
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Integration of component-based development-

deployment support for J2EE middleware

Author(s) Pimruang, A; Fujieda, K; Ochimizu, K

Citation Lecture Notes in Computer Science, 3437: 230-244

Issue Date 2005

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/3308

Rights

This is the author-created version of Springer

Berlin / Heidelberg, Adirake Pimruang, Kazuhiro

Fujieda and Koichiro Ochimizu, Lecture Notes in

Computer Science(Software Engineering and

Middleware), 3437, 2005, 230-244. The original

publication is available at www.springerlink.com,

https://www.springerlink.com/content/l1gnyk1pa984

64e6/resource-secured/?target=fulltext.pdf

Description

Integration of Component-Based
Development-Deployment Support for J2EE

Middleware

Adirake Pimruang, Kazuhiro Fujieda, and Koichiro Ochimizu

Japan Advanced Institute of Science and Technology, School of Information Science,
1-1 Asahidai, Tatsunokuchi, Ishikawa, Japan
{p-adirak,fujieda,ochimizu}@jaist.ac.jp

Abstract. From the widely use of component middleware, developers
can reuse existing components not only developed by in-house develop-
ment but also provided by other organizations. Some components de-
veloped in an organization can be deployed in other organizations via
the Internet. Developers need to handle the dependency information be-
tween such components in both of development and deployment phases.
We propose a system called J2DEP to generate and manage such in-
formation in the development phase, and to automate the deployment
of components. J2DEP copes with configuration management systems
to manage components and the information. It manages the dependency
information between in-house components and third vendor components,
and provides a consistent set of components in the release and deploy-
ment phases.

1 Introduction

The middleware, architecture for the development and deployment of software
components, is now widely used in business (e.g. J2EE [1], Microsoft .NET [2]
and CORBA [3]). Each component encapsulates part of a software system imple-
menting a specific service or a set of services to support business requirements.
To build large business systems, developers need several functionalities from the
existing components. They can reuse their own in-house developed components
or purchase components from third-party vendors to construct applications in
middleware technology. Reuse of existing components can reduce time and cost
of software development [4].

Each component can be provided by in-house development or come from
other organizations distributed in different locations. These organizations gener-
ally publish their components to their release sites as binary units to avoid source
code release [5]. Developers can integrate these binary components to develop
new components or applications [6]. They, however, could not acquire the depen-
dency information of third vendor components. They need to resolve component
dependencies manually when they adopt the third vendor’s components. In de-
ployment phase, it is also troublesome and consumes time to deploy the proper

versions of components without their dependency information. Another problem
occurs when the version of a component is changed. Version conflicts appear in
the deployment phase because the effect of the change cannot be traced [7].

Current software configuration management (SCM) systems do not well pro-
vide to enable component-based development and component reuse [8]. Different
organizations can provide several versions of components in which their depen-
dency information is not explicitly described [9]. They cannot properly manage
the evolution of components developed by third-party organization. Each third
party organization develops its components and releases them in its own release
policy. For example, some organizations may release sources of their components
in their SCM repositories, and others may release binary components in their
HTTP server. SCM systems cannot help us to manage the dependency informa-
tion of components released with different policies.

The software deployment including following activities: obtaining compo-
nents, these dependents, packaging, and releasing, should be done in automatic
ways [10]. To realize automatic deployment, developers generally defines depen-
dency information of components in the release phase. Then, deployers use a
deployment tool to obtain components from the release site according to the
information. In component-based development, component identification starts
from the design phase [11]. Developers implicitly or explicitly use the information
in the development phase and redefine it again in the release phase.

What we need is the SCM system that supports component-based develop-
ment. SCM must support managing component relationships and the change of
component versions by different organizations. This means such a system must
help developers to adopt components based on different release policies, to gen-
erate the dependency information in the development phase and manage both
sources and them in SCM repositories. With this system, the deployment process
can be performed automatically. Developers can use the dependency informa-
tion of components to obtain the correct versions of components to be assembled
and deployed in developers’ middleware in the build and test phase. Also, de-
ployers can get correct versions of components to deploy in user middleware in
component the installation phase.

In this paper, we propose J2DEP (J2EE DEvelopment-dePloyment support),
which supports configuration management addressing both in development and
deployment phases. J2DEP helps developers to create or generate dependency
information from imported components and manages sources and dependency
information inside a CVS repository to support the development process. More-
over, J2DEP can also publish the binary components to release sites by using
FTP/HTTP servers. In the development process, J2DEP helps developers to
import remote components, which is developed by different organizations, to its
development environment by getting source files from the repository or binary
components from the release site. Then, it generates the dependency metadata
from imported components and control metadata files in the repository. The
dependency metadata mainly represents the component details (e.g. name, ver-
sion and type) and the method to obtain the component from a repository or

a release site. Finally, in the deployment phase, J2DEP helps developers to get
components from release sites, assemble relating components into application
components and to install them and the dependency information to the target
platform.

The paper is further structured as follows. We introduce the background
of this research in Sect. 2 and give an example scenario that motivates this
research in Sect. 3 We outline the overview and approach of J2DEP system
in Sect. 4. In Sect. 5, we give the implementation details of J2DEP system in
development-deployment phase support. We show related works in Sect. 6 and
give a conclusion in Sect. 7.

2 Background

J2DEP intends to support both of component development and deployment
phases. In this section, we would like to discuss about related works and moti-
vation of this research.

2.1 Component Development-Deployment

To realize the problem raised in the development process in middleware, we
would like to show the development roles and tasks in J2EE. J2EE development-
deployment roles consist of the following main three ones [1].

Application Component Provider An application component provider pro-
vides the building blocks of a J2EE application. A provider can develop com-
ponents and package binary files into an application component. A component
from provider may have dependencies on other components. In J2EE, there are
two methods to handle such dependencies.

Package dependent components into a new component: The dependencies can
be reduced by grouping the related components into a new component. However,
this method reduces the degree of component reusability because dependent
components become a part of the new component.

Do not package dependent components: This method can maximize the reusabil-
ity of each component. We have to leave a room for application assemblers to
pick and select components to compose J2EE applications.

The problem raised in this role is about the dependencies. In the development
phase, generally, developers do not manage the dependency information and its
changes of their components in their repositories. Moreover, dependency infor-
mation in the development phase is often reduced in the release phase because
some components may be a part of another component. In this case, the same
components may have different dependency metadata in the repository and the
release site.

Application Assembler An application assembler groups a set of components
developed by application component providers and to assemble them into a
J2EE application. An application assembler is responsible for providing assembly
instructions describing external dependencies of the application that the deployer
must resolve in deployment phase.

To support application assembler automatically, the assemblers need to use
dependency information to obtain related component and to generate deploy-
ment descriptor about external dependencies.

Deployer A deployer installs components and applications into a J2EE server.
He has to resolve all the external dependencies declared by the application com-
ponent provider and the application assembler to configure them. The applica-
tion component provider should define dependency information of components
properly in the development phase.

2.2 Software Configuration Management (SCM)

Software configuration management concept is to manage charges of software
artifacts. The most of SCM systems including RCS [12] and CVS [13] can manage
only text file. While component-based development, developer has to deal with
both component sources in text format and binary components. So we need a
method to manage changes in binary components on local SCM systems (SCM
systems of in-house development) when developers want to reuse them.

2.3 Software Deployment

The software deployment life cycle is evolving these activities: package, release,
configure, assembler, install, update, remove and adapt [14]. The most of deploy-
ment tools can support component development and can manipulate the com-
ponent dependencies. Some tools can support component development among
distributed organizations. SRM [15], Software Dock [14], RPM [16] can manage
multiple version of component. But these tools do not connect the deployment
process with SCM. TWICS [10] resolves this shortcoming by supporting to get
components from SCM repository (third vendor repository or in-house repos-
itory) to release and get the component from component publisher to a local
SCM repository (source repository of in-house development).

However, deployment tools we mentioned above do not connect the devel-
opment and deployment phases properly. The component dependencies are gen-
erally defined in the release phase. By reuse concept, related components have
been defined in the design phase. The developer needs the dependencies defined
in the deployment phase especially in the build and test phases, so the depen-
dencies should be defined in the development phase rather than in the release
phase.

3 Example Scenario

To clarify the issues of component development-deployment in middleware, we
consider the relationship of components developed by different organizations
shown in Fig. 1. The rectangle boxes represent components developed by each
organization displayed in oval shapes. The arrows show the dependencies among
the components. The text below each rectangle box shows its component name,
version and release type respectively.

Fig. 1. Example scenario of component-based development

The first issue is that each organization may develop several versions of com-
ponents and each component may depend on other components. Developers have
no support to document the dependency information properly. They need to
resolve dependencies manually whenever they get the sources from their reposi-
tory to put into the development environment. For example, the dependencies of
UserService 1.2 on AccountManager1.5, UserTransaction 2.3, DbConnector 1.7
and ProfileFormat 1.2, are not provided in development phase. The dependency
information in the release phase cannot be documented properly because it is
not defined in the development phase. As the result, we cannot guarantee the
consistency throughout the deployment phase.

The second issue is that the some dependencies may be reduced in release
phase because developer may combine some components with another compo-
nent. For example, the dependencies of UserService 1.2 are AccountManager1.5,
UserTransaction 2.3, DbConnector 1.7 and ProfileFormat 1.2 in development
phase. In release phase, the developer can combine AccountManager 1.5 and Db-
Connector 1.7 with UserService 1.2. The dependencies of the resulting UserSer-
vice 1.2 become only UserTransaction 2.3 and ProfileFormat 1.2. The component
dependencies in the development phase and the deployment phase can be differ-
ent.

The third issue is that each organization may develop and publish the com-
ponents based on different release policies. They may publish the component
sources their repository, the binary components in their release server or attach
the component sources with the binary components. Developers need not only
the dependency information but also the methods to obtain the components.
For example, to develop UserService, ATech needs to define the relations to Ac-
countManager, UserTransaction and ProfileFormat. ATech needs to define also
the methods to get binary versions of AccountManager and ProfileFormat from
corresponding release sites and to get the component sources of UserTransaction
from the repository. As the result, the component developer and deployer need
the method to handle with different release policies.

To summarize the problem raised in component development-deployment
process, current systems come into these shortcomings:

1. Dependency information defined in the development phase cannot be used
in the release and deployment phases automatically.

2. Dependencies in the development phase and the deployment phase can be
different because to combine components with another component can re-
duce the dependency information.

3. SCM systems cannot import sources or binary versions of components devel-
oped by different organizations into local development environment automat-
ically and cannot manage the dependency information of each component.

We need a system to manage interrelated components in the development
phase and to deploy consistent sets of components to middleware automatically.

4 Approach

The J2DEP research project addresses support to component development-
deployment process. This system integrates the functionalities of the configura-
tion management, component development and component deployment together.

The key insight of this research is to manage the evolution of third ven-
dor components inside local configuration management. Rather than to bring
and control all versions of third vendor components in the local configuration
management, J2DEP supports developers to import the external components to
development space mentioned below and generate the dependency information
as dependency metadata. Then, J2DEP keeps and manages the dependency
metadata in the local configuration management instead.

4.1 Development Space

Developers can use J2DEP to import third vendor components into the devel-
opment spaces shown in Fig. 2 and to generate dependency metadata.

A development space is a directory structure to store source files, dependency
metadata and dependent components imported by developer corresponding to

Component Source

A1.2

C1.1 D1.5

Metadata

Fig. 2. An example of development space

dependency metadata. In a development phase, a developer can use J2DEP to
import third-vendor components into his development space, and then he can
control both the sources and the metadata in his local SCM. The details of the
development space are shown in Fig. 6 in Sect. 5.

4.2 Dependency Metadata

Dependency Metadata mainly describes details of dependent components (com-
ponent name, version, vendor, component type, and package type) and the
method to obtain components either from source repositories or release sites.
A developer can define the relationship among any combination of sources and
binary components with dependency metadata.

<dependency_component>

<name>ProfileFormat</name>

<version>1.2</version>

<vendor>CyberC</vendor>

<type>Application Jar</type>

<packagetype>binary</packagetype>

<!-- binary package location-->

<location>www.cyberc.com/release/profileFormat.jar</location>

</dependency_component>

Fig. 3. Dependency metadata from a release site

J2DEP supports to generate two kinds of metadata depending on the release
policy of each component:

<dependency_component>

<name>UserTransaction</name>

<version>2.3</version>

<vendor>DCom</vendor>

<type>Session Bean</type>

<packagetype>source</packagetype>

<!-- source location-->

<location>cvshost.dcom.com</location>

<cvsroot>/work/cvsroot</cvsroot>

<authentication>pserver</authentication>

<tag>UserTransaction-2.3</tag>

</dependency_component>

Fig. 4. Dependency metadata from a source repository

– Metadata of a component from a release site, shown in Fig. 3. It consists of
component details and URL to download the component

– Metadata of a component from a source repository, shown in Fig.4. It consists
of component details, the repository location, the authentication type and
the tag name for checking out the component sources.

4.3 J2DEP Architecture

In Fig. 5, we show the overall J2DEP architecture. The development space is
where developers place the component sources, dependencies and perform their
development. They can use J2DEP to import dependent components by getting
sources from organizations that allow accessing the sources in their repositories
or by downloading the binary components from the organizations that publish
only binary versions. After they fill out the component information to J2DEP,
J2DEP will generate dependency metadata into their development space.

J2DEP connects development space with configuration management API
(CM API) to manage versions of component sources and their dependencies
and connects with release sites to publish components with dependency meta-
data. To support consistency of component versions in the deployment phase,
J2DEP uses the dependency metadata defined in the development phase.

There are two kinds of middleware deployed components.

– Build and test middleware is for developers to deploy the components ob-
tained from the repository and their dependencies. Developers can build
binary components and deploy them with dependencies. They are used in
the testing phase.

– User middleware is for end-users who deploy only binary components to
operate their business requirements and have no relation to the component
development process. Deployer can obtain binary components from release
sites to deploy in user middleware.

Component
Source

SCM Repository

Binary
Component

Release Site

Source Accessible
Organization

Source Inaccessible
Organization

Development
Space

CM API

Component
Release Tool

Component Development Tool

End-User Deployment
Agent

Build and test
J2EE middleware

SCM Repository

End-User
J2EE middleware

Release Site

J2DEP System

Fig. 5. J2DEP architecture

4.4 Main Functionality

The J2DEP architecture consists of two main parts Component Development
Support Tool and End-User Deployment Agent.

Component Development Support Tool This tool supports to generate de-
pendency information for each component and connect a development space
with CM API, build and test middleware and release sites.

End-User Deployment Agent This tool supports in the deployment phase
to assemble related components to an application component and deploy it
in end-users middleware. End-User Deployment Agent will also record the
deployed component data to manage dependencies of components on end-
user middleware.

5 Implementation

J2DEP supports various kinds of J2EE components based on the architecture
described in Sect. 4. J2DEP prototype integrates the development spaces with
CVS to manage sources and dependency metadata, HTTP/FTP servers to pub-
lish binary components and JBOSS middleware as a platform to deploy J2EE
components.

In this section, we show the implementation details of Component Develop-
ment Support Tool and End-User Deployment Agent. At first, we discuss about
Component Development Support. We show how J2DEP supports to create
the development spaces, import the related component, generate the depen-
dency metadata, build component, deploy components with dependencies into

the middleware in development sites and release the components to the release
site. Then, we show how End-User Deployment Agent can support deployers.

5.1 Component Development Support Tool

Development Space Structure J2DEP supports to build a development
space, to create components, to obtain components from the source repository
and to import the dependency information of them. In the prototype system, we
use the same structure of the development space and the project metadata as
Eclipse [17] JDT (Java development tools), so that the developers can continue
development with Eclipse easily. The development space structure (as illustrated
in Fig. 6) consists of several locations for the following artifacts:

Source directory Component source files, dependency metadata and the en-
crypted user name and password to connect a source repository or a release
site of dependent components.

Binary directory Compiled versions of Java sources.
Dependent component directory Binary versions of dependent components

imported by developers to the development space.
Binary version of component Components built from corresponding sources

in the source directory.
Project metadata Information about the components in the development space.

Fig. 6. Development space, source repository and release site

Development Space Initialization Developers can start developing compo-
nents by initializing a development space. J2DEP helps to create a new develop-
ment space shown in Fig. 6. They can also open an existing development space
from a project metadata file. Then, all components of the development space
defined in the project metadata will be opened by the J2DEP tool.

J2DEP connects the development space with a CVS repository shown in
Fig. 4. Developers can create new components or pull existing components from
source repository to the development space. To create a new component, J2DEP
supports to prepare source files and a deployment descriptor for a J2EE compo-
nent. To pull an existing component from a repository, developers have to inform
J2DEP about the component name and version to check out the component by
CVS tagging. J2DEP supports to check out sources, dependency metadata and
encrypt user name and password file from source repository. Then, J2DEP will
get dependent components corresponding to dependency metadata and put into
Dependent component directory to prepare for the build and test process in the
development phase.

Once, the developers create or check out components into the development
space, they can continue development by using normal configuration manage-
ment procedures (e.g. using CVS).

Dependent Component Import Tool J2DEP helps developers to import the
dependent components from either in-house or third vendor developments to the
development spaces. The dependent components can be component sources from
the SCM repositories or binary components from the release sites.

Developer has to select the methods to import the component from the repos-
itories or the release sites. To import the dependent components, J2DEP sup-
ports the developers to import by three methods (1) downloading from release
sites (2) checking out from repositories (3) copying from the local computer.
J2DEP will import the components into Dependent Component Directory. De-
velopers need to inform J2DEP about the component details and the connection
details shown in Fig. 7 and Fig. 8.

After developers fill out the form, J2DEP generates the dependency meta-
data, like in Fig. 3 and Fig. 4, for the imported components. For the user name
and the password to connect a repository or a release server, J2DEP will encrypt
them and generate a new file separated from dependency metadata.

Notice that, the developers need to add the next level dependencies manually,
when the component does not include any metadata (e.g. the component is not
built by J2DEP).

Component Packaging and Developer Site Deployment Support When
a developers finish developing by using the normal configuration management
procedures, J2DEP supports to build the Java source files and package the com-
piled sources into a binary component automatically.

J2DEP supports to generate the default J2EE deployment descriptor and
assemble the related components in Component Dependency Directory of the

Fig. 7. The import tool for binary components from release sites

Fig. 8. The import tool for component sources from repositories

development space into a single J2EE module. They can deploy or redeploy a
J2EE module to their middleware server to perform the testing phase. They can
use this tool to undeploy components and their dependencies from middleware.

Component Release Tool After developers finish testing the components in
their development space, they can release the binary components to release sites.
J2DEP supports developers to connect to FTP/HTTP servers and to upload
the binary versions of components. Developers or end-users can download the
components from the release sites by Developer Deployment Support or End-
User Deployment Agent.

In the release phase, the developers need to select components and com-
bine them into a new component for releasing. If they select a component to
be included in other component package, the dependency on the component is
removed. For example in Fig. 9, the dependency metadata between UserWeb-
Component and transactionBean is removed because transactionBean becomes
a part of UserWebComponent.

The developers also need to specify the release policy for each component
that contains sources. If they do not want to release component sources, they
have to inform J2DEP about the location to upload the binary component.

Fig. 9. Component release tool

5.2 End-User Deployment Agent

End-User Deployment Agent supports to deploy and undeploy the binary version
of components to the end-user middleware.

Deploy support This function downloads components and their dependent
components to middleware. To deploy components, the deployers have to in-
form the component name, version and location to download each component
to End-User Deployment Agent. After finishing downloading components, End-
User Deployment Agent generates the J2EE default deployment descriptor and
assemble every component into an application. Then, it records the components
that they have already deployed into a log file. When deployers want to deploy
again, the existing components in middleware are not downloaded again.

Undeploy support This function removes components and their external de-
pendencies. To maintain the consistency of the components in middleware, End-
User Deployment Agent can remove only the components that are not shared
by other components

6 Related Works

J2DEP is built to connect component development and deployment processes.
There are several tools to support these processes. We discuss some integrated
development environments (IDEs) such as Eclipse [17], NetBeansIDE [18] and
JBuider [19]. We also discuss RPM [16] and TWICS [10] for component deploy-
ment support.

We compare the functionalities of each tool in development-deployment pro-
cess in Table 1. These IDEs support the development process of Java including
J2EE applications. They can support J2EE development by several kinds of plug-
ins. Developers can use these tools to create various kinds of J2EE components,
manage the component sources in their repositories, and test them. Although
these tools provide the interface to connect the development environment with
an SCM repository, the dependencies of components are not well resolved and
managed in the repository. Developers have to manage the dependency informa-
tion in the local configuration management manually.

Table 1. Functionalities of J2DEP and related tools

IDEs RPM TWICS J2DEP

Connect the tool with the development space © × �2 �4

Generate dependency information × �1 �3 ©
Connect the tool with SCM © × © ©
Manage dependency information in SCM × × © ©
Component release support × © © ©
Deploy components to the development space © © © ©
Deploy components to end-users’ sites × © © ©
Deploy components with dependencies × × �2 ©

©= supported, ×= not supported, �= partially supported
�1 Generate the dependency but no detail about the component location.
�2 Support only components built by TWICS.
�3 Generate the dependency information only in the release phase.
�4 The target space must be the same as Eclipse development space in the

development phase.

7 Conclusion

In this research, we proposed J2DEP, the integration of component-based
development-deployment and software configuration management in middleware.
This system is designed to support managing the interrelation of in-house com-
ponents and third vendor components. J2DEP links between component devel-
opment and component deployment. The dependency metadata defined in the
development phase and component sources can be managed in local configura-
tion management. J2DEP uses dependency metadata to support the build and
release processes for developers. J2DEP also helps a developer or a deployer to
deploy consistent sets of components in either developer site or user site.

Currently, J2DEP lacks some features for the component development-
deployment support. For example, developers have to merge different versions
of dependency metadata manually. We need to implement these features. In the
current prototype, J2DEP is a tool separated from the other development tools.
In the future, it would be advantage to implement J2DEP as the other devel-
opment tool plug-ins, for example, Eclipse or NetBeanIDE. This would allow
developers to gain the benefit from all infra-structure provided by the other
tools.

References

1. Inderjeet, S., Stearns, B., Johnson, M.: Designing Enterprise Applications With
the J2Ee Platform. Addison-Wesley (2002)

2. Corporation, M.: Microsoft .NET technical resources. http://www.microsoft.

com/net/technical/ (2004)
3. Object Management Group, Inc.: Common Object Request Broker Architecture:

Core Specification. formal/04-03-12 edn. (2004)
4. Whitehead, K.: Component Based Development: Principles and Planning for Busi-

ness Systems. Addison-Wesley (2002)
5. Cervantes, H., Hall, R.S.: Autonomous adaptation to dynamic availability using a

service-oriented component model. In: Proceedings of 26th International Confer-
ence on Software Engineering (ICSE’04). (2004) 614–623

6. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming. 2nd edn. Addison-Wesley (2002)

7. Schmidt, D.C., Vinoski, S.: The corba component model: Part 1, evolving towards
component middleware. C/C++ Users Journal (2004)

8. Weber, D.W.: Requirements for an scm architecture to enable component-based
development. In: Proceedings of the 10th International Workshop on SCM. (2001)

9. Edwards, S.H., Gibson, D.S., Weide, B.W., , Zhupanov, S.: Software component
relationships. In: the 8th Annual Workshop on Institutionalizing Software Reuse.
(1997)

10. Sowrirajan, S., van der Hoek, A.: Managing the evolution of distributed and
interrelated components. In: Proceedings of the 11th International Workshop on
SCM. LNCS 2649, Springer-Verlag (2003) 217–230

11. Larsson, M., Crnkovic, I.: Configuration management for component-based sys-
tems. In: Proceedings of the 10th International Workshop on SCM. (2001)

12. Free Software Foundation, Inc.: RCS. http://www.gnu.org/software/rcs/rcs.

html (2003)
13. Cederqvist, P., et al.: Version management with CVS for cvs 1.11.17.

http://www.cvshome.org/docs/manual/ (2004)
14. Hall, R.S., Heimbigner, D., Wolf, A.L.: A cooperative approach to support software

deployment using the software dock. In: Proceedings of the 21st International
Conference on Software Engineering (ICSE’99). (1999) 174–183

15. van der Hoek, A., Hall, R.S., Heimbigner, D., Wolf, A.L.: Software release manage-
ment. In: Proceedings of the 6th European Software Engineering Conference (held
jointly with the 5th ACM SIGSOFT international symposium on Foundations of
Software Engineering). (1997) 159–175

16. The RPM community: www.rpm.org homepage. http://www.rpm.org/ (2002)
17. Eclipse Foundation: eclipse.org. http://www.eclipse.org/ (2004)
18. netBeans.org: NetBeans IDE. http://www.netbeans.org/products/ide/ (2004)
19. Borland Software Corporation: Borland JBuilder. http://www.borland.com/

jbuilder/ (2004)

