maximum independent sets O(n + m) [this paper] O(1) [this paper]
independent sets of sizek O(k2(n + m)) [this paper] O(1) [this paper]
maximal independent sets #P-complete [this paper] O(n + m) [7, 16]
minimum maximal independent sets#P-complete [this paper]

have numerous applications in, for example, sparse matrix computation (e.g., see Blair
& Peyton [2]), relational databases [1], and computational biology [4]. Chordal graphs
have been widely investigated, and they are sometimes called triangulated graphs, or
rigid circuit graphs (see, e.g., Golumbic’s book [13, Epilogue 2004]). A chordal graph
has various characterizations; for example, a chordal graph is an intersection graph of
subtrees of a tree, and a graph is chordal if and only if it admits a special vertex ordering,
called perfect elimination ordering [3]. Also, the class of chordal graphs forms a wide
subclass of perfect graphs [13].

It is known that many graph optimization problems can be solved in polynomial
time for chordal graphs; to list a few of them, the maximum weighted clique problem,
the maximum weighted independent set problem, the minimum coloring problem [12],
the minimum maximal independent set problem [8]. There are also parallel algorithms
to solve some of these problems efficiently [14]. However, relatively fewer problems
have been studied for enumeration and counting in chordal graphs; the only algorithms
we are aware of are the enumeration algorithms for all maximal cliques [11], all max-
imal independent sets [7, 16], all minimum separators and minimal separators [5], and
all perfect elimination orderings [6].

In this paper, we investigate the problems concerning the number of independent
sets in a chordal graph. Table 1 lists the results of the paper. We first give the following
efficient algorithms for a chordal graph; (1) a linear-time algorithm to count the number
of independent sets, (2) a linear-time algorithm to count the number of maximum inde-
pendent sets, and (3) a polynomial-time algorithm to count the number of independent
sets of a given size. The running time of the third algorithm is linear when the size is
constant. Note that in general counting the number of independent sets and the number
of maximum independent sets in a graph is#P-complete [17], and counting the num-
ber of independent sets of sizek in a graph is#W[1]-complete [9] (namely, intractable
in a parameterized sense). Let us also note that the time complexity here refers to the
arithmetic operations, not to the bit operations.

The basic idea of these efficient algorithms is to invoke a clique tree associated with
a chordal graph and perform a bottom-up computation via dynamic programming on
the clique tree. A clique tree is based on the characterization of a chordal graph as an
intersection graph of subtrees of a tree. Since a clique tree can be constructed in linear
time and the structure of clique tree is simple, this approach leads to simple and efficient
algorithms for the problems above. However, a careful analysis is necessary to obtain
the linear-time complexity.



Along the same idea, we can also enumerate all independent sets, all maximum
independent sets, and all independent sets of constant size in a chordal graph inO(1)
amortized time per output.

On the other hand, we show that the following counting problems are#P-complete:
(1) counting the number of maximal independent sets in a chordal graph, and (2) count-
ing the number of minimum maximal independent sets in a chordal graph. Using a
modified reduction, we furthermore show that the problem to find a minimum weighted
maximal independent set isNP-hard. We also show that the problem is even hard to
approximate. More precisely speaking, there is no randomized polynomial-time ap-
proximation algorithm to find such a set within a factor ofc ln |V|, for some constant
c, unlessNP ⊆ ZTIME(nO(log logn)). This is in contrast with a linear-time algorithm
by Farber that finds a minimum weighted maximal independent set in a chordal graph
when the weights are 0 or 1 [8].

Due to space limitation, some proofs are omitted.

2 Preliminaries

In this article, we assume that the reader has a moderate familiarity with graph theory.
This section aims at fixing the notation and introducing a chordal graph and concepts
around that. LetG = (V,E) be a graph, which we always assume to be simple and finite,
and also we assume that graphs are connected without loss of generality. Theneighbor-
hoodof a vertexv in a graphG = (V,E) is the setNG(v) = {u ∈ V | {u, v} ∈ E}. For a
vertex subsetU of V, we denote byNG(U) the set{v ∈ V | v ∈ N(u) for someu ∈ U}. If
no confusion can arise we will omit the subscriptG. We denote the closed neighborhood
N(v)∪{v} by N[v]. A vertex setI is anindependent setof G if any pari of vertices inI is
not an edge ofG, and a vertex setC is acliqueif every pair of vertices inC is an edge of
G. An independent set ismaximumif it has the largest size among all independent sets.
An independent set ismaximalif none of its proper supersets is an independent set. An
independent set isminimum maximalif it is maximal and has the smallest size among
all maximal independent sets. A maximum clique, a maximal clique and a minimum
maximal clique are defined analogously. An edge which joins two vertices of a cycle
but is not itself an edge of the cycle is achordof the cycle. A graph ischordal if each
cycle of length at least 4 has a chord.

To a chordal graphG = (V,E), we associate a treeT, called aclique treeof G,
satisfying the following two properties. (A) The nodes ofT are the maximal cliques of
G. (B) For every vertexv of G, the subgraphTv of T induced by the maximal cliques
containingv is a tree. (In the literature, the condition (A) is sometimes weakened as
each node is a vertex subset ofG.) It is well known that a graph is chordal if and only
if it has a clique tree, and in such a case a clique tree can be constructed in linear time.
Some details are explained in books [3, 19].

3 Linear-Time Algorithm to Count the Independent Sets

In this section, we describe an algorithm for counting the number of independent sets
in a chordal graph. The basic idea of our algorithm is to divide the input graph into



subgraphs induced by subtrees of the clique tree. Any two of these subtrees share a
vertex of a clique if they are disjoint in the clique tree. This property is very powerful
for counting the number of independent sets since any independent set can include at
most one vertex of a clique. We compute the number of independent sets including each
vertex of the clique, or no vertex of the clique by using the recursions.

First, we introduce some notations and state some lemmas. Given a chordal graph
G = (V,E), we construct a clique treeT of G. We now pick up any node in the clique
treeT, regard the node as the root ofT, and denote it byKr . This is what we call a
rooted clique tree. For a maximal cliqueK in a chordal graphG and a rooted clique
treeT of G, a maximal cliqueK′ in G is a descendantof K (with respect toT) if K′

is a descendant ofK in T. For convenience, we considerK itself a descendant ofK
as well, and when no confusion arises we omit saying “with respect toT.” Let (K)
be the parent ofK in T. For convenience, we define(Kr ) by ∅. We denote byT(K)
the subtree ofT rooted at the node corresponding to the maximal cliqueK. Let G(K)
denote the subgraph ofG induced by the vertices included in at least one node inT(K).
Observe thatG(K) is a chordal graph of whichT(K) is a clique tree.

For a graphG, letIS(G) be the family of independent sets inG. For a vertexv, let
IS(G, v) be the family of independent sets inG includingv, i.e.,IS(G, v) := {S | S ∈
IS(G), v ∈ S}. For a vertex setU, letIS(G,U) be the family of independent sets inG
including no vertex ofU, i.e.,IS(G,U) := {S | S ∈ IS(G),S ∩ U = ∅}.
Lemma 1. Let G be a chordal graph and T be a rooted clique tree of G. Choose a
maximal clique K of G, and let K1, . . . ,K` be the children of K in T. (If K is a leaf
of the clique tree, we set̀ := 0.) Furthermore let v∈ K and S ⊆ V(G(K)). Then,
S ∈ IS(G(K), v) if and only if S is represented by the union of{v} and S1, . . . ,S`

such that Si ∈ IS(G(Ki), v) if v belongs to Ki , and Si ∈ IS(G(Ki),K ∩ Ki) otherwise.
Furthermore, such a representation is unique.

By a close inspection of the proof, we can observe that for everyi, j ∈ {1, . . . , `},
i , j, it holds thatV(G(Ki))\K is disjoint fromV(G(K j))\K. This property gives a nice
decomposition of the problem into several independent parts, and enables us to perform
the dynamic programming on a clique tree.

By similar discussion, we obtain the following lemma.

Lemma 2. Let G be a chordal graph and T be a rooted clique tree of G. Choose a
maximal clique K of G, and let K1, . . . ,K` be the children of K in T. (If K is a leaf of
the clique tree, we set` := 0.)
1. We have S∈ IS(G(K),K) if and only if S is the union of S1, . . . ,Sl such that
Si ∈ IS(G(Ki),K ∩ Ki). Furthermore, such a representation is unique.
2. For each i∈ {1, . . . , `}, we have Si ∈ IS(G(Ki),K ∩ Ki) if and only if Si belongs
either toIS(G(Ki), v) for some v∈ Ki \K or toIS(G(Ki),Ki). Furthermore, Si belongs
to exactly one of them.

From these lemmas, we have the following recursive equations forIS.

Equations 1 Let G be a chordal graph and T be a rooted clique tree of G. For a maxi-
mal clique K of G which is not a leaf of the clique tree, let K1, . . . ,K` be the children of



Algorithm 1 : #IndSets

Input : A chordal graphG = (V,E);
Output : The number of independent sets inG;
construct a rooted clique treeT of G with root Kr ;1

call #IndSetsIter(Kr );2

return
∣∣∣∣IS(G,Kr )

∣∣∣∣ +
∑

v∈Kr |IS(G(Kr ), v)|.3

Procedure #IndSetsIter(K)
Input : A maximal cliqueK of the chordal graphG;
if K is a leaf ofT then4

set
∣∣∣∣IS(G(K),K)

∣∣∣∣ := 0 and|IS(K, v)| := 1 for eachv ∈ K;5

else6

foreachchild K′ of K do call #IndSetsIter(K′);7

foreachchild K′ of K do compute
∣∣∣∣IS(G(K′),K ∩ K′)

∣∣∣∣ by8 ∣∣∣∣IS(G(K′),K′)
∣∣∣∣ +

∑
u∈K′\K |IS(G(K′),u)| ;

compute
∣∣∣∣IS(G(K),K)

∣∣∣∣ by
∏

K′∈(K)

∣∣∣∣IS(G(K′),K ∩ K′)
∣∣∣∣;9

foreachv ∈ K do compute|IS(G(K), v)| by10
∏

K′∈(K),v∈K′ |IS(G(K′), v)| ×∏
K′∈(K),v<K′

∣∣∣∣IS(G(K′),K ∩ K′)
∣∣∣∣ .

Fig. 1.Algorithm to count the number of independent sets in a chordal graph.

K in T. Furthermore, let v∈ K. Then, the following identities hold. (We remind that∪̇
means “disjoint union.”)

IS(G(K)) = IS(G(K),K) ∪̇
⋃̇

v∈K
IS(G(K), v);

IS(G(K), v) = {S ∪ {v} | S =
⋃̀

i=1

Si ,Si ∈
{IS(G(Ki), v) if v ∈ Ki

IS(G(Ki),K ∩ Ki) otherwise

}
};

IS(G(K),K) = {S | S =
⋃̀

i=1

Si ,Si ∈ IS(G(Ki),K ∩ Ki)};

IS(G(Ki),K ∩ Ki) = IS(G(Ki),Ki) ∪̇
⋃̇

u∈Ki\K
IS(G(Ki),u) for each i∈ {1, . . . , `}.

These equations lead us to the algorithm in Fig. 1 to count the number of independent
sets in a chordal graph. For a maximal cliqueK of a chordal graphG, we denote the set
of children ofK in a rooted clique tree ofG by (K).

Theorem 1. The algorithm#IndSets outputs the number of independent sets in a
chordal graph G= (V,E) in O(|V| + |E|) time.



4 Linear-Time Algorithm to Count the Maximum Independent
Sets

In this section, we modify Algorithm#IndSets to count the number of maximum in-
dependent sets in a chordal graph. For a set familyS, we denote by max(S) the car-
dinality of a largest set inS, and argmax(S) denotes the family of largest sets in
S. For a graphG, let MIS(G) be the family of maximum independent sets inG.
For a vertexv, letMIS(G, v) be the family of maximum independent sets inG in-
cluding v, i.e.,MIS(G, v) := {S ∈ MIS(G) | v ∈ S}. For a vertex setU, let
MIS(G,U) be the family of maximum independent sets inG including no vertex of
U, i.e.,MIS(G,U) := {S ∈ MIS(G) | S ∩ U = ∅}.

From lemmas stated in the previous section and Equations 1, we immediately have
the following equations.

Equations 2 With the same set-up as Equations 1, the following identities hold.

MIS(G(K)) = argmax(MIS(G(K),K) ∪̇
⋃̇

v∈K
MIS(G(K), v));

MIS(G(K), v) = argmax({S | S =
⋃̀

i=1

Si ,Si ∈
{MIS(G(Ki), v) if v ∈ Ki

MIS(G(Ki),K ∩ Ki) otherwise

}
});

MIS(G(K),K) = argmax({S | S =
⋃̀

i=1

Si ,Si ∈ MIS(G(Ki),K ∩ Ki)});

MIS(G(Ki),K ∩ Ki) = argmax(MIS(G(Ki),Ki) ∪̇
⋃̇

u∈Ki\K
MIS(G(Ki),u)).

Since the sets of each family on the left hand side have the same size in each equation,
the cardinality of the set can be computed in the same order as Algorithm#IndSets.
For example,MIS(G(K)) can be computed as follows.

1. SetN := 0 andM := max(MIS(G(K),K) ∪⋃
v∈KMIS(G(K), v));

2. if the size of a member ofMIS(G(K),K) is equal to M, then N := N +∣∣∣∣MIS(G(K),K)
∣∣∣∣;

3. for eachv ∈ K, if the size of a member ofMIS(G(K), v)) is equal toM, then
N := N + |MIS(G(K), v))|;

4. outputN.

In this way we have the following theorem.

Theorem 2. The number of maximum independent sets in a chordal graph G= (V,E)
can be computed in O(|V| + |E|) time.

5 Efficient Algorithm to Count the Independent Sets of Sizek

In this section, we modify Algorithm#IndSets to count the number of independent sets
of sizek. For a graphG and a numberk, letIS(G; k) be the family of independent sets



in G of sizek. For a vertexv, let IS(G, v; k) be the family of independent sets inG of
sizek includingv, i.e.,IS(G, v; k) := {S ∈ IS(G; k) | v ∈ S}. For a vertex setU, let
IS(G,U; k) be the family of independent sets inG of sizek including no vertex ofU,
i.e.,IS(G,U; k) = {S ∈ IS(G; k) | S ∩ U = ∅}.

From lemmas stated in Section 3 and Equations 1, we immediately obtain the fol-
lowing equations.

Equations 3

IS(G(K); k) = IS(G(K),K; k) ∪̇
⋃̇

v∈K
IS(G(K), v; k);

IS(G(K), v; k) = {S | S =
⋃̀

i=1

Si , |S| = k,Si ∈
{IS(G(Ki), v) if v ∈ Ki

IS(G(Ki),K ∩ Ki) otherwise

}
};

IS(G(K),K; k) = {S | S =
⋃̀

i=1

Si , |S| = k,Si ∈ IS(G(Ki),K ∩ Ki)};

IS(G(Ki),K ∩ Ki ; k) = IS(G(Ki),Ki ; k) ∪̇
⋃̇

u∈Ki\K
IS(G(Ki),u; k).

In contrast to Equations 1, the second and third equations of Equations 3 do not give

a straightforward way to compute|IS(G(K), v; k)| and
∣∣∣∣IS(G(K),K; k)

∣∣∣∣, respectively,
since we have to count the number of combinations ofS1, . . . ,S` which generate an
independent set of sizek. To compute them, we use a more detailed algorithm.

Here we only explain a method to compute|IS(G(K), v; k)| since
∣∣∣∣IS(G(K),K; k)

∣∣∣∣
can be computed in a similar way. Fix an arbitrary vertexv ∈ K. Then, according tov,
we give indices to the children ofK such thatK1, . . . ,Kp includev andKp+1, . . . ,K` do
not. Fork′ ≤ k and`′ ≤ p, let N(`′; k′) := {S | S =

⋃`′
i=1 Si ,Si ∈ IS(Ki , v), |S| = k′}.

Fork′ ≤ k and`′ ≥ p+ 1, letN(`′; k′) := {S | S =
⋃`

i=`′ Si ,Si ∈ IS(Ki ,Ki \K), |S| =
k′}. Then, it holds that|IS(G(K), v; k)| = ∑k

h=0(|N(p; h)| ×
∣∣∣N(p + 1;k− h)

∣∣∣).
For each̀ ′ andk′, |N(`′; k′)| can be computed inO(k × p) time based on the

following recursive equation:

∣∣∣N(`′; k′)
∣∣∣ =

{∑k′
h=0 |N(`′ − 1;h)| × |IS(G(K`′ ), v; k′ − h)| if `′ > 1,
|IS(G(K1), v; k′)| otherwise.

Similarly,
∣∣∣N(`′; k′)

∣∣∣ can be computed inO(k′) time. The computation of|N(`′; k′)|
and

∣∣∣N(`′; k′)
∣∣∣ for all combinations of̀ ′ andk′ can be done inO(k2|(K)|) time,

thus we can count the number of independent sets of sizek in a chordal graph in
O(k2|V|2) time. In the following, we reduce the computation time by the same tech-
nique used in the previous sections.

Observe that
∣∣∣∣IS(G(K),K; k′)

∣∣∣∣ =
∑k′

h=0

∣∣∣N(p; h)
∣∣∣ ×

∣∣∣N(p + 1;k′ − h)
∣∣∣, which

gives
∣∣∣N(p + 1;k′)

∣∣∣ ×
∣∣∣N(p; 0)

∣∣∣ =
∣∣∣∣IS(G(K),K; k′)

∣∣∣∣ − ∑k′
h=1

∣∣∣N(p; h)
∣∣∣ ×∣∣∣N(p + 1;k′ − h)

∣∣∣. This implies that we can compute
∣∣∣N(k′; p + 1)

∣∣∣ from



∣∣∣∣IS(G(K),K; h)
∣∣∣∣ and

∣∣∣N(p; h)
∣∣∣ in the increasing order ofk′. The computation time

for this task isO(k× p).
In summary, we can compute|IS(G(K), v; k′)| for all v ∈ K andk′ ∈ {0, . . . , k}

in O(k2 ∑
v∈K |{K′ ∈ (K) | v ∈ K′}|) time. Therefore, the total computation time over

all iterations can be bounded in the same way as the above section, and we obtain the
following theorem.

Theorem 3. 1. The number of independent sets of size k in a chordal graph G=

(V,E) can be computed in O(k2(|V| + |E|)) time.
2. The numbers of independent sets of all sizes from0 to |V| in a chordal graph G=

(V,E) can be simultaneously computed in O(|V|2(|V| + |E|)) time.

6 Enumeration

Equations 1 in Section 3 directly give the following algorithm for enumerating the in-
dependent sets of a given chordal graph, in which each procedure corresponds to an
equation of Equations 1.

Algorithm 3 : EnumIS(G)

Input : a chordal graphG = (V,E);
Output : all independent sets inG;
construct a clique treeT of G with root K;1

foreachu ∈ K do enumerate all independent sets inIS(G,u) by EnumIS2(K,u);2

enumerate all independent sets inIS(G,K) by EnumIS3(K).3

Procedure EnumIS2(K,u)
Input : A maximal cliqueK of G, a vertexu ∈ K;
if K has no childthen4

output {u}; //output an independent set if the bottom level is reached5

else6

foreachchild Ki of K such thatu ∈ Ki do enumerate all independent sets in7

IS(G(Ki),u) by EnumIS2(Ki ,u);
foreachchild Ki of K such thatu < Ki do enumerate all independent sets in8

IS(G(Ki),K ∩ Ki) by EnumIS4(Ki);
output all independent sets inIS(G(K),u) by combining the independent sets in9

IS(G(Ki),u) and inIS(G(K j),K ∩ K j) for all i, j;

Procedure EnumIS3(K)
Input : A maximal cliqueK of G;
if K has no childthen10

output ∅; //output an independent set if the bottom level is reached11

else12

foreachchild Ki of K do enumerate all independent sets inIS(G(Ki),K ∩ Ki) by13

EnumIS4(Ki);
output all independent sets inIS(G(K),K) by combining the independent sets in14

IS(G(Ki),K ∩ Ki);



Procedure EnumIS4(K)
Input : A maximal cliqueK of G;
call EnumIS3(K);15

foreachu ∈ K \ (K) do enumerate all independent sets inIS(G(K),u) by16

EnumIS2(G(K),u);
output all independent sets inIS(G(K),K ∩ (K)) by combining the independent sets17

in IS(G(K),u);

From the lemmas and theorems in the previous sections,EnumIS(G) surely enu-
merates all independent sets inG. However, we cannot bound its time complexity by
constant for each output. In the following, we present a slight modification to obtain a
constant-time enumeration algorithm.

Let us consider the computation tree of this algorithm. Acomputation treeis a
rooted-tree representation of a recursive structure, in which the vertices are recursive
calls, and the edges connect two vertices if and only if one vertex recursively calls the
other. We define aniteration of the algorithm by the operations done in a vertex of the
computation tree. In other words, an iteration is the computation in some procedureP
recursively called by another procedure, in which the computation in the recursive calls
generated byP is excluded.

We first reduce the number of iterations by the following two modifications. (1)
If an iterationI generated by an iterationIp recursively calls just one iterationIc, we
modify the algorithm so thatIp recursively callsIc directly. (2) If an iterationI outputs
just one independent set, mergeI and the iteration which recursively callsI into one.

For a given chordal graphG = (V,E) and a rooted clique tree ofG, the number of
possible inputs for each procedure is at mostO(|E|), as in our counting algorithms. Thus,
we can enumerate all of these cases inO(|E|) time, and keep the results of modifications
(1) and (2) in the memory. It can be done as a preprocessing withinO(|E|) time.

By these modifications, we can see that any iteration which is a leaf of the com-
putation tree outputs at least two independent sets, thus the number of iterations is not
greater than the number of independent sets inG. We can also see that if an iteration
outputs just one independent set, then, the input clique must be a leaf of the clique tree.
Hence, the size of the output independent set is at most one.

We next consider how to compute all combinations of independent sets in, for exam-
ple, Step 9 of the algorithm. In the procedures, the independent sets forK are generated
by combining the independent recursive calls for several maximal cliques, sayK1 and
K2. This step can be implemented as follows. First, we compute an indenendent setI1

for K1, and for thisI1, we compute all independent setsI2 for K2, and outputI1∪I2. Next
we compute another independent setI ′1 for K1, and compute all independent setsI2 for
K2, and outputI1∪ I2, then compute yet another independent set forK1, and so on. Then
the computation time in one iteration is proportional to (the number of recursive calls
generated) times (the maximum number of vertices added to the current independent
set). Because of modification (2), any iteration adds at most one vertex to the current
independent set. Therefore, the total time complexity of the algorithm is linear in the
number of independent sets.

Theorem 4. All independent sets in a chordal graph can be enumerated in constant
time for each on average with additional O(|V| + |E|) time for preprocessing.



Similar algorithms can be developed to enumerate the maximum independent sets
and the independent sets of sizek. However, some iterations may add to the current
independent set several vertices not bounded by a constant. Since there are at most
|E| kinds of inputs for each procedure, we can enumerate all such sets of vertices that
will be added in an iteration, and put an identical name to each set of vertices in short
time. By adding the name instead of adding vertices in a vertex set, we can execute the
addition in constant time. Thus, the maximum independent sets and the independent
sets of sizek can be enumerated in constant time for each on average with additional
O((|V| + |E|)|V|2) time for preprocessing.

7 Hardness of Counting the Maximal Independent Sets

In this section, we show the hardness results for counting the number of maximal in-
dependent sets in a chordal graph. Although finding a maximal independent set is easy
even in a general graph, we show that the counting version of the problem is actually
hard.

Theorem 5. Counting the number of maximal independent sets in a chordal graph is
#P-complete.

The proof is based on a reduction from the counting problem of the number of set
covers. LetX be a finite set, andS ⊆ 2X be a family of subsets ofX. A set coverof
X is a subfamilyF ⊆ S such that

⋃F = X. Counting the number of set covers is
#P-complete [17].
Proof of Theorem 5 (Sketch). The membership in#P is immediate. To show the#P-
hardness, we use a polynomial-time reduction of the problem for counting the number
of set covers to our problem.

Let X be a finite set andS ⊆ 2X be a family of subsets ofX, and consider them as
an instance of the set cover problem. Let us putS := {S1, . . . ,St}. FromX andS, we
construct a chordal graphG = (V,E) in the following way.

We setV := X∪S∪S′, whereS′ := {S′1, . . . ,S′t }. Namely,S′ is a copy ofS. Now,
we draw edges. There are three kinds of edges. (1) We connect every pair of vertices inX
by an edge. (2) For everyS ∈ S, we connectx ∈ X andS by an edge if and only ifx ∈ S.
(3) For everyS ∈ S, we connectS andS′ (a copy ofS) by an edge. Formally speaking,
we defineE := {{x, y} | x, y ∈ X}∪ {{x,S} | x ∈ X,S ∈ S, x ∈ S}∪ {{S,S′} | S ∈ S}. This
completes our construction, which can be done in polynomial time. The constructed
graphG is indeed chordal.

Now, we look at the relation between the set covers ofX and the maximal indepen-
dent sets ofG. Let U be a maximal independent set ofG. We distinguish two cases.
Case 1.Consider the case in whichU contains a vertexx ∈ X. Let Gx := G \ NG[x].
By the construction, we have thatV(Gx) = {S ∈ S | x < S} ∪ S′ andE(Gx) = {{S,S′} |
S ∈ S, x < S}. Then the number of maximal independent sets containingx is exactly
2|{S∈S|x<S}|.
Case 2.Consider the case in whichU contains no vertex ofX. Then, the number of
maximal independent sets containing no vertex ofX is equal to the number of set covers
of X.



To summarize, we obtained that the number of maximal independent sets ofG is
equal to the number of set covers ofX plus

∑
x∈X 2|{S∈S|x<S}|. Since the last sum can be

computed in polynomial time, this concludes the reduction. ut
As a variation, let us consider the problem for counting the minimum maximal

independent sets in a chordal graph. Note that a minimum maximal independent set in
a chordal graph can be found in polynomial time [8]. In contrast to that, the counting
version is hard.

Theorem 6. Counting the minimum maximal independent sets in a chordal graph is
#P-complete.

8 Hardness of Finding a Minimum Weighted Maximal
Independent Set

In this section, we consider an optimization problem to find a minimum weighted max-
imal independent set in a chordal graph. Namely, given a chordal graphG and a weight
for each vertex, we are asked to find a maximal independent set ofG with minimum
weight. Here, the weight of a vertex subset is the sum of the weights of its vertices.

Notice that there is a linear-time algorithm for this problem when the weight of
each vertex is zero or one [8]. On the contrary, we show that the problem is actually
hard when the weight is arbitrary.

Theorem 7. Finding a minimum weighted maximal independent set in a chordal graph
is NP-hard.

The proof is similar to what we saw in the previous section. We use the optimization
version of the set cover problem, namely the minimum set cover problem. It is known
that the minimum set cover problem isNP-hard.

Proof of Theorem 7. For a given instance of the minimum set cover problem, we use
the same construction of a graphG as in the proof of Theorem 5. We define a weight
functionw as follows:w(x) := 2|S| + 1 for everyx ∈ X; w(S) := 2 for everyS ∈ S;
w(S′) := 1 for everyS′ ∈ S′. This completes the construction.

Now, observe thatS is a maximal independent set of the constructed graphG, and
the weight ofS is 2|S|. Therefore, no element ofX takes part in any minimum weighted
maximal independent set ofG. Then, from the discussion in the proof of Theorem 5,
if M is a maximal independent set ofG satisfyingM ∩ X = ∅, then M ∩ S is a set
cover ofX. The weight ofM is |M ∩ S| + |S|. Therefore, ifM is a minimum weighted
independent set ofG, thenM minimizes|M ∩ S|, which is the size of a set cover. Hence,
M ∩ S is a minimum set cover. This concludes the reduction. ut

We can further show the hardness to get an approximation algorithm running in
polynomial time. The precise statement is as follows (ZTIME(t) is the class of languages
which have a randomized algorithm running in expected timet with zero error).

Theorem 8. There is no randomized polynomial-time algorithm for the minimum
weight maximal independent set problem in a chordal graph with approximation ra-
tio c ln |V|, for some fixed constant c, unlessNP ⊆ ZTIME(nO(log logn)).
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