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Abstract

Divisible Load is a kind of workload that can be divided into arbitrary, independent
chunks. By definition, Divisible Load is “a load may be arbitrarily divisible which has the
characteristic that they can be arbitrarily partitioned into any number of load fractions.”
We can see this kind of workload in many domains of science and technology such as:

• Protein sequence analysis

• Simulator of Cellular Micro physiology

• Parallel and Distributed Image Processing, Video Processing, and Multimedia

Because of total workload may be as much as a single computer can’t execute itself, so
we have to share the total workload between many available workstations in distributed
environments such as Grids. At this point, a problem, called scheduling problem, arises
to pose the following question: how to divide the total workload, residing at a computer
called master, into many parts and assign them to computers of the Grid, hereafter called
workers, so that the execution time (makespan) is minimum.

The main issue of scheduling process is to find an optimal division of total workload
into workers. Up to now many approaches have been proposed. A simple solution, called
Single Round, divides the workload in as many part as workers, then sends each part to
appropriate worker. Because each worker receives its load only one time, this method is
named Single Round. Another approach, called Multi Round, splits the overall process
into many consecutive rounds. In each round, the master delivers chunks to each of
workers in turn.

One apparent shortcoming in many scheduling algorithms that exist in the literature is
the abandon of designing a solid selection policy for generating the best subset of available
workers. Part of the reason is that the main focus of these algorithms is confined to the
LAN environment, which makes them not perfectly suitable for a WAN environment such
as the Grid [1]. In the Grid, resource computing (workers) join and leave the computing
platform dynamically. Unlike other algorithms, we cannot assume in the Grid that all
available resources, which may be in thousands, must participate in the scheduling process.
The more recent algorithms very tersely allude to this problem by proposing primitive
intuitive solutions that are not back up by any analytical model.

In the first part of this dissertation, we propose a new scheduling algorithm, MRRS
(inspired by existing algorithm called UMR), which is better and more realistic. MRRS
is superior to UMR with respect to two aspects. First, unlike UMR that relies primarily
in its computation on the CPU speed, MRRS factors in several other parameters, such as
bandwidth capacity and all types of latencies (computation and communication) which
renders the MRRS a more realistic model. Second, the MRRS is equipped with a worker
selection policy that finds out the best workers. As a result, our experiments show that
our MRRS algorithm outperforms previously proposed algorithms including the UMR.
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However, all of above approaches assume that computational resources at workers are
dedicated. This assumption renders these algorithms impractical in distributed environ-
ments such as Grids where computational resources are expected to serve local tasks in
addition to the Grid tasks. The inevitable variation of workers’ power in the Grid em-
bodies a non-trivial challenge for scheduling (split and distribute) workloads to workers.

The second purpose of this dissertation is to develop an efficient multi-round schedul-
ing method for non-dedicated environments such as Grids. In order to find the optimal
division of workload in each round, we need to forecast, as accurate as possible, the avail-
able CPU power of each worker before the division happens. We develop a performance
model to represent a worker’s activity with respect to processing local and external tasks.
This model help us to estimate the computing power of a worker under the fluctuation of
number of local and Grid applications in the system. Based on this model, we propose
a new strategy for predicting the computing power of processors. After that we design
a dynamic scheduling algorithm incorporates the performance model and the prediction
strategy into the static algorithm MRRS that mentioned above.

As an alternative method we apply an existing prediction algorithm, Mixed Tendency-
Based Prediction, in developing a new dynamic scheduling algorithm. The Mixed Tendency-
Based Prediction is integrated into the static algorithm MRRS in order to partition the
workload in non-dedicated environments.

At last, we describe the experiments for comparing between proposed dynamic and
static scheduling algorithms as well as for comparing the proposed algorithms with the
existing scheduling algorithm.
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Chapter 1

Introduction

1.1 Scheduling Divisible Load in Distributed Plat-

form

Applications in many scientific and engineering domains are structured in large numbers
of tasks. Scheduling these tasks on a distributed computing platform efficiently is critical
for achieving high performance. With a common distributed infrastructure, scheduling is
to answer the question: given a set of applications (usually computing intensive), how to
schedule them over multiple decentralized resources? In mapping tasks of applications to
resources (CPU power, memory, storage devices capacities, etc.) we have several basic
questions to deal with:

• How do the relations between tasks affect scheduling decisions?

• How does the heterogeneity of resources affect the performance of a schedule?

• What performance models should a scheduler use to determine the quality of a
schedule?

Tasks can be dependent on each other, which makes scheduling more difficult. In fact,
most task scheduling research efforts have been dealing with independent task/divisible
workloads or loosely-dependent task scheduling. These approaches typically use either
analytical methods to make deterministic schedules (usually an optimal schedule solution)
or empirical data analysis and heuristic search methods to look for a good solution.

Consider the simpler local scheduling problem. Four major objectives of local sched-
ulers have been:

• overcoming heterogeneous of computing resources.

• maximizing overall system performance, such as cycle harvesting, high throughput,
and high resource utilization rate.

• supporting various computing intensive applications, such as batch jobs and parallel
applications (MPI, PVM,...).

• providing robust remote job execution functionalities, such as reliable remote I/O
and efficient job management involving job preemption, migration, and check point-
ing.
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The result is a system-centric resource management system, which provides a reliable
local distributed computing environment while maximizing resource utilization of a local
site. Its resource scheduling is usually an opportunistic matchmaking process that requires
some way to specify and express application requirements and resource advertisement.

Scheduling in distributed environments such as Grids [1] is more complicated than local
resource scheduling because it must manipulate large-scale resources across management
boundaries. In such a dynamic distributed computing environment, resource availability
varies dramatically. So scheduling becomes quite challenging. There has been extensive
research work on scheduling problems in distributed systems.

The scheduling problem has been studied for a variety of application models, such
as the well-known DAG [2] (Directed Acyclic Graph task) model. Another popular ap-
plication model is that of independent tasks with no task synchronization and no task
communication. Applications conforming to this simple model arise in most fields of sci-
ence and engineering. A possible model for independent tasks is one for which the number
of tasks and the task sizes, i.e. their computational costs, are predefined. In this case a
number of scheduling heuristics have been proposed in the literature [3].

Another kind of the independent tasks model is one in which the number of tasks and
the task sizes can be chosen arbitrarily. This corresponds to the case when the application
consists of an amount of computation, or load, which can be divided into any number
of independent pieces. This corresponds to a perfectly parallel job: any sub-task can
itself be processed in parallel, and on any number of workers. In practice, this model
is an approximation of an application that consists of large numbers of identical, low-
granularity computations. This divisible load model has been widely studied in the last
several years, and Divisible Load Theory (DLT) has been popularized by the book written
in 1996 by Bharadwaj, Ghose, Mani and Robertazzi [4]. There exists a vast literature on
DLT. In addition to the landmark book [4], two introductory surveys have been published
recently [5, 6]. Furthermore, a special issue of the Cluster Computing journal is entirely
devoted to divisible load scheduling [5], and a Web page collecting DLT-related papers is
maintained [7].

DLT provides a practical framework for the mapping on independent tasks onto hetero-
geneous platforms, and has been applied to a large field of scientific problems, including:

• Kalman filtering [8],

• image processing [9],

• video and multimedia broadcasting [10, 11],

• database searching [12, 13],

• processing of large distributed files [14],

• ...

These applications are amenable to the simple master-worker [4] programming model and
can thus be easily implemented and deployed on computing platforms ranging from LAN
to computational Grid.

2



1.2 Motivation and Objectives

Per the Divisible Load Theory [4], the scheduling problem is identified as: “Given an
arbitrary divisible workload, in what proportion should the workload be partitioned and
distributed among the workers so that the entire workload is processed in the shortest
possible time”. There are 2 kinds of scheduling for divisible loads: single-round algorithm
and multi-round one. Single-round algorithms [12, 15] are an early and simple way. As
shown in [4], for a large workload, the single-round approach is not efficient due to the
large idle time attributed to the last worker as it waits for receiving its workload chunk.
Because of we aim at wide distributed systems, thus our study is motivated to follow the
multi-round scheduling direction.

Multi-round algorithms, first introduced by Bharadwaj [4], further utilize the over-
lapping between communication and computation processes at workers. Beaumont [16]
proposes a multi round scheduling algorithm that spends a fixed execution time for each
round. This enabled the author to give analytical proof of the algorithm’s asymptotic
optimality. Yang et al. [17, 18], through their UMR (Uniform Multi-Round) algorithm,
designed a better algorithm that extends the MI by considering latencies.

However, most of above scheduling approaches are static approaches, i.e. they assume
that computational resources at workers are dedicated. This assumption renders these
algorithms impractical in distributed environments such as Grids where computational
resources are expected to serve local tasks in addition to the Grid tasks. Hence, our goal
is developing an efficient scheduling method for non-dedicated distributed environments
such as Grids.

The variation of worker’s power in the Grid embodies a non-trivial challenge for
scheduling (split and distribute) workloads to workers. During the execution of a Grid
task on a certain worker, some local tasks may arrive causing to interrupt the execution
of the lower priority Grid tasks. Our first objective is using proposed queuing model to
represent the Grid task processes occurs at workers under the effect of local tasks. Based
on this theoretical model, we estimate the portion of original CPU power that the workers
can donate to Grid applications, here is our second objective.

Per the Scheduling Theory [3], any scheduling algorithm should address the following
issues:

• Workload Partitioning Problem. This problem is concerned with the method by
which the algorithm should divide the workload in order to dispatch to workers.

• Resource Selection Problem. This problem is concerned with how to select the best
set of workers that can process the workload partitions such that the execution time
(hereafter referred to as makespan) is minimal.

In the Grid, resource computations (workers) join and leave the computing platform
dynamically. Unlike the case of a dedicated environment, we cannot assume in the Grid
that all available resources, which may be in thousands, must participate in the scheduling
process. The scheduler obtain the best performance is the one with the ability to find out
the best group of workers among whole of available workers. Thus, our last objective is
the selection of the best subset of workers that is suitable for the current configuration of
platform.

3



1.3 Related Works

There are many scheduling approaches as following:

• Single round algorithm [12, 15] is the early and most simple way for the scheduling
problem. The strategy is to utilize the overlapping between communication and
computation processes at workers. As showed in [15], for a large workload, the
single-round approach is not efficient due to a large idle timing suffered by the last
worker to receive its chunk.

• Multi-round algorithm, firstly introduced by Bharadwaj [4], is the way to further
utilize the overlapping between communication and computation processes at work-
ers. The general policy of multi-round algorithms let as many workers start to
execute as quickly as possible, then keep them and communication channel busy in
the following rounds. The initial chunk of loads in the first round often be small to
get all workers started. The chunks of loads in the next rounds will be larger, and
decrease in the last round. In a special case, with some additional constraints, some
multi-round algorithm can reach to near-optimal close forms such as in [16, 17].

• While the above algorithm are static, i.e. the performance of workers are assumed
to be stable during their processing, RUMR [19] is designed to tolerate performance
prediction errors by using Factoring method, however all of its parameters are fixed
before RUMR starts, which makes RUMR a non-adaptive scheduling algorithm. In
[2], the authors use M/M/1 queue to model the tasks processing, however, [2] lacks
an efficient prediction strategy because it is merely based on probability parame-
ters. In addition, the work in [2] does not address the needs of divisible workloads
scheduling.

1.4 Contributions

As mentioned above, our goal is to develop scheduling methods for divisible load in non-
dedicated distributed environments. We restrict our scope to star-shaped logical network
topologies, because they often represent the solution of choice to implement master-worker
computations. Furthermore, star network encompasses the case of a bus, which is a
homogeneous star network.

The following points constitute the contributions of this dissertation :

• The first contribution is building a queuing model to represent worker’s activities
with respect to processing local and external Grid tasks. Unlike the work done in
[4, 16, 17], this model helps us to estimate the computing power of a worker under
the fluctuation of number of local and Grid applications in the system. Based on
the estimated power of each worker, the proposed scheduling algorithm will decide
how to distribute workload chunks to them.

• One apparent shortcoming in the many scheduling algorithms [12, 16, 18] that exist
in the literature is the abandon of designing a solid selection policy for generating
the best subset of available workers. Part of the reason is that the main focus
of these algorithms is confined to the LAN environment, which makes them not

4



perfectly suitable for a WAN environment such as the Grid [1]. In order to find out
the best group of workers, we develop a worker selection policy that finds out the
best workers correspond with proposed scheduling algorithm. This is the second
contribution of the dissertation.

• In order to get the optimal division of workload in each round, we need to forecast,
as accurate as possible, the available CPU power of each worker before the division
happens. Our last contribution is developing a new strategy for predicting the
computing power of processors, i.e. the portion of original CPU power that the
owner can donate to Grid applications. To the best of our knowledge, this is the
first dynamic scheduling algorithm for divisible load in which a prediction strategy
is applied. Another important point in comparison with the previous studies is, in
proposed queuing model, all kind of latency such as CPU, bandwidth are considered.

By combining above works, we develop a new dynamic scheduling method for divisible
load. Unlike [17, 16] where the load partitioning relies on the CPU power only, our
scheduling considers all of system parameters such as bandwidth and latency.

1.5 Roadmap

The rest of the dissertation is organized as follows:

• Before studying the new scheduling algorithms, it is important to have an overview
about classification of workload in real parallel and distributed applications. Chap-
ter 2 first introduces main kinds of loads and their applications. After discussion
about some alternative kinds of load, we focus to Divisible load, which is the main
topic of the dissertation. The definition of Divisible Load is defined, then the state-
ment of the Divisible Load Scheduling problem is presented. We present the Divisi-
ble Load Theory (DLT) and describe its wide applications in Distributed computing
and Grid computing. We sketch the system models regarding network shape and
divisible load communication and computation. Finally, we summarize previous
results about the complexity of the Divisible Load Scheduling (DLS) problem in
StarLinear network, Homogeneous/Heterogeneous system and Affine cost model.

• Chapter 3 proposes a new scheduling algorithm, MRRS (inspired by an existing
algorithm called UMR), which is better and more realistic. MRRS is superior to the
previous algorithms with respect to two aspects. First, MRRS considers all platform
parameters such as bandwidth capacity and all types of latencies (computation and
communication) which renders the MRRS a more realistic model. Second, the
MRRS is equipped with a worker selection policy that finds out the best workers.
MRRS, to the best of our knowledge, is the first divisible load scheduling algorithm
that addresses the resource selection problem. Having such policy is indispensable
in large commuting platform such as the Grid, where thousands of workers are
accessible but the best subset must be chosen. We, theoretically and experimentally,
show that MRRS is superior to previous algorithms such as UMR and LP, specifically
in a WAN computing platform such as the Grid.

• Chapter 4 address the issue of divisible load scheduling in Non-dedicate distributed
environment. We develop a computation model to represent worker’s activities with
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respect to processing local and external Grid tasks. The proposed model helps us to
estimate the computing power of workers under the fluctuation of a number of local
and Grid applications in the system. Based on this computation model we propose
a new strategy for predicting the computing power of processors. Proposed dy-
namic scheduling algorithm incorporates the performance model and the prediction
method into the static algorithm MRRS that mentioned in the last Chapter, which
is originally a static scheduling algorithm. An alternative way is given by applying
an existing prediction algorithm, Mixed Tendency-Based Prediction, in developing
a dynamic scheduling algorithm DSA. At last, we describe the experiments for com-
paring between proposed dynamic scheduling algorithms as well as for comparing
the proposed algorithms with the existing static scheduling algorithm.

• Chapter 5 concludes the dissertation with a sketch of the main contributions as well
as the drawbacks. We outline some directions for future work, considering areas
that might be worthy of further research.
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Chapter 2

Scheduling Problem in Distributed
Environments

2.1 The Load Scheduling Problem

A scheduling problem addresses the following question: What is the best possible way to
organize a given workload so that it can be completed in the shortest possible time? Load
scheduling problems can be classified in many ways. One of the possible classifications is

• Static scheduling

• Dynamic scheduling

In static scheduling approach, the objective is to find an optimal schedule of a given
number of tasks to a set of processors or machines. For example, the scheduling of n tasks
to a set of m machines so that the time required to process all the tasks is minimum is one
such problem. No dynamics of the system are taken into consideration. If the dynamics
of the platform are considered, then the scheduling is said to be dynamic. In the above
example, if tasks arrive at arbitrary time instants, or computation power of machine are
not stable, and the scheduling strategy depends on the current state of the platform, then
the scheduling is dynamic.

In general, the formulation of a scheduling problem consists mainly of fours steps.

• Modelling the system

• Defining the type of processing loads

• Formulating the objective function (or cost function)

• Specifying the constraints

The model describes the type of computation system, the type of connection, the number
of processors, the topology of the network and so on. The type of processing load totally
determines the scheduling algorithm. Per [4], the objective of the scheduling problem can
be defined as follows “Given a set of loads and a system, what is the best possible mapping
of these loads onto the processors such that the desired cost function is optimized”. The
cost function can be expressed as:
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Total cost = Communication cost + Computation cost

Here the total cost refers to the processing time of a load. It can be seen that from the
above equation that, the total cost takes into account both of communication and com-
putation cost. The constraints for this problem may be the limitation on the availability
of processor and transfer connections.

2.2 Classification of Loads

Scheduling of loads has been categorized as either job scheduling or task scheduling. A
job is defined as a composed of a number of tasks. If a job is assigned to a processor, it
is called job scheduling, as introduced in [20]. If different tasks are assigned to different
processors, it is called task scheduling, as mentioned in the next chapters. Thus, the kind
of scheduling depends primarily on the type of load being processed. In Figure 2.1 we
show a classification of loads based upon their divisibility property.

Scheduling

Task scheduling

Divisible load 
scheduling

Job scheduling

Dependent
Indivisible load

scheduling

Modularity Arbitrarily
Divisible load
scheduling

Divisible load
scheduling

 This dissertation

Figure 2.1: Classification of loads

2.3 Job Scheduling

Suppose that m machine Mj(j = 1, ...,m) have to process n jobs Ji(i = 1, ..., n). A
schedule assigns for each job an allocation of one or more time intervals to one or more
machines. Schedules may be represented by Gantt charts as shown in Figure 2.2. Gantt
charts may be machine-oriented (Figure 2.2 (a)) or job-oriented (Figure 2.2 (b)).
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Time

Figure 2.2: An job schedule for 3 machines and 4 jobs

2.4 Task Scheduling

2.4.1 Independent-Indivisible Loads

These loads can not be further divide and has to be processed in its entirety in a single
processor. They have not any precedence relation. Independent load scheduling problems
are known to be NP-complete and hence only heuristic algorithms can be processed to
obtain suboptimal solutions in reasonable time.

Given a set of independent tasks and a set of available resources, independent task
scheduling attempts to minimize the total execution time of the task set by finding an
optimal mapping of tasks to machines. The metric used to find such a mapping is the
estimate of turnaround time or completion time (machine available time + expected
time to compute). Finding the best mapping is actually a combinatorial optimization
problem, which in this case is NP-hard. The common solution is to use some heuristic
search procedure to find a near-optimal schedule quickly. Most of the existing research
in this area is quite theoretical, because even heuristic search is often too expensive for
large search spaces. In a Grid, however, due to the existence of large number of tasks and
resources, a practical and efficient heuristic search algorithm can be a desirable solution
for Grid application scheduling.

For a general search procedure, given a task, the estimate of a certain metric is calcu-
lated for each machine on the resource list. The task is assigned greedily to the machine
with the “best” metric. Then the task is removed from task list and a new task scheduling
search starts until all tasks are mapped.

Braun and Siegel [21] investigate different heuristic strategies for independent task
scheduling in heterogeneous distributed computing systems using simulation. They in-

9



clude task heterogeneity and machine heterogeneity as performance evaluation measure-
ments when generating an N*M ETC (expected time to compute) matrix, given N tasks
and M machines. Each element ETCij on the matrix indicates the expected time to com-
plete task i on machine j. This matrix serves as metric (heuristic function) table used
in resource selection, combined with machine available time, which changes every time
a new task is mapped to the machine. The matrix is generated randomly with bounds
indicating different task/machine heterogeneity.

Eleven heuristics are studied in [21]: OLB, MET, MCT, Min-min, Max-min, Duplex,
GA, SA, GSA, Tabu, A*. Among them, the following heuristics are very interesting:

• OLB: Opportunistic Load Balancing is the simplest strategy to assign each task to
the next available machine without considering the expected execution time on that
machine.

• MET: Minimum Execution Time, in contrast, only considers the expected execution
time of each task on a machine and selects the machine with minimum execution
time.

• MCT: Minimum Completion Time assigns each task to the machine with minimum
completion time (machine available time + ETC). This is the most common metric
in use.

• Min-min: The Min-min heuristic is a two step task scheduler. First, select a
“best“ (with minimum completion time) machine for each task. Second, from all
tasks, send the one with minimum completion time for execution. The idea behind
Min-min is to send a task to the machine which is available earliest and executes
the task fastest.

• Max-min: The Max-min heuristic takes the same first step as Min-min but send
the task with maximum completion time for execution. This strategy is useful in a
situation where completion time for tasks varies significantly. Using this heuristic,
the tasks with long completion time are scheduled first on the best available ma-
chines and executed in parallel with other tasks. This leads to better load-balancing
and better total execution time.

• GA: A Genetic Algorithm is an evolutionary technique for large space search. The
general procedure of GA search is as following: 1) Population generation. A pop-
ulation is a set of chromosomes. Each chromosome represents a possible solution,
which is a mapping sequence between tasks and machines. [21] randomly generate
200 chromosomes; 2) Chromosome evaluation. Each chromosome is associated with
a fitness value, which is the total completion time of the task-machine mapping
this chromosome represents. The goal of GA search is to find the chromosome with
optimal fitness value; 3) Crossover and mutate the chromosomes selected based on
selection rules. The selection rules are analogous to evolutionary selection rules. But
this paper randomly selects chromosomes. Crossover is the process of swapping cer-
tain subsequences in the selected chromosomes. Mutate is the process of replacing
certain subsequences with some task-mapping choices new to the current popula-
tion. Both crossover and mutation are done randomly in [21]. After crossover and
mutation, a new population is generated. Then it will be evaluated, and the process
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starts over until some stopping criteria are met. The stopping criteria can be, for
example, 1) no improvement in recent evaluations; 2) all chromosomes converge to
the same mapping; 3) cost bound is met.

• SA: Simulated Annealing is a search technique based on physical process of anneal-
ing, which is the thermal process of obtaining low-energy crystalline states of a solid.
The temperature is increased to melt solid. If the temperature is slowly decreased,
particles of the melted solid arrange themselves locally, in a stable “round”state of
a solid. SA theory states that if temperature is slowed sufficiently slowly, the solid
will reach thermal equilibrium, which is an optimal state. By analog, the thermal
equilibrium is an optimal task-machine mapping (optimization goal), the tempera-
ture is the total completion time of a mapping (cost function), and the change of
temperature is the process of mapping change. If the next temperature is higher,
which means a worse mapping, the next state is accepted with certain exponen-
tial probability. The acceptance of “worse” state provides a way to escape local
optimality which occurs often in local search.

[21] gives a comprehensive investigation of various heuristic search algorithms on in-
dependent task scheduling. The simulation results show that GA heuristic has the overall
best performance but with most expensive search time cost. SA is not as efficient as its
application in other domain science problems. More research on choosing efficient fitness
values and selection rules are needed. For example, all “evolutionary changes” are done
randomly without making use of any learned knowledge. Also, more practical experiments
should be done to verify the results under a broad range of machine conditions.

Casanova [22] develops the Xsufferage heuristic for an application-level scheduler sys-
tem APPLeS. The conventional Sufferage heuristic uses MCT as metric for a mapping.
The rationale behind Sufferage is that a host should be assigned to the task that would
“suffer” the most if not assigned to that host. The sufferage value of each task is the differ-
ence between the MCT and the second MCT. Casanova found that the Sufferage heuristic
does not work well for cluster resources because the MCT on the machines belonging to
the same cluster are quite close, which makes the sufferage value approaches zero and
eliminates cluster machines from selection. So Xsufferage computes a cluster-MCT to
enable the Sufferage heuristic to work in a cluster environment.

Generally speaking, the research on use of heuristic search algorithms on independent
task scheduling is preliminary. Deeper understanding of Grid application execution be-
havior will help develop more practical and efficient heuristic algorithms. In the Grid
world, batch jobs are the largest portion of Grid applications, so there is a strong need
for further research on heuristic search algorithms in the large search spaces typical of the
Grid world.

2.4.2 Modularly Divisible Loads

Per [4], these loads are subdivided into smaller loads or tasks based on some character-
istics of the load or the system. These smaller loads are also called tasks, subtasks or
modules. The processing of a load is said to be completed when all its modules are pro-
cessed. Usually these loads are represented as graphs whose vertices correspond to the
modules, and whose edges represent interaction between these modules. This modular
representation of a load is known as Task Interaction Graph (TIG) in the literature. If
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these modules are subject to precedence relations, then a directed graph is used. On the
other hand, if the graph is not directed, though the modules may exchange information,
then it is assumed that they can be executed in any order. They can also be totally
independent, in which case they may be modelled as indivisible loads.

Consider a classical case of Modularly divisible loads: an application to be executed on
distributed platform consists of many precedence constrained tasks, and the task graph
presented by a Directed Acyclic Graph (DAG)[23] . In the Directed Acyclic Graph, every
node represents a task of the application, and each directed edge represents a communi-
cation link between two tasks.

Example: consider a task graph represented by a directed acyclic graph G = (V,E)
with every node weight L=20, where V is a set of nodes, E is a set of directed edges,
and L is a positive integer. We write a directed edge from node u to node v as (u, v).
Figure 2.3 shows an example of a task graph. The numerical value close to node v in
Figure 2.3 denotes the weight of v. We assume that every node weight is the same as L.
An application program is modelled as a task graph. A node in a task graph represents a
task in the application. An edge (u, v) means that the computation of v needs the result
of the computation of u. If (u, v) ∈ E, task u is called an immediate predecessor of task
v. A task that has no immediate predecessor is called an entry task. The length of a path
in a task graph is the number of tasks on the path. The level level(v) is the length of
the longest path from v to an entry task. The longest path in a task graph is called the
critical path in the task graph.

V1

20

V2

20

V4

20

V3

20

V5

20

Figure 2.3: Task graph G=(V, E) with every task length 20

Let m be a number of processors in a computational grid. Let G = (V,E) be a task
graph with every task length L. We define a schedule of G as follows. A schedule S of
G onto a grid with m processors is a finite set of triples < v, p, t > which satisfies the
following rules R1, R2, and R3, where v ∈ V , p(1 ≤ p ≤ m) is the index of a processor,
and t is the starting time of task v. A triple < v, p, t > means that the processor p
computes the task v between time t and time t + d where d is defined so that the number
of instructions computed by the processor p during the time interval [t, t+d) is exactly L.
We call t + d the completion time of the task v. Note that starting time and completion
time of a task are not necessarily integral.

• R1: For each v ∈ V , there is at least one triple < v, p, t >∈ S.
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• R2: There are no two triples < v, p, t >∈ S,< v′, p, t′ >∈ S with t ≤ t′ ≤ t + d is
the completion time of v.

• R3: If (u, v) ∈ E and < v, p, t >∈ S, then there exists a triple < u, p′, t′ >∈ S with
t′ + d′ is the completion time of u.

Informally, the above rules can be stated as follows. The rule R1 enforces each task v
to be executed at least once. The rule R2 says that a processor can execute at most one
task at any given time. The rule R3 states that any task must receive the required data
(if it exists) before its starting time. A triple < v, p, t >∈ S is called the task instance
of v. Note that R1 permits a task to be assigned onto more than one processor. Such a
task has more than one task instances. To assign a task onto more than one processor is
called task replication. The makespan of S is the maximum completion time of all the
task instances in S. For example, Figure 2.4(b) shows a schedule of G, i.e.

{< v1, P2, 0 >,< v2, P1, 7/2 >,< v3, P2, 7/2 >,< v4, P3, 7/2 >,< v5, P3, 27/4 >}
The makespan of the schedule is 48/5.
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Figure 2.4: A schedule for task graph G=(V, E) with makespan = 48/5
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2.5 Divisible Loads Scheduling

2.5.1 Introduction

The interest in network-based computing has grown considerably in recent times. In this
environment, a number of workstations or computers are linked through a communication
network to form a large loosely coupled distributed computing system. One of the major
attributes of such a distributed system, apart from its role in storing information in a
distributed manner and allowing the use of shared resources, is the capability that it
offers to a user at any single node to exploit the considerable power of the complete
network or a subset of it by partitioning and transferring its own processing load to the
other processors in the network.

This paradigm of load distribution is basically concerned with a single large load which
originates or arrives at one of the nodes in the network. The load is massive and requires
an enormous amount of time to process given the computing capability of the node. The
processor partitions the load into many fractions, keeps one of the fractions for itself to
process and sends the rest to its neighbors (or other nodes in the network) for processing.
An important problem here is to decide how to achieve a balance in the load distribution
between processors so that the computation is completed in the shortest possible time.
This balancing can be done at the beginning or dynamically as the computation progresses
and the computational requirements become clearer. This framework of computing is
suitable for applications that permit the partitioning of the processing load into smaller
fractions to be processed independently so that the partial solutions can be consolidated
to construct the complete solution to the problem. Obviously not all processing loads
satisfy this requirement. But there is a large class of applications that not only permit
this kind of processing, but for which it is essential to do so in order to complete the task
in time.

In general, scheduling problems discussed in the literature do not attempt to formulate
scheduling policies based on the type of loads submitted by an user, except where resource
constraints are involved. Usually, the stress has been on designing efficient parallel al-
gorithms in place of conventional sequential algorithms, which requires exploitation of
function parallelism in the algorithm. However, there is another kind of parallelism that
occurs in the data and is called data parallelism. Such loads can be split and assigned
to many processors. But, the manner in which this partitioning (or load division) can be
done depends on its divisibility property, that is, the property which determines whether
a load can be decomposed into a set of smaller loads or not (Figure 2.1).

Accordingly, loads may be indivisible in which case they are independent, of different
sizes, and cannot be further sub-divided. Thus, they have to be processed in their entirety
in a single processor. These loads do not have any precedence relations and, in the context
of static/deterministic scheduling, they give rise to bin-packing problems that are known
to be NP-complete and hence amenable only to heuristic algorithms that yield sub-optimal
solutions. In the context of dynamic/stochastic scheduling, these loads arrive at random
time instants and have to be assigned to processing nodes based on the state of the system.

Alternatively, a load may be modularly divisible in which case it is a priori subdi-
vided into smaller modules based on some characteristics of the load or the system. The
processing of a load is complete when all its modules are processed. Further, the pro-
cessing of these modules may be subject to precedence relations. Usually such loads
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are represented as task interaction graphs whose vertices correspond to the modules, and
whose edges represent interaction between these modules and perhaps also the precedence
relationships.

Finally, a load may be arbitrarily divisible [5] which has the property that all elements
in the load demand an identical type of processing. These loads have the characteristic
that they can be arbitrarily partitioned into any number of load fractions. These load
fractions may or may not have precedence relations. For example, in the case of Kalman
filtering applications, the data is arbitrarily divisible but there may exist precedence rela-
tion among these data segments or load fractions. On the other hand, if the load fractions
do not have precedence relations, then each load fraction can be independently processed.
This latter type of loads is the ones which are of interest to us. Applications which
satisfy this divisibility property include processing of massive experimental data, image
processing applications like feature extraction and edge detection, and signal processing
applications like extraction of signals buried in noise from multidimensional data collected
over large spans of time, computation of Hough transforms, and matrix computations.

Traditionally, the parallelism inherent in these problems was exploited through parallel
algorithms. Now with the availability of distributed computing systems it is realized that
these parallel algorithms can be mapped on to network based computing. However, this
is not a straightforward mapping since many of the special properties and limitations of
distributed systems affect the performance of the load distribution algorithms. One such
factor is the communication delay which is considerably higher in a distributed network
environment (that has distributed memory machines with message-passing architecture)
than in a parallel processing environment (which has a shared memory architecture). This
is especially true for the processing of divisible loads since there is very little interprocessor
communication during the actual computation process.

2.5.2 Divisible Load Theory

Studies in Divisible Load Theory (DLT) area address the following question: Given an
arbitrary divisible load without precedence relations and a multi processor/ multicomputer
system subject to communications delays, in what proportion should the processing load
be partitioned and distributed among the processors so that the entire load is processed in
the shortest possible time? One the major issue is that of computation-communication
trade-off relationships. The answer to the above question depends on this issue and we
will devote the remains of this chapter to discuss about it.

The increasing prevalence of multiprocessor systems and data-intensive computing has
created a need for efficient scheduling of computing loads, especially parallel loads that
are divisible among processors. During the past decade, divisible load theory has emerged
as a powerful tool for modelling data-intensive computational problems. DLT originated
from a desire to create intelligent sensor networks, but most recent applications involve
parallel and distributed computing.

Simple Divisible Load Theory Example

Consider a five-processor star network [6] with root processor P0 processing some load
itself while simultaneously distributing the rest of the load to processors P1 through P4.
Let αi be the fraction of load processed by each processor. The system parameters are
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wi, the inverse computing speed of the ith processor; zi, the inverse transmission speed of
the ith link; Tcp, the computation intensity; and Tcm, the communication intensity. Thus,
αiwiTcp is the time to process the ith load fragment on the ith processor and αiwiTcm is
the time to transmit the ith load fragment on the ith link.
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Figure 2.5: Gantt-chart-like timing diagram for star topology. Transmission commences
simultaneously on all links, and computation follows load reception on each processor.

As Figure 2.5 shows, a Gantt-chart-like timing diagram can represent a schedule in
which transmission commences simultaneously on all links and computation follows load
reception on each processor. For a minimum time solution, all processors must stop
computing at the same instant; otherwise load could be transferred from busy to idle
processors.

To determine the optimal fragment size for processors 1 through 4, set the equation
for the solution time of processor P0 equal to that for processor P1, the solution time
equation for P1 equal to that for P2, and so on. Chaining together the load fragment size
solutions results in a complete solution, where m is the number of satellite processors:

αi =

(
zi−1Tcm + wi−1Tcp

ziTcm + wiTcp

)
αi−1 = fi−1αi−1 =

⎛
⎝i−1∏

j=1

fj

⎞
⎠αi (i = 2, 3...m) (2.1)
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For processor P0:

α0 =

(
z1Tcm + w1Tcp

w0Tcp

)
α1 =

(
1

k0

)
α1 (2.2)

We can then use normalization (α0 +α1 + ...+αm = 1) to solve for all the optimal load
fractions. If all processor and link speeds are the same, the time to complete a solution
is:

Tfinish = α0w0Tcp =

(
1

m + 1/k0

)
(zTcm + wTcp) (2.3)

Finally, the linear speedup is:
Speedup = 1 + k0m (2.4)

The same methodology can handle sequential load distribution, sequential load distri-
bution with installments, simultaneous load distribution in which the root does no pro-
cessing, and simultaneous load distribution in which computation and communication
commence at the same time. We summarize the most important features of DLT as
following.

A tractable model

The optimality principle provides the key to divisible load scheduling. Setting up a
continuous-variable model and assuming that all processors stop computing at the same
instant lets you determine the optimal amount of total load to assign to each processor
or link using a set of linear equations or, as in queuing theory and many other cases,
recursive equations. DLT can thus account for heterogeneous computer and link speeds,
interconnection topology, and scheduling policy. It can also include fixed delays, such as
propagation delay in links. Moreover, as the above example shows (Figure 2.5), the model
can use Gantt-chart-like schematics to easily portray loads with different computation and
communication intensities.

DLT’s tractable nature contrasts with the traditional indivisible load problem. That
is, when you assign atomic jobs or tasks that each must run on a single processor, com-
binatorial optimization is often NP complete. Precedence relations provide an additional
complication. Although not applicable to all computer-scheduling problems, DLT does
apply to an important class of such problems in grid computing; signal, sensor, and ex-
perimental data processing; and data-intensive and data-parallel computing.

Interconnection topologies

Over the years, researchers have successfully applied divisible load modelling to a wide va-
riety of interconnection topologies, including linear daisy chains, trees, buses, hypercubes,
and two and three-dimensional meshes. Figure 2.6, for example, illustrates a possible load
distribution flow originating from a single processor in a 2D mesh network. In addition,
asymptotic results developed for infinite-sized networks are useful in sequential load dis-
tribution as speedup saturates with the addition of more processors.

The ability to guarantee performance close to that of an infinite-sized network with
a small to moderate number of processors therefore provides useful design information.
It is worth noting, however, that finding an optimal schedule occurs in the context of a
specific interconnection network and scheduling strategy.
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Figure 2.6: Load distribution flow in a 2D network. The load originates at node 0 and
propagates throughout the mesh in a diamond-shape pattern.

Equivalent networks

Like other linear theories, including Markovian queuing theory and resistive electric circuit
theory, DLT represents a complex network with an exactly equivalent network element.
For some network topologies such as trees, aggregation can be recursive, one subtree at a
time.

For example, consider either a pair of adjacent processors and their connecting link
in a linear daisy-chain network or a single-level subtree in a multilevel-tree network. You
first set the computing speed of a single equivalent processor equal to this subnetworks
speed and then continue aggregating subnetworks of processors, including intermediate
equivalent processors, until one processor is left with a computing speed equivalent to
the original network. Final expressions for equivalent processor computing speed can be
either closed form or iterative.

Installments and sequencing

A number of applied optimization problems arise in divisible load scheduling. For exam-
ple, instead of a node in a tree sequentially distributing load to its children, improved
performance results if load is distributed in installmentssome to child 1, child 2, child
M; more to child 1, child 2, child M; and so on. Performance under sequential multi-
installment load distribution strategies tends to saturate as the number of installments
increases.

Some sequencing results are surprising. For example, consider a linear daisy-chain
network in which all processors and links have the same speed. Under one basic sequential
scheduling strategy, if load originates at any interior processor, the same solution time
results whether load is first distributed to the left or right parts of the network. Other
results are more intuitive. For example, distributing load over a slow link to a relatively
fast processor can degrade overall network solution time.
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Scalability

Early DLT studies determined that if load is distributed from one node to its children
sequentially,as in a tree network, speedup saturates as more nodes are added. If link speed
is of the same order as processor speed, optimal sequential load distribution offers a 20
to 40 percent improvement in overall solution time compared to equally dividing the load
among processors.

Although simply increasing the number of installments also saturates performance,
recent studies indicate that speedup is scalable if a node transmits load simultaneously
to all its children, that is, speedup grows linearly in the number of children. As long
as a node CPU can load output buffers to all links, performance scales. While there
is qualitative support for this scalability concept in parallel processing, DLT allows a
quantitative solution.

Metacomputing accounting

A devilish metacomputing problemdistributed computing with payment to computer own-
ers challenges developers to factor problem size and system parameters into monetary
accounting. DLT can incorporate an intuitive linear model for computing and communi-
cation costs. Simple to moderately complex heuristic rules can be developed to efficiently
assign load in terms of both cost and performance. DLT allows using similar rules for
a related problem in parallel processor configuration design, namely how to optimally
arrange links and processors with certain characteristicsfor example, speed and costin a
given topology.

Time-varying modelling

The actual effort a computer can devote to a divisible job depends on the status of other
background jobs. Ongoing transmissions likewise reduce a links capacity to transmit part
of the job. Developers can use integral calculus to apply solution time optimization to
divisible loads if they know the start and end times and effort of such background jobs
and messaging. With less than perfect knowledge of background processes, stochastic
modelling can be combined with deterministic DLT.

Unknown system parameters

It can be difficult to obtain accurate estimates of available processor effort and link capac-
ity, which are key inputs to divisible load scheduling models. Several recently proposed
probing strategies send some small fraction of a load to processors across a network of
links to estimate currently available processing capacity at nodes and bandwidth on links.
Actual implementations must account for the time-varying nature of available processor
effort and link capacity as well as processors release timesthe times at which processors
become free to accept additional load. Further, load must be distributed on the fastest
processors and links. Nevertheless, these probing strategies offer a promising approach to
robust divisible load scheduling.
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Extending realism

In recent years, researchers have attempted to generalize divisible load scheduling by con-
sidering systems with finite buffers, finite job granularity, scheduling with processor release
times, and scheduling multiple divisible loads. Other efforts have sought to synthesize de-
terministic divisible load modelling and stochastic modelling. Specialized applications of
divisible load scheduling include databases and multimedia systems.

Experimental results

Experiments with actual distributed computer systems demonstrate that DLT can be a
useful prediction tool, as the Divisible Load Theory Experimental Work sidebar illustrates.
With investigators scrambling to initiate DLT research in various sub areas, there is
a need to integrate work to datefor example, to assess time varying load sharing on
hypercubes. In addition, analytical proofs of divisible load optimality exist for only a
limited subset of topologies and scheduling policies. While there is no reason to believe
that the principle doesnt hold in other environments, rigorous proofs are yet to follow.
Beyond these refinements, several potential breakthroughs are on the horizon.

2.5.3 Divisible Load Applications

Feature extraction and edge detection in image processing

A typical divisible load scheduling application might involve a credit card company that
must process 30 million accounts each month. The company could conceivably send
300,000 records to each of 100 processors, but simply splitting the load equally among
processors does not take into account different computer and communication link speeds,
the scheduling policy, or the interconnection network. Divisible load theory provides the
mathematical machinery to do time-optimal processing.

Similarly, banks, insurance companies, and online services often must process large
numbers of customer records for billing, data mining, or targeted direct mail advertising,
or to evaluate the profitability of new policies. A midsize cap fund would likewise have to
process many complex financial records to make the best investment decisions or evaluate
new investment strategies.

In computer vision systems, Image Feature Extraction [4, 24] is an extremely important
function. This basically consists of two levels of processing, namely, a local computation
followed by a nonlocal interprocessor communication and computation. The first level
of computation partitions the given image into many segments. Each of these segments
is processed locally and independently on different processors. This is done to extract
local features of the image from different processors. In the second level of computation,
these features from different processors are exchanged and processed to extract the desired
feature.

Similarly, edge detection is a very well-known problem in image processing. Here the
objective is to detect the edge or boundary of an image. As before, the given image can be
arbitrarily partitioned into several subframes of varying sizes and each of these subframes
can be processed independently.

A practical situation in which processing of such data may frequently be necessary
involves the space shuttle orbiter, which collects massive volume of image data that has
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to be communicated to the earth station for processing (by a parallel or distributed
system). This kind of data also has the potential of arbitrary divisibility. The data
can be partitioned and sent to a number of processors situated at various geographical
points on the surface of the earth, in which case they incur considerable communication
delay. Depending on the location of the processing units the communication delays will
be different.

Processor 0 Processor 1 Processor 2 Processor 3

Memory Memory Memory Memory

Interconnection Bus Network

Figure 2.7: Bus network with 4 Processor

Signal processing

Here we briefly describe a Feature Extraction problem [4] in which the arbitrary divisibility
property of the image data is exploited to processing. Consider an image in the form of
a cluster of pixel that may be a subset of the original image array. The primary task of
image feature extraction is to process this data to generate a representation that facilitates
higher level symbolic manipulations. It is possible to exploit data parallelism at this stage
of processing by assigning different portions of the image array to each of the processors
in a parallel or distributed processing system.

To illustrate the above point, consider the Hough transform of the straight lines in an
image. It is given as an array B(ρ, θ), each element of which represents the number of
pixels whose spatial coordinates (x, y) in the given image array satisfy the equation

ρ = x.cosθ + y.sinθ (2.5)

For each pair (x, y), the value of ρ is computed for a set of discrete values of θ. Thus, each
point in the (x, y) plane generates a curve in the (ρ, θ) plane. Based on the nature of these
curves and their relative position one can identify B(ρ, θ) and obtain information about
the features in the given image array. Note that the computation of Hough transform for
each point is done independent of any of the other point. This aspect makes the data
(image array) arbitrarily divisible.

As an illustrate example, let us assume that the data to be processed in the above
manner is stored in a (512×512) image array. Let the computation done on a single pixel
take 1 unit of time in any of the processors in a network consisting of 4 identical processors
p0, p1, p2, p3 connected through a bus and having separate local memories (Figure 2.7) The
data to be processed is resident in p0 which can communicates segments of the data, one
at a time, to the other processors. If the communication delay in sending data is negligible
then it is wise to distribute the data in 4 equal parts.

For example, each processor can be assigned 128 rows (Figure 2.8(a)), thus incurring
a processing time of (1× 128× 512) time units. However, when the communication delay
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is not negligible, as when the processors are well separated, then this strategy is no longer
optimal. Suppose the time delay for communicating one pixel from one processor to
another is 10 percent of the computation time per pixel. Then the times taken by each
processor to complete its computation is

• (1 × 128 × 512) time units for p0

• (1.1 × 128 × 512) time units for p1

• (1.2 × 128 × 512) time units for p2

• (1.3 × 128 × 512) time units for p3

Thus, the processing of the complete data is over only after processor p3 complete its
computation. Hence, the presence of communication delay has increased the processing
time by 30 percent. But it is obvious that we can exploit the arbitrary divisibility property
of the data to improve performance.

512

128

128

128

128

512

(a) Equal Division (b) Unequal Division

148

134

120

110

512

Figure 2.8: Partitioning of data for Image Feature Extraction

For example, let us allocate 147 rows to p0, 134 rows to p1, 121 rows to p2, and 110
rows to p3 (Figure 2.8(b). The the processing time for each processor is

• (1 × 147 × 512) time units for p0

• (1.1 × 134 × 512) time units for p1

• (0.1 × 134 × 512) time units for p2

• (0.1 × 134 × 512 + 0.1 × 121 × 512 + 1.1 × 110 × 512) time units for p3

From the above, we find that p1 takes the maximum time to complete its computation.
For comparison, we can rewrite this time as (1.152× 128× 512) time units and note that
this strategy has produced a 15 percent reduction over the naive equal division strategy.

The above example demonstrates how the arbitrary divisibility property of the data
(image and signal data) can be exploited to enhance the performance of a real-world image
feature extraction algorithm. However, note that since we have allocated data in terms
of rows, the data is not arbitrarily divisible in the true sense, but may be considered to
be so for large volumes of data.
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2.5.4 Divisible Load System

The basic idea underlying the process of scheduling divisible loads to minimize the pro-
cessing time in distributed networks is in devising efficient load distribution strategies.
While a data partitioning algorithm is simple to implement, the non triviality of schedul-
ing divisible loads lies in designing strategies that efficiently utilize the available network
resources in terms of computational power and communication channel bandwidth.

The load distribution model

Divisible load distribution, in general, goes through the following process. The load to be
processed arrives at a specified node, called the root node (in the case of tree networks)
or the master (in the case of star networks), depending upon the architecture under
consideration. Also, the architecture can be such that the processors can be equipped
with front-ends or without front-ends. In front-end case, with a network involving m
processors, the originator partitions the load into m fractions, starts the computation
on its own load fraction and simultaneously starts distributing the other load fractions
to other processors one at a time in a predetermined order. Note that the computation
and communication events occur concurrently at the originator, if it is equipped with
a front-end (also known as a communication co-processor). On the other hand, in the
without front-end case, the originator first distributes the load fractions to the rest of the
processors and then it computes its own load fraction.

Obviously, when we consider a linear topology for the network, the originator pumps
all the data in a pipelined fashion, and every processor that receives the data from its
predecessor keeps the portion intended for it and passes the rest to its successor. The
problem is then to choose the size of these load fractions in such a way that our objective
of minimum processing time is met. It is important to note that we are addressing the
problem of load partitioning in a heterogeneous system of processors and links, and hence,
dividing the load into equal sized fractions will naturally result in a poor performance.

Notations

Below we describe the standard notations used in this section:

• α = (α1, ..., αm): load distribution vector;

• αi : load fraction allocated to processor pi ;

• T (α): finish time of load distribution α;

• Si : ratio of the time taken by processor pi , to compute a given load, to the time
taken by a standard processor, to compute the same load;

• Tcp: time taken to process a unit load by the standard processor;

• Bi : ratio of the time taken by link Li , to communicate a given load, to the time
taken by a standard link, to communicate the same load;

• Tcm: time taken to communicate a unit load on a standard link
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Then αiTcp/Si is the time to process the fraction αi of the entire load on the ith processor.
Note that the units of αiTcp/Si are

[load] × [sec/load] × [dimensionless quantity] = [seconds]

Likewise, αiTcm/Bi is the time to transmit the fraction αi of the entire load over the ith
link. Note that the units of αiTcm/Bi are

[load] × [sec/load] × [dimensionless quantity] = [seconds]

The standard processor or link referred to above is any processor or link which is used
as a reference. It could be any processor or link in the network or a conveniently defined
virtual processor or link.

Linear networks

The first target architecture to be examined in the study of divisible loads was a linear
daisy chain. This was done based on a perception that such a reduced case might be
tractable. The original application was for sensor networks where the “sensors” were
networked computers that shared information. In a linear network the processor p0 (the
root) is connected to processor p1 via link L1, p1 is connected to p2 via L2 and so on until
pm−1 is connected to the boundary processor pm via Lm. If a divisible load originates
at one end of a daisy chain of m processors then a set of m linear equations can be set
up to solve for the optimal fraction of load to be assigned to each processor in order to
minimize the “finish time”. Here finish time is the time when all processing has stopped.
Other variations to this problem deal with a load that originates at an processor and also
when the time for processors to report solutions back to the originator is non negligible.

This optimal assignment of load is done in the context of the schedule of load distri-
bution that the equations are based on. One can have load distribution strategies that
involve round robin distribution of load to the processors or strategies that simply dis-
tribute load to each processor in turn once. One can also distinguish between a store
and forward reception of load and those strategies that are more akin to the virtual cut
through switching strategy of networking.

Finally, linear daisy chains that are infinite in extent can be solved to obtain perfor-
mance bounds. Actually finish time tends to saturate as more processors are added to the
network because of the repetitive overhead in communicating load down a chain. Using
concepts from algebra, combinatorics, and even electric circuit theory, both the optimal
load allocations and finish time of infinite sized daisy chains can be obtained. Such infinite
networks represent a performance benchmark that finite chains can be compared against.
However, it soon became apparent that other topologies such as tree and buses would
yield superior performance.

As an illustration, we consider a linear network with three processors. The equations,
however, are easily generalizable to m processors. Each processor is equipped with a
front-end. The timing diagram, given in Figure 2.9, shows communication delay above
the time axis and computation time below. The finish times for all processors are assumed
to be equal for optimal load distribution

α0 + α1 + α2 = 1,
αiTcp

Si

= (1 − α0 − .. − αi)
Tcm

Bi+1

+
αi+1Tcp

Si+1

, i = 0, 1.
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These linear equations can be reduced to a series of product forms that are easy to compute
recursively and whose elegance aids analysis. Closed form solutions are available when
the network is homogeneous (that is, equal link speeds and processor speeds).
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Figure 2.9: Load distribution in a three-processors linear network

Tree and bus networks

The researches in the early stages of divisible load theory considered this type of network.
In these studies, a bus network architecture was conceived as a special case of single-
level homogeneous tree networks. This is, of course, expected as our modelling ensures
that when all the link speeds are identical in single-level tree network (SLTN) or in star
network architectures, the resultant network becomes identical to a bus network. Thus,
all the results that are valid for SLTN also hold for bus networks. The treatment to obtain
optimal finish time solution follows the same technique as the linear network.

There is a possibility in tree networks of varying the order or sequence of load distribu-
tion among the child processors. There are m! such sequences possible with m processors
connected to the root. An optimal sequence is that in which the load distribution follows
the order in which the link speeds decrease. However, from a network designers perspec-
tive, if architectural rearrangement is permissible, then the best way one can arrange the
processors and links would be to connect the fastest processor to the fastest link and
the next fastest processor to the next fastest link and so on and then follow the optimal
sequence of load distribution. Further, when front-ends exist the root must be the fastest
of all the processors in the network. The extension of many of these results to multi-level
tree networks is also available.

In bus networks, three possible configurations are of interest:

• bus equipped with a control processor or a bus controller unit (BCU),

• bus not equipped with a BCU, but processors with front-ends, and
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• bus not equipped with a BCU, and processors without front-ends.

While the analytical treatment and the load distribution process remains identical, the
study of divisible load scheduling on bus networks is of interest since the network is simple
in nature and allows one to design and study the performance of complex scheduling
strategies. As an illustration we consider a tree network with one root processor and two
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Figure 2.10: Load distribution in a three-processors tree network

child processors in Figure 2.10. The corresponding load distribution equations are,

α0 + α1 + α2 = 1,
αiTcp

Si

=
αi+1Tcm

Bi+1

+
αi+1Tcp

Si+1

, i = 0, 1.

These equations too can be solved recursively. Closed-form solutions are also possible.
As a numerical example, consider a single-level heterogeneous tree with 4 processors

where

S0 = 1/2, S1 = 1/3, S2 = 1, S3 = 1/2, B1 = 1/2, B2 = 2, B3 = 1/5, Tcm = Tcp = 1.

If we use all the processors then α = 0.4321, 0.1728, 0.3457, 0.0494 and T (α) = 0.8642.
But this distribution is not optimal. Suppose p2 is given α1 + α2 and p1 is not given any
load, then the new load distribution is α′ = 0.4321, 0, 0.5185, 0.0494 and the processing
time is T (α′) = 0.8642. In this case, the processors do not stop at the same time. If we
redistribute load to the reduced network consisting of p0, p2, p3 only so that they all have
the same finish times then the new load distribution is

α′′ = 0.3962, 0, 0.5283, 0.0755; T (α′′) = 0.7924

which is indeed the optimal finish time solution to this problem.
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The optimality principle

In the above discussions we assumed that to obtain optimal processing time all the partic-
ipating processors must stop computing at the same instant in time. This was the basic
optimality principle in the case of divisible load scheduling problems. This assertion is
supported by an intuitive observation that when all processors do not stop computing
at the same time, it is possible to redistribute some load from processors that stop com-
puting later to those that stop computing earlier. While the above claim seems to have
an intuitive validity, it was subsequently shown that, for a single level tree network, the
optimal processing time can be achieved by distributing the load only among the “fast”
processor-link pairs.

An exact expression that distinguishes the “fast” processor-link pairs from the “slow”
processor-link pairs has been derived. A reduced network can then be obtained after
eliminating the slow processor-link pairs and the load is distributed among the remaining
processors using the optimality principle.

Based on the above, it is reasonable to say that although the optimality principle
remains valid for even an arbitrary network topology, the optimal time performance de-
pends crucially on the selection of a proper subset of the available processors. Thus, using
a larger set of nodes may yield an inferior performance compared to an optimal subset
of nodes among which the load is distributed according to the optimality principle. In
the case of homogeneous single-level tree networks (and also for the bus networks) all the
processor-link pairs are identical and hence all of them must be used to process the load.

Multi-installment strategy

The load distribution model discussed above underwent a fair bit of revision when it
incorporated pipelining in the form of a multi-installment strategy, where a processor
need not wait till the complete load fraction to its predecessor has been transferred.
Exploiting the divisible nature of the load, each fraction was further subdivided and
distributed in a repetitive sequence. This strategy reduced the idle time of the processors
at the farthest end of the load distribution sequence. In addition to a resulting reduction
in processing time, one can also have a control on the finish time by selecting the number
of installments. This capability is crucial for real-time processing of certain types of loads.

2.6 Divisible Load Scheduling Problem

2.6.1 Framework

We limit our study to star-shaped logical network topologies (Figure 2.11(a)), because it
often represent the solution of choice to implement master-worker computations. We refer
the reader to [4, 15] for more details regarding to other topologies such as tree (Figure
2.11(b)).

Note that the star network encompasses the case of a bus, which is a homogeneous
star network. In this section we consider two types of model for communication and com-
putation: linear or affine [15, 16] in the data size. In most contexts, this is more accurate
than the fixed cost model, which assumes that the time to communicate a message is
independent of the message size.
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Figure 2.11: Star and Tree network

As illustrated in Figure 2.11(a), a star network G = (P0, P1, P2, ..., PN ) is composed of
a masterP0 and N workers: (P0, P1, P2, ..., PN ). There is a communication link from the
master P0 to each worker Pi.

In the linear cost model, each worker Pi has a relative computing power Si: it takes
X/Si time units to execute X units of load on worker Pi. Similarly, it takes X/Bi time
unites to send X units of load from P0 to Pi. Without loss of generality we assume that
the master has no processing capability (otherwise, add a fictitious extra worker paying
no communication cost to simulate computation at the master).

In the affine cost model, a latency is added to computation and communication costs:
it takes cLati+X/Si time units to execute X units of load on worker Pi, and nLati+X/Bi

time units to send X units of load from P0 to Pi. It is acknowledged that these latencies
make the model more realistic.

For communications, the one-port model is used: the master can only communicate
with a single worker at a given time-step. We assume that communications can overlap
computations on the workers: a worker can compute a load fraction while receiving the
data necessary for the execution of the next load fraction. This corresponds to workers
equipped with a front end as mentioned above. A bus network is a star network such
that all communication links have the same characteristics: Bi = B and nLati = nLat
for each worker Pi, (1 ≤ i ≤ N).

2.6.2 The Complexity

Consider the Divisible Load Scheduling (DLS) problem and its complexity, with a partic-
ular emphasis on master-worker platforms with a star topology. We have an application
that consists of an amount of load, which can be arbitrarily divided into any number of
chunks, where each chunk consists of some amount of input data and some computation
to perform on this data. The objective of the DLS problem is to assign load chunks to
workers, which are accessible from a master over a network, so that the makespan, that is
the overall application execution time, is minimized. The entire load initially resides at
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the master.
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Figure 2.12: Single-round scheduling with star network and linear cost model

This is the simplest platform combination, denoted as StarLinear. Let αi denote the
number of units of load sent to worker Pi, such that

∑N
i=1 αi = Ltotal. Figure 2.12 depicts

the execution, where Ti denotes idle time of Pi, i.e. the time elapsed before Pi begins its
processing. The goal is to minimize the total execution time, Pf = max1≤i≤N(Ti + αi

Si
),

according to the linear model defined in the above section. In Figure 2.12, all the workers
participate in the computation, and they all finish computing at the same time (i.e.
Ti + αi

Si
= Tf , ∀i). We outline here some general results:

Theorem 1 [15] In any optimal solution of the StarLinear problem, all workers partici-
pate in the computation, and they all finish computing simultaneously.

Theorem 2 [15] An optimal ordering for the StarLinear problem is obtained by serving
the workers in the ordering of decreasing link capacities Gi.

Theorem 3 [15] The optimal solution for the StarLinear problem is given by the solution
of the follow linear program.

Minimize Tf subject to:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1) αi ≥ 0 1 ≤ i ≤ N
(2)

∑N
i=1 αi = Ltotal

(3) α1/(B1 + S1) ≤ Tf

(4)
∑i

j=1
αj

Bj
≤ Tf 2 ≤ i ≤ N

The more details of these theorems were presented in [15]. We note that inequalities
(3) and (4) will be in fact equalities in the solution of the linear program, so that we can
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easily derive a closed-form expression for Tf . We point out that this is linear programming
with rational numbers, hence of polynomial complexity. Similarly, it is also known that
if the costs model is affine in the chunk size and the platform is homogeneous, then the
problem is polynomial-time [4].

Finally, in the case of affine costs and of a heterogeneous platform, per [25], the
Divisible Load Scheduling problem (DLS) is defined as follow :

Problem 4 Consider a set of N worker processors and a master processor. The master
must send out Ltotal units of load to workers to be computed. Each worker Pi can compute
Si, i ∈ [1, N ] load units per second, and each transfer to a worker Pi takes a fixed amount
of time, nLati seconds. Is it possible to compute all Ltotal load units within T0 seconds
after the master starts sending out the first load unit? (T0, Ltotal, nLati, Si are all rational
numbers, due to the divisible nature of the load.)

In summary, A. Legrand [25] proves that DLS problem for a heterogeneous star net-
work with affine costs is a NP-complete problem. This justifies the use of heuristics such
as the ones employed in [16, 17]. It is important to note that the proof not only works
for one-round schedules, but also for multi-round schedules.
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Chapter 3

Static Algorithm for Divisible Load
Scheduling Problem

3.1 Preliminary

Numerous studies in the literature have been targeting the problem of scheduling divisi-
ble workloads (those loads that are amenable to partitioning in any number of chunks).
However, such algorithms have a number of shortcomings such as the sole reliance in
their computations on CPU speed, and the assumption that a definite set of workers are
available and must participate in processing the load. These constraints limit the utility
of such algorithms and make them impractical for a Non-Dedicated computing platform
such as the Grid. In this chapter, we propose an algorithm, MRRS [40, 41], that over-
comes these limitations and adopts a worker selection policy that aims at minimizing the
execution time. The MRRS has been evaluated against other scheduling algorithms such
as UMR and LP and showed better results.

Per the Divisible Load Theory [1], the scheduling problem is identified as: “Given an
arbitrary divisible workload, in what proportion should the workload be partitioned and
distributed among the workers so that the entire workload is processed in the shortest
possible time?”

Any scheduling algorithm should address the following issues:

• Workload Partitioning Problem. This problem is concerned with the method by
which the algorithm should divide the workload in order to dispatch to workers.

• Resource Selection Problem. This problem is concerned with how to select the best
set of workers that can process the workload partitions such that the makespan is
minimal.

Single round algorithms [4], [5] are an early and simple way for scheduling. As shown in
[4], for a large workload, the single-round approach is not efficient due to the large idle
time attributed to the last worker as it waits for receiving its workload chunk.

Multi-round algorithms, first introduced by Bharadwaj [1], further utilize the overlap-
ping between communication and computation processes at workers. The master delivers
chunks of loads to workers one after another, over multiple rounds, until all load partitions
are delivered.
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In the first multi round algorithm, called MI [1], the number of rounds is fixed and
predefined. It overlooks communication and computation latencies. Beaumont [4] pro-
poses a multi round scheduling algorithm that fixes the execution time for each round.
This enabled the author to give analytical proof of the algorithm’s asymptotic optimality.
But the influence of this assumption on the utilization of transfer-execution overlap is
questionable. Yang et al. [2], [6], through their UMR (Uniform Multi-Round) algorithm,
designed a better algorithm that extends the MI by considering latencies. However, in
the UMR, the size of workload chunks delivered to workers is solely calculated based on
worker’s CPU power; the other key system parameters, such as network bandwidth, are
not factored in.

One apparent shortcoming in the many scheduling algorithms [1], [2], [4], [5], [7] that
exist in the literature is the abandon of designing a solid selection policy for generating
the best subset of available workers. The first studies [1], [5] did not mention about
this topic. Part of the reason is that the main focus of these algorithms is confined to
the LAN environment, which makes them not perfectly suitable for a WAN environment
such as the Grid [3]. In the Grid, computation resources (workers) join and leave the
computing platform dynamically. Unlike other algorithms, we cannot assume in the Grid
that all available resources, which may be in thousands, must participate in the scheduling
process. The more recent algorithms discussed in [2], [6] very tersely allude to this problem
by proposing primitive intuitive solutions that are not back up by any analytical model.

In this section, we propose a new scheduling algorithm, MRRS [40, 41](inspired by
UMR [2], [6]), which is better and more realistic. MRRS is superior to UMR with respect
to two aspects. First, unlike UMR that relies primarily in its computation on the CPU
speed, MRRS factors in several other parameters, such as bandwidth capacity and all
types of latencies (computation and communication) which renders the MRRS a more
realistic model. Second, the MRRS is equipped with a worker selection policy that finds
out the best workers. As a result, our experiments show that our MRRS algorithm
outperforms previously proposed algorithm including the UMR.

3.2 The Heterogeneous Computing Platform

Let us consider a computation Grid in which a master process has access to N worker
processes and each process runs in a particular computer. The master can divide the
total load Ltotal into arbitrary chunks and delivers them to appropriate workers. We
assume that the master uses its network connection in a sequential fashion, i.e., it does
not send chunks to some workers simultaneously. Workers can receive data from network
and perform computation simultaneously.

Let us formalize our model by listing the notations which will be used throughout this
dissertation:

• Wi: worker number i.

• N : total number of available workers.

• n: total number of workers that are actually selected to process the workload.

• m: the number of rounds.
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• chunkj,i : the fraction of total workload that the master delivers to worker Wi in
round j (i = 1, .., n ; j = 1, ..,m)

• Si: computation speed of the worker i measured by the number of units of workload
performed per second (flop/s)

• Bi: the data transfer rate of the connection link between the master and worker Wi

(flop/s)

• Tcompj,i: we model the time required for worker i to perform the computation
chunkj,i as:

Tcompj,i = cLati +
chunkj,i

Si

• cLati : the fixed overhead time, in seconds, for starting a computation (e.g. for
starting a remote process) in the worker Wi. The computation, including the cLati
overhead, can be overlapped with communication.

• nLati : the overhead time, in seconds, incurred by the master to initiate a data
transfer to Wi (e.g. pre-process application input data and/or initiate a TCP). We
denote total latencies by Lati = cLati + nLati.

• Tcommj,i: we model the communication time spent by the master to send chunkj,i

units of data to worker Wi as:

Tcommj,i = nLati +
chunkj,i

Bi

• roundj: the fraction of workload dispatched during round j

roundj =
n∑

i=1

chunkj,i

We fix the time required for each worker Wi to perform communication and computation
during each round j

cLati +
chunkj,i

Si

+ nLati +
chunkj,i

Bi

= constj (3.1)

We set

Ai =
BiSi

Bi + Si

so we have

chunkj,i = αiroundj + βi (3.2)

where

αi =
Ai∑n

k=1 Ak

; βi = Ai

∑n
k=1 Ak(Latk − Lati)∑n

k=1 Ak

(3.3)
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This model is flexible enough that it can be instantiated to model several types of network
connections. For instance, setting the nLati values to 0 models a pipelined network such
as the one used in [26]. The model can also be instantiated with non-zero nLati values as
in [16]. This is representative of distinct connections being established for each individual
transfer, with no pipelining. Zero nLati corresponds to the work in [4, 5]. We provide
an analysis of our scheduling algorithm using this generic platform model, and thereby
validate our approach for various platforms.

3.3 Previous work: the UMR algorithm

In the first multi round algorithm MI [4], the number of rounds is fixed and predefined.
MI does not consider communication and computation latencies. Yang et al. extend the
MI by considering latencies which better models the real situations. Their UMR (Uniform
Multi Round) algorithm [17] assumes that the total of transfer time and execution time
of every worker are equal within each round. This approach enables them to analyze
the constraints and find the near-optimal number of rounds as well as the size of chunks
in each round. Among the existing scheduling algorithms for divisible load, UMR is
the only algorithm that obtains the approximately optimal number of rounds and the
size of load chunks. We choose algorithm UMR as the backbone to develop our static
scheduling algorithm MRRS. In this section, we sketch the key concepts of the UMR
algorithm, referring the reader to [17, 18] for more details. Next, we explain how the
UMR partitions its load into chunks, how it decides on the size of each chunk, what are
the initial parameters for the first round, and outline the simple worker selection policy
adopted by the UMR.

Load Partitioning Policy

In some theoretical models of computing platform such as [18], the authors propose a
parameter called tLat that defined as “the time interval between when the master finished
pushing data on the network to worker i and the time when worker i receives the last byte
of data”. The tLat is overlappable as show in Figure (3.1) and can be used to represent
the network latency between the master and the worker. However, because of tLat is
overlappable and the effect of tLat is just to shift the running time by tLat (second)
therefore, like [17, 16], we ignore this parameter in our derivation.

UMR adopts a load partition policy that ensures that each worker spends the equal
CPU time like others through a round, network bandwidth is not taken into account. We
can express this policy as follows:

cLati +
chunkj,i

Si

= constj (3.4)

so we derive

chunkj,i =
Si∑n

k=1 roundj

+ δi (3.5)

where

δi =
Si∑n

k=1 Sk

n∑
k=1

(SkcLatk) − SicLati (3.6)
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It can be seen that, the bandwidth Bi does not appear in above expressions as it is not
considered by the UMR algorithm. Lemma (8) in the next section will show that, by
considering both of CPU power, Si, and bandwidth, Bi, MRRS shows better performance
than UMR.

Conditions for full platform utilization

W
1

W
2

Wn

T1 T2

............ ............

round

Time

Transfer

Compute

Transfer

Compute

Transfer

Compute

tLat

round j round
j+1 j+2

chunk       /B
j+1,1 1

j,nchunk    /Sn

Figure 3.1: The load dispatching in UMR algorithm

Figure (3.1) depicts the operation of UMR algorithm. At time T1, the master starts
sending chunkj+1,i (i=1, 2,..., n) to all workers and the last worker Wn starts computation
chunkj,n concurrently. To fully utilize the network bandwidth, the dispatching of the
master and the computation of Wn should finish at the same time T2. The induction
relation on round j is:

roundj = φj(round0 − µ) + µ (3.7)

where

φ =

(
n∑

i=1

Si

Bi

)−1

(3.8)

µ =

∑n
i=1(SicLati) −∑n

i=1 Si ×∑n
i=1

(
βi

Bi
+ nLati

)
∑n

i=1
Si

Bi
− 1

(3.9)

Constrained minimization problem

To start the scheduling process, round0 and the number of rounds m should be determined
first. Since the objective of the UMR is to minimize the makespan of the application, we
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can write:

H(m, round0) =
n∑

i=1

(
chunk0,i

Bi

+ nLati

)
+

m−1∑
j=0

(
chunkj,n

Sn

+ cLatn

)
(3.10)

At the same time, we also have the constraint that the chunk sizes sum up to the total
workload:

K(m, round0) = mµ + (round0 − µ)
1 − φm

1 − φ
− Ltotal = 0

This optimization problem can be solved by the Lagrangian method [27]. After obtaining
m and round0, using equations (3.7) and (3.5) we can obtain the value of roundj and
chunkj,i respectively (i = 1, 2, ..., n; j = 1, 2, ...,m).

Worker Selection Policy of the UMR

The worker selection problem implies selecting the best n workers out of N workers that
are available and accessible in such a way the makespan is minimal. Inspired by the work
in [32] and based on the intuition, Y.Yang employs a simple method that sorts workers
Si/Bi in increasing order, and selects the first n workers out of the original N workers
such that:

n∑
i=1

Si

Bi

< 1 (3.11)

Furthermore, UMR requires that, the computation-communication ratio Bi/Si be larger
than the number of workers n:

Bi

Si

≥ 1 (∀i = 1, 2, ..., N) (3.12)

3.4 Multi-round Scheduling with Resource Selection

(MRRS) Algorithm

In this section, we build a new scheduling algorithm, MRRS (Multi-Round scheduling
with Resource Selection) [40, 41], which is inspired by the UMR algorithm. MRRS is su-
perior to UMR with respect to two aspects. First, unlike the UMR, which relies primarily
in its computation on the CPU speed, MRRS factors in several other parameters such as
bandwidth capacity and all types of latencies (CPU and Bandwidth) which renders the
MRRS a more realistic model. Second, the UMR assumes that all workers are available
and should participate in the workload processing, which is not practical especially in a
computing environment such as the Grid. The MRRS, on the other hand, is equipped
with a worker selection policy that works on selecting the best workers that can pro-
duce shorter makespan. As a result, our experiments show that our MRRS algorithm
outperforms previously proposed algorithm including the UMR.

3.4.1 Induction Relation for Chunk Sizes

Figure (3.2) depicts the operation of our algorithm, where the computation and commu-
nication have been overlapped. At time T1, the master starts sending round (j + 1) to all
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Figure 3.2: Dispatching load chunks using the MRRS algorithm

workers and the last worker Wn starts computation chunk j concurrently. To fully utilize
the network bandwidth, the dispatching of the master and the computation of Wn should
finish at the same time T2:

n∑
i=1

(
nLati +

chunkj+1,i

Bi

)
=

chunkj,n

Sn

+ cLatn

If we replace chunkj+1,i and chunkj,n by their expression in (3.1) we derive:

roundj+1 = roundjθ + µ (3.13)

where

θ =
Bn

(Bn + Sn)
∑n

i=1
Si

Bi+Si

; µ =

βn

Sn
+ cLatn −∑n

i=1

(
nLati + βi

Bi

)
∑n

i=1
αi

Bi

(3.14)

From induction equation (3.13) we can compute:

roundj = θj(round0 − η) + η (3.15)

where

η =
βn + cLatn −∑n

i=1

(
nLati + βi

Bi

)
∑n

i=1
αi

Bi
− αn

Sn

3.4.2 Determining the Parameters of the Initial Round

In this section we compute the optimal number of rounds, m, and the size of the initial
load fragment that should be distributed to workers in the first round, round0. If we let
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F (m, round0) denote the makespan, then from Figure (3.2) we can seen that

F (m, round0) =
n∑

i=1

(
chunk0,i

Bi

+ nLati

)
+

m−1∑
j=0

(
chunkj,n

Sn

+ cLatn

)
= (3.16)

= round0

(
n∑

i=1

αi

Bi

+
αn(1 − θm)

Sn(1 − θ)

)
+

n∑
i=1

(
βj

Bi

+ nLati

)
+

+m

(
cLatn +

αnη + βn

Sn

)
− αnη(1 − ηm)

1 − η

Our objective is to minimize the makespan F (m, round0), subject to:

m−1∑
j=0

roundj = Ltotal

or

G(m, round0) = mη + (round0 − η)
1 − θm

1 − θ
− Ltotal = 0 (3.17)

We use Lagrangian method [27] to solve this constrained minimization problem. The
minimum value of function F (m, round0) can be found by solving the following equation
system:

∂L

∂λ
= G(m, round0) = 0

∂L

∂m
=

∂F

∂M
+ λ

∂G

∂M
= 0

∂L

∂round0

=
∂F

∂round0

+ λ
∂G

∂round0

= 0

where

• λ: Lagrange multiplier

• L(m, round0): Lagrangian function which is defined as:

L(m, round0, λ) = F (m, round0) + G(m, round0)

After solving this equation system we obtain m. Using equation (3.17) one can then
compute round0. At last, using equations (3.15) and (3.2) we will obtain the value of
roundj and chunkj,i respectively (i = 1..n, j = 1..m).
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3.4.3 Worker Selection Policy Using Greedy Method

Algorithm 3.4.1: Worker Selection(V )

main
Search Wn ∈ V such that:

Bn/(Bn + Sn) ≤ Bi/(Bi + Si) ∀Wi ∈ V
V ∗

1 = Horowitz − Sahni; / ∗ θ > 1 ∗ /
V ∗

2 = Greedy(V, “θ < 1′′);
V ∗

3 = Greedy(V, “θ = 1′′);
select V ∗ ∈ {V ∗

1 , V ∗
2 , V ∗

3 } such that
m(V ∗)=min{m1(V

∗
1 ),m2(V

∗
2 ),m3(V

∗
3 )};

return(V ∗);

Let V denote the original set of N available workers (|V | = N). In this section we
explain our worker selection policy that aims at finding the best subset V ∗(V ∗ ⊆ V, |V ∗| =
n) that minimizes the makespan. If Wi denotes worker i, then Wn denotes the last worker
receives load chunks in a round, and W1 denotes the first worker that receives chunks in
a round. Algorithm 3.4.1 outlines our selection algorithm. It starts with finding the last
worker (Wn) that should receive chunks in a round. V ∗ is initialized by {Wn}. Afterward,
the selection algorithm, depending on θ , examines three cases using different search
algorithms aiming at finding the best algorithm that adds more workers to V ∗. After
obtaining the three candidate V ∗ sets, the algorithm chooses the V ∗ set that produces
the minimum makespan. From equation (3.17) we compute the makespan as follows

• if θ = 1 :

makespan =
Ltotal∑
i∈V ∗ Ai

(
1

m

∑
i∈FS

Si

Bi + Si

+
Bn

Bn + Sn

)
+ C (3.18)

where C is a constant

C =
∑
i∈V ∗

nLati + m.cLatn

• if θ �= 1 :

makespan =
Ltotal∑
i∈V ∗ Ai

(
1 − θ

1 − θm

∑
i∈FS

Si

Bi + Si

+
Bn

Bn + Sn

)
+ C (3.19)

Now, since

lim
m→∞

1 − θ

1 − θm
=

{
0 if θ > 1
1 − θ if θ < 1

and since m (the number of rounds) is usually large (in our experiments, m is in hundreds),
we can write:

1 − θ

1 − θm
≈
{

0 if θ > 1
1 − θ if θ < 1
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when θ > 1 and by substituting this term into (3.19) we get

makespan = Ltotal
Bn

(Bn + Sn)
∑

i∈V ∗ BiSi

Bi+Si

+ C (3.20)

when θ < 1 and by substituting the above term into (3.19) we get

makespan = Ltotal

∑
i∈V ∗ Si

Bi+Si∑
i∈V ∗ BiSi

Bi+Si

+ C (3.21)

Based on the above analysis, we have three selection policies for generating V ∗:

• Policy I (θ > 1): this policy aims at reducing the total idle time by progressively
increasing the load processed in each round (i.e., roundj+1 > roundj).

• Policy II (θ < 1): this policy aims at maximizing the number of workers that
can participate by progressively decreasing the load processed in each round (i.e.,
roundj+1 < roundj).

• Policy III (θ = 1): this policy keeps the load processed in each round constant (i.e.,
roundj+1 = roundj).

As shown in Algorithm 3.4.1, the three policies will be examined in order to choose the
one that produces the minimum makespan. In the coming subsections, we will explain
the search algorithm adopted by each policy.

Policy I (θ > 1)

From equation (3.20), we can see that under this policy, V ∗ is the subset that maximizes
the sum

m1(V
∗) =

∑
i∈V ∗

BiSi

Bi + Si

(3.22)

subject to θ > 1 of ∑
i∈V ∗

Si

Bi + Si

<
Bn

Bn + Sn

(3.23)

One can observe that this is Binary Knapsack [28] problem that can be solved using the
Horowitz-Sahni algorithm [28].

Policy II (θ < 1)

From equation (3.21), we can see that under this policy, V ∗ is the subset that minimizes
the sum

m2(V
∗) =

(∑
i∈V ∗

Si

Bi + Si

)
/

(∑
i∈V ∗

BiSi

Bi + Si

)
(3.24)

subject to θ < 1 or ∑
i∈V ∗

Si

Bi + Si

>
Bn

Bn + Sn

(3.25)

To start with, we should initiate V ∗ with the first worker, W0, that minimizes m2.
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Lemma 5 m2(V
∗) is minimum if V ∗ = {Wo} such that B0 ≥ Bi, ∀Wi ∈ V .

Proof. Consider an arbitrary subset X ⊆ V , X = {P1, P2, ...Pr}. We have:

B0 ≥ Bi ⇒
r∑

i=1

B0Si

Bi + Si
>

r∑
i=1

BiSi

Bi + Si
(∀Pi ∈ V ) ⇒ B0

r∑
i=1

Si

Bi + Si
>

r∑
i=1

BiSi

Bi + Si

⇒
(

S0

B0 + S0

)
/
(

B0S0

B0 + S0

)
<

(
r∑

i=1

Si

Bi + Si

)
/

(
r∑

i=1

BiSi

Bi + Si

)
⇒ m2(V

∗) < m2(X)

(3.26)

After adding W0 to V ∗, we should keep conservatively adding more workers until constraint
(3.25) is satisfied. In fact, the next Wk that should be added to V ∗ is the one that satisfies
the following inequality:

m2(V
∗ ∪ {Wk}) ≤ m2(V

∗ ∪ {Wj}) ∀Wj ∈ (V − V ∗)

The Greedy algorithm described below progressively adds more Pk until V ∗ satisfies (3.25),
i.e. until (θ¡1). The run time complexity of this search is O(n).

Algorithm 3.4.2: Greedy(V, thetaCondition)

main
Search Wn ∈ V such that:

Bn/(Bn + Sn) ≤ Bi/(Bi + Si) ∀Wi ∈ V
Search W0 ∈ V such that:

B0 ≥ Bi ∀Wi ∈ V
V ∗ = {Wn,W0};
V = V − V ∗;
repeat

Search worker Wk satisfy
m2(V

∗ ∪ {Wk}) ≤ m2(V
∗ ∪ {Wj}) ∀Wj ∈ V

V ∗ = V ∗ ∪ {Wk};
V = V − {Wk};

until thetaCondition;
return(V ∗);

Policy III (θ=1)

Under this policy, we need to find V ∗ that minimizes the following makespan function:

m3(V
∗) =

(∑
i∈V ∗

Si

Bi + Si

)
/

(∑
i∈V ∗

BiSi

Bi + Si

)
(3.27)

subject to θ = 1 or
Bn

(Bn + Sn)
∑

i∈V ∗ Si

Bi+Si

= 1 (3.28)

It is noticeable that m3() is the same as m2() (Policy II). However, the two objective func-
tions differ with respect to their constraints. Therefore, we can use the same Greedy search
algorithm explained earlier with the exception that the termination condition should be
θ = 1 (instead of θ > 1).

41



3.4.4 Worker Selection Policy Using Branch and Bound Method

Similar to the above method, the Policy I (θ > 1) can be solved by using Horowitz-
Sahni algorithm [28]. It is noticeable that the objective functions of Policy II and III are
the same. Therefore, we can use the same algorithm OSS (Optimal Subset Search) as
presented below. The optimization problem mentioned in (3.25) and (3.28) can be stated
as follow:

π(V ∗) =

(∑
i∈V ∗

Si

Bi + Si

)
/

(∑
i∈V ∗

BiSi

Bi + Si

)
(3.29)

subject to θ = 1 or

∑
i∈V ∗

Si

Bi + Si

≥ Z

where Z is a constant:

Z =
Bn

(Bn + Sn)

This is an Integer Nonlinear Optimization [28] problem. We design a Branch and
Bound algorithm called OSS (Optimal Subset Search) to solve it. To begin with, let us
denote by ΩV the set of subsets of V : ΩV = {X ⊆ V }.
Lemma 6 The following function is a lower bound of function π(), i.e. Lower(X) ≤
π(X) ( ∀X ⊆ V )

Lower : ΩV −→ R
X �−→ 1

Bk
: Bk = max{Bi : Wi ∈ X}

Proof. Assume that X = {W1,W2, ...,Wr}. We have:

∀i : Bk ≥ Bi ⇒ Bk

r∑
i=1

Si

Bi + Si

≥
r∑

i=1

BiSi

Bi + Si

⇒
(

Sk

Bk + Sk

)
/
(

BkSk

Bk + Sk

)
≤
(

Si

Bi + Si

)
/
(

BiSi

Bi + Si

)
⇒ L(X) ≤ π(X)

Let us denote:

• û = (û1, û2, ..., ûn): the current solution, ûi ∈ {0, 1}. ûi = 1 if worker i is selected
(Wi belongs to V ∗), otherwise ûi = 0

• (u = u1, u2, ...un): the best solution so far, ui ∈ {0, 1}.
• â: the value of the current solution, i.e. the value of π() at the subset correspond

with û

â =

(
n∑

i=1

Si

Bi + Si

ûi

)
/

(
n∑

i=1

BiSi

Bi + Si

ûi

)
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• a: the value of the best solution so far, i.e. the value of π() at the subset correspond
with u

â =

(
n∑

i=1

Si

Bi + Si

ui

)
/

(
n∑

i=1

BiSi

Bi + Si

ui

)

The following functions have been used for computing the value of π(û) at the current
solution û
Function Numerator(û)
/* return the value of the numerator of π() at the subset of V that correspond with û */
begin

y=0;
for i:=1 to n do

if (ûi=1) then y:= y + Si/(Bi + Si);
return(y);

end
Function Pi(û)
/* return the value of π() at the subset of V that correspond with û */
begin

y=0;
for i:=1 to n do

if (ûi=1) then y:= y + BiSi/(Bi + Si);
return(Numerator(û)/y);

end

In OSS algorithm, a forward move consists of inserting the next worker Wj into the
current solution û. A backtracking move consists of removing the last inserted worker from
the current solution. After a backtracking move, the lower bound Lower() corresponding
to the current solution is computed and compared with the value of the best solution so
far a in order to check whether a further forward move could lead to a better one. If
the answer was affirmative, a new forward move is performed, otherwise a backtracking
follows. When the last worker Wn has been considered, the best solution is updated. The
algorithm terminates when no further backtracking can be performed.
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Algorithm 3.4.3: Optimal Subset Search (OSS)(V)

Input: V
Output: u, a, V ∗

main
begin

/* Initialize */
a := ∞; â := 0; j := 1;
while (true) do
begin

1. /* estimate the lower bound */
find Bmax=max{Bj+1, Bj+2, ..., Bn};
Lower := 1/Bmax;
if a ≤ â + Lower then go to step 2;
/* forward */
ûj := 1;
â:=Pi(û);
j := j + 1;
if j ≤ n then go to step 1;
if Numerator(û) > Z then
/* update the best solution */
begin

u := û;
a := â;

end
/* remove worker j from the current solution */
ûn := 0
â:=Pi(û);

2. /* back track */
find i = max{k | k < j and ûk = 1}
if no such i then return;
ûi := 0;
j := i + 1;
go to step 2;

end
end

3.4.5 MRRS vs. UMR: Analytical Comparison

In this section we analytically show how MRRS is always better than UMR through the
following lemmas.

Lemma 7 If the MRRS and UMR algorithms end up with the same set of selected workers
(V ∗) then makespanMRRS(V ∗) ≤ makespanUMR(V ∗)
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Proof. Let us sort the n workers of V ∗ by Si/Bi in an increasing order:

S1

B1

<
S2

B2

< ... <
Sn

Bn

<
1

n
(3.30)

We can write

Bn

Sn

> n ⇒ Bn

Bn + Sn

> n
Sn

Bn + Sn

(3.31)

Concurrently, from inequality (3.30) we derive

Sn

Bn + Sn

>
Si

Bi + Si

(∀i = 1, 2, ...n) (3.32)

Combining inequalities (3.31) and (3.32) we derive:

Bn

Bn + Sn

>
n∑

i=1

Si

Bi + Si

⇒ θ > 1

In the case of θ > 1, makespanMRRS(V ∗) is computed by equation (3.20)

makespanMRRS(V ∗) = Ltotal
Bn

(Bn + Sn)
∑

i∈V ∗ BiSi

Bi+Si

+ C (3.33)

From equation (3.10) we derive:

makespanUMR(V ∗) =
Ltotal∑
i∈V ∗ Si

(
1 +

1 − φ

φ − φm+1

)
+ C

From equation (3.30) we have:

n∑
i=1

Si

Bi

< 1 ⇒ φ > 1 ⇒ limm→∞
1 − φ

φ − φm+1
= 0

and since m (the number of rounds) is usually large (in our experiments, m is in hundreds),
we can write:

1 +
1 − φ

φ − φm+1
≈ 1

So we have

makespanUMR(V ∗) =
Ltotal∑
i∈V ∗ Si

+ C (3.34)

From equation(3.30) we derive

Bn

Bn + Sn

≤ Bi

Bi + Si

(∀i = 1, 2, ..., n) ⇒ Bn

Bn + Sn

n∑
i=1

Si ≤
n∑

i=1

BiSi

Bi + Si

⇒

⇒ Bn

(Bn + Sn)
∑n

i=1
BiSi

Bi+Si

≤ 1∑n
i=1 Si

By considering equations (3.33) and (3.34) we derive:

makespanMRRS(V ∗) ≤ makespanUMR(V ∗)
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Lemma 8 With an arbitrary set of workers V, we have
makespanMRRS(V ) ≤ makespanUMR(V )

Proof. Let us denote:

• P ⊆ V is the subset which chosen by UMR

• Q ⊆ V is the subset which chosen by MRRS

• V ∗
1 , V ∗

2 and V ∗
3 are subsets chosen by MRRS algorithm in three cases: θ > 1, θ = 1

and θ < 1, respectively.

Using Lemma (7) we have:

makespanUMR(P ) ≥ makespanMRRS(P ) (3.35)

As discussed in the last section, V ∗
1 is an optimal solution of the Knapsack system produced

by the Horowitz-Sahni algorithm. So we have:

makespanMRRS(P ) ≥ makespanMRRS(V ∗
1 ) (3.36)

Because B is chosen by MRRS by comparing V ∗
1 , V ∗

2 and V ∗
3 so we have

makespanMRRS(V ∗
1 ) ≥ makespanMRRS(Q) (3.37)

From equations (3.35), (3.36) and (3.37) we derive

makespanUMR(P ) ≥ makespanMRRS(Q) (3.38)

Finally we derive
makespanUMR(V ) ≥ makespanMRRS(V ) (3.39)

3.4.6 Experimental Results

In order to evaluate our new algorithm, MRRS, we developed a simulator using the
SIMGRID toolkit [29, 30, 31], which has been used to evaluate the UMR algorithm. We
conducted a number of experiments that aim at

• showing the validity of our approximation assumptions discussed in subsection 3.4.3

• showing that the MRRS algorithm is superior to its predecessor multi-round algo-
rithms, namely LP and UMR.

Validity of Approximation Assumptions

The experiments we conducted show that the absolute deviation between theoretically
computed makespan, as analyzed in sub section 3.4.3, and the makespan observed through
the simulation experiments is negligible. This confirms that the approximation assump-
tions adopted in our analysis are plausible. Table (3.1) outlines the parameters that we
used in our experiments. Let us denote:

• MKe is the makespan obtained from the experiments.
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Table 3.1: Experiment Parameters

Parameter Value

Number of workers N = 50
Total workload (flop) 106

Computation speed (flop/s) Randomly selected from [Smin, 1.5 × Smin],
where Smin = 50

Communication rate (flop/s) Randomly selected from
[0.5 × N × Smin, 1.5 × Smin]

Table 3.2: The Absolute Deviation between the Experimental and Theoretical Makespans

nLat, cLat (s) D1 (%) D2 (%) D3 (%)

1 3.15 2.42 3.34
10−1 2.23 1.75 2.27
10−2 1.51 0.92 1.94
10−3 0.82 0.51 1.25

• MK1, MK2, MK3 are the makespans computed by formulas (3.18), (3.20, (3.21)
respectively.

• Di (i=1, 2, 3) is the absolute deviation between the theoretical makespan, MKi,
and the experimental makespan MKe. Therefore:

Di = 100 × |MKi − MKe|
MKe

(%) i = 1, 2, 3

Table (3.2) summarizes the absolute deviations computed for different latencies. From
these results we can make the following remarks:

• The absolute deviation between the theoretical and the experimental makespans
ranges from 0.5% to 3.1%, which is negligible.

• We notice that D2 < D1 < D3. The justification is that the absolute deviation (D)
is proportional to the number of participating workers in a given selection policy.
The more workers participate, the larger D become. As we recall that D2 represents
the deviation caused by policy II (θ > 1), which is the most conservative policy with
respect to the number of workers allowed to participate. D3 represents the deviation
caused by policy III (θ < 1), which is the most relaxed policy with respect to the
number of participating workers. D1 of policy I (θ = 1) falls in the middle with
respect to the number of participating workers and according the observed deviation.

3.5 Comparison with Previous Algorithms

We compare MRRS with the most powerful scheduling algorithm, namely UMR [17, 18]
and LP [15, 16]. Table 3.3 outlines the configuration parameters used in the simulation
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Table 3.3: Simulation parameters

Parameter Value

N number of workers N = 10, 12, 14,..., 50
Total workload (flop) 5 × 105

Computation speed (flop/s) Randomly selected from [Smin, 1.5 × Smin],
where Smin = 5, 10, 15, 20

Communication rate (flop/s) Randomly selected from
[0.5 × N × Smin, 1.5 × Smin]

Computation and communication 10, 10−1, 10−2

latencies (s)

Table 3.4: Performance comparisons among MRRS, UMR and LP Algorithms

Algorithm Normalized Makespan Rank Degradation from the best

MRRS 1 0.12 0.65
UMR 1.21 0.88 21.4
LP 1.59 2 59.8

experiments. The performances of these algorithms have been compared with respect to
three metrics:

• The normalized makespan, that is normalized to the run time achieved by the best
algorithm in a given experiment;

• The rank which ranges from 0 (best) to 2 (worst);

• The degradation from the best, which measures the relative difference, as a per-
centage, between the makespan achieved by a given algorithm and the makespan
achieved by the best one.

These metrics are commonly used in the literature for comparing scheduling algorithms
[17, 18].

The results summarized in Table 3.4 suggests that MRRS can outperform its competi-
tors in most of the cases. MRRS’s rank drop from the best to the second in 12% of the
cases with 5.4% performance degradation in comparison with the UMR.

Figure (3.3) shows that UMR has chances of outperforming MRRS only if the number
of workers is small (n ≤ 20), because in those cases, the worker selection module of MRRS
does not have enough workers, which denies the MRRS from adopting one of the worker
selection policies, namely Policy II. LP has almost no chance to win. This is due to the
fact that LP does not have any effective strategy of reducing the idle time of workers at
the end of each round.
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Figure 3.3: The relation between the number of workers n and the Makespan

3.6 Summary

The ultimate goal of any scheduling algorithm is to minimize the makespan. UMR and
LP are among these algorithms that have been designed to schedule divisible loads in
heterogeneous environments where workers have different CPU speeds connected to links
with different bandwidths. However, these algorithms do not take into account a number
of the chief parameters such as bandwidths and the inevitable latencies of communication
and computation. Furthermore, present algorithms are not equipped with a resource
selection mechanism as they assume that all available workers will participate in processing
the workload. In this work, we presented the MRRS algorithm that divides the workload
into chunks in light of more realistic parameters mentioned earlier.

We explained the MRRS’s worker selection policy which is, to the best of our knowl-
edge, the first algorithm that addresses the resource selection problem. Having such
policy is indispensable in large commuting platform such as the Grid, where thousands
of workers are accessible but the best subset must be chosen.

The simulation experiments show that MRRS is superior to its predecessors especially
when it is put into operation in a colossal WAN environment such as the Grid, which
agglomerates an abundant pool of heterogeneous workers. The original UMR might still
be the best choice in a LAN environment where the number of workers is typically limited.
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Chapter 4

Dynamic Scheduling Method for
Divisible Load in Non-Dedicated
Distributed Environments

4.1 Introduction

The main issue of scheduling process is how to find an optimal division of total workload
into workers. Up to now many approaches have been proposed. A simple solution, called
Single Round scheduling algorithm [15], divides the workload in as many part as workers,
after that send each part to appropriate worker. Because of each worker receives its
load only one time, hence this method is named Single Round. Multi Round scheduling
algorithms, mentioned in the last chapter and [4, 16, 17], split the overall process into
many consecutive rounds. In each round, the master delivers chunks to each of workers
in turn.

However, all of the above approaches assume that computational resources at workers
are dedicated, i.e. the performances of workers are stable during execution time. This
assumption renders these algorithms impractical in Non-Dedicated environments such as
Grids where computational resources are expected to serve local tasks in addition to the
Grid tasks. The inevitable variation of workers’ power in the Grid embodies a non-trivial
challenge for scheduling (split and distribute) workloads to workers.

Algorithm RUMR [19] is designed to tolerate performance prediction errors by using
Factoring method, however all of its parameters are fixed before RUMR starts, which
makes RUMR a non-adaptive scheduling algorithm. In [2], the authors use M/M/1 queue
to model the tasks processing, however, [2] lacks an efficient prediction strategy because
it is merely based on probability parameters. In addition, the work in [2] does not address
the needs of divisible workloads scheduling, but of DAG workload type.

Apparently, dynamic algorithms [33, 34] are more appropriate for Grids. Up to our
knowledge, [35] is the first effort to develop a dynamic scheduling algorithm for divisible
workloads. In [35] we use Mixed-Tendency Based [37, 38] prediction strategy to estimate
worker’s power. However, Mixed-Tendency Based strategy considers the aggregate ex-
ecution of applications, while our computation model presented in this paper, is based
on the M/M/1 queuing model [39] that considers both local and Grid task in their own,
rendering it a more realistic model.

In this chapter we develop a dynamic multi-round scheduling algorithm for non-
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dedicated environments. In order to find the optimal division of workload in each round,
we need to forecast, as accurate as possible, the available CPU power of each worker
before the division happens. Thus we need an effective prediction strategy. This chapter
can be summarized as follows:

• First, we presents a model to represent worker’s activities with respect to processing
local and external Grid tasks. Unlike the work done in [4, 16, 17], this model helps
estimate the computing power of a worker under the fluctuation of number of local
and Grid applications in the system.

• Second, we develop new strategy 2PP for predicting the computing power of pro-
cessors, i.e., the portion of original CPU power that the owner can donate to Grid
applications.

• Third, we propose a new dynamic scheduling algorithm 2PP by incorporating the
performance model and the prediction method described above into the static al-
gorithm MRRS that mentioned in the last Chapter, which is originally a static
scheduling algorithm.

• Fourth, we apply an existing prediction algorithm, Mixed Tendency-Based Predic-
tion [37, 38], in developing dynamic scheduling algorithm DSA.

• Lastly, we conduct the experiments for comparing between proposed dynamic schedul-
ing algorithms 2PP and DSA as well as for comparing these proposed algorithms
with the existing static scheduling algorithm such as UMR.

4.2 Problem Statement

The task scheduling problem in non-dedicated environments can be defined as follows.
Given:

• Divisible workload Ltotal that resides at the master.

• Non-dedicated computational platform consists of the master and n workers, com-
putational speed of the worker Wi is Si with latency cLati.

• Data transfer rate of the connection link between the master and worker Wi is Bi

with latency nLati

• Si varies over time (i = 1, 2, ..., n). This is nature of non-dedicated environments.

Our ultimate question is: given the above platform settings, in what proportion should
the workload Ltotal be split up among the heterogeneous, dynamic workers so that the
overall execution time is minimum?

Formally, we need to minimize the following objective function:

maxi=1,2,...,n

⎡
⎣ i∑

k=1

Tcomm1,k +
m∑

j=1

Tcompj,i

⎤
⎦→ min (4.1)

where the expression between brackets is the total running time, i.e., the sum of waiting
time, communication time and computation time of worker Wi.
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4.3 Non-Dedicated Computation Model

4.3.1 Heterogeneous Computation Platform

Let us consider a computation Grid, in that, a master process controls n worker processes
and each process runs on a particular computer. The Grid runs on a heterogeneous
platform, i.e., workers can have different CPU powers and different network bandwidths.
The master can divide the total workload, Ltotal, into arbitrary chunks and deliver them
to the appropriate workers. We assume that the master uses its network connection in a
sequential fashion, i.e., it does not send chunks to some workers simultaneously. Workers
can receive data from network and perform computation simultaneously.

We keep using the heterogeneous computation platform mentioned in the last chapter,
with some addition.

• Ltotal: the total amount of workload.

• Wi: worker number i, some time called Pi.

• n: total number of workers that are actually selected to process the workload

• m: the number of rounds.

• chunkj,i : the fraction of total workload that the master delivers to worker Wi in
round j (i = 1, .., n; j = 1, ..,m)

• Si: computation speed of the worker i measured by the number of units of workload
performed per second (flop/s)

• ESi: estimated average speed of worker Wi for Grid tasks on the next round. ESi

is derived from equation (4.15).

• Bi: the data transfer rate of the connection link between the master and worker Wi

(flop/s)

• Tcompj,i: we model the time required for worker i to perform the computation
chunkj,i as:

Tcompj,i = cLati +
chunkj,i

ESi

• cLati : the fixed overhead time, in seconds, for starting a computation (e.g. for
starting a remote process) in the worker Wi. The computation, including the cLati
overhead, can be overlapped with communication.

• nLati : the overhead time, in seconds, incurred by the master to initiate a data
transfer to Wi (e.g. pre-process application input data and/or initiate a TCP). We
denote total latencies by Lati = cLati + nLati.

• Tcommj,i: we model the communication time spent by the master to send chunkj,i

units of data to worker Wi as:

Tcommj,i = nLati +
chunkj,i

Bi

(4.2)
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• roundj: the fraction of workload dispatched during round j

roundj =
n∑

i=1

chunkj,i (4.3)

We fix the time required for each worker to perform communication and computation
during each round

cLati +
chunkj,i

Si

+ nLati +
chunkj,i

Bi

= constj (4.4)

We set

Ai =
Bi × ESi

Bi + ESi

(4.5)

so we have

chunkj,i = αiroundj + βi (4.6)

where

αi =
Ai∑n

k=1 Ak

; βi = Ai

∑n
k=1 Ak(Latk − Lati)∑n

k=1 Ak

(4.7)

Most static scheduling algorithms [4, 18, 16] assume that the execution time of a
workload chunk is well-known based on the assumption that workers have guaranteed
availability of fixed, predefined CPU power. On a non dedicated, dynamic platform such
as Grid, these assumptions are not realistic. Thus in this section we present a model of
executing local and Grid tasks at a given, non-dedicated worker.

4.3.2 Markovian Queue M/M/1
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Figure 4.1: Arrivals and departures at a queue. {Ti} refer to the arrival instants, {Si}
refer to the service times
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Per [39] a queue or a waiting line is formed by arriving customers (local tasks and
Grid tasks in our case) requiring service from a service station (workers Wi in our case).
If service is not immediately available, the arriving tasks may join the queue and wait for
service and leave the system after being served (see Figure (4.1). In the meantime, other
tasks may arrive for service. We assume that the service system has unlimited capacity
(waiting room capacity) for holding both local tasks and Grid tasks. The basic features
of our queue are

• The input process: the arriving tasks consist of Grid tasks and local tasks. Grid
tasks are the portions of total load Ltotal that are delivered by the server. The local
tasks are produced by local applications at the workers.

• The service mechanism: during the execution of a Grid task on a certain worker,
some local tasks may arrive causing to interrupt the execution of the lower priority
Grid tasks. We consider the execution of the local tasks as preemptive, i.e. a local
task must be executed until completion once it is started. The execution of the local
tasks follow the rule of first come first served.

• The worker’s capacity. From the view point of the Grid tasks, the state of a worker
alternates between available and unavailable. When the worker is executing its own
local tasks, it is unavailable for the Grid tasks, otherwise its state is available. The
original computation of worker Wi is Si.

We assume that the arrival of the local tasks of worker Wi is assumed to follow a
Poisson distribution with arrival rate λi, their execution process follows an exponential
distribution with service rate µi and the local task process in the worker is an M/M/1
[39] queuing system (i = 1, 2, ..., n) (Figure (4.2)).

µ Output

Worker

Queue

Input
P(   t)λ

Figure 4.2: M/M/1 queue

The execution time of chunkj,i on the worker Wi can be expressed as:

Tcompj,i = X1 + Y1 + X2 + Y2 + ... + XNL + YNL (4.8)

where:

• NL: the number of local tasks which arrive during the execution of workload
chunkj,i.

• Yk: execution time of the local task k (k = 1, 2, ..., NL), these are independent
identical distribution random variables.

• Xk: execution time of kth section of chunkj,i (k = 1, 2, ..., NL). We have:

X1 + X2 + ... + XNL =
chunkj,i

Si

(4.9)
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From the M/M/1 queuing theory [39] we have:

E (NL) =
λichunkj,i

Si

; E (Yk) =
1

µi − λi

(4.10)

Because of NL and Yk are independent random variables (k = 1, 2, ..., NL) we derive

E (Tcompj,i) = E (Tcompj,i|NL) =
NL∑
k=1

Xk +
NL∑
k=1

E(Yk)

=
chunkj,i

Si

+ E(NL) × E(Yk) =
chunkj,i

Si(1 − ρi)
(4.11)

where ρi = λi/µi represents the CPU utilization. For a worker Wi with the CPU
utilization ρi we can express the computation time of the chunkj,i as

Tcompj,i =
chunkj,i

Si(1 − ρi)

However λi, µi, ρi are representative of the dynamicity of the environment during a long
time. They do not exactly reflect the dynamicity of the environment during a short
interval such as the execution time of an application. Therefore, we introduce the adaptive
factor δi, which represents the credibility of performance prediction for worker Wi and it
is initialized to 1 at the beginning of the scheduling process (i.e., in the first round). At
the end of each round afterward, δi is computed as follows:

δi =
FSi

ESi

(4.12)

where FSi denotes the factually measured available CPU power. Now the expected value
of the execution time of chunkj,i is

Tcompj,i =
chunkj,i × δi

Si(1 − ρi)
(4.13)

Since the actual power of workers available to the Grid tasks varies over time, we have to
predict how δi changes. In the next section we describe 2 ways for prediction smoothing
parameter δi, i.e. the CPU utilization:

• Prediction δi by using proposed 2PP strategy.

• Prediction δi by using an existing strategy called Mixed Tendency Based.

4.4 The 2-Phase Prediction (2PP) Strategy

4.4.1 Prediction Strategy

In order to minimize the execution time, we have to carry out two steps:

1. First, we estimate the available CPU power of each worker (ESi) before each round
commences using the 2PP strategy [36].
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Figure 4.3: 2-Stage prediction strategy

2. Second, in light of the estimated ESi, we carry out our dynamic scheduling algorithm
that integrates the MRRS static algorithm with our 2PP strategy.

For the sake of clarity, in this section we drop the use of the subscript i that refers
to worker Wi. In order to estimate the next δ for a particular worker, we consider the
historically measured time series c1, c2, ..., cn. Data point ct is value of δ at time point t.
This time series of δ is sampled at some frequency (e.g., 0.1 Hz) during the execution of
a round. However, we are interested in estimating δ for the upcoming round, not for the
upcoming time tick. Therefore, we need to compress the original time series into interval
time series by aggregating the former as follows:

If we denote D as the aggregation degree, where
M = execution time of a round × frequency of original time series
Then the interval time series V1, V2, ....Vk (k = �n/D�) can be calculated as follows:

Vr =

∑D
j=1 δn−(k−r+1)D+j

D
(r = 1, 2, ..., k) (4.14)

Each value Vr is the average value of the adaptive factor δ over a round. The 2PP strategy
[36] operates on this Vr time series in order to predict Vk+1 of the next round.

Since δ plays the role of a smoothing factor that progressively adjusts the estimated
CPU power available for Grid tasks, we should expect that its interval average, Vr , should
alternate between some periods of stability and others of conversion as shown in Figure
4.3. In the stable stage, the available CPU power exhibit less variation and approaches
some mean. The time intervals (T1, T2) and (T3, T4) in Figure 4.3 are examples of the
stable stage. In the conversion stage, the available CPU power tends to experience major
changes due to increase or decrease in the arrival rate of local tasks. The time intervals
(T2, T3) and (T4, T5) represent conversion stages. Toggling between different stages can
be identified by comparing the current absolute deviation |VT − Mean| with a threshold
value threshold.
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Algorithm 4.4.1 depicts the 2PP strategy where:

• VT : the value of current data point.

• VT−1: the value of last data point.

• VT+1: the estimated value of the next data point.

• Mean: the mean value of data points in current stage.

• T : current time point

• B: the starting point of current stage
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Algorithm 4.4.1: 2PP Strategy()

begin
Initialization:

CurrentStage:= stable;
Threshold:= 2 × (V2 − V1);

repeat
if CurrentStage = stable

if |VT − Mean| > threshold
/* Conversion stage is starting */
then
begin

UpdateThreshold();
CurrentStage:= conversion;
VT+1 := 2.VT − VT−1;

end
/* Stable stage continue */
else
begin

UpdateMean();
VT+1 := 2.Mean − VT ;

end
if CurrentStage = conversion

if (VT − VT−1) × (VT−1 − VT−2) < 0
/* Stable stage is starting */
then
begin

CurrentStage:= stable;
B:=T-1;
UpdateMean();
VT+1 := 2 × Mean − VT ;

end
/* Conversion stage continue */

else
VT+1 := 2VT − VT−1;

until all of Wtotal is processed;
end

The procedure UpdateMean() is very simple:

Mean =
VB + VB+1 + ... + VT

T − B + 1

Using UpdateThreshold() threshold gets updated as follows. If N denotes the number
of historical thresholds, and |VT − Mean| denotes the current threshold value, then the
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updated threshold is:

threshold =
N × threshold + |VT − Mean|

N + 1

The predicted value of VT+1 is used as an estimate for the adaptive factor, δ, for the
upcoming round. Consequently we can compute the average speed, ESi, of worker Wi on
the next round as follows:

ESi =
Si × (1 − ρi)

δi

(4.15)

Henceforth, ESi is deemed the speed of worker Wi over the next round.

4.4.2 Scheduling Algorithm

Algorithm 4.4.2: 2PP-based Scheduling()

begin
Initialization:

Collect the value of {Bi}, original CPU power {Si}, {λi, µi, ρi} (i = 1, 2, ..., n);
Use equation (4.15) to compute {ESi} (i = 1, 2, ..., n);
Compute M , round0, {chunk0,i} (i = 1, 2, ..., n);
Wremains = Ltotal − round0;

Deliver {chunk0,i} to {workeri} (i = 1, 2, ..., n);
repeat

/* Processing on roundj */
Collect items of the series C in the last round;
Use 2-Stages strategy to obtain { δi } (i = 1, 2, ..., n);
Use equations (4.19) and (4.15) to derive roundj and {ESi} (i = 1, 2, ..., N)
if (roundj > Wremains) then roundj = Wremains;
Wremains = Wremains − roundj;
Deliver {chunkj,i} to {workeri} (i = 1, 2, ..., N);

until Wremains = 0;
end

Algorithm 4.4.2 outlines the scheduling algorithm we present in this paper. The al-
gorithm integrates the 2PP strategy, which estimates the available power of each worker
during the coming round, with a slightly modified UMR scheduling algorithm. As shown
in the figure, in order to schedule the workload, the master collects the initial values of
Bi, Si, λi, µi and ρi for each worker. It then computes ESi and delivers the first round
chunks to all respective workers.

The algorithm keeps running until no workload is remaining. It uses the 2PP strategy
to estimate the ESi for each worker before the start of each round. It then uses the
UMR to decide how to split the workload into appropriate chunks to suit each worker’s
predicted availability of CPU power.
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The original version of the UMR static algorithm can determine the exact number of
rounds needed to distribute the entire workload a priori because it assumes fixed, dedi-
cated CPU power of each worker. This is not the case in our non-dedicated environment
where CPU powers vary over time. Consequently, the modified version of the UMR, as
shown in the algorithm, halts when the remaining workload is zero (Wremains = 0), rather
than checking whether a specific number of rounds has elapsed (as it is the case in the
original UMR).

Another note to make is that the follow condition guarantees that all workers terminate
at the same time:

if (roundj > Wremains) then roundj = Wremains ;

4.5 Mixed Tendency Based Prediction Strategy

Prediction performance is necessary for efficient use of resources in Grid environments.
Performance predictions can be useful to both applications and schedulers. Scheduler can
use predictions to guide their scheduling strategies and thus to achieve higher applica-
tion performance and more efficient resources use. Although the performance prediction
strategies for divisible load are rare, the similar strategies are quite general in Grid com-
puting.

There are many kind of environment parameter have been estimated, such as com-
putation power, bandwidth rate, CPU load etc. Among CPU load prediction, there are
some different kinds of strategies have been studied such as:

• Independent Dynamic Homeostatic prediction

• Independent Static Homeostatic prediction

• Mixed Tendency-based prediction [37, 38]

• ...

The last strategy, Mixed Tendency-based prediction, was chosen as prediction method
for our dynamic scheduling algorithm. First, this strategy is designed for CPU load pre-
diction in non-dedicated environments thus it corresponds with our goal (CPU utilization
prediction). Second, as shown in [37, 38], Mixed Tendency-based prediction outperforms
the nine predictors used within the Network Weather Service (NWS), a wide used perfor-
mance prediction systems.

4.5.1 Prediction Strategy

We periodically measure δ and obtain the original preceding value time series C =
c1, c2, ..., cn. Data point ci is value of δ at time point i.

M : aggregation degree, calculated as
M = execution time of a round × frequency of original time series
∆ = δ1, δ2, ..., δk(k = �n/M�): the interval CPU load time series, calculated as

δi =

∑M
j=1 cn−(k−i+1)M+j

M
(i = 1, 2, ..., k) (4.16)
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Each value δi is the average value of adaptive factor over a round. After collecting the
original time series C and creating interval time series ∆, we apply the Mixed Tendency-
based strategy [37, 38] to estimate the value in the next round δk+1.

Algorithm 4.5.1: MixedTendency-based()

Procedure IncrementValueAdaptation()
begin

Mean := (
∑n

i=1 δi) /n;
RealIncV alue := δT − δT−1;
NormalInc := IncrementV alue+

+(RealIncV alue − IncrementV alue) × AdaptDegree;
if (δT < Mean) then IncrementV alue := NormalInc;
else begin

PastGreater := (number of data points greater than δT ) / n;
TurningPointInc := IncrementV alue × PastGreater;
IncrementV alue := Min(NormalInc, TurningPointInc);

end
begin

if (δT−1 < δT ) /* Tendency is increase */
then begin

IncrementValueAdaptation();
PT+1 := δT + IncrementValue;

end
else if (δT−1 > δT ) /* Tendency is decrease*/
then begin

DecrementFactorAdaptation();
PT+1 := δT × DecrementFactor;

end
end

Formally, Mixed Tendency-based prediction [37, 38] strategies can be expressed as
above. The adaptation process in case of Increase and Decrease are similar. δT is the
current value of adaptive factor, and PT+1 is the predicted value for δT+1. AdaptDegree
is optional parameter that expresses the adaptation degree of the variation, its value can
ranger from 0 to 1. Now we predict that the average speed ESi of the worker Wi on the
next round is

ESi =
Si × (1 − ρi)

δi

where δi is predicted as explained above.
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4.5.2 Scheduling Algorithm

Algorithm 4.5.2: DSA()

Collect the value of {Bi, Si,λi, µi, ρi}
Use equation (4.15) to derive {ESi} (i = 1, 2, ..., n)
Compute M , round0, {chunk0,i} (i = 1, 2, ..., n)
Lremains = Ltotal − round0;
Deliver {chunk0,i} to {workeri} (i = 1, 2, ..., n)
repeat

/* Processing on roundj */
Collect items of the series C of last round
Use Tendency-based Predictor to obtain { δi } (i = 1, 2, ..., n)
Use equation (4.19) and (4.15) to derive roundj and {ESi} (i = 1, 2, ..., n)
if (roundj > Lremains)

then roundj = Lremains;
Lremains = Lremains − roundj;
Deliver {chunkj,i} to {workeri} (i = 1, 2, ..., n)

until Lremains = 0;

By integrating the Mixed Tendency-Based prediction strategy and the static schedul-
ing algorithm MRRS (mentioned in chapter 3), we develop a dynamic scheduling algorithm
called DSA (Dynamic Scheduling Algorithm). The main idea of DSA is similar to the
static algorithm MRRS except the following points:

• At the beginning, we collect all the values of parameters such as {Bi}, {Si}. Note
that these value are original value, i.e. the value in case of the system is dedicated.

• In the main iteration, the proposed algorithm DSA periodically collects the envi-
ronments parameters to compute {δi}.

• Chunks sizes is computed by applying the formulas presented in the below section.
The partitions of load are executed at the beginning of each round with considering
the updated values of the environments parameters such as {δi}.

• The iterations will be continued until the total load Ltotal is finished.

4.6 Load Partition and Delivering

To partition workload among workers, we apply a scheduling algorithm similar to that
described in the last chapter. Because of the computation power of workers varies during
the execution time, the original CPU speed Si is replaced by estimated value ESi.
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Induction Relation for Chunk Sizes

To fully utilize the network bandwidth, the dispatching of the master and the computation
of Wn should finish at the same time:

n∑
i=1

(
nLati +

chunkj+1,i

Bi

)
=

chunkj,n

ESn

+ cLatn

If we replace chunkj+1,i and chunkj,n by their expression in (4.6) we derive:

roundj+1 = θ × roundj + µ (4.17)

where

θ = Bn

(
(Bn + ESn)

n∑
i=1

ESi

Bi + ESi

)−1

(4.18)

µ =

(
βn

ESn

+ cLatn −
n∑

i=1

(
nLati +

βi

Bi

))(
n∑

i=1

αi

Bi

)−1

From induction equation (4.17) we can compute:

roundj = θj(round0 − η) + η (4.19)

where

η =
βn + cLatn −∑n

i=1

(
nLati + βi

Bi

)
∑n

i=1
αi

Bi
− αn

ESn

Determining the Parameters of the Initial Round

In this section we compute the optimal number of rounds, m, and the size of the initial
load fragment that should be distributed to workers in the first round, round0. If we let
F (m, round0) denotes the makespan, then we have

F (m, round0) =
n∑

i=1

(
chunk0,i

Bi

+ nLati

)
+

m−1∑
j=0

(
chunkj,n

ESn

+ cLatn

)
= (4.20)

= round0

(
n∑

i=1

αi

Bi

+
αn(1 − θm)

ESn(1 − θ)

)
+

n∑
i=1

(
βj

Bi

+ nLati

)
+

+m

(
cLatn +

αnη + βn

ESn

)
− αnη(1 − ηm)

1 − η

Our objective is to minimize the makespan F (m, round0), subject to:

m−1∑
j=0

roundj = Ltotal

or

G(m, round0) = mη + (round0 − η)
1 − θm

1 − θ
− Ltotal = 0 (4.21)
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We use Lagrangian method [27] to solve this constrained minimization problem. The
minimum value of function F (m, round0) can be found by solving the following equation
system:

∂L

∂λ
= G(m, round0) = 0

∂L

∂m
=

∂F

∂M
+ λ

∂G

∂M
= 0

∂L

∂round0

=
∂F

∂round0

+ λ
∂G

∂round0

= 0

where

• λ: Lagrange multiplier

• L(m, round0): Lagrangian function which is defined as:

L(m, round0, λ) = F (m, round0) + G(m, round0)

After solving this equation system we obtain m. Using equation (4.21) one can then
compute round0. At last, using equations (4.19) and (4.6) we will obtain the value of
roundj and chunkj,i respectively (i = 1..n, j = 1..m).

4.7 Experimental Results

4.7.1 Simulation Results of the 2PP Scheduling Algorithm

In order to evaluate the new algorithm, we developed a simulator using the SIMGRID
toolkit [29, 30, 31], which is specially designed for building simulations that help evaluate
various scheduling algorithms in parallel and distributed environments. We compare the
performance of our algorithm with the original UMR algorithm using two experimental
configurations.

Configuration

In the first configuration, we have the following setup:

• Workers: we use 10 workers whose system properties are shown in Table 4.1.

• Total loads Ltotal: 1000 (Mega flops).

• The average processing time of the local tasks: 20 (second).

In order to add extra challenge to the behavior of the two scheduling algorithms, we
intensify the arrival of local tasks on the strongest worker iRMX by ten times more than
any other worker. As a result, this worker ends up, practically, being the weakest worker
with respect to the available CPU power for the Grid tasks.

Unlike our 2PP-based algorithm, the UMR does not recognize this fact as it assumes
that iRMX continually offers all of its power to the Grid tasks. Therefore, the UMR
mistakenly keeps sending big chunks of workload to iRMX, which leads to performance
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Table 4.1: Properties of workers in the first configuration

Name of CPU Power Bandwidth cLat nLat
workers (Mflops/s) (Mbps) (s) (s)

iRMX 100 500 0.1 0.053
Kuenning 80 423 0.1 0.053
Bousquet 80 408 0.1 0.053

Soucy 30 169 0.1 0.053
Browne 30 153 0.1 0.053
Stephen 20 28 0.1 0.053
Robert 50 57 0.1 0.053
Sirois 40 45 0.1 0.053

Monique 20 24 0.1 0.053
Jackson 40 49 0.1 0.053
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Figure 4.4: Configuration 1: 2PP vs. UMR

deterioration. Figure 4.4 shows the performance of the UMR vs. the 2PP-based algorithm
under different arrival rate of local tasks. The 2PP algorithm keeps outperforming the
UMR with respect to the task makespan.

Similarly, we experimented with second configuration setup that consists of:

• Number of workers: 30.

• The average power of worker: 60 (Mega flops per second).

• The average bandwidth: 50 (Megabyte per second).

• Total loads Ltotal: 5000 (Mega flops).

• Computation and communication latencies: 0.1 (second).

• The average processing time of the local tasks: 40 (second).
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As we have done in the first configuration setup, we exposed the top 10% of the workers
to higher concentration of arriving local tasks. Again, as shown in Figure 4.5, the 2PP
outperforms the UMR as the latter is not aware of the run-time availability of the actual
CPU power of workers.

Effect of local task on the makespan

Figures 4.4 and Figure 4.5 depict the comparison between the makespan of the proposed
dynamic scheduling 2PP and the static scheduling algorithm UMR. It can be seen that:

• When the arrival rate of the local task intensifies, both of scheduling algorithm’s
performance decrease.

• However, the makespan deviation between 2PP and UMR increase proportion with
the arrival rate of the local task. This mean the dynamic algorithm 2PP has the
better adaptive capacity than static algorithm UMR.
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Figure 4.5: Configuration 2: 2PP vs. UMR

4.7.2 Simulation Results of the DSA Scheduling Algorithm

In order to evaluate the proposed algorithm DSA, we also use the SIMGRID toolkit
[29, 30, 31] for developing the simulator. We conduct 6 experiments, numbered from 1 to
6 in the Table 4.2, in order to compare the performance of our algorithm DSA with the
original UMR algorithm. These experiments using following configurations :

• The number of workers, the average power of worker and the total workload are
listed in Table 4.2

• The average bandwidth: 50 (Megabyte per second).

• Computation and communication latencies: 0.1 (second).

• The ratio of Grid task’s size to local task’s size as described in each Table.
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Table 4.2: The parameters of 6 experiments

Experiment number 1 2 3 4 5 6
Frequency of local tasks (tasks/s) 0.036 0.18 0.89 1.75 0.04 0.25

Total workload (Gflop) 1 1 2 2 5 5
Number of workers 10 15 20 25 50 90

CPU power on average (Mflop/s) 32 24 37 44 63 47

Table 4.3: Impact of the local tasks: properties of workers used in the experiment

Name of CPU Power Bandwidth Estimated Factual
workers (Mflops/s) (Mbps) CPU power CPU power

iRMX 100 500 53 61
Kuenning 80 400 79 72
Bousquet 80 400 80 73

Soucy 30 200 23 26
Browne 30 200 22 25

Impact of local task on the makespan

Our experiments show that our DSA algorithm outperforms the static algorithm UMR
with the makespan deviation from 10% to 30%. Figure 4.6, Figure 4.7 and Figure 4.8 de-
pict the comparison between the makespan of the proposed dynamic scheduling algorithm
DSA and the static scheduling algorithm UMR. It can be seen that, when the ratio Grid
task size/Local task size go down, i.e. when the total amount of local task size increases,
the makespans of DSA and UMR are increased too.

The main reason is that, in general, if the total amount of local task size increases
then the negative impact of the local tasks on the processing of the Grid tasks expanded
too. Because of the local task’s appear are randomly, the balance and synchronization
between workers may be broken. One of the chief differences between the UMR algorithm
and DSA is the ability of the DSA to scheduling load chunks in light of the estimated
CPU power for each worker.

In addition, the less important reason is, because of amount of Grid task size is
predefined, so if the ratio Grid/Local increases then the total amount of workload (Grid
task + Local task) will be decreased, which makes the makespan decrease too.

Consider a simple experiment. We use 5 workers named: iRMX, Kuenning, Bousquet,
Soucy and Browne with the configuration described in the Table 4.3. In order to shown
the negative impact of the local tasks on DSA and UMR algorithms, we intensified the
arrival rate of local tasks on worker iRMX by 6 times more than any other workers. As a
result, this worker become the weakest worker with respect to the available CPU power
for the Grid tasks. Unlike our DSA algorithm, the UMR does not recognize this fact as it
assumes that the iRMX continually offers all of its capacity to the Grid tasks. Therefore,
the UMR mistakenly keeps sending the bigger chunks of workload to the iRMX, which
leads to performance deterioration.
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Table 4.4: The result of UMR algorithm under the impact of local tasks

Worker Total size of Grid Total size of local Finished time
task (flop) task (flop) (s)

iRMX 156250 110648 2652 (makespan)
Kuenning 125000 8187 1665
Bousquet 125000 8301 1660

Soucy 46875 7991 1828
Browne 46875 10230 1903

Table 4.5: The result of DSA algorithm under the impact of local tasks

Worker Total size of Grid Total size of local Finished time
task (flop) task (flop) (s)

iRMX 103113 69586 1727
Kuenning 153696 10091 2047
Bousquet 155642 10809 2080 (makespan)

Soucy 44747 8792 1858
Browne 42801 9743 1878

The other parameters are:

• The total workload: 500 (Kflops).

• The number of round: 50.

• Computation and communication latencies: 0.1 (second).

• Average frequency of local task is 2 (at iRMX) and 0.33 (at the remains workers).

The results of UMR and DSA algorithm are described in Table 4.4 and Table 4.5. As
shown in the Table 4.6, it can be observed that the main factor cause DSA run faster than
UMR is not the decrease of total size of local task (24.6%), but the decrease of finished
time difference (64.4%). In case of UMR, the finished time difference between the first
worker (Bousquet) and the last worker (iRMX) is: 2652-1660 = 992 (second). With the
DSA, this difference is counted as: 2080 (Bousquet) - 1727 (iRMX) = 353 (second). This
result illustrate the ability of DSA to estimate the size of local task on the workers, base on
that, DSA self-turning the scheduling to adapt to the context. Moreover, by comparison
between estimated value of CPU power and the factual value (Table 4.3), it can be seen
that the prediction of the DSA is not quite exactly. The next section illustrates the
difference between prediction ability of 2PP and DSA algorithms.
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Table 4.6: The comparison between DSA and UMR algorithms

Factor UMR DSA The difference

Time distance between the 992 353 64.4(%)
first worker and the last worker

Makespan 2652 2080 21.6(%)
Total size of local tasks 144298 109023 24.6(%)

Table 4.7: The makespan of proposed algorithm DSA in comparison with UMR in exper-
iment 1

Makespan of Makespan of Size ratio:
UMR (100s) DSA (100s) Grid task/Local task

2769 2456 1.75
2460 2269 2.7
2339 2035 3.49
2340 1936 4.44
2259 1785 7.86
2112 1739 8.79
1969 1727 9.71
1950 1721 11.2
1873 1710 12.82

Table 4.8: The makespan of proposed algorithm DSA in comparison with UMR in exper-
iment 2

Makespan of Makespan of Size ratio:
UMR (100s) DSA (100s) Grid task/Local task

2972 2679 1.34
2923 2455 1.69
2769 2259 2.3
2516 2057 3.2
2341 1894 4.61
2192 1774 7.57
1973 1693 14.38
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Table 4.9: The makespan of proposed algorithm DSA in comparison with UMR in exper-
iment 3

Makespan of Makespan of Size ratio:
UMR (100s) DSA (100s) Grid task/Local task

2456 2268 1.69
2205 2012 2.3
2039 1832 3.19
1899 1724 4.65
1828 1786 5.88
1804 1672 6.59
1781 1528 7.66
1763 1673 8.52
1748 1597 9.11
1725 1588 10.9

Table 4.10: The makespan of proposed algorithm DSA in comparison with UMR in ex-
periment 4

Makespan of Makespan of Size ratio:
UMR (100s) DSA (100s) Grid task/Local task

2830 2613 1.32
2747 2667 2.25
2521 2274 3.16
2414 2149 4.5
2237 2092 5.73
2042 1892 6.36
1937 1784 7.47

Table 4.11: The makespan of proposed algorithm DSA in comparison with UMR in ex-
periment 5

Makespan of Makespan of Size ratio:
UMR (100s) DSA (100s) Grid task/Local task

1735 1395 2.12
1532 1297 2.78
1428 1194 3.94
1433 1153 4.39
1259 1039 5.06
1116 1019 5.9
1184 1083 6.86
1262 1070 7.42
1087 1060 7.96
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Table 4.12: The makespan of proposed algorithm DSA in comparison with UMR in ex-
periment 6

Makespan of Makespan of Size ratio:
UMR (100s) DSA (100s) Grid task/Local task

2532 2116 1.6
2402 2023 1.94
2302 2058 2.38
2210 1816 3.33
2154 1789 4.03
2099 1743 5.27
1961 1521 6.89
1845 1517 8.37
1625 1427 10.35
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Figure 4.6: DSA vs. UMR. Number of workers =90

4.7.3 Comparison the DSA algorithm with the 2PP algorithm

Effect of local task on the makespan

We compare the performance of our scheduling algorithm DSA with algorithm 2PP by
using the follow experiments configuration:

• Number of workers 20.

• The average power of worker: from 20 to 60 (Mflops/second).

• The average bandwidth: 50 (Mbyte/second).

• Computation and communication latencies: 0.1 (second).

• The ratio of Grid task’s size to local task’s size as described in Table 4.13.
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Figure 4.8: DSA vs. UMR. Number of workers =10

Figure 4.9 and Table 4.13 depict the comparison between the makespan of the proposed
dynamic scheduling algorithms DSA and 2PP. From these results we can make the fol-
lowing remarks:

• With the low arrival rate, algorithm DSA is faster than 2PP. However, when the
arrival rate run over a certain threshold (about 0.5 tasks/second in our experiment),
2PP outperforms DSA. 2PP algorithm based on 2PP prediction policy, it observer
a long serious of history data point before extract the conclusion about the future
value. In case of the arrival rate less than a certain threshold (0.5 tasks/second in our
experiment), there are not enough history data points for 2PP to obtain an exactly
value. Meanwhile, DSA relies on the prediction strategy Mixed Tendency-based
which only need a short history data for estimating. Therefore, 2PP outperforms
DSA only if it has enough history data points in order to find out the rule which
control the varying of CPU Utilization.
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Table 4.13: The makespan of algorithm DSA in comparison with 2PP, number of workers
is 20

Arrival rate of the Makespan of Makespan of Size ratio:
local task (task/second) DSA (100s) 2PP (100s) Grid task/Local task

3.33 57.62 39.13 1.6
1.11 47.13 29.1 1.94
0.63 21.34 18.76 2.38
0.29 6.37 8.21 3.33

• The makespan deviation between 2PP and DSA increase proportion with the arrival
rate of the local task. This mean the algorithm 2PP has the better adaptive capacity
than DSA.
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Figure 4.9: 2PP vs. DSA

4.8 Summary

In this chapter we address the issue of divisible load in Non-dedicate distributed environ-
ment. We develop a computation model to represent worker’s activities with respect to
processing local and external Grid tasks. The proposed model help estimate the comput-
ing power of a worker under the fluctuation of number of local and Grid applications in
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the system. Based on this computation model we propose a new strategy for predicting
the computing power of processors.

Proposed dynamic scheduling algorithm incorporates the performance model and the
prediction method into the static algorithm MRRS that is mentioned in the last Chapter,
which is originally a static scheduling algorithm. An alternative way is given by applying
an existing prediction algorithm, Mixed Tendency-Based Prediction, in developing a dy-
namic scheduling algorithm. At last, we describe the experiments for comparing between
proposed dynamic scheduling algorithms as well as for comparing the proposed algorithms
with the existing static scheduling algorithm.

Finally, we conduct the experiments to verify the proposed scheduling algorithm. The
results of our experiments demonstrate how our algorithm is adaptive to the inherit dy-
namicity of a heterogeneous, non-dedicated environment such as the Grid.
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Chapter 5

Conclusion

Numerous studies in the literature have been targeting the problem of scheduling divis-
ible loads in the distributed environment. However, such algorithms have a number of
shortcomings such as the lack of an efficient resource selection strategy, or the assumption
that computational resources at workers are dedicated. These constraints limit the utility
of such algorithms and make them impractical for a dynamic computing platform such as
the Grid.

The purpose of our research is to develop an efficient multi-round scheduling algorithm
for non-dedicated environments such as Grids. Two kinds of studied platforms are Dedi-
cated and Non-Dedicated platform and the corresponding Static and Dynamic algorithms
are proposed for each of them. First of all, Chapter 2 provides an overall picture of divis-
ible load scheduling problem and the divisible applications in distributed environments.
It also describes the previous scheduling methods and their shortcomings.

The content of next chapters can be summarized as follow:

• Chapter 2 describes the general definition of the scheduling problem, as well as the
taxonomy of workload and corresponding scheduling approaches. The main subject
of this thesis, divisible load problem and its complexity, are discussed. Divisible
Load Theory (DLT), the theoretical foundation of divisible scheduling algorithms,
is given.

• In Chapter 3 we propose a new scheduling algorithm, MRRS (inspired by an existing
algorithm called UMR), which is better and more realistic. MRRS is superior to the
previous algorithms with respect to two aspects. First, MRRS factors in all platform
parameters such as bandwidth capacity and all types of latencies (computation and
communication) which renders the MRRS a more realistic model. Second, the
MRRS is equipped with a worker selection policy that finds out the best workers.
MRRS, to the best of our knowledge, is the first divisible load scheduling algorithm
that addresses the resource selection problem. Having such policy is indispensable in
large computing platform such as the Grid, where thousands of workers are accessible
but the best subset must be chosen. We, theoretically and experimentally, show
that MRRS is superior to previous algorithms such as UMR and LP, specifically in
a WAN computing platform such as the Grid.

• Chapter 4 addresses the issue of divisible load scheduling in Non-Dedicated dis-
tributed environment. We develop a computation model to represent worker’s ac-
tivities with respect to local and external Grid tasks. The proposed model helps

75



estimate the computing power of a worker under the fluctuation of number of local
and Grid applications in the system. Based on this computation model we propose
a new strategy for predicting the computing power of processors. The proposed dy-
namic scheduling algorithm incorporates the performance model and the prediction
method into the static algorithm MRRS that is mentioned in the chapter 3, which
is originally a static scheduling algorithm. An alternative way is given by applying
an existing prediction algorithm, Mixed Tendency-Based Prediction, in developing
a dynamic scheduling algorithm DSA. Finally, we describe the experiments for com-
paring between proposed dynamic scheduling algorithms as well as for comparing
the proposed algorithms with the existing static scheduling algorithm.

However, apart from contributions as mentioned above, the dissertation has also the
following disadvantages:

• The lower bound ΩV in the algorithm OSS is not very “strong”. The experiments do
not show the advantage of Branch and Bound OSS in comparison with the Greedy
algorithm.

• The strategy 2PP, as a CPU utilization prediction, should be verified in the real
Grid environments rather than a simulation tool as SIMGRID. Although there are
many experiments under different configurations have been conducted, but they can
not embrace all the respects and events of the real distributed environments.

• On the practice side, this dissertation does not present the experiment results
enough. For instance, the dissertation lacks the experiments for comparison be-
tween the resources selection strategy OSS with Greedy strategy. Some of proposed
algorithms are not fully explained, such as the case of algorithm DSA in Chapter 4.

This research can be presumed as the first study concerning the divisible scheduling
problem in Grid environments. There are many areas in which the study presented in
this dissertation can be extended.

• In the Divisible Load Theory, as well as in the static and dynamic computation
models presented in this dissertation, the relation between size of workload and the
computation time is linear. However, in fact there are many kinds of real issues
where the above relations are non-linear, therefore we can obtain more effective
schedule for a particular problem by developing the computation model suitable for
that problem.

• To overcome the drawback of the selection strategy mentioned above, the “strong”
lower bound function should be further studied. It can be seen that, similar to the
other kind of workload, the heuristic may be play an important role in selection the
best subset of workers like the traditional methods.

• To overcome the drawback of the experiments tools, as mentioned above, the im-
plementation of the proposed dynamic scheduling algorithm in a real computation
Grid would be worth to be executed.
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