<table>
<thead>
<tr>
<th>Title</th>
<th>Structural and electronic properties of Ce@C<sub>82</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Shibata, K; Rikiishi, Y; Hosokawa, T; Haruyama, Y; Kubozono, Y; Kashino, S; Uruga, T; Fujiwara, A; Kitagawa, H; Takano, T; Iwasa, Y</td>
</tr>
<tr>
<td>Citation</td>
<td>Physical Review B, 68(9): 094104-1-094104-7</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-09</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Text version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10119/3365</td>
</tr>
</tbody>
</table>
Structural and electronic properties of Ce@C\textsubscript{82}

K. Shibata,1 Y. Rikiishi,1 T. Hosokawa,1 Y. Haruyama,1 Y. Kubozono,1,2,3,* S. Kashino,1 T. Uruga,4 A. Fujiwara,3,5 H. Kitagawa,6,7,1 T. Takano,3 and Y. Iwasa1,8

1Department of Chemistry, Okayama University, Okayama 700-8530, Japan
2Center for Molecular-Scale Nanoscience, Institute for Molecular Science, Okazaki 444-8585, Japan
3CREST, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
4Japan Synchrotron Radiation Research Institute, Sayo 679-5198, Japan
5Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
6Department of Chemistry, University of Tsukuba, Ibaraki 305-8571, Japan
7PRESTO, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
8Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

(Rceived 5 February 2003; revised manuscript received 19 May 2003; published 4 September 2003)

X-ray diffraction patterns for a solid sample of Ce@C\textsubscript{82} that contains a mixture of two isomers, I and II, can be indexed in a face-centered cubic lattice with a lattice constant of 15.88(5) Å, while x-ray diffraction patterns for Ce@C\textsubscript{82} isomer I alone indicate a simple cubic lattice with a lattice constant of 15.78(1) Å. Rietveld refinement for the x-ray diffraction pattern of the latter, Ce@C\textsubscript{82} isomer I, has been carried out with a space group of Pa\textsubscript{3}. Thin films of Ce@C\textsubscript{82} were first prepared by thermal deposition under \(\sim 10^{-7} \) Torr. The Raman spectra for these thin films show a peak ascribable to a Ce-C\textsubscript{82} cage-stretching mode at \(\sim 160 \) cm\(^{-1} \), implying that the valence of Ce in this structure is +3. This valence of +3 is supported by Ce \(L_{III} \)-edge XANES for a thin film of Ce@C\textsubscript{82}. Furthermore, the local structure around the Ce ion could be determined by Ce \(L_{III} \)-edge EXAFS for a thin film. Transport properties of a thin film of Ce@C\textsubscript{82} have been studied by a four-probe method, and these demonstrate a semiconducting behavior with a small gap of 0.4 eV.

DOI: 10.1103/PhysRevB.68.094104 PACS number(s): 61.48.+c, 81.05.Tp

I. INTRODUCTION

Much effort has been directed towards a clarification of the valence of metal ions encapsulated in metallofullerenes and any electron transfer from these metal ions to the fullerene cages. This is necessary because the valence of metal ions and the charge on the fullerene cages play important roles in the physical properties of fullerenes.1 The valence of such metal ions has been studied by ESR, UPS, x-ray diffraction, XPS, and XANES.2-6 The studies were first performed for La@C\textsubscript{82} because La@C\textsubscript{82} is the most fundamental of the lanthanide ion endohedral fullerenes. The electronic structure near the Fermi level in the solid state physics and chemistry of metallofullerenes is very important. The onset of the UPS spectrum was observed at 0.35 eV for La@C\textsubscript{82}, indicating that the gap of at least 0.35 eV has been opened.6 Very recently, Nuttall \textit{et al.} found an optical gap of 0.3 eV for La@C\textsubscript{82} based on its UV-VIS-NIR spectrum;7 this spectrum is consistent with the results of EELS.8 Transport measurements were performed on a single crystal of La@C\textsubscript{82} by the two-probe method. They showed a semiconducting behavior with an \(E_g \) of 0.3 eV.9 Subsequently all experimental results showed \(E_g \sim 0.3 \) eV for La@C\textsubscript{82}. Very recently we studied the transport properties of thin films of Dy@C\textsubscript{82}. These studies demonstrated a semiconducting behavior for Dy@C\textsubscript{82} with an \(E_g \) of 0.2 eV.10

Information on the electronic properties of many metallofullerenes is urgently needed because present information is insufficient for use in promoting the solid state physics and the materials science based on metallofullerenes as well as their application to electronic devices. In the present study, we have selected Ce@C\textsubscript{82} as a target for clarification of the structure and electronic properties because Ce is an element adjacent to La in the Periodic Table. The electronic configuration of the Ce atom is \([\text{Xe}][4f^4][6s^2]\). Thus Ce possesses 4\textit{f} electrons. The coexistence of 4\textit{f} electron(s) on Ce and \pi electrons on the C\textsubscript{82} cage in Ce@C\textsubscript{82} may provide new information on the physics and chemistry of bifunctional molecular systems based on a coupling of the localized spin with conduction electrons.

The existence of two types of crystal structures in isomer-mixture samples of Ce@C\textsubscript{82} has been demonstrated by x-ray diffraction patterns.11 One, for the sample sublimed at 873 K, is a face-centered-cubic (fcc) structure (space group \textit{Fm\textsubscript{3}m}) and the other, for the sample dried at 532 K, is a hexagonal close packed (hcp) structure (space group \textit{P6\textsubscript{3}mcc}). In the present study, the crystal structure of the Ce@C\textsubscript{82} sample...
dried at 623 K has been studied by x-ray powder diffraction because the sample dried at this temperature was used to form a thin film of Ce@C_{82}. Furthermore, the x-ray diffraction patterns for the isomer-separated samples of Ce@C_{82} have been studied with synchrotron radiation, and a Rietveld refinement has been carried out for the major isomer. The Raman, XANES, and transport properties of thin films of Ce@C_{82} have been studied in order to clarify the electronic structures.

II. EXPERIMENT

A Ce@C_{82} sample was obtained by the same procedure used to obtain Dy@C_{82}.10,12 Samples were characterized by time-of-flight mass and UV-VIS-NIR absorption spectra. The quantity and purity of Ce@C_{82} obtained were \(\sim 3 \) mg and \(\sim 99.5\% \), respectively. A solid sample of Ce@C_{82} was obtained by evaporating toluene from a toluene solution of purified Ce@C_{82} under reduced pressure at 293 K. This resulting sample contained two isomers with a molar ratio of 4:1; the major and minor isomers were designated I and II, respectively, as for Dy@C_{82}.10,12 and the names I and II correspond to the order of retention times during high performance liquid chromatography (HPLC). The isomer-separated samples, isomers I and II, were obtained by repeating the HPLC three times; the quantity and purity of the isomer I were \(\sim 1 \) mg and 99\%, respectively, while those of isomer II were \(\sim 0.3 \) mg and \(\sim 99\% \), respectively. Solid samples of isomers I and II were also obtained by evaporating toluene from their toluene solutions. A trace of toluene was removed from the Ce@C_{82} solid sample containing two isomers (isomers-mixture) and from the solid samples of Ce@C_{82} isomers I and II by a dynamical pumping under a pressure of \(10^{-5} \) Torr at 373 K for 5 h, at 473 K for 12 h, and then at 623 K for 49 h. These dried samples, ready for x-ray diffraction and Raman measurements, were introduced into glass capillaries (\(\phi = 0.5 \) mm) without any exposure to air in an Ar glove box. The x-ray powder diffraction pattern for the sample of Ce@C_{82} isomers-mixture was measured at 295 K with Cu K\(\alpha \) radiation (\(\lambda = 1.5418 \) Å, 40 kV, and 200 mA) by a Rigaku Rint 1500 x-ray diffractometer. The x-ray diffraction patterns for Ce@C_{82} isomers I and II were measured at 295 K, with a synchrotron radiation of \(\lambda = 0.7997(4) \) Å at BL-1B of KEK-PF, Japan. The Rietveld refinement for the x-ray diffraction pattern for isomer I was achieved with the Rietan-2000 program developed by Izumi.13

A Ce@C_{82} thin film was fabricated according to the following procedure. A highly doped \(n \)-type Si(100) wafer was immersed in a diluted HF solution in order to remove any native oxide.14 A SiO_{2} layer was grown on the Si wafer by dry oxidation at 1273 K for 6 h. The thickness, \(t \), of the SiO_{2} layer was determined by an ellipsometer to be 3100 Å. The SiO_{2}/Si substrate was washed with acetone, methanol, and purified water by ultrasonic irradiation prior to fabrication of electrodes and fullerene thin film. The four electrodes for the resistivity measurement, \(\rho \), were formed on the SiO_{2}/Si substrate by a thermal deposition of gold through a shadow mask under a vacuum of \(10^{-7} \) Torr; the channel length, \(L \), was 20 \(\mu \)m. The \(t \) of electrodes was estimated to be 500 Å by a quartz-crystal oscillator. The Ce@C_{82} isomers-mixture was deposited on the substrates under the same pressure of \(10^{-7} \) Torr. This thin film then contained isomers I and II with a molar ratio of 4:1. The deposition rate was regulated below 1 Å s\(^{-1}\). The \(t \) of Ce@C_{82} thin-film was determined by a surface profiler to be 4700 Å, and the width of the thin film was 5000 \(\mu \)m.

The Raman spectra for crystalline Ce@C_{82} isomers I and II, and a Ce@C_{82} thin film were measured at an excitation of 632.8 nm by a He-Ne laser with an NR-1000 system (JEOL) for frequency (\(\omega \)) region of 100–850 cm\(^{-1}\). The Ce L\(_{\text{III}}\)-edge XANES and EXAFS for the Ce@C_{82} thin film were measured by fluorescence and electron yield detection, respectively, with synchrotron radiation at BL01B1 of SPring-8, Japan. The EXAFS of Ce@C_{82} thin film was analyzed with xafs93 and rbf93 programs developed by Maeda.15

III. RESULTS AND DISCUSSION

A. Structure of Ce@C_{82}

The UV-VIS-NIR spectra of Ce@C_{82} isomers I and II are shown in Figs. 1(a) and 1(b). Two peaks are observed at 632 and 1008 nm for isomer I, while they lie at 710 and 1070 nm for isomer II. The peaks for the isomer I show a blueshift by 60–80 nm in comparison with those for the isomer II. Peaks for isomers I of La@C_{82}, Pr@C_{82}, and Dy@C_{82}, which have a \(C_{2v} \) symmetry shifted to blue by 60–100 nm when compared with those of isomers II which have \(C_{s} \) symmetry.16–19 The wavelength of 632 nm for the first peak of Ce@C_{82} isomer I is close to those for isomers I (\(C_{2v} \)) of
La@C$_{82}$ (620 nm), Pr@C$_{82}$ (640 nm) and Dy@C$_{82}$ (632 nm) reported previously, while the wavelength of 710 nm for Ce@C$_{82}$ isomer I was assumed, because the symmetry is required for the space group $P6_3$. For the space group $P6_3$ minimum was also found in the Δ_{wp} value was slightly large as for that of Dy in the Dy@C$_{82}$ isomer I. From this analysis, it appears that the Ce@C$_{82}$ molecule takes part in a ratchet-type disorder to satisfy the $\bar{3}$ symmetry, and the Ce ion exhibits considerable disorder within the C$_{82}$ cage. When Rietveld analyses were performed by varying the distance between the Ce atom and the C$_{82}$ cage center in Ce@C$_{82}$, the R_{wp} showed an almost flat minimum within \pm2.2 Å from the cage center. The R_{wp} value was slightly high near the cage center. This result implies that the Ce in Ce@C$_{82}$ has considerable freedom of motion within the C$_{82}$ cage. Recently, a flat R_{wp} minimum was also found in the Rietveld analyses of Dy@C$_{82}$. Further, considerable motion of La was observed in La@C$_{82}$ isomer I by the MEM analysis. These results also support the floating motion of Ce in Ce@C$_{82}$.

The x-ray powder diffraction pattern for Ce@C$_{82}$ isomer II was indexed with an sc lattice of $a = 15.6(1)$ Å, which is very large as for that of Dy in the Dy@C$_{82}$ isomer I. However, the x-ray diffraction data obtained were very poor because only small amounts of the sample, ~0.3 mg, were available. Consequently, a Rietveld analysis could not be done satisfactorily for Ce@C$_{82}$ isomer II.

B. Vibrational modes of Ce@C$_{82}$

The Raman spectra for powder samples of Ce@C$_{82}$ isomers I and II are shown in Figs. 3(a) and 3(b), respectively. A peak for the Ce cage stretching mode in Ce@C$_{82}$ isomer I was observed at $\omega = 160$ cm$^{-1}$, while that for isomer II is observed at $\omega = 163$ cm$^{-1}$. The Raman spectrum for the Ce@C$_{82}$ thin film is almost the same as that for the crystaline sample of Ce@C$_{82}$ isomer I. The peak for the Ce-C$_{82}$ stretching mode in the Ce@C$_{82}$ thin film is observed at $\omega = 160$ cm$^{-1}$. The observation of a stretching mode at the same value as that for the Ce@C$_{82}$ isomer I shows that the thin film is not damaged by the thermal deposition and mainly consists of Ce@C$_{82}$ isomer I. The result is consistent.
The ω values for the stretching mode of Ce@C$_{82}$ are similar to those for the isomers-mixture of La@C$_{82}$ (162/163 cm$^{-1}$), Gd@C$_{82}$ (152/155 cm$^{-1}$), and Ce@C$_{82}$ (156/162 cm$^{-1}$) reported previously, in which the valence of metal ions is reported to be +3. On the other hand, the peaks for the stretching mode of the metal cage in isomer III (C$_2$ symmetry) of Tm@C$_{82}$ and Sm@C$_{82}$, and the isomers-mixture of Eu@C$_{74}$ are observed around 120 cm$^{-1}$. In these the valence of the metal atom is +3. The peaks for the stretching mode for both isomers of Ce@C$_{82}$ clearly show that the valence of Ce is +3.

The ω values of three La-C$_{82}$ modes calculated theoretically for C$_{x-y}$La@C$_{82}$ were 159, 27, and 30 cm$^{-1}$ for the A$_1$, B$_1$, and B$_2$ modes, respectively. The A$_1$ mode refers to the stretching vibration mode, while the B$_1$ and B$_2$ modes refer to lateral vibrational modes. The value of ω observed for the Ce@C$_{82}$ isomer I is consistent with a theoretical value for the A$_1$ mode for C$_{x-y}$La@C$_{82}$. This indicates that the difference between the encapsulated metal ions in La@C$_{82}$ and Ce@C$_{82}$ does not affect the stretching modes if the cage structures and the valences of the metal ions are the same in each.

Further, the difference in cage symmetry between Ce@C$_{82}$ isomers I and II causes a slight shift from 160 to 163 cm$^{-1}$ in the ω for the A$_1$ stretching mode, as shown in Figs. 3(a) and 3(b). This shift is much smaller than that caused by the difference in the valence of the metal ion; the theoretical value of ω for C$_{x-y}$La@C$_{82}$ was almost the same as that for C$_{x-y}$La@C$_{82}$. Peaks for the radial breathing mode are observed at the same value of ω, 430 cm$^{-1}$ for Ce@C$_{82}$ isomers I and II. Other peaks are observed at values of ω similar in Ce@C$_{82}$ isomers I and II.

C. Valence of Ce in Ce@C$_{82}$ determined by XANES

The Ce L$_{III}$-edge XANES spectra of Ce@C$_{82}$ thin-film and CeO$_2$ powder are shown in Fig. 4. The threshold energies, E_0, of the Ce L$_{III}$-edge XANES spectra are 5721 and 5724 eV for Ce@C$_{82}$ and CeO$_2$, respectively. A single peak is observed for Ce@C$_{82}$, while the XANES spectrum of CeO$_2$ is more complex. The XANES spectrum for CeO$_2$ is consistent with that reported previously.

We previously reported that the E_0 value for Ce@C$_{82}$ shifts by 3 eV to lower energy than that for CeO$_2$ with the valence of +4.

According to Ref. 26, the two peaks denoted as C and D in the XANES spectrum of CeO$_2$ are assigned to two transitions screened by localized 4f states, respectively. The shoulders denoted as A and B are assigned to shakedown satellites of peaks C and D. A XANES spectrum similar to that for CeO$_2$ is observed for TbO$_2$ and PrO$_2$ with the valence of +4, while shoulder B is found to be coincident with the single line observed for the corresponding trivalent oxides and trivalent compounds.

The single line in the XANES for Ce@C$_{82}$ is consistent with a shoulder B for CeO$_2$, as seen from Fig. 4. This result shows that the valence of Ce in Ce@C$_{82}$ is +3.

D. Local structure of Ce@C$_{82}$

The radial distribution function, $\Phi(r)$, obtained by the Fourier transform of the Ce L$_{III}$-edge EXAFS oscillation, $\chi(k)$, in the k-region of 2.0–10.0 Å$^{-1}$ for a thin film of Ce@C$_{82}$ is shown in Fig. 5(a). Two pronounced peaks in the absolute portion of $\Phi(r)$ are observed at 1.82 and 2.48 Å. The peaks can be assigned to scattering between Ce and the first nearest C atoms, C(1), and that between Ce and the second nearest C atoms, C(2). The peaks in $\Phi(r)$ are ob-
FIG. 5. (a) Φ(r) obtained from the Ce L_{III}-edge EXAFS for a Ce@C_{82} thin film. (b) The experimental χ(k) (• symbols) for Ce-C(1) and Ce-C(2), and χ(k) (solid line) calculated with the structural parameters determined by an EXAFS data analysis. In (a) the thin and thick lines refer to the imaginary and absolute components of Φ(r), respectively.

The backscattering amplitudes of the scattering atoms. The phase shifts of absorbing and scattering atoms, displacement, s~ than those for Dy@C_{82} @.

HPLC profile to be larger than 80%. The distance of Ce-C~ is shown in Fig. 5 region of 1.32–3.05 Å. The FEFF code was used for the phase shifts of absorbing and scattering atoms, and the backscattering amplitudes of the scattering atoms. The coordination numbers, N, for C(1) and C(2) were fixed to 6 by assuming that the Ce ion lies along the C_2 axis on the six-membered ring of the C_{82} cage with C_2v symmetry. Although this sample contains two isomers of I and II, the fraction of isomer I with the C_{2v} symmetry is found from the HPLC profile to be larger than 80%. The distance of Ce-C(1), r_{Ce-C(1)} and the mean-square displacement, σ(1), were determined to be 2.473(9) Å and 0.005(1) Å^2, respectively, while the distance of Ce-C(2), r_{Ce-C(2)}, and the mean-square displacement, σ(2), were determined to be 2.743(9) Å and 0.0026(9) Å^2, respectively. The χ(k) calculated with the structural parameters described above is shown in Fig. 5(b), together with the experimental χ(k); the final R factor was 0.084.

The r_{Ce-C(1)} is consistent with those determined for the powder samples of Dy@C_{82} [2.48(2) Å], Gd@C_{82} isomer I [2.56(1) Å], and La@C_{82} isomer I [2.47(2) Å] by EXAFS. On the other hand, r_{Ce-C(2)} is slightly smaller than those for Dy@C_{82} [2.83(2) Å], Gd@C_{82} isomer I [2.77(3) Å], and La@C_{82} isomer I [2.94(7) Å]. The structural parameters obtained from EXAFS show that the Ce@C_{82} molecule is not damaged by thermal deposition.

FIG. 6. (a) ρ vs T and (b) ln ρ vs 1/T plots for a thin film of Ce@C_{82}. In (b), the solid line refers to that fitted with a linear relationship.

when a thin film is formed; this finding is also supported by the Raman spectra as described in Sec. III B.

E. Transport property of Ce@C_{82}

The temperature dependence of ρ for a Ce@C_{82} thin film is shown in Fig. 6(a). The ρ value decreases with an increase in temperature up to 300 K. The ln ρ vs 1/T plots from 155 to 290 K are shown in Fig. 6(b); they exhibit a linear relationship. This implies that Ce@C_{82} is a normal semiconductor. The value of E_g is estimated to be 0.4 eV; this is smaller than those of C_{60} (1.8 or 2.1 eV) and C_{70} (2.2 eV). The E_g value of Ce@C_{82} is slightly larger than those of La@C_{82} and Dy@C_{82} which are estimated from the temperature dependence of ρ (Refs. 9 and 10) to be 0.3 and 0.2 eV, respectively. These results show that M@C_{82} (M: La, Dy and Ce) is a semiconductor with a small value of E_g. The small E_g of Ce@C_{82} may lead to the appearance of novel physical properties. For example, the semiconductor-metal transition may be observed by application of pressure because the value of E_g is expected to decrease owing to an increase in the bandwidths of conduction and valence bands caused by an increase in the hopping integral. No anomaly in the plots of ρ vs T is observed at 150–300 K. Very recently, the photoelectron emissions for thin films of Dy@C_{82} and Ce@C_{82} have been studied, and the E_g values are suggested to be 0.2 and 0.3 eV, respectively. These E_g values are consistent with that determined from the ρ vs T plots in the present study.

IV. CONCLUSION

Crystalline samples of Ce@C_{82} isomers I and II were obtained, and the structure of isomer I was determined to be
The C$_2$ axis of Ce@C$_{82}$ isomer I is aligned along the L_{III}-edge EXAFS for thin films of Ce@C$_{82}$ showed that no thermal damage had occurred. This implies that thin films of metallofullerenes can be prepared by thermal deposition without damage. This result will open doors to studies of the physical properties of the thin films of metallofullerenes and applications to electronic devices such as field-effect transistors (FET's). Very recently, we succeeded in fabricating a FET with a thin film of Dy@C$_{82}$ that operated as an n-channel normally on a FET.

The valence of Ce in Ce@C$_{82}$ has been found to be $+3$, on the basis of the Raman spectra and Ce L_{III}-edge XANES for a thin film of Ce@C$_{82}$. The Raman spectra for the Ce@C$_{82}$ isomers I and II have been studied, and a slight shift of 3 cm$^{-1}$ was observed in the peak for the Ce-cage stretching mode between isomers I and II. The shift is much smaller than that, \sim40 cm$^{-1}$, caused by a difference in the valence of the metal ion. This implies that the force constant of the metal cage, which is directly related to the bond strength between the metal ion and the C$_{82}$ cage, is dominated by an ionic interaction.

The ρ-T plots of a thin film of Ce@C$_{82}$ showed that Ce@C$_{82}$ is a normal semiconductor with an E_g value of 0.4 eV. The electronic configuration of Ce@C$_{82}$ can be expressed as $[\text{Ce}]^3[\text{C}_{82}]^{17}$. Actually, Ce@C$_{82}$ showed no metallic behavior. Nevertheless, the small E_g value may result in a semiconductor-metal transition on application of pressure to Ce@C$_{82}$. Therefore some interesting physical properties caused by the coexistence of a localized 4f electron and a delocalized conduction band electron may be found for Ce@C$_{82}$.

ACKNOWLEDGMENTS

The authors thank Dr. Masafumi Ata and Mr. Koji Kadono of SONY Corporation for their valuable suggestions concerning the electronic structure of Ce@C$_{82}$, and Dr. Kaoru Kobayashi and Professor Shigeru Nagase of the Institute for Molecular Science for their valuable suggestions concerning the vibrational modes of Ce@C$_{82}$ isomers. They thank Takayoshi Kanbara and Yasuhiro Takabayashi for their helpful assistance through this work. The x-ray diffraction study was performed under the KEK-PF Proposal No. 2002G201, and the XAFS study was performed under the Spring-8 proposal 2002B0547-NX-np. This work was supported by CREST of Japan Science and Technology Corporation and by the Special Research Project and Joint Studies Program (2001–2002) of the Institute for Molecular Science.

K. SHIBATA et al.

PHYSICAL REVIEW B 68, 094104 (2003)

sc ($Pa\bar{3}$) with $a=15.78(1)$ Å. The Rietveld refinement of the x-ray powder diffraction data for Ce@C$_{82}$ isomer I has been achieved by the adoption of C$_{2v}$-symmetry for the molecule. The C$_2$ axis of Ce@C$_{82}$ isomer I is aligned along [111], and the molecule is orientationally disordered to satisfy the 3 symmetry.

Thin films of Ce@C$_{82}$ were prepared by thermal deposition of a pure sample. The Ce L_{III}-edge EXAFS for thin films of Ce@C$_{82}$ showed that no thermal damage had occurred. This implies that thin films of metallofullerenes can be prepared by thermal deposition without damage. This result will open doors to studies of the physical properties of the thin films of metallofullerenes and applications to electronic devices such as field-effect transistors (FET's). Very recently, we succeeded in fabricating a FET with a thin film of Dy@C$_{82}$ that operated as an n-channel normally on a FET.

The valence of Ce in Ce@C$_{82}$ has been found to be $+3$, on the basis of the Raman spectra and Ce L_{III}-edge XANES for a thin film of Ce@C$_{82}$. The Raman spectra for the Ce@C$_{82}$ isomers I and II have been studied, and a slight shift of 3 cm$^{-1}$ was observed in the peak for the Ce-cage stretching mode between isomers I and II. The shift is much smaller than that, \sim40 cm$^{-1}$, caused by a difference in the valence of the metal ion. This implies that the force constant of the metal cage, which is directly related to the bond strength between the metal ion and the C$_{82}$ cage, is dominated by an ionic interaction.

The ρ-T plots of a thin film of Ce@C$_{82}$ showed that Ce@C$_{82}$ is a normal semiconductor with an E_g value of 0.4 eV. The electronic configuration of Ce@C$_{82}$ can be expressed as $[\text{Ce}]^3[\text{C}_{82}]^{17}$ because the valence of Ce is $+3$. This makes one anticipate the coexistence of a localized 4f electron on the Ce ion and a delocalized conduction band originating from C$_{82}^3$. Actually, Ce@C$_{82}$ showed no metallic behavior. Nevertheless, the small E_g value may result in a semiconductor-metal transition on application of pressure to Ce@C$_{82}$. Therefore some interesting physical properties caused by the coexistence of a localized 4f electron and a delocalized conduction electron may be found for Ce@C$_{82}$.

The authors thank Dr. Masafumi Ata and Mr. Koji Kadono of SONY Corporation for their valuable suggestions concerning the electronic structure of Ce@C$_{82}$, and Dr. Kaoru Kobayashi and Professor Shigeru Nagase of the Institute for Molecular Science for their valuable suggestions concerning the vibrational modes of Ce@C$_{82}$ isomers. They thank Takayoshi Kanbara and Yasuhiro Takabayashi for their helpful assistance through this work. The x-ray diffraction study was performed under the KEK-PF Proposal No. 2002G201, and the XAFS study was performed under the Spring-8 proposal 2002B0547-NX-np. This work was supported by CREST of Japan Science and Technology Corporation and by the Special Research Project and Joint Studies Program (2001–2002) of the Institute for Molecular Science.

25 K. Kobayashi and S. Nagase (private communication).

35 K. Kadono (private communication).