
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Test instance generation for MAX 2SAT

Author(s) Motoki, M

Citation

Lecture Notes in Computer Science : including

subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics,

3709: 787-791

Issue Date 2005

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/3310

Rights

This is the author-created version of Springer

Berlin / Heidelberg, Mistuo Motoki, Lecture Notes

in Computer Science(Principles and Practice of

Constraint Programming - CP 2005), 3709, 2005,

787-791. The original publication is available at

www.springerlink.com,

https://www.springerlink.com/content/f254182115v5

5431/resource-secured/?target=fulltext.pdf

Description



Test Instance Generation for MAX 2SAT
(Extended Abstract)

Mistuo Motoki?

School of Information Science,
Japan Advanced Institute of Science and Technology,

1-1, Asahidai, Nomi, Ishikawa, 923-1292, Japan.
mmotoki@jaist.ac.jp

1 Introduction

Since MAX 2SAT is one of the famous NP-hard optimization problems, many heuris-
tics and (polynomial-time) approximation algorithms have been proposed in the litera-
ture [1, 4–6]. To evaluate the performance of such algorithms, there are two possibili-
ties; theoretical analysis and empirical study.

In theoretical analysis, an approximation ratio of the algorithm is often used as a
measure. The approximation ratio is an upper bound on the ratio of an approximated
cost to the optimal cost, and hence, this is a worst case measure. It is often difficult to
analyze theoretically the performance of heuristics or hybrid algorithms.

On the other hand, empirical study can estimate the performance of approximation
algorithms from various points of view.There is no difficulty in estimating the perfor-
mance except generating a number of (random) input instances. Though it is obviously
easy to generate test instances without the optimal solutions, we should also know the
optimal solution for each test instance. While there exists a number of benchmark in-
stances with the optimal solutions, we still do not have enough number of test instances.
Hence, we would like to have a sure way of generating nontrivial test instances system-
atically, i.e., instance generator.

Our ideal goal is to design an algorithm that can randomly generate all possible
test instances (i.e., whole 2CNF formulas) with the optimal solution where its running
time is polynomial in the length of the output formula.1 However, if there exists such
an algorithm, the recognition of the pair of a test instance and its optimal solution is
in NP. On the other hand, the complement problem, i.e., recognizing the pair of a test
instance and its suboptimal solution, is also in NP, since random bits used to generate
each formula in the algorithm become a witness for both problems. This concludes
NP = co-NP and it is unlikely. Therefore we have to relax the problem.

We can consider two relaxations: (i) allow error in the output of the algorithm and
(ii) restrict the class of instances generated. The former one gives Monte Carlo algo-
rithms that output a feasible solution instead of the optimal solution with low error

? This research was partially supported by the Ministry of Education, Science, Sports and Cul-
ture, Grant-in-Aid for Young Scientists (B), 1570008.

1 If we accept exponential time, there exists a trivial algorithm; generate a formula at random,
then find the optimal solution by exhaustive search.



probability (for example, [9, 10]). In this paper, we focus on the latter approach, i.e., an
instance generator randomly outputs a test instance and the optimal solution with prob-
ability 1 where the set of instances generated is a strict subset of all possible instances
(hereafter, we say such an instance generator is exact).

However, this approach creates new difficulties. If the instances generated this way
are easy to solve, it is not appropriate to use them for empirical study. Hence, we have
to theoretically analyze the hardness of solving the generated instances, for example,
solving MAX 2SAT over the formulas generated is NP-hard.

In the literature, Dimitriou proposed an exact instance generator for MAX kSAT [3].
They experimentally showed that by appropriately choosing parameters one can con-
trol the hardness of the generated instances leading to an easy-hard-easy pattern. But
there is no theoretical guarantee of hardness. Yamamoto also proposed an exact instance
generator for MAX 2SAT [10]. To characterize the optimal solutions, this algorithm re-
quires an expander graph, which is hard to randomly generate. Since they use an explicit
expander graph construction algorithm, this is not truly a random instance generator.

Unfortunately, for any NP optimization problem U, the decision problem of U
over the instances generated by any polynomial-time exact instance generator is in
NP ∩ co-NP. Hence, it seems difficult to show the computational hardness of instances
generated. Moreover, if a solver can efficiently recognize that input instances are gener-
ated by a specific instance generator, such instances might be easily solvable. Therefore,
we investigate how hard it is to recognize our instances.

We propose an exact instance generator based on the concept of a linear-time algo-
rithm for 2SAT. For the proposed generator, we show that the set of instances generated
is NP-complete. From computational point of view, this means that finding an optimal
solution for our instances is as hard as searching for a satisfying assignment for satisfi-
able 3CNF formulas. We also show that it is even NP-hard to approximately recognize
our instances.

2 Our Instance Generator

We start with some notations. A literal over X = {x1, . . . , xn}, the set of n Boolean
variables, is x ∈ X or its negation x. A k-clause over X is a disjunction of exactly k
literals over X whose underlying variables are distinct. Let kCNF formula over X be a
collection of k-clauses over X. We allow any clause to appear more than once.A truth
assignment over X is a map of X to {0, 1}n. We use 1 and 0 to denote true and false
respectively. A truth assignment t satisfies a clause c iff at least one literal in c has a
value 1. Otherwise we say t falsifies c. MAX 2SAT is a problem to find an assignment
that satisfies the maximum number of clauses for given 2CNF formula.

For any 2CNF formula F over X, the implication graph of F is a directed (multi)
graph GF = (V, E), where V is the set of all possible literals, i.e., X ∪ {xi | xi ∈ X}, and
E =
{
(vi → v j) | vi, v j ∈ V and (vi ∨ v j) ∈ F

}
. Note that if E contains an edge (vi → v j),

then the edge (v j → vi) also exists. We say that such an edge is a complement edge
of the other. For any edge (vi → v j), if one assigns true to vi, one has to set v j true
to satisfy the original clause (vi ∨ v j); hence the name implication graph. Any 2CNF
formula F is unsatisfiable iff GF has a cycle that contains v and v simultaneously [2].



Strictly speaking, if there is one such cycle C, there must be another cycle that consists
of all complement edges of the cycle C. Therefore we call such a pair of two cycles as
a contradictory bicycle. For any truth assignment t over X, let Bt be the set of 2CNF
formulas over X such that any F ∈ Bt satisfies the following conditions: (i) F has
exactly one clause falsified by t, (ii) GF has one contradictory bicycle, and (iii) if we
remove any clause from F, the remaining formula is satisfiable, i.e., F is a minimal
unsatisfiable formula. We also denote by Ct the set of 2-clauses over X satisfied by t.

It is easy to see that we can randomly generate any formula in Bt for an arbitrary
truth assignment t. To illustrate this, w.l.o.g. we assume that t = 1n. Let B be an arbi-
trary formula of Bt. It is clear that every clause falsified by t consists of two negative
literalsand B contains exactly one such clause. Such a clause is transformed into edges
from a positive literal to a negative literal in the implication graph GB. Furthermore,
each cycle also has exactly one edge from a negative literal to a positive literal. We can
divide each cycle into two paths, a path consisting of positive literals only and a path
of negative literals only.We remark that there exists at least one common variable as a
contradictory variable, in both paths. Also, since any 2-clause is complement-free, the
last variable of each path is distinct from the first variable of the other path.Thus, we
only need to generate two sequences of variables that have at least one common variable
and the first variable of each sequence is distinct from the last variable of the other.

Here, for an arbitrary truth assignment t and a positive number k, we consider a
2CNF formula F that consists of (not necessary distinct) k formulas in Bt and some
clauses in Ct. Obviously, any truth assignment falsifies at least k clauses of F since GF

has k contradictory bicycles. This means that an upper bound of the minimum number
of unsatisfiable clauses is k. On the other hand, since there exist exact k formulas of Bt,
F has just k clauses falsified by t, i.e., the lower bound is also k. Thus it is clear that t is
the optimal solution of F and the minimum number of unsatisfiable clauses in F is k. Let
I be a set of such formulas, i.e., I = {F | ∃t s.t. F consists of elements of Bt and Ct} .
It is easy to see that we can randomly generate an arbitrary formula in I and its optimal
solution t by appropriate randomized algorithms (see Algorithm 1), e.g., first choose t
at random, then construct a formula as a conjunction of some elements of Bt and Ct.
Clearly, the running time of our instance generator is linear in the length of the instance
generated. We remark that if the number of additional clauses from Ct is 0, the instance
generated has at least two optimal solutions, t and t, and hence, we add such clauses.

Algorithm 1: An example of generation algorithm
Input: the number of variables n
begin

Let F be an empty formula;
Choose t ∈ {0, 1}n uniformly at random;
Choose the minimum number of unsatisfiable clauses k (≥ 0);
for i = 1 to k do Generate a 2CNF formula over X from Bt at random and add it to F;
Add r clauses of Ct to F at random (where r is a random nonnegative integer);
Output: F and t

end



3 The Hardness Results

In this section, we consider the hardness of the instances generated. As described in the
introduction, it is not easy to show computational hardness of the instances generated.
This means that if we can efficiently recognize instances generated, such instances can-
not be hard. Therefore, we consider how hard it is to recognize our instances. First, we
show the hardness of exact recognition.

Theorem 1. The set I of generated instances is NP-complete.

Proof. It is clear that I is in NP because of the witness, that is, a truth assignment t and
a partition into k formulas of Bt and a subset of Ct for each instance.

Hereafter we show a reduction from 3SAT. Let F3CNF be an arbitrary 3CNF formula
over X with m 3-clauses c1, c2, . . . , cm. For any i, 1 ≤ i ≤ m, we translate the ith 3-
clause ci = (li,1∨ li,2∨ li,3) of F3CNF (li,∗ means an arbitrary literal over X) into the 2CNF
formula over X and Yi =

{
yi,1, yi,2

}
, Bi = (li,1 ∨ yi,1)(yi,1 ∨ li,2)(li,2 ∨ yi,2)(yi,2 ∨ li,3)(li,3 ∨

yi,1)(yi,1 ∨ yi,2)(yi,2 ∨ li,1)(yi,2 ∨ li,1).We remark that the variables in Yi appear only in Bi.
Bi contains exactly one contradictory bicycle, and thus any truth assignment over X∪Yi

falsifies at least one clause. Let a 2CNF formula F2CNF be the conjunction of Bi for all i.
Hence F2CNF has 8m clauses over n+2m variables, X∪

(⋃
i Yi
)
. It is not difficult to show

that, in F2CNF, the number of contradictory bicycles is equal to the minimum number of
unsatisfiable clauses iff F3CNF is satisfiable. ut

This result directly means that finding an optimal solution of our instances is at least
as hard as searching for a satisfying assignment of satisfiable 3CNF formulas. Thus, a
polynomial-time algorithm that can obtain an optimal solution for any instance in I
is unlikely. Moreover, in the above discussion we assume that we know the maximum
contradictory bicycle packing. It, however, seems hard to obtain the maximum contra-
dictory bicycle packing in general.

Next, we consider the hardness of approximate recognition.

Theorem 2. For any constant ε > 0, it is NP-hard to distinguish any 2CNF formula in
I from the 2CNF formulas in which the ratio of the minimum number of unsatisfiable
clauses to the maximum number of contradictory bicycles is 9/8 − ε.

Proof. We consider the same reduction as in the proof of Theorem 1. We have already
shown that any satisfiable F3CNF with m clauses over X is transformed to F2CNF with
8m clauses where the minimum number of unsatisfiable clauses is m.

Now we consider the case F3CNF is unsatisfiable. For any truth assignment over
X that falsifies the ith clause ci of F3CNF, we can find a truth assignment over Yi that
falsifies exactly two clauses in Bi. We again remark that we can set a truth assignment
over Yi independently of a truth assignment over Y j since any variable of Yi does not
appear in B j for any j , i. Thus, if k clauses of F3CNF are unsatisfiable, m + k clauses
of F2CNF are unsatisfiable.

Now we focus on 3CNF formulas for which only a fraction 7/8 + ε of the clauses
can be satisfied. Such 3CNF formulas are transformed into 2CNF formulas with m
contradictory bicycles and m+ (1/8−ε)m = (9/8−ε)m unsatisfiable clauses. Since it is
NP-hard to distinguish between such 3CNF formulas and satisfiable 3CNF formulas [7],
we conclude the proof. ut



Unfortunately, this result does not directly imply hardness of the instances generated
for approximation algorithms. However, if there exists an approximation algorithm that
approximates any instance of I within a fraction 8m−9m/8

8m−m = 55/56, such an algorithm
can distinguish satisfiable 3CNF formulas from unsatisfiable 3CNF formulas and it is
unlikely. We remark that this ratio, 55/56 ≈ 0.982, is still much larger than 21/22 ≈
0.955 which is the best known inapproximability upper bound for MAX 2SAT [7] (Khot
et al. [8] recently improved this ratio to 0.944 under some unproven conjectures).

4 Concluding Remarks

We analyzed that it is hard to recognize instances by the proposed instance generator
for MAX 2SAT. On the other hand, the generator is still naı̈ve, that is, our generator is
only generating positive instances of NP-complete problem. Hence it may generate a
number of easy instances and it is important to eliminate such easy instances.

While we focused on theoretical hardness in this paper, we would like to experi-
mentally check hardness against a number of MAX SAT solvers. Since the proposed
instance generator uses many (exposed and hidden) parameters, such as the number
of contradictory bicycle, the length of each bicycle, the total number of clauses and
so on, we also have to determine an appropriate range of such parameters. We expect
that there exists a phase transition phenomenon, and hence, an easy-hard-easy pattern
on some parameters. Finally, it is better if we can generate some instances outside of
I. Since I is NP-complete, we may apply techniques to generate hard (or negative)
instances for other NP-hard problems (e.g., SAT).

References

1. T. Asano and D. P. Williamson. Improved approximation algorithms for MAX SAT. J. Algo-
rithms, Vol.42, pp.173–202, 2002.

2. B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truth of
certain quantified boolean formulas. Inform. Process. Lett., Vol.8, pp.121–123, 1979.

3. T. Dimitriou. A wealth of SAT distributions with planted assignments. In Proc. of CP 2003,
LNCS 2833, pp.274–287, 2003.

4. U. Feige and M. X. Goemans. Approximating the value of two prover proof systems, with
applications to MAX 2SAT and MAX DICUT. In Proc. of ISTCS 1995, pp.182–189, 1995

5. M. X. Goemans and D. P. Williamson. .879-approximation algorithms for MAX CUT and
MAX 2SAT. In Proc. of STOC 1994, pp.422–431, 1994.

6. P. Hansen and B. Jaumard. Algorithms for the maximum satisfiability problem. Computing,
Vol.44, pp.279–303, 1990.

7. J. Håstad. Some optimal inapproximability results. in Proc. of STOC 1997, pp.1–10, 1997.
8. S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for

Max-Cut and other 2-variable CSPs? in Proc. of FOCS 2004, pp.146–154, 2004.
9. M. Motoki. Random instance generation for MAX 3SAT. In Proc. of COCOON 2001,

LNCS2108, pp.502–508, 2001.
10. M. Yamamoto. On generating instances for MAX2SAT with optimal solutions. Dept.

of Math. and Comp. Sciences Research Reports (Series C: Computer Science), C-191,
http://www.is.titech.ac.jp/research/research-report/C/C-191.ps.gz, 2004.


