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Abstract

Word Sense Disambiguation (WSD) involves the association of a polysemous word in
a text or discourse with a particular sense among numerous potential senses of that word.
This is an “intermediate task” necessary to accomplish most natural language processing
tasks. It is obviously essential for language understanding application, such as message
understanding and human-machine communication; it is also at least helpful for other
applications whose aim is not language understanding, such as machine translation and
information retrieval, among others.

The automatic disambiguation of word senses has been an interest and concern since
the 1950s [Ide et al. (1998)]. Although there have been many studies investigated on
various methods for this problem, the performance of available WSD systems or published
results are limited (accuracy around 70%). Therefore, WSD is still an open problem and
is a challenge in Natural Language Processing (NLP) community. Nowadays, with the
strong and fast development of machine learning methods and their success in applying to
many NLP tasks, the use of machine learning techniques in WSD has been becoming more
interest and attractive. This thesis also lies in this research direction, in which we present
a study of classifier combination and semi-supervised learning for WSD. In addition, we
also work on context representation and feature selection which play important roles in
obtaining high accuracy of WSD task. Particularly, the following three problems are
targeted in this research.

• The first problem is that of determining useful information for detecting word senses.
Concerning this problem, there is a fact that if a classifier contains more useful infor-
mation, as well as we can extract more useful information from test patterns, then
the classifier can recognize patterns more correctly. Therefore, determining useful
information for both training and test data plays an important role in a classifica-
tion. Regarding to WSD, we consider two aspects including context presentation
and feature selection. For the former, we will investigate various kinds of knowledge
and present them as feature subsets. For the latter, feature selection methods are
used to obtain the best combination of these subsets, and to select useful individual
features. At the end, we obtain a set of selected features in order to get supervised
WSD systems with high accuracy.

• The second problem is to improve performance of supervised WSD systems by using
classifier combination techniques. As well known, a classification algorithm used
with a specific set of features may not be appropriate with a different set of features.
In addition, classification algorithms are different in their theories, and hence achieve
different degrees of success for different applications. As different classifiers may offer
complementary information about the patterns to be classified, combining classifiers
in an efficient way, therefore, can achieve better classification results than any single
classifier (even the best one). In this work, numerous various combination rules will
be investigated and experimented. In particular, beside applying several common
rules such as majority voting and average rule, we will develop new frameworks
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of classifier combination for WSD based on Dempster-Shafer theory of evidence
and Ordered Weighted Aggregating (OWA, for short) operators. Experiments have
shown that combining classifiers significantly improves performance of supervised
WSD systems.

• The third problem is to boost supervised WSD by exploiting unlabeled data. The
process of using both labeled and unlabeled data to build a classifier is called semi-
supervised learning. This work is motivated by an observation that labeled data is
expensive and time consuming to build, while unlabeled data is cheap and easy to
collect. In this thesis, we follow the semi-supervised learning approach, in which
labeled data is iteratively extended from unlabeled data. We first explicitly identify
inherent problems in this approach, and then propose corresponding solutions for
them. This results in several new variants of the general bootstrapping algorithm.
The experimental results show that the proposed solutions improve the conventional
bootstrapping algorithms (particulary for self-training and co-training), and at the
same time it is shown that unlabeled data is effective in increasing accuracy of
supervised WSD systems.

In summary, the work in this thesis has concentrated on the two important tasks
which have strong impacts on improving accuracy for WSD systems, including knowledge
determination and using machine learning approaches. We have analyzed, investigated,
and then provided solutions for the selected problems occurring in these tasks. The con-
tributions of this thesis are expressed in both aspects, the theoretical study in developing
machine learning methods and the empirical study in improving accuracy of WSD sys-
tems. Our experiments were conducted on standard datasets and their outputs were
compared with those of state-of-the-art WSD systems in such a way that the research is
kept competitive and most up-to-date.

Key words: Computational Linguistic, Word Sense Disambiguation, Feature Selection,
Classifier Combination, Semi-supervised Learning.
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Chapter 1

Introduction

In this chapter we briefly state the research context, our motivations, as well as the
major contributions of this thesis. Firstly, we briefly introduce the problem of word sense
disambiguation and its important role in natural language processing. Secondly, we state
the research problems which this thesis attempts to solve as well as the main motivations
behind the work. Next, the main contributions of the thesis are shortly mentioned.
Finally, the structure of the thesis will be outlined.

1.1 An Overview

Natural language processing (NLP) involves resolution of various type of ambiguity. Lexi-
cal ambiguity is one of these ambiguity types, and occurs when a single word (lexical form)
is associated with multiple senses or meanings. The task of a word sense disambiguation
system is to resolve the lexical ambiguity of a word in a given context.

1.1.1 Word Sense Disambiguation (WSD)

In general, there are two types of lexical ambiguity, that include morpho-syntactic ambi-
guity and sense ambiguity. Since the earliest day of WSD work there has been general
agreement that these problems can be discriminative and become dependent problems
in current researches. Therefore, word sense disambiguation has since focused largely on
distinguishing sense among homographs belonging to the same syntactic category.

Polysemy and Homonymy

Within lexical ambiguity, one can distinguish between polysemy and homonymy. Homonyms
are distinct units in the lexicon with identical phonetic (“homophones”) and/or ortho-
graphic (“homographs”) shape. Each of the homonyms has its own semantics. An example
is bank (“financial institution”) and bank (“slope”). In this example, homophony and ho-
mography cooccur. But this need not always be the case, compare peak [pi:k] (“summit”)
and peek [pi:k] (“glance”), which are homophones but not homographs. According to the
diachronic criterion for homonymy, homonyms cannot be traced back to a common ety-
mological origin. Compare for instance bat: the word for the animal has a Swedish origin,
the word for the instrument is related to battle. According to the synchronic criterion,
homonyms have no common semantics.
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If multiplicity of meanings occurs distributed over several lexical items with the same
shape, one speaks of homonymy; if it occurs within a single lexical item, it is polysemy.
The different meanings of a polysemous expression have a base meaning in common. Fur-
thermore, the meanings of a polysemous term are often related by means of metaphor or
metynomy. An example is point : “punctuation mark”, “sharp end”, “detail, argument”
etc. Here we observe several meanings within one lexical unit, the common base meaning
of which could be something like “smallest unit”. Either this unit is concrete (“punctua-
tion mark”, “sharp end”) or it is a metaphorical unit as in “detail, argument”. There are
cases of idiosyncratic polysemy, e.g. with green (“a certain color”, and “inexperienced”)
or with point (see above). But there are also cases of systematic polysemy, e.g. the actual/
dispositional distinction (e.g. with fast in this is a fast car) or the building/ institution
distinction (e.g. with school).

WSD is the task of disambiguating polysemy, in which polysemy characterizes words
that have more than one meaning. It means that a single lexical item (same orthographic)
has multiple meanings (senses). A such lexical item is called a polysemous word. In
this consideration, the phenomenon of homonymy in which homonyms are in the same
orthographic (“homographs”) shape is also a case of polysemy. Polysemy is an intrinsic
property of words (in isolation from text), whereas “ambiguity” is a property of text.
Whenever there is uncertainty as to the meaning that a speaker or writer intends, there is
ambiguity. So polysemy indicates only potential ambiguity, and context works to remove
ambiguity.

For a polysemous word, there is not the unique definition of its senses through dif-
ferent sources (e.g. different dictionaries). Different definitions can be based on different
objectives or different sense-makers. Furthermore, word senses is in principle infinitely
variable and context sensitive. It does not divide up easily into distinct sub-meanings
or senses. Lexicographers frequently discover in corpus data loose and overlapping word
meanings, and standard or conventional meaning extended, modulated, and exploited in
a bewildering variety of ways.

WSD Task

This thesis follows a corpus-based approach, in which for a polysemous word we are given
a set of sense-tagged examples for training and the task is to detect senses for sense-
untagged examples of this polysemous word. The corpora we deal with in this thesis
are English Lexical Samples of Senseval-2 and Senseval-3 1. There are 73 lexical items
and 57 lexical items in English lexical samples of Senseval-2 and Senseval-3, respectively.
In these datasets, according to the task description of Senseval organization, senses are
organized in sense hierarchy or sense grouping to allow for fine-grained or coarse-grained
sense distinctions to be used in scoring. At a coarse-grain a word often has a small
number of senses that are clearly different and probably completely unrelated to each
other, usually called homographs, for example bank in Bank of England and bank in river
bank (it is a kind of homonymy). Such senses are just “accidentally” collected under the
same word string. Regarding the objective of finer-grained distinctions the coarse-grained
senses break up into a complex structure of interrelated senses, involving phenomena
such as general polysemy, regular polysemy, and metaphorical extension. Thus, most
sense distinctions are not as clear as the distinction between bank as ’financial institution’

1see http://www.senseval.org/
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Table 1.1: Senses of the word “bank”
Sense ID Definition & Examples

bank%1:04:00:: a flight maneuver; aircraft tips laterally about its longitudinal
axis (especially in turning); “the plane went into a steep bank”

bank%1:06:00:: a building in which commercial banking is transacted;
“the bank is on the corner of Nassau and Witherspoon”

bank%1:06:01:: a container (usually with a slot in the top) for keeping money
at home; “the coin bank was empty”

bank%1:14:00:: a financial institution that accepts deposits and channels the
money into lending activities; “he cashed a check at the bank”

bank%1:14:01:: an arrangement of similar objects in a row or in tiers;
“he operated a bank of switches”

bank%1:17:00:: a long ridge or pile; “a huge bank of earth”
bank%1:17:01:: sloping land (especially the slope beside a body of water);

“they pulled the canoe up on the bank”
bank%1:17:02:: a slope in the turn of a road or track; the outside is higher than

the inside in order to reduce the effects of centrifugal force
bank%1:17:02:: a slope in the turn of a road or track; the outside is higher

than the inside in order to reduce the effects of centrifugal force
bank%1:21:00:: a supply or stock held in reserve for future use

(especially in emergencies)
bank%1:21:01:: the funds held by a gambling house or the dealer in

some gambling games; “he tried to break the bank at Monte Carlo”

and bank as ’river side’. For example, bank as financial institution can split into the
following cloud of related senses: the company or institution, the building itself, the
counter where money is exchanged, a fund or reserve of money, a money box, the funds
in a gambling house, the dealer in a gambling house, and a supply of something held in
reserve (according to WordNet 2.1).

Table 1.1 shows sense definitions of the polysemous word bank in Senseval-3. Note
that, in this example, the senses are distinguished at fine-grain, and if we want to focus
on disambiguating these senses at coarse-grain then we map every sense to its parents
(in this case, sense “bank%1:14:00::” is a hyponym of sense “bank%1:06:00::”, and sense
“bank%1:21:01::” is a hyponym of “bank%1:06:01::”). In this thesis, like other studies
using these corpora we will evaluate our method with fine-grained scoring.

1.1.2 Applications of WSD

For application which are sensitive to semantic denotation, or more precisely lexical se-
mantics, lexical ambiguity can pose a major obstacle. Resolution of lexical ambiguity,
which is commonly termed “word sense disambiguation” (WSD), is expected to improve
the quality of the such following research fields.

Machine Translation (MT). WSD is required for lexical choice in MT for words that
have different translations for different senses and that are potentially ambiguous within
a given domain (since non-domain senses could be removed during lexicon development).
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For example, in an English-French financial news translator, the English noun change
could translate to either changement (’transformation’) or monnaie (’pocket money’). In
MT, the senses are often represented directly as words in the target language.

Information Retrieval (IR). Ambiguity has to be resolved in some queries. For
instance, given the query “depression” should the system return documents about illness,
weather systems, or economics? A similar problem arises for proper nouns such as Raleigh
(bicycle, person, city, etc.). Current IR systems do not use explicit WSD, and rely on
the user typing enough context in the query to only retrieve documents relevant to the
intended sense (e.g. “tropical depression”). Early experiments suggested that reliable IR
would require at least 90% disambiguation accuracy for explicit WSD to be of benefit
[Sanderson (1994)]. More recently, WSD has been shown to improve cross-lingual IR
and document classification [Vossen et al. (2006)]. Besides document classification and
cross-lingual IR, related applications include news recommendation and alerting, topic
tracking, and automatic advertisement placement.

Information Extraction (IE) and Text Mining. WSD is required for the accurate
analysis of text in many applications. For instance, an intelligence gathering system might
require the flagging of, say, all the references to illegal drugs, rather than medical drugs.
Bio-informatics research requires the relationship between genes and gene products to
be catalogued from the vast scientific literature; however, genes and their proteins often
have the same name. More generally, the Semantic Web requires automatic annotation
of documents according to a reference ontology: all textual references must be resolved
to the right concepts and event structures in the ontology: all textual references must
be resolved to the right concepts and event structures in the ontology [Dill et al. (2003)].
Name-entity classification, co-reference determination, and acronym expansion (MG as
magnesium or milligram) can also be cast as WSD problems for proper names. WSD is
only beginning to be applied in these areas.

Lexicography. Modern lexicography is corpus-based, thus WSD and lexicography
can work in a loop, with WSD providing rough empirical sense groupings and statistically
significant contextual indicators of sense to lexicographers, who provide better sense in-
ventories and sense-annotated corpora to WSD. Furthermore, intelligent dictionaries and
thesauri might one day provide us with a semantically-cross-referenced dictionary as well
as better contextual look-up facilities.

1.1.3 Corpus-Based WSD and Task Description

WSD is essentially a classification problem: given a polysemous word, its possible senses
are considered as classes, and each occurrence of the word should be assigned to one or
more of its possible classes based on the information extracted from the context where
the word appears. This is the traditional and common characterization of WSD that
considers it as an explicit process of disambiguation with respect to a fixed inventory of
word senses.

Note that while most systems interpret only one polysemous word in the input (called
the single-word task), other systems simultaneously interpret all polysemous words ap-
pearing in the input (called the all-words task). As the all-word task is just a set of
independent single-word tasks, so in this work we will deal with the single-word task.

We follow the corpus-based (or data-driven) approach, in which a set of sense-tagged
examples of a polysemous word is given and treated as the training data. The task is then
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to build a classifier based on the training data to detect senses for untagged examples of
this polysemous word. Figure 1.1 shows the general scheme of corpus-based methods for
WSD.

Machine Learning

Method

Annotated

examples

Input

Classifier

Un-annotated

examples

senses

Train

Input

Test

Figure 1.1: A General Scheme of Corpus-Based Methods for WSD

For example, suppose that we are dealing with the polysemous word bank in its part-
of-speech noun, we denote this word by bank.n (this example is extracted from Senseval-3
data). We are given a set of examples (contexts) of bank.n, such that in each given
example the word bank.n is assigned with its right sense. The following are two among
hundreds of training contexts:

senseid=“bank%1:17:01::”

<context>

All the grass grinds their little molars flat. So, something nest building. Possibly
aligned to water a sort of <head>bank</head> by a rushing river. Perhaps some-
thing as natty and camp as Ratty in The Wind in the Willows. Dapper, dear, Noel
Coward.

</context>

senseid=“bank%1:14:01::”

<context>

It was late March. The air was raw and threatened rain but was tinged with the
warmth of spring. The sky was a murky, pinkish grey; clouds swirled across it
exposing higher, greyer <head>banks</head> of cloud. She snipped crisp green
stalks with a pair of scissors. Milky liquid oozed from the stalks.

</context>

From the training data, we can build the sense inventory of bank.n, as shown in Table
1.1. One important point in the corpus-based approach is that the inventory of word
senses is determined as the whole senses appearing in the training data, which is different
from knowledge-based approach where the inventory of word senses is determined from a
dictionary. Now, the task is to determine the right sense of bank.n (among its potential
senses) for new contexts in test data, for example, for the following context:

<context>

5



Original gravity can be roughly translated into alcoholic strength as follows: a
1036 beer has approximately 3.6 percent alcohol, a 1050 beer has 5 percent alcohol
and so on. How to ruin perfection: gas connected to a cask of beer keeps the ale
under a blanket of CO2, making it unpleasantly fizzy Serving the perfect pint: a
fine <head>bank</head> of hand-pumps in a traditional tap room. Examples of
different types of electric pumps. The two on the left are metered pumps serving
exact half - pints, the ones on the right are free flow pumps.

</context>

In this test example, we try to find out the right sense of bank.n, that is “ bank%1:14:01::”.
Note that, the right senses of test examples are provided in a key-file for evaluation (scor-
ing).

The major objective of this thesis is to applying and developing machine methods
to improve accuracy of WSD. To this end, we focus on two machine learning aspects:
classifier combination and semi-supervised learning, which aim to boost supervised WSD
systems (the systems which use supervised learning algorithms such Naive Bayes, Max-
imum Entropy Models, Support Vector Machines, etc. to build WSD classifiers). In
addition, we also work on context representation and feature selection which play impor-
tant roles in obtaining high accuracy of WSD. The motivations and proposed solutions for
the problems mentioned in this thesis are based on investigating and solving the limita-
tions of related WSD studies. Experimental results were conducted on standard datasets
(Senseval-2 and Senseval-3) and were compared to state-of-the-art systems in the field.

1.2 Motivations and Problems

1.2.1 Context Representation and Feature Selection

In the corpus-based approach, most studies just consider the information extracted from
the context in which the target word appears. From our observation and other investiga-
tion such as [Klein et al. (2002)], we see that designing features plays an important role
for classifiers to obtain high accuracy. Further, we observed that, in the context of WSD,
the choice of what method of feature selection to use may more strongly influence the
quality of classifiers than the choice of what machine learning algorithm to apply.

In previous studies, [Ng & Lee (1996), Lee & Ng(2002)] determined the feature set by
listing features of some kinds of knowledge (called knowledge sources), while others just
re-used their selections or with some modifications (add and/or remove more knowledge
sources). In our opinion, this selection seems to be heuristic, and lack of a reasonable
explanation supporting for this selection. This observation motivates us to study on
applying learning approaches to the selection of knowledge sources as well as the selection
of individual features. This work can be considered as the work of context representation
and feature selection. In particular, we will focus on the following issues.

Selection of Knowledge Sources There are various knowledge sources appeared in the
context of a polysemous word which can be considered as evidences for disambiguating
word senses, such as morphological forms of surrounding words, syntactic relationships,
or position relationship. We first collect as many as possible different knowledge sources,
which we think useful for determining word senses. Naturally, the question arises here
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is that, should we use all these kinds of information or just some of them for the task?
Therefore, we aim at finding out such a way that can explain why a selection is more
appropriate than others.

Individual Feature Selection Feature selection is motivated by an observation that in
some pattern recognition problems, there are too many features that require the cost for
computation time and storage memory. In addition, some features may be redundant or
noise. Therefore, the work on removing some features to reduce the size of the feature set
while retaining the accuracy of classifiers is important and significant. This situation may
also appear in WSD problem, so it motivates us to address the question whether applying
feature selection methods for WSD is effective? There is a few of previous WSD studies
regarding this issue, such as [Lee & Ng(2002), Mihalcea (2004), Pham et al. (2005)]. In
these studies, the features which have frequencies equal or greater than 3 were selected.
However, in this thesis, we will show that this selection much decreases the accuracy of
WSD classification. We will also propose the use of a filter method in feature selection
approaches to this task, making use of two well-known information measures of features
including frequency and information-gain.

1.2.2 Applying and Developing Learning Methods

Machine learning is always an essential factor in corpus-based approaches. Since corpus-
based WSD have been studied for more than one decade, many aspects of machine learning
have been investigated and applied. Among them, various supervised learning algorithms
have been used, such as in [Mooney (1996), Lee & Ng(2002), Ngai et al. (2004)]. For
other aspects in machine learning, classifier combination and semi-supervised learning
currently have attracted many researchers in WSD community. Application of these ap-
proaches has improved accuracy of supervised WSD, for example, see [Klein et al. (2002)]
for advantages of classifier combination, and see [Pham et al. (2005)] for advantages of
semi-supervised learning. Even thought, there are some limitations in these studies, which
motivated us to do a deeper study on these approaches, as pointed out below.

Classifier Combination As observed in studies of machine learning systems, though
one of the available learning systems could be chosen to achieve the best performance for
a given pattern recognition problem, the set of patterns misclassified by the different clas-
sification systems would not necessarily overlap. This means that different classifiers may
potentially offer complementary information about patterns to be classified. This obser-
vation highly motivated the recent interest in combining classifiers. Some studies of using
classifier combination for WSD, such as [Klein et al. (2002)], have applied some combina-
tion strategies to obtain better results in comparison with individual supervised systems.
However, these studies used only several combination strategies, such as majority voting,
weighted voting, and simple mixture models. Some others combination strategies such
as Product, Max, Min rules [Kittler et al. (1998)] have not been investigated. Further-
more, approaches in previous studies seem to be lack of describing a general combination
framework accompanying with a corresponding theoretical basis, which should become
the fundamental for applying the combination rules used. These observations motivate
us to apply multiple classifier combination to WSD with a comprehensive collection of
combination rules. Moreover, these rules would be used in combination frameworks cor-
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responding to certain theoretical basis.
In order to generate individual classifiers, some studies used different supervised learn-

ing algorithms, such as [Klein et al. (2002)], and others used different feature spaces such
as in [Wang & Matsumoto (2004), Pedersen (2000)]. In this thesis, we will investigate
these both types of individual classifiers, in which we will use the different kinds of knowl-
edge (information) to generate individual classifiers of the second type.

In addition, we will present a new scheme for classifier combination, in which one
more phase of combination is added to the end of common combination strategies. This
is motivated by the observation that different results yielded by applying various com-
bination rules on the set of individual classifiers can be again used for one more com-
bination. This new phase of combination is called second-layer combination, and thus
the previous combination can be considered as the first-layer combination. This pro-
posal is also motivated by the observation that combination usually gives better result in
comparison with individual classifiers, so the second-layer combination is hoped to yield
better results in comparison with the first-layer combination. Note that, this scheme
can be considered as the generalization of some special cases in previous studies, such
as [Klein et al. (2002), Florian & Yarowsky (2002), Wang & Matsumoto (2004)], among
them [Klein et al. (2002)] used maximum entropy models, [Florian & Yarowsky (2002)]
used median/average rule and majority voting, and [Wang & Matsumoto (2004)] used
kNN, for the second-layer combination.

Semi-Supervised Learning As well known, labeled data takes long time and is expensive
to obtain while unlabeled data is cheap and easy to collect. This observation motivates
the use of unlabeled data to enhance the performance of the supervised classifier built
on the initial labeled data. However, there are only several studies working on exploiting
unlabeled data for WSD, such as [Ando(2006), Pham et al. (2005), Mihalcea (2004)]. In
this work, we follow the approach, in which labeled data is iteratively extended from
unlabeled data. This approach is encouraged by a natural observation that: if we have
some labeled examples at the beginning, which are considered as seed examples, we can
built a classifier and use it to assign labels for unlabeled examples. Performing this
process iteratively we can obtain an extended labeled data which is hoped to strengthen
the initial supervised classifier. In this approach, we explicitly identify and focus on the
three following problems:

• The first problem regards the imbalance of labeled (training) data. We observe
that if a classifier is built based on training data with a bias on certain classes
(i.e., one or several classes dominate others), then this bias may become stronger
at each extension of the labeled dataset. This is because a classifier tends to detect
examples of dominant classes with high confidence, and consequently these examples
are prioritized for a new set of labeled examples. Through steps of extending labeled
data, the imbalance of labeled data may be increased, which may result in decreasing
the accuracy of the initial classifier. Previous studies just solved this by fixing the
number of new labeled examples for each class, such as in [Blum & Mitchell (1998),
Pierce & Cardie (2001)]. However, this can not be implemented in some certain
circumstances, for example in the case when we can not achieve enough confident
new labeled examples of a class for the corresponding number which is pre-defined.

• The second problem is that of how to determine a subset of new labeled examples
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with high confidence. It is clear that adding a large number of misclassified exam-
ples into the labeled dataset will probably result in generating a poor classifier in
the end. Therefore, one aims at obtaining new labeled examples with the highest
accuracy possible. To reach this target, previous studies normally used the so-called
threshold-based selection of new labeled examples. In particular, given a new exam-
ple which is assigned a label with a probability of detection, a threshold value for this
probability is predefined to decide whether a new labeled example will be selected or
not, such as in [Yarowsky (1995), Blum & Mitchell (1998), Collins & Singer (1999)].
However, this threshold-based method of selection may lead to a situation where
choosing a higher threshold will create difficulty in extending labeled data, while
it does not always result in correct classification. By contrast, a lower threshold
may result in more misclassified examples, but allows more new labeled examples
to be added. Therefore, the determination of a “correct” threshold in the approach
becomes an important issue. In addition, determining a commonly used threshold
for all unknown data is also inappropriate.

• The third problem is that of how to generate the final classifier when the process of
extending labeled data is completed. This process will be stopped when the number
of iterations reaches a pre-specified value, or when the unlabeled dataset becomes
empty. Normally, the classifier built on the labeled data obtained at the last iteration
is chosen as the final one. Some studies use a development dataset to find the
most appropriate value for the number of iterations, such as in [Pham et al. (2005),
Mihalcea (2004)]. As mentioned in second problem, the last classifier may be built
based on new training data with some misclassified examples, so both advantages
and disadvantages are concurrently brought to the last classifier with respect to the
initial classifier (built on the original dataset). Thus, choosing the classifier trained
on the last labeled dataset as the final classifier may not always be a good solution.
This observation suggests that we should combine the initial classifier and the last
classifier to utilize advantages of both of them.

By reviewing various related studies, especially regarding the WSD problem, we found
that most previous studies did not pay adequate attention to these three problems. In
this work, we consider simultaneously these three problems for the objective of improving
semi-supervised learning.

1.3 Main Contributions

As stated earlier, this thesis focuses on: (1) context representation and feature selection;
(2) applying classifier combination techniques; and (3) exploiting unlabeled data. The
main contributions of this thesis are summarized as follows:

1.3.1 Context Representation and Feature Selection

The uses of various kinds of knowledge (information) with the corresponding represen-
tations have been investigated. A method based on Forward and Backward Sequential
Selection algorithms was proposed to select the best combination of these knowledge
sources (i.e. context representations or feature subsets). Note that, different to previous
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studies, we simultaneously used three representations of bag-of-words corresponding to
three window sizes including small, medium, and large. In addition, we proposed the use
of a filter-based method to select useful individual features. In order to evaluate features,
we used two measures including the frequency of features, and the information-gain of
each feature obtained from training data. The experiment has shown that this feature
selection gives better results in comparison with feature selections from previous studies.

At the end, the proposed approach has given us a certain confidence level on the
selected features that is still lack in previous studies. Some results of this work are
reported in [Le & Shimazu (2004)].

1.3.2 Classifier Combination

In this thesis, we have presented a general framework for combining classifiers for WSD
in which individual classifiers use different representations of context or different learning
algorithms. Several common rules used in previous studies, such as majority voting,
weighted voting, and average rule are formulated in this framework.

On the one hand, various ways of using the context or different learning algorithms
could be considered as providing different information sources to identify the meaning of
the target word. Moreover, each of these information sources does not by itself provide
100% certainty as a whole piece of evidence for identifying the sense of the target. Under
such an observation, we have interpreted the framework of classifier combination in terms
of Dempster-Shafer theory of evidence [Shafer (1976)], and then formulated a general rule
of classifier combination from which several interesting classifier combination schemes are
derived. Particularly, applying the Dempster rule of combination (it is also considered
as the orthogonal sum) on this framework, we achieve a new combination rule called DS
combination rule. Furthermore, we also applied the discount operator on this framework
to derive Discounting-and-Orthogonal sum rule. Under this combination strategy, we also
can yield other combination rules, such as Average rule and Discounting-and-Average rule.

On the other hand, by considering individual classifiers as experts who have their own
soft decisions (for instance, probability distributions over the set of classes) on the word
sense identification, we now face with the problem how to derive a consensus decision
based on their individual decisions. Intuitively, in such a situation, one (i.e., decision
maker) may have a decision making strategy based on linguistic quantifiers, for instance
“a decision should be finally selected if LQ experts have supported it”, where LQ is a
linguistic quantifier such as all, most, at least half,...”. We have mimicked this decision
making behavior of human beings for decision fusion in the context of WSD. In par-
ticular, we have used OWA operators for classifier fusion in their semantic relation to
linguistic quantifiers [Zadeh 1983]. Under such a formulation, we provided a framework
for combining classifiers, which also yields several commonly used decision rules for WSD.
In particular, some fuzzy majority voting have been derived, which correspond to the
combination rules, such as Max rule, Min rule, and Median rule. The use of fuzzy lin-
guistic quantifiers not only help deriving but also provides a human-like interpretations
to these rules. Note that, some of these combination rules are also yielded in the work of
[Kittler et al. (1998)], but with some strong assumptions which is difficult to be accepted
in WSD problem. Moreover, this approach does provide us a clear interpretation about
the semantics of these combination rules.

In addition, we have proposed two second-layer combination schemes, called meta-
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combination and meta-stacking. This proposal can be considered as the generaliza-
tion of some special cases in previous studies, for example [Florian & Yarowsky (2002),
Florian et al. (2002)] used the average and voting rules on the outputs of the first-layer
combination rules.

The results of the work on classifier combination are reported in [Le et al. (2005a),
Le et al. (2005b), Le et al. (2005c), Le et al. (2006a), Le et al. (2006c), Le et al. (2006d)].

1.3.3 Semi-Supervised Learning

A new bootstrapping algorithm with several variants are generated by providing solu-
tions for the three problems: the problem of imbalance of labeled data, the problem of
determining new labeled examples with high confidence, and the problem of generating
the final classifier. With the proposed solutions, we have developed new variants for the
general bootstrapping algorithm. The experiment has shown that unlabeled data is ef-
fective in improving supervised WSD with the proposed bootstrapping algorithms, while
this improvement does not appear with the conventional bootstrapping algorithms.

A novel combination model for post semi-supervised learning was proposed. By this
model we can combine advantages from classifier combination and semi-supervised learn-
ing. Experimental result of this model has reached the state-of-the-art of WSD systems.

This work also implemented a comparison between self-training and co-training with
respect to the degree of confidence of new labeled examples. Some discussion was pre-
sented. Experimental results showed that self-training give better result than co-training
when being used for WSD problem in some particular uses of these algorithms.

The results of this work are reported in [Le et al. (2006b), Le et al. (2006e)].

1.4 Thesis Structure

This chapter presents an overview of the thesis, including an introduction of word sense
disambiguation, the motivations and problems of this thesis, and our contributions. The
rest of this thesis is organized as follows.

- Some backgrounds are presented in Chapter 2. First, we present our survey on
approaches in WSD including knowledge-based and corpus-based approach. Second, we
present three supervised learning algorithms which will be used as basic algorithms in
our proposed methods, including Naive Bayes, Support Vector Machines, and Maximum
Entropy Models.

- Our work on context representation and feature selection are presented in Chapter
3. This is one of the three main subtasks in this thesis. In this chapter, we first present
various kinds of context representation, including results from previous works and our
proposal. Next, some new ideas about feature selection for WSD and the corresponding
experiments are presented.

- Chapter 4 presents our work on classifier combination, which is one of main contents
in our thesis. In this chapter we develop a framework of classifier combination based on
Dempster-Shafer (DS) theory of evidence and the notion of Ordered Weighted Averaging
(OWA) operators with the help of fuzzy quantifiers. As the result, some combination
rules are derived such as DS, max, min, fuzzy majority voting, etc. In addition, we
also present two second-layer combination strategies based on meta-combination and the
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stacking method. These various methods will be experimented with two kinds of individ-
ual classifiers, one is based on different feature selection and the other is based on different
supervised learning algorithms.

- Chapter 5 presents our work on exploiting unlabeled data to improve performance of
supervised WSD (i.e. semi-supervised learning). This work is also a main content of the
thesis. We first introduce methods in semi-supervised learning and discuss the reason why
we choose the approach in which labeled data is iteratively extended from unlabeled data.
Next, we identify the problems that may occur in this approach, and provide solutions
for them. As the result, a new semi-supervised learning algorithm with several variants
are generated.

- Chapter 6 first summarizes the main points of the thesis including the main achieve-
ments and contributions of the thesis, as well as the remaining problems. Finally, several
open problems that are in part extended from this thesis will be mentioned in terms of
the future research directions.
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Chapter 2

Background

There are two parts (sections) in this chapter. In the first part, we will investigate the
methods used in WSD which provides an overall picture in abstract level of WSD research.
In the second part, we will introduce three supervised learning algorithms, including NB,
MEM, and SVM, which will be used as basic algorithms in the machine learning methods
of the next chapters.

2.1 Past Research on Word Sense Disambiguation

This section briefly summaries approaches and obtained results in word sense disambigua-
tion studies, specially focusing on current researches. We first present terminologies and
describe the task of WSD, and then present the methods which are grouped into rule-
based approach and corpus-based approach. Finally, we present the corpora which will be
used for experiments in this thesis, and present evaluation metrics of classifiers in WSD.

Given a context containing a polysemous word, the task of WSD is to find the correct
sense among potential senses of this word. All disambiguation work involves matching
the context of the instance of the word to be disambiguated with either information
from an external knowledge (knowledge-driven WSD), or information about the contexts
of previously disambiguated instances of the word derived from corpora (data-driven or
corpus-based WSD).

2.1.1 Knowledge-based Approach

Work on WSD reached a turning point in the 1980’s and 1990’s when large-scale lexical
resources such as dictionaries, thesauri, and corpora became widely available. Efforts
began to attempt to automatically extract knowledge from these sources and to construct
large scale knowledge bases by hand.

Machine-readable dictionaries

As the survey in [Ide et al. (1998)], Machine-readable dictionaries (MRDs) became a pop-
ular source of knowledge for language processing tasks since 1980’s. A primary area of
activity during 1980’s involved attempts to automatically extract lexical and semantic
knowledge bases from MRDs. All methods using MRD rely on the notion that the most
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plausible sense to assign to multiple co-occurring words is the one that maximizes the
relatedness among the chosen senses.

[Lesk (1986)] created a knowledge base which associated with each sense in a dic-
tionary a “signature” composed of the list of words appearing in the definition of that
sense. Disambiguation was accomplished by selecting the sense of the target word whose
signature contained the greatest number of overlaps with the signatures of neighboring
words in its context. The method achieved 50-70% correct disambiguation, using a rel-
atively fine set of sense distinctions such as those found in a typical learner’s dictionary.
Lesk’s method is very sensitive to the exact wording of each definition: the presence
or absence of a given word can radically alter the results. However, Lesk’s method has
served as the basis for most subsequent MRD-based disambiguation work. In some other
studies, [Wilks et al.(1993)] attempted to improve the knowledge associated with each
sense by calculating the frequency of co-occurrence for the words in definition texts, from
which they derive several measures of the degree of relatedness among words. This met-
ric is then used with the help of a vector method that relates each word an its context.
[Cowie et al. (1992)] used the simulated annealing technique for overcoming the combi-
natorial explosion of the Lesk’s method.

Inconsistencies in dictionaries are not the only and perhaps not the major source of
their limitations for WSD. While dictionaries provide detailed information at the lexical
level, they lack pragmatic information that enters into sense determination. For example,
the link between ash and tobacco, cigarette, or tray in a network such as Quillian’s is
very indirect, whereas in the Brown corpus, the word ash co-occurs frequently with one
of these words. It is therefore not surprising that corpora have become a primary source
of information for WSD.

Thesauri and Computational Lexicons

Thesauri provide information about relationships among words, most notably synonymy.
Roget’s International Thesaurus, which was put into machine-tractable form in the 1950’s
and has been used in a variety of applications including machine translation, information
retrieval, and content analysis, also supplies an explicit concept hierarchy consisting of
up to eight increasingly refined levels. Typically, each occurrence of the same word under
different categories of the thesaurus represents different senses of that word; i.e., the
categories correspond roughly to word senses [Yarowsky (1992)]. A set of words in the
same category are semantically related.

[Yarowsky (1992)] derived classes of words by starting with words in common cat-
egories in Roget’s (4th edition). A 100–word context of each word in the category is
extracted from a corpus (the 1991 electronic text of Grolier’s Encyclopedia), and a mu-
tual information – like statistic is used to identify words most likely to co-occur with the
category members. The resulting classes are used to disambiguate new occurrences of a
polysemous word: the 100-word context of the polysemous occurrence is examined for
words in various classes, and Bayes’ Rule is applied to determine the class most likely
to be that of the polysemous word. Since class is assumed by Yarowsky to represent a
particular sense of a word, assignment to a class identifies the sense. He reports 92%
accuracy on a mean three-way sense distinction. Yarowsky notes that his method is best
for extracting topical information, which is in turn most successful for disambiguating
nouns (see Section 3.1.2). He uses the broad category distinctions supplied by Roget’s,
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although he points out that the lower-level information may provide rich information for
disambiguation.

Other approaches measure the relatedness between words, taking as a reference a
structured semantic net. Thus, [Sussna (1993)] employs the notion of conceptual dis-
tance between network nodes in order to improve precision during document index-
ing. [Agirre & Rigau (1996)] present a method for the resolution of the lexical ambi-
guity of nouns using the WordNet noun taxonomy and the notion of conceptual density.
[Rigau et al. (1997)] combine a set of knowledge-based algorithms to accurately disam-
biguate definitions of MRDs. [Mihalcea & Moldovan (1999)] suggest a method that at-
tempts to disambiguate all the nouns, verbs, adverbs, and adjectives in a given text by
referring to the senses provided by WordNet. [Magnini el al. (2002)] explore the role of
domain information in WSD using WordNet domains; in this case, the underlying hy-
pothesis is that information provided by domain labels offers a natural way to establish
semantic relations among word senses, which can be profitably used during the disam-
biguation process.

Like machine-readable dictionaries, a thesaurus is a resource created for humans and is
therefore not a source of perfect information about word relations. It is widely recognized
that the upper levels of its concept hierarchy are open to disagreement (although this is
certainly true for any concept hierarchy), and that they are so broad as to be of little use in
establishing meaningful semantic categories. Nonetheless, thesauri provide a rich network
of word associations and a set of semantic categories potentially valuable for language-
processing work; however, Roget’s and other thesauri have not been used extensively for
WSD.

Although knowledge-based systems have been proven to be ready-to-use and scalable
tools for all-words WSD because they do not require sense-annotated data, corpus-based
systems in general obtain better precision than the knowledge-based ones.

2.1.2 Corpus-based Approach

In the last fifteen years, empirical and statistical approaches have attracted almost studies
in NLP field. Many machine learning methods have been applied to a large variety of
NLP tasks with remarkable success. The types of NLP problems initially addressed by
statistical and machine learning techniques are those of language ambiguity resolution, in
which the correct interpretation should be selected from among a set of alternatives in
a particular context (e.g., word-choice selection in speech recognition or machine trans-
lation, part-of-speech tagging, word-sense disambiguation, co-reference resolution, etc.).
These techniques are particularly adequate for NLP because they can be regarded as
classification problems, which have been studied extensively in the ML community. Re-
garding automatic WSD, one of the most successful approaches in the last ten years is
supervised learning from examples, in which statistical or ML classification models are
induced from semantically annotated corpora. Generally, supervised systems have ob-
tained better results than unsupervised ones, a conclusion that is based on experimental
work and international competitions 1. This approach uses semantically annotated cor-
pora to train machine learning (ML) algorithms to decide which word sense to choose in
which contexts. The words in such annotated corpora are tagged manually using semantic
classes taken from a particular lexical semantic resource (most commonly WordNet).

1http://www.senseval.org
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We divide corpus-based methods into three groups including supervised learning ap-
proach, unsupervised learning approach, and semi-supervised approach which are corre-
sponding to three types of data used for training: using only annotated data, using only
un-annotated data, and using both annotated and un-annotated data. In the following,
we will survey WSD studies followed corpus-based approach with respect to these three
groups.

Supervised Learning Based Methods

One of the most successful current lines of research is the corpus-based approach, in which
statistical or Machine Learning algorithms have been applied to learn statistical models
or classifiers from corpora in order to perform WSD. A supervised WSD system requires
an annotated dataset which includes labeled (or tagged) examples, in which each example
contains the target word w assigned with its right sense. This data, called labeled data
or training data, is then used for a supervised learning algorithm to train a classifier for
future detection of test examples.

Until now, many ML algorithms have been applied, such as: Decision Lists [Yarowsky (1994),
Agirre & Martinez (2001)], Neural Networks [Towell & Voorhees (1998)], Bayesian learn-
ing [Bruce & Wiebe (1994)], Exemplar-based learning [Ng (1997), Escudero et al. (2000a)],
Boosting [Escudero et al. (2000b)], etc. Further, in [Mooney (1996)] some of the previous
methods are compared jointly with Decision Trees and Rule Induction algorithms, on a
very restricted domain. Recently, [Lee & Ng(2002)] evaluates some strong ML algorithms
in WSD, including Naive Bayes, Support Vector Machines, AdaBoost, and Decision Tree.
This work was accomplished for the recently competition data including Senseval-1 and
Senseval-2. In the contest of Senseval-3, [Ngai et al. (2004)] also investigate the semantic
role labeling with Boosting, SVMs, Maximum Entropy, SNOW, and Decision Lists.

Reviewing results from these studies, we can conclude that there is no ML algorithm
which dominates others. This conclusion is based on two observations that there are no
large distance between the accuracies obtained from different algorithms, and the best
algorithm are changed via different corpora.

Classifier Combination Based Methods

As observed in studies of machine learning systems, although one of the available learning
systems could be chosen to achieve the best performance for a given pattern recognition
problem, the set of patterns misclassified by the different classification systems would not
necessarily overlap. This means that different classifiers may potentially offer comple-
mentary information about patterns to be classified. This observation highly motivated
the recent interest in combining classifiers. Especially, classifier combination for lexical
disambiguation in WSD has, not surprisingly, received much attention recently from the
community.

In the WSD literature, the first empirical study of combining classifiers was presented
in [Kilgarriff & Rosenzweig (2000)], in which the authors combined the output of the par-
ticipating SENSEVAL1 systems via simple voting. [Pedersen (2000)] built an ensemble
of Naive Bayesian classifiers, each of which is based on lexical features that represent co-
occurring words in varying sized windows of context. [Klein et al. (2002)] use a stacking
type of combination techniques with some combination strategies including majority vot-
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ing, weighted voting. [Hoste et al. (2002)] used word experts consisting of four memory-
based learners trained on different context. Output of the word experts is based on ma-
jority voting or weighted voting. In [Florian et al. (2002)], the authors used six different
classifiers as components of their combination. They compared several different combi-
nation strategies which include combining the posterior distribution, combination based
on order statistics, and several different voting strategies. [Wang & Matsumoto (2004)]
presented a kind of stacking; individual classifiers were built using NB with varying sized
windows of context that are similar to Pedersen’s approach [Pedersen (2000)], and then
used K-nearest neighbors as the meta learning method.

Unsupervised Learning Based Methods

Although supervised methods typically achieve better performance than unsupervised
alternatives, their applicability is limited to those words for which sense labeled data ex-
ists, and their accuracy is strongly correlated with the amount of labeled data available
[Yarowsky el al. (2002)]. Furthermore, obtaining manually labeled corpora with word
senses is costly and the task must be repeated for new domains, languages, or sense
inventories. There are not many studies about unsupervised WSD, that is easy to under-
stand because unsupervised WSD obtains lower accuracy in comparison with supervised
learning. However, it is very difficulty to achieve a large annotated corpora for all ambigu-
ous words, which is prerequisite for building a good supervised WSD system. In that case,
an unsupervised WSD is necessary. Moreover, this work is useful not only for preparing
annotated corpora or constructing dictionary, but also for some other NLP tasks such as
Information Retrieval, (see [Schutze (1998)] for an example).

The essential problem in unsupervised learning for WSD is how to group the given con-
texts of an ambiguous word into cluster such that the contexts in the same cluster have the
same sense of this ambiguous word. The most popular work is [Schutze (1998)], in which
senses are represented in Word Space and the EM algorithm are invoked to optimize the
parameters of the obtained classifiers. Recently, Pedersen and his co-workers have tried to
build an WSD system and their results are published in [Purandare & Pedersen (2004),
Kulkarni & Pedersen (2005)]. [Brody et al. (2006)] used ensemble approach to unsuper-
vised WSD and based on predominant senses which are derived automatically from raw
text.

Semi-Supervised Learning Based Methods

Due to the difficulty of obtaining labeled data, while unlabeled data is abundant and
cheap to collect, recently several WSD studies have tried to use unlabeled data to boost
the performance of supervised learning. The process of using both labeled and unla-
beled data to build a classifier is called semi-supervised learning. With a small number
of labeled examples, we may face two problems: the first one is that we cannot archive
the correct probability distribution over feature space; the second one is that there is
lack of features in the training data, i.e. we may see new features in test data. There
were several studies which aimed to overcome the second problem by using external re-
sources as, e.g., thesaurus or lexicons to disambiguate word senses or automatically gen-
erate sense-tagged corpus such as in [Lesk (1986), Lin (1997), McCarthy et al. (2004),
Seo et al. (2004), Yarowsky (1992)] or by using similarity between words based on un-
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tagged corpus such as in [Karov & Edelman (1998)], or by basing on the WordNet re-
source such as in [Leacock (1998)]. There is also another approach in the case of lacking
labeled sense-tagged examples, in which word senses are distinguished with the help of a
second language. In this approach, the studies exploited the differences between mapping
of words to senses in different languages making use of bilingual corpora (e.g. parallel cor-
pora or untagged monolingual corpora in two languages), such as in [Brown et al. (1991),
Dagan & Itai (1994), Diab & Resnik (2002), Li & Li, Ng et al. (2003)].

Recently, almost related studies interest in using semi-supervised learning algorithms
to extend labeled data. Among them, Yarowsky algorithm in [Yarowsky (1995)] can be
considered as the first bootstrapping algorithm. In this algorithm, the author used some
labeled examples as seeds and extracted from them the decision rules, which are then used
to detect senses for new examples. This algorithm was based on the principle “one sense
per collocation”. As the result, new labeled examples were obtained and added to the
current labeled dataset. New decision rules were continuously extracted and this process
was repeated until converged. [Mihalcea (2004)] did an investigation of application of co-
training and self-training to word sense disambiguation. In another study, [Zheng (2005)]
applied the Label Propagation based semi-supervised learning algorithm proposed by
[Zhu & Ghahramani (2002)] to WSD. They also suggested an entropy-based method to
automatically identify a distance measure to boost the performance of Label Propagation
algorithm on a given dataset. [Pham et al. (2005)] applied an algorithm which used
co-training in spectral graph transductive(SGT) [Joachims (2003)] for WSD. Instead of
directly computing the nearest neighbor graph in SGT, the authors constructed a separate
graph for each view, and combined them together to obtain the final graph.

2.1.3 Corpora and Evaluation

Corpora

In the scope of this thesis, we just consider the corpora which aims to serve for corpus-base
approach and related for only lexical task. The following are some corpora wildly used in
WSD community and will be used in this thesis.

– Datasets of the four words, namely interest, line, serve, and hard, which are used in
numerous comparative studies of word sense disambiguation methodologies [Pedersen (2000),
Leacock (1998), Ng & Lee (1996), Bruce & Wiebe (1994)]. There are 2369 instances of
interest with 6 senses, 4143 instances of line with 6 senses, 4378 instances of serve with
4 senses, and 4342 instances of hard with 3 senses.

– In 1998, the first contest for word sense disambiguation was organized, and called
SENSEVAL-1. Next, the second and the third contests took place in 2001 and 2004 respec-
tively. Their data for the competition are called Senseval-1, Senseval-2, and Senseval-3
respectively, and quickly became the most popular corpora in the community. There are
53 lexical item, 73 lexical items, and 57 lexical items in English lexical sample of Senseval-
1, Senseval-2, and Senseval-3, respectively. Data for each lexical item contains a training
dataset and a test dataset. Note that in each instance (or example) in Senseval’s data the
target word may be assigned with multiple senses. For an example which are assigned
with K senses (K > 1), we multiple them with K instances, each instance is assigned with
one sense in these K senses.
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Table 2.1: Experimental Results on Senseval-2 from Previous Studies

Method Accuracy
ASO multi-task, [Ando(2006)] 68.1 (optimized parameter)

classifier combination, [Florian & Yarowsky (2002)] 66.5
polynomial KPCA, [Wu et al. (2004)] 65.8

SVM, [Lee & Ng(2002)] 65.4
Senseval-2 best system 64.2

Table 2.2: Experimental Results on Senseval-3 from Previous Studies

Method Accuracy
ASO: multi-task learning 73.8

ASO: semi-supervised learning 73.5
ASO: muli-task + semi-supervised learning 74.1

Senseval-3 best system 72.9

Evaluation Metrics

Word sense disambiguation classifiers are usually evaluated using a standard measure
metric in Machine Learning: the prediction accuracy (or accuracy for short).

Assume we have a WSD classifier H and a test data consisting of N labeled examples
which are labeled by humans. Consider these examples as unlabeled ones and using H
to detect labels (senses) for these N examples, and suppose that among there are m
examples correctly label detected. Then the prediction accuracy of H on the test data is
define as follows:

accuracy =
the number of correctly detected labels predicted by the classifier

the size of the test data

=
m

N

Table 2.1 and Table 2.2 show experimental results on Senseval-2 and Senseval-3, re-
spectively, from the best WSD systems of the current researches.

2.2 Supervised Learning Algorithms

In this section we briefly introduce three supervised learning algorithms which will be
used as the supervised basic algorithms in our investigations and proposals for feature
selection, classifier combination, and exploiting unlabeled data. These algorithms include
Naive Bayes, Maximum Entropy Models, and Support Vector Machines which are very
popular and strong supervised learning algorithms in many classification problems such
as text categorization, part-of-speech tagging, etc. and of course effective for word sense
disambiguation.
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In all related studies, like many problems in natural language processing, word sense
disambiguation is considered as a classification problem in which the task if to observe
some linguistic “context” b ∈ B and predict the correct linguistic “class” a ∈ A. This
involves constructing a classifier h : B → A, which in turn can be implemented with
a conditional probability distribution p, such that p(a|b) is the probability of “class” a
given some “context” b. For WSD problem, the context b may consist of some evidences
(features) such word, collocation, part-of-speech tags, etc. Large text corpora usually
contain some information about the co-occurrence of a′s and b′s, but never enough to
reliably specify p(a|b) for all possible (a, b) pairs. The challenge is then to find a method
for using the partial evidence about the a′s and b′s to reliably estimate the probability
model p.

Below, I will introduce in order the classification models which are based on maximum
entropy model, support vector machines, and Naive Bayesian rule.

2.2.1 Maximum Entropy Models

Learning with Maximum Likelihood Estimation on Exponential Models

The work in this thesis fits in what is called the corpus-based approach. In this approach,
we assume the existance of a training set T = {(a1, b1), . . . , (aN , bN)}, which is a large set
of contexts b1, . . . , bN that have been annotated with their correct classes a1, . . .

One way to combine evidence is to “weight” the features by using them in a log-linear,
or exponential, model:

p(a|b) =
1

Z(b)

k∏
j=1

α
fj(a,b)
j (2.1)

Z(b) =
∑

a

k∏
j=1

α
fj(a,b)
j

where k is the number of features and Z(b) is a normalization factor to ensure that∑
a p(a|b) = 1. Each parameter αj, where αj > 0, corresponds to one feature fj and can

be interpreted as a “weight” for that feature. The probability p(a|b) is then a normalized
product of those feature that are “active” on the (a, b) pair, i.e., those feature fj such
that fj(a, b) = 1. The weights α1, . . . , αk of the probability distribution p∗ that best fit
the training data can be obtained with the popular technique of maximum likelihood
estimation:

Q = {p|p(a|b) =
1

Z(b)

k∏
j=1

α
fj(a,b)
j }

L(p) =
∑

a,b

p̃(a, b)logp(a, b)

p∗ = arg max
q∈Q

L(q)
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where Q is the set of models of log-linear form, p̃(a, b) is the probability of seeing (a, b)
in the training set T , L(p) is the conditional log-likelihood of the training set T , and p∗

is the optimal probability distribution according to the maximum likelihood criterion.

Conditional Maximum Entropy Models

As mention before, suppose that we have k features and given a linguistic prediction
a ∈ A and an observable context b ∈ B, the ultimate goal is to find an estimate for
the conditional probability p(a|b). In the conditional maximum entropy framework used
in [Berger et al. (1996)], the optimal solution p∗ is the most uncertain distribution that
satisfies the k constraints of feature expectations:

p∗ = arg max
p∈P

H(p)

H(p) = −
∑

a,b

p̃(b)p(a|b)logp(a|b)

P = {p|Epfj = Ep̃fj, j = 1, . . . , k}
Ep̃fj =

∑

a,b

p̃(a, b)fj(a, b)

Epfj =
∑

a,b

p̃(b)p(a|b)fj(a, b)

An important difference here from the simple example is that H(p) denotes the con-
ditional entropy averaged over the training set, as opposed to the joint entropy, and that
the marginal probability of b used here is the observed probability p̃(b), as opposed to a
model probability p(b). As presented in [Berger et al. (1996)], p̃(b) is considered as a mar-
ginal probability. Here Epfj is the model p′s expectation of fj, Ep̃fj denotes the observed
expectation of a feature fj, p̃(a, b) denotes the observed probability of (a, b) in some fixed
training sample, and P denotes the set of probability models that are consistent with the
observed evidence.

Relationship to Maximum Likelihood

In general, the maximum likelihood and maximum entropy frame works are two different
approaches to statistical modelling, but in this case they yield the same answer. It can
show that maximum likelihood parameter estimation for models of form 2.1 is equivalent
to maximum entropy parameter estimation over the set of consistent models. That is,

p∗ = arg max
q∈Q

L(q) = arg max
p∈P

H(p)

Under the maximum likelihood criterion, p∗ will fit the data as closely as possible, while
under the maximum entropy criterion, p∗ will not assume anything beyond the information
in the linear constraints that define P . A proof in [Ratnaparkhi (1998)] shows that the
condition p∗ = arg maxq∈Q L(q) is equivalent to the condition that p∗ = arg maxp∈P H(p).
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Parameter Estimation

In [Ratnaparkhi (1998)], the author uses an algorithm called Generalized Iterative Scaling,
or GIS, to find values for the parameter of p∗. The algorithm is presented in the procedure
called GIS as follows

α
(0)
j = 1

α
(n+1)
j = α

(n)
j [

Ep̃fj

Ep(n)fj

]
1
C

where C is some constant and

Ep(n)fj =
∑

a,b

p̃(b)p(n)(a|b)fj(a, b)

p(n)(a|b) =
1

Z(b)

l∏
j=1

(α
(n)
j )fj(a,b)

Given k features, the GIS procedure requires computation of each observed expectation
Ep̃fj, and requires re-computation of the model’s expectation Epfj on each iteration, for
j = 1, . . . , k. The quantity Ep̃fj is merely the count of fj normalized over the training
set:

Ep̃fj =
∑

a,b

p̃(a, b)fj(a, b) =
1

N

N∑
i=1

fj(ai, bi)

where N is size of the training set T = {(a1, b1), . . . , (aN , bN)}.
The computation of Epfj involves summing over each context b in the training set,

and each a ∈ A:

Ep(n)fj =
∑

a,b

p̃(b)p(n)(a|b)fj(a, b)

Note that fj(ai, bi) can be simply a binary function, defined as follows:

fj(ai, bi) =

{
1, if bi“contain′′fj

0, otherwise
(2.2)

2.2.2 Support Vector Machines

Support Vector Machines (SVMs) are based on the principle of Structural Risk Minimiza-
tion from the Statistical Learning Theory [Vapnik (1998)] and, in their basic form, they
learn a linear discriminant that separates a set of positive examples from a set of negative
examples with maximum margin (the margin is defined by the distance of the hyperplane
to the nearest of the positive and negative examples). This learning bias has proved to
have good properties in terms of generalization bounds for the induced classifiers.
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Linear SVM

SVM (Support Vector Machine) is a useful technique for data classification. A classi-
fication task usually involves with training and testing data which consist of some data
instances. Suppose we have N training data points {(x1, y1), . . . , (xN , yN)} where xi ∈ Rd

and yi ∈ {±1}. We would like to learn a linear separating hyperplane classifier:

f(x) = sgn(w.x− b)

Furthermore, we want this hyperplane to have the maximum separating margin with
respect to the two classes. Specifically, we want to find this hyperplane H : y = w.x−b = 0
and two hyper-planes parallel to it and with equal distance to it,

H1 : y = w.x− b = +1

H2 : y = w.x− b = −1

with the condition that there are no data points between H1 and H2, and the distance
between H1 and H2 is maximized.

For any separating plane H and the corresponding H1 and H2, we can always normalize
the coefficients vector so that H1 will be y = w.x− b = +1 and H2 will be y = w.x− b =
−1.

We want to maximize the distance between H1 and H2. So there will be some positive
examples on H1 and some negative examples on H2. These examples are called support
vectors because only they participate in the definition of the separating hyperplane, and
other examples can be removed and/or moved around as long as they do not cross the
planes H1 and H”.

Recall that in 2-D, the distance from a point (x0, y0) to a line Ax + By + C = 0 is

|Ax0 + By0 + C|√
A2 + B2

Similarly, the distance between H1 and H2 is 2
‖w‖ . So, in order to maximize the

distance, we should minimize ‖w‖ = wTw with the condition that there are no data
points between H1 and H2:

w.x− b ≥ +1, for positive examples yi = +1

w.x− b ≤ −1 for negative examples yi = −1

These two conditions can be combined into

yi(w.xi − b) ≥ 1

So the problem can be formulated as

min
w,b

1

2
wTw

subject to yi(w.xi − b) ≥ 1
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This is a convex, quadratic programming problem (in mathbfw, b), in a convex set.
Introducing Lagrange multipliers α1, . . . , αN ≥ 0 we have the following Lagrangian:

L(w, b, α) ≡ 1

2
wTw −

N∑
i=1

αiyi(w.xi − b) +
N∑

i=1

αi

The Dual Problem

We can solve the Wolfe dual instead: maximize L(w, b, α) with respect to α, subject to
the constraints that the gradient of L(w, b, α) with respect to the primal variables w and
b vanish:

∂L
∂w

= 0

∂L
∂b

= 0

and that α ≥ 0

Form these equations, we have

w =
N∑

i=1

αiyixi

N∑
i=1

αiyi = 0

Substitute them into L(w, b, α), we have

L ≡
N∑

i=1

αi − 1

2

∑
i,j

αiαjyiyjxixj

in which the primal variables are eliminated.

When we solve αi, we can get w =
N∑

i=1

αiyixi, and we can classify a new object x with

f(x) = sgn(w.x + b)

= sgn((
N∑

i=1

αiyixi).x + b) (2.3)

= sgn(
N∑

i=1

αiyi(xi.x) + b) (2.4)

(2.5)

Please note that in the objective function and the solution, the training vectors xi

occur aoly in the form of dot product.
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Non-linear SVM

If the surface separating the two classes are not linear, we can transform the data points
to another high dimensional sapce such that the data points will be linearly separable.
Let the transformation be Φ(.). In the high dimensional space, we solve

LD ≡
N∑

i=1

αi − 1

2

∑
i,j

αiαjyiyjΦ(xi)Φ(xj)

Suppose, in addition, Φ(xi)Φ(xj = k(xi,xj). That is the dot product in that high
dimensional space is equivalent to a kernel function of the input space. So we need not
be explicit about the transformation Φ(.) as long as we know that the kernel function
k(xi,xj) is equivalent to the dot product of some other high dimensional space. There
are many kernel functions that can be used this way, for example:

• Linear: K(xi,xj) = xT
i xj

• Polynomial:K(xi,xj) = (γxT
i xj + r)d, γ > 0

• Radial basis function (RBF): K(xi,xj) = exp(−γ‖xi − xj‖2), γ > 0

• Sigmoid: K(xi,xj) = tanh(γxT
i xj + r)

Here, γ, r, and d are kernel parameters.

2.2.3 Naive Bayes

Naive Bayes is the simplest representative of probabilistic learning methods. Event that
it is shown to be quite effective for WSD task, such as in [Lee & Ng(2002)]. Moreover,
it is also used as basic supervised learning algorithm for other learning approaches than
supervised learning, such as classifier combination [Hoste et al. (2002), Pedersen (2000),
Klein et al. (2002)] or in our work [Le et al. (2005a), Le et al. (2005b), Le et al. (2006a)]
and semi-supervised learning [Pham et al. (2005), Mihalcea (2004)].

We assume that the polysemous word w is disambiguating. Suppose w has a set of
potential senses (classes) ω = {ω1, . . . , ωc}, and given a context of w which is presented by
a set of features f = {f1, . . . , fn}. The Bayesian theory suggests that the word w should
be assigned to class ωk provided the a posteriori probability of that class is maximum,
namely

k = arg max
j

P (ωj|f)

According to Bayes theory, we have:

P (ωj|f) =
P (ωj)P (f |ωj)

P (f)
=

P (ωj)
n∏

i=1

P (fi|ωj)

P (f)
(2.6)

Let us denote

rj =
P (ωj|f)
P (ω1|f) , for j = 1, . . . , c
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With this notation, we immediately obtain

P (ω1|f) =
1∑c

j=1 rj

(2.7)

Clearly, r1 = 1. We will then compute rj (j = 2, . . . , c) based on the following
formulation. From (2.6), we have

rj =
P (ωj|f)
P (ω1|f) =

P (ωj)
∏n

i=1 P (fi|ωj)

P (ω1)
∏n

i=1 P (fi|ω1)

Taking the log of the last expression, we obtain

log(rj) =
n∑

i=1

log(P (fi|ωj)) + log(P (ωj))−
n∑

i=1

log(P (fi|ω1))− log(P (ω1)) (2.8)

which is easy to compute more exactly. Once all rj are computed via (2.8), it is easily to
derive probabilities P (ωj|f), for j = 1, . . . , c, from (2.7).

The probability of sense ωj, P (ωj), and the conditional probability of a feature fi

given the sense ωj, P (fi|ωj), are computed via maximum-likelihood estimation as:

P (ωj) =
count(ωj)

N

and

P (fi|ωj) =
count(fi, ωj)

count(ωj)

where count(fi, ωj) is the number of occurrences of fi in a context of sense ωj in the
training corpus, count(ωj) is the number of occurrences of ωj in the training corpus, and
N is the total number of occurrences of the polysemous word w or the size of the training
dataset. To avoid the effects of zero counts when estimating the conditional probabilities
of the model, when meeting a new feature fi in a context of the test dataset, for each
sense ωj we set P (fi|ωj) equal to 1

N
.

2.3 Summary

The first part of this chapter has briefly investigated methods used in word sense dis-
ambiguation and shown an overall picture in abstract level of WSD study. Some con-
cepts, data, and evaluation, which are preparation steps for our work, are also presented.
Through this investigation, we can see that the accuracy of all past studies is around 70%,
so the WSD task is still an open problem. Moreover, thought various aspects of machine
learning have been applied to WSD, it is necessary to discover new aspects of machine
learning and to find out whether it is helpful for improving performance of WSD systems.
Particularly, from the view of machine learning, we see that the two approaches including
classifier combination and unlabeled data exploitation for WSD are just researched at an
initial step, so that only some aspects of these approaches are investigated with limited
results. This observation motivates us to focus our study on these approach. In addition,
feature selection is an important factor to achieve high performance of WSD systems, so
that it is also a main work in this thesis.
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In the second part, we have briefly introduce three supervised learning algorithms,
including NB, MEM, and SVM, which will be used as basic algorithms for the learning
approaches in our works: feature selection, classifier combination, and semi-supervised
learning. Among these algorithms the NB based classifier is built by ourself, and the MEM
based classifier and SVM based classifier are borrowed from published tools. This is the
reason why we do not go deeper in building MEM and SVM classifiers. In particular, MEM
library is borrowed from http : //www − tsujii.is.s.u− tokyo.ac.jp/ tsuruoka/maxent/
and SVM library is borrowed in LIBSVM http : //www.csie.ntu.edu.tw/ cjlin/libsvm/.
It is also worth to note that this SVM tool supports for multi-class problem so it is
convenient for us to use in our experiment. We also use the default parameters of SVM
library with linear kernel because through trying some parameter setting we see that it
gives the best accuracy.
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Chapter 3

Context Representation and Feature
Selection

One of the most important tasks in WSD is the determination of useful information for
determining word senses. In the corpus-based approach, most studies just consider the
information extracted from the context in which the target word appears. From our
observation and other investigation such as [Klein et al. (2002), Mihalcea (2004)], we see
that designing features plays an important role for classifiers to obtain high accuracy.
Further, we observed that, in the context of WSD, the choice of what method of feature
selection to use may more strongly influence the quality of classifiers than the choice of
what machine learning algorithm to apply.

In this chapter, we consider the work of information determination in two aspects:
context representation and feature selection. The first aspect involves selecting useful
knowledge sources: we first consider various knowledge sources and try to answer the
question that combine all these kinds or only some of them, which is the best? The latter
aspect involves the selection of individual features to which we will find out whether some
features can be considered to be redundant or noised to remove from the whole set of
features.

Therefore, in this chapter we first investigate various knowledge sources (i.e. context
representations) and represent them as features. And then, we present proposed methods
for feature selection. Note that, to the task of feature selection we divide it into two
subtasks: selection of knowledge sources (which are represented by feature subsets) and
selection of individual features.

3.1 Context Representation

3.1.1 The Kinds of Knowledge

Context is the only means to identify the meaning of a polysemous word. Therefore, all
work on sense disambiguation relies on the context of the target word to provide informa-
tion to be used for its disambiguation. For corpus-based methods, context also provides
the prior knowledge with which current context is compared to achieve disambiguation.

According to [Ide et al. (1998)], context is used in two ways:

• The bag of words : here, context is considered as words in some window surrounding
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the target word, regarded as a group without consideration for their relationship to
the target in terms of distance, grammatical relations, ect.

• Relational information: context is considered in terms of some relations, selectional
preferences, orthographic properties, phrasal collocation, semantic categories, ect.

[Ng & Lee (1996)] is considered as the first study in which various linguistic knowl-
edge sources are used, including topical context, collocation of words, and the verb-object
syntactic relationship. [Leacock (1998)] used more kinds of information, that are words
or part-of-speech tags assigned with their positions in relation to the target word. More
currently, [Lee & Ng(2002)] used all these kinds of information, which then become pop-
ular sources of knowledge for recent studies, but with some modifications (add or remove
some knowledge sources), se [Le & Shimazu (2004), Le et al. (2005a), Ando(2006)].

Suppose that w is the polysemous word to be disambiguated, and S = {s1, . . . , sm} is
the set of its potential senses. Given a context W of w represented as:

W = w−NL , . . . , w−1, w0, w+1, . . . , w+NR (3.1)

W is a context of w within a windows (−NL, +NR) in which w0 = w is the target
word; for each i ∈ {NL, . . . ,−1, +1, . . . , +NR}, wi is a word appearing at the position i
in relation with w. If i < 0 then wi stands in the left of w, and if i > 0 then wi stands
in the right of w. For simplify, we assume NL = NR and denote this value by N .

Up to now, most studies use part-of-speech information as an important knowledge
source for determining word senses. Therefore, the sentences containing w should be POS
tagged. Denote the context in (3.1) after POS tagging as:

W = [w−N , p−N ], . . . , [w−1, p−1], [w0, p0], [w+1, p+1], . . . , [w+N , p+N ] (3.2)

In the below, we divide the usually used knowledge into the four kinds.

Topical Context

Topical context includes substantive words that co-occur with a given sense of the poly-
semous word, usually within a window of several sentences. Unlike micro-context, which
has played a role in disambiguation work since the early 1950s, topical context has been
less consistently used. Methods relying on topical context exploit redundancy in a text–
that is, the repeated use of words that are semantically related throughout a text on
a given topic. Thus, base is ambiguous, but its appearance in a document containing
words such as pitcher, and ball is likely to isolate a given sense for that word (as well
as the others, which are also ambiguous). Work involving topical context typically uses
the bag-of-words approach, in which words in the context are regarded as an unordered
set. [Yarowsky (1992)] uses a 100-word window, both to derive classes of related words
and as context surrounding the polysemous target, in his experiments using Roget’s The-
saurus. [Gale et al. (1993)], looking at a context of ±50 words, indicate that while words
closest to the target contribute most to disambiguation, they improved their results from
86% to 90% by expanding context from ±6 (a typical span when only micro-context is
considered) to ±50 words around the target. All studies use this kind of information
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as an important part of the whole knowledge used for disambiguating senses, such as
[Pedersen (2000), Lee & Ng(2002)].

Topical context is represented by a set of unordered words in a certain window size.
Particularly, if the context is represented as in (3.2), then a topic context in a window
(−M, +M) is represented by the set, denoted by TC, as follows:

TC = {w−M , . . . , w−1, w+1, . . . , w+M}

Local Words

Using “Local Words” we want to mention the information extracted from “the words in
a local context”. Note that a “local context” is a context containing the target word in a
small size. In our opinion, collocations and ordered words, which are wildly used in WSD
studies, can be grouped into this kind of information.

Collocations According to [Ide et al. (1998)], a significant collocation can be defined
as a syntagmatic association among lexical items. With the context W as represented in
(3.2), a collocation is defined as a sequence of words from the position −l to the position
+r: w−l . . . w0 . . . wr, where l ≥ 0, r ≥ 0, and l + r ≥ 1. As usually used in previous
works, we design a set of collocations based on the maximum length of these collocations.
Denote ColW be the set of collocations of maximum length Len, it is defined as:

ColW = {w−l . . . w0 . . . w+r|l ≥ 0; r ≥ 0; l + r ≥ 1; l + r ≤ Len}

Ordered Words Different to unordered words in topical context, each ordered word
consists of a word and its position in relationship with the target word. In our view,
ordered words in a local context contain information about semantic and syntax relations
between neighbor words and the target word. The set of ordered words in a local window
(-l,+r), denoted by OW , consists of pairs (wi, i), as follows.

OW = {(wi, i)|i = −l, . . . , +r}

Local Part-Of-Speeches

Using “Local Part-Of-Speeches (POSs)” we want to mention the information extracted
from “the Part-Of-Speeches tags in a local context”. Similar to Local Words, the kinds of
information of also consists of collocations of POSs and ordered POSs. The difference here
is that the Local Word involves the orthographic forms of the neighbor words while Local
POS involves their part-of-speech forms. In a window (−l, +r) the set of collocation of
POSs with maximum length Len, denoted by ColP , and the set of ordered POSs, denoted
by OP , are formed as:

ColP = {p−l . . . w0 . . . p+r|l ≥ 0; r ≥ 0; l + r ≥ 1; l + r ≤ Len}

OP = {(pi, i)|i = −l, . . . , r}
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Syntactic Relations

[Hearst (1991)] segments text into noun phrases, prepositional phrases, and verb groups,
and discards all other syntactic information. [Yarowsky (1993)] determines various be-
haviors based on syntactic category; for example, that verbs derive more disambiguating
information from their objects than from their subjects, adjectives derive almost all dis-
ambiguating information from the nouns they modify, and nouns are best disambiguated
by directly adjacent adjectives or nouns. In other works, syntactic information most
often is simply part of speech, used invariably in conjunction with other kinds of infor-
mation such as [Bruce & Wiebe (1994), Leacock (1998)]. Evidence suggests that different
kinds of disambiguation procedures are needed depending on the syntactic category and
other characteristics of the target word [Yarowsky (1993), Leacock (1998)]. Most recent
studies also use syntactic information such as in [Lee & Ng(2002), Montoyo et al. (2005),
Ando(2006)]. However, there is no an unique use of syntactic information through all these
works. This circumstance can be seen, at least, in two aspects: the used syntactic parser,
and the syntactic relations. For example, [Hearst (1991)] have avoided complex processing
by using shallow parsing to achieve noun phrases, prepositional phrases, and verb groups,
and then extract from these phrases the complementary components of the target word as
the syntactic information; [Lee & Ng(2002)] parsed sentences containing the target word
using a statistical parser in [Charniak (2000)], and then the generated constituent tree is
converted into a dependency tree to obtain syntactic information; [Ando(2006)] used the
Slot Grammar-based full parser ESG in [McCord (1990)] and extracted several syntactic
relations such as subject-of, object-of, and noun modifier.

3.1.2 Our Selection

In our work, we use all kinds of knowledge as mentioned above and represent them as
subsets of features, as below:

• bag-of-words, F1(l, r) = {w−l, . . . , w+r}: We investigate three sets of this knowledge
including F a

1 = F1(−5, +5), F b
1 = F1(−10, +10), F c

1 = F1(−100, +100), correspond-
ing to small size, medium size, and large size, respectively.

• collocation of words, F2 = {w−l . . . w+r}: As a result of our work in [Le & Shimazu (2004)]
we choose collocations such that their lengths (including the target word) are less
or equal to 4, it means (l + r + 1) ≤ 4.

• ordered words, F3 = {wi|i = −l, . . . , +r}: We choose l = r = 3

• collocation of POSs, F4 = {p−l . . . p+r}: Like collocation of words, we choose their
lengths including the target word) are less or equal to 4.

• ordered POSs : F5 = {pi|i = −l, . . . , +r}: We choose l = r = 3

• Syntactic features, F6: in order to extract syntactic information, we used a shallow
parsing obtained from [Tsuruoka & Tsujii (2005)]. From the output of this parser,
we select verb-phrases and noun-phrases which contain the target word, and then
extract from them the syntactic relations, such as verb-noun, adjective-noun, verb-
adjective. For examples, a context of the target word serve is chunked (shallow
parsed) as follows,
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(WHNP (WP what) ) (NP (NNS flights) ) (VBP are) (RB there) (IN from) (NP
(NNP nashville) ) (PP (TO to) (NP (NNP houston) ) ) (NP (NN tomorrow) (NN
evening) ) (SBAR (WHNP (WDT that) ) (S (VP (VB serve) (NP (NN dinner) )
) ) )

and then, we can extract a verb-noun relation, that is serve-dinner.

For more detail, we extract syntactic features as follows: Each syntactic feature is
represented as a pair of the target word and a content word corresponding to a
syntactic relation such as verb-noun, or adjective-noun, or verb-adjective. To obtain
such features, we first collect verb phrases (VPs) and noun phrases (NPs) which
contain the target word. Note that there may be more than one of VPs (or NPs),
and in such case we select the phrase with the shortest length. Then, each content
word (it must be noun, verb, or adjective and is not the target word) in the selected
phrases will be combined with the target word to generate a pair of words. This
pair in the corresponding syntactic relation is considered as a syntactic feature.

Figure 3.1: An evaluation of feature subsets on Senseval-2 and Senseval-3

In this section we have shown various kinds of considered knowledge. Note that, for
topical context, we simultaneously consider three window sizes: (-5,+5) for small context,
(-10,+10) for medium context, (-100,+100) for large context (in previous studies, only the
large context is utilized). Thus, these five kinds of knowledge as presented above give us
eight corresponding subsets of features. Next section will present a method to determine
which in these subsets is useful in the overall set of features.

Fig. 3.1 shows the corresponding accuracies of these eight feature subsets when testing
on Senseval-2 and Senseval-3. The result shows that bag-of-words, collocations of words,
and ordered words give better accuracies in comparison with the remaining feature subsets
including collocation of POSs, ordered POSs, and syntactic features.
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3.2 Feature Selection

The task is to determine the final set of features. A natural solution is to combine
the whole features from the 8 feature subsets, F a

1 , F b
1 , F c

1 , F2, F3, F4, F5, F6 into a set and
consider this set as the final set. However, there may be some noised or redundant features,
so it is necessary to find a subset of M relevant features that describes the dataset as well
as, or event better than, the original N features do. In our opinion, feature selection for
WSD should be treated in two levels.

– In the first level, we deal with the selection on feature subsets to find out which
feature subsets are useful for WSD (it is equivalent to the problem of determining which
knowledge sources are useful). We consider this problem because when simultaneously
consider these knowledge sources for the objective of WSD, there may be some knowledge
sources which are redundant or event decrease the accuracy of the WSD task.

– Feature selection of the second level is dealt with individual features. After we know
the useful feature subsets at the first level of feature selection, the whole features in these
subsets are integrated into a total set of features. And then, we can apply an appropriate
method of feature selection on these individual features to check whether there are some
redundant ones among them.

Feature selection has long been the focus of researchers of many fields such as pattern
recognition, statistics, machine learning. Many methods have been proposed. In general,
they can be classified into two categories: filter approach and wrapper approach. In the
filter approach [Kira & Rendell (1992)], the feature selector is independent of any learning
algorithm and serves as a filter to sieve the irrelevant and/or redundant features based
on some measures such as information gain, etc. In the wrapper approach, the feature
selector works as a wrapper around a learning algorithm relying on which the relevant
features are determined [John et al. (1994)]. Regarding two levels of the task of feature
selection as presented above, we see that the filter approach is appropriate for the first
level and the wrapper approach is appropriate for the second level. Below, we present our
method to solve the problem of feature selection for WSD.

3.2.1 Selection of Knowledge Sources

Each knowledge source, in respect to a context, is presented by a subset of features,
which can be considered as a representation of the context. Therefore, selecting useful
knowledge sources to build the whole set of features means to find the best combination
between corresponding feature subsets.

This section presents an extension of one of our papers, [Le & Shimazu (2004)], in
which 5 feature subsets were designed and a selection on them was done by using Forward
Sequential Selection (FSS) algorithm [Domingos (1997)]. In this thesis, more feature
subsets, 8 sets, are considered. In addition, for feature selection we will propose a method
which combines two algorithms, forward sequential selection and backward sequential
selection (BSS). In the FSS algorithm, we first select the best feature subset according to
results tested on all the subsets. next step, we find a subset from the remaining subsets
such that the combination between it and the selected subset give the best accuracy
in comparison with other combinations. This process will be repeated until all subsets
are selected or until the new combinations does not improve the accuracy. In the BSS
algorithm, the starting set includes all subsets, and then one subset from the selected
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Algorithm 1 – Forward Sequential Selection

input: F = {F1, . . . , Fn} – a pool of features (or feature subsets)
output: F∗ – the new set of features

1: F∗ = ∅
2: repeat
3: k = arg max

i, Fi∈F
Eval({F∗ ∪ Fi})

4: if Eval(F∗ ∪ Fk) > Eval(F∗) then
5: F∗ = F∗ ∪ Fk

6: F = F \ Fk

7: else
8: F = ∅
9: end if

10: until F = ∅
———————————
where Eval(.) is an evaluation procedure which returns the accuracy tested on the pre-
defined training and testing datasets and based on the feature set - the parameter of the
procedure. Note that this procedure requires a supervised learning algorithm.

subsets will be removed if the remaining set give the best accuracy. This process will
be stopped if we can not improve the accuracy. Particularly, these two algorithms are
presented in the Algorithm 1 and Algorithm 2, respectively.

In [Mihalcea (2002)], the author also used the FSS algorithm to carry out a feature
selection on some types of features. For a comparison, our proposed method is a combina-
tion of FSS and BSS algorithms, thus it can avoid the local optimization obtained by only
using FSS. Moreover, the study in [Mihalcea (2002)] worked on the feature types which
is too complexity and rarely used in other studies, so this result has not been re-used
in WSD community. In contrast, we carry out on the types of features which have been
wildly used in previous studies. Our goal is to propose a method to explain for the use
of feature selection as in previous studies, or to find out a better selection based on these
types of features.

Algorithm 2 – Backward Sequential Selection

input: F = {F1, . . . , Fn} – a pool of features (or feature subsets)
output: F∗ – the new set of features

1: F∗ = F
2: repeat
3: k = arg max

i, Fi∈F ∗
Eval({F∗ \ Fi})

4: if Eval(F∗ \ Fk) > Eval(F∗) then
5: F∗ = F∗ \ Fk

6: end if
7: until |F∗| = 1 or F∗ not changed

———————————
where Eval(.) has the same definition as in the algorithm 1.

.
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Table 3.1: Results of applying Forward Sequence Selection algorithm

round selected {features/accuracy(%)}
features

1 {} F a
1 /73.41 F b

1/74.67 F c
1/72.5 F2/71.75 F3/72.42

F4/64.42 F5/63.0 F6/63.33
2 {F b

1} F a
1 /74.58 F c

1/74.42 F2/79.17 F3/79.75
F4/74.0 F5/75.67 F6/77.17

3 {F b
1 , F3} F a

1 /80.08 F c
1/8.0 F2/79.5 F4/76.25 F5/78.5 F6/80.25

4 {F b
1 , F3, F6} F a

1 /81.17 F c
1/80.05 F2/79.75 F4/76.83 F5/79.25

5 {F b
1 , F3, F6, F

a
1 } F c

1/81.0 F2/80.5 F4/79.25 F5/80.5

Table 3.2: Results of applying Backward Sequence Selection algorithm

round selected {features/accuracy(%)}
features

1 {} {F a
1 , F b

1 , F c
1 , F2, F3, F4, F5, F6}/81.5

2 {F a
1 , F b

1 , F c
1 , F2, F3, F4, F5, F6,} F a

1 /80.83 F b
1/80.58 F c

1/78.58
F2/81.92 F3/81.0 F4/83.33 F5/81.83 F6/81.17

3 {F a
1 , F b

1 , F c
1 , F2, F3, F5, F6,} F a

1 /83.0 F b
1/82.5 F c

1/81.25
F2/82.5 F3/82.67 F5/82.08 F6/83.0

Experiment

In the experiment, we choose Naive Bayes algorithm for the supervised learning algorithm
in the procedure Eval(.) in the FSS and BSS procedures.

We use datasets of the four words, interest, hard, and serve as the development
datasets. For each dataset corresponding to each word, we randomly select 200 examples
for training data and 100 examples for test data. These selected sizes are chosen for being
compatible to the sizes of Senseval-2 and Senseval-3.

For these development data, we implement the Algorithm 1 and Algorithm 2 with the
8 feature sets, F a

1 , F b
1 , F c

1 , F2, F3, F4, F5, F6. The obtained results are the average results
of testing on the four words, and they are shown in Table. 3.1 and Table. 3.2.

Table 3.1 shows the result of applying the FSS algorithm. The best result is obtained
with the pool of feature subsets, {F b

1 , F3, F6}, which is corresponding to the accuracy
81.17%. Table 2 shows the result of applying the BSS algorithm. The best result is
obtained with the pool of feature subsets, {F a

1 , F b
1 , F c

1 , F2, F3, F5, F6, }, corresponding with
the accuracy 83.3%. In this case, BSS algorithm gives a better result, and therefore
this result is chosen as the final selection of the pool of context representations (feature
subsets). It is worth to emphasize that most (7 among 8) feature subsets are selected,
exception of the feature set F4 – the collocations of POSs. This result also shows the
effectiveness of simultaneously consideration of topical context representation on all three
kinds: small, medium, and large sizes.

This result is used for testing on Senseval-2 and Senseval-3 and the results are showed
in Table 3.3. In this test we use more others supervised learning than NB, including Sup-
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Table 3.3: Test on Senseval-2 and Senseval-3

selected subsets all subsets as previous studies
NB SVM MEM NB SVM MEM NB SVM MEM

Senseval-2 64.05 63.72 64.79 63.40 63.22 63.98 62.45 62.25 62.68
Senseval-3 71.96 70.87 71.91 70.97 70.06 71.98 70.06 69.88 70.16
Average 68.005 67.295 68.35 67.185 66.64 67.98 66.25 66.06 66.42

port Vector Machines (SVMs) and Maximum Entropy Model (MEMs). For a comparison,
we carry out a test with all features from the 8 subsets, {F a

1 , F b
1 , F c

1 , F2, F3, F4, F5, F6, },
and also carry out a test in which the feature set is selected similarly to the feature set
in [Lee & Ng(2002)] (i.e. the set of {F c

1 , F2, F3, F5, F6, }).
From the results in Table 3.3, we can extract the following conclusions:
- In most cases, the selected combination of subsets give better result in comparison

with using all subsets, except the case of using MEM for Senseval-3, but with a slight
difference. This result is also better the result obtained by using the feature set as
presented in previous studies such as in [Lee & Ng(2002)].

- This result also suggests to use NB and MEM for supervised WSD because their
results are nearly the same and better in comparison with SVM’s result.

3.2.2 Selection of Individual Features

Suppose that we have already had the whole set of features obtained from selected knowl-
edge sources. As the objective of feature selection we will try to reduce as many as possible
the number of features while keeping the accuracy of the classification (i.e. determining
word senses). This task should satisfy that it reduce the native space of features with-
out sacrificing the classification (sense disambiguation) accuracy. The wrapper approach
is not appropriate for a very large set of features due to it costs a lot of computation
time. As discussed before, we choose the filter approach. The filter approach selects fea-
tures based on using some measures to evaluate features. [Yang & Pedersen (1997)] did
a comparative study on feature selection for text categorization which followed the filter
approach with various kinds of feature measuring including document frequency, infor-
mation gain, mutual information, a χ-test, and term strength. Concerning related works
in WSD, [Lee & Ng(2002), Mihalcea (2004), Pham et al. (2005)] just chose the features
which have their frequency being equal or greater than 3. Among them, [Lee & Ng(2002)]
uses both cases: all features and only features with their frequencies is equal or greater
than 3, and their result shows that using all features gives better results. In this work, we
will investigate two well-known measures of features including frequency and information-
gain.

Feature Measure using Frequency

We let the frequency threshold runs from 1 to 4 and test on Senseval-2 and Senseval-3
using NB classifier. With each frequency τ , the selected features will include all features
having their frequencies being equal or greater than τ . The results are shown in Fig. 3.2,
in which the part a) is the result of testing on Senseval-2 and the part b) is the the result of
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testing on Senseval-3. These results show that when the frequency threshold increases the
accuracy quickly decreases, it means that reducing features of low frequency will decrease
accuracy of WSD.

Figure 3.2: A test on Senseval with feature selection based on frequency

Feature Measure using Information Gain

Figure 3.3: A test on Senseval-2 with feature selection based on information gain

Information gain is frequently employed as a term-goodness criterion in the field of
machine learning. It measures the number of bits of information obtained for classification.
Let S = {s1, . . . , sm} denotes the set of classes (or senses). We follow the definition of
information gain of a term t as presented in [Yang & Pedersen (1997)], as follows:

IG(t) = −
m∑

i=1

Pr(si)logPr(ci) + Pr(t)
m∑

i=1

Pr(ci|t)logPr(ci|t) + Pr(t)
m∑

i=1

Pr(ci|t)logPr(ci|t)

where t denote the complementary of t, i.e. Pr(t) = 1− Pr(t) and Pr(ci|t) defines the
conditional probability of ci without co-occurrence of the term t.
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Figure 3.4: A test on Senseval-3 with feature selection based on information gain

Table 3.4: A comparison on Senseval-2 and Senseval-3

NB SVM MEM The best system Baseline
in Senseval contests

Senseval-2 64.05 63.72 64.79 64.2 48.35
Senseval-3 71.96 70.87 71.91 72.9 55.17

Fig. 3.3 and Fig. 3.4 show our experiments in which a threshold α for information gain
is used for determining the features will be used. For each α we select the features which
have their information gain is equal or greater than α. In the experiment, we let α receives
values in {0, 0.002, 0.004, 0.006, 0.008, 0.01, 0.012, 0.014, 0.016, 0.018, 0.02}. Fig. 3.3 shows
the result when testing on Senseval-2, in which the part a) shows the obtained accuracies
corresponding to the values of α, and the part b) shows the ratio of number of selected
features on all original features (note that the part b) provides us an image about the
reduction of features). The same experiment for Senseval-3 is presented in Fig. 3.4. From
these results we can see that when we increase the value of α (i.e. the number of selected
features is decreased) the obtained accuracies decrease.

In summary, we see that when we reduce the number of features which are based on
frequency or information gain, the accuracy of word sense disambiguation is decreased.

3.3 Summary

In this chapter we have presented our work on context representation and feature selection
for word sense disambiguation.

The first task, context representation, is the problem of determining which kinds of
knowledge extracted from context is useful for the task of word sense disambiguation,
or is the problem of selecting useful knowledge sources. We have investigated various
knowledge sources used in the recent WSD studies such as [Lee & Ng(2002), Ando(2006),
Montoyo et al. (2005)]. In addition, different to previous studies, we have simultaneously
used the three representations of bag-of-words based on three window sizes including small
size, medium size, and large size. All these kinds of knowledge are represented by subsets
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of features (which can be considered as different context representations), and then will
be used in a feature selection method to find the best combination of them.

The second task is the problem of feature selection. We divide this task into two
subtasks, including the selection of knowledge sources (represented by feature subsets)
and the selection of individual features. For the first subtask, we proposed a method
that uses concurrently the forward sequential selection and the backward sequential se-
lection algorithms to get the best combination of the feature subsets obtained above. As
the result, we have obtained the final set of features, which includes the whole features
from the subsets {F a

1 , F b
1 , F c

1 , F2, F3, F5, F6, }. For the second subtask, we used the filter
approach and based on frequency-based and based-information-gain measures. Experi-
mental results show that reducing some features based on these two measures will decrease
accuracy of WSD. In other word, the experiment suggests us to use all features from the
selected knowledge sources.

Table. 3.4 shows a test using NB, MEM, and SVM algorithms with the obtained
feature set. The obtained results can be comparable with the best systems on Senseval-2
and Senseval-3 contests.
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Chapter 4

Classifier Combination

During the last decade, many supervised machine learning algorithms have been used for
the WSD task, including Näıve Bayesian (NB), decision trees, an exemplar-based, sup-
port vector machine, maximum entropy, etc. As observed in studies of machine learning
systems, although one of the available learning systems could be chosen to achieve the
best performance for a given pattern recognition problem, the set of patterns misclassi-
fied by the different classification systems would not necessarily overlap. This means that
different classifiers may potentially offer complementary information about patterns to be
classified. This observation highly motivated the recent interest in combining classifiers.

This chapter presents our study in applying multi-classifier combination for word sense
disambiguation. First, we introduce classifier combination architecture, related work, the
motivation, and our proposal. Next, we present a general framework of combination
which can be used for both types of individual classifiers: based on different feature sets,
and based on different supervised machine learning algorithms. Then, we formulate the
common combination rules, such as majority voting, the so-called Naive-Bayesian-based
rule (or shortly NB rule), etc., in this framework. Two new approaches of classifier
combination for WSD, which are based on Dempster-Shafer theory of evidence and based
on OWA operators, are introduced in next sections. After that, we present two proposed
schemes for second-layer combination strategies. Finally, we present different experiments
on various combination strategies as mentioned in the before sections.

4.1 Introduction

4.1.1 Architecture of Multi-Classifier Combination

Classifier combination has been studied intensively in the last decade, and has been shown
to be successful in improving performance on diverse applications [Brill & Wu (1998),
Pedersen (2000), Kilgarriff & Rosenzweig (2000), Klein et al. (2002)]. The intuition be-
hind classifier combination is that individual classifiers have different strengths and per-
form well on different subtypes of test data. According to [Kittler et al. (1998)], there are
basically two classifier combination scenarios. In the first scenario, all classifiers use the
same representation of the input pattern. In the second scenario, each classifier uses its
own representation of the input pattern. Moreover, generation of different classifiers can
be based on the different training datasets. Fig. 4.1 intuitively present the architecture
of multiple classifier combination.
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Figure 4.1: Architecture of multiple classifier combination

From this figure, we can see that the base classifiers (also called individual classifiers)
can be created based on the different feature spaces, different training datasets, or differ-
ent models (machine learning algorithms). Note that by combining these different types,
we can also create other set of individual classifiers, however this method is rarely used
in previous studies. Fig. 4.1 also shows the general process of applying classifier combi-
nation strategies for a problem such as classification. That is, firstly the set of individual
classifiers are built and then they are used for detecting test examples. Outputs of these
individual classifiers are then combined using fixed combination rules or training com-
bination rules to generate consensus decisions. For a more detail, we investigate some
approaches in classifier combination as below.

In the bagging approach, the training set for each individual classifier is created by
randomly drawing training examples with replacement from the initial training set. In
boosting, the errors made by a classifier learned from a training set are used to construct
a new training set in which the misclassified examples get higher weight. By sequentially
performing this operation, an ensemble is constructed. Another way to create multiple
classifiers is based on multiple feature sets on the same training dataset. Methods of
combining the outputs of component classifiers in an ensemble include simple voting,
wherein each component classifier gets an equal vote, and weighted voting, in which
each component classifier’s vote is weighted by its accuracy. An interesting approach to
combination is stacking, in which we use all individual classifiers to detect labels for
each training example, and the sequence of these labels are then used to represent for
this example. Consequently, the training dataset is replaced by the set of corresponding
label sequences and they are used to train the final classifier. For testing step, the input
of each test example for this final classifier is the outputs of using the individual classifier
for this test example. The scheme of staking method is sketched in Fig. 4.2.
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Figure 4.2: Stacking method of classifier combination

4.1.2 Related Work and Proposal

In the WSD literature, the first empirical study of combining classifiers was presented
in [Kilgarriff & Rosenzweig (2000)], in which the authors combined the output of the
participating SENSEVAL1 systems via simple voting. [Pedersen (2000)] built an ensem-
ble of Naive Bayesian classifiers, each of which is based on lexical features that repre-
sent co-occurring words in varying sized windows of context. [Klein et al. (2002)] use a
stacking type of combination techniques. First, individual classifiers were constructed
based on different training datasets and learning methods, and then they were ranked
according to results obtained from testing on held-out data. In the next step, major-
ity voting, weighted voting, and maximum entropy were used as combination strate-
gies. [Hoste et al. (2002)] used word experts consisting of four memory-based learners
trained on different context. Output of the word experts is based on majority voting
or weighted voting. [Wang & Matsumoto (2004)] presented a kind of stacking; individ-
ual classifiers were built using NB with varying sized windows of context that are simi-
lar to Pedersen’s approach [Pedersen (2000)], and then used K-nearest neighbors as the
meta learning method. Several combination approaches in WSD, most of which used
majority voting or weighted voting on the output of individual classifiers, were based
on different sets of features or different learning methods. Some of them proposed dif-
ferent approaches such as using maximum entropy [Klein et al. (2002)], or a stacking
method [Wang & Matsumoto (2004)] as combination strategies.

One well-known study about using multi-classifier combination for word sense disam-
biguation is [Florian & Yarowsky (2002)]. In this paper, the authors used six different
classifiers, which as generated by using six machine learning methods, as components
of their combination. Combination strategies introduced in this paper are based on the
weighted mixture model. Among them, some strategies combine the posterior sense prob-
ability distributions in which the weights are yielded based on Expectation-Maximization
(EM) algorithm, Performance-Based (PB) algorithm (see [Florian & Yarowsky (2002)]
for detail). One more combination strategy are presented in which the synthetic sense
probability distribution are computed based on sense ranks computed from individual
classifiers. This strategy of combination is called rank-based combination. Finally, they
use a meta combination which gives the best accuracy. This meta-combination is the av-
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Table 4.1: Approaches in previous WSD studies on multi-classifier combination

Paper Method Individual classifiers based on . . .

[Pedersen (2000)] majority voting bag-of-words
different windows

[Klein et al. (2002)] majority voting different ML models
weighted voting ML models

maximum entropy
& stacking

[Florian & Yarowsky (2002)] mixture models different
rank-based ML models

average-based meta
[Wang & Matsumoto (2004)] kNN-based stacking bag-of-words

different windows

erage of results of the three combinations which are EM-based, PB-based, and rank-based
algorithms.

In summary, the Table. 4.1 shows some popular WSD studies with corresponding
methods on classifier combination.

Previous studies have shown that multi-classifier combination methods can improve
performances of supervised WSD systems. However, these studies just focus on sev-
eral combination strategies, such as majority voting, weighted voting, simple mixture
models, and a staking methods using maximum entropy model [Klein et al. (2002)] ore
kNN [Wang & Matsumoto (2004)]. There are still other combination strategies which
have not been investigated for WSD yet, even some popular strategies such as prod-
uct rule, max rule, min rule, the so-called Naive Bayesian rule, etc., as introduced in
[Kittler et al. (1998)]. Furthermore, approaches in previous studies seem to be lack of de-
scribing a general combination framework with a corresponding theoretical basis, which
should be the fundamentals for applying the combination rules used. These limitations
motivate us to apply multi-classifier combination for WSD with a comprehensive collection
of combination rules in certain theoretical basis.

Particularly, we will present a general framework of combination for WSD with basi-
cally combination rules including NB-based rule, majority voting, weighted voting, and
average rule. Then, by considering WSD problem in classifier combination as the problem
of weighted combination of evidence for decision making, we formulate a general rule of
classifier combination based on DS theory of evidence [Shafer (1976)], adopting a proba-
bilistic interpretation of weights. This interpretation of weights seems to be appropriate
when defining weights in terms of the accuracy of individual classifiers. On the other hand,
by considering individual classifiers as information inspired by a semantics or syntacti-
cal criterion for the purpose of word sense identification, we can apply OWA operators
for aggregating multi-criteria to form an overall decision function considered as the fuzzy
majority based voting strategy. It should be worth mentioning that the use of OWA oper-
ators in classifier combination has been studied, for example, in [Kuncheva 2001]. In this
work, however, we use OWA operators for classifier fusion in their semantic relation to
linguistic quantifiers so that we could provide a framework for combining classifiers, which
also yields several commonly used decision rules but without some strong assumptions
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made in the work by [Kittler et al. (1998)]. Next, we also present some new variants
of meta-combination and stacking methods. Finally, experiments and conclusions are
presented.

4.2 Common Combination Strategies

4.2.1 General Framework of Multi-Classifier Combination

Suppose w is the polysemous word to be disambiguated. Let D = {D1, . . . , DR} be a
set of classifiers, and let S = {c1, . . . , cM} be a set of potential labels (senses) of w.
Alternatively, we may define the classifier output to be a M -dimensional vector

Di(w) = [di,1(w), . . . , di,M(w)] (4.1)

where di,j(w) is the degree of “support” given by classifier Di to the hypothesis that
w comes from class cj. Most often di,j(w) is an estimation of the posterior probability
P (ci|w). In fact, the detailed interpretation of di,j(w) beyond a “degree support” is
not important for the operation for any of the combination methods studies here. It is
convenient to organize the outputs of all R classifiers in a decision matrix as follows.

DP (w) =




d1,1(w) . . . d1,j(w) . . . d1,M(w)
. . .

di,1(w) . . . di,j(w) . . . di,M(w)
. . .

dR,1(w) . . . dR,j(w) . . . dR,M(w)




(4.2)

Thus, the output of classifier Di is the i -th row of the decision matrix, and the support
for class cj is the j th column. Combining classifiers means to find a class label based on
the R classifiers outputs. We look for a vector with M final degrees of support for the
classes, denoted by

D(w) = [µ1(w), . . . , µM(w)] (4.3)

where µj(w) is the overall support degree obtained by combining R support degrees
{d1,j(w), . . . , dR,j(w)} from outputs of the R individual classifiers, under a combination
operator ⊕, as presented in the formula (4.4) below.

µj(w) = ⊕(d1,j(w), . . . , dR,j(w)), for j = 1, . . . , M (4.4)

If a single class label of w is needed, we use the maximum membership rule: Assign
w to class ck iff

µk(w) ≥ µt(w),∀t = 1, . . . , M. (4.5)

It is interesting that if we assume that each individual classifier Di is based on a knowl-
edge source, namely fi, and then when detecting senses for w, the classifier Di outputs a
probability distribution over the label set S, denote by {P (cj|fi)}M

j=1. In other word, to
distinguish the individual classifiers we assume each classifier Di is based on a knowledge
source fi, and consequently we can represent di,j(w) by the posterior probability, P (cj|fi),
or by following equation:
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di,j(w) = P (cj|fi) (4.6)

Note that this representation is used for all types of generation of different individual
classifiers event though it is more appropriate for individual classifiers based on different
feature spaces than different machine learning algorithms.

4.2.2 Naive Bayesian and Product Rules

Under a mutually exclusive assumption of a set F = fi (i = 1, . . . , R), the Bayesian
theory suggests that the word w should be assigned to class ck provided the a posteriori
probability of that class is maximum, namely

k = arg max
j

P (cj|f1, . . . , fR) (4.7)

That is, in order to utilize all the available information to reach a decision, it is essential
to consider all the representations of the target simultaneously.

The decision rule (4.7) can be rewritten using Bayes theorem as follows:

k = arg max
j

P (f1, . . . , fR|cj)P (cj)

P (f1, . . . , fR)

Because the value of P (f1, . . . , fR) is unchanged with variance of cj, we have

k = arg max
j

P (f1, . . . , fR|cj)P (cj) (4.8)

As we see, P (f1, . . . , fR|cj) represents the joint probability distribution of the knowl-
edge sources corresponding to the individual classifiers. Assume that these knowledge
sources are conditionally independent, so that the decision rule (4.8) can be rewritten as
follows:

k = arg max
j

P (cj)
R∏

i=1

P (fi|cj) (4.9)

According to Bayes rule, we have:

P (fi|cj) =
P (cj|fi)P (fi)

P (cj)
(4.10)

Naive Bayesian Rule

Substituting (4.10) into (4.9), we obtain the Naive Bayesian (NB) Rule:

k = arg max
j

[P (cj)]
−(R−1)

R∏
i=1

P (cj|fi) (4.11)

It is worth to emphasize that we can consider NB rule as the NB classifier built on
the combination of all feature subsets f1, . . . , fR.
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Product Rule

Like [Kittler et al. (1998)], if we assume that all prior probabilities P (cj) (j=1,. . . ,M) are
of equal value, and then we obtain the equation, as follows.

k = arg max
j

R∏
i=1

P (cj|fi) (4.12)

The decision rule (4.12) quantifies the likelihood of a hypothesis by combining the a
posteriori probabilities generated by the individual classifiers by means of a product rule.

4.2.3 Median/Average Rule

Let us return to the decision matrix (4.2), each classifier Di supports a degree di,j(w) for
the class cj. According to [Perrone & Cooper (1993)], if the errors made by R classifiers
Di, i = 1, . . . , R, are uncorrelated and unbiased, then these R classifiers can be combined
into a classifier that supports the class cj with the degree

µj(w) =

[
1

R

R∑
i=1

di,j(w)

]
(4.13)

According to (4.6), fi is the knowledge source of w with respect to the classifier Di,
equation (4.13) then becomes

µj(w) =

[
1

R

R∑
i=1

P (cj|fi)
]

(4.14)

Therefore, the class (sense) ck is chosen as the best class for the target word under the
median rule (or average rule) as follows

k = arg max
j

[
1

R

R∑
i=1

P (cj|fi)
]

(4.15)

4.2.4 Majority Voting and Weighted Voting

Majority voting follows a simple rule as: it will vote for the class which is chosen by
maximum number of individual classifiers. This can be done by hardening the a posteriori
probabilities P (ck|fi) in terms of functions ∆ki defined as follows

∆ki =

{
1, if P (ck|fi) = max

j
P (cj|fi)

0, otherwise

then the right class (sense) cj is determined as follows:

j = arg max
k

R∑
i=1

∆ki (4.16)

Weighted voting can be considered as a “soft” majority voting, in which instead of
hardening the a posteriori probabilities P (ck|fi) into 1 in the case the classifier ith chooses
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ck, weighted voting still keep this value. With this principle, the functions ∆ki defined as
follows

∆ki =

{
P (ck|fi), if P (ck|fi) = max

j
P (cj|fi)

0, otherwise

and then, the decision rule of weighted voting is also the same as (4.16). It is worth
to note that weighted voting is specially more effective than majority voting in the case
there are more than one class with the same priority.

4.3 Combination Based on Dempster-Shafer Theory

of Evidence

In this section we discuss a framework for weighted combination of classifiers for WSD, in
which each individual classifiers is considered as based on different information sources.
Moreover, each of these information sources does not by itself provide 100% certainty as
a whole piece of evidence for identifying the sense of the target. Under such an observa-
tion, we have interpreted the framework of classifier combination in terms of Dempster-
Shafer theory of evidence [Shafer (1976)], and then formulated a general rule of classifier
combination from which several interestingly classifier combination schemes are derived.
In [Al-Ani & Deriche 2002], Al-Ani and Deriche have proposed a new technique for com-
bining classifiers using DS theory, in which different classifiers correspond to different
feature sets. In their approach, the distance between the output classification vector pro-
vided by each single classifier and a reference vector are used to estimate Basic Probability
Assignments (BPAs). These BPAs are then combined making use of Dempster’s rule of
combination to obtain a new output vector that represents the combined confidence in
each class label. Different from their approach, we directly use the output classification
vectors of individual classifiers to define the corresponding BPAs, making use of the dis-
count operation in DS theory and then combine the resulted BPAs to obtain the final
BPA for making the decision of classification.

4.3.1 Basic Concepts

In DS theory, a problem domain is represented by a finite set Θ of mutually exclusive
and exhaustive hypotheses, called frame of discernment [Shafer (1976)]. In the standard
probability framework, all elements in Θ are assigned a probability. And when the degree
of support for an event is known, the remainder of the support is automatically assigned
to the negation of the event. On the other hand, in DS theory mass assignments are
carried out for events as they know, and committing support for an event does not neces-
sarily imply that the remaining support is committed to its negation. Formally, a Basic
Probability Assignment (BPA, for short) is a function m : 2Θ → [0, 1] verifying

m(∅) = 0, and
∑

A∈2Θ

m(A) = 1

The quantity m(A) can be interpreted as a measure of the belief that is committed exactly
to A, given the available evidence. A subset A ∈ 2Θ with m(A) > 0 is called a focal element
of m. A BPA m is called to be vacuous if m(Θ) = 1 and m(A) = 0 for all A 6= Θ.
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Two evidential functions derived from the basic probability assignment m are the
belief function Belm and the plausibility function Plm, defined as

Belm(A) =
∑

∅6=B⊆A

m(B), and Plm(A) =
∑

B∩A6=∅
m(B)

The difference between m(A) and Belm(A) is that while m(A) is our belief committed
to the subset A excluding any of its proper subsets, Belm(A) is our degree of belief in
A as well as all of its subsets. Consequently, Plm(A) represents the degree to which
the evidence fails to refute A. Note that all the three functions are in an one-to-one
correspondence with each other.

Two useful operations that play a central role in the manipulation of belief functions
are discounting and Dempster’s rule of combination [Shafer (1976)]. The discounting
operation is used when a source of information provides a BPA m, but one knows that
this source has probability α of reliable. Then one may adopt (1 − α) as one’s discount
rate, which results in a new BPA mα defined by

mα(A) = αm(A), for any A ⊂ Θ (4.17)

mα(Θ) = (1− α) + αm(Θ) (4.18)

Consider now two pieces of evidence on the same frame Θ represented by two BPAs m1

and m2. Dempster’s rule of combination is then used to generate a new BPA, denoted by
(m1 ⊕m2) (also called the orthogonal sum of m1 and m2), defined as follows

(m1 ⊕m2)(∅) = 0,
(m1 ⊕m2)(A) = 1

1−κ

∑
B∩C=A

m1(B)m2(C) (4.19)

where
κ =

∑

B∩C=∅
m1(B)m2(C) (4.20)

Note that the orthogonal sum combination is only applicable to such two BPAs that verify
the condition κ < 1.

4.3.2 DS Theory Based Combination Scheme

Given a target word w in a context C and S = {c1, c2, . . . , cM} is the set of its possible
senses. Using the vocabulary of DS theory, S can be called the frame of discernment of
the problem. As mentioned above, suppose that each individual classifier is based on an
information source fi. Each of these information sources does not by itself provide 100%
certainty as a whole piece of evidence for identifying the sense of the target. Formally,
we have the available information for making the final decision on the sense of w given as
follows

• R probability distributions P (·|fi) (i = 1, . . . , R) on S,

• the weights αi of the individual information sources (i = 1, . . . , R)1.

1Note that the constraint
∑

i αi = 1 does not need to be imposed.
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From the probabilistic point of view, we may straightforwardly think of the combiner as
a weighted mixture of individual classifiers defined as

P (ck) =
1∑
i αi

R∑
i=1

αiP (ck|fi), for k = 1, . . . , M (4.21)

Then the target word w should be naturally assigned to the sense cj according to the
following decision rule

j = arg max
k

P (ck) (4.22)

However, by considering the problem as that of weighted combination of evidence for
decision making, we now formulate a general rule of combination based on DS theory. To
this end, we first adopt a probabilistic interpretation of weights. That is, the weight αi (i =
1, . . . , R) is interpreted as reliable probability of the i-th classifier. This interpretation of
weights seems to be especially appropriate when defining weights in terms of the accuracy
of individual classifiers.

Under such an interpretation of weights, the piece of evidence represented by P (·|fi)
should be discounted at a discount rate of (1− αi). This results in a BPA mi defined by

mi({ck}) = αiP (ck|fi) , pi,k, for k = 1, . . . , M (4.23)

mi(S) = 1− αi , pi,S (4.24)

mi(A) = 0,∀A ∈ 2S \ {S, {c1}, . . . , {cM}} (4.25)

That is, the discount rate of (1 − αi) should not be distributed to anything else than S,
the whole frame of discernment.

We are now ready to formulate our belief on the decision problem by aggregating all
pieces of evidence represented by mi’s in the general form of the following

m =
R⊕

i=1

mi (4.26)

where m is a BPA and ⊕ is a combination operator in general.
By applying different combination operations for ⊕, we may have different aggregation

schemes for obtaining the BPA m which models our belief for making the decision on the
sense of w. Therefore, we must also deal with the problem of how to make a decision
based on m. As m does not in general provide a unique probability distribution on S,
but only a set of compatible probabilities bounded by the belief function Belm and the
plausibility function Plm. Consequently, individual classes in S can no longer be ranked
according to their probability. Fortunately, based on the Generalized Insufficient Reason
Principle, we may define a probability function Pm on S derived from m for the purpose
of decision making via the pignistic transformation [Smets (1994)]. That is, as in the two-
level language of the so-called transferable belief model [Smets (1994)], the aggregated
BPA m itself representing the belief is entertained based on the available evidence at the
credal level, and when a decision must be made, the belief at the credal level induces the
probability function Pm for decision making.
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4.3.3 The Discounting-and-Orthogonal Sum Combination Strat-
egy

As discussed above, we consider each P (·|fi) as the belief quantified from the information
source fi and the weight αi as a “degree of trust” of fi supporting the identification for the
sense of w as a whole. As mentioned in [Shafer (1976)], an obvious way to use discounting
with Dempster’s rule of combination is to discount all BPAs P (·|fi) (i = 1, . . . , R) at
corresponding rates (1− αi) (i = 1, . . . , R) before combining them.

Thus, Dempster’s rule of combination now allows us to combine BPAs mi (i =
1, . . . , R) under the independent assumption of information sources for generating the
BPA m, i.e. ⊕ in (4.26) is the orthogonal sum operation.

Note that, by definition, focal elements of each mi are either singleton sets or the
whole set S. It is easy to see that m also verifies this property if applicable. Interestingly,
the commutative and associative properties of the orthogonal sum operation with respect
to a combinable collection of BPAs mi (i = 1, . . . , M) and the mentioned property es-
sentially form the basis for developing a recursive algorithm for calculation of the BPA
m [Yang & Xu 2002]. This can be done as follows.

Let I(i) = {1, . . . , i} be the subset consisting of first i indexes of the set {1, . . . , R}.
Assume that mI(i) is the result of combining the first i BPAs mj, for j = 1, . . . , i. Let us
denote

pI(i),k , mI(i)({ck}), for k = 1, . . . ,M (4.27)

pI(i),S , mI(i)(S) (4.28)

With these notations and (4.23)–(4.24), the key step in the combination algorithm is
to inductively calculate pI(i+1),k (k = 1, . . . , M) and pI(i+1),S as follows

pI(i+1),k =
1

κI(i+1)

[pI(i),kpi+1,k + pI(i),kpi+1,S + pI(i),Spi+1,k] (4.29)

pI(i+1),S =
1

κI(i+1)

(pI(i),Spi+1,S) (4.30)

for k = 1, . . . , M, i = 1, . . . , R− 1, and κI(i+1) is a normalizing factor defined by

κI(i+1) =


1−

M∑
j=1

M∑

k=1
k 6=j

pI(i),jpi+1,k


 (4.31)

Finally, we obtain m as mI(R). For the purpose of decision making, we now define a
probability function Pm on S derived from m via the pignistic transformation as follows

Pm(ck) = m({ck}) +
1

M
m(S) for k = 1, . . . , M (4.32)

and we have the following decision rule:

j = arg max
k

Pm(ck) (4.33)

It would be interesting to note that an issue may arise with the orthogonal sum
operation, and is in using the total probability mass κ associated with conflict as defined
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in the normalization factor. Consequently, applying it in an aggregation process may yield
counterintuitive results in the face of significant conflict in certain situations as pointed
out in [Zadeh 1984]. Fortunately, in the context of the weighted combination of classifiers,
by discounting all P (·|fi (i = 1, . . . , R) at corresponding rates (1− αi) (i = 1, . . . , R), we
actually reduce conflict between the individual classifiers before combining them.

4.3.4 The Discounting-and-Averaging Combination Strategy

In this strategy, instead of using Dempster’s rule of combination after discounting P (·|fi)
at the discount rate of (1 − αi), we apply the averaging operation over BPAs mi (i =
1, . . . , R) to obtain the BPA m defined by

m(A) =
1

R

R∑
i=1

mi(A) (4.34)

for any A ∈ 2S . By definition, we get

m({ck}) =
1

R

R∑
i=1

αiP (ck|fi), for k = 1, . . . , M (4.35)

m(S) = 1−
∑R

i=1 αi

R
, 1− α (4.36)

m(A) = 0,∀A ∈ 2S \ {S, {c1}, . . . , {cM}} (4.37)

Note that the probability mass unassigned to individual classes but the whole frame of
discernment S, m(S), is the average of discount rates. Therefore, if instead of allocating
the average discount rate (1 − α) to m(S) as above, we use it as a normalization factor
and easily obtain

m({ck}) =
1∑
i αi

R∑
i=1

αiP (ck|fi), for k = 1, . . . , M (4.38)

m(A) = 0,∀A ∈ 2S \ {{c1}, . . . , {cM}} (4.39)

which interestingly turns out to be the weighted mixture of individual classifiers as defined
in (4.21). Then we have the decision rule (4.22).

It should be worth noting that since the average discount rate (1−α) is a constant, the
decision rule based on the weighted mixture of individual classifiers is the same as that
based on the probability function Pm with m defined by (4.35)–(4.37) via the pignistic
transformation.

4.4 Combination Based on OWA Operators

By considering individual classifiers as experts who have their own soft decisions (for in-
stance, probability distributions over the set of classes) on the word sense identification,
we now face with the problem how to derive a consensus decision based on their indi-
vidual decisions. Intuitively, in such a situation, one (i.e., decision maker) may have a
decision making strategy based on linguistic quantifiers, for instance “a consensus decision
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should be the one that all experts supported it”. We have mimicked this decision mak-
ing behavior of human beings for decision fusion in the context of WSD. In particular,
we have used OWA operators for classifier fusion in their semantic relation to linguis-
tic quantifiers [Zadeh 1983]. Under such a formulation, we will provide a framework for
combining classifiers, which also yields several commonly used decision rules for WSD. In
particular, some fuzzy majority voting have been derived, which correspond to the combi-
nation rules, such as Max rule, Min rule, and Median rule. It should be worth mentioning
that the use of OWA operators in classifier combination has been studied, for example,
in [Kuncheva 2001]. In this work, however, we use OWA operators for classifier fusion in
their semantic relation to linguistic quantifiers so that we could provide a framework for
combining classifiers, which also yields several commonly used decision rules but without
some strong assumptions made in the work by Kittler et al. [Kittler et al. (1998)]..

4.4.1 OWA Operators

The notion of OWA operators was first introduced in [Yager 1988] regarding the problem
of aggregating multi-criteria to form an overall decision function. A mapping

F : [0, 1]n → [0, 1]

is called an OWA operator of dimension n if it is associated with a weighting vector
W = [w1, . . . , wn], such that 1) wi ∈ [0, 1] and 2)

∑
i wi = 1, and

F (a1, . . . , an) =
n∑

i=1

wibi

where bi is the i-th largest element in the collection a1, . . . , an.
As suggested by Yager [Yager 1988], there exist at least two methods for obtaining

weights wi’s. The first approach is to use some kind of learning mechanism. That is,
we use some sample data, arguments and associated aggregated values and try to fit the
weights to this collection of sample data. The second approach is to give some semantics
or meaning to the weights. Then, based on these semantics we can directly provide the
values for the weights. In the following we use the semantics based on fuzzy linguistic
quantifiers for the weights.

The fuzzy linguistic quantifiers were introduced by Zadeh in [Zadeh 1983]. According
to Zadeh, there are basically two types of quantifiers: absolute, and relative. Here we focus
on the relative quantifiers typified by terms such as most, at least half, as many as possible.
A relative quantifier Q is defined as a mapping Q : [0, 1] → [0, 1] verifying Q(0) = 0, there
exists r ∈ [0, 1] such that Q(r) = 1, and Q is a non-decreasing function. For example, the
membership function of relative quantifiers can be defined [Herrera & Verdegay (1996)]
as

Q(r) =





0 if r < a
r−a
b−a

if a ≤ r ≤ b

1 if r > b
(4.40)

with parameters a, b ∈ [0, 1].
Then, Yager [Yager 1988] proposed to compute the weights wi’s based on the linguistic

quantifier represented by Q as follows:

wi = Q(
i

n
)−Q(

(i− 1)

n
), for i = 1, . . . , n. (4.41)
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4.4.2 OWA Operator Based Combination Scheme

Let us return to the problem of identifying the sense of a given word w as described above.
As mentioned above, suppose that each individual classifier is based on an information
source fi, which can be also considered as providing the information inspired by a seman-
tical or syntactical criterion for the purpose of word sense identification. Let us assume
that we have R classifiers corresponding to R information sources fi of the context, each
of which provides a soft decision for identifying the right sense of the target word w in
the form of a posterior probability P (ck|fi), for i = 1, . . . , R.

Under such a consideration, we now can define an overall decision function D, with
the help of an OWA operator F of dimension R, which combines individual opinions to
derive a consensus decision as follows:

D(ck) = F (P (ck|f1), . . . , P (ck|fR)) =
R∑

i=1

wipi (4.42)

where pi is the i-th largest element in the collection P (ck|f1), . . . , P (ck|fR), and W =
[w1, . . . , wR] is a weighting vector semantically associated with a fuzzy linguistic quantifier.
Then, the fuzzy majority based voting strategy suggests that the target word w should
be assigned to class cj provided that D(cj) is maximum, namely

j = arg max
k

D(ck) (4.43)

As studied in [Yager 1988], using Zadeh’s concept of linguistic quantifiers and Yager’s
idea of associating their semantics to various weighting vectors W , we can obtain many
commonly used decision rules as following.

Max Rule.

First let us use the quantifier there exists which can be relatively represented as a fuzzy
set Q of [0, 1] such that Q(r) = 0, for r < 1/R and Q(r) = 1, for r ≥ 1/R. We then
obtain from (4.41) the weighting vector W = [1, 0, . . . , 0], which yields from (4.42) and
(4.43) the Max Decision Rule as

j = arg max
k

[
max

i
P (ck|fi)

]
(4.44)

According to the quantifier-based semantics associated with this weighting vector [Yager 1988],
the max decision rule states that a decision of labeling for example e should be made if
there exists an individual classifier supports that decision. In other word, the label selec-
tion of an example is followed the decision of the best classifier or followed the decision
that obtains the maximum degree of supports from all the individual classifier.

Min Rule.

Similarly, if we use the quantifier for all which can be defined as a fuzzy set Q of [0, 1]
such that Q(1) = 1 and Q(r) = 0, for r 6= 1 [Yager 1988]. We then obtain from (4.41) the
weighting vector W = [0, . . . , 0, 1], which yields from (4.42) and (4.43) the Min Decision
Rule as

j = arg max
k

[
min

i
P (ck|fi)

]
(4.45)
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Also, according to the quantifier-based semantics associated with W , the min decision
rule states that a decision of labeling for example e should be made if all individual
classifiers support that decision.

Suppose that the ith classifier supports label lj a degree di,j(e), then it means this
classifier opposes a degree (1− di,j(e)) to lj. For each support degree di,j(e), let we name
its corresponding opposition is d′i,j(e), then the min rule can be rewritten as follow.

ĵ = arg min
j=1···c

[
R

min
i=1

[1− di,j(e)]

]
= arg min

j=1···c

[
R

min
i=1

d′i,j(e)

]
(4.46)

With this presentation of the min rule, the label selection of an example is followed
the decision which minimums the opposition from all the individual classifiers.

Median Rule.

In order to have the Median decision rule, we use the absolute quantifier at least one which
can be equivalently represented as a relative quantifier with the parameter pair (0, 1) for
the membership function Q in (4.40). Then we obtain from (4.41) the weighting vector
W = [1/R, . . . , 1/R], which from (4.42) and (4.43) leads to the median decision rule as:

j = arg max
k

[
1

R

R∑
i=1

P (ck|fi)
]

(4.47)

Fuzzy Majority Voting Rules.

We now use the relative quantifier at least half with the parameter pair (0, 0.5) for the
membership function Q in (4.40). Then, depending on a particular value of R, we can
obtain from (4.41) the corresponding weighting vector W = [w1, . . . , wR] for the decision
rule, denoted by FM1, as:

j = arg max
k

[
R∑

i=1

wipi

]
(4.48)

where pi is the i-th largest element in the collection P (ck|f1), . . . , P (ck|fR).
Similarly, we can also use the relative quantifier as many as possible with the parameter

pair (0.5, 1) for the membership function Q in (4.40) to obtain the corresponding decision
rule, denoted by FM2.

Interestingly also, from the following relation

R∏
i=1

P (ck|fi) ≤
R

min
i=1

P (ck|fi) ≤
R∑

i=1

wipi ≤ R
max
i=1

P (ck|fi) ≤
R∑

i=1

P (ck|fi) (4.49)

it suggests that the Max and Min decision rules can be approximated by the upper or
lower bounds appropriately on the Median rule, as presented in [Le et al. (2006a)].

4.5 Second-Layer Combination

In this section we present new schemes for classifier combination, in which one more phase
of combination is added to the end of common combination strategies. This is motivated
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by an observation that different results yielded by applying various combination rules on
the set of individual classifiers can be again used for one more combination. This new
phase of combination is called second-layer combination, and thus the previous combi-
nation can be considered as the first-layer combination. This proposal is also motivated
by that combination usually gives better result in comparison with individual classifiers,
so the second-layer combination is hoped to yield better results in comparison with the
first-layer combination.

Concerning classifier combination we face the problem that fixing a rule for every tests
is not the best choice. In this case, models of second-layer combination can be a solution.
For example, we can use the meta-vote on the outputs of these combination rules to which
we can avoid the bias to any combination rule, and we can even obtain better results.

In the below, we introduce two models of second-layer combination, namely meta-
combination and meta-stacking.

4.5.1 Meta-Combination

H_1
Individual

Classifiers
H_2 H_R. . .

R_1
Combination

Rules

D_1
Consensus

Decision

H_1 H_2 H_R. . .

R_1 R_N

D*

Combination

Rule
R*

Consensus

Decision

a) Normal-Combination b) Meta-Combination

D_1 D_N

Figure 4.3: Combination Schemes

Fig.4.3 shows two schemes of combination, including the normal-combination scheme
(also considered as a first-layer combination strategy) in part (a) and the meta-combination
scheme (also considered as a second-layer combination strategy) in part (b). In the
normal-combination , a combination rule is applied on the outputs of individual classi-
fiers to yield the final decision. In the meta-combination scheme, we first use N different
combination rules to generate N outputs, and then continue apply a combination rule
on these N outputs to yield the final decision. This meta-combination scheme is hoped
to improve accuracy of the normal-combination scheme. Beside that, it also can be a
solution for the case when we are not sure which is the best among N combination rules
used.
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Note that we can always apply the majority voting rule in the second-layer combina-
tion. Beside that, if all combination rules at the first-layer can output probability distri-
butions over classes, we can also apply other rules at the second-layer, such as median rule,
max rule, min rule, etc. Reviewing related studies, we see that [Florian & Yarowsky (2002)]
used median/average rule and majority voting at the second-layer, as shown in Table. 4.1.

4.5.2 Meta-Stacking Combination Models

H_1

H_2

H_R

Label  1

Label  2

Label  N

meta example

training

Classifier

test

R_1

Individual

Classifiers

Combination

Rules

R_N

meta training

examples

meta test

examples

example

Figure 4.4: Meta-Stacking Combination Model

In the normal-stacking model, we rebuild the test and training examples such that
each example is replaced by a sequence of labels which are the outputs of individual
classifiers. After that, using these new training examples to train a classifier, and the test
on the new test examples. The process of stacking was described in Fig. 4.2.

Start from the stacking model, instead of using outputs of the individual classifiers for
generating new examples for training and test datasets, we use the outputs from applying
combination rules on the outputs of individual classifiers, we then have a meta-stacking
model of combination, as shown in Fig. 4.4. With an observation that a first-layer combi-
nation usually gives better results in comparison with results from individual classifiers,
the meta-stacking combination using these results from the first-layer combination of
stacking-model is hoped to make better performance of classification in comparison with
stacking combination which directly uses the results from individual classifiers.

Reviewing related studies in word sense disambiguation, there are a few of them which
use stacking methods such as [Klein et al. (2002), Wang & Matsumoto (2004)], and there
are no study mentioned meta-stacking. In the experiment as below, these two kinds of
stacking method will be compared with each other, and also compared with the directly
use of combination rules.

4.6 Experiment

In this section, experimental results for all combination strategies mentioned above are
shown, in which various combination rules and two combination schemes, the first-layer
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and the second-layer, are implemented on Senseval-2 and Senseval-3. In addition, we
also these tests also implemented with two types of individual classifiers: one is based on
different representations of context (or different feature sets), and the other is based on
different machine learning algorithms.

4.6.1 Generation of Individual Classifiers

Based on Different Representations of Context

The idea of using different feature sets to build individual classifiers comes from the ob-
servation that various ways of using the context could be considered as providing different
information sources to identify the meaning of the target word. The various kinds of fea-
tures usually used for identifying word senses include bags of content words, collocations,
or some relationship between the target word with surrounding words such as syntactic
relation and distance relation, each of them can be represented by a feature subset. Com-
bining all these feature subsets in a unique set is not always the best choice because each
of them, even those of the same kind (for example bag of content words) but with different
window sizes, has a different impact on the meaning of the polysemous word, depending
on a particular context or on the target word itself. This intuitive observation prompted
us to use multi-representation of context as a means of combining individual decisions
to reach a consensus. Therefore, a appropriate way to build individual classifiers for a
combination strategy is that these classifiers are built based on different representations
of context.

In Chapter 4, we have investigated 8 feature sets (corresponding different kinds of
information) and proposed a feature selection method to find useful features. Finally,
7 feature sets have been selected, including F a

1 , F b
1 , F c

1 , F2, F3, F5, F6 (see Chapter 4
for more detail). Among these sets, F6 contains features about syntactic information.
However, in some contexts of the target word, we can not extract syntactic information
due to the incomplete information obtained from the parser. In the other hand, ordered
part-of-speech tags, as contained in feature set F5, can be considered as a kind of syntactic
information. This suggests us to combine these two feature set into a unique set which can
represent for the syntactic information. Particularly, we design 6 different sets of features
(can be seen as 6 views of context), they include V1 = F a

1 ; V2 = F b
1 ; V3 = F c

1 ; V4 = F2;
V5 = F3; V6 = F5 ∪ F6. Using a supervised learning algorithm on these six feature sets,
we will have six individual classifiers.

Based on Different Algorithms

In order to build individual classifiers based on different algorithms, we use three super-
vised learning algorithms including NB, MEM, and SVM. The feature set used is the same
for all the three algorithms, they include the whole features from all the seven feature sets
F a

1 , F b
1 , F c

1 , F2, F3, F5, F6 (i.e. for the six views, V1, V2, V3, V4, V5, V6). Call the overall
feature set is F, it is defined as:

F = F a
1 ∪ F b

1 ∪ F c
1 ∪ F2 ∪ F3 ∪ F5 ∪ F6

=
⋃6

i=1 Vi
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Table 4.2: Combination with different feature sets

Best DS1 DS2 NB Max Min Median FM1 FM2 Vote WVote Meta
Ind. Vote

Sen2 56.8 65.0 64.8 64.0 62.2 62.4 65.4 65.1 64.7 63.0 64.8 65.7
+NB
Sen2 59.0 61.4 60.2 61.4 58.2 58.6 63.4 63.3 62.6 62.0 63.0 63.0

+MEM
Sen2 57.8 59.9 58.1 61.6 59.8 59.8 59.7 59.3 59.6 58.1 58.7 60.1

+SVM

Sen3 64.1 72.4 72.5 72.0 69.3 70.3 72.2 71.7 72.2 69.7 71.6 72.5
+NB
Sen3 64.5 66.6 63.3 66.7 64.8 64.2 68.9 68.8 69.0 68.1 68.8 69.1

+MEM
Sen3 65.3 67.3 76.1 67.6 67.9 67.8 67.1 67.4 66.8 64.8 66.3 67.4

+SVM

4.6.2 Experimental Results and Discussion

Combination Rules and Meta-Voting

Table. 4.2 shows the results of applying combination rules on individual classifiers, in
which these individual classifiers are built by using a supervised learning algorithm trained
on different feature sets. This experiment are implemented for lexical sample tasks of
Senseval-2 and Senseval-3. In addition, we also tried three supervised learning algorithms,
including NB, MEM, and SVM. In this table, the column named “Best Ind.” denotes
the best result from outputs of individual classifiers; for other columns standing for other
combination rules, DS1 and DS2 respectively stand for Dempster-Shafer with and without
discount factor, NB stands for Naive Bayes, Vote stands for majority voting, and MVote
stands for weighted voting. Note that DS1 is also the product rule. In this experiment
we also use the majority voting on the outputs of all combination rules in the first-
layer combination, and this combination strategy is called meta voting. The reason for
choosing only majority voting for second-layer combination is that this rule just requires
each combination rule of the first-layer combination output the best label for each test.
The result of meta-voting is placed at the last column.

Table 4.3 also shows the results of a similar test as of the Table 4.2 but instead of using
different feature sets, we built three individual classifiers based on three different learning
algorithms, including NB, MEM, and SVM. These algorithms and they are trained on
the same feature set, F, as mentioned above.

Through results from these two tables, we can extract the following remarks.

• Applying combination rules can improve performances of individual classifiers. Spe-
cially in the case of using different feature sets, the combinations can increase ac-
curacy of the best individual classifier up to about 8% (from 56.8% to 65.4%, and
64.1% to72.4%).

58



Table 4.3: Combination with different learning methods

Best DS1 DS2 NB Max Min Median FM1 FM2 vote wvote meta
Ind. vote

Sen2 64.8 66.1 65.4 65.7 65.5 65.8 66.3 66.3 66.4 65.8 66.0 66.4

Sen3 72.0 73.3 73.2 73.2 73.1 73.1 73.6 73.6 73.7 73.5 73.8 73.6

Table 4.4: Meta-Voting on the two sets of individual classifiers: using different feature
sets and different learning methods

meta voting
Senseval2 66.3
Senseval3 73.8

• The best combination rule is changed depending on each particular dataset.

• Comparing the combinations in two kinds of generation of individual classifiers, we
see that using the set of the whole features with different learning algorithms gives
better results.

• In most cases, results of meta-voting can be comparable to the best results, see Fig.
4.2 and Fig. 4.3.

Through these two tables, we can see that using classifier combination much improves
accuracies of individual classifiers, both on the two strategies of generating individual
classifiers. It also shows that the best combination rule is not fixed through different
datasets, thus we face to the question: which combination rule should be chosen? In this
case, the meta-voting can be an appropriate choice.

In order to investigate the effectiveness of using meta-combination on the whole out-
puts from both two types of individual classifiers (based on different feature sets and
based on different machine learning algorithms) we also did a corresponding experiment,
and the result is shown in Table 4.3. This results does not improve accuracy while takes
more cost in computation.

Stacking and Meta-Stacking

In the following, we carry out some tests on the stacking approach, in which two models
of combination including first-layer stacking and second-layer stacking were implemented.

Table 4.5: Stacking with individual classifiers based on different feature sets

Best First-Layer Stacking Second-Layer Stacking
NB MEM SVM NB MEM SVM

Senseval2 56.8 62.8 62.4 60.2 65.7 65.5 64.6
Senseval3 64.1 69.4 68.0 67.5 72.5 71.4 71.9
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Table 4.6: Stacking with individual classifiers based on different learning methods

Best First-Layer Stacking Second-Layer Stacking
NB MEM SVM NB MEM SVM

Senseval2 64.8 65.5 65.5 65.0 66.2 66.2 65.9
Senseval3 72.0 73.4 72.6 72.5 73.5 73.6 73.6

Table 4.7: Combination of Different Feature Sets and Different Learning Methods in
Stacking methods

First-Layer Stacking Second-Layer Stacking
NB MEM SVM NB MEM SVM

Senseval2 65.9 65.4 64.0 66.3 66.3 65.4
Senseval3 72.8 72.1 72.2 73.7 73.2 73.2

We also used both sets of individual classifiers, one is created by using different feature sets
and NB algorithm (we chose NB because of its effectiveness in the before experiments),
and the other is created by using different learning algorithms (NB, MEM, and SVM) on
the whole features. Note that, after the train and test examples are rebuilt by using the
outputs of individual classifiers, we did three tests corresponding to using three supervised
learning algorithms including NB, MEM, and SVM. The results of these tests are shown
in Table 4.5 and Table 4.6, in which the column denoted by “Best” shows results of the
best individual classifier. And from these tables, we can extract some remarks as follows.

• Stacking methods can improve the performance of individual classifiers.

• Results of the second-layer stacking models are better than results of the first-layer
stacking models. In most cases, the best results are obtained when using NB as the
supervised learning algorithm at the final step of stacking methods, in comparison
with using MEM and SVM algorithms.

• In stacking models, concerning the generation of individual classifiers, using different
learning algorithms gives better results in comparison with using different feature
sets.

Similar to a test in meta-voting, in order to investigate the effectiveness of using
more individual classifiers, we also carry out the tests for the first-layer stacking and the
second-layer stacking models with the individual classifiers taken from both types: based
on different machine learning algorithms and different feature sets. Results are shown in
Table 4.7. Comparing with the corresponding results in Table 4.5 and Table 4.6, we can
see that such way of using more individual classifiers gives slightly better results.

For an intuitively view, we summarize the results from applying various combination
strategies in Fig. 4.5 (test on Senseval-2) and Fig.. 4.6 (test on Senseval-3). In these two
figures, x-axis holds for the types of combination in which T1 denotes normal combination
rules, T2 denotes stacking, T3 denotes meta-voting, and T4 denotes stacking in second-
layer, y-axis holds for the accuracies. For each type of combination, we tried two sets
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Figure 4.5: Test on Senseval-2: An overview of the best results of different types of
combination

of individual classifiers, one is based on different feature sets, and the other is based on
different machine learning algorithms. The column named “feature” stands for the first
type of individual classifiers, and the column named “algorithm” stands for the second
type of individual classifiers.

These two figures intuitively show again some conclusions as extracted above, which
include:

• To generate individual classifiers for combination strategies, using different machine
learning algorithms is more effective than using different feature sets.

• Though using first-layer combination gives the best results, it is still suggested to
use meta-voting on the outputs of those combination rules, that is because the best
rule is changed through different datasets.

• Stacking does not show the effectiveness in comparison with other strategies, how-
ever, second-layer stacking method can be also comparable with the best strategies.

Table 4.8 shows a comparison between our proposal, the meta-voting on different
learning methods, and previous studies. It shows that the obtained results from our
proposal are just lower than the best result in the current study, i.e. [Ando(2006)], while
better than others.

4.7 Summary

This chapter presents one of the three main contents in our thesis, that is the problem of
applying classifier combination for WSD. In this work, some strategies of classifier com-
bination from previous studies have been investigated. Two new approaches of classifier
combination for WSD, which are based on Dempster-Shafer theory of evidence and OWA
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Figure 4.6: Test on Senseval-3: An overview of the best results of different types of
combination

operators have been presented. The second-layer combination strategies were also pro-
posed, and various experiments were done. Particularly, we have made the contributions
as follows.

- We have stated a classification problem, particularly for WSD, by the concepts of
Dempster-Shafer (D-S) theory of evidence [Shafer (1976)]. This can be considered as a
new framework for WSD problem. Applying the Dempster rule of combination (it is
also considered as the orthogonal sum) on this framework, we achieve a new combination
rule called D-S combination rule. Furthermore, we also applied the discount operator on
this framework to derive Discounting-and-Orthogonal sum rule. Under this combination
strategy, we also can yield other combination rules, such as Average rule and Discounting-
and-Average rule.

- We have applied Ordered Weighted Aggregating (OWA) operators [Yager 1988] and
linguistic quantifiers to the problem of classifier combination. As the result, some fuzzy
majority voting have been derived, which correspond to the combination rules, such as
Max rule, Min rule, and Median rule. The use of fuzzy linguistic quantifiers not only help
deriving but also provides a human-like interpretations to these rules. Note that, some
of these combination rules are also yielded in the work of [Kittler et al. (1998)], but with
some strong assumptions which is difficult to be accepted in WSD problem. Moreover, this
approach does provide us a clear interpretation about the semantic of these combination
rules.

- We have proposed two second-layer combination strategies, called meta combination
and meta-stacking. This proposal can be considered as the generalization of some special
cases in previous studies, for example [Florian & Yarowsky (2002), Florian et al. (2002)]
used the average and voting rules on the outputs of the first-layer combination rules.

- Two kinds of generating individual classifiers were investigated, one is based on
different feature sets and the other is based on different machine learning algorithms.
Most previous studies just considered the second method.

62



Table 4.8: Comparison with previous studies on Senseval-2 and Senseval-3

Method Senseval-2 Senseval-3
accuracy(%) accuracy(%)

our method: meta-voting 66.4 73.6
ASO multi-task, [Ando(2006)] 68.1 73.8

optimized parameters
classifier combination, [Florian & Yarowsky (2002)] 66.5

polynomial KPCA, [Wu et al. (2004)] 65.8
SVM, [Lee & Ng(2002)] 65.4

The best systems in Senseval contests 64.2 72.9
Baseline 48.35 55.17

- We have carried out various tests. The obtained results show that the meta-voting
strategy based on various combination rules in which individual classifiers based on differ-
ent machine learning algorithms gives the best results. These results can be comparable
with the best systems when testing on English lexical sample tacks of Senseval-2 and
Senseval-3.
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Chapter 5

Semi-Supervised Learning

This chapter presents our work on exploiting unlabeled data to improve performance of
supervised-learning based WSD. The process of using both labeled and unlabeled data
to build a classifier is called semi-supervised learning, and the approach in which labeled
data is iteratively extended will be investigated. We first explicitly identify some problems
occurring in this approach (particularly on self-training and co-training algorithms) and
then propose solutions for them. Consequently, a new semi-supervised learning algorithm
with several variants are generated. To test the effects of the proposed solutions, we also
develop various models of the new bootstrapping algorithm and tested them on Senseval-
2 and Senseval-3. Further, we propose a method that can combine advantages from the
use of classifier combination techniques (as presented in the chapter 4) and the use of
unlabeled data.

5.1 Introduction

5.1.1 Methods in Semi-Supervised Learning

The semi-supervised learning is a special form of classification in which it uses both labeled
and unlabeled data while a traditional classifier uses only labeled data. Labeled examples
however are often difficult, expensive, or time consuming to obtain, as they require efforts
of experienced human annotators. Meanwhile unlabeled examples may be relatively easy
to collect, but there has been few ways to use them. Semi-supervised learning addresses
this problem by using large amount of unlabeled data, together with the labeled data,
to build better classifiers. Semi-supervised learning methods use unlabeled data to either
modify or re-prioritize hypotheses obtained from labeled data alone. In our opinion,
semi-supervised learning methods can be grouped into two approaches as follows.

Methods Based on Optimizing Parameters

In the first approach the learners try to optimize parameters of the classification model
using both labeled and unlabeled data. [Miller & Uyar (1997)] and [Nigam et al. (2000)]
used a generative model for the classifier and used Expectation Maximization to estimate
the model’s parameters trained on both labeled and unlabeled data. [Joachims (1999)]
used transductive inference for support vector machines to optimize performance on a
specific test set. While [Blum & Chawla (2001)] used a graph-based method in which a
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graph based on the whole examples is first constructed and then the minimum cut on
the graph yields an optimal labeling for the unlabeled examples according to a certain
optimization function. Two of the most popular methods in this approach are EM-based
method [Nigam et al. (2000)] and transductive SVM [Vapnik (1998)].

Transductive SVM

Transductive SVM is an extension of standard support vector machines with unlabeled
data. In a standard SVM, only the labeled data is used, and the goal is to find a maximum
margin linear boundary in the Reproducing Kernel Hilbert Space. In a transductive
SVM, the unlabeled data is also used, and the goal is to find a labelling for the unlabeled
data, such that a linear boundary has the maximum margin on both the original labeled
data and the (now labeled) unlabeled data. The decision boundary has the smallest
generalization error bound on unlabeled data. Although some success has been reported
(e.g., see [Joachims (1999)], there has also been criticism pointing out that this method
may not behave well under some circumstances [Zhang & Oles (2000)].

+

-

+

+ +

-
-

-

Figure 5.1: The maximum margin hyper-planes for Transductive Support Vector Machines

The relation between support vector machines and transductive support vector ma-
chines on the task of maximizing margin is shown in Fig. 5.1, in which positive/negative
examples are marked as +/-, test examples as dots. The solid line is the solution of the
inductive SVM, and the dashed line shows the transdutive classification.

EM-Based Algorithm

Some methods in semi-supervised learning are based on EM algorithm. The most well-
known method was presented by [Nigam et al. (2000)], in which the model’s parameters
are iteratively updated by using the current model to infer (a probability distribution
on) labels for the unlabeled data and then adjusting the model parameters to fit the
(distribution on) filled-in labels. When the model defines a joint probability distribution
over labeled data and unlabeled data, each iteration of the EM algorithm can be shown
to increase the probability of the labeled data given the model parameters. However,
EM is often subject to local minima situations in which the filled-in data and the model
parameters fit each other well but the model parameters are far from their maximum-
likelihood values. Furthermore, even if EM does find the globally optimal maximum
likelihood parameters, a model with a large number of parameters will over-fit the data.

65



Unlabeled

Examples

Labeled

Examples

Classifier

train

detect

Transfer

new labeled

examples

Figure 5.2: A Scheme to Describe the Process of Iteratively Extending Labeled Data

Methods Based on Iteratively Extending Labeled Data

In the second approach, learners follow a strategy in which the initial labeled data is
iteratively extended, and finally a larger labeled data is obtained and used to generate the
final classifier. From the literature review, we observe that a common method for enlarging
labeled data is to use the classifier trained on the current labeled dataset to detect labels
for unlabeled examples. Among those new labeled examples, some highly accurate ones
are selected and added to the current labeled dataset. This process is iteratively repeated
until there is no unlabeled example left, or until the number of iterations reaches a pre-
defined threshold. Two well-known methods based on this approach are self-training
[Yarowsky (1995)] and co-training [Blum & Mitchell (1998)]. Note that in self-training
the classifier uses its own predictions to teach itself. This process of extending labeled
data and retrain the classifier is also called self-teaching or bootstrapping. Self-training
in [Yarowsky (1995)] is different from co-training in [Blum & Mitchell (1998)] is that self-
training considers the overall feature space in one view while co-training splits the overall
feature space into two views (see the next sections for more detail).

Our choice

In this work we follow the second approach because it seems intuitively suitable for WSD.
As mentioned before, the right sense of a polysemous word in a certain context is deter-
mined based on the features extracted from this context. It means that some features
can determine one sense, so we can use these features to detect new contexts for the pol-
ysemous word, which can again be used for extracting new features. Fig. 5.3 taken from
[Yarowsky (1995)] illustrates an example of extending labeled data in which the part (a)
shows the initial contexts and part (b) shows extended labeled contexts of the polysemous
word “plant”. As shown in this figure, at the beginning there are some initial training
contexts which contain seed collocations (i.e. features) including life for label “A” and
manufacturing for label “B”(as shown in part (a)), and then use these training contexts
to detect new contexts (as shown in part (b)) which contain new seed features including
animal, cell, employee, etc. The new contexts are then used as training contexts to detect
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Figure 5.3: An Example of Extending Labeled Data in WSD

new features. This process can be repeated to recognize more new contexts, i.e. to enlarge
training dataset. Note that some new features may appear just after several extension of
training contexts, not at the first extension.

5.1.2 Problems and Motivations

As mentioned above, we follow the second approach in which the labeled data is iteratively
extended. This process is described in the Algorithm 3 which can be considered as the
general bootstrapping algorithm.

We now explicitly identify three problems (subtasks) in the general framework of semi-
supervised learning which, according to our observation, may affect the performance of
semi-supervised learning systems in practical applications, particularly in WSD. These
problems are presented in detail as follows.

The first problem, denoted as P1, regards the imbalance of labeled (training) data.
We observe that if a classifier is built based on training data with a bias on certain classes
(i.e., one or several classes dominate others), then this bias may become stronger at each
extension of the labeled dataset. This is because a classifier tends to detect examples of
dominant classes with high confidence, and consequently these examples are prioritized for
a new set of labeled examples. Through steps of extending labeled data, the imbalance
of labeled data is increased, which may result in decreasing the accuracy of the initial
classifier. Previous studies just solved this by fixing the number of new labeled examples
for each class, such as in [Blum & Mitchell (1998), Pierce & Cardie (2001)]. However,
this can not be implemented in some certain circumstances, for example in the case when
we can not achieve enough new labeled examples of a class for the corresponding number
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which is pre-defined. To tackle this problem we will provide a procedure which can flexibly
retain class distribution and avoid fixing the number of new labeled examples. In addition,
the effects of using or not using this solution for this problem will be shown through
experiments on Senseval-2 and Senseval-3. Further, in order to ensure that retaining class
distribution will not prevent to obtain an extended labeled data which has a more reliable
class distribution, we assume that the original labeled data has the same class distribution
as in “real” data.

The second problem, denoted by P2, is that of how to determine a subset of new labeled
examples with high confidence. It is clear that adding a large number of misclassified
examples into the labeled dataset will probably result in generating a poor classifier in
the end. Therefore, one aims at obtaining new labeled examples with the highest accuracy
possible. To reach this target, previous studies normally used the so-called threshold-based
selection of new labeled examples. In particular, given a new example which is assigned a
label with a probability of detection, a threshold value for this probability is predefined to
decide whether a new labeled example will be selected or not, such as in [Yarowsky (1995),
Blum & Mitchell (1998), Collins & Singer (1999)]. However, this threshold-based method
of selection may lead to a situation where choosing a higher threshold will create difficulty
in extending labeled data, while it does not always result in correct classification. By
contrast, a lower threshold may result in more misclassified examples, but allows more
new labeled examples to be added. Therefore, the determination of a “correct” threshold
in the approach becomes an important issue. In addition, determining a commonly used
threshold for all unknown data is also inappropriate. To address these issues, we propose
a method that flexibly and dynamically chooses an appropriate value for the threshold
based on estimating the upper bound of the classification error rate of the obtained labeled
dataset. Moreover, based on the observation that combining classifiers usually decrease
the classification error rate, we aim at using different supervised learning algorithms to
generate different classifiers and then combine them under a combination rule to increase
the confidence of new labeled examples.

The third problem, denoted by P3, is that of how to generate the final classifier when
the process of extending labeled data is completed. According to the framework depicted
in Algorithm 3, this process will be stopped when the number of iterations reaches a pre-
specified value, or when the unlabeled dataset becomes empty. Normally, the classifier
built on the labeled data obtained at the last iteration is chosen as the final one. Some
studies use a development dataset to find the most appropriate value for the number of
iterations, such as in [Pham et al. (2005), Mihalcea (2004)]. As mentioned in problem P2,
the last classifier may be built based on new training data with some misclassified exam-
ples, so both advantages and disadvantages are concurrently brought to the last classifier.
Thus, choosing the classifier trained on the last labeled dataset as the final classifier is not
always be a good solution. This observation suggests that we should combine the classi-
fiers, which are obtained at each extension of labeled data, under classifier combination
strategies to utilize advantages of these different classifiers.

For an intuitively view, we show the three problems as in Fig. 5.4.
By reviewing various related studies, especially regarding the WSD problem, we found

that previous studies have not paid adequate attention to these three problems. In this
thesis, we consider simultaneously these three problems for the objective of improving
semi-supervised learning, particularly on self-training and co-training algorithms. Exper-
iments are carried out on the English lexical sample tasks of Senseval-2 and Senseval-3.
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Algorithm 3 – The General Bootstrapping Algorithm

Input: L (labeled data); U (unlabeled data); k = 0; K is the maximum number of
iterations
Output: H – the final classifier

1: repeat
2: k ← k + 1
3: generate classifier h trained on L
4: use h to label U , and obtain a labeled dataset UL

5: get L′ ⊂ UL consisting of highly accuracy examples
6: L ← L ∪ L′; U ← U \ L′

7: until U = ∅ or k > K
8: use L to generate the final classifier H
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Figure 5.4: A View of Three Problems of the Process of Iteratively Extending Labeled
Data
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The obtained results show the effectiveness of the proposed solutions with a significant
improvement of accuracy in comparison with supervised learning.

5.1.3 Semi-Supervised Learning for WSD: Related Work

Semi-supervised methods for WSD are characterized in terms of exploiting unlabeled
data in learning procedures with the requirement of predefined sense inventory for target
words. With only a small number of labeled examples, we may face two problems: firstly
we cannot achieve the correct probability distribution over the feature space; secondly
we may face the problem of lack of features in the training data, i.e. we may meet new
features in test data. There were several studies which aimed to overcome the second
problem by using external resources as, e.g., thesaurus or lexicons to disambiguate word
senses or automatically generate sense-tagged corpus such as in [Lesk (1986), Lin (1997),
McCarthy et al. (2004), Seo et al. (2004), Yarowsky (1992)] or by using similarity be-
tween words based on untagged corpus such as in [Karov & Edelman (1998)], or by basing
on the WordNet resource such as in [Leacock (1998)]. Another approach when lacking
labeled sense-tagged examples is to use a second language. In this approach, the stud-
ies, such as [Brown et al. (1991), Dagan & Itai (1994), Diab & Resnik (2002), Li & Li,
Ng et al. (2003)], exploit the differences between mapping of words to senses in different
languages with the help of bilingual corpora (e.g. parallel corpora or untagged monolin-
gual corpora in two languages).

Other studies use bootstrapping (semi-supervised learning) algorithms to extend la-
beled data. Among them, Yarowsky algorithm [Yarowsky (1995)] is considered as the
first bootstrapping algorithm. In this algorithm, the author use some labeled examples as
seeds and extract from them the decision rules, which are then used to detect senses for
new examples. This method is implemented with the help of the principle “one sense per
collocation”. As the result, we obtain new labeled examples added them to the current la-
beled dataset. New decision rules are continuously extracted and this process is repeated
until converged. [Mihalcea (2004)] investigate the uses of co-training and self-training
algorithms in word sense disambiguation, in which three parameters of these algorithms
are discussed, including: number of iterations, number of examples selected from the un-
labeled set for annotation at each iteration, and number of the labeled examples that are
added at each iteration. In this paper, various settings of these parameters were tried
on the development dataset to find the best setting. In addition, [Mihalcea (2004)] pro-
poses a smoothing technique which uses majority voting on obtained individual classifiers
instead of using only the current classifier at each iteration for extending labeled data.
[Zheng (2005)] applies the Label Propagation based semi-supervised learning algorithm
proposed by [Zhu & Ghahramani (2002)] to WSD. [Pham et al. (2005)] applies an algo-
rithm which used co-training in spectral graph transductive(SGT) [Joachims (2003)] for
WSD.

Reviewing related studies followed semi-supervised learning approach, we see that
these three problems, P1, P2, and P3 have not received adequate considerations. In this
chapter, we will propose a new bootstrapping algorithm based on providing solutions for
these problems. We also implement various experiments to show the effectiveness of the
proposed solutions.
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5.2 Self-Training and Co-Training

5.2.1 Co-Training

The co-training paradigm applies when accurate classification hypotheses for a task can
be learned from either of two sets of features of the data, each called a view. The intuition
behind Blum and Mitchell’s co-training algorithm [Blum & Mitchell (1998)] is that two
views of the data can be used to train two classifiers that can help each other. Each
classifier is trained using one view of the labeled data, and then used to predicts labels
for unlabeled examples. The most confident predictions of each classifier are selected and
adding the corresponding examples with their predicted labels to the other’s available
training data. According to Blum and Mitchell [Blum & Mitchell (1998)], the condition
for co-training algorithm works exactly is that the two views have to satisfy the two
assumptions: firstly each view itself is sufficient to label task (or is sufficient to build a
good classifier); the second is independent assumption of the two views. In the original
definition of co-training, Blum and Mitchell [Blum & Mitchell (1998)] state conditional
independence of the views as a required criterion for co-training to work.

In particularly, suppose that each example is represented by a feature vector x drawn
from a set of possible values (an instance space) X. The task is to learn a classification
function f : X → Y where Y is a set of possible labels. The characteristics of co-training
can be described as follows.

• The features can be separated into two types: X = X1 × X2 where X1 and X2

correspond to two different views of an example. In the named entity task, X1

might be the instance space for the spelling features, X2 might be the instance
space for the contextual features. By this assumption, each element x ∈ X can also
be represented as (xl, x2) ∈ X1 ×X2.

• Each view of the example is sufficient for classification. That is, there exist functions
fl and f2 such that for any example x = (xl, x2), f(x) = fl(Xl) = f2(x2). We never
see an example x = (xl, x2) in training or test data such that fl(xl) 6= f2(x2).

Thus the method makes the fairly strong assumption that the features can be par-
titioned into two types such that each type alone is sufficient for classification (xl and
x2 are not correlated too tightly). Now assume we have n pairs (xl,i, x2,i) drawn from
X1xX2, where the first m pairs have labels yi, whereas for i = m + 1, . . . , n the pairs are
unlabeled. In a fully supervised setting, the task is to learn a function f such that for all
i = 1, . . . , m, f(xl,i, x2,i) = yi. In the co-training case, [Blum & Mitchell (1998)] argues
that the task should be to induce functions fl and f2 such that:

1. f1(x1,i) = f2(x2,i) = yi, for i = 1, . . . , m

2. f1(x1,i) = f2(x2,i), for i = m + 1, . . . , n

So fl and f2 must (1) correctly classify the labeled examples, and (2) must agree
with each other on the unlabeled examples. The key point is that the second con-
straint can be remarkably powerful in reducing the complexity of the learning problem.
[Blum & Mitchell (1998)] gives an example that illustrates just how powerful the second
constraint can be. Consider the case where |X1| = |X2| = N and N is a “medium” sized
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number so that it is feasible to collect O(N) unlabeled examples. Assume that the two
classifiers are “rote learners”: that is, fl and f2 are defined through look-up tables that list
a label for each member of X1 or X2. The problem is a binary classification problem. The
problem can be represented as a graph with 2N vertices corresponding to the members
of X1 and X2. Each unlabeled pair (xl,i, x2,i) is represented as an edge between nodes
corresponding to xl,i and x2,i in the graph. An edge indicates that the two features must
have the same label. Given a sufficient number of randomly drawn unlabeled examples
(i.e., edges), we will induce two completely connected components that together span
the entire graph. Each vertex within a connected component must have the same label
– in the binary classification case, we need a single labeled example to identify which
component should get which label.

The original co-training algorithm [Blum & Mitchell (1998)] is presented in Algorithm
4, and a corresponding scheme is presented in Fig. 5.5.

Algorithm 4 – The Original Co-Training Algorithm

Input: a set L of labeled training examples; a set U of unlabeled examples; K is the
number of iteration;

1: Create a pool U ′ of examples by choosing u examples at random from U
2: k ← 0
3: repeat
4: k ← k + 1
5: use L to train a classifier h1 that considers only the x1 portion of x
6: use L to train a classifier h2 that considers only the x2 portion of x
7: allow h1 to label p positive and n negative examples from U ′

8: allow h2 to label p positive and n negative examples from U ′

9: add these self-labeled examples to L
10: randomly choose 2p + 2n examples from U to replenish U ′

11: until k > K
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5.2.2 Self-Training

Self-training algorithm, also called Yarowsky algorithm [Abney (2004)] is one of the first
bootstrapping algorithms to become widely known in computational linguistics. This
algorithm, in brief, consists of two loops. The “inner loop” or base learner is a supervised
learning algorithm. Specifically, [Yarowsky (1995)] uses a simple decision list learner that
considers rules of the form, “If instance x contains feature f , then predict label j”, and
selects those rules whose precision on the training data is highest. The “outer loop” is
given a seed set of rules to start with. In each iteration, it uses the current set of rules
to assign labels to unlabeled data. It selects those instances on which the base learners
predictions are most confident, and constructs a labeled training set from them. It then
calls the inner loop to construct a new classifier (that is, a new set of rules), and the cycle
repeats. The Algorithm presented in 3 can be considered as the conventional self-training
algorithm.

5.2.3 Comparison between Self-training and Co-training

As discussed in [Abney (2004)], co-training [Blum & Mitchell (1998)] has subsequently
become more popular, perhaps in part because it has proven amenable to theoretical
analysis, in contrast to the Yarowsky algorithm, which is as yet mathematically poorly
understood. The Yarowsky algorithm does have the advantage of placing less restriction
on the data sets it can be applied to. Co-training requires data attributes to be separable
into two views that are conditionally independent given the target label; the Yarowsky
algorithm makes no such assumption about its data.

Both self-training and co-training are bootstrapping algorithms and their mission is
to extend the original set of labeled examples. Under our opinion, the effect of a boot-
strapping algorithm is depend on the quantity of added labeled examples which can be
evaluated via two criteria: the accuracy of added examples; and how much of informa-
tion will be achieved from new labeled examples. In our consideration, we regard the
difference between self-training and co-training at the important point: self-training uses
only one view while co-training using two views for representing data. The easy way to
understand these views is that each view can be considered as a set of features. The view
of self-training is the set containing all features and this set will split into two distinct
sets which represent for the two views of co-training. Now, we discuss about these two
criteria under the implementation of co-training and self-training algorithms.

• For the first criterion, it is natural that the more prior information the classifier
contains, the more confidence of its detection is. Co-training algorithm uses two
views with one of assumptions that each view its self is sufficient for detecting
labels for new examples. But this assumption is impractical, and it is easy to see
that even the set of all features is also lack of information for the labelling task.
Therefore, for this criterion, self-training seems to more confident than co-training.
Note that this problem concerns the problem P2 as presented before.

• For the second criterion, at first we have to answer the question which information
can be brought from new labeled examples? One kind of added information which is
easy to see is information of new features. Under this consideration, if the assump-
tions of co-training is satisfied then it seems to be more useful than self-training
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because the two classifier trained on the two views will provide information for each
other.

5.3 Proposed Solutions

Previously, we have identified three problems that may occur in semi-supervised learning
methods and observed that overcoming them may effectively enhance the performance
of learning algorithms in practical situations. In this section we will discuss solutions
for these problems one by one, which form the basic for developing a new bootstrapping
algorithm in the next section. From now on, we will distinguish two kinds of datasets:
the added labeled dataset and the new labeled dataset. More particularly, in the semi-
supervised learning algorithm, at each extension of the current labeled dataset, some new
labeled examples will be added to the current dataset. Then, the set of such new labeled
examples is called the added labeled dataset, and the union of the current labeled dataset
with the added labeled dataset is called the new labeled dataset.

5.3.1 Imbalanced Data

Procedure 5 – Resize(L0, L
′, ∆): Resizing class-based subsets

Input:
L0 is the original labeled dataset; L′ is the added labeled dataset
∆ – tolerance in retaining class distribution

Output:
N ′ = {n′1, . . . , n′m} – new sizes of class-based subsets for L

1: compute N0 = {n0
1, . . . , n

0
m} – sizes of class-based subsets of L0.

2: compute N ′ = {n′1, . . . , n′m} – sizes of class-based subsets of L′.
3: compute D0 = {d0

1, . . . , d
0
m} – the class distribution of L0

4: repeat
5: set N = {n1, . . . , nm} by ni = n0 + n′i, for i = 1, . . . , m
6: compute D = {d1, . . . , dm} from N
7: if there exist l such that dl − d0

l > ∆ (*) then
8: compute r such that nl−rPm

i=1 ni−r
= (do

l + ∆)

9: if n′l > (r + 1) then
10: n′l ← [n′l − (r + 1)]
11: else
12: n′l ← 0
13: end if
14: end if
15: until condition (*) does not hold

Now we are concerned with situations in which class distribution of the original la-
beled dataset is biased, i.e. one or several classes considerably dominate the others. In
such a case, adding new labeled examples in semi-supervised learning may make this bias
stronger. This is because following the strategy of selecting new labeled examples based
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on classification probability, examples of dominant classes have more chance to be se-
lected. This is clearly an undesired situation and has been considered in previous studies,
e.g. [Blum & Mitchell (1998), Pierce & Cardie (2001)]. The solution for this problem is to
retain the class distribution of the labeled dataset whenever it is extended. Furthermore,
we are also based on the assumption that the class distribution of the original labeled
dataset is similar the class distribution of the “real” data.

To tackle this problem, our solution is as follows. For a set of labeled examples, we
divide examples into subsets such that all examples in each subset have the same label.
We call these class-based subsets. From the new labeled examples which are obtained at
the extension step, we must resize its class-based subsets such that the class distribution
of the original labeled dataset can be retained. However, we may not always strictly
retain this class distribution, such as in the case there are one or more class-based subsets
which are empty. Therefore, developing a procedure for maintaining the class distribution
should take this situation into account. In our case, we introduce a tolerance parameter
by which we can avoid fixing the number of new labeled examples of each class is fixed, as
in [Blum & Mitchell (1998), Pierce & Cardie (2001)]. The proposed solution for retaining
class distribution is described in Procedure 5.

5.3.2 Increasing Confidence of New Labeled Data

Regarding this task, an usual approach is to use a supervised learning algorithm to train
a classifier based on the labeled dataset, and then use this classifier to detect labels for
the examples in a subset U ′ of the current unlabeled dataset U . Formally, let L be the set
of labels (classes), and h be the supervised classifier. Given an example e, the classifier
h applied to e yields a probability distribution over L, denoted by Ph(·|e). Then it is
suggested that example e should be assigned to label l̂ satisfying

l̂ = arg max
l∈L

Ph(l|e)

If Ph(l̂|e) is greater than a threshold α, then example e associated with label l̂ will be
added to L.

As mentioned previously, using a classifier with threshold α for determining new la-
beled examples may cause a tradeoff problem between the extendibility and the accuracy
of label detection. Furthermore, an increase in threshold α does not always ensure an
increase in accuracy of new labeled examples. Note that the extendibility of labeled data
is not only depicted by the number of new examples added, but also by the “new in-
formation” brought by these added examples. Heuristically, a new example whose label
is correctly detected with low confidence may bring richer and new information to the
current labeled data, and therefore it may be useful to detect labels for new examples.
Therefore, it would be helpful to find out such a way of extending labeled data which can
maintain the extendibility while still ensuring the accuracy of labeled data. Here we also
use a threshold-based method, but instead of designing a fixed value for the threshold, we
design a set of values for the threshold such that at each iteration of the bootstrapping
algorithm the best value is chosen based on estimating the upper bound of classification er-
ror of labeled data using the approach presented in [Goldman & Zhou, Zhou & Li (2005)].
Particularly, this selection of a threshold value is based on the evaluation of generated
labeled datasets, which is done as follows.
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Procedure 6 – DataEvaluate(L0, Ladd): Evaluation of Generated Labeled Data

Input: L0 is the original labeled data; Ladd is the added labeled data

1: m ← |Ladd|
2: train on Ladd to generate classifier h
3: use h to test on L0 and obtain classification error rate η
4: return q = m(1− 2η)2

f a dataset has size m, this value has a relationship with the hypothesis accuracy
(1 − ε), where ε is the upper bound on the classification error rate of the hypothesis, in
terms of the following formula which is presented in [Goldman & Zhou].

m =
c

ε2(1− 2η)2
or, equivalently ε =

√
c

m(1− 2η)2
(5.1)

where c is a constant, which is simply set to 1, and η is classification noise rate of
the training data (η must be less than 0.5). Note that [Goldman & Zhou] generated
this formula by simply using a theorem about Probably Approximately Correct (PAC)
property in [Angluin & Laird(1988)]. More detail, the formula (5.1) is derived from the
inequality (5.2), with the assumption that other parameters are held constant, as follows,

m ≥ c

ε2(1− 2η)2
ln(

2N

δ
) (5.2)

where N is the number of hypothesis, and δ is the confidence, then a hypothesis Hi

that minimizes disagreement with the training data will have PAC property:

Pr[d(Hi, H∗) ≥ ε] ≤ δ

where d(, ) is sum over the probability of elements from the symmetric different be-
tween the two hypothesis sets Hi and H∗ (the ground-truth).

Assume that we are standing at the iteration tth, denote by Lt the current labeled
dataset, Lt

add is the current added labeled dataset, and wt is the number of examples in
Lt ∪ Lt

add that are mislabeled. Then 1/ε2 denoted by qt can be estimated by

qt = |Lt ∪ Lt
add|

(
1− 2

2wt

|Lt ∪ Lt
add|

)2

The semi-learning process is continued if qt > qt−1, and the labeled dataset is updated:
Lt+1 ← Lt ∪ Lt

add.
Here we also accept this approach for evaluating the generated labeled datasets (i.e.

the generated classifiers), but with a difference regarding the estimation of experimental
classification error rate η. To estimate η, [Goldman & Zhou] used a 10-fold test on Lt ∪
Lt

add, while [Zhou & Li (2005)] also trained on the whole data (include original labeled
data and new labeled data) but just tested on the original labeled data.

Also agree with the observation in [Zhou & Li (2005)] that it is difficult to estimate
the classification error on the unlabeled examples, we therefore compute classification
error rate by testing on only the original labeled examples, with a heuristic assumption
that the unlabeled examples hold the same distribution as the labeled ones. Moreover,

76



we use only the total number of labeled examples added through iterations without the
original labeled examples for training while [Goldman & Zhou] and [Zhou & Li (2005)]
used both these kinds of labeled data. The reason for our choice stems from the following
observations:

• WSD always has the problem of over-fitting on training data, which means if we
train and test on the same data, we often receive a very high accuracy (approximate
100%).

• It is natural that if the added labeled examples are correctly classified, the classi-
fier trained on them will give high accuracy when testing on the original labeled
examples.

The flexible and dynamic strategy for selecting values for the threshold α with the
help of Procedure DataEvaluate is used for the task of extending labeled data and this
procedure is sketched in Procedure 7.

Procedure 7 – Extendibility(L, U, Ω,A): Extend labeled data

Input:
L – the current labeled dataset
U – the current unlabeled data
Ω = {αi}n

i=1 – a set of threshold values of size n
A = {A1, . . . , AR} is the set of supervised algorithms, which is used in the case of using

multi–classifiers

1: set a pool of empty datasets, L = {Li = ∅}n
i=1

2: get classifier h trained on L
3: for all example e ∈ U do
4: use h to detect labels for e, obtain a new labeled example e′ with a overall corre-

sponding support degree P (e′);
5: for all αi ∈ Ω do
6: if P (e′) > αi then
7: add e′ to Li

8: end if
9: end for

10: end for
11: call Resize on Li and remove from Li a certain number of examples such that it is

appropriate to the new size, for i = 1, . . . , n.
12: evaluate Li by calling the procedure DataEvaluate , for i = 1, . . . , n,

and get the best Lk, where k = arg max
i

DataEvaluate(L,Li)

13: return Lk

Also regarding the problem P2, we propose a solution motivated from the observation
that combining classifiers has significantly improved the performance of supervised learn-
ing systems. Especially in the context of semi-supervised learning, where the relatively
small amount of available labeled data would not be enough to build good classifiers,
combination of different classifiers may hopefully enhance the quality of new labeled data
by integrating complementary information extracted from individual classifiers about pat-
terns to be classified. If we use classifier combination for detecting labels for unlabeled
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examples in the procedure of Extendibility, it is then called the use of multi-classifier.
Otherwise, if we use only one classifier then it is called the use of single-classifier. Note
that the use of either single classifier or multi-classifier is stated at Step 2 and Step 4
of Procedure 7. In the case of multi-classifier, we use a combination rule on a set of R
classifiers to generate the classifier h. In such a case, R different classifiers correspond to
R different machine learning algorithms taken from A trained on the current labeled data.
For each unlabeled example e, these R classifiers are combined to output overall support
degrees associated with corresponding labels in L. Then the highest overall support de-
gree is used in comparison with the threshold in such a way that only the new labeled
examples which have the highest overall support degrees greater than the threshold α are
added to the current labeled data.

5.3.3 Generating the Final Classifier

Now we will discuss about problem P3 of how to generate the final classifier. Regarding
this problem, there are two issues to be addressed: when should we stop the process of
enlarging the labeled dataset, and how to build the final classifier. In previous studies
related to WSD as in [Pham et al. (2005), Mihalcea (2004)], the authors first design a
development dataset and then run the semi-learning algorithm on this dataset several
times to select a value for the iteration number which is used for test datasets. After that
the classifier built on the labeled data obtained at the last iteration is chosen as the final
one.

However, in our opinion, the optimized value of iteration number depends on each
particular dataset, as well as depends on each polysemous word. Therefore, it would
be better if this value can be dynamically determined by evaluating generated labeled
datasets. For this purpose, we can use the evaluation method described previously in
Procedure 6. In addition, as discussed above, we can also use techniques of classifier
combination for building the final classifier. The details are shown below.

We first observe that during the process of extending labeled data in semi-supervised
learning systems for WSD, the following two situations may happen: the first one is the
feature space may be also expanded concurrently, due to some new features covered by
new examples which have not been occurred in available examples previously; the second
one is there may be some misclassified examples which were added to the labeled dataset
at some steps of extending labeled data. Both these situations may lead to the following
consequences: the generated classifiers may not much improve, or may even decrease the
labelling quality for test examples which could have been correctly labeled by the initial
supervised classifier; the generated classifiers may be better in detecting labels for test
examples which contain many new features covered by new added labeled examples.

These observations suggest that the use of only one classifier built on the last labeled
dataset as the final classifier may not always be the best solution. Again, we aim to apply
strategies of combining classifiers for enhancing the labelling quality of the final classifier
in semi-supervised learning for WSD. To this end, after each extension of labeled data we
build the corresponding classifier and then combine all of them according to a combination
strategy to obtain the final classifier. Note that, there is another alternative in which we
just combine the classifiers which are trained on the original and the last labeled dataset.
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5.3.4 A New Algorithm

Algorithm 8 – A New Bootstrapping Algorithm

Input:L0 is the original dataset; A = {A1, . . . , AR} is the set of supervised algorithms;
A∗ is the primary supervised algorithm; C is a combination rule; L is the set of obtained
labeled datasets; ∆ is the tolerance which is used for retaining class distribution ; M is
maximum number of unlabeled examples used at each iteration; Ω is a set of the threshold
α.
Output: H – the final classifier

1: k ← 0; q0 ← 0; L ← {L0}
2: repeat
3: k ← k + 1;
4: randomly get M examples from U to obtain U ′ ⊂ U
5: L′ ← Extendibility(Lk, U

′, Ω,A)
6: Lk+1 ← Lk ∪ L′;
7: qk+1 ← DataEvaluate(L0, Lk+1)
8: if qk+1 > qk then
9: L ← L ∪ {Lk+1};

10: end if
11: until qk+1 < qk or L′ = ∅
12: train A∗ on L to generate a set of classifiers, h = {h0, . . . , ht}
13: apply the combination rule, C, on h to generate the final classifier H

On the basis of the above discussions, we develop a new bootstrapping algorithm as
shown in Algorithm 8. In this algorithm, at each iteration first M examples are randomly
extracted from the whole unlabeled dataset U , we denote by U ′ the set of these unlabeled
examples (this is necessary in the case that U is very large). After U ′ is selected, the
procedure Extendibility is called to enlarge the current labeled dataset Lk (k is the
current iteration number). In this step, an added labeled dataset, L′, is generated, which
is then combined with the current labeled dataset to yield a new labeled dataset, Lk+1.
Note that when Extendibility has been carried out, procedure Resize is called to retain
class distribution for the new labeled dataset. After obtaining Lk+1, it is evaluated by
procedure DataEvaluate. This process is repeated until there are no more new labeled
examples to be discovered, or the new labeled examples do not improve the labeled dataset.
When this process stops, we obtain a set of new labeled datasets, namely L = {L0, . . . , Lt}
(note that, here t = k or t = k + 1 depends on the conditions for stopping the loop of
the algorithm, qk+1 < qk or L′ = ∅). Then, we use the supervised learning algorithm A∗

trained on L to obtain a set of different classifiers h = {h0, . . . , ht}. Finally, the final
classifier H is generated by applying the combination rule C on h .

Note that, at the final step of this algorithm we can also apply the combination rule
for only the classifier trained on the original labeled dataset and the classifier trained
on the last new labeled dataset (i.e. L0 and LN). This is suggested by the observation
that intermediately generated classifiers participating in the combination may decrease
advantages of the last classifier. Further, using only the initial and the last classifiers in
combination is also due to advantages in terms of time computation and storage space.
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5.4 Experiment for Semi-Supervised Learning

5.4.1 Experimental Models

Actually, the proposed semi-supervised learning algorithm is the result of integrating
solutions for problems P1, P2, and P3 into the general bootstrapping algorithm. Therefore,
to see how effective each of the proposed solutions or their combinations is, in the sequence
we develop several different experimental models of the proposed semi-supervised learning
algorithm.

As in Procedure Extendibility, we use a set of values for α instead of a fixed value.
In particular, we define this set as Ω = {0.5, 0.6, 0.7, 0.8, 0.9}. The upper bound (α = 0.9)
and lower bound (α = 0.5) of these values are used for those models which follow the
conventional threshold-based method, which is based on a fixed threshold. Particularly,
the experimental models are as follows.

• Call the general bootstrapping algorithm M0, without any proposed solutions of P1,
P2, and P3. In this model, we investigate two cases: α = 0.9 and α = 0.5.

• To investigate problem P1, we design the model called M1, which is the model M0

plus the procedure Resize, i.e the solution for P1. In this model, we also investigate
two cases: α = 0.9 and α = 0.5

• The following models are designed to test the solution of P2 in combination with the
solution of P1, with and without using a strategy of classifier combination. Here,
the set of threshold values is Ω = {0.5, 0.6, 0.7, 0.8, 0.9}.
- M flexible+single

2 is the model in which we use a flexible and dynamic selection over
all values in Ω for α. Moreover, this model just uses a single classifier, namely the
NB classifier, to detect labels for unlabeled examples.

- M flexible+combined
2 is similar to M flexible+single

2 but instead of using one classifier,
here we use three classifiers including NB, MEM, and SVM, and the median rule.

Note that all these models use procedure DataEvaluation as the condition for
stopping the loop of the algorithm.

• Regarding problem P3, we design two experimental models as follows: in model
M two

3 we just combine the initial classifier and the last classifier; and in model Mall
3

we combine initial classifier and all generated classifiers.

These models are intuitively summarized in Table 5.1

5.4.2 Parameter Setting

Feature Selection

Features used in experiments for semi-supervised learning are determined as denoted in
Chapter 3. Particularly, the set of overall features includes all features from F a

1 , F b
1 , F c

1 ,
F2, F3, F5, F6. This feature set is used for self-training based algorithms.

For co-training based algorithms, we have to design two views from the overall feature
space, i.e. two distinguish feature sets. Like [Pham et al. (2005), Mihalcea (2004)] we
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Table 5.1: Experimental Models of Bootstrapping

Model P1 olution P2 olution P3 solution
M0, α = 0.9
M0, α = 0.5
M1, α = 0.9 x
M1, α = 0.5 x

Mflexible+single
2 x x (single classifier)

Mflexible+combined
2 x x (multiple classifiers)

M two
3 x x x (two classifiers)

Mall
3 x x x (all classifiers)

design two views such that one represents for local context and the other represents for
topical context. For this purpose and based on the characteristics of each kinds of feature
subsets in F a

1 , F b
1 , F c

1 , F2, F3, F5, F6, we designed two subsets as: {F a
1 , F b

1 , F c
1} for the

first view, and {F2, F3, F5, F6} for the second view.

Supervised Learning Algorithms

Naive Bayes (NB), MEM (Maximum Entropy Model), and SVM (Support Vector Ma-
chine) are chosen as supervised learning algorithms for procedure Extendibility in the
case that a combination strategy is integrated in the solution of P2. Otherwise, in the
case of using single classifier instead of combining multiple classifiers we will use the NB
classifier. Further, the NB algorithm is also used for A∗ in Algorithm 8.

Combination Rule for Problem P2

The combination rule <, which is used in the procedure Extendibility is required to output
a probability distribution over the classes. Among the combination rules as mentioned in
Chapter 5, we investigated max, min, and median/average rules on the datasets of the
four words (including interest, line, hard, and serve) and the obtained result shows that
the median/average rule gives the highest accuracy on the added labeled data (it also
agrees with the experimental results as shown in Table. 4.3). Therefore, median rule is
chosen as the combination rule <.

For the other parameters, we set M = 500 and ∆ = 0.01.

5.4.3 Results

The first test is for investigating the problem of imbalanced increasing of training data,
i.e. P1, with the experiment carried out on Senseval-2 and Senseval-3. The obtained
results are shown in Fig. 5.6. In this experiment, we let the iteration run from 1 to 5,
and compute the ratio of the largest class to the whole dataset (note that the result at
iteration 0 corresponds to the original labeled data). As seen in the figure, the portion
of the largest class (or dominated class) increases according to the increase of iteration.
This reflects the imbalanced increasing of training data as discussed above.
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Figure 5.6: Test Problem P1 on Senseval-2 and Senseval-3

Figure 5.7: Test Problem P2 with Self-Training

The second test is for investigating the problem of extending labeled data (problem P2).
For this purpose, we tested the algorithm on the datasets of four words including interest,
line, hard, and serve. All examples in these datasets were tagged with the right senses.
The sizes of these datasets are 2369, 4143, 4378, and 4342, respectively. These datasets
are large enough for dividing into labeled and unlabeled datasets. We randomly select
100 examples for labeled data, 200 examples for test data, and the remaining examples
are treated as unlabeled examples. Note that, because we knew the tagged senses of
examples in unlabeled datasets, we are able to evaluate the correctness of the new labeled
examples (for problem P2). Fig. 5.7 and Fig. 5.8 show experimental results of the test
using self-training and co-training respectively, in which two solutions corresponding to
using a single classifier or multiple classifiers were investigated. As we can see in these
figures, using multiple classifiers in combination yields a lower classification error rate.
Further, Fig. 5.9 is the integration of these two figures, that shows a comparison between
self-training and co-training concerning problem P2. It shows that using self-training with
the solution of classifier combination (i.e. multiple classifiers) gives the highest confidence
(lowest classification error rate) of the new labeled examples.

Table 5.2 shows the results for the test of P1 and P2 problems, in which the conventional
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Figure 5.8: Test Problem P2 with Co-Training

Figure 5.9: Test Problem P2, Integrating Two Graphs: Self-Training and Co-Training

Table 5.2: Test Problem P1 and P2

Self-Training Co-Training
parameter Senseval-2 Senseval-3 Senseval-2 Senseval-3

Supervised (NB) 64.05 71.96 64.05 71.96
M0 α = 0.9 62.07 71.70 61.61 68.79
M0 α = 0.5 62.97 71.07 58.93 66.61
M1 α = 0.9 63.89 71.65 62.81 70.74
M1 α = 0.5 64.19 71.65 61.24 68.99

M flexible+single
2 Ω 64.63 72.44 62.42 68.99

M flexible+combine
2 Ω 65.70 72.64 64.49 70.99
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Table 5.3: Test Problem P3: Results on Senseval-2 and Senseval-3

DS1 NB max min med FM1 FM2 mvote wvote
Self-Training
Sen-2 M two

3 66.23 66.07 66.27 66.30 66.25 66.27 66.30 65.35 66.27
Mall

3 66.11 65.83 66.04 66.27 65.74 65.70 65.72 65.70 65.63
Sen-3 M two

3 73.25 73.10 73.27 73.23 73.30 73.28 73.23 72.49 73.28
Mall

3 73.20 73.12 73.22 72.74 73.33 73.33 73.33 73.20 73.35

Table 5.4: A comparison between Supervised Learning and Semi-Supervised Learning on
Senseval-2 and Senseval-3

Supervised Learning M two
3

NB SVM MEM max rule best rule
Senseval-2 64.05 63.72 64.79 66.27 66.30
Senseval-3 71.96 70.87 71.91 73.27 73.30

self-training algorithm, denoted by M0, and the models M1 and M2 were implemented,
where NB classifier is used as the baseline. From these results, we have the following
conclusions.

• Better results given by model M1 in comparison with model M0 reflect that using
the procedure of retaining class distribution is effective.

• Models M2 give better results in comparison with models M1. This shows that the
proposed solutions for problem P2 are quite effective. In addition, using flexible
determination of α integrated with a strategy of classifier combination gives the
best result.

• Only model M2 yields better results in comparison with baseline results. With the
proposed solutions for P1 and P2, we have shown that unlabeled data can signifi-
cantly improve the performance of supervised learning.

Table 5.3 shows the results for the test of P3. As we have seen, the results from these
two models M two

3 and Mall
3 are not much different. Therefore, the model M two

3 should
be chosen due to the cost of time computation and storing space (M two

3 just combine
the initial classifiers and the last classifier, while Mall

3 combine all classifiers generated
at each extension of labeled data). Further, we also see that the max rule used for the
combination of generated classifiers gives acceptable results which approximately reach
the best results in most cases.

In summary, Table 5.4 shows a comparison between the supervised learning algorithms
and the selected semi-supervised learning model, namely M two

3 . For supervised learning,
we implemented three algorithms including NB, MEM, and SVM. The obtained results
show that model M two

3 yields better results in comparison with supervised WSD.
In Fig. 5.10, we have shown the effects of proposed solutions for problems P1, P2,

and P3. In the models M0, M1, and M2, we accept α = 0.9, and for model M3 we
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Figure 5.10: A comparison between bootstrapping models on Senseval-2 and Senseval-3

use the combination between the initial and the last classifiers by the max rule. This
figure gives us a clearer view of effectiveness of proposed solutions as mentioned above:
M1 is better M0(except the case of test on Senseval-3, but with a slight decrease); M2 is
better M1 ; and M3 is better M2; Further, only with these solutions, the bootstrapping
algorithm (models M2 and M3) gives better results in comparison with supervised learning.
Note that with the conventional bootstrapping algorithm (model M0), we receive a lower
accuracy in comparison with supervised learning. It is also worth to emphasize that
in [Le et al. (2006b)], we have shown that without using the solution for problem P1 in
models M2 and M3 we will receive a lower accuracy.

5.5 Combination for Post Data Extension

In Chapter 4 we have shown that classifier combination strategies is quite useful for
improving performance of individual classifiers. In this chapter, unlabeled data is also
shown to be useful for improving supervised learning. The problem here is how to combine
advantages from using classifier combination techniques and using unlabeled data into a
consensus strategy. To this end, a natural way is to apply classifier combination techniques
on both kinds of individual classifiers, one is based on the original training data and the
other is based on the extended training data which is obtained from semi-supervised
learning. Here, for this task we propose a combination model which is designed based
on the two following selections. We call this model the combination model for post-data-
extension or the combination model for post semi-supervised learning.

– As shown in Chapter 4, there are two types of individual classifiers used in combi-
nation strategies, one is based on different context representations and the other is based
on different supervised learning algorithms. Among them, the approach in which the in-
dividual classifiers are generated by using different supervised learning algorithms trained
on the labeled data, give the best result. Therefore, we will follow this approach.

– In a combination model for post data extension, we first have to design individual
classifiers. Assume that we have R different supervised learning algorithms, then R first
individual classifiers are generated by using these algorithms trained on the original la-
beled data. To utilize the result of exploiting data we can also use these R algorithms
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Figure 5.11: Combination Strategy for Post Labeled Data Extension

Table 5.5: Classifier Combination at Post Semi-supervised Learning

DS NB max min med FM1 FM2 mvote wvote meta-vote
Sen-2 67.1 66.8 66.8 66.8 67.0 67.1 67.5 66.4 66.9 67.3
Sen-3 73.7 73.8 73.4 73.6 74.0 73.9 74.0 73.7 74.1 74.0

trained on the extended labeled data (last labeled datasets). However, as shown in Al-
gorithm 8, the extended labeled data is associated with an algorithm (denoted by A∗)
which is used to evaluate this data. Therefore, it suggests us to use each algorithms in
these R algorithms as the algorithm A∗ and consequently generate R extended labeled
datasets. And then using these R extended labeled datasets to generate more R individ-
ual classifiers. Now, we have 2R individual classifiers and they are combined as in Fig.
5.11.

Experiment for Post Semi-Supervised Learning

Fig. 5.5 shows the experimental result of the proposed combination model for Post Semi-
Supervised Learning. In this experiment, we also use the three supervised learning algo-
rithms including NB, SVM, and MEM to generate 6 different individual classifiers for the
the combination model, in which 3 classifiers among them are generated by training NB,
SVM, and MEM on the original labeled data. For generating the 3 remain classifiers, we
first run the proposed semi-supervised learning three times corresponding to three options
of the algorithm A∗, including NB, SVM, and MEM. Then, we obtain the classifier hN

at each of the three runs which is used as a remain classifiers (see Algorithm 8 for the
detail). Actually, the 3 remain classifiers are generated by training NB, SVM, and MEM
on the final extended labeled data obtained from the three runs of Algorithm 8 above,
respectively.

Comparing result in Fig. 5.5 with result in Fig. 5.4, we can see that the combination
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Table 5.6: A Comparison with Current WSD Systems

Previous Study Methods Senseval-2 Senseval-3
Our system FS + Combination + Semi 67.5 74.1

Baseline (MEM) 62.68 70.16
[Ando(2006)] ASO multi-task + Semi (68.1 ) 74.1

Baseline (ASO single-task) 65.3 73.0
[Florian & Yarowsky (2002)] Classifier Combination 66.5

[Wu et al. (2004)] Polynomial KPCA 65.8
[Lee & Ng(2002)] SVM 65.4
The best systems 64.2 72.9

in Senseval contests

Figure 5.12: Summary of Proposed Methods

model for the purpose of combining advantages from classifier combination and semi-
supervised learning is more effective in improving accuracy than the combination model
which just focus on utilizing advantages from the original labeled data and the extended
labeled data (as mentioned in problem P3). Further, when comparing with result of
the semi-supervised learning model without applying combination techniques as shown
in Table 5.2 (i.e. models M1 and M flexible+single

2 ), we see that result of the combination
model for Post Semi-Supervised Learning is much better.

Figure 5.12 summarizes the results of all proposed methods. From this figure, we
can see that all proposed method, including “Feature Selection”, “Combination”, and
“Semi-Supervised” improve accuracy of a supervised learning method (using the Max-
imum Entropy Model). Note that in “Combination” and “Semi-Supervised” we have
already used the result of “Feature Selection”. Furthermore, by combining all these
methods, we archive better results in comparison with using separately each of them.

In summary, the proposed combination model for Post Semi-Supervised Learning is
effective in combining advantages from both models of classifier combination and semi-
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supervised learning. The obtained result reaches the state-of-the-art WSD systems, as
shown in Table 5.6, where: “FS” stands for “Feature Selection”; “ASO” stands for “Alter-
nating Structure Optimization”; and MEM is simply “Maximum Entropy Model”, SVM
is “Support Vector Machines”. Note that, in [Ando(2006)], for the method of “ASO
multi-task+Semi”, Senseval-2 data is used as the development data to find the optimized
parameters for the test on Senseval-3 data. Therefore, for the test on Senseval-2 data, our
result is the best, and for the test on Senseval-3 data, our result is the same [Ando(2006)]
and is also the best.

5.6 Summary

This chapter presents one of major contents in our thesis – semi-supervised learning for
WSD. We have identified three problems that may occur in semi-supervised learning
methods and particularly investigated them for WSD. We have proposed solutions for
these problems which form the basic for developing a new bootstrapping algorithm. To
test the effective of the proposed solutions, we have generated various models of the new
bootstrapping algorithm and tested them on Senseval-2 and Senseval-3. The experimen-
tal results show that the proposed solutions are effective for improving semi-supervised
learning for WSD, and unlabeled data can significantly improve supervised WSD as well.
Furthermore, we also developed a combination model for post semi-supervised learning
with the purpose of combining advantages from classifier combination and semi-supervised
learning, and with this model we have reached to the state-of-the-art WSD system.

Particularly, we have made the contribution as follows.
• A new bootstrapping algorithm with several variants are generated, with which

unlabeled data is shown effective in improving supervised WSD while this improvement
does not appear with the conventional bootstrapping algorithms.

• A novel combination model for post semi-supervised learning is proposed, which
aims to combine advantages from classifier combination and semi-supervised learning.
Experimental result of this model has reached the state-of-the-art of WSD systems.

• This chapter has also made a comparison between self-training and co-training re-
spect to the confidence of new labeled examples. Some discussion was presented and
experimental results showed that self-training give better result than co-training when
applying for WSD problem.
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Chapter 6

Conclusion and Future Directions

6.1 Summary of the Thesis

In this thesis, we have presented a study on the problem of Word Sense Disambiguation
with the purpose of improving quality of the task by focusing on feature selection (in-
vestigating various kinds of knowledge sources to represent context, and applying some
feature selection methods) and two “hot” aspects of machine learning approaches includ-
ing classifier combination and semi-supervised learning. The study considers the research
problems both on theoretical and practical views that make WSD more accuracy (reach
to the state-of-the-art), and develop machine learning which can be applied for not only
WSD problem but also other classification problems. The thesis consists of six chapters.
The first chapter presents an overview of the thesis. The second chapter first presents our
survey on the approaches in previous studies, and then presents the three supervised learn-
ing algorithms (Naive Bayes, Support Vector Machines, and Maximum Entropy Models)
which are used as the basic algorithms in proposed methods. The next three chapters deal
with three main tasks of thesis, respectively: context representation and feature selection;
classifier combination; and exploiting unlabeled data. Chapter 6 contains the summary
of the thesis and future research directions.

The motivations and proposed solutions for the problems mentioned in this thesis are
based on investigating and solving the limitations of various related WSD studies. Ex-
perimental results were conducted on standard datasets (Senseval-2 and Senseval-3) and
were compared to state-of-the-art systems in the field. All in all, the major contributions
of the thesis are summarized as follows:

- The first contribution comes from the work on context representation and feature
selection. We have proposed a machine learning approach to this word. The proposed
method for knowledge sources determination is based on the simultaneously use of the
Forward Sequential Selection and Backward Sequential Selection algorithms. As the re-
sult, the useful knowledge sources which represents context were determined. After ob-
taining the selected knowledge sources, we applied a filter method with using two feature
measures, frequency and information-gain, to select useful individual features. The exper-
imental result suggests that we should use the whole features from the selected knowledge
sources. This work has provided an reasonable explanation for the use of selected features.
In addition, we also proposed the simultaneously use of topical context in three window
sizes (small, medium, and large), and this gives higher accuracy in comparison with using
only the large size as in previous studies.
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- The second contribution comes from the work on combining classifiers for WSD. In
this work, two new approaches of classifier combination for WSD, which are based on
Dempster-Shafer theory of evidence and OWA operators have been presented. Various
combination rules were derived. The second-layer combination strategies were proposed
including meta combination and meta-stacking. Various tests corresponding to various
combination models were conducted and the obtained results show that meta-voting in
meta combination strategies gives the best result and much improves accuracy of individ-
ual classifiers.

- The third contribution comes from the work on semi-supervised learning for WSD,
that helps reduce the need of labeled training data by gaining additional information
from a large amount of unlabeled data. We followed the approach in which the original
labeled data is iteratively extended from unlabeled data. Two particular bootstrapping
algorithms investigated are self-training and co-training. We first identify problems which
may occurring in this approach and then proposed solutions for them. As the result, a new
bootstrapping algorithm with several variants are generated. With the new algorithm,
unlabeled data is shown effective in improving WSD. Furthermore, a novel combination
model for post semi-supervised learning has been proposed, which aims to combine ad-
vantages from classifier combination and semi-supervised learning. Experimental result
of this model reaches the state-of-the-art of WSD systems.

6.2 Future Directions

In the future work, we will focus on the remaining issues in this thesis. We also aim to
build a real WSD system which is still a difficult and open problem in this field. Beside
that we also want to continue developing the machine learning methods which have been
presented in this thesis. Toward these purposes, we will concentrate on the following
issues:

- In this thesis, a machine-learning-based method for knowledge determination and
feature selection was proposed and an investigation of various kinds of knowledge was
presented in Chapter 3. There are still some kinds of knowledge which have not been
investigated in this work such as thesauri, sense definition in dictionary. For the future
work, we will focus on utilizing the information contained in dictionary and then combined
with results obtained in this thesis.

- We will continue developing machine learning algorithms specially in the field of
semi-supervised learning. In Chapter 5, we proposed a new bootstrapping algorithm
applied for the approach in which the original labeled data is iteratively extended. In our
opinion the proposed solutions, which help to generate the new bootstrapping algorithm,
can be also applied for other semi-supervised learning approaches, such as Transductive
Support Vector Machines, Graph-based algorithms. Concerning the problem of applying
classifier combination techniques for WSD, we will investigate one more one aspect of
machine learning to determine weights for individual classifiers, that is the method based
on minimizing error rate training.

- As mentioned in this thesis, every researches in WSD are still far from applying in
practice, due to the low accuracy of these systems (just around 70%). Toward developing
a WSD system which can be applied in practice, such as in machine translation systems,
information retrieval, etc. we will focus on an aspect of machine learning, that is “Active
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Learning”. The results obtained in this thesis will be utilized in the strategy of Active
Learning for two purposes: building useful corpora with as less as possible of human
efforts; and improving accuracy of WSD systems.
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