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Oscillatory epidemic prevalence in growing scale-free networks
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We study the persistent epidemic prevalence with oscillatory behavior and the extinction of computer viruses
via e-mails on a contact relational network growing with new users, for which scale-free structure is estimated
from real data. Typical oscillatory phenomenon is simulated in a stochastic model for the execution and
detection of viruses. The conditions of extinction by random and targeted immunizations for hubs are derived
through bifurcation analysis for simpler deterministic models by using a mean-field approximation without the
connectivity correlations. We can qualitatively understand the mechanisms of the spread in linearly growing
scale-free networks.
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I. INTRODUCTION

In spite of different interactions between social, techno-
logical, or biological elements, many complex networks in
real worlds have a common structure. It is based on a uni-
versal self-organized mechanism: network growth and pref-
erential attachment of connections@1,2#. The structure is
called scale-free~SF! network, which exhibits a power-law
degree distributionP(k);k2g, 2,g,3, for the probability
of vertex withk connections. The topology deviates from the
conventional homogeneous regular lattices and random
graphs. Many researchers are attracted to a new paradigm of
the heterogeneous SF networks in this active and fruitful
area.

The structure of SF networks also has a strong impact on
the dynamics of epidemic models for computer viruses, HIV,
and others. Recently, it has been shown@3# that a
susceptible-infected-susceptible~SIS! model on SF networks
has no epidemic threshold; infections can be proliferated,
whatever small infection rate they have. This result disproves
the threshold theory in epidemiology@4#. The heterogeneous
structure is also crucial for spreading the viruses on the
analysis of susceptible-infected-recovered~SIR! models
@5,6#. In contrast to the absence of epidemic threshold, an
immunization strategy has been theoretically presented in a
SIS model on SF networks@7,8#. The targeted immunization
for the most highly connected vertices such as hubs applies
the property of the extreme disconnections by attacks against
the hubs@9# to a prevention against the spread of infections.

In this paper, we investigate the dynamic properties for
spreading of computer viruses on the SF networks estimated
from real data of e-mail communication@10#. As a new prop-
erty in both simulation and theoretical analysis, we suggest
that a growing network with new e-mail users causes the
oscillatory prevalence recovered from a temporary silence of
almost complete extinction. We refer to the typical oscilla-
tory phenomenon in observations@11,12# as recoverable
prevalence, which is not explained by the above statistical
analyses at steady states or mean values~in the fixed size or
N→`). We first consider a realistic epidemic model on the
growing SF network in simulations with the probabilistic
execution and detection of viruses. Then, for understanding
the mechanisms of such recoverable prevalence and extinc-

tion, we analyze simpler growing models in deterministic
equations. By using a mean-field approximation without the
connectivity correlations, we derive bifurcation conditions
from the extinction to the recoverable prevalence~or the op-
posite!, which is related to the growth, infection, and im-
mune rates. Moreover, we verify the effectiveness of the tar-
geted immunization for hubs by antiviruses even in the
growing system.

II. E-MAIL NETWORK

A. The state transition for infection

We consider a network of contact relations whose vertices
~nodes! and edges~links! correspond to computers and the
communication via e-mails between users, respectively. Each
vertex has two degrees, an in-degree for a received mail,
which is the number of edges that point into the vertex, and
an out-degree for a sent mail, which is the number pointing
out. In the mailing processes, the state at each computeri
51, . . . ,N is changed from the susceptible, hidden, infec-
tious, and to the recovered by the removal of viruses and
installation of antiviruses. We make a realistic model in sto-
chastic state transitions with probabilities of the execution
and the detection of viruses. Figure 1 shows the state transi-
tions, wherel and d denote the execution rate from the
hidden to the infectious state and the detection rate from the
special subjects or doubtful attachment files. The probability
of at least one detection from theni viruses on the computer
is 12(12d)ni, and the probability of at least one execution

FIG. 1. S-H-I-R state transition diagram.
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is 12(12l)ni. We assume the infected mail not sent again
for the same communication partner~sent it at only one time!
to be difficult for detection. Thus,ni is at most the number of
in-degree at each vertex. In the stochastic~susceptible–
hidden infected–infections-recovered! SHIR model, the final
state is the one recovered or immuned by antiviruses, if at
least one infected mail is received.

B. The scale-free structure

We show the e-mail network structure based on real data
measured by questionnaires for 2555 users in a part of World
Internet Project 2000@10#. The distributions of both sent and
received mails follow a power law in Fig. 2~a!, the exponents
are estimated asgout52.5, g in51.9, and the average num-

ber of mails per dayk̄55 –20. These values are close to
gout52.07 andg in51.85 estimated in the same range 1,k
<100 for the server log files of e-mails@13# (gout52.03
60.12 andg in51.4960.12 in Ref. @14#!. There exists a
slight difference between these estimated values which de-
pend on the sample, measuring, and numerical precision. In
addition, we have found that the cumulative histograms of
less than degreek have similar shapes in a larger network of
e-mail address books@15#. However, in the estimation for
both data@10,13# by a stretched exponential function as in
Ref. @15#, the exponential parts almost vanish. Thus, the cu-
mulative histograms are approximated by a power law as
shown in Figs. 3~a! and 3~b!. To discuss the delicate differ-
ence in the estimations for cumulative histograms is beyond

FIG. 2. Power-law degree dis-
tributions with the exponents
gout52.5 andg in51.9 estimated
for questionnaires of ~a! sent
mails and~b! received mails be-
tween users including the internal
~measured users! and the external
~other people! @10#. The frequency
at degreek is counted in the inter-
val between@k,k110#, except for
the outer of more than 100 degree
at k5200. Similar distributions
with ~c! gout52.07 and ~d! g in

51.85 are estimated for the server
log files of e-mails@13# including
the internal and the external.

FIG. 3. The cumulative distributions of the in-degree and out-degree for e-mail networks in~a! the questionnaires@10# and~b! the server
log files @13#. The linear fits are obtained by the integration of power-law functions estimated in Figs. 2~a–d! The misfit in the left-hand side
of ~a! is due to the dispersion in the limited size of data@10#, especially aroundk5100 @see Fig. 2~b!#.
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the scope of this paper. It may be caused by the limited size
of our sample.

C. The „a,b… model

We generate a SF network for the contact relations be-
tween e-mail users, by applying the simple (a,b) model@16#
with the estimated exponentsg in and gout in the preceding
section. The slopes of power lawg in'1/(12a) and gout

'1/(12b) are controlled by thea-b coin in Table I~in the
case of e-mailsa50.4736 andb50.6). Growing with a new
vertex at each step,k edges are added as follows. As the
terminal, a coin toss chooses a new vertex with probabilitya
and an old vertex with probability 12a in proportion to its
in-degree. As the origin, the coin chooses a new vertex with
probability b and an old vertex with probability 12b in
proportion to its out-degree. According to both the growth
and the preferential attachment@1,2#, the generation pro-
cesses are repeated until the required sizeN is obtained as a
connected component without self-loops and multiedges.
The (a,b) model generates both edges from/to a new vertex
and edges between old vertices, the processes are somewhat
analogous to the ones in the generalized Baraba´si-Albert
~BA! model @1,17#.

III. SIMULATIONS FOR STOCHASTIC MODEL

We study the typical behavior in the SHIR model on the
SF networks. In the following simulations, we set the execu-
tion rate l50.1, the detection rated50.04, the average
number of edgesk̄56.6, and initial infection sources of ran-
domly chosen five vertices~the following results are similar
to other small valuesl50.2,0.3 andd50.05,0.06). These
small values are realistic, because computer viruses are not
recognized before the prevalence and it may be executed by
some users. We note the parameters are related to the sharp-
ness of increasing/decreasing infections up/down (d is more
sensitive!. It is well known that, in a closed system of the
SHIR model, the number of infected computers in the hidden
and infectious states is initially increased and saturated, and
finally converged to zero as extinction. While the pattern
may be different in an open system, indeed, oscillations have
been described by a deterministic Kermack-McKendrik
model @4#. However, a constant population~equal rates of
birth and death! or territorial competition has been mainly
discussed in the classical model, the growth of computer
network is obviously more rapid, and the communications in
mailing are not competitive. Thus, we consider a growing
system, in which 50 vertices and the corresponding newk̄
edges are added at every step, from an initial SF network
with N5400 up to 203 50 at 400 steps. Here, one step is
corresponding to a day~400 steps' 1 yr!. These values of
l, d, k̄, and the growth rate are only examples with some-
thing of reality for simulations, since the actual values that
depend on the observed period are still unknown. As shown
in Figs. 4~a! and 4~b!, the phenomena of persistent recover-
able prevalence are found in the open system, but not in the
closed system.

FIG. 4. Typical behavior of the spread on SF networks in~a! a closed system and~b! an open system with simultaneous progress of both
spread of viruses and growth of network. The lines show the differences in stochastic state transitions. The effects of immunization are
shown as the averages in the open system for~c! hub and~d! random immunization. The open diamond, square, triangle, and cross marks
are corresponding to the normal detection by the state transitions, immunization of 10%, 20%, and 30%, respectively.

TABLE I. Directed edge generation by thea-b coin.

Probability a 12a

b Self-loop at new vertex Origin: new, terminal: old
12b Terminal: new, origin: old Both of old vertices
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To prevent the wide spread of infections, we investigate
how to assign antivirus software onto the SF networks. We
verify the effectiveness of the targeted immunization for
hubs even in the cases of recoverable prevalence. Figures
4~c! and 4~d! show the average number of infected comput-
ers with recoverable prevalence in 100 trials, where immu-
nized vertices are randomly selected or as hubs according to
the out-degree order of 10%, 20%, 30% of growing size at
every 30 steps~corresponding to a month!. The number is
decreased as larger immune rates for hubs, viruses are nearly
extinct~there exist only few viruses! in 30% as marked by3
in Fig. 4~c!. While it is also decreased as larger immune rates
for randomly selected vertices, however they are not extinct
even in 30% as marked by3 in Fig. 4~d!. Figures 5~a! and
5~b! show the number of recovered states by the hub and
random immunization of 30%~triangle marks! for the com-
parison with the normal detections~rectangle marks!. The
immunized hubs are more dominant than the normal detec-
tions in Fig. 5~a!. However, there is no such difference for
the random immunization in Fig. 5~b!. In the case of 10%,
the relation is exchanged; the number of detections is larger
than that of both hub and random immunizations. It is inter-
mediate in the case of 20%. From these results, we remark
that the targeted immunization for hubs strongly prevents the
spread of infections in spite of the fewer totally recovered
states than that in random immunization.

IV. ANALYSIS FOR DETERMINISTIC MODEL

Although the stochastic SHIR model is realistic, the
analysis is very difficult in the open system. Thus, we ana-
lyze simpler deterministic SIR models for the spreading of
computer viruses to understand the mechanisms of recover-
able prevalence and extinction by immunization. We con-
sider the time evolutions ofS(t).0 and I (t).0 (t>0),
which are the number of susceptible and infected vertices.
We assume that infection sources exist in an initial network,
and that both network growth and the spread of viruses
progress in continuous time as an approximation. In addition,
we have no specific rules for growing, but consider a linearly
growing network size and the degree distribution on an un-
directed connected graph as a consequence.

A. Homogeneous SIR model

As the most simple case, in the homogeneous networks
with only the detection of viruses, the time evolutions are
given by

dS~ t !

dt
52b^k&S~ t !I ~ t !1a, ~1!

dI~ t !

dt
52d0I ~ t !1b^k&S~ t !I ~ t !, ~2!

wherea.0 and 0,b, andd0,1 denote the growth, infec-

tion, and detection rates, respectively.^k&5
def

(kkP(k) is the
average number of connections with a probabilityP(k) of
the degreek. The termS(t)I (t) represents the frequency of
contact relations. Note that the number of recovered vertices
R(t) is a shadow variable defined bydR(t)/dt5d0I (t).
From the network sizeN(t)5S(t)1I (t)1R(t), the solution
is given byN(t)5N(0)1at as a linear growth. Figure 6~a!
shows the nullclines of

dS

dt
50: S5

a

b^k&I

and

dI

dt
50: S5S* 5

def d0

b^k&
, ~ IÞ0!

for Eqs.~1! and~2!. The directions of vector field are defined
by the positive or negative signs ofdS/dt anddI/dt. There

exists a stable equilibrium point (I * ,S* ), I * 5
def

a/d0. The

FIG. 5. Number of vertices in the recovered state by~a! hub and~b! random immunization of 30%. Each of them is the average value
for recoverable prevalence in 100 trials. The dashed lines represent the number of vertices that are already changed to the recovered states
before the immunization.

FIG. 6. Nullclines and the vector fields for~a! homogeneous and
~b! heterogeneous SIR models. The state in both cases is converged
to an equilibrium point with a damped oscillation, which corre-
sponds to persistent recoverable prevalence around the nonzero
level I * or I k* .
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states ofS and I are converged to the point with a damped
oscillation. We can easily check that the real parts of eigen-
values for the Jacobian are negative at the point.

B. Heterogeneous SIR model

Next, we consider the heterogeneous SF networks at the
mean-field level, in which the connectivity correlations are
neglected@18#. We know that static and grown networks
have different properties for the size of giant component@19#
and the connectivity correlations@20,21# even if the degree
distributions are the same. In particular, the correlations may
have influence on the spread, however they are not found in
all growing network models or real systems. We have experi-
mentally observed that the correlations are very weak in the
(a,b) model in the previous simulations similar to the near-
est neighbors average connectivity of vertex withk edges in
the generalized BA model rather than the fitness model or
autonomous system~AS! in the Internet@22#. At least, non-
correlation does not seem to be crucial for the absence of
epidemic threshold@3,7,8,18#, the existence of correlations is
still much less nontrivial in e-mail networks. Although the
mean-field approach by neglecting the correlations in macro-
scopic equations at a large network size is a crude approxi-
mation method, it is useful for understanding the mecha-
nisms of the spread in growing networks, as far as it is
qualitatively similar to the behavior of viruses in the stochas-
tic model or observed real data. Indeed, the following results
are consistent with the analysis for correlated cases@23#,
except of the quantitative differences.

We introduce a linear kernel@21# as Nk(t);akt,Nk(t)
5Sk(t)1I k(t)1Rk(t), which is the sum of the numbers of
susceptible, infected, and recovered vertices with degreek,

and the growth rateak5
def

Ak2n,A.0,n.2. Note that the to-
tal N(t)5(kNk(t);((kak)t means a linear growth of net-
work size. Since the maximum degree increases as the time
progresses and approaches to infinity, it has a nearly constant
growth rate(k5m

` ak;*m
`Ak2ndk5Am12n/(n21) for large

t. As shown in Ref.@21#, the introduction of linear kernel is
not a contradiction with the preferential~linear! attachment
@1,2#.

At the mean-field level in a somewhat large network with
only the detection of viruses, the time evolutions ofSk.0
and I k.0 are given by

dSk~ t !

dt
52bkSk~ t !Q~ t !1ak , ~3!

dIk~ t !

dt
52d0I k~ t !1bkSk~ t !Q~ t !, ~4!

where the shadow variableRk(t) is implicitly defined by

dRk(t)/dt5d0I k(t). The factor Q(t)5
def

(kckI k(t),ck

5
def

kP(k)/^k&, represents the expectation that any given edge
points to an infected vertex.

We consider a section ofI k85I k8
* : const. for allk8Þk.

Figure 6~b! shows the nullclines of

dSk

dt
50: Sk5

ak

kbQ
5

ak

kbckI k1kb(
k8

ck8I k8
*

,

dIk

dt
50: Sk5

d0I k

kbQ
5

d0I k

kbckI k1kb(
k8

ck8I k8
*

,

and the vector field for Eqs.~3! and~4!. There exists a stable

equilibrium point (I k* ,Sk* )5
def

(ak /d0 ,ak /kbQ* ), because of

'Q* 5 (
k>m

ckI k* ;
Agm2g

d0
E

m

`

k2(n1g11)dk5
Agm2n

d0~n1g!
,

by usingck5g3mg3k2(g11) for the generalized BA model
@18# with a power-law degree distributionP(k)5(1
1g)m11gk222g,^k&5m(11g)/g ~which includes the
simple BA model@2# at g51). On these state spaces in Figs.
6~a! and 6~b!, only the case ofa50 or ak50 gives the
extinction: I * 50 or I k* 50. It means that we must stop the
growth to prevent the infections by detection. In addition, the
homogeneous and heterogeneous systems are regarded as os-
cillators in Figs. 7~a! and 7~b!.

C. Effect of immunization

We study the effect of random and hub immunization.
With the randomly immune rate 0,d r,1, the time evolu-
tions are given by

dSk~ t !

dt
52bkSk~ t !Q~ t !1ak2d rSk~ t !, ~5!

dIk~ t !

dt
52d0I k~ t !1bkSk~ t !Q~ t !2d r I k~ t !, ~6!

where the shadow variableRk(t) is defined bydRk(t)/dt
5d0I k(t)1d r„Sk(t)1I k(t)….

Similar to discussions in the preceding section, we con-
sider a section ofI k85I k8

* : const for all k8Þk. From the
nullclines of Eqs.~5! and ~6! with random immunization,

there exists a stable equilibrium point (I k* ,Sk* )5
def

@(ak

2d rSk* )/(d01d r),ak /(d r1kbQ* )#, if the solution

Q* 5(
k

ckI k* 5
1

d01d r
(

k
akckS 12

d r

d r1bkQ*
D 5

def

f ~Q* !

is self-consistent at the point. The condition is given by

d f

dQ U
Q50

'
Ab

d r~d01d r !
E

m

`

gmgk2(g1n)dk

5
Abgm2(n21)

d r~d01d r !~g1n21!
.1.

In this case, the state space is the same as shown in Fig. 6~b!.
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Next, we assumeI k8
* 50 for all k8Þk to discuss the ex-

tinction. On this section, the nullclines are

dSk

dt
50: Sk5

ak

d r1kbQ
5

ak

d r1kbckI k

and

dIk

dt
50: Sk5

~d01d r !I k

kbQ
5

d01d r

kbck
~ I kÞ0!

for Eqs.~5! and~6!. The necessary condition of extinction is
given by the fact that the point (0,ak/d r) on the nullcline
dSk /dt50 is below the lineSk5(d01d r)/kbck : const of
dIk /dt50. From the condition

ak

d r
,

d01d r

kbck
,

we obtain

d r.2d01Ad0
214kakbck. ~7!

In addition, since 0,d r,1 must be satisfied, it is given by
ak,(112d0)/4bg from kck5gmgk2g, m<k,`, g.0,
for the generalized BA model@18#. In this case, there exists a

stable equilibrium point, otherwise a saddle and a stable
equilibrium point as shown in Figs. 8~a! and 8~b!. The state
space is changed through a saddle-node bifurcation by values
of the growth rateak and the immune rated r .

For the hub immunization@7#, d r is replaced by 0
,dhkt,1,t.0, e.g.,t51 as proportional immunization to
the degree of vertex. We may choose 1/kt times smaller im-
mune ratedh thand r for Eq. ~7!. In other words, the neces-
sary condition of extinction in Eq.~7! is relaxed toak
,mt(mt12d0)/4bg. Thus viruses can be removed in larger
growth rate.

The above conditions are almost fitting to the results for
the stochastic model in Sec. III. We can evaluate them using
the corresponding parametersm51, n521g5(g in
1gout)/252.2, b↔l50.1, d0↔d50.04, d r or dh
50.1,0.2,0.3, t51, and A560 from ((ak);*Ak2ndk
5Am12n/n21550. By simple calculations, we find that
ak,(112d0)/4bg is satisfied fork>2. The condition~7! is
satisfied for onlyk>5 with random immunization of 30%
and k>7 with 20%, so the extinction of viruses is difficult
by spreading of infection from many vertices with low de-
greek<4, whereas it is satisfied fork>3 with hub immu-
nization of both 20% and 30% by the factor of 1/kt. The
delicate mismatch atk51,2 may be from the difference of
the complicated stochastic behavior as in Fig. 1 and the mac-
roscopic crude approximation.

FIG. 7. Oscillators for~a! ho-
mogeneous and~b! heterogeneous
SIR models in the open system.
They consist of S-I pairs with ex-
citatory → and inhibitory¢ con-
nections, and an input biasa or ak

of the growth rate. The factorQ
acts as a global inhibition or exci-
tation.

FIG. 8. Saddle-node bifurca-
tion between~a! damped oscilla-
tion of recoverable prevalence and
~b! convergence to the extinction
by the immunization in the hetero-
geneous SIR model. The state
space is changed by the bifurca-
tion parametersd r and ak for the

value of Ŝk5
def

(d01d r)/kbck .
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D. SIS model

Finally, to show that the recovered state is necessary, we
consider the SIS models in the open system. The time evo-
lutions on homogeneous networks are given by

dS~ t !

dt
5d0I ~ t !2b^k&S~ t !I ~ t !1a, ~8!

dI~ t !

dt
52d0I ~ t !1b^k&S~ t !I ~ t !, ~9!

whereN(t)5S(t)1I (t). The nullclines are

dS

dt
50: S5

d0I 1a

b^k&I
5

d0

b^k&
1

a

b^k&I

and

dI

dt
50: S5

d0

b^k&
:const,~ IÞ0!

for Eqs.~8! and ~9!. There exists a gap ofa/b^k&I .0 even
in I * →`. Furthermore, the time evolutions on heteroge-
neous networks are given by

dSk~ t !

dt
5d0I k~ t !2bkSk~ t !Q~ t !1ak , ~10!

dIk~ t !

dt
52d0I k~ t !1bkSk~ t !Q~ t !. ~11!

On a sectionI k8 : const, the nullclines are

dSk

dt
50: Sk5

d0I k1ak

kbQ
and

dIk

dt
50: Sk5

d0I k

kbQ

for Eqs. ~10! and ~11!. There also exists a gap between the
nullclines. Figures 9~a! and 9~b! show the nullclines and the
vector field. Thus, the dynamics in the SIS model is quite
different from that in the SIR model. We cannot realize both
the extinction and the recoverable prevalence of viruses on
the SIS model, in any case, even in the open system.

V. CONCLUSION

In summary, we have investigated the spread of computer
viruses via e-mails on linearly growing SF network models
whose exponents of the degree distributions are estimated
from real data of sent and received mails@13# or from the
generalized BA model@1,18#. The dynamic behavior is the
same in both simulations for a realistic stochastic SHIR
model and a mean-field approximation without connectivity
correlations for the macroscopic equations of simpler deter-
ministic SIR models. The obtained results suggest that the
recoverable prevalence stems from the growth of network,
and it is bifurcated from the extinction state according to the
relations of growth, infection, and immune rates. Moreover,
the targeted immunization for hubs is effective even in the
growing system. Quantitative fitness with really observed vi-
rus data and more detailed analysis with the correlations are
further studies.

@1# R. Albert and A.-L. Baraba´si, e-print cond-mat/0106096.
@2# A.-L. Barabási, R. Albert, and H. Jeong, Physica A272, 173

~1999!.
@3# R. Pastor-Satorras and A. Vespignani, Phys. Rev. E63, 066117

~2001!.
@4# N. Shigesada and K. Kawasaki,Biological Invasions: Theory

and Practice~Oxford University Press, Oxford, 1997!.
@5# R.M. May and A.L. Lloyd, Phys. Rev. E66, 066112~2001!.
@6# M.E.J. Newman, Phys. Rev. E65, 016128~2002!.
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