JAIST Repository

https://dspace.jaist.ac.jp/

Title

Laminar structure

ptol pmaic grapl

applications

Author(s) Uehar a, R; Uno, Y
Lecture Notes in Computer| Science

L Ssubseries Lecture Notes ip Artifici:

Citation . . .
I ntelligence and Lecture Notes in Bi
3827: 186-195

Issue Date 2005

Type Journal Article

Text version aut hor

URL http:// hdl handle.net/ 101019/ 3277
This is the author-createfd version
Berlin / Heidelberg, Ryuhegi Uehara
Lecture Notes in Computer| Science(Al

Rights Computation), 3827, 2005, 186-195.
publication is available pt www. spr.i
http:// www. springerlink.cpm/content |
085

Description

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Laminar Structure of Ptolemaic Graphs and Its
Applications

Ryuhei Uehara! and Yushi Uno?

! School of Information Science, Japan Advanced Institute of Science and Technology (JAIST),
Ishikawa, Japan. uehara@jaist.ac.jp
2 Department of Mathematics and Information Sciences, Graduate School of Science, Osaka
Prefecture University, Sakai, Japan. uno@mi.s.osakafu-u.ac. jp

Abstract. Ptolemaic graphs are graphs that satisfy the Ptolemaic inequality for
any four vertices. The graph class coincides with the intersection of chordal
graphs and distance hereditary graphs, and it is a natural generalization of block
graphs (and hence trees). In this paper, a new characterization of ptolemaic graphs
is presented. It is a laminar structure of cliques, and leads us to a canonical tree
representation, which gives a simple intersection model for ptolemaic graphs. The
tree representation is constructed in linear time from a perfect elimination order-
ing obtained by the lexicographic breadth first search. Hence the recognition and
the graph isomorphism for ptolemaic graphs can be solved in linear time. Using
the tree representation, we also give an O(n) time algorithm for the Hamiltonian
cycle problem.

Keywords: algorithmic graph theory, data structure, Hamiltonian cycle, intersec-
tion model, ptolemaic graphs.

1 Introduction

Recently, many graph classes have been proposed and studied [2, 10]. Among them, the
class of chordal graphs is classic and widely investigated. One of the reasons is that the
class has a natural intersection model and hence a concise tree representation; a graph
is chordal if and only if it is the intersection graph of subtrees of a tree. The tree repre-
sentation can be constructed in linear time, and it is called a clique tree since each node
of the tree corresponds to a maximal clique of the chordal graph (see [17]). Another
reason is that the class is characterized by a vertex ordering called a perfect elimina-
tion ordering. The ordering can also be computed in linear time, and a typical way to
find it is called the lexicographic breadth first search (LBFS) introduced by Rose, Tar-
jan, and Lueker [16]. The LBFS is also widely investigated as a tool for recognizing
several graph classes (see a comprehensive survey by Corneil [6]). Using those char-
acterizations, many efficient algorithms have been established for chordal graphs (see,
e.g., [9]).

Distance in graphs is one of the most important topics in algorithmic graph theory.
The class of distance hereditary graphs was introduced by Howorka to deal with the
distance property called isometric [12]. For the class, some characterizations are in-
vestigated [1, 8, 11], and many efficient algorithms have been proposed (see, e.g., [5, 4,

14]). However, the recognition of distance hereditary graphs in linear time is not sim-
ple; Hammer and Maffray’s algorithm [11] fails in some cases, and Damiand, Habib,
and Paul’s algorithm [7] requires to build a cotree in linear time (see [7, Chapter 4]
for further details), where the cotree can be constructed in linear time by using recent
algorithm with multisweep LBFS approach by Bretscher, Corneil, Habib, and Paul [3].

In this paper, we focus on the class of ptolemaic graphs. Ptolemaic graphs are graphs
that satisfy the Ptolemaic inequality d(x,y)d(z, w) < d(x,2)d(y, w) + d(x,w)d(y, z) for
any four vertices x,y,z, w 3. Howorka showed that the class of ptolemaic graphs coin-
cides with the intersection of the class of chordal graphs and the class of distance hered-
itary graphs [13]. On the other hand, the class of ptolemaic graphs is a natural general-
ization of block graphs, and hence trees (see [19] for the relationships between related
graph classes). However, there are relatively few known results specified to ptolemaic
graphs. The reason seems that the ptolemaic graphs have no useful characterizations
from the viewpoint of the algorithmic graph theory.

We propose a tree representation of ptolemaic graphs which is based on the laminar
structure of cliques of a ptolemaic graph. The tree representation also gives a natural
intersection model for ptolemaic graphs, which is defined over directed trees. The tree
representation can be constructed in linear time. The construction algorithm can also
be modified to a recognition algorithm which runs in linear time. It is worth remarking
that the algorithm is quite simple, especially, much simpler than the combination of two
recognition algorithms for chordal graphs and distance hereditary graphs. Moreover, the
tree representation is canonical up to isomorphism. Hence, using the tree representation,
we can solve the graph isomorphism problem for ptolemaic graphs in linear time.

The tree representation enables us to use the dynamic programming technique for
some problems on ptolemaic graphs G = (V, E). It is sure that the Hamiltonian cycle
problem is one of most well known NP-hard problem, and it is still NP-hard even for a
chordal graph, and that an O(|V| + |E|) time algorithm is known for distance hereditary
graphs [14]. Here, we show that the Hamiltonian cycle problem can be solved in O(|V|)
time using the technique if a ptolemaic graph is given in the tree representation.

Due to space limitation, some proofs are omitted, and can be found at
http://www. jaist.ac.jp/ uehara/pdf/ptolemaic2.pdf.

2 Preliminaries

The neighborhood of a vertex v in a graph G = (V,E) is the set Ng(v) = {u € V |
{u,v} € E}, and the degree of a vertex v is |[Ng(v)| and is denoted by degq(v). For a
subset U of V, we denote by Ng(U) the set {v € V | v € N(u) for some u € U}. If no
confusion can arise we will omit the index G. Given a graph G = (V, E) and a subset
U of V, the induced subgraph by U, denoted by G[U], is the graph (U, E’), where
E’ = {{u,v} | u,v € U and {u,v} € E}. Given a graph G = (V, E), its complement is
defined by E = {{u,v} | {u,v} ¢ E}, and is denoted by G = (V, E). A vertex set I is an
independent set if G[I] contains no edges, and then the graph G[/] is said to be a clique.

3 The inequality is also known as “Ptolemy” inequality which seems to be more popular. We
here use “Ptolemaic” stated by Howorka [13].

Given a graph G = (V, E), a sequence of the distinct vertices vy, va,. ..,V is a path,
denoted by (vi,v2,...,vy), if {v;,v;j41} € E for each 1 < j < I. The length of a path is
the number of edges on the path. For two vertices u and v, the distance of the vertices,
denoted by d(u, v), is the minimum length of the paths joining u and v. A cycle is a path
beginning and ending with the same vertex. A cycle is said to be Hamiltonian if it visits
every vertex in a graph exactly once.

An edge which joins two vertices of a cycle but is not itself an edge of the cycle is
a chord of that cycle. A graph is chordal if each cycle of length at least 4 has a chord.
Given a graph G = (V, E), a vertex v € V is simplicial in G if G[N(v)] is a clique in G.
An ordering vy,..., v, of the vertices of V is a perfect elimination ordering (PEO) of
G if the vertex v; is simplicial in G[{v;, Vi41,...,v,}] foralli = 1,...,n. Once a vertex
ordering is fixed, we denote N(v;) N {vi1,...,v,} by N5;(v;). It is known that a graph
is chordal iff it has a PEO (see [2]). A typical way of finding a PEO of a chordal graph
in linear time is the lexicographic breadth first search (LBFS), which is introduced by
Rose, Tarjan, and Lueker [16], and a comprehensive survey is presented by Corneil [6].

It is also known that a graph G = (V, E) is chordal iff it is the intersection graph of
subtrees of a tree T (see [2]). Let T, denote the subtree of T corresponding to the vertex
vin G. Then we can assume that each node c in T corresponds to a maximal clique C of
G such that C contains v on G iff T, contains c on 7. Such a tree T is called a clique tree
of G. From a PEO of a chordal graph G, we can construct a clique tree of G in linear
time [17].

Given a graph G = (V,E) and a subset U of V, an induced connected subgraph
G[U] is isometric if the distances in G[U] are the same as in G. A graph G is distance
hereditary if G is connected and every induced path in G is isometric.

A connected graph G is ptolemaic if for any four vertices u,v,w,x of G,
du,vydw, x) < d(u,w)d(v,x) + d(u, x)d(v,w). We will use the following characteri-
zation of ptolemaic graphs due to Howorka [13]:

Theorem 1. The following conditions are equivalent: (1) G is ptolemaic; (2) G is dis-
tance hereditary and chordal; (3) for all distinct nondisjoint maximal cliques P, Q of G,
PN Q separates P\ Q and Q \ P.

Let V be a set of n vertices. Two sets X and Y are said to be overlapping it XNY # 0,
X\Y#0,and Y\ X # 0. A family ¥ € 2V \ {{0}} is said to be laminar if ¥ contains
no overlapping sets; that is, for any pair of two distinct sets X and Y in ¥ satisfy either
XNY=0,XcY,orY c X. Given a laminar family ¥, we define laminar digraph
7(77) = (?,_E)g:) as follows; fg: contains an arc (X, Y) iff X C Y and there are no other
subset Z such that X ¢ Z c Y, for any sets X and Y. We denote the underlying graph

of 7(7’) by T(F) = (¥, Ef). The following two lemmas for the laminar digraph are
known (see, e.g., [15, Chapter 2.2]);

Lemma 1. (1) T(F) is aforest. (2) If afamily F C 2V is laminar, we have |F| < 2|V|-1.

Hence, hereafter, we call T'(7) (7(7’)) a (directed) laminar forest. We regard each
maximal (directed) tree in the laminar forest T (%) (7(7")) as a (directed) tree rooted at
the maximal set, whose outdegree is O in 7(7—'). We define a label of each node S in
7(7—‘), denoted by £(S), as follows: If S is a leaf, £(S¢) = So. If S is not a leaf and

has children S, S,,...,8., €(So) =So\(S1US,U---US}). Since F is laminar, each
vertex in V appears exactly once in £(S') for some S C V, and its corresponding node is
uniquely determined.

3 A Tree Representation of Ptolemaic Graphs

3.1 A Tree Representation

For a ptolemaic graph G = (V, E), let M(G) be the set of all maximal cliques, i.e.,
M(G) := {M | M is a maximal clique in G}, and C(G) be the set of nonempty vertex
sets defined below: C(G) := Uscm){C | C = Nyes M, C # 0}. Each vertex set C €
C(G) is a nonempty intersection of some maximal cliques. Hence, C(G) contains all
maximal cliques, and each C in C(G) induces a clique. We also denote by L(G) the
set C(G) \ M(G). That is, each vertex set L € L(G) is an intersection of two or more
maximal cliques. The following properties are crucial.

Theorem 2. Let G = (V, E) be a ptolemaic graph. Let ¥ be a family of sets in L(G)
such that Upeg L C M for some maximal cliqgue M € M(G). Then F is laminar.

Proof. Omitted. O

Lemma 2. Let Cy,C, be any overlapping sets in C(G) for a ptolemaic graph G
(V,E). Then Cy N C; separates Cy \ C and C \ Cj.

Proof. Omitted. O

Now we define a directed graph 7(C(G)) = (C(G),A(G)) for a given ptolemaic
graph G = (V, E) as follows: two nodes C;, C, € C(G) are joined by an arc (Cy, C») if
and only if Cy ¢ C; and there is no other C in C(G) such that C; ¢ C c C,. We denote
by T(C(G)) the underlying graph of 7' (C(G)).

Theorem 3. A graph G = (V, E) is ptolemaic if and only if the graph T(C(G)) is a tree.
Proof. Omitted. |

Hereafter, given a ptolemaic graph G = (V, E), we call T(C(G)) (7(C(G))) a (di-
rected) clique laminar tree of G. We can naturally extend the label of a laminar for-
est to the directed clique laminar tree: Each node Cy in C(G) has a label {(Cyp) :=
Co\(C1UCU---UCy), where (C;, Cp) is an arc on T(C(G)) for 1 <i < h. Intuitively,
we additionally define the label of a maximal clique as follows; the label of a maximal
clique is the set of vertices that are not contained in any other maximal cliques. We note
that for each vertex in G its corresponding node in 7(C(G)) is uniquely determined by
maximal cliques. Therefore, we can define the mapping from each vertex to a vertex
set in C in T(C(G)): We denote by C(v) the clique C with v € £(C). When we know
whether C(v) is in M or L, we specify it by writing Cy(v) or C(v). An example is
given in Figure 2 (for the given ptolemaic graph (a), the clique laminar tree (b) is ob-
tained after adding the vertices 16, 15, 14, 13,12, 11, 10, 9, 8, and the clique laminar tree
(c) is obtained after adding all vertices). In Figure 2, each single rectangle represents

a non-maximal clique, each double rectangle represents a maximal clique, and each
rectangle contains its label.

We also note that from 7(C(G)) with labels, we can reconstruct the original ptole-
maic graph uniquely up to isomorphism. That is, two ptolemaic graphs G, and G, are
isomorphic if and only if labeled T(C (Gy)) is isomorphic to labeled 7(0 (G)).

By Theorem 3, we obtain an intersection model for ptolemaic graphs as follows:

Corollary 1. Let T be any directed graph such that its underlying graph T is a tree. Let
T~ be any set of subtrees 7_": such that 7_": consists of a root C and all vertices reachable
from C in T. Then the intersection graph over T is ptolemaic. On the other hand, for
any ptolemaic graph, there exists such an intersection model.

Proof. The directed clique laminar tree 7(C(G)) is the base directed graph of the inter-
section model. For each v € V, we define the root C such that v € £(C). O

3.2 A Linear Time Construction of Clique Laminar Trees
The main theorem in this section is the following:

Theorem 4. Given a ptolemaic graph G = (V, E), the directed clique laminar tree
7(C(G)) can be constructed in O(|V| + |E|) time.

We will make the directed clique laminar tree 7(C(G)) by separating the vertices in
G into the vertex sets in C(G) = M(G) U L(G).

We first compute (and fix) a PEO vy, vs,...,v, by the LBEFS. The outline of our
algorithm is similar to the algorithm for constructing a clique tree for a given chordal
graph due to Spinrad in [17]. For each vertex v,,v,_1,...,v2,v;, we add it into the
tree and update the tree. For the current vertex v;, let v; := min{N5;(v;)}. Then, in
Spinrad’s algorithm [17], there are two cases to consider: N;(v;) = C(v;) or N;(v;) C
C(v;). The first case is sipmle; just add v; into C(v;). In the second case, Spinrad’s
algorithm adds a new maximal clique C(v;) that consists of N-;(v;) U {v;}. However,
in our algorithm, involved case analysis is required. For example, in the latter case,
the algorithm have to handle three vertex sets; two maximal cliques {v;} U N.;(v;) and
C(v;) together with one vertex set Ns;(v;) shared by them. In this case, intuitively, our
algorithm makes three distinct sets Cy, with £(Cy) = {v;}, Cp with £(Cr) = N.;(v)),
and C with £(C) = C(v;) \ N>;(v;), and adds two arcs (Cr, Cy) and (Cp, C); this means
that v; is in Cyy = N5;(v;) U {v;}, C is a clique C(v;), and Cy is the vertex set shared by
Cy and C. However, our algorithm has to handle more complicated cases since the set
C(v;) (and hence N..;(v;)) can already be partitioned into some vertex sets.

In T(C(G)), each node C stores £(C). Hence each vertex in G appears exactly
once in the tree. To represent it, each vertex v has a pointer to the node C(v) in
C(G) = M(G) U L(G). The detail of the algorithm is described as CLIQUELAMINARTREE
shown in Figure 1, and an example of the construction is depicted in Figure 2. In Fig-
ure 2, the left-hand graph gives a ptolemaic graph, and the right-hand tree is the clique
laminar tree constructed according to the vertex ordering given in the figure. We show
the correctness and a complexity analysis of the algorithm.

We will use the following property of a PEO found by the LBES of a chordal graph:

Algorithm 1: CLIQUELAMINARTREE

Input : A ptolemaic graph G = (V, E) with a PEO vy, v,, ..., v, obtained by the LBFS,
Output: A clique laminar tree 7.

1 initialize T by the clique Cy(v,) := {v,} and set the pointer from v, to Cy(v,);

2 fori:=n-1downto1do

3 let v; := min{N,;(v;)};

4 switch condition of N-;(v;) do

5 case (1) N>;(v;) = Cy(v))

6 update £(Cy(v)) := {(Cy(v)) U {v} and |Cyy(v)| := [Cu(v))| + 1

7 set CM(V,') = CM(V]');

8 case (2) N.i(vi) = Cr(v))

9 make a new maximal clique Cy(v;) with £(Cy(v;)) := {v;} and
ICu)l = [Crvp| + 1;

10 add an arc (C.(v;), Cy(vi));

11 case (3) N.,(v;) € C(v)) and [((C(v)))| = |C(v))|

12 update £(C(v)) := €(C(v))) \ Noi(v) and |{(C(v))| := [((C)| = INsi(v)l;

13 make a new vertex set L := N-;(v;) with £(L) := N;(v;) and |L] := [N5;(v)|;

14 make a new maximal clique Cy (v;) with €(Cy(v;)) = {v;} and
ICy il ==L+ 15

15 add arcs (L, C(v;)) and (L, Cp(vy));

16 case (4) N»i(v;) € C(v)) and [((C(v)))| < |Cv;)|

17 make a new vertex set L := N.;(v;) with £(L) := N-;(v;) N £(C(v;)) and
IL] := [N (vi)l;

18 update £(C(v)) := €(C(v))) \ Land |[((C(v))| = [6(C(v;))| - ILI;

19 make a new maximal clique Cy(v;) with €(Cy(v;)) = {v;} and
[Cu(vl = |LI + 1;

20 remove the arc (L', C(v;)) with L’ C L and add an arc (L', L);

21 add arcs (L, C(v;)) and (L, Cp(vy));

22 end

23 end

24 set the pointer from v; to C(v;);

25 end

26 return 7.

Fig. 1. A linear time algorithm for the clique laminar tree T of a ptolemaic graph G = (V, E).

Fig. 2. A ptolemaic graph and its clique laminar tree.

Lemma 3. [6, Theorem 1] Let vi,Vv,...,v, be a PEO found by the LBFS. Then i < j
implies max{N(v;)} < max{N(v;)}.

We assume that Algorithm CLiQUELAMINARTREE is going to add v;, and let v; :=
min{N-;(v;)}. We will show that all possible cases are listed, and in each case, CLIQUE-
LamiNaRTREE correctly manages the nodes in C(G) and their labels in O(deg(v;)) time.
The following lemma drastically decreases the number of possible cases, and simplifies
the algorithm.

Lemma 4. Let vy be max{N-;(v;)}. We moreover assume that the set N~;(v;) has already
been divided into some distinct vertex sets Ly, Lo, ..., Ly. Then, there is an ordering of
the sets such thatvy € Ly C L, C--- C Ly,

Proof. Omitted. O

We here describe the outline of the proof of Theorem 4, and the details can be found
in Appendix. Since the graph G is chordal and the vertices are ordered in a PEO, N-;(v;)
induces a clique. By Lemma 4, we have three possible cases; (a) N>;(v;) = C(v;), (b)
N.;(v;) € C(v)) and there are no vertex sets in N-;(v;), and (c) N;(v;) C C(v;) and there
are vertex sets L; C L, C --- C L, C N-;(v;). In the last case, we note that L, # N-;(v;);
otherwise, we have v; € L;, or consequently, L, = C(v;) = N-;(v;), which is case (a).
In case (a), we have two subcases; C(v;) is a maximal clique (i.e., Ns;(v;) = Cy(v;)) or
C(v;) is a non-maximal clique (i.e., N5;(v;) = Cr(v))).

In each case, careful analysis implies that the maintenance of the clique laminar tree
can be done in O(deg(v;)) time for each v;. Therefore the time complexity of CLIQUE-
LAMINARTREE is O(n + m), which completes the proof of Theorem 4.

4 Applications of Clique Laminar Trees

Theorem S. The recognition problem for ptolemaic graphs can be solved in linear
time.

Proof. Omitted. O

Theorem 6. The graph isomorphism problem for ptolemaic graphs can be solved in
linear time.

Proof. Omitted. O

We note that Theorem 5 is not new. Since a graph is ptolemaic iff it is chordal and
distance-hereditary [13], we have Theorem 5 by combining the results in [16, 11,7, 3].
We dare to state Theorem 5 to show that we can recognize if a graph is ptolemaic and
then construct its clique laminar tree at the same time in linear time, and the algorithm is
much simpler and more straightforward than the combination of known algorithms. (As
noted in Introduction, the linear time algorithm for recognition of distance hereditary
graphs is not so simple.)

Theorem 7. The Hamiltonian cycle problem for ptolemaic graphs can be solved in
O(n) time.

Due to space limitation, we describe the outline of the proof of Theorem 7.

We remind that?(C(G)) takes O(n) space. We first observe that if T(C (G)) contains
a vertex set C with |C| = 1, the vertex in C is a cutpoint of G, and hence G does not
have a Hamiltonian cycle. This condition can be checked in O(n) time over T(C(G)).
Hence, hereafter, we assume that G has no cutpoint, or equivalently, any vertex set C in
C satisfies |C| > 1.

Let L be a vertex set in C(G). Each vertex set L’ with (L,L’) € A(G) is said to
be a child of L, and each vertex set L” with (L”,L) € A(G) is said to be a parent of
L. That is, a child L’ and a parent L” of L satisfy L c L c L’. We define ancestors
and descendants for L as in ordinary trees. Note here that any node L in 7(C(G)) is an
ancestor and descendant of itself. We denote by c(L) and p(L) the number of children
of L and the number of parents of L in 7(C(G)), respectively. Hence c¢(M) = 0 for each
maximal clique M, and p(L) = 0 for each minimal vertex set L.

We first consider a minimal vertex set L with p(L) = 0. By Lemma 2, each L in
L(G) is a separator of G. It is easy to see that if we remove L from G, we have c(L)
connected components. Hence, if |L| < ¢(L), G cannot have a Hamiltonian cycle. On
the other hand, when |L| = ¢(L), any Hamiltonian cycle uses all vertices in L to connect
each connected component. This fact can be seen as follows; we first make a cycle of
length |L| in L, and next replace each edge by a path through the vertices in one vertex
set corresponding to a child of the node L. We say that we assign each edge to distinct
child of L. If |L| > ¢(L), we can construct a Hamiltonian cycle with |L| — ¢(L) edges in
GI[L]. In this case, c¢(L) edges in L are assigned to construct a cycle, and |L| — ¢(L) edges
are left, which can be assigned in some other descendants. We then define the margin
m(L) by |L| —c(L) = [£(L)| — c(L). That is, if m(L) < 0, G has no Hamiltonian cycle, and
if m(L) > 0, we have m(L) edges in L which can be assigned in some descendants. We
note that a margin can be inherited only from an ancestor to an descendant.

We next define a distribution 6((C;, C})) of the margin, which is a function assigned

to each arc (C;,C)) in T(C(G)). Let Cy,...,Cy be the children of L. Then for i =
1,2,...,k each arc (L, C;) has a distribution 6((L,C;)) with Zf.‘zl o((L,Cy)) = m(L).
That is, each child C; inherits 6((L, C;)) margins from L, and some descendants of C;
will consume 6((L, C;)) margins from L. The way to compute the distribution will be
discussed later.

We then consider a vertex set C with p(C) > 0 and ¢(C) > 0, that is, C is a vertex
set which is not minimal. Let Py, P,, ..., Pj, be parents of C and C, C», ..., Cy children
of C. That is, we have P, ¢ C C C; foreachiand jwith1 < i < h = p(C) and
1< j<k=c(C)(k=c(C)=0 when C is maximal clique). We assume that 6((P;, C))
are already defined for each P;. In the case, we have to assign k edges in C to the children
of C. Each child will replace it by the path through all vertices in the child. We also
have one assigned edge from each parent, and some additional vertices from parents P;
if 6((P;, C)) > 0. Hence the margin m(C) is defined by |£(C)| + h + Zf.’zl o((P;, C))—k =
€O+ Zf’zl(é((Pi, C))+1)—k. The distribution 6((C, C;)) of the margin m(C) is defined
by a function with 35, 6((C, C;)) = m(C).

Above discussion leads us to the following theorem:

Theorem 8. Let G = (V, E) be a ptolemaic graph. Then G has a Hamiltonian cycle if
and only if there exist feasible distributions of margins such that each vertex set C in C

satisfies m(C) > 0.

Our linear time algorithm, say A, runs on T(C(G)); A collects the leaves in
T(C(G)), computes the margins, and repeats this process by computing the margin of
C such that all neighbors of C have been processed except exactly one neighbor. The
outline of the procedure for each vertex set C with parents Py, Py, ..., P, and children
C1,C,,...,Cy is described as follows:

(1) When the vertex set C is a leaf of T(C(G)), C is a maximal clique in G, and hence
o((P,C)) is set to 0, where P is the unique parent of C.

(2) When C is not a leaf of T(C(G)), let X be the only neighbor which is not processed.
Without loss of generality, we assume that either X = Pj, or X = Cy. To simplify the
notation, we define ' = h—1landk’ = kif X = Py,and ' = hand k' = k-1if X = C,.
We have three subcases, but the most complicated case is described below.

When C is not a maximal clique with £k > 0 and 2~ > 0, A first computes
the margin m(C) = |[¢((C)| + Zf?;l(é((P[,C)) + 1) — k’. Next, A distributes the mar-
gin m(C) to the children Cy,...,Cy by computing ¢’ := m(C) — f:l o((C,Cy)) =
16O+ X1 (5((P;, ©))+ 1) = XX (8((C, C;)) + 1). The value &' indicates the margin that
can be consumed by X.

If X is a child Cy, A distributes all margins ¢’ to X, or sets 6((C, X)) = ¢’. Thus, in
this case, if ¢’ < 0, G has no Hamiltonian cycles. When ¢’ > 0, A will use the margin
¢’ when it processes the vertex set X.

On the other hand, if X is a parent P, the margin will be distributed from X to C.

Hence, if ¢’ < 0, the vertex C borrows margin ¢’ from X which will be adjusted when
the vertex X is chosen by A. Thus A sets 6((X,C)) = —¢’ in this case. If ' > 0, the
margin is useless since the parent X only counts the number of its children C, and does
not use their margins. Therefore, A does nothing.
(3) When C is the last node of the process; that is, every value of 6((C, C")) or 6((C’, C))
for each neighbor C’ of C has been computed. In the case, A computes m(C) = [€(C)| +
ISP, C)+ 1) = 3K (8((C, C)) +1). T m(C) < 0, C does not have enough margin.
Hence G has no Hamiltonian cycle. Otherwise, every node has enough margin, and
hence G has a Hamiltonian cycle.

The correctness of A can be proved by a simple induction for the number of nodes
in 7(6 (G)) with Theorem 8. On the other hand, since T(C(G)) contains O(n) nodes, the
algorithm runs in O(n) time and space, which completes the proof of Theorem 7. We
note that the construction of a Hamiltonian cycle can be done simultaneously in O(n)
time and space.

5 Concluding Remarks

In this paper, we presented new tree representations (data structures) for ptolemaic
graphs. The result enables us to use the dynamic programming technique to solve some
basic problems on this graph class. We presented a linear time algorithm for the Hamil-
tonian cycle problem, as one of such typical examples. To develop such efficient algo-
rithms based on the dynamic programming for other problems are future works.

Acknowledgment

The authors thank Professor Hiro Ito, who pointed out a flaw in our polynomial time
algorithm for finding a longest path in a ptolemaic graph stated in [18]. That motivated
us to investigate the problems in this paper.

References

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

H.-J. Bandelt and H.M. Mulder. Distance-Hereditary Graphs. J. of Combinatorial Theory,
Series B, 41:182-208, 1986.

A. Brandstadt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM, 1999.

A. Bretscher, D. Corneil, M. Habib, and C. Paul. A Simple Linear Time LexBFS Cograph
Recognition Algorithm. In Graph-Theoretic Concepts in Computer Science (WG 2003),
pages 119-130. LNCS Vol. 2880, Springer-Verlag, 2003.

H.J. Broersma, E. Dahlhaus, and T. Kloks. A linear time algorithm for minimum fill-in and
treewidth for distance hereditary graphs. Discrete Applied Mathematics, 99:367—400, 2000.
M.-S. Chang, S.-Y. Hsieh, and G.-H. Chen. Dynamic Programming on Distance-Hereditary
Graphs. In Proceedings of 8th International Symposium on Algorithms and Computation
(ISAAC ’97), pages 344-353. LNCS Vol. 1350, Springer-Verlag, 1997.

D.G. Corneil. Lexicographic Breadth First Search — A Survey. In Graph-Theoretic Con-
cepts in Computer Science (WG 2004), pages 1-19. LNCS Vol. 3353, Springer-Verlag, 2004.
G. Damiand, M. Habib, and C. Paul. A Simple Paradigm for Graph Recognition: Application
to Cographs and Distance Hereditary Graphs. Theoretical Computer Science, 263:99-111,
2001.

A. D’Atri and M. Moscarini. Distance-Hereditary Graphs, Steiner Trees, and Connected
Domination. SIAM J. on Computing, 17(3):521-538, 1988.

F. Gavril. Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by
Cliques, and Maximum Independent Set of a Chordal Graph. SIAM J. on Computing,
1(2):180-187, 1972.

M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete Math-
ematics 57. Elsevier, 2nd edition, 2004.

P.L. Hammer and F. Maffray. Completely Separable Graphs. Discrete Applied Mathematics,
27:85-99, 1990.

E. Howorka. A Characterization of Distance-Hereditary Graphs. Quart. J. Math. Oxford (2),
28:417-420, 1977.

E. Howorka. A Characterization of Ptolemaic Graphs. J. of Graph Theory, 5:323-331, 1981.
R.-W. Hung and M.-S. Chang. Linear-time algorithms for the Hamiltonian problems on
distance-hereditary graphs. Theoretical Computer Science, 341:411-440, 2005.

B. Korte and J. Vygen. Combinatorial Optimization, volume 21 of Algorithms and Combi-
natorics. Springer, 2000.

D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic Aspects of Vertex Elimination on
Graphs. SIAM J. on Computing, 5(2):266-283, 1976.

J.P. Spinrad. Efficient Graph Representations. American Mathematical Society, 2003.

R. Uehara and Y. Uno. Efficient Algorithms for the Longest Path Problem. In 15th Annual
International Symposium on Algorithms and Computation (ISAAC 2004), pages 871-883.
LNCS Vol.3341, Springer-Verlag, 2004.

H.-G. Yeh and G.J. Chang. Centers and medians of distance-hereditary graphs. Discrete
Mathematics, 265:297-310, 2003.

