
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
幾何的計算問題におけるランダム性と計算困難性に関

する研究

Author(s) 寺本, 幸生

Citation

Issue Date 2007-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/3569

Rights

Description Supervisor:浅野　哲夫, 情報科学研究科, 博士

Randomness and Hardness in Geometric Computing

Problems

by

Sachio TERAMOTO

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Dr. Tetsuo Asano

School of Information Science

Japan Advanced Institute of Science and Technology

March 2007

Abstract

In this dissertation, geometric optimization problems ensuring a kind of randomness

(such as uniformity, irregularity, or random generation) as its objective and designing

practical strategies are widely studied. We mainly consider how to define a good unifor-

mity in geometric dispersion to be as irregularly as possible, how to generate efficiently

geometric structures (e.g., simple polygons, plane triangulations, etc.) at random, and

how difficult to achieve randomness underlying uniformity criterion. For each question,

the occasion of investigations has been derived from both of theoretical and engineering

aspects.

With wide-ranging advances in discrete and computational geometry, geometric com-

puting, especially, which manipulates spatial data being structured combinatorially

and/or geometrically, has become a pervasive and increasingly critical aspect in every

corner of science and engineering. A lot of applications have been requiring practical al-

gorithms for geometric optimization problems. When we deal with geometric optimization

problems which are NP-hard, we often prefer to efficiently pick a good solution instead

of the optimal from a solution space spread by relaxing the objective function. It is im-

portant to present a better relaxation to provid an appropriate solution space, rather to

analyze an approximative solution space to show that any cost of the relaxed objective

function is not so inferior, no matter what we pick up any from the space.

There exist various approximated and randomized paradigms in a comprehensive man-

ner, such as concepts of random sampling. However, sampling based approaches may not

be applied to practical applications directly, since eventual approaches require impracti-

cal large sampling set. Therefore, we have to reconsider geometric configurations more

carefully, so that we can present useful and helpful frameworks, getting insight into es-

sential difficulties. In fact, we think it is worth noting that we investigate for good

relaxation criteria and techniques for randomly generating geometric structures, in order

to sophisticate sampling techniques. In addition, analytical study for the existence of

equilibrium/disequilibrium configuration on spatial competitions is also important. Con-

sidering a game model for competitive facility location, we show a case that each player

will be competing to locate his/her facilities at equilibrium positions, when there exists a

winning strategy.

i

Acknowledgments

First of all, I would like to express my sincere gratitude to my principal adviser Profes-

sor Tetsuo Asano of Japan Advanced Institute of Science and Technology for his academic

advice and kind guidance during this work. His persistent encouragement and support

were really helpful, and his way of looking at problems, way of presenting materials, and

everything were very exciting to me. He has had a profound influence throughout my

academic career. At the most basic level, he introduced me to the exciting subject of

computational geometry, and provided key insights and direction on the research side;

problem-solving techniques, publications, collaborations, and academic politics. Espe-

cially, he provided me with experience of meeting to many advanced research topics and

great researchers who work worldwide and actively in the field of theoretical computer

science. He also gave me some jobs as assistant and the pay was helpful. Again, I show

my gratitude to my supervisor.

I would like to thank my adviser Associate Professor Ryuhei Uehara of Japan Ad-

vanced Institute of Science and Technology for his helpful suggestions, encouragements,

and friendliness. He always allowed me to make remarks somewhat puerile or nonsense

idea, and made some of them into interesting research themes with fruitful and conscien-

tious discussions.

I would like to express my gratitude to Professor Mineo Kaneko who kindly admitted

to be minor-research adviser, for helpful suggestions and encouragements.

I am no less grateful to the following people for their excellent comments and substan-

tial supports: Professor Koji Nakano of Hiroshima University, Associate Professor Koji

Obokata of Ichinoseki National College of Technology, Assistant Professor Arijit Bishnu

of Indian Institute of Technology, and Associate Mitsuo Motoki & Masashi Kiyomi of

Japan Advanced Institute of Science and Technology.

Some of chapters in the thesis are based on joint papers with the following collabora-

tors: Erik D. Demaine of Massachusetts Institute of Technology, Benjamin Doerr of Max

Planck Institute für Informatik, and Naoki Katoh of Kyoto University. I would like to

thank them for many enlightening discussions.

I am grateful to all who have affected or suggested my areas of research, and thanks

some of my fellow and colleagues: Eishi Chiba, Yasuyuki Kawamura, Shinji Sasahara,

ii

Taisuke Shimamoto, and Xuefeng Liang. They each helped make my time in the PhD

program more fun and interesting.

Finally, I deeply thank my family for their love, patience, and encouragement, and for

all that they have done for my sake; this work is dedicated to them.

iii

Contents

Abstract i

Acknowledgments ii

1 Introduction 1

1.1 Summary and Organization . 2

1.1.1 Part I . 2

1.1.2 Part II . 3

1.1.3 Part III . 3

2 Randomness and Hardness in Geometric Dispersion 5

2.1 Introduction . 5

2.1.1 Problem Statement . 6

2.1.2 Our contribution . 7

2.2 Simple Greedy Algorithm – Voronoi insertion 7

2.3 1-dimensional problem . 8

2.3.1 Lower bound on Rn . 8

2.3.2 An optimal point insertion strategy 10

2.3.3 Configuration tree . 11

2.3.4 Optimality and correctness . 13

2.4 2-dimensional problem . 15

2.4.1 Notations . 15

2.4.2 Analytical results . 16

2.4.3 Heuristic Algorithms . 22

2.4.4 Experimental Results . 23

2.5 Conclusions and Futher researches . 25

3 Random Generation for Geometric Objects 27

3.1 Introduction . 27

iv

3.2 Heuristics for Generating Simple Polygonalizations 28

3.3 Preliminaries & Fundamental results . 30

3.4 Heuristic Algorithm . 34

3.4.1 On generating a random triangulation 35

3.4.2 Computing a random polygon tree 36

3.4.3 The simple salvage procedure . 38

3.5 Experimental Results . 40

3.6 Some genelarized simple polygonalizations 46

3.7 Concluding remarks and Future works . 48

4 Equilibrium and Disequilibrium in Spatial Competition 49

4.1 Introduction . 49

4.1.1 Competitive facility location . 49

4.1.2 Combinatorial game theory . 50

4.2 Summary . 51

4.3 Problem definitions – Voronoi Game on Graphs 53

4.4 Discrete Voronoi Game on a Complete k-ary Tree 53

4.4.1 Discrete Voronoi game on a large complete odd k-ary tree 55

4.4.2 Discrete Voronoi game on a large complete even k-ary tree 59

4.5 NP-Hardness for General Graphs . 60

4.6 PSPACE-Completeness for General Graphs 62

4.7 Concluding Remarks and Further Research 64

Publications 77

v

List of Figures

2.1 Configuration tree for a point sequence P = (p1, p2, p3, p4). 12

2.2 An example to be shown our strategy. 13

2.3 The levels of tree corresponding the behavior of our strategy. 15

2.4 The shape of the region in which we can locate p1. 16

2.5 The boundary of A1. 17

2.6 The graph of equation (2.6) expressing the boundary of A1. 18

2.7 Illustration for Fact 2.4.2 . 18

2.8 Notations of Lemma 2.4.3for an instance of n = 2. 20

2.9 A good 50-point sequence with the maximum gap ratio bounded by 1.99921. 26

2.10 The Delaunay triangulations for the resulting point distributions. In the

triangulation for our 50-point sequence the maximum gap ratio is bounded

by 1.99921, which is shown in the left. The triangulation for the incremental

Voronoi insertion is given to the right. 26

3.1 Simple and nonsimple polygons . 31

3.2 Flipping edge e within a convex quadrilateral C in plane triangulations. . . 31

3.3 Triangulation T (S) of planar points, its dual graph D(T), and a polygon

tree on D(T). 32

3.4 An example for Triangulation theorem, Theorem 3.3.2and Meisters’ Two

Ears Theorem. 33

3.5 Examples for the proof of Lemma 3.3.4 . 34

3.6 An example in which Algorithm 6goes into a deadlock; there exist points

in S which cannot be covered by resulting simple polygonalization. White

points are the vertices of the resulting simple polygon, Black points are

unvisited by Algorithm 6. 38

3.7 Example for the behavior of Algorithm 7. 40

3.8 A resulting simple polygon based on a skinny triangulation. 41

3.9 A resulting simple polygon based on a fat triangulation; Delaunay trian-

gulation. 41

vi

3.10 Example of generating a simple polygon with higher winding number. . . . 42

3.11 Experimental results on running time: 2-opt Moves v.s. Our heuristics. . . 43

3.12 Quality assessment for set15 in Triangulation Olympics. 44

3.13 Example of a 6-point set which maximizes the number of simple polygo-

nalizations. The number for each simple polygonalization depicts counting

numbers for 100,000 trials. 45

3.14 Examples for generating k simple polygonalizations: n = 15, 000 and k = 20. 48

4.1 Example of a discrete Voronoi game V G(G, 3), where G is the 15× 15 grid

graph; each bigger circle is a vertex occupied by W, each smaller circle

is an unoccupied vertex dominated by W, each bigger black square is a

vertex occupied by B, each smaller black square is an unoccupied vertex

dominated by B, and the others are neutral vertices. In this example, the

2nd player B won by 108–96. 54

4.2 The notations on the game arena T . 55

4.3 B’s occupations at the level greater than h. 57

4.4 The notations in the case (a) of keylevel strategy. 58

4.5 The notations in the case (b) of keylevel strategy. 59

4.6 Reduction from F = (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3 ∨ x̄4) 61

4.7 Reduction from A = (x1 ∧ x2 ∧ x4 ∧ x5) ∨ (x3 ∧ x5 ∧ x7 ∧ x8) ∨ (x6 ∧ x8) . . 64

vii

List of Tables

2.1 The environment of experiment . 24

2.2 The best solutions obtained by Algorithm 4 24

2.3 A good seed point sequence and the initial maximum gap ratio. 25

3.1 The environment of experiment . 40

3.2 The average running time of our heuristic algorithm for larger instances . . 43

3.3 The exact values simple(n) for n ≤ 10. 45

3.4 Comparing with Triangulations & Simple Polygonalizations 46

viii

Chapter 1

Introduction

In this dissertation, geometric optimization problems ensuring a kind of randomness (such

as uniformity, irregularity, or random generation) as its objective and designing practical

strategies are widely studied. We mainly consider how to define a good uniformity in

geometric dispersion to be as irregularly as possible, how to generate efficiently geometric

structures (e.g., simple polygons, plane triangulations, etc.) at random, and how difficult

to achieve randomness underlying uniformity criterion. For each question, the occasion

of investigations has been derived from both of theoretical and engineering aspects.

The technical term “Randomness” in the thesis to be distinguished from which is used

in randomized algorithm [93], or statistical optimization [79].

With wide-ranging advances in discrete and computational geometry, geometric com-

puting, especially, which manipulates spatial data being structured combinatorially

and/or geometrically, has become a pervasive and increasingly critical aspect in every

corner of science and engineering. A lot of applications have been requiring practical al-

gorithms for geometric optimization problems. When we deal with geometric optimization

problems which are NP-hard, we often prefer to efficiently pick a good solution instead

of the optimal from a solution space spread by relaxing the objective function. It is im-

portant to present a better relaxation to provid an appropriate solution space, rather to

analyze a approximative solution space to show that any cost of the relaxed objective

function is not so inferior, no matter what we pick up any from the space.

There exist various approximated and randomized paradigms in a comprehensive man-

ner, such as concepts of random sampling. However, sampling based approaches may not

be applied to practical applications directly, since eventual approaches require impracti-

cal large sampling set. Therefore, we have to reconsider geometric configurations more

carefully, so that we can present useful and helpful frameworks, getting insight into es-

sential difficulties. In fact, we think it is worth noting that we investigate for good

1

relaxation criteria and techniques for randomly generating geometric structures, in order

to sophisticate sampling techniques. In addition, analytical study for the existence of

equilibrium/disequilibrium configuration on spatial competitions is also important. Con-

sidering a game model for competitive facility location, we show a case that each player

will be competing to locate his/her facilities at equilibrium positions, when there exists a

winning strategy.

1.1 Summary and Organization

This dissertation tries to identify some nice structural randomness for a number of com-

binatorial or geometric objects. It consists of three rather independent parts.

1.1.1 Part I

In Part I, we consider the problem in which a generalization of the point arranging prob-

lem, namely its on-line version. We want to insert n points one by one in such a way that

uniformity is achieved at every insertion of a point. Since the solutions for the off-line

point arranging problems are different for different values of n, it would be impossible

to derive good point sequences from such optimal solutions even if they were available.

It should also be noted that a subsequence of an optimal point sequence is not opti-

mal. Therefore, we cannot hope for an incremental algorithm constructing optimal point

sequences.

It is not straightforward to define uniformity of points. The minimum pairwise distance

is not good to measure the uniformity of points as it does not reflect large empty areas.

We could also borrow a measure from discrepancy theory [26, 86]. Here we take a simple

geometric shape R and count how many points are contained in R while moving R all

over the unit cube. The uniformity is measured by the difference between the largest and

smallest counts for all possible sizes of the shape. A serious disadvantage of the measure

is computational hardness. Also, it is not clear what shape R to use.

We define uniformity of point distribution using not only closest point pairs but also

largest empty circles. Our criterion is to minimize the gap ratio, which is the maximum

gap (diameter of a largest empty circle) over the minimum gap (the minimum pairwise

distance). Note that this definition is extendible to higher dimensions since those gaps

can be defined in any dimension.

We present a linear time algorithm for finding an optimal n-point sequence with the

maximum gap ratio bounded by 2�n/2�/(�n/2�+1) in the 1-dimensional case. We describe

2

how hard analytically the same problem is for a point set in the plane and propose a local

search heuristics for finding a good solution.

1.1.2 Part II

In Part II, we consider geometric random generation problems for generating simple poly-

gons and plane triangulations at random, which are well-known outstanding open prob-

lems. Firstly, we study the simple polygonalization problem; given a set S of points in

the plane, randomly generate a simple polygon with n sides using the points of S as its

vertices, or compute a simple polygonalization of S. More precisely, we would like polyg-

onalize a set S of points so that each member of all polygonalizations of S is generated

uniformly at random.

However, examining the set of all simple polygonalizations is quite difficult even in

the counting problem which asks how many simple polygonalizations are there in S.

The currently known approximate upper and lower bounds are O(86.81n) and Ω(4.642n),

respectively. Due to the high upper bound, heuristic approaches have been adopted to

generate a simple polygonalization during the past decade.

We propose a triangulation-base heuristic algorithm which generates each possible

simple polygon with a positive probability in O(n2) time. This improves the time com-

plexity O(n4 log n) of the best known heuristic algorithm. Our algorithm consists of three

phases: first, it generates a triangulation T of given point set S at random; next computes

a random maximal polygon tree on the dual D(T). A polygon tree T on a dual D(T) of

a triangulation T is a tree such that ∪v∈T g−1(v) is a simple polygon, where g is bijection

from a face in T to a vertex in D(T); and finally constructs a simple polygon by travers-

ing on the maximal polygon tree. In addition, we experiment our heuristic algorithm for

showing efficiency and usefulness.

1.1.3 Part III

In Part III, we consider examining the existence of equilibrium configurations in a spa-

tial competitions on a finite graph. Therefore, we introduce a two-person game model,

say Voronoi game, for the competitive facility location, and investigate actual facility

locations obtained by resulting a game in which both players do their best, whether the

configuration have some equilibrium/disequilibrium property, or not. Furthermore, the

computational difficulties also are described.

The Voronoi game is played on continuous domain, and only two special cases (the 1-

dimensional cases and the 1-round case) are well investigated. We introduce the discrete

3

Voronoi game in which the game arena is given as a graph. We first show the best

strategy when the game arena is a large complete k-ary tree. Next we show that the

discrete Voronoi game is intractable in general. Even in the 1-round case in which place

occupied by the fist player is fixed, the game is NP-complete in general. We also show

that the game is PSPACE-complete in general case.

4

Chapter 2

Randomness and Hardness in

Geometric Dispersion

2.1 Introduction

The circle packing problem is to place n equal and non-overlapping circles in a unit

square. It is one of the most important geometric optimization problems with a number

of applications and has been intensively investigated [33, 96, 97, 98]. It is well known

that the circle packing problem is equivalent to arranging n points in a unit square in

such a way that the minimum pairwise distance is maximized. This problem seems to be

computationally hard. In fact, no optimal solution is known for relatively large values of

n, say n > 100.

The problem considered in this paper is a generalization of the point arranging prob-

lem, namely its online version. We want to insert n points one by one in such a way that

uniformity is achieved at every insertion of a point. Since the off-line point arranging

problem has different solutions for different values of n, it would be impossible to derive

good point sequences from such optimal solutions even if they were available. It should

also be noted that a subsequence of an optimal point sequence is not optimal. Therefore,

we cannot hope for an incremental algorithm constructing optimal point sequences.

It is not straightforward to define uniformity of points. The minimum pairwise distance

is not good to measure the uniformity of points as it does not reflect large empty areas.

We could also borrow a measure from discrepancy theory [26, 86]. Here we take a simple

geometric shape R and count how many points are contained in R while moving R all

over the unit cube. The uniformity is measured by the difference between the largest and

smallest counts for all possible sizes of the shape. A serious disadvantage of the measure

is computational hardness. Also, it is not clear what shape R to use.

5

We define uniformity of point distribution using not only closest point pairs but also

largest empty circles. Our criterion is to minimize the gap ratio, which is the maximum

gap (diameter of a largest empty circle) over the minimum gap (the minimum pairwise

distance). Note that this definition is extendible to higher dimensions since those gaps

can be defined in any dimension.

This problem is closely related to an industrial application on digital halftoning, which

is a technique to convert continuous-tone images into binary images for printing. One of

the most popular methods for halftoning is Dithering, which binarizes an images using a

threshold matrix called the dither matrix. The quality of output images heavily depends

on this matrix. A target is an n×n matrix containing integers from 0 through n2−1 in such

a way that elements up to i are uniformly distributed for each i = 1, 2, . . . , n2−1. Such a

matrix is similar to the dither matrix called the blue-noise mask [95, 123]. Combinatorial

approaches are also found for the problem, see e.g., [10, 12, 13, 14, 44, 66, 112].

2.1.1 Problem Statement

Let S
d = [0, 1]d be the unit cube in the d-dimensional space R

d and P = (p1, . . . , pn)

be an n-point sequence contained in S
d. We insert p1, p2, . . . , pn in this order. For each

i = 1, 2, . . . , n, we define a subsequence Pi of P by its first i points, i.e., Pi = (p1, . . . , pi).

With Pi, we associate a point set Si := {p1, . . . , pi} ∪ S0, where S0 is the set of the 2d

corner points of S
d. The smallest among all pairwise distances in Si is the minimum gap

gi := min
p,q∈Si, p �=q

d(p, q),

where d(p, q) is the Euclidean distance between two points p and q.

The maximum gap is defined via the largest empty circle. An empty circle is a circle

whose center is located within the unit cube and contains no point of the set Si. The

diameter of the largest empty circle for the set Si is the maximum gap Gi

Gi := max
p∈Sd

min
q∈Si

2d(p, q)

Note that the point p in the definition above is an arbitrary point in the unit cube. Now

we define the i-th gap ratio by

ri := Gi/gi.

For a point sequence P , we define the maximum gap ratio as RP := maxi=1,...,n ri. For

a fixed integer n, we denote Rn the optimal gap ratio for any n-point sequence:

Rn := min { RP | P is an n-point sequence in S
d}.

6

Given d and n, we want to find an n-point sequence P in S
d that achieves the optimal

(=minimal) gap ratio Rn. More formally, our problem is described as follows.

Problem 1:

Input: Integers d and n.

Ensured: Compute an optimal n-point sequence P in S
d that achieves the optimal

gap ratio Rn for n points.

2.1.2 Our contribution

We start with a simple greedy algorithm called incremental Voronoi insertion for points

in the plane in Section 2.2. The Voronoi insertion generates a point sequence P with

RP ≤ 2. It is also easy to extend this algorithm to higher dimensions while keeping the

gap ratio 2.

In Section 2.3, we give a linear time algorithm that constructs an n-point sequence

with maximum gap ratio bounded by 2�n/2�/(�n/2�+1) in the 1-dimensional unit cube S
1.

We also show that the bound is optimal, which fully shows the 1-dimensional case.

Section 2.4 deals with the 2-dimensional case again. It looks quite challenging to find

an optimal point sequence even for rather small values of n. Therefore, we give two simple

heuristic algorithms finding a point sequence with maximum gap ratio smaller than that

of the point sequence generated by the incremental Voronoi insertion. Since the Voronoi

insertion gives an upper bound, our next goal is the following:

Problem 2:

Input: Integers d and n.

Output: An n-point sequence P in S
d such that RP < 2.

We have implemented our heuristic algorithm to find point sequences whose maximum

gap ratios are strictly less than 2, which is achieved by the Voronoi insertion. Some such

sequences are given together with related statistics on our experiments.

2.2 Simple Greedy Algorithm – Voronoi insertion

We start with a simple greedy algorithm for inserting points uniformly. In this algorithm,

we maintain a Voronoi diagram for a set of points which have already been inserted and

its intersection with the boundary of the unit cube. Voronoi vertices and the intersections

between Voronoi edges and cube surface are candidates for the next point to be inserted.

We evaluate each such vertex by the distance to its nearest point (site) and choose the

7

one of the largest such distance as the next point to be inserted. This is why we call it

incremental Voronoi insertion.

Define a point set Sd
i = {(x1, x2, . . . , xd) | exactly i coordinates are either 0 or 1 and

the remaining coordinates are 1/2} for i < d. For example, we have

S3
0 = {(1/2, 1/2, 1/2)},

S3
1 = {(∗, 1/2, 1/2), (1/2, ∗, 1/2), (1/2, 1/2, ∗)},

S3
2 = {(∗, ∗, 1/2), (∗, 1/2, ∗), (1/2, ∗, ∗)},

where ∗ indicates 0 or 1, that is, (∗, 1/2, 1/2) represents (0, 1/2, 1/2), (1, 1/2, 1/2).

The first point to be inserted must be the unique element of Sd
0 , i.e., (1/2, 1/2, . . . , 1/2).

Then, we insert points in the set Sd
1 one by one, and continue to points in Sd

2 , S
d
3 , . . . , S

d
d−1.

Suppose we have inserted all the points in Sd
0 , S

d
1 , . . . , S

d
d−2 and we are now going to insert

pj = (0, 0, . . . , 0, 1/2), the first point in the set Sd
d−1. The point pj is the mid-point of

a cube edge by the definition. Thus, the minimum pairwise distance is 1/2, that is, the

minimum gap is 1/2. Since this is the first point located on a cube edge, the empty

ball centered at the next point (0, 0, . . . , 0, 1, 1/2) that passes through the two points

(0, 0, . . . , 0, 0) and (0, 0, . . . , 0, 1) remains empty. In fact, this ball is the largest empty

ball. Its diameter is obviously 1. Therefore, the ratio is exactly 2 after the point.

We can also show that the maximum ratio before inserting this point is less than

2 and it remains so until the very last point of Sd
d−1. When we have inserted all the

points in Sd
0 , S

d
1 , . . . , S

d
d−1, we can continue the same process again for 2d sub-cubes in

a recursive fashion. Thus, we can conclude that the above-mentioned approximation

algorithm achieves the maximum ratio 2.

2.3 1-dimensional problem

Our domain here is a unit interval [0, 1]. The two extremal points 0 and 1 are assumed to

be placed in advance. We present a simple linear time strategy better than the incremental

Voronoi insertion. Moreover, we show that the strategy is in fact optimal.

2.3.1 Lower bound on Rn

We first estimate the lower bound of Rn for an n-point sequence. Let P = (p1, p2, . . . , pn)

be a finite sequence of n points in the unit interval [0, 1] such that pi �= pj whenever i �= j.

For i = 0, . . . , n, the points p1, . . . , pi partition the unit interval into i + 1 intervals of

lengths mi
1, m

i
2, . . . , m

i
i+1. Without loss of generality we may assume that mi

j ≥ mi
j+1 for

8

all i, 0 ≤ i ≤ n and j, 1 ≤ j ≤ i. Then, the maximum and minimum gaps are given by

mi
1 and mi

i+1, respectively. Hence, the ratio RP for the sequence P is

RP := max
1≤i≤n

mi
1

mi
i+1

(2.1)

Put M i = {mi
1, . . . , m

i
i+1} and regard it as a multi-set (i.e., it may contain elements more

than once). Clearly, M i+1 is obtained from M i by replacing one element from M i by

two which add up to the first one. The following lemma states that if RP ≤ 2, then this

replaced element is always the largest.

Lemma 2.3.1 If RP ≤ 2, then for each i = 0, . . . , n − 1 there are a, b ∈ [0, 1] such that

mi
1 = a+b and M i+1 = {mi

2, . . . , m
i
i+1, a, b} (as multi-set) and one of a and b is a smallest

element of M i+1.

Proof Assume that M i+1 = M i \ {mi
j} ∪ {a, b} for some j, 1 ≤ j ≤ i + 1 such that

mi
j < mi

1 and a + b = mi
j . W.l.o.g., let b ≤ a. Then, b ≤ 1

2
mi

j < 1
2
mi

1 and hence

RP ≥ mi+1
1 /b = mi

1/b > 2. If both a and b are greater than mi
i+1, then again RP ≥

mi
1/m

i
i+1 = (a + b)/mi

i+1 > 2mi
i+1/m

i
i+1 = 2. �

Note, however, that a priori we do not know that both a and b are not larger than

mi
i+1.

Lemma 2.3.2 Given an integer n ≥ 1, the lower bound of Rn is 2�n/2�/(�n/2�+1).

Proof Assume that RP ≤ 2 for an n-point sequence. Let first n be even. Let j, 1 ≤ j ≤
n
2
+1 be such that m

n/2
j ∈Mn. Such a j exists, since at most n/2 of the elements in Mn/2

are replaced in the sequel from Mn/2 to Mn. We have

m
n/2
1

m
n/2
j

≤ m
n/2
1

m
n/2
n/2+1

≤ RP .

Also, for each n/2 ≤ i ≤ n− 1, we have RP ≥ mi+1
1 /mi+1

i+2 ≥ mi+1
1 /mi

j/2 by Lemma 2.3.1.

Since m
n/2
j ∈Mn,

RP ≥
m

n/2
1

m
n/2
j

≥ m
n/2
1

mn
1

=
n−1∏

i=n/2

mi
1

mi+1
1

=
n−1∏

i=n/2

mi
1

mi+1
i+2

/
mi+1

1

mi+1
i+2

≥
(

2

RP

)n/2

.

We conclude RP ≥ 2(n/2)/(n/2+1). For n odd, let P ′ = (p1, . . . , pn−1). Then, RP ≥ RP ′

by definition and RP ′ ≥ 2�n/2�/(�n/2�+1) by the above. So, Rn ≤ 2�n/2�/(�n/2�+1). This

completes the proof of Lemma 2.3.2. �
So, we have obtained the lower bound of Rn for n-point sequences. Now, what remains

is to give an algorithm for computing an optimal point sequence P ∗.

9

Algorithm 1: A naive strategy

Calculate r = 2�n/2�/(�n/2�+1);

p1 = 1/(1 + r);

for i = 1 to n− 2 do

Let mi
1 and mi

2 be the current longest and second longest intervals, respectively;

Put a point pi+1 into mi
1 to partition it into two subintervals a and b so that

mi
2/ min{a, b} = r;

Put the last point pn so as to partition the current longest interval into two

intervals of the same lengths;

First, consider the following algorithm (Algorithm 1) suggested in the lower bound

proof.

This strategy always puts a point pi so that the gap ratio is equal to 2�n/2�/(�n/2�+1)

for each i. If it is possible then the sequence obtained is optimal since its bound coin-

cides with the lower bound. The strategy implicitly assumes that the smaller one of the

new subintervals has the minimum length among current intervals. Unfortunately, it is

impossible to keep the ratio. The reason is as follows. Let ai and bi (ai > bi) be new

subintervals resulting after the i-th insertion. Then, M1 = {a1, b1} = { r
r+1

, 1
r+1
} and

M2 = {b1, a2, b2} = { 1
r+1

, r−1
r

, 1
r(r+1)

}. We insert p3 into M2. Note that the maximum

interval length in M2 depends on the number of points to be inserted. If b1 ≥ a2, (the

case of r ≤ 1+
√

5
2

), then b3 = a2

r
= r−1

r2 and a3 = 1
r+1
− b3 = 1

r2(r+1)
. Since a3 < b3 for

r >
√

2, r3 = a2/a3 = r(r2 − 1) > Rn. This suggests that if n is large enough, say n > 3,

the assumption of above strategy does not hold. On the other hand, if b1 < a2 (the case

of r > 1+
√

5
2

), then r2 = a2

b2
= r2 − 1, and 2 < R2

n − 1 for n ≥ 8. Therefore, we cannot

obtain an optimal point sequence P ∗ by the above strategy.

Observation 2.3.3 Gap ratios for the first n − 1 points should be strictly less than

2�n/2�/(�n/2�+1), and moreover, these ratios are never determined until the last interval

is fixed.

This Observation 2.3.3 suggests that an optimal point sequence of length n should be

determined in a bottom-up fashion, that is, from the last interval to the first one.

2.3.2 An optimal point insertion strategy

A rough sketch of our strategy is as follows. Let (p1, p2, . . . , pn) be a point sequence to

be inserted in the unit interval x1 = [0, 1]. We maintain all intervals generated during n

insertions, and we denote by xj the interval induced by the pj−1. Hereafter, we denote

10

the j-th interval by xj , and unify xj and its length |xj |. Each point pi, i = 1, . . . , n, is

inserted into the current largest interval xi to split it into two new subintervals x2i and

x2i+1 with x2i + x2i+1 = xi. An important observation here is that we can determine the

point pi so that it results in a sorted sequence (xi+1, xi+2, . . . , x2i, x2i+1) of intervals in the

non-increasing order of their lengths. The process is terminated when the last point pn is

inserted to have a sequence (xn+1, xn+2, . . . , x2n+1).

Now, let us describe how to determine the point sequence. It is divided into two

subsequences at k = �n/2�. For the first half (p1, . . . , pk), the current longest interval xi

is unevenly partitioned into the new two subintervals x2i and x2i+1, so that x2i > x2i+1

and xi = x2i + x2i+1. Since we are trying to achieve a ratio strictly less than 2, the

ratio xi+1/x2i+1 must be strictly less than 2. For the remaining points (pk+1, . . . , pn), the

current longest interval xi is partitioned evenly into two new subintervals x2j and x2j+1

so that x2j = x2j+1 = xj/2 and xj+1/x2j+1 is strictly less than 2, or equal to Rn. This

is because the intervals x2i and x2i+1, i = k + 1, . . . n, will never be subdivided during

the remaining insertion. Since minimum gaps are maximized by evenly partitioning, it

minimizes the maximum gap ratios.

More concretely, we first compute the target ratio Rn = 2k/(k+1) where k = �n/2�,
and a magic number y1 = (2l−k + 2

∑k+1
i=2

Ri−1
n

2i−1)−1, where l = n/2�. Then, we fix the last

2k + 2 intervals;

x2l = x2l+1 = y1 if n is odd,

x2l+1 = y1 if n is even,

x2(l+1) = x2(l+1)+1 =
Rn

2
y1,

x2(l+2) = x2(l+2)+1 =

(
Rn

2

)2

y1,

...

x2(l+k) = x2(l+k)+1 =

(
Rn

2

)k

y1.

The remaining intervals can be determined so that xi = x2i + x2i+1, i = k, k− 1, . . . , 2, 1.

This strategy can be summarized in the following pseudo code.

2.3.3 Configuration tree

Before showing the optimality and correctness of our strategy, we introduce a configura-

tion tree to simplify the arguments for the proof. The tree describes how intervals are

generated. Initially it consists of a root corresponding to the unit segment (or interval) x1.

11

Algorithm 2: An optimal strategy

input : An integer n > 0.

output: An optimal point sequence P , i.e., RP = Rn.

Rn = 2�n/2�/(�n/2�+1);1

y1 =
(
2
n/2�−�n/2� + 2

∑�n/2�+1
i=2

Rn
i−1

2i−1

)−1

;2

if n is odd then x2
n/2� = x2
n/2�+1 = y1;3

else x2
n/2�+1 = y1;4

for i = 1 to �n/2� do x2(
n/2�+i) = x2(
n/2�+i =
(

Rn

2

)i · y1;5

for i = �n/2� downto 1 do xi = x2i + x2i+1;6

Compute a point sequence P from the interval sequence (xi+1, xi+2, . . . , x2i, x2i+1);7

When an interval xi is partitioned into two subintervals x2i and x2i+1, two corresponding

nodes are created as children of the node for the interval xi. Then, a set of internal nodes

are those for x1, x2, . . . , xi and the remaining nodes for xi+1, . . . , x2i+1 are leaf nodes of the

tree, which form an interval sequence (xi+1, . . . , x2i+1) in the order of their appearance.

Figure 2.1 shows an example of the configuration tree for n = 4. The shaded nodes are

leaf nodes. We can see how the intervals corresponding to leaf nodes subdivide the unit

segment.

x1

x2 x3
p1

x4 x3
p2 p1

x5 x4 x6
p2 p1

x5 x7
p3

x8 x6
p2 p1

x5 x7
p3

x9
p4

x1

x9

x2 x3

x4 x5 x6 x7

x8

Figure 2.1: Configuration tree for a point sequence P = (p1, p2, p3, p4).

The above strategy constructs a configuration tree, and a partition of the unit segment

is obtained. So, each interval length corresponding a leaf node is calculated using the

magic number y1. Since each internal node has exactly two children and both intervals

are known, all interval lengths are determined successively from bottom to top (root).

As an exercise, let us consider the case when we insert 5 points. Unlike the incremental

Voronoi insertion, we put the first point p1 so that the unit interval is split unevenly. Then,

we put the second point p2 to split the longer interval. Now we split the current largest

interval into two by putting the third point p3. This process is represented by a binary tree

12

rooted at the unit interval x1. It is followed by two intervals x2 and x3, where x2 +x3 = 1

with x2 > x3. Then, x2 has branches to x4 and x5 with x4 + x5 = x2 and x4 ≥ x5. The

node x3 is also followed by two node x6 and x7 such that x6 + x7 = x3 and x6 ≥ x7, and

so on (see Figure 2.2).

y1

y2 y3

x2 x3

x1

x4 x5

x11x10x9x8

x6 x7

x2 x3

x4

x3

x5

x4

x6

x5

x7

x8 x6

x5

x7x9

x8 x6

x10

x7x9

x11

x1

Figure 2.2: An example to be shown our strategy.

Then, the ratios are r1 = x2/x3, r2 = x3/x5, r3 = x4/x7, r4 = x5/x9 and r5 = x6/x11.

Since the intervals x6, . . . , x11 are not split anymore, the partition of x3 into x6 and x7

and that of x4 into x8 and x9 and that of x5 into x10 and x11 should be bisections at

their center points to minimize the ratios, that is, x6 = x7, x8 = x9, and x10 = x11. Now,

let us denote x7, x9 and x11 by y1, y2 and y3, respectively. Then, x3 = 2y1, x4 = 2y2 and

x5 = 2y3. Therefore, r3 = x4/x7 = 2y2/y1, r4 = x5/x9 = 2y3/y2, and r5 = x6/x11 = y1/y3.

Thus, the maximum ratio R5 is minimized when r3, r4 and r5 are equal, and it is given by

R5 = (r3 · r4 · r5)
1/3 =

(
2y2

y1

2y3

y2

y1

y3

)1/3

= 22/3. (2.2)

2.3.4 Optimality and correctness

Finally, we prove that the maximum gap ratio RP of the point sequence P computed

by our strategy is equal to Rn. The magic number y1 plays a very important role to

optimize RP . Lemma 2.3.4 determines the value of y1 and guarantees the optimality of

the resulting point sequence. The correctness of the strategy is proved in Lemma 2.3.6.

Lemma 2.3.4 If any set of intervals {xi+1, . . . , x2i+2, x2i+3} are sorted in non-increasing

order with respect to their lengths, then the above strategy achieves the maximum gap ratio

RP = 2�n/2�/(�n/2�+1).

Proof Let yi denote the length of x2(l+i)+1 for i = 0, 1, . . . , k, where k = �n/2� and

l = n/2�. Note that the node xl has interval y1 as one of the children in the tree

configuration. Now, we assume the gap ratio ri is defined by xi+1

x2i+1
= xi+1

yi
for the (l + i)-th

13

insertion. By Lemma 2.3.6, this definition of ri does not cause any inconsistency. From

this fact, the minimum interval is yi and the maximum interval is x2(l+i)+x2(l+i)+1 = 2yi+1,

for (l + i)-th insertion (1 ≤ i < k). At the last insertion, the minimum interval is yk+1

and the maximum interval is y1. Therefore, the gap ratios ri for i = l, l + 1, . . . , l + k, are

given as follow,

rl =
xl+1

x2l+1
=

x2l+2 + x2l+3

x2l+1
=

2y2

y1
,

rl+1 =
xl+2

x2l+3
=

x2l+4 + x2l+5

x2l+3
=

2y3

y2
,

...

rn−1 = rl+k−1 =
xl+k

x2(l+k−1)+1

=
x2(l+k) + x2(l+k)+1

x2(l+k−1)+1

=
2yk+1

yk

,

rn = rl+k =
xl+k+1

x2(l+k)+1

=
y1

yk+1

.

Since x2i+3 > x4i+2 for i ≤ l − 1, ri = xi+1

x2i+1
= x2i+2+x2i+3

x4i+2+x4i+3
≤ x2i+2

x4i+3
= r2i+1. This implies

Rn = max{rl, rl+1, . . . , rn} ≥ max{r1, r2, . . . , rl−1}. Thus, Rn is minimized when

Rn = (rl · rl+1 · · · · · rl+k)
1

k+1 =

(
2y2

y1

2y3

y2
· · · 2yk+1

yk

y1

yk+1

) 1
k+1

= 2
k

k+1 = 2�
n
2
�/(�n

2
�+1).

�
Since every ri = Rn, we have yi = 2

Rn
yi+1 for i = 1, . . . , k, and yk+1 = y1

Rn
. Moreover,

y1 =
(

2
Rn

)i−1

yi+1 for i = 2, . . . , k + 1. Thus, if y1 is determined then so is every yi.

When n is odd, 1 =
∑2n+1

i=n+1 xi = 2
∑k+1

j=1 yj = 2
∑k+1

j=1

(
Rn

2

)j−1
leads to y1 = 1

2
Pk+1

j=1(
Rn
2)

j−1 .

Similarly, when n is even, 1 =
∑2n+1

i=n+1 xi = y1 + 2
∑k+1

j=2 yj gives y1 = 1

1+2
Pk+1

j=2(
Rn
2)

j−1 .

Observation 2.3.5 y1 ≥ y2 ≥ · · · ≥ yk+1.

The observation follows from the facts that yi = 2
Rn

yi+1 and 2
Rn

is greater than 1.

To show the correctness of this strategy and the optimality of the sequence obtained,

we have to prove that the sequence (xi+1, . . . , x2i, x2i+1) generated by pi is a sorted se-

quence in the non-increasing order of their lengths for every 1 ≤ i ≤ n.

Lemma 2.3.6 Whenever our strategy partitions the interval xi for every 1 ≤ i ≤ n, the

resulting intervals xi+1, xi+2, . . . , x2i+1 are sorted in the non-increasing order, that is, we

have xi+1 ≥ xi+2 ≥ · · · ≥ x2i ≥ x2i+1.

14

xn
xn+1

leaves

level �log(2n + 1)�

level �log(2n + 1)� − 1

level 1

level 0
leaves

Figure 2.3: The levels of tree corresponding the behavior of our strategy.

Proof Proof is by induction on the level of a tree configuration of size 2n + 1. The level

of a node v is defined as log(2n + 1)�− the height of v. So, all leaf nodes may be in the

level 0 or 1, and the level of root x1 is �log(2n + 1)�, (see Figure 2.5).

When 2h = n + 1, where h = �log(2n + 1)�, all leaf nodes are in the level 0. In this

case, from Observation 2.3.5, the statement xn+1 ≥ . . . ≥ x2n+1 holds. When n + 1 �= 2h,

the intervals xn and xn+1 are both in the same level 1. Then, we have

xn = 2yk+1 = 2

(
Rn

2

)k

y1 =
Rk+1

n

Rn 2k−1
y1 =

2k

Rn 2k−1
y1

=
2

Rn

y1 > y1 = xn+1.

On the remaining nodes in level 1, both children of a node are the intervals of the same

length 2yj. Hence, for two intervals xi and xi+1, we have xi ≥ xi+1 by Observation 2.3.5.

Let I i = (zi
1, . . . , z

i
2i) be the intervals in the level i, where zi

1 and zi
2i are the leftmost

and rightmost intervals in the level i, respectively. Now, we assume that the statement

holds up to the level i, that is, zi
1 ≥ zi

2 ≥ · · · ≥ zi
2i ≥ · · · ≥ x2n+1. By the induction

hypothesis, we have zi−1
2i−1 = zi

2i−1 + zi
2i ≥ zi+1

1 + zi+1
2 = z1. We also have zi−1

j ≥ zi−1
j+1 by a

similar argument. �
Thus, we have a conclusion on 1-dimensional dispersion problem.

Theorem 2.3.7 Given an integer n, our strategy gives an optimal solution with the max-

imum gap ratio being 2
�n/2�

�n/2�+1 on the 1-dimensional dispersion problem in O(n) time.

2.4 2-dimensional problem

2.4.1 Notations

Let s1 = (0, 0), s2 = (1, 0), s3 = (1, 1), and s4 = (0, 1) be the four corner points of S
2. For

each point set Si after inserting i points in P , we define two empty circles Ci and ci: The

15

diameter of Ci is Gi and the center p of Ci satisfies mins∈Si
d(s, p) = Gi/2. The diameter of

ci is gi and its center is the midpoint of the closest pair of points. Note that the two empty

circles are not unique, since the maximum gap and the minimum one may be defined by

some of the triples or pairs. We break ties arbitrarily to choose Ci and ci. For any three

different points p1, p2, and p3, not on a line, let C(p1, p2, p3) be the circle passing through

the three points. The interior of a circle C is denoted by int C and the diameter of C is

denoted by diam(C). The gap ratio ri is defined by ri = Gi/gi = diam(Ci)/diam(ci).

2.4.2 Analytical results

The shape of a region for the first point

We start to investigate the shape of a region which we can locate the first point p1

preserving r1 ≤ 2. First we formulate the boundary of the region A1 with r1 ≤ 2 inside

of the triangle (say I1) defined by the lines y = 1
2
, y = x, and x = 1

2
. If the equation

can be formulated, we can construct the whole region by rotation and transformation (cf.

Figure 2.4).

s4 = (0, 1)

s1 = (0, 0) s2 = (1, 0)

s3 = (1, 1)

I1

I2

II2

II1

III1

III2 IV1

IV2

Figure 2.4: The shape of the region in which we can locate p1.

Since p1 will be located in sub-quadrant I1, the maximum gap G1 is the radius of a

circle passing through p, s1 and s4, and the minimum gap g1 is the half of d(p, s3). We let

denote f(x) a function for the boundary of A1, that is, r1 = G1/g1 = 2.

We first determine the boundary condition of the function f . When p1 lie on the

x-axis, since G1 is the diameter of the circle C(p1, s1, s4) and g1 is the distance from p1 to

s3, the x-coordinate holds following equation,

x2 + 2x + 2

(1 + x)
√

1 + (1− x)2
= 2.

16

Therefore, p1 = (
√

7−1
6

, 0.5). When p1 lie on y = x, the x-coordinates holds following

equation,

x2 − 4x + 1 = (x− 2−
√

3)(x− 2 +
√

3).

Therefore, p1 = (1−
√

3
2

, 1−
√

3
2

).

(7
1/2

 - 1) / 3

2 - 3
1/2

p

g

G

t

Figure 2.5: The boundary of A1.

We assume that first point p1 is in [1 −
√

3
2

,
√

7−1
6

] × [1
2
, 1 −

√
3

2
], with r1 = 2. Let C

be a circle centered at p1 passing through s3. Note that the radius of C is equal to the

minimum gap g1. Since the center of the largest empty circle C1 always lie on the line

y = 1
2
, the intersection between C and y = 1

2
being in S

2 is the center of C1. Let (t, 1
2
) be

the coordinates of center of C1, then

(t− x)2 + y2 = g2
1. (2.3)

And t can be represented as

t =
−1 + x

2
+
−1 + y2

2(1 + x)
=
−2 + x2 + y2

2(1 + x)
, (2.4)

since t is the center of circumcircle of s1, s4 and p (see Figure 2.5). By substituting

Equation (2.4) to Equation (2.3), we can obtain the function f as follow

(
1 + x

2
+
−1 + y2

2(1 + x)

)2

+ y2 − (1− x)2 − (1− y)2 = 0

4− 12x2 − 4x3 − 8y − 16xy − 8x2y + 4y2 + 4xy2 + 2x2y2 − y4 = 0. (2.5)

Figure 2.6 shows the graph of equation (2.6).

17

Figure 2.6: The graph of equation (2.6) expressing the boundary of A1.

A proof for optimality in two points problem

Lemma 2.4.1 For i = 1, 2, . . . , n − 1, if max1≤j≤i rj < 2, then pi+1 must be inserted in

int Ci, to keep ri+1 < 2.

Proof If pi+1 does not lie in int Ci, then Gi+1 = Gi. We have gi+1 ≤ Gi/2 since there

is no empty circle whose diameter is greater than that of the largest empty circle. Hence

ri+1 ≥ 2. �

Fact 2.4.2 For two acute triangles �ABC and �DEF , if ∠ABC ≤ ∠DEF and

∠BCA ≥ ∠EFD, then
|AB|
|CA| ≥

|DE|
|FD| .

We have equality if ∠ABC = ∠DEF and ∠BCA = ∠EFD. See Figure 2.7 for an

example.

A

B C

D

E F
AB : DE = AC : DF

A

B C

D

E F
AB : DE ≥ AC : DF

Figure 2.7: Illustration for Fact 2.4.2

Lemma 2.4.3 The last point pn must lie at the center of Cn−1 to minimize the maximum

gap ratio.

18

Proof By Lemma 2.4.1, we assume that pn is inserted into the interior of Cn−1. If Cn−1

is not unique, then this lemma immediately holds, since it must maximize the minimum

gap gn.

We assume that Cn−1 passes through three points a, b and c in the counter-clockwise

order. Let C ′ be the other empty circle (not Cn−1) passing through a and b.

We move pn along the perpendicular bisector of a and b so as to decrease gn. Note

that we may also have to consider motions between b and c, and between c and a. But

similar arguments can be appropriately applied.

In this situation, a pair of points defining gn is never changed, i.e., gn = d(pn, a) =

d(pn, b). However, a triple (or pair) of points defining Gn may change. There are two

kinds of meaningful circles which may define Gn; the first one is C ′ defined above and the

second one is the empty circle C ′′ that passes through a and pn. The other circles may

lead to rn ≥ 2, or may not lead to a better rn than that of C ′ or C ′′. Note that pn has

to be inserted at the center of Cn−1 to maximize gn, when Cn = C ′. On the other hand,

when Cn �= C ′, pn lies in int C ′.

Now, we assume Cn = C ′′. Let o be the center of Cn−1, o1 be the center of C ′ and

o2 be the center of C ′′. Consider two triangles �1 = �(a, o2, pn) and �2 = �(a, o1, o).

Since pn is in C ′, it can be seen that ∠ao2pn < ∠ao1o and ∠apno2 > ∠aoo1 by simple

calculations. Hence, we have d(a, o2)/d(a, pn) > d(a, o1)/d(a, o) from Fact 2.4.2. This

concludes the proof. �
By Lemma 2.4.3, we can find an optimal 2-point sequence. Figure2.8 shows the nota-

tions for an instance of n = 2. In this figure, we consider that p1 does not lie on the line

y = 1
2
. The three circles C ′, C ′′ and C ′′′ are shown, where C ′′′ is the largest empty circle

passing through p1 when p2 is in the largest empty circle passing through the symmetric

point p′1 of p1 with respect to y = 1
2
, but the meaningful circles are just C ′ and C ′′. Since

θ1 − θ2 > 0 and θ3 − θ2, p2 is put at the center of C1, from Fact 2.4.2 and Lemma 2.4.3.

We can assume that p1 lies on the line y = 1
2
, to maximize g1. Since we can specify p2

once p1 is determined, we only examine the x-coordinate of p1. The maximum gap ratio

RP is minimized when g1 = g2, and then an optimal point pair satisfies G2
1 = 2g1G2, by

simple observations. Hence, for example, these gaps G1, g1 and G2 are given by

G1 =
4x2

1 − 8x1 + 5

4− 4x1
, g1 =

√
x2

1 +
1

4
, and

G2 = 2

√
1

4
+

(
x1 −

1

2

)4

.

19

p1

s3s4

s1 s2

p′1

θ3

θ2

θ1

p2
o

o1

C ′

C ′′

C ′′′

o2

C1

Figure 2.8: Notations of Lemma 2.4.3 for an instance of n = 2.

Solving this simultaneous equations, we obtain the coordinates of optimal points;

p∗1 = (0.273704, 0.5), and

p∗2 = (0.808958, 0.5).

Next, we consider the cases of n = 3 and larger n. They are more complicated and

may not be solvable in an analytical sense.

A proof for optimality in three points problem

Lemma 2.4.4 If n ≥ 3 and the first point p1 lies on the line y = 1
2

or the line x = 1
2
,

then the maximum gap ratio is greater than or equal to 2.

Proof We assume that the first point p1 lies on the line y = 1
2
. When p2 is in-

serted into int C1 ∩ int C(p1, s1, s2), p3 should be inserted at the center of C(p1, s3, s4)

from Lemma 2.4.3, and then C3 is defined by C(p2, s1, s2). Since diam(C3) ≤ 1 and

diam(C(p1, s3, s4)) ≥ 1, we have r3 ≥ 2. So, p2 has to be inserted anywhere in

int C1 \ int C(p1, s1, s2) ∩ S
2. Hence, C2 is defined as the circle passing through p1, s1

and s2. By Lemma 2.4.1, p3 is inserted in the interior of C2. Therefore, the third gap

ratio r3 is at least 2, since diam(C2) = diam(C3) and diam(c2) ≤ 1
2
diam(C2).

By the symmetry, a similar argument can be applied when p1 lies on the line x = 1
2
.

�

20

Lemma 2.4.5 When n = 3, the second point p2 should be inserted at the center of C1.

Proof Let C ′
1 and C ′′

1 be the second and third largest empty circles of S1. Consider

the case in which there exist exactly two circles, C1 and C ′
1, with their diameters greater

than 1, at the end of the first insertion. Then, p2 must be in int C ′
1 ∩ {p ∈ S | d(p1, p) >

1
2
} ∩ {p ∈ S | d(si, p) > 1

2
}, where si is the nearest corner point of S, since C2 passes

through p2, diam(C2) > 1 and g2 = max{d(p1, p2), d(si, p2)} < 1
2
. If such intersection does

not exist, then we can see RP ≥ 2. Let x and x′ be the centers of C1 and C ′
1, respectively.

Since p2 is inserted in that intersection, C2 = C(p2, si, sj), where sj is the second nearest

corner point of S
2 from p2. Let x′′ be the center of C2. Now, consider two triangles,

�six
′′p2 and �six

′x. From Fact 2.4.2, p2 is inserted at the center of C1, to minimize r2.

Next, consider the next case that there are three empty circles, C1, C
′
1, and C ′′

1 , with

diameters greater than 1, at the end of the first insertion. This case occurs when p1 is

contained in exactly one circle C(o, si, sj), where o is the center (1
2
, 1

2
), and si and sj

are corner points of S. We assume that p2 is inserted in int C ′
1 ∩ {p ∈ S | d(p1, p) >

1
2
diam(C ′′

1)} ∩ {p ∈ S | d(si, p) > 1
2
diam(C ′′

1)}, where si is the nearest corner point of S

from p2, the maximum gap ratio may be less than 2. If the intersection does not exist,

then RP ≥ 2. However, the same argument as above applies. Therefore, p2 should be

inserted at the center of C1, if n = 3. �

Lemma 2.4.6 When n = 3, all largest empty circles C1, C2 and C3 pass through p1.

Proof It is obvious that C1 and C2 pass through p1 from Lemmas 2.4.4 and 2.4.5. If

p2 lies on the line y = 1
2
, then p3 lies on the line x = 1

2
, and vice versa. We can assume

that p2 and p3 are located on the boundary of the cube [0, 1
2
]× [0, 1

2
] from Lemmas 2.3.6

and 2.4.5. Then, p1 lies in the (open) square (1
2
, 1)× (1

2
, 1). Hence, C3 passes through p1,

since the open half plane y > 1
2

contains p1 but not p2 or p3. �
Since p2 and p3 are inserted at center(C1) and center(C2), respectively, we obtain

g2 = 1
2
G1 and g3 = 1

2
G2. In order to minimize RP , we take geometric average among

r1, r2 and r3;

RP = 3
√

r1 · r2 · r3 = 3

√
G1

g1

G2

g2

G3

g3
= 3

√
G1

g1

G2

1
2
G1

G3

1
2
G2

= 3

√
22

G3

g1
. (2.6)

Hence, if we can show G3

g1
< 2, then Rp < 2 is obtained when n = 3. The problem is

to find a point p1 which minimizes the value of equation (2.6). We can formulate it as a

21

non-linear programming problem. However, it seems to be difficult to specify an optimal

position of p1 satisfying the above conditions, and analytically solving the exact positions

in an optimal point sequence is too complicated even if n is rather small, say n = 3. So,

we propose a heuristic algorithm for finding a good point sequence.

2.4.3 Heuristic Algorithms

We present a simple heuristic algorithm based on local search. First, we describe

a procedure to compute the maximum gap ratio, for a given n-point sequence P .

Then, we show a main procedure which treats n-point sequence (p1, . . . , pn) as a point

(x1, y1, x2, y2, . . . , xn, yn) in the 2n-dimensional space R
2n to find a best point by examin-

ing its neighborhood in R
2n. This technique is similar to the lifting technique common in

computational geometry.

Algorithm 3: ComputeMaxGapRatio(P)

input : A point sequence P = (p1, p2, . . . , pn)

output: The maximum gap ratio RP

Let S0 be the corner points of S
2;1

S ← S0; r ← 0;2

for i = 1, . . . , n do3

S ← S ∪ {pi};4

Compute the maximum gap Gi and the minimum gap gi;5

if r < Gi/gi then r ← Gi/gi;6

return r;7

Algorithm 3 computes the maximum gap ratio for a given n-point sequence. It runs

in O(n2) time. In particular, we maintain a planar subdivision by a Delaunay triangula-

tion [100] for each Si. The planar subdivision by Delaunay triangulation is a planar graph.

So, each face contributes to an empty circle and each edge represents the neighborhood

relation between two connecting vertices (see [106]). Hence, we obtain the gaps Gi and gi

in linear time, since the reconstruction of the subdivision is the crucial part.

Algorithm 4 is a main procedure of our heuristics. Given three parameters n, m and

k, the algorithm iterates local search k times starting from a randomly generated point

sequence. In each iteration we compute a local optima of an n-point sequence. The

parameter m is used to specify a termination condition to guarantee the accuracy of

solutions obtained.

22

Algorithm 4: A simple local search heuristic algorithm

input : Integers n, m, and k.

output: A good n-point sequence.

Let e1 and e2 be the base unit vectors;1

ropt ←∞; threshold ← 2−m;2

for i = 1 to k do3

Initialize P by a randomly generated n-point sequence;4

ε← 1
2
;5

rmin ← ComputeMaxGapRatio(P);6

repeat7

foreach p′1 ∈ {p1 ± εe1, p1 ± εe2} do8

foreach p′2 ∈ {p2 ± εe1, p2 ± εe2} do9

...10

foreach p′n ∈ {pn ± εe1, pn ± εe2} do11

P ′ ← (p′1, p
′
2, . . . , p

′
n);12

r ← ComputeMaxGapRatio(P ′);13

if r < rmin then rmin ← r; P ← P ′;14

if rmin is updated then P ′′ ← P ;15

else ε← 1
2
ε;16

until ε < threshold ;17

if ropt > rmin then ropt ← rmin; P ∗ ← P ′′;18

return P ∗;19

2.4.4 Experimental Results

We have implemented Algorithm 4 to evaluate the accuracy of the solutions obtained

by the heuristic algorithm. Table 2.1 describes our environment of the experiment. We

designed the algorithm using the exact computation in LEDA [94] for the sake of accuracy

and for robustness.

Table 2.2 shows the best Rp values obtained by Algorithm 4. For each n = 2, 3, 4, 5,

we executed the algorithm more than 1000 times with the threshold less than 10−8. For

each of n = 6, 7, 8, we executed it with 500, 100, and 20 trials with the same accuracy.

As mentioned above, we have an exact value of R2 and a property for R3. The

computed value R2 shown in the table finds to be close enough to the exact value of R2.

The 3-point sequence achieving the computed value of R3 shown in the table satisfies

23

Table 2.1: The environment of experiment

Workstation CPU

Dell PowerEdge SC1425 Server Intel � XeonTM 3.6GHz

Main memory OS

8GB RedHat Enterprise Linux 3

Compiler External library

g++-3.4.2 LEDA-5.0.1

Table 2.2: The best solutions obtained by Algorithm 4

n 2 3 4 5

Rp 1.87804 1.92716 1.927164 1.92716

n 6 7 8 9

Rp 1.927203 1.99312 2.008371 –

the property G3

g1
< 2, and we conjecture that the point sequence is optimal. In addition

to this, the obtained point sequences for n = 4, 5, 6 may also be optimal, since these

maximum gap ratios are roughly the same.

There is a gap between the results for n = 6 and n = 7. We have obtained a better

sequence than that of Voronoi insertion. However, in the case of n = 8, we did not obtain

a sequence with the maximum gap ratio less than 2. In our environment of experiment,

we gave up to apply the algorithm for n ≥ 8, since it is too slow. In fact, it took one day

per one trial.

We could use those point sequences obtained above as seed point sequences and per-

form the incremental Voronoi insertion afterwards. This is our second heuristic algorithm.

We have implemented the above-stated strategy using the 7-point sequence shown in

Table 2.3 as a starting seed point sequence. The initial maximum gap ratio is 1.993124.

Figure2.9 indicates the resulting point distribution. The maximum gap ratio of this point

sequence is actually 1.99921.

Furthermore, we consider the irregularity of the final point distribution for each of

our results and Voronoi insertion. In order to enhance the difference between them, we

use a Delaunay triangulation shown in Figure 2.10. Our distribution is pretty irregular,

compared with that obtained by the Voronoi insertion.

One of the notable remarks is that Voronoi insertion easily gives a uniform point

sequence in our criterion, but the final distribution is globally non-uniform and locally

24

Table 2.3: A good seed point sequence and the initial maximum gap ratio.

p1 p2

(0.769146, 0.501913) (0.263398, 0.508807)

p3 p4

(0.499994, 0.0637435) (0.477718, 0.891089)

p5 p6

(2.0687e− 05, 0.317322) (8.21674e− 06, 0.662797)

p7 RP

(0.999993, 0.304037) 1.993124

regular.

2.5 Conclusions and Futher researches

In this part, we have presented a preliminary result on generalized dispersion problems.

One of the most important future works is to extend the result to higher dimensions. We

showed some results on lower and upper bounds of the maximum gap ratio for the planar

case, but none in the higher dimensions.

25

12

3

4

5

6

7

8

9

10

11

12

13

14

1516

17

18

19

20

21

22

23

24

25

26

27

28

29

40

31

32

33

34

35

36

37

38

39

30

41

42

43

44

45

46

47

48

49

50

Figure 2.9: A good 50-point sequence with the maximum gap ratio bounded by 1.99921.

12

3

4

5

6 7

8 9

10 11

12 13
14

15 16

17 18 19

20 21

22 23 24 25

26 27 28 29

40

31 32 33

34 35 36 37

38 39

30

41

42 43 44 45
46

47 48 49 50

12

3

4

5

6

7

8

9

10 11

12

13

14

1516

17

18

19

20

21

22

23

24

25

26

27

28

29

40

31

32

33

34

35

36

37

38

39

30

41

42
43

44

45

46

47

48

49

50

Figure 2.10: The Delaunay triangulations for the resulting point distributions. In the

triangulation for our 50-point sequence the maximum gap ratio is bounded by 1.99921,

which is shown in the left. The triangulation for the incremental Voronoi insertion is

given to the right.

26

Chapter 3

Random Generation for Geometric

Objects

3.1 Introduction

A large class of computational problems can be viewed as the seeking of partial information

about a relation which associates problem instances with a set of feasible solutions. In

computer science, mathematics, and in other fields, it is often necessary to examine all of

a finite number of possibilities in a combinatorial/geometric structure, in order to solve a

problem or gain insight into the solution of a problem.

Generation problems are less well studied but have a number of computational ap-

plications. For example, uniform generation can be seen as a way of exploring a large

set of combinatorial structures and constructing typical representatives of it. Random

generations may be used to formulate conjectures about the set, or perhaps as test data

for the empirical analysis of some heuristic algorithm which takes inputs from the set.

Non-uniform generation occurs in the mathematical modelling of physical systems where

the structures are valid system configurations each of which has a weight which depends

on its energy. Many important properties of the model can be deduced from estimates of

the expectation, under the weighted distribution, of certain operators on configurations.

From a computational point of view, the problems of approximate counting and al-

most uniform generation are very closely related. More precisely, Jerrum, Valiant &

Vazirani [77] (see also [117]) have shown that for most natural structures a polynomial

time procedure for approximate counting can be used to construct a polynomial time

almost uniform generation algorithm, and vice versa. The only assumption we need to

make is that the structures are self-reducible, which essentially means that they possess

a simple inductive construction in terms of similar structures of a smaller size.

27

In this chapter, we study problems for randomly generating simple polygons or simple

polygonalizations with respect to a given point set in the plane. A simple polygonalization

of S is defined as one of the crossing-free Hamiltonian cycles in S. In general, there exist

a lot of such cycles or possibilities in a fixed point set. This problem has enormous signif-

icance in development better random sampling techniques, since the set of all possibilities

in simple polygonalizations gives a good solution space of Euclidean Traveling Salesman

problems, rather than choosing randomly some of n! possibilities in simply permuting

point-sequence.

3.2 Heuristics for Generating Simple Polygonaliza-

tions

Geometric Enumeration deals with problem of listing all geometric objects that satisfy a

specified property. Typical objects to be enumerated are triangulations of a set of planar

points. Triangulation is one of the most important geometric structures in Computational

Geometry [21, 106], so that a number of literature have proposed good enumerating

algorithms [18, 20, 3].

In addition to theoretical interest, generation of random geometric objects has applica-

tions that include testing and verification of time-complexity of computational geometric

algorithms for practical rather than worst-case behavior. In that sense, generating a sim-

ple polygon seems to be more practical importance than a triangulation, since there are

many applications which treat a simple polygon as an instance in geometric optimization,

such as Art Gallery Problems [101, 116], Polygon Partitioning [82], Geometric Shortest

Paths [73], and so on [111, 65]. This chapter considers how to generate efficiently simple

polygonalization at random.

Problem statement

Given a set S of n points in general position in the plane, randomly generate a simple

polygon whose polygon vertices are precisely of S, or compute a random simple polygo-

nalization of S.

More precisely, we would like simple polygonalize a set S of points so that each member

of all simple polygonalizations of S is generated uniformly at random. The problem of

maximizing the number of simple polygonalizations over all n point sets plays a role

in random generation of simple polygons (in maximizing the probability that a random

permutation of a given set of points defines a simple polygon). However, examining the set

28

of all simple polygonalizations of S is quite difficult even in the counting problem which

asks how many simple polygonalizations are there in S, see [91]. A brief history of the

asymptotic bounds on this number are summarized by Demaine [41]. The currently known

approximate upper and lower bounds are O∗(86.81n) due to Sharir and Welzl [114] and

Ω∗(4.642n) due to Garćıa, Noy and Tejel [64], respectively. Note that the notations O∗(·)
and Ω∗(·) are similar with O- and Ω-notations but these neglect the factor of polynomials:

f(n) = O∗(g(n)), or f(n) = Ω∗(g(n)) if and only if there exists a polynomial p(n) such that

f(n) = O(g(n)p(n)), or f(n) = Ω(g(n)p(n)), respectively. Due to the high upper bound

heuristic approaches have been adopted to generate a simple polygonalization during the

past decade. Hence purpose in this chapter can be formulated as follows.

Problem: Random Generation for Simple Polygonalizations

Input: A set S of n points in the plane.

Output: A simple polygonalization P of S.

Ensurement: Every simple polygonalization for S has possibility to be generated with

positive probability.

Related works

Simple polygonalizations are also called simple polygonizations, or crossing-free Hamilto-

nian cycles. There are a few related optimization problems such as the Traveling salesman

problem. In fact, the problems for computing a simple polygonalization with the min-

imum total polygon edge length [124] or with the minimum or maximum area [55] are

NP-complete.

As we mentioned, it is an outstanding open problem whether the number of simple

polygonalizations of S can be computed in polynomial time. There are two different ap-

proaches in the literature: one is to investigate a sub-class of simple polygons such as

x-monotone polygons [90, 126], and star-shaped polygons [15, 16, 118, 122]; the other

is to design an efficient heuristics [15, 16, 37, 103, 126]. Auer and Held [15], and Zhu,

Sundaram, Snoeyink and Mitchel [126] independently proposed a practically useful heuris-

tic, so called 2-opt Moves. It can generate every possible simple polygonalization with

a positive probability (this implies there is no possible simple polygons which cannot be

generated by the heuristic). Any other heuristics cannot generate all possible simple

polygonalizations, or are impractical by the experimental results of Auer [16].

2-opt Moves is experimentally good, but, it requires Θ(n3) times “untangling 2-opt”

moves before convergence to a simple polygon in the worst case, as is proved by Van

Leeuwen and Schoone [85]. Hence, the time complexity of 2-opt Moves is O(n4 log n) with

29

sweep-line technique (see e.g., [21]) in the worst case. In particular, an implementation

of 2-opt Moves has been included in CGAL [25]. Unfortunately it takes too much time to

implement 2-opt Moves for a larger instance, and any algorithms proposed so far seem to

be impractical. We propose a simple heuristic algorithm which runs fast enough even for

a large instance.

Our contributions

We propose a triangulation-base heuristic algorithm which generates each possible simple

polygon with a positive probability in O(n log n + f) time, where f is the number of

edge-flipping operations which may have effect on the randomness. This may improve the

time complexity O(n4 log n) of 2-opt Moves.

Our algorithm consists of three phases: first, it generates a triangulation T of given

point set at random; next computes a random maximal polygon tree on the dual D(T) of

T . A polygon tree T on the dual D(T) of a triangulation T is a tree such that ∪v∈T g−1(v)

is a simple polygon, where g is bijection from a face in T to a vertex in D(T); and finally

constructs a simple polygon by traversing on the maximal polygon tree with depth-first

search.

In section 3.4, we describe our heuristic algorithms in detail. We show the efficiency

and the usefulness of algorithms by computer experiments in section 3.5. Our approach

may applicable to the generalized simple polygonalization problems. We discuss it in

Section 3.6. Finally, we show future works in Section 3.7.

3.3 Preliminaries & Fundamental results

A polygon is a (closed) region of the two-dimensional plane bounded by a finite collection

of line segments forming a closed curve. A polygon P is said to be simple if points of

the plane belonging to two polygon edges of P are limited to the polygon vertices of

P . Hence, there are no self-intersections or no holes (see Figure 3.5), and then a simple

polygon is topologically homeomorphic image of a disk. Figure 3.5 (a) and (b) depict a

simple polygon with 64 vertices, and a nonsimple polygon with 5 self-intersections and

3 holes, respectively. In this paper, polygons mean simple polygons unless it is stated.

We sometimes treat a polygon P with k vertices, or k-gon, as a circular list of k polygon

vertices (v1, v2, . . . , vk, vk+1 = v1) in clockwise-order and denote the number of polygon

vertices or polygon edges by |P |. We also make sure that the visibility between two points

in a simple polygon. We say that point x can see point y (or y is visible to x) if and only

if the closed segment xy is nowhere exterior to the polygon P : xy ⊆ P.

30

(a) (b)
self-intersections

holes

Figure 3.1: Simple and nonsimple polygons

Throughout this paper we let S stand for a finite set of n points in the plane. We

assume that S is in general position, i.e., no three points are collinear and no four points

are cocircular.

A triangulation of planar points S, denoted by T (S), is a simplicial decomposition

of its convex hull CH(S) whose vertices are precisely the points in S. In other words, a

triangulation is a maximal crossing-free geometric graph on S (in a geometric graph the

edges are realized by straight line segments). To distinguish the terminologies of ‘vertex’

and ‘edge’ between polygon and graph, we explicitly specify the modifier “polygon” for

vertex and edge of polygon.

e

e′

C C

Figure 3.2: Flipping edge e within a convex quadrilateral C in plane triangulations.

In a triangulation T (S), an edge e of T (S) is flippable if it is adjacent to two triangles

whose union is a convex quadrilateral C. By flipping e we mean an operation of removing

e for T (S) and replacing it by the other diagonal of C (see Figure 3.2). In this way we

obtain a new triangulation T ′(S), and we say that T ′(S) has been obtained from T (S)

by means of a flip. Lawson [84] showed that any two triangulations of a planar point set

can be transformed into each other by flipping edges. Fortune [59] showed that at most

(n
2) flips are sufficient to compute Delaunay triangulation. This implies there exists a

sequence of O(n2) flips which transforms a triangulation to any other. More precisely,

Hurtado, Noy and Urrutia [75] showed that if a set of n points has k convex layers1, then
1convex layers in a set of planar points are obtained from removing the convex hull (the first layer)

31

one triangulation can be transformed into the other triangulation using O(kn) flips.

We denote a set of vertices, edges and faces of T (S) by V , E and F , respectively. A

triangulation T (S) is always associated with a dual graph. Let D(T) = (VD, ED) be the

dual graph of T (S). We can define a bijection g : F ↪→ VD, and then (v, w) ∈ ED for any

distinct v, w ∈ VD if and only if the triangles, or the reverse images, g−1(v) and g−1(w)

share a common edge in E. Figure 3.3 (a) and (b) depict a triangulation of planar points

and its dual graph, respectively.

(a) (b) (c)

Figure 3.3: Triangulation T (S) of planar points, its dual graph D(T), and a polygon tree

on D(T).

We neglect the unbounded face in a triangulation and its dual. So, we will refer to

each face in a triangulation as triangle, and the degree of each vertex in the dual is at most

3. Since a triangulation T (S) is a planar graph, the size of a triangulation and its dual

can be derived from the Euler’s formula2. Hence we have that |V | = n, |E| = 3n− 3− k,

|F | = |VD| = 2n− 2− k, and |ED| = 3n− 3− 2k, where k = |CH(S)|.
We also consider a polygon triangulation of a simple polygon P , denoted by T (P),

that is, a simplicial decomposition of P whose vertices are precisely the polygon vertices

of P , or the subdivision of P into non-overlapping triangles using diagonals only. The

following theorems are important to design our heuristic algorithm.

Theorem 3.3.1 (Triangulation Theorem, see e.g., [101]) Every simple polygon ad-

mits a polygon triangulation. A simple polygon of n vertices may be partitioned into n−2

triangles by additional n− 3 internal diagonals.

Theorem 3.3.2 (see e.g., [101]) The dual graph of a triangulation of a simple polygon

forms a tree (see Figure 3.4).

and repeating the operation with the remaining point set until no point is left
2For any planar graph G = (V, E), we always have |V | − |E|+ |F | = 1.

32

Theorem 3.3.3 (Meisters’ Two Ears Theorem [89]) Every simple polygon with

n ≥ 4 vertices has at least two non-overlapping ears. An ear of simple polygon P is

a triangle such that one of its edges is a diagonal of P and the remaining two edges are

edges of P .

ear

Figure 3.4: An example for Triangulation theorem, Theorem 3.3.2 and Meisters’ Two

Ears Theorem.

We define a simple polygonalization P for S, so that P is a simple polygon whose

polygon vertices are precisely of S, or is a crossing-free Hamiltonian cycle of S. Now we can

show somewhat a trivial fact that S always admits at least one simple polygonalization.

Lemma 3.3.4 Let S be a set of planar points, where all points does not lie on a line.

Then S always admits at least one simple polygonalization.

Proof It is shown by induction with respect to the number of convex layers of a given

point set S. Let k be the number of convex layers for S. Let ci = {pi
1, p

i
2, . . .} be the

(closed) polygonal chain layered at level i in the convex layer of S, where pi
j , j = 1, 2, . . . ,

are points counterclockwise ordered.

If k = 1, it is a trivial. When k = 2, there are a few cases for the number of points in

c1. If |c1| ≤ 2, then the statement follows since the polygonal chain {p2
1, p

1
1, p

2
2, (p

1
2,) . . .}

makes a simple polygonalization. We consider the case |c1| > 2. If there exists a pair

of line segment s1 = p1
i p

1
i+1 and s2 = p2

jp
2
j+1 such that s1 and s2 are mutually visible,

then the polygonal chain {. . . , p2
j , p

1
i , p

1
i−1, . . . , p

1
i+2, p

1
i+1, p

2
j+1, . . .} makes a simple polyg-

onalization. Otherwise, there is no such mutually visible line segment pair. We pick

any point p1
i in c1, then the nearest line segment p2

jp
2
j+1 is uniquely determined. Since

|c1| ≥ 3 and |c2| ≥ 3, and then p1
i−1p

1
i+1 and p2

jp
2
j+1 are mutually visible, the polygonal

chain {. . . , p2
j , p

1
i , p

1
i−1, . . . , p

1
i+2, p

1
i+1, p

2
j+1, . . .} makes a simple polygonalization.

33

Now, we assume that the statement follows for any point set having k − 1 convex

layers. In addition, we also assume that the simple polygonalization is built by the above

manner. Hence, the k − 1th convex layer is considered as an opened convex polygonal

chain c′k−1 consisting of (at least three) points in ck−1. Let sk−1 be the line segment deleted

from ck−1. Without loss of generality, we can apply the above strategy to the kth layer,

choosing a line segment in ck which has mutually visible edge of c′k−1 if it exists; otherwise

a line segment in ck whose nearest point pk−1
j in c′k−1 is neither of endpoints of sk−1. This

completes the proof. �

c1

c2

c3

p2
1

p2
2

p2
3

p1
1

p1
2

p2
1

p2
2

p2
3

p1
i

p1
i+1

p2
j

p2
j+1 p1

i

no mutually visible edgesthe case of k = 2, and |c1| = 2.

c4

s4

s3

Figure 3.5: Examples for the proof of Lemma 3.3.4

Finally, we define a polygon tree on the dual of a triangulation T (S) of planar points.

This notation is conceptually basic idea in our heuristic algorithm. A polygon tree T =

(VT , ET) on the dual D(T) = (VD, ED) of a triangulation T is a tree such that ∪v∈T g−1(v)

is a simple polygon, where g is bijection from a face in T to a vertex in D(T). Hence,

we say a polygon tree T maximal if and only if appending any edge e ∈ ED \ ET into

ET makes ∪v∈T g−1(v) nonsimple polygon. Figure 3.3 (c) depicts a maximal polygon tree

and the dual polygon.

3.4 Heuristic Algorithm

In this section, we describe a triangulation-base heuristic algorithm for computing a simple

polygonalization of S. We assume that a triangulation T (S) is stored in a canonical data

structure for maintaining Planar Straight Line Graphs such as Halfedge data structure [30]

or doubly connected edge list [21]. Halfedge supports efficient local modifications with

constant time such as edge-flipping operation. Note that we do not explicitly maintain

D(T), since Halfedge provides efficient functions for the bijection between T (S) with

34

D(T). Algorithm 5 shows an outline of our heuristic algorithm for computing a simple

polygonalization.

Algorithm 5: Heuristic for computing a simple polygonalization

Input : A set S of points in general position in the plane

Output: A random simple polygonalization

Let initialize T (S) with a randomly generated triangulation of S;1

Construct the dual graph D(T) of T (S);2

Compute a random maximal polygon tree T on D(T);3

Construct a simple polygon by traversing the tree T with depth-first search;4

3.4.1 On generating a random triangulation

In the first line of Algorithm 5, we generate a random triangulation T (S). Recently,

considering a random triangulation has received various attentions. For instance, Sharir

and Welzl [115] show several results on the numbers of planar triangulations by using

some properties of random triangulations. However, it does not seem that many have been

known about generating a random triangulation, although Epstein and Sack [53] propose

efficient O(n3) and O(n4) time algorithms for counting triangulations and generating a

random one of a given simple polygon with n vertices, respectively. Aichholzer [3, Section

4.3] suggests an idea for generating a random triangulation: first, enumerate all possible

triangulations, and number them in generating order; next, generate a random number

r ∈ {i}t(S)
i=1 , where t(S) is the number of triangulations of S; finally, report the r-th

triangulation. It seems to be expensive to compute all triangulations for larger instances.

Our idea of generating a random triangulation is to perform random edge-flipping

operations. However, it is a folklore open problem to determine the mixing rate of the

Markov process that starts at some triangulation and keeps flipping a random flippable

edge; see [87, 92] where this is treated for points in convex position. In fact, the mixing

rate of triangulation of planar n points in convex position is bounded by O(n4 log n).

This leads that our O(n logn + f) heuristic algorithm has the same time complexity

as that of 2-opt Moves even in the special case for which all planar points are in a convex

position. However, we can generate any triangulation of S with a positive probability by

performing random O(n2) edge-flipping operations in the worst case. Since the expected

number of convex layers for n uniformly and independently distributed points is Θ(n2/3),

due to Dalal [39], random O(n5/3) edge-flipping operations may be required in the average

case. Therefore, when we stand for the sense that we want to generate a polygon as an

35

instance, or do not require fairness of generated polygons, we can consider our heuristic

algorithm has advantage to 2-opt Moves.

3.4.2 Computing a random polygon tree

We describe a procedure for computing a random polygon tree T on the dual D(T) =

(VD, ED) of triangulation T of S. Algorithm 6 is a pseudo-code for computing a random

polygon tree T . Throughout the Algorithm 6, we maintain two sets X and Y : X is a set

of vertices in VD visited so far; Y is a set of current candidate edges in ED which connect

between vertices v∗ ∈ X and w∗ ∈ VD \X. In the line 6 – 14, the procedure augments the

current polygon tree by adding an appropriate edge one at a time. An edge (v∗, w∗) ∈ ED

is admitted as of polygon tree T , where v∗ ∈ X and w∗ /∈ X, if a triangle g−1(w∗) has a

vertex marked unvisited. Otherwise, the union of triangles ∪v∗∈X∪{w∗} g−1(v∗) induces a

nonsimple polygon.

We can show a few properties of polygon tree generated by Algorithm 6.

Lemma 3.4.1 A subgraph T of D(T) which is generated by Algorithm 6 is a maximal

polygon tree.

Proof It is obviously that T is connected, since the procedure grows the current polygon

tree by adding an edge incident to a vertex in X with the other in VD \X one by one.

It can be completed by showing there is no cycle in T . When we assume that T
contains a cycle, intermediately we have a contradiction. To construct a cycle, we have

to violate at least two times for the condition of line 8 in Algorithm 6.

When the while-loop, i.e. at the line 14, ends, the maximality is satisfied since the

procedure has tried each adjacent triangles to check whether or not it is admitted. �
Unfortunately, there exist undesirable situations for which this procedure goes into

a deadlock: the simple polygonalization induced by the reported maximal polygon tree

of Algorithm 6 cannot cover all given points. Figure3.6 shows the undesirable situation.

Therefore, Algorithm 5 is a Monte-Carlo algorithm [93] which does not guarantee always

to compute a feasible simple polygonalization of S.

However, our heuristics can generate each possible simple polygonalization when it

does not return false.

Lemma 3.4.2 Algorithm 5 generates each possible simple polygonalization of given set S

of planar points.

Proof Let P be an arbitrary simple polygonalization of S. We consider a triangulation

T (S) which contains a triangulation T (P) of P as a subgraph.

36

Algorithm 6: Computing a random polygon tree T
Input : A triangulation T (S) = (V, E) and its dual graph D(T) = (VD, ED).

Output: A random polygon tree T .

forall v ∈ V do mark v as the label unvisited ;1

forall e∗ ∈ ED do mark e∗ as the label dual edge ;2

Randomly choose a vertex v∗ ∈ VD and mark to all vertices of triangle g−1(v∗) as3

visited ;

X ← {v∗};4

Y ← {(v∗, w∗) ∈ ED | v∗ ∈ X, w∗ ∈ VD \X};5

while Y �= ∅ do6

Randomly choose an edge e∗ = (v∗, w∗) from Y , and Y ← V \ {e∗};7

(*Assumption: Assumption: v∗ ∈ X, w∗ /∈ X. *)

if g−1(w∗) has a vertex v marked unvisited then8

Mark visited to v;9

Mark polygon edge to e∗;10

Y ← Y ∪ {edges in ED incident to w∗ but not e∗};11

X ← X ∪ {w∗};12

if |X| �= |VD| then return false;13

else14

ET ← {e∗ ∈ ED | e∗ is marked polygon edge};15

VT ← {v∗ ∈ VD | v∗ is a vertex of e∗ ∈ ET };16

return T = (VT , ET);17

From Theorem 3.3.3, T (P) has at least two ears for n > 3. Let vi, vi+1 and vi+2

be one of the ears in T (P). Cutting the ear from T (P), we obtain a (n − 1)-gon

(v1, v2, . . . , vi, vi+2, . . . , vn). We repeat this procedure until P converges to a triangle

(va, vb, vc) while maintaining the order performing ear-cutting operations. We can obtain

a simple polygonalization P , when Algorithm 6 is executed as follows: starting at the

vertex corresponding to triangle (va, vb, vc); and growing the current polygon tree in the

reverse order of ear-cuttings. Note that Algorithm 6 computes a polygon tree T without

going into a deadlock. Hence this completes the proof. �
Now, we estimate the time and space complexities of Algorithm 5. We can see that

the space complexity is O(n) for given set of n planar points from observations in Section

3.3. For the time complexity, the most expensive part is to compute a triangulation of S,

or to perform random flipping-edges, in Algorithm 5, We assume that the number f of

37

Figure 3.6: An example in which Algorithm 6 goes into a deadlock; there exist points in

S which cannot be covered by resulting simple polygonalization. White points are the

vertices of the resulting simple polygon, Black points are unvisited by Algorithm 6.

edge-flipping operations are given in advance. Since there are a number of algorithms for

constructing a triangulation T (S) in the optimal time Θ(n log n) in the worst case (see

e.g., [106, 21]), the time complexity is O(n log n + f).

Theorem 3.4.3 Algorithm 5 can compute a simple polygonalization of given set of n

planar points in O(n log n + f) time when it does not returns false.

3.4.3 The simple salvage procedure

To salvage isolated points, we firstly apply a simple refinement procedure for the current

plane triangulation T (S) and the incomplete simple polygon P. Let I be the set of isolated

points or uncovered points in Algorithm 5. This procedure ensures that each points

uncovered in Algorithm 5 can be covered as many points in I as possible by locally

modifying the current triangulation T (S). Since an isolated point vi ∈ I can be salvaged

if p has at least one fully visible polygon edge (v, w) in the current simple polygon P and

the triangle (v, vi, w) does not contain any other isolated points, we simply find such a

polygon edge in P for each isolated vertex. Algorithm 7 shows the pseudo code that finds

an fully visible polygon edge for each isolated vertex. Roughly speaking, it is obvious

that the time complexity of Algorithm 7 is O(n) for each p ∈ I, since T (S) is maintained

by Halfedge data structure, and getting a local information or updating local topology in

38

T (S) can be done in O(1) time.

Algorithm 7: Simple Salvaging Procedure

Data : Triangulation T (S), current simple polygon P, and the isolated points I.

Result: A simple polygonalization P ′ which is salvaged as many as possible by

greedy searching polygon edges.

P ′ ← P ;1

forall vi ∈ I do2

Find all triangles Δi := {(vi, v
′, v′′)} which are incident to point vi in T (S);3

while Δi �= ∅ do4

Let δj := (vi, v
′, v′′) be a triangle in Δi, and Δi ← Δi \ {δj};5

Find a triangle δ′j := (v′′, v′, x) sharing edge (v′, v′′);6

if the quadrilateral δj ∪ δ′j is flippable then7

Update the current triangulation T (S) by flipping edge (v′, v′′) and8

obtain new two triangles δ1 = (v, v′, x) and δ2 = (v, x, v′′);

if either δ1 or δ2 shares an edge with the current polygon P ′ then9

P ′ ← P ′ ∪ δ1 (resp. δ2);10

Terminate salvage procedure for vi;11

else12

Δi ← Δi ∪ {δ1, δ2};13

Figure 3.7 depicts the behavior of Algorithm 7; the left figure is an initial condition,

and the right figure is a successful result obtained by applying Algorithm 7. Unfortunately,

we cannot always obtain a simple polygonalization of S by applying only for Algorithm 7,

since there exist undesirable conditions so that an isolated point has no such visible

polygon edge. In addition, since the simple polygon P ′ is updated while performing

Algorithm 7, it may happens that an isolated point p has initially a visible edge e but

e will become invisible from p. Therefore, we have to take care for not only modifying

triangulation T (S) but also modifying the current simple polygon P ′. However, even if

we can obtain the algorithm for completely computing a simple polygonalization of S, it

seems to be difficult to show the correctness of the algorithm, since it is too complex to

analyze the terminating condition. We trade in proposing a complete salvaging procedure

for showing experimental results to make sure the practical efficiency of Algorithm 5 with

Algorithm 7 in Section 3.5.

39

vi vi

P P ′

v′
x

v′′

w
v

v′
x

v′′

w
v

Figure 3.7: Example for the behavior of Algorithm 7.

3.5 Experimental Results

We have implemented Algorithm 5 and Algorithm 7 to evaluate the efficiency and use-

fulness. Table 3.1 describes our environment of the experiment. We coded Algorithm 5

with Algorithm 7 in LEDA [94]. To compare the time complexity over the well-known

and widely used algorithm “2-opt Moves,” we used program; random polygon 2 included

in CGAL [25]. Both libraries LEDA & CGAL are C++ class libraries.

Table 3.1: The environment of experiment

CPU Main memory

Intel � Pentium III 870 MHz 256 MB

OS External libraries

FreeBSD 5.4 CGAL-3.1 & LEDA-4.2

Characteristics for resulting polygons We start to estimate characteristics of re-

sulting simple polygons. It is important to be able to control types of generated polygons,

when we consider testing efficiencies of geometric computation problems which deal with

simple polygons. Actually, our heuristic algorithm generates simple polygons which re-

flect the shape in base triangulations. Figure 3.8 and Figure 3.9 show two different types

of simple polygons for the same point set. The triangulation in Figure 3.8 is computed by

sweeping techniques from left to right, and one in Figure 3.9 is Delaunay triangulation.

To see the flexibility in our heuristic algorithm handling types of simple polygons, we

consider a kind of degree of simple polygon. The winding number or revolution number for

a simple polygon P is one of the important factors which figure out a simple polygon, since

it may sometimes act on the time complexity and the correctness of geometric algorithm.

40

Figure 3.8: A resulting simple polygon based on a skinny triangulation.

Figure 3.9: A resulting simple polygon based on a fat triangulation; Delaunay triangula-

tion.

For example, some algorithms for computing a visibility polygon from a point in a simple

polygon [50, 22], or for computing a triangulation in a simple polygon [27, 51, 60, 74, 67]

come under the influence of winding numbers. The winding number of a point p with

respect to a simple polygon P is the number of revolutions that the boundary of P makes

about p : the total signed angular turn (with the usual convention: counterclockwise

turns are positive, and clockwise turns negative) divided by 2π. This notion is found in

41

[32, 58, 102].

To emphasize generating a simple polygon with higher winding number, we shift away

randomly chosen edges of line 7 in Algorithm 6, and simply chosen a edge from LIFO

list, or stack data structure. Figure 3.10 shows an example of experimental results for

n = 5000; the left image is obtained random selection, the right LIFO selection. In the

right figure in Figure 3.10, a point in the simple polygon at the center of window can have

higher winding number.

Random edge-choosing LIFO edge-choosing

Figure 3.10: Example of generating a simple polygon with higher winding number.

Running times We show our heuristic algorithm much faster than the program in-

cluded in CGAL. Note that our heuristic algorithm may fail in one procedure call, so

we evaluate the time until the heuristics correctly computes a simple polygonalization.

Actually, we could know that our heuristic algorithm does not so often fail with Algo-

rithm 7. In this experiment, the computational accuracy of coordinate systems in the

both algorithms are represented by double data type.

Figure 3.11 shows the graph of experimental results with 2-opt Moves with our heuristic

algorithm. The abscissa axis represents the number of points S with logarithmic scale.

The longitudinal axis represents the second of average running time per 5 trials for each

number of points. In Figure 3.11, we do not show the running time of 2-opt Moves for 400

points or later, since 2-opt Moves consumes high cost and resources. As in rough sketches,

2-opt Moves program take about 3.5 (sec), 8 (min), and 70 (min) for n = 250, 2000, and

5000, respectively. On the other hand, our heuristic algorithm takes about 0.01 (sec), 0.1

42

(sec), and 0.3 (sec), for similar instance sizes, respectively. Moreover, we experiment for

more larger instances with our heuristics. Table 3.2 shows the summary of computation

times of our heuristic algorithm. As a disadvantage, although our algorithm requires

O(n) space, maintaining Halfedge data structure may be expensive in this computation

environment, to compute simple polygonalizations for 500,000 points or later.

 0

 2

 4

 6

 8

 10

 12

 1 10 100 1000 10000

Simple Polygonalization Experiments

2-opt Moves
Our heuristics

Figure 3.11: Experimental results on running time: 2-opt Moves v.s. Our heuristics.

Table 3.2: The average running time of our heuristic algorithm for larger instances

|S| 1000 2000 5000 10000 50000 100000 200000

Time(sec) 0.0515 0.1094 0.3016 0.5969 3.78125 7.97187 18.15

Quality assessment We evaluated the experimental probability in which the number

of each generated simple polygons against total number of generated simple polygons for

up to about 2.0× 109 trials.

Figure 3.12 depicts an experimental result with respect to the rate of the counting

number for each generated simple polygonalizations of set15 released in Triangulation

Olympics [4]. In Figure 3.12, the abscissa axis represents the number of generations,

and the longitudinal axis represents the number of simple polygonalizations. We per-

form 2.1 × 109 trials, and correctly obtained 2,097,292,568 simple polygonalizations,

43

and 4,311,771 different simple polygonalizations. In this result, 628,615 different simple

polygonalizations are just once, however one of generated polygonalizations is counted

5,181,305 times. This implies some of simple polygonalizations have high possibility to

be generated.

As the other experiments, each number shown in Figure 3.13 is the counting number

of each simple polygonalization in 100,000 trials. Actually, the randomness for generating

simple polygonalizations is not uniform: the lowest probability is 0.00561, and the largest

probability 0.102.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 10 20 30 40 50 60 70 80 90 100

Quality Assessment with set15

Counting each generated polygons

Figure 3.12: Quality assessment for set15 in Triangulation Olympics.

On counting simple polygonalizations The number of simple polygonalizations for

planar points has been studied assiduously in discrete geometry. However there are many

open problems as shown in [23, 42]. One of the reasons for the difficulty is that the

number of simple polygonalizations increases exponentially with respect to the number

n of points. Let simple(n) be the maximum number of simple polygonalizations for any

n-point set. The function simple(n) is easily seen to satisfy the following inequality:

simple(a + b) ≥ simple(a)simple(b),

so the limit limn→∞ (simple(n))1/n exists (it is finite by [6].) The currently best bounds [64,

114, 7] are

4.642 ≤ lim
n→∞

(simple(n))
1
n ≤ 87.

44

The upper bound follows by combining the bound on the number of triangulations of a

set by Sharir and Welzl [114] with the bound on the number of simple cycles within a

triangulation by Alt, Fuchs, and Kriegel [7]. With the help of computers, exact values

have been determined for n ≤ 10 by Aichholzer and Krasser [5] (see Table 3.3).

Table 3.3: The exact values simple(n) for n ≤ 10.

n 3 4 5 6 7 8 9 10

simple(n) 1 3 8 29 92 339 1282 4994

Figure 3.13 shows all simple polygonalizations for 6 points achieving Each simple

polygonalization in Figure 3.13 is obtained by the experiments.

10184

4646

32513053 3101

595579 582

1706668 687 1846

2062

10203

4864

5484

3341

2015

4540

10154

1809

45564033

64805668

1960

655561

717

Figure 3.13: Example of a 6-point set which maximizes the number of simple polygo-

nalizations. The number for each simple polygonalization depicts counting numbers for

100,000 trials.

We are interested in point sets released at “Counting Triangulations – Olympics” [4]

by Aichholzer. The coordinates of points for each point set is also found at the web

site. As mentioned above, since the bounds of the number of simple polygonalizations is

followed by combining the number of triangulations and the number of simple cycles, we

45

would like to compare the number between triangulation with simple polygonalizations.

In this experiments, the computational accuracy is critical to exact counting, so that

we use rational data type in LEDA. Hence, the resulting number is that the number

of simple polygonalizations generated correctly. Firstly, we experiment up to n = 14

points by applying our algorithm up to 2.0 × 109 trials for each. Table 3.4 shows the

experimental results. From obtained result, we can find out that our algorithm can

compute correct simple polygonalizations with about 97%. In fact, the success ratio

depends on the arrangement of given point sets. However, the size of well-distributed

instance becomes larger and larger, the ratio of failure in our algorithm decreases. Hence,

we can rely on the resulting numbers of simple polygonalizations up to 10 points.

Table 3.4: Comparing with Triangulations & Simple Polygonalizations

|S| Name Triangulation Polygon Name Triangulation Polygon

4 dcirc4 1 3 convex4 2 1

5 dcirc5 2 6 convex5 5 1

6 dcirc6 4 16 convex6 14 1

7 dcirc7 11 30 convex7 42 1

8 dcirc8 30 41 swrpp8 150 335

9 dcirc9 89 73 swrpp9 780 1,252

10 dcirc10 250 407 swrpp10 4,550 4,956

11 dcirc11 776 1,717 set11 26,888 20,887

12 dcirc12 2,236 3,174 set12 168,942 82,421

13 dcirc13 7,147 9,779 set13 1,098,904 363,884

14 dcirc14 20,147 18,047 set14 7,281,984 1,540,451

3.6 Some genelarized simple polygonalizations

We consider the following extension, we call Simple k-Polygonalizations Problem. Given

a set S of n points in the plane, generate a set of disjoint simple polygons {P1, P2, . . . , Pk}
such that the union of all vertices of each Pi is exactly S. The random simple polygonal-

izations may be an instance of Robot Motion Planning Problems (see e.g., [21, Chapter 13,

15]). We could have a few preliminary results so that our heuristic approach is applicable

to this problem with empirical study.

Algorithm 8 shows our idea for this generalized problem. First, we compute a random

triangulation T (S) of S. This step is the same as in Algorithm 6. Second, we consider

46

the dual D(T) = (VD, ED) and the map graphM(T) = (VD, EM) of T (S). Map graph is

a generalized dual of planar graph G in which two regions of G are adjacent when they

share any vertex of their boundaries (not an edge, as standard planarity requires), see

Chen, Grigni, and Papadimitriou [29].

Third, we compute an independent set IM(T) = {v∗
1, . . . , v

∗
k} on the map graphM(T).

Note that g−1(v∗
i) ∪ g−1(v∗

j) = ∅ for any two different vertices v∗
i , v

∗
j ∈ IM(T). However,

this phase is computationally quite difficult, since the problem is sub-problem for finding

maximum independent set (MIS) on map graph. Indeed, it is shown that the problem MIS

on a map graph is NP-hard due to Chen who also proposed approximation algorithms [28],

and PTAS combining the results of Thorup [119]. Hence, we relaxed for the number k

of simple polygons, i.e., shifting our objective, generating at most k simple polygons is

considered.

Finally, we compute a random maximal polygon forest F which is defined as a set of

maximal polygon trees. The maximal polygon forest can be computed by Algorithm 6

with X = IM(T) and Y = {(v∗, w∗) ∈ ED | v∗ ∈ X, w∗ ∈ VD \X}.
In the simple polygonalizations problem, Algorithm 8 can always generate a number

of simple polygons, since there is no deadlocks if we restart growing a new polygon tree

from v∗ /∈ X and g−1(v∗) has an unvisited vertex.

Algorithm 8: Heuristic for computing simple polygonalizations

Input : A set S of points in general position in the plane

Output: A random simple polygonalization

Initialize T (S) with a randomly generated triangulation of S;1

Construct the dual graph D(T) and the map graphM(T) of T (S);2

Compute a random independent set IM(T) = {v∗
1, . . . , v

∗
k} onM(T);3

Compute a random maximal polygon forest F onM(T);4

Construct simple polygons by traversing each tree in F with depth-first searches;5

This heuristic algorithm solves a relaxed problem proposed as a future work by Auer

and Held [15]: Given a set S of n points and a natural number k ≤ n
3
, generate k random

polygons on S. If we apply our idea to this problem, we must solve a difficult problem for

generating an independent set on a map graph whose cardinality is just k. Figure 3.14

shows examples for generating k simple polygons on a given point set S.

47

Figure 3.14: Examples for generating k simple polygonalizations: n = 15, 000 and k = 20.

3.7 Concluding remarks and Future works

We have presented a triangulation-base heuristic algorithm for computing a simple polyg-

onalization of given planar point set in O(n log n + f) time, where f is the number of

edge-flipping operations. Our heuristic algorithm is Monte-Carlo Algorithm, that is, it

has undesirable situations. However, almost all such undesirable situations can be re-

moved with proposed simple refinement procedure. In actual, we have found our that this

statement is followed from results in computer experiments. Moreover, the running time

of our algorithm has an advantage against well-known and widely used algorithm, 2-opt

Moves.

One of the most important future works is to guarantee that Algorithm 6 always can

compute a simple polygonalization of S. In other words, it may be necessary to backtrack

and restore while computing a maximal polygon tree if it is trapped by a deadlock. We

have designed a recursive procedure to restart growing polygon tree, but there still exist

undesirable situations.

In the simple polygonalizations problem, we are also interested in designing an efficient

algorithm for enumerating maximal independent sets in the map graph, although there

exists an algorithm for generating all maximal independent sets in a polynomial delay

[78].

48

Chapter 4

Equilibrium and Disequilibrium in

Spatial Competition

4.1 Introduction

4.1.1 Competitive facility location

In this chapter, we study combinatorial game models in spatial competition, and propose

several strategies in the graph models. Spatial competition is one of the most realistic

branch of location theory for spatial economics and industrial organization [8, 99], math-

ematics [69], and operations research [49, 83, 120]. For a survey of various competitive

facility location models see [45, 46, 47, 48, 68, 70].

Facility location models deal mainly with the location of plants, warehouses and other

industrial facilities. One branch of location theory deals with the location of retail and

other commercial facilities which operate in a competitive environment. The facilities

compete for customers and market share, with a profit maximization objective. The cus-

tomary objective function to be maximized is the market share captured by the facilities.

All competitive location models attempt to estimate the market share captured by each

competing facility in order to optimize its location. The best location for a new facility is

at the point at which its market share is maximized. Typically, the objective to be opti-

mized is the maximum distance from customers to the facility–this results in the minimum

enclosing disk problem studied by Megiddo [88], Welzl [125] and Aronov et al. [9].

We consider a model where the behavior of the customers is deterministic in the sense

that a facility can determine the set of customers more attracted to it than to any other

facility. We assume that customers in the underlying space are uniformly distributed.

This implies each facility captures a constant market area. The collection of market

49

areas forms a tessellation of the underlying space. If customers choose the facility on

the basis of distance in some metric, the tessellation is the Voronoi diagram of the set of

facilities [100, 17]

4.1.2 Combinatorial game theory

Combinatorial games lead to several interesting, clean problems in algorithms and com-

plexity theory, many of which remain open. The complexity of generalized versions of

popular games and puzzles has been studied. Indeed, many classic games are known

to be computationally intractable: one-player puzzles are often NP-complete, and two-

player games are often PSPACE-complete or EXPTIME-complete. The complexity classes

are comprehensively summarized by Papadimitriou [104], Arora & Barak [11], and so on.

For example, the problems of determining the winner are shown to be exponential-

time complete for generalized Chess [61], Checkers [110], Go [109], and Shogi [1]; the

problems of determining the winner or whether there is a solution are PSPACE-complete

for generalized Hex [54, 108], Gomoku [107], Othello [76], Sokoban [38], and Sliding-

Block (箱入り娘 in Japanese) [72]; and the problems of determining whether there is a

solution in generalized Hi-Q (peg-solitaire) [121], minesweeper [80, 81], and Tetris [24] are

shown to be NP-complete. Surprisingly, many seemingly simple puzzles and games are

also hard. Demaine [40] and Eppstein [52] surveyed a more comprehensive results in the

algorithmic combinatorial game theory [40].

A combinatorial game typically involves two players, say W (white) and B (black),

alternating play in well-defined moves. However, in the interesting case of a combinatorial

puzzle, there is only one player, and for cellular automata such as Conway’s Game of Life,

there are no players. In all cases, no randomness or hidden information is permitted: all

players know all information about gameplay (perfect information). The problem is thus

purely strategic: how to best play the game against an ideal opponent.

Combinatorial game theory is to be distinguished from other forms of game theory

arising in the context of economics. Economic game theory has applications in computer

science as well, most notably in the context of auctions [43, 57] and analyzing behavior

on the Internet [105].

It is useful to distinguish several types of two-player perfect-information games [19,

pp. 16–17]. A common assumption is that the game terminates after a finite number of

moves (the game is finite or short), and result is a unique winner. Of course, there are

exceptions: some games (such as Chess) can be drawn out forever, and some games (such

as tic-tac-toe and Chess) define tie in certain cases. However, in the combinatorial-game

setting, it is useful to define the winner as the last player who is able move; this is called

50

normal play. (We will normally assume normal play.) A game is loopy if it is possible to

return to previously seen positions (as in Chess, for example). Finally, a game is called

impartial if the two players are treated identically, that is, each player has the same moves

available from the same game position; otherwise the game is called partisan.

A particular two-player perfect-information game without ties or draws can have one

of four outcomes as the result of ideal play: player W winds, player B wins, the first

player to move wins, or the second player to move wins. One goal in analyzing two-player

games is to determine the outcome as one of these four categories, and to find a strategy

for the winning player to win. Another goal is to compute a deeper structure to games,

called the value of the game.

A beautiful mathematical theory has been developed for analyzing two-player combina-

torial games. The most comprehensive reference is the book Winning Ways by Berlekamp,

Conway, and Guy [19], but a more mathematical presentation is the book On Numbers

and Games by Conway [34]. See also [35, 63] for overviews and [62] for a bibliography.

The basic idea behind the theory is simple: a two-player game can be described by a

rooted tree, each node having zero or more left branches correspond to options for player

W to move and zero or more right branches corresponding to options for player B to move;

leaves corresponding to finished games, the winner being determined by either normal or

misére play. The interesting parts of combinatorial game theory are the several methods

for manipulating and analyzing such games/trees.

4.2 Summary

The Voronoi game is motivated as an idealized model for competitive facility location,

which was proposed by Ahn, Cheng, Cheong, Golin, and Oostrum [2]. The Voronoi game

is played on a bounded continuous arena by two players. Two players W (white) and B
(black) put n points alternately, and the continuous field is subdivided according to the

nearest neighbor rule. At the final step, the player who dominates the larger area wins.

The Voronoi game is a natural game, but the general case seems to be very hard to

analyze from the theoretical point of view. Hence, in [2], Ahn et al. investigated the case

that the game field is a bounded 1-dimensional continuous domain. On the other hand,

Cheong, Har-Peled, Linial, and Matoušek [31], and Fekete and Meijer [56] deal with a 2-

or higher-dimensional case, but they restrict themselves to the one-round game; first, W
puts all n points, and next B puts all n points.

In this paper, we introduce the discrete Voronoi game. Two players alternately occupy

n vertices on a graph, which is a bounded discrete arena. (Hence the graph contains at

51

least 2n vertices.) This restriction seems to be appropriate since real estates are already

bounded in general, and we have to build shops in the bounded area. More precisely,

the discrete Voronoi game is played on a given finite graph G, instead of a bounded

continuous arena. Each vertex of G can be assigned to the nearest vertices occupied by

W or B, according to the nearest neighbor rule. (Hence a vertex can be a “tie” when it

has the same distance from a vertex occupied by W and another vertex occupied by B.)

Finally, the player who dominates larger area (or a larger number of vertices) wins. We

note that the two players can tie in some cases.

We first consider the case that the graph G is a complete k-ary tree. A complete k-ary

tree is a natural generalization of a path which is the discrete analogy of 1-dimensional

continuous domain. We also mention that complete k-ary trees form a very natural and

nontrivial graph class. In [2], Ahn et al. showed that the second player B has an advantage

on a 1-dimensional continuous domain. In contrast to this fact, we first show that the first

player W has an advantage for the discrete Voronoi game on a complete k-ary tree, when

the tree is sufficiently large (comparing to n and k). More precisely, we show that W has

a winning strategy if (1) 2n ≤ k, or (2) k is odd and the complete k-ary tree contains at

least 4n2 vertices. On the other hand, when k is even and 2n > k, two players tie if they

do their best.

Next, we show computational hardness results for the discrete Voronoi game. When

we admit a general graph as a game arena, the discrete Voronoi game becomes intractable

even in the following strongly restricted case: the game arena is an arbitrary graph, the

first player W occupies just one vertex which is predetermined, the second player B
occupies n vertices in any way. The decision problem for the strongly restricted discrete

Voronoi game is defined as follows: determine whether B has a winning strategy for given

graph G with the occupied vertex byW. This restricted case seems to be advantageous for

B. However, the decision problem is NP-complete. This result is also quite different from

the previously known results in the 2- or higher-dimensional problem (e.g., B can always

dominate the fraction 1
2
+ ε of the 2- or higher-dimensional domain) by Cheong et al. [31]

and Fekete and Meijer [56]. However, Fekete and Meijer [56] showed that maximizing the

area B can claim is NP-hard in the one-round game in which the given arena is a polygon

with holes.

We also show that the discrete Voronoi game is PSPACE-complete in the general case.

This can be seen as a positive answer to the conjecture by Fekete and Meijer [56].

52

4.3 Problem definitions – Voronoi Game on Graphs

In this section, we formulate the discrete Voronoi game on a graph. Let us denote a

Voronoi game by V G(G, n), where G is the game arena, and the players play n rounds.

Hereafter, the game arena is an undirected and unweighted simple graph G = (V, E) with

N = |V | vertices.
For each round, the two players, W (white) and B (black), alternately occupy an

unoccupied vertex on the graph G (W always starts the game, as in Chess). This implies

thatW and B cannot occupy a common vertex at any time. Hence it is implicitly assumed

that the game arena G contains at least 2n vertices.

Let Wi (resp. Bi) be the set of vertices occupied by player W (resp. B) at the end

of the i-th round. We define the distance d(v, w) between two vertices v and w as the

number of edges along the shortest path between them, if such path exists; otherwise

d(v, w) = ∞. Each vertex of G can be assigned to the nearest vertices occupied by W
and B, according to the nearest neighbor rule. So, we define a dominance set V(A, B) (or

Voronoi regions) of a subset A ⊂ V against a subset B ⊂ V , where A ∩ B = ∅, as

V(A, B) = {u ∈ V | min
v∈A

d(u, v) < min
w∈B

d(u, w)}.

The dominance sets V(Wi, Bi) and V(Bi, Wi) represent the sets of vertices dominated at

the end of the i-th round byW and B, respectively. Let VW and VB denote V(Wn, Bn) and

V(Bn, Wn), respectively. Since some vertex can be a ”tie” when it has the same distance

from a vertex occupied by W and another vertex occupied by B, there may exist a set

Ni of neutral vertices, Ni := {u ∈ V | minv∈Wi
d(u, v) = minw∈Bi

d(u, w)}, disjoint from

both V(Wi, Bi) and V(Bi, Wi).

Finally, the player who dominates a larger number of vertices wins the discrete Voronoi

game. More precisely, W wins if |VW | > |VB|; B wins (orW loses) if |VW | < |VB|; and the

players tie otherwise. The outcome for each player, W or B, is the size of the dominance

set |VW | or |VB|. In our model, note that any vertices in Nn do not contribute to the

outcomes VW and VB of the players (see Fig. 4.1).

4.4 Discrete Voronoi Game on a Complete k-ary Tree

In this section, we consider the case that the game arena G is a complete k-ary tree T ,

which is a rooted tree whose inner vertices have exactly k children, and all leaves are at

the same level (the highest level).

Firstly, we show a simple observation for Voronoi games V G(T, n) that satisfy 2n ≤ k.

In this game of a few rounds, W occupies the root of T with her first move, and then W

53

1st round 2nd round 3rd round

Figure 4.1: Example of a discrete Voronoi game V G(G, 3), where G is the 15 × 15 grid

graph; each bigger circle is a vertex occupied by W, each smaller circle is an unoccupied

vertex dominated by W, each bigger black square is a vertex occupied by B, each smaller

black square is an unoccupied vertex dominated by B, and the others are neutral vertices.

In this example, the 2nd player B won by 108–96.

can dominates at least N−1
k

n + 1 vertices. Since B dominate at most N−1
k

n vertices, W
wins. More precisely, we show the following algorithm as W’s winning strategy.

Algorithm 9: Simple strategy

Stage I: (W’s first move) W occupies the root of T ;

Stage II: W occupies the unoccupied child of the root for her remaining rounds;

In the strategy of Algorithm 9, W alternately pretends to occupy the unoccupied

children of root, though W may occupy any vertex. This strategy is obviously well-

defined and a winning strategy for W, whenever the game arena T satisfies 2n ≤ k.

Proposition 4.4.1 Let V G(G, n) be the discrete Voronoi game such that G is a complete

k-ary tree with 2n ≤ k. Then the first player W always wins.

We next turn to a more general case. We call a k-ary tree odd (resp. even) if k is

odd (resp. even). Let T be a complete k-ary tree as a game arena, N be the number of

vertices of T , and H be the height of T . Note that N = kH+1−1
k−1

and H ∼ logk N . 1 For

this game, we show the following theorem.

Theorem 4.4.2 In the discrete Voronoi game V G(G, n) where G is a complete k-ary tree

such that N ≥ 4n2, the first player W always wins if G is an odd k-ary tree; otherwise

the game ends in tie when the players do their best.

1In this paper, we write f(x) ∼ g(x) when limx→∞
f(x)
g(x) = 1.

54

In section 4.4.1, we first show winning strategy for the first playerW when k is odd and

the complete k-ary tree contains at least 4n2 vertices. Since our game arena is discrete,

it is necessary to deliberate the relation between the number of children k and the game

round n. Indeed, W chooses one of two strategies according to the relation between k

and n. We next consider the even k-ary tree in section 4.4.2, which completes the proof

of Theorem 4.4.2.

4.4.1 Discrete Voronoi game on a large complete odd k-ary tree

We generalize the simple strategy to Voronoi games V G(T, n) on a large complete k-ary

tree, where 2n > k and k is odd (k ≥ 3). We define that a level h is the keylevel if the

number kh of vertices satisfies n ≤ kh < 2n, and a vertex v is a key-vertex if v is in the

keylevel. Let Ti denote the number of vertices in the subtree rooted at a vertex in level

i (i.e., T0 = N , Ti = kTi+1 + 1). Let {V h
1 , V h

2 , . . . , V h
kh−1} be a family of vertices in the

keylevel h such that the set V h
i consists of k vertices which have the same parent for each

i.

kh 2n

n

level 0

keylevel h

Th

αkhk

level H(≥ 2h)

Figure 4.2: The notations on the game arena T .

As mentioned above, a winning strategy is sensitive to the relation between k, h, and

n. So, we firstly introduce a magic number α = 2n
kh , 1 < α < k (see Fig. 4.2). We note

that since k is odd, we have neither α = 1 nor α = k. By assumption, we have that the

game arena T is sufficiently large such that the subtrees rooted at level h contain sufficient

vertices comparing to the number of vertices between level 0 and level h. More precisely,

by the assumption N ≥ 4n2, we have H ≥ 2h and N ≥ 4n2

α2 . We define γ := H − 2h, and

hence γ ≥ 0.

The winning strategy for W chooses one of two strategies according to the condition

whether the magic number α is greater than 1 + 2
k
− 1

k−1
+ 1

kh+γ(k−1)
or not. The strategy

is shown in Algorithm 10.

Lemma 4.4.3 The keylevel strategy is well-defined in a discrete Voronoi game V G(T, n),

where T is a sufficiently large complete k-ary tree so that N ≥ 4n2.

55

Proof By assumption, there exists the keylevel h.

In Stage (a)-I, if B occupied a key-vertex in V h
i and W has not occupied any vertex

in V h
i , W occupies an unoccupied key-vertex in V h

i rather than occupying the other

unoccupied key-vertices. This implies that W can occupy at least one key-vertex in each

V h
i , i = 1, 2, . . . , kh−1. Since the situation W follows Stage (a)-II may happen when B

occupies at least one key-vertex, there exists such a child. If W follows the case (b), then

this is obviously well-defined. So, the keylevel strategy is well-defined. �

Lemma 4.4.4 The keylevel strategy is a winning strategy for W in a discrete Voronoi

game V G(T, n), where T is a sufficiently large complete odd k-ary tree so that N ≥ 4n2.

Proof We first argue that W follows the case (a), or α > 1 + 2
k
− 1

k−1
+ 1

kh+γ(k−1)
. When

the game ends in Stage (a)-I (i.e., B never occupies any key-vertices, or does not occupy

so many key-vertices), the best strategy of B is as follows. Firstly, B occupies all vertices

in level h− 1 for the first kh−1 rounds, and then occupies a child of key-vertex dominated

by W to dominate as many vertices as possible with her remaining moves. In fact, the

winner dominates more leaves than that of the opponent. So, it is not so significant to

occupy the vertices in a level strictly greater than h + 1, and strictly less than h− 1.

Now we estimate the players’ outcomes |VW | and |VB|. Firstly, W dominates nTh

vertices and B dominates (kh − n)Th + kh−1
k−1

vertices. Since B dominates the subtrees of

W with her remaining n− kh−1 vertices,

|VW | = nTh − (n− kh−1) Th+1,

|VB| ≤ (kh − n) Th + (n− kh−1) Th+1 +
kh − 1

k − 1
.

Since 2n = αkh and α > 1 + 2
k
− 1

k−1
+ 1

kh+γ(k−1)
, we have

|VW | − |VB|

≥ nTh − 2(n− kh−1) Th+1 − (kh − n) Th −
kh − 1

k − 1

> (kh+1α + 2kh−1 − khα− kh+1)Th+1 −
kh − 1

k − 1

≥ 1

kγ
Th+1 −

kh − 1

k − 1
.

56

By the definition of γ with γ = H − 2h, we have

1

kγ
Th+1 −

kh − 1

k − 1
=

1

kγ
(kTh+2 + 1)− kh − 1

k − 1

=
1

kγ

kH−h − 1

k − 1
− kh − 1

k − 1

=
1

kγ

k(2h+γ)−h − 1

k − 1
− kh − 1

k − 1

=
1

k − 1

(
1− 1

kγ

)
> 0.

Next, we consider the case thatW follows Stage (a)-II. At a level greater than h, there

are three types of B’s occupation (see Fig. 4.3). In cases (2) and (3) of Fig. 4.3, B has

level h

level h + 1

W

B BB

unoccupied vertex

(1) (2) (3)

B

Figure 4.3: B’s occupations at the level greater than h.

no profits. Therefore, when B uses his best strategy, we can assume that B only occupies

vertices under W’s vertices. This implies that B tries to perform a similar strategy to

W, that is, to occupy many key-vertices. More precisely, B chooses his move from the

following options at every round:

• B occupies an unoccupied key-vertex; or

• B occupies a vertex v in level h + 1, where the parent of v is a key-vertex of W; or

• B occupies a vertex w in level h + 1, where the parent of w is a key-vertex of B.

This implies that almost all key-vertices are occupied by either W or B, and then the

subtree of T consisting of the vertices in level 0 through h− 1 is negligibly small so that

these vertices cannot have much effect on outcomes of W and B. It is not significant to

the occupation of these vertices for both players.

Let xi (resp. yi) be the number of vertices occupied by W (resp. B) in level i. Let y+
i

(resp. y−
i) be the number of vertices occupied by B in higher (resp. lower) than or equal

to level i.

When Stage (a)-I ends, W has xh key-vertices and B has yh key-vertices. Note that

xh + yh ≤ kh and yh < kh

2
� ≤ xh < n. xh+1 is the number of vertices occupied in

Stage (a)-II. Let y′
h+1 be the number of occupations used to dominate vertices of W’s

57

dominance set by B in level h + 1, and y′′
h+1 be yh+1 − y′

h+1. (see Fig. 4.4). Note that

xh − yh ≥ y′
h+1 − xh+1 (with equality if y′′

h+1 + y−
h−1 + y+

h+2 = 0). Now, we estimate their

level h

level h + 1

xh
xh+1

yh

y′′
h+1

y′
h+1

y
−
h−1

Figure 4.4: The notations in the case (a) of keylevel strategy.

outcomes. Since W can dominate at least xhTh + (xh+1 − y′
h+1)Th+1 vertices, and W

dominates yhTh + (y′
h+1 − xh+1)Th+1 vertices, the difference between the outcomes of W

and B is

|VW | − |VB|

= xhTh + (xh+1 − y′
h+1)Th+1 − yhTh − (y′

h+1 − xh+1)Th+1

≥
(
k(xh − yh)− 2(y′

h+1 − xh+1)
)
Th+1 > Th+1 > 0.

W can dominate at least Th+1 vertices more than that of B, which is more vertices

dominated by B using y0 vertices between level 0 and h. So, W wins when α > 1 + 2
k
−

1
k−1

+ 1
kh+γ(k−1)

.

We next argue that W follows the case (b), or α ≤ 1 + 2
k
− 1

k−1
+ 1

kh+γ(k−1)
. When

xh−1 = kh−1, the best strategy for B is to occupy as many key-vertices as possible. So,

the differences of outcomes are estimated as follows:

|VW | − |VB|

= (kh − 2n) Th + 2(n− kh−1) Th+1 +
kh − 1

k − 1

≥ (kh+1 − 2kh−1 − kh(k − 1)α)Th+1 + 2 · k
h − 1

k − 1

≥ 2 · k
h − 1

k − 1
− 1

kγ
Th+1

= 2 · k
h − 1

k − 1
− 1

kγ

kh+γ − 1

k − 1
=

1

k − 1

(
kh − 2 +

1

kγ

)

> 0.

Finally, we consider the case of α < 1 + 2
k
− 1

k−1
+ 1

kh+γ(k−1)
and xh−1 < kh−1 (or

xh−1 + yh−1 = kh−1). In this case, the similar arguments in which W follows Stage (a)-

58

II can be applied. Each xh−1, xh, and xh+1 is the number of vertices occupied in Stage

(b)-I, (b)-II, and (b)-III, respectively. As mentioned above, y−
h−2 and y+

h+2 should be 0 to

maximize B’s outcome |VB|. Let y′
h be the number of key-vertices occupied by B whose

parent is occupied byW, and y′′
h = yh−y′

h. Fig. 4.5 shows these notations. IfW does not

level h − 1

level h

level h + 1

xh−1
xh

xh+1

yh−1
y′′

h
y′

h
xh+1

y
−
h−2

Figure 4.5: The notations in the case (b) of keylevel strategy.

follow Stage (b)-III, thenW wins since xh−1−yh−1 ≥ y′
h−xh and k(xh−1−yh−1)−2(xh−

y′
h) > 0. If W follows Stage (b)-III, then we have yh−1 + y′

h + y′′
h ≤ n, xh + y′′

h = yh−1,

and xh−1 > 1
2
kh−1 > yh−1 by the keylevel strategy. We can estimate the outcome of W as

follows;

|VW | − |VB| = xh−1Th−1 + (xh − 2y′
h − y′′

h)Th + 2xh+1Th+1

> kxh−1 + xh − 2y′
h − y′′

h

≥ kh + 2(kh−1 − xh−1)− αkh

≥ kh−1

k − 1
− 1

kγ(k − 1)
> 0.

Therefore, the first player W wins when she follows case (b) in the keylevel strategy. This

completes the proof of Lemma 4.4.4. �

4.4.2 Discrete Voronoi game on a large complete even k-ary tree

We consider the case that the game arena T is a large complete even k-ary tree. We

assume that the game V G(T, n) is sufficed k > 2n, since W always wins if k ≤ 2n as

mentioned above. Moreover, we assume that the game arena T contains at least 4n2

vertices. Hence the first player W always loses if she occupies the root of T , since the

second player B can use the keylevel strategy ofW andW cannot drive B in disadvantage.

In fact, since T is an even k-ary tree, B can take the symmetric moves ofW ifW does

not occupy the root. Therefore, B never loses. However, we can show that W also never

loses if she follows the keylevel strategy.

59

If B has a winning strategy, then the strategy must not be the symmetric strategy

of W. However, such a strategy does not exist, since W can occupy at least half of the

vertices on the important level, although the important level is varied by the condition

α > 1 + 2
k
− 1

k−1
+ 1

kh+γ(k−1)
. This implies that W can dominate at least half the vertices

of T if she follows the keylevel strategy. Therefore, if both players do their best, then the

game always ends in a tie.

4.5 NP-Hardness for General Graphs

In this section, we show that the discrete Voronoi game is intractable on general graphs

even if we restrict ourselves to the one-round case. To show this, we consider the following

special case:

Problem 1:

Input: A graph G = (V, E), a vertex u ∈ V , and n.

Output: Determine whether B has a winning strategy on G by n occupations after

just one occupation of u by W.

That is,W first occupies u, and never occupies any more, and B can occupy n vertices

in any way. Then we have the following theorem:

Theorem 4.5.1 Problem 1 is NP-complete.

Proof It is clear Problem 1 is in NP. Hence we prove the completeness by showing

a polynomial time reduction from a restricted 3SAT such that each variable appears at

most three times in a given formula [104, Proposition 9.3]. Let F be a given formula with

the set W of variables {x1, x2, . . . , xn} and the set C of clauses {c1, c2, . . . , cm}, where

n = |W | and m = |C|. Each clause contains at most 3 literals, and each variable appears

at most 3 times. Hence we have 3n ≥ m.

Now we show a construction of G. Let
W+ := {x+

i | xi ∈W},
W− := {x−

i | xi ∈W},
Y := {yj

i | i ∈ {1, 2, . . . , n}, j ∈ 1, 2, 3},
Z := {zj

i | i ∈ {1, 2, . . . , n}, j ∈ 1, 2, 3},
C ′ := {c′1, c′2, . . . , c′m},
D := {d1, d2, . . . , d2n−2}.

Then the set of vertices of G is defined by V := {u} ∪W+ ∪W− ∪ Y ∪ Z ∪ C ∪ C ′ ∪D.

60

The set of edges E is defined by the union of the following edges:

{{u, z} | z ∈ Z},
{{yj

i , z
j
i } | y

j
i ∈ Y, zj

i ∈ Z with 1 ≤ i ≤ n, 1 ≤ j ≤ 3},
{{x+

i , yj
i } | x+

i ∈W+, yj
i ∈ Y with 1 ≤ i ≤ n, 1 ≤ j ≤ 3},

{{x−
i , yj

i } | x−
i ∈W+, yj

i ∈ Y with 1 ≤ i ≤ n, 1 ≤ j ≤ 3},
{{x+

i , cj} | x+
i ∈ W+, cj ∈ C if cj contains literal xi},

{{x−
i , cj} | x−

i ∈ W−, cj ∈ C if cj contains literal x̄i},
{{cj, c

′
j} | cj ∈ C, c′j ∈ C ′ with 1 ≤ j ≤ m},

{{c′j, u} | c′j ∈ C ′ with 1 ≤ j ≤ m}, and

{{u, di} | di ∈ D with 1 ≤ i ≤ 2n− 2}.
An example of the reduction for the formula F = (x̄1∨x2∨x3)∧(x̄2∨x̄3∨x̄4) is depicted

in Fig. 4.6. Small white and black circles are the vertices in Z and Y , respectively; large

black circles are the vertices in W+ ∪W−; black and white rectangles are the vertices

in C and C ′, respectively; two white large diamonds are the same vertex u; and small

diamonds are the vertices in D. It is easy to see that G contains 10n + 2m − 1 vertices,

and hence the reduction can be done in polynomial time.

x−
3x+

3x−
2x+

2x−
1x+

1 x−
4x+

4

c1 c2

c′1 c′2

u

u

Figure 4.6: Reduction from F = (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3 ∨ x̄4)

Now we show that F is satisfiable if and only if B has a winning strategy. We first

observe that for B, occupying the vertices in W+∪W− gives more outcome than occupying

the vertices in Y ∪ Z ∪C ∪C ′. More precisely, occupying either x+
i or x−

i for each i with

1 ≤ i ≤ n, B dominates all vertices in W+ ∪W− ∪ Y , and it is easy to see that any other

way achieves less outcome. Therefore, we can assume that B occupies one of x+
i and x−

i

for each i with 1 ≤ i ≤ n.

When there is an assignment (a1, a2, . . . , an) that satisfies F , B can also dominates all

vertices in C by occupying x+
i if ai = 1, and occupying x−

i if ai = 0. Hence, B dominates

5n + m vertices in this case, and then W dominates all vertices in Z, C ′ and D, that

is, W dominates 1 + 3n + m + 2n − 2 = 5n + m − 1 vertices. Therefore, B wins if F is

61

satisfiable.

On the other hand, if F is unsatisfiable, B can dominate at most 5n + m− 1 vertices.

In this case, the vertex in C corresponding to the unsatisfied clause is dominated by u.

Thus W dominates at least 5n + m vertices, and hence W wins if F is unsatisfiable.

Therefore, Problem 1 is NP-complete. �
Next we show that the discrete Voronoi game is NP-hard even in the one-round case.

More precisely, we show the NP-completeness of the following problem:

Problem 2:

Input: A graph G = (V, E), a vertex set S ⊆ V with n := |S|.
Output: Determine whether B has a winning strategy on G by n occupations, after

n occupations of the vertices in S by W.

Corollary 4.5.2 Problem 2 is NP-complete.

Proof We use the same reduction in the proof of theorem 4.5.1. Let S be the set

that contains u and n − 1 vertices in D. Then we immediately have NP-completeness of

Problem 2. �

Corollary 4.5.3 The (n-round) discrete Voronoi game on a general graph is NP-hard.

4.6 PSPACE-Completeness for General Graphs

In this section, we show that the discrete Voronoi game is intractable on general graphs.

More precisely, we consider the following general case:

Problem 3:

Input: A graph G = (V, E) and n.

Output: Determine whether W has a winning strategy on G by n occupations.

Then we have the following theorem:

Theorem 4.6.1 The discrete Voronoi game is PSPACE-complete in general.

Proof We show that Problem 3 is PSPACE-complete. It is clear Problem 3 is in PSPACE.

Hence we prove the completeness by showing a polynomial time reduction from the fol-

lowing two-person game:

62

Gpos(Pos Dnf):

Input: A positive DNF formula A (that is, a DNF formula containing no negative

literal).

Rule: Two players alternately choose some variable of A which has not been chosen.

The game ends after all variables of A has been chosen. The first player wins if and

only if A is true when all variables chosen by the first player are set to 1 and all

variables chosen by the second player are set to 0. (In other words, the first player

wins if and only if he takes every variable of some disjunct.)

Output: Determine whether the first player has a winning strategy for A.

The game Gpos(Pos Dnf) is PSPACE-complete even with inputs restricted to DNF

formulas having at most 11 variables in each disjunct (see [113, Game 5(b)]).

Let A be a positive DNF formula with n variables {x1, . . . , xn} and m disjuncts

{d1, . . . , dm}. Without loss of generality, we assume that n is even. Now we show a

construction of G = (V, E). Let X = {x1, . . . , xn}, D = {d1, . . . , dm}, U = {u1, u2}, and

P = {p1, . . . , p2n2+6n}. Then the set of vertices of G is defined by V := X ∪D ∪ U ∪ P .

In this reduction, each pendant in P is attached to some vertex in X ∪ U to make it

“heavy.”

The set of edges E consists of the following edges: (1) make X a clique with edges

{xi, xj} for each 1 ≤ i < j ≤ n, (2) join a vertex xi in X with a vertex dj in D if A has

a disjunct dj that contains xi, (3) join each dj with u2 by {dj, u2} for each 1 ≤ j ≤ m,

(4) join u1 and u2 by {u1, u2}, (5) attach 2n pendants to each xi with 1 ≤ i ≤ n, and (6)

attach 3n pendants to each ui with i = 1, 2.

An example of the reduction for the formula A = (x1 ∧ x2 ∧ x4 ∧ x5) ∨ (x3 ∧ x5 ∧
x7 ∧ x8) ∨ (x6 ∧ x8) is depicted in Fig. 4.7. Black diamond and white diamond are u1

and u2, respectively; white squares are the vertices in D; and small circles are vertices in

X. Large white numbered circles are pendants, and the number indicates the number of

pendants attached to the vertex.

Each player will occupy (n/2) + 1 vertices in G. It is easy to see that G contains

n + m + 2 + 6n + 2n2 = 2n2 + 7n + m + 2 vertices, and hence the reduction can be done

in polynomial time.

Now we show that the first player of Gpos(Pos Dnf) for A wins if and only if W of

the discrete Voronoi game for G wins.

Since the vertices in X and U are heavy enough, W and B always occupy the vertices

in X and U . In fact, occupying a vertex dj in D does not bring any advantage; since X

induces a clique, the pendants attached to some xi in N(dj) will be canceled by occupying

any xi′ by the other player.

63

16

d1 d2 d3

u1 u2
24 24

16 16 16 16 16 16 16

Clique

x1 x2 x3 x4 x5 x6 x7 x8

Figure 4.7: Reduction from A = (x1 ∧ x2 ∧ x4 ∧ x5) ∨ (x3 ∧ x5 ∧ x7 ∧ x8) ∨ (x6 ∧ x8)

Since the vertices in U are heavier than the vertices in X, W and B first occupy one

of u1 and u2, and occupy the vertices in X, and the game will end when all vertices in X

are occupied.

The player W has two choices.

We first consider the case in which W occupies u2. Then B has to occupy u1, and

W and B occupy n/2 vertices in X. It is easy to see that, in this case, they tie on the

graph induced by U ∪ X ∪ P . Hence the game depends on the occupation of D. In

Gpos(Pos Dnf), if the first player has the winning strategy for A, the first player can

take every variable of a disjunct dj . Hence, following the strategy, W can occupy every

variable in N(dj) on G. Then, since W also occupies u2, dj is dominated by W. On the

other hand, B cannot dominate any vertex in D since W occupies u2. Hence, if the first

player of Gpos(Pos Dnf) has a winning strategy, so does W. (Otherwise, the game ends

in a tie.)

Next, we consider the case in which W occupies u1. Then B can occupy u2. The game

again depends on the occupation of D. However, in this case, W cannot dominate any

vertex in D since B has already occupied u2. Hence W will lose or they will tie at best.

ThusW has to occupy u2 at first, and thenW has a winning strategy if the first player

of Gpos(Pos Dnf) has it.

Therefore, Problem 3 is PSPACE-complete. �

4.7 Concluding Remarks and Further Research

We gave winning strategies for the first playerW on the discrete Voronoi game V G(T, n),

where T is a large complete k-ary tree with odd k. It seems that W has an advantage

even if the complete k-ary tree is not large, which is future work.

In our strategy, it is essential that each subtree of the same depth has the same size.

64

Therefore, considering general trees is the next problem. The basic case is easy: When

n = 1, the discrete Voronoi game on a tree is essentially equivalent to finding a median

vertex of a tree. The deletion of a median vertex partitions the tree so that no component

contains more than n/2 of the original n vertices. It is well known that a tree has either

one or two median vertices, which can be found in linear time (see, e.g., [71]). In the

former case, W wins by occupying the median vertex. In the later case, two players tie.

This algorithm corresponds to our Algorithm 9.

65

Algorithm 10: Keylevel strategy for W
if α > 1 + 2

k
− 1

k−1
+ 1

kh+γ(k−1)
then

Stage (a)-I:
W occupies an unoccupied key-vertex so that at least one vertex is occupied

in each V h
i ;

(Stage (a)-I ends after the last key-vertex is occupied by

either W or B. Note that the game may finish in Stage (a)-I.)

end

Stage (a)-II:
W occupies an unoccupied vertex which is a child of the vertex v, such that

v is occupied by B, and v has the minimum level greater than or equal to h;

(W dominates as many vertices as possible from B.)
end

else

Stage (b)-I:
W occupies an unoccupied vertex in level h− 1;

(Stage (b)-I ends when such unoccupied vertices are not

exists.)

end

Stage (b)-II:
W occupies an unoccupied key-vertex whose parent is not occupied by W;

(Stage (b)-II ends when such unoccupied key-vertices are not

exist.)

end

Stage (b)-III:
if there exists an unoccupied vertex v in level h + 1 such that the parent of v

is occupied by B then W occupies v;

else W occupies an unoccupied key-vertex in level h + 1 whose parent is

occupied by W;

end

end

66

Bibliography

[1] H. Adachi, H. Kamekawa, and S. Iwata, “Shogi n×n board is complete in exponential

time,” Trans. IEICE J70-D:1843–1852 (in Japanese), 1987.

[2] H. -K. Ahn, S.-W. Cheng, O. Cheong, M. Golin, and R. van Oostrum, “Competitive

facility location: the Voronoi game,” Theoretical Computer Science, 310:457–467,

2004.

[3] O. Aichholzer, “The path of a triangulation,” Proc. 15th Ann. ACM Symp. Compu-

tational Geometry, pp. 14–23, 1999.

[4] O. Aichholzer, “Counting Triangulations – Olympics,” http://www.igi.tugraz.

at/oaich/triangulations/counting/counting.html.

[5] O. Aichholzer, and H. Krasser, “The point set order type data base: a collection of

applications and results,” Proc. 13th Canadian Conference on Computational Geom-

etry, pp. 17–20, 2001.

[6] M. Ajtai, V. Chvátal, M. M. Newborn, and E. Szemerédi, “Crossing-free subgraphs,”

Annals Discrete Math., 12:9–12, 1982.

[7] H. Alt, U. Fuchs, and K. Kriegel, “On the number of simple cycles in planar graphs,”

Combinatorics Probab. Comput., 8:397–405, 1999.

[8] S. P. Anderson, “Equilibrium existence in a linear model of spatial competition,”

Economica, 55:479–491, 1988.

[9] B. Aronov, M. van Kreveld, R. van Oostrum, and K. Varadarajan, “Facility location

on terrains,” 9th Internat. Symp. of Algorithms and Computation, vol. 1533, Lecture

Notes in Computer Science, Springer, Berlin, pp. 19–28, 1998.

[10] B. Aronov, T. Asano, Y. Kikuchi, S. C. Nandy, S. Sasahara, and T. Uno, “A Gen-

eralization of Magic Squares with Applications to Digital Halftoning,” to appear in

Theory of Computing System.

67

[11] S. Arora and B. Barak, “Computational Complexity: A Modern Approach,” to ap-

pear: http://www.cs.princeton.edu/theory/complexity/.

[12] T. Asano, “Computational Geometric and Combinatorial Approaches to Digital

Halftoning,” Proc. of Conferences in Research and Practice in Information Tech-

nology, vol. 51, p. 3, 2006.

[13] T. Asano, P. Brass, and S. Sasahara, “Disc Covering Problem with Application to

Digital Halftoning,” Proc. Int. Conf. on Computer Science and Applications, vol. 3,

pp. 11–21, 2004.

[14] T. Asano, N. Katoh, K. Obokata, and T. Tokuyama, “Matrix rounding under the

Lp-discrepancy measure and its application to digital halftoning,” SIAM Journal on

Computing, 32(6):1423–1435, 2003.

[15] T. Auer and M. Held, “Heuristics for the Generation of Random Polygons,” Proc.

8th Canadian Conference on Computational Geometry, pp. 38–44, 1996.

[16] T. Auer. “Heuristics for the Generation of Random Polygons,” Master’s thesis, Com-

puterwissenschaften, U. Salzburg, A-5020 Salzburg, Austria, June 1996.

[17] F. Aurenhammer, and R. Klein, “Voronoi Diagrams,” Ch. 5 in Handbook of Compu-

tational Geometry (Ed. J.-R. Sack and J. Urrutia), Amsterdam, Netherlands: North-

Holland, pp. 201-290, 2000.

[18] D. Avis and K. Fukuda, “Reverse Search for Enumeration,” Discrete Applied Math-

ematics, 65:21–46, 1996.

[19] E. R. Berlekamp, J. H. Conway, and R. K. Guy, “Winning Ways,” Academic Press,

London, 1982.

[20] S. Bespamyatnikh, “An efficient algorithm for enumeration of triangulations,” Com-

putational Geometry Theory and Application, 23(3):271–279, 2002.

[21] M. de Berg, O. Schwarzkopf, M. van Kreveld and M. Overmars, “Computational

Geometry: Algorithms and Applications 2nd edition,” Springer-Verlag, 2000.

[22] B. K. Bhattacharya, S. K. Ghosh, and T. C. Shermer, “A linear time algorithm to

remove winding of a simple polygon,” Computational Geometry Theory and Appli-

cations, 33:165–173, 2006.

[23] P. Brass, W. O. J. Moser, and J. Pach, “Research Problems in Discrete Geometry,”

Springer-Verlag, 2005.

68

[24] R. Breukelaar, E. D. Demaine, S. Hohenberger, H. J. Hoogeboom, W. A. Kosters,

and D. Liben-Nowell, “Tetris is Hard, Even to Approximate,” International Journal

of Computational Geometry and Applications, 14:41–68, 2004.

[25] CGAL: Computational Geometry Algorithms Library. http://www.cgal.org/.

[26] B. Chazelle, “The Discrepancy Method: Randomness and Complexity,” Cambridge

University Press, 2000.

[27] B. Chazelle, and J. Incerpi, “Triangulation and Shape-complexity,” ACM Trans.

Graph., 3:135–152, 1984.

[28] Z. -Z. Chen, “Approximation Algorithms for Independent Sets in Map Graphs,”

Journal of Algorithms, 41:20–40, 2001.

[29] Z. -Z. Chen, M. Grigni and C. H. Papadimitriou, “Map Graphs,” Journal of ACM,

49(2):127–138, 2002.

[30] S. -W. Cheng, “Planar Straight Line Graphs,” Handbook of Data Structures and

Applications, Edited by D.P. Mehta and S. Sahni, Chapman & Hall, 2005.

[31] O. Cheong, S. Har-Peled, N. Linial, and J. Matousek, “The one-round Voronoi game,”

Discrete and Computational Geometry, 31:125–138, 2004.

[32] W. G. Chinn, and N. E. Steenrod, “First Concepts of Topology: The Geometry of

Mappings of Segments, Curves, Circles, and Disks,” Mathematical Association of

America, Washington, DC, 1966.

[33] C. R. Collins and K. Stephenson, “A Circle Packing Algorithm,” Computational

Geometry Theory and Applications, 25(3):233–256, 2003.

[34] J. H. Conway, “On Numbers and Games,” Academic Press, London, 1976

[35] J. H. Conway, “All games bright and beautiful,” American Mathematical Monthly,

84:417–434, 1977

[36] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction to Algo-

rithms,” MIT Press, 2001.

[37] I. K. Crain, “The Monte-Carlo generation of random polygons,” Computers and

Geosciences, 4:131–141, 1978.

69

[38] J. Culberson, “Sokoban is PSPACE-complete,” Technical Report TR97-02, Depart-

ment of Computer Science, The University of Alberta, http://web.cs.ualberta.

ca/∼joe/Preprints/Sokoban/, 1997.

[39] K. Dalal, “Counting the Onion,” Random Structures and Algorithms, 24(2):155–165,

2004.

[40] E. D. Demaine. “Playing Games with Algorithms: Algorithmic Combinatorial Game

Theory,” Mathematical Foundations of Computer Science, 2136 of Lecture Notes in

Computer Science, Springer, Berlin, pp. 18–32, 2001.

[41] E. D. Demaine, “Simple Polygonizations,” http://theory.lcs.mit.edu/

∼edemaine/polygonization/.

[42] E. D. Demaine, J. S. B. Michell, and J. O’Rourke, “The Open Problems Project,”

http://maven.smith.edu/∼orourke/TOPP/.

[43] S. de Vries and R. Vohra, “Combinatorial auction: A survey,” INFORMS Journal

on Computing, 15(3):284–309, 2003.

[44] B. Doerr, “Nonindependent Randomized Rounding and an Application to Digital

Halftoning,” SIAM Journal on Computing, 34(2):299-317, 2005.

[45] T. Drezner, “Locating a Single New Facility Among Existing Unequally Attractive

Facilities,” Journal of Regional Science, 34:237–252, 1994.

[46] T. Drezner, “Optimal Continuous Location of Retail Facility, Facility Attractiveness,

and Market Share: an Interactive Model,” Journal of Retailing, 70:49–64, 1994.

[47] T. Drezner and Z. Drezner, “Competitive Facilities: Market Share and Location with

Random Utility,” Journal of Regional Science, 36:1–15, 1996.

[48] H. A. Eiselt, G. Laporte, and J.-F. Thisse, “Competitive Location Models: a Frame-

work and Bibliography,” Transportation Science 27:44–54, 1993.

[49] H. A. Eiselt, and G. Laporte, “Competitive spatial models,” European J. Oper. Res.

39:231–242, 1989.

[50] H. ElGindy, and D. Avis, “A linear algorithm for computing the visibility polygon

from a point,” Journal of Algorithm, 2:186–197, 1981.

70

[51] H. ElGindy, and G. T. Toussaint, “On triangulating palm polygons in linear time,”

N. M. -Thalmann and D. Thalmann, editors, New Trends in Computer Graphics,

pp. 308–317. Springer-Verlag, 1988.

[52] D. Eppstein, “Computational complexity of games and puzzles.” http://www.ics.

uci.edu/∼eppstein/cgt/hard.html.

[53] P. Epstein and J. Sack, “Generating triangulations at random,” Proc. 4th Canadian

Conference on Computational Geometry, pp. 305–310, 1992.

[54] S. Even, and R. E. Tarjan, “A combinatorial problem which is complete in polynomial

space,” Journal of ACM 23:710–719, 1976.

[55] S. P. Fekete, “On Simple Polygonalizations with Optimal Area,” Discrete Comput.

Geom., 23:73–110, 2000.

[56] S. P. Fekete, and H. Meijer, “The one-round Voronoi game replayed,” Computational

Geometry Theory and Applications, 30:81–94, 2005.

[57] A. Flat, A. Goldberg, J. Harline, and A. Karlin, “Competitive generalized auctions,”

Proc. 34th ACM Symposium on Theory of Computing, pp. 72–81, 2002.

[58] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, “Computer Graphics:

Principles and Practice,” Addison-Wesley, 1990.

[59] S. Fortune, “Voronoi Diagrams and Delaunay Triangulations,” Computing in Eu-

clidean Geometry, Edited by Ding-Zhu Du and Frank Hwang, World Scientific, Lec-

ture Notes Series on Computing – Vol. 1, pp. 193–233, 1992.

[60] A. Fournier and D. Y. Montuno, “Triangulating simple polygons and equivalent

problems,” ACM Trans. Graph., 3:153–174, 1984.

[61] A. S. Fraenkel, and D. Lichtenstein, “Computing a Perfect Strategy for n× n Chess

Requires Time Exponential in n,” J. Combin. Theory Ser. A., 31(2):199–214, 1981.

[62] A. S. Fraenkel, ”Combinatorial Games: Selected Bibliography with a Succinct

Gourmet Introduction,” Electron. Journal of Combinatorics, 14 Dynamic Survey

2 (electronic), 2007. http://www.combinatorics.org/Surveys/ds2.pdf.

[63] A. S. Fraenkel, “Scenic trails ascending from sea-level Nim to alpine Chess,”

R. J. Nowakowski, editor, Games of No Chance, pp. 13–42, Cambridge University

Press, 1996.

71

[64] A. Garćıa, M. Noy and J. Tejel, “Lower bounds on the number of crossing-free

subgraphs of KN ,” Computational Geometry Theory and Applications, 16:211–221,

2000.

[65] J.E. Goodman and J. O’Rourke, “Handbook of Discrete and Computational Geom-

etry 2nd Edition,” Chapman & Hall, 2004.

[66] S. Gooran, “Context Dependent Colour Halftoning in Digital Printing,” Proceed-

ings of the Conference on Image Processing, Image Quality, Image Capture Systems,

pp.242–246, 2000.

[67] S. K. Ghosh, A. Maheshwari, S. P. pal, and C. E. Veni Madhavan, “An algorithm

for recognizing palm polygons,” The Visual Computer, 10(8):443–451, 2005.

[68] A. Ghosh, and S. McLafferty, “Location Strategies for Retail and Service Firms,”

Lexington Books, Lexington, Mass.

[69] S. L. Hakimi, “Location with spatial interactions: competitive location and games,”

R. L. Francis, P. B. Mirchandani (Eds.), Discrete Location Theory, Wiley, New

York, pp. 439–478, 1990.

[70] H. W. Hamacher, and Z. Drezner, “Facility Location: Applications and Theory,”

Springer, 2004.

[71] F. Harary, “Graph Theory,” Addison-Wesley, 1972.

[72] R. A. Hearn, and E. D. Demaine, “PSPACE-Completeness of Sliding-Block Puzzles

and Other Problems through the Nondeterministic Constraint Logic Model of Com-

putation,” Theoretical Computer Science, 343:72–96, 2005.

[73] J. Hershberger and S. Suri, “Matrix Searching with the Shortest Path Metric,” SIAM

Journal on Computing, 26:1612–1634, 1997.

[74] S. Hertel, and K. Mehlhorn, “Fast triangulation of simple polygons,” Proc. 4th Inter-

nat. Conf. Found. Comput. Theory. Lecture Notes in Computer Science, 158:207–218,

Springer-Verlag, 1983.

[75] F. Hurtado, M. Noy and J. Urrutia, “Flipping Edges in Triangulations,” Discrete

Comput Geom., 22:333–346, 1999.

[76] S. Iwata, and T. Kasai, “The Othello game on an n×n board is PSPACE-complete,”

Theoretical Computer Science, 123:329–340, 1994.

72

[77] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani, “Random Generation of Com-

binatorial Structures from a Uniform Distribution,” Theoretical Computer Science,

43:169–188, 1986.

[78] D. S. Johnson, M. Yannakakis and C. H. Papadimitriou, “On generating all maximal

independent sets,” Information Processing Letters, 27(3):119–123, 1988.

[79] K. Kanatani, “Statistical Optimization for Geometric Computation –Theory and

Practice,” Dover Pubns, 1996.

[80] R. Kaye, “Infinite versions of minesweeper are Turing-complete,” Math. Intelligencer

22:9–15, 2000. http://for.mat.bham.ac.uk/R.W.Kaye/minesw/infmsw.pdf.

[81] R. Kaye, “Minesweeper is NP-complete,” Mathematical Intelligencer 22:9–15, 2000.

[82] M. van Kreveld and I. Reinbacher, “Good NEWS: Partitioning a Simple Polygon by

Compass Directions,” International Journal of Computational Geometry & Applica-

tions, 14:233–259, 2004.

[83] M. Labbé and S. L. Hakimi, “Market and locational equilibrium for two competitors,”

Oper. Res. 39:749–756, 1991.

[84] C. L. Lawson, “Transforming triangulations,” Discrete Math., 3:365–372, 1972.

[85] J. van Leeuwen and A. A. Schoone, “Untangling a traveling salesman tour in the

plane,” In J. R. Muhlbacher, editor, Proc. 7th Conf. Graph-theoretic Concepts in

Comput. Sci., pp. 87–98, 1981.

[86] J. Matoušek, “Geometric Discrepancy,” Springer, 1999.

[87] L. McShine and P. Tetali, “On the mixing time of the triangulation walk and other

Catalan structures,” DIMACS-AMS volume on Randomization Methods in Algo-

rithm Design (Eds. P.M. Pardalos, S. Rajasekaran, and J. Rolim) DIMACS Series

in Discrete Mathematics and Theoretical Computer Science, 43:147–160, 1998.

[88] N. Megiddo, “Linear-time algorithms for linear programming in R3 and related prob-

lems,” SIAM Journal on Computing, 12:759–776, 1983.

[89] G. H. Meisters, “Polygons have ears,” American Mathematical Monthyly, 82:648–651,

1975.

73

[90] H. Meijer and D. Rappaport, “Upper and lower bounds for the number of monotone

crossing free Hamiltonian cycles from a set of points,” ARS Combinatoria, 30:203–

208, 1990.

[91] J. S. B. Mitchell and J. O’Rourke, “Computational geometry column 42,” Interna-

tional Journal of Computational Geometry and Applications, 11(5):573–582, 2001.

[92] M. Molloy, B. Reed and W. Steiger, “On the mixing rate of the triangulation walk,”

DIMACS-AMS volume on Randomization Methods in Algorithm Design (Eds. P.M.

Pardalos, S. Rajasekaran, and J. Rolim) DIMACS Series in Discrete Mathematics

and Theoretical Computer Science, 43:179–190, 1998.

[93] R. Motwani and P. Raghavan, “Randomized Algorithms,” Cambridge University

Press, 1995.

[94] K. Mehlhorn and S. Näher, “LEDA – A Platform of Combinatorial and Geometric

Computing,” Cambridge University Press, Cambridge, England, 1999.

[95] T. Mitsa and K. J. Parker, “Digital Halftoning using a Blue-Noise Mask,” Journal

of the Optical Society of America A, 9, 11, pp.1920-1929, 1992.

[96] K. J. Nurmela, P. R. J. Österg̊ard and R. aus dem Spring, “Asymptotic Behavior of

Optimal Circle Packings in a Square,” Canadian Mathematical Bulletin, 42(3):380–

385, 1999.

[97] K. J. Nurmela and P. R. J. Österg̊ard, “Packing up to 50 Equal Circles in a Square,”

Discrete and Computational Geometry, 18(1):111–120, 1997.

[98] K. J. Nurmela, “More Optimal Packings of Equal Circles in a Square,” Discrete and

Computational Geometry, 22(3):439–457, 1999.

[99] A. Okabe, and M. Aoyagi, “Existence of Equilibrium Configurations of Competitive

Firms on an Infinite Two-Dimensional Space,” J. Urban Econom. 29:349–370, 1991.

[100] A. Okabe, B. Boots, K. Sugihara, and S.N. Chiu: “Spatial Tessellations: Concepts

and Applications of Voronoi Diagrams,” John Wiley & Sons, 2000.

[101] J. O’Rourke, “The art gallery theorems and algorithms,” Oxford University Press,

1987.

[102] J. O’Rourke, “Computational Geometry in C,” Cambridge University Press, 2001.

74

[103] J. O’Rourke and M. Virmani, “Generating Random Polygons,” Technical Report

011, CS Dept. Smith College, Northhampton, MA 01063, July 1991.

[104] C. H. Papadimitriou, ”Computational Complexity,” Addison-Wesley Publishing

Company, 1994.

[105] C. H. Papadimitriou, “Algorithms, games, and the Internet,” Proc. 33rd Annual

ACM Symposium on Theory of Computing, pp. 749–753, 2001.

[106] F. P. Preparata and M. I. Shamos, “Computational Geometry: An Introduction,”

Springer-Verlag, 1985.

[107] S. Reisch, “Gobang ist PSPACE-vollständig,” Acta Inform. 13:59–66, 1981.

[108] S. Reisch, “Hex ist PSPACE-vollständig,” Acta Inform. 15:167–191, 1981.

[109] J. M. Robson, “The complexity of GO,” Proc. IFIP pp. 413–417, 1983.

[110] J. M. Robson, “N by N checkers is EXPTIME-complete,” SIAM Journal on Com-

puting 13:252–267, 1984.

[111] J. -R. Sack and J. Urrutia, “Handbook of Computational Geometry,” Elsevier Sci-

ence Publishers, 2000.

[112] K. Sadakane, N. Takki Chebihi, and T. Tokuyama, “Discrepancy-based digital

halftoning: Automatic evaluation and optimization,” Interdisciplinary Information

Sciences, 8(2):219–234, 2002.

[113] T. J. Schaefer, “On the Complexity of Some Two-Person Perfect-Information

Games,” Journal of Computer and System Sciences, 16:185–225, 1978.

[114] M. Sharir and E. Welzl, “On the number of crossing-free matchings, cycles, and

partitions,” Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Al-

gorithms, pp. 860–869, 2006.

[115] M. Sharir and E. Welzl, “Random Triangulations of Planar Point Sets,” Proc. 22nd

Ann. ACM Symp. Computational Geometry, pp. 273–281, 2006.

[116] T. Shermer, “Recent results in art galleries,” Proc. IEEE, 80:1384–1399, 1992.

[117] A. Sinclair, “Algorithms for Random Generation & Counting: A Markov Chain

Approach,” Birkhäuser, 1993.

75

[118] C. Sohler, “Generating Random Star-Shaped Polygons,” Proc. 11th Canadian Con-

ference on Computational Geometry, pp. 174–177, 1999.

[119] M. Thorup, “Map graphs in polynomial time,” Proc. 39th IEEE Symposium on

Foundations of Computer Science, pp. 396–405, 1998.

[120] R. L. Tobin, T. L. Friesz, T. Miller, “Existence theory for spatially competitive

network facility location models,” Ann. Oper. Res., 18:267–276, 1989.

[121] R. Uehara, and S. Iwata, “Generalized Hi-Q is NP-complete,” Trans. IEICE

E73:270–273, 1990.

[122] R. Ulber, “On The Number Of Star-Shaped Polygons And Polyhedra,” Proc. 11th

Canadian Conference on Computational Geometry, pp. 170–173, 1999.

[123] R. Ulichney, “Digital Halftoning,” MIT Press, 1987.

[124] V. V. Vazirani, “Approximation Algorithms,” Springer-Verlag, Berlin, 2001.

[125] E. Welzl, “Smallest enclosing disks (balls and ellipsoids),” New Results and New

Trends in Computer Science, vol. 555, Lecture Notes in Computer Science, Springer,

Berlin, pp. 359–370, 1991.

[126] C. Zhu, G. Sundaram, J. Snoeyink, and J. S. B. Mitchel. “Generating Random

Polygons with Given Vertices,” Computational Geometry Theory and Application,

6(5):277–290, 1996.

76

Publications

[1] 寺本幸生: “ハードウェア支援による各種ボロノイ図の高速描画とその応用,” Tech-

nical Report of IEICE, COMP2002-45, (Nov. 2002).

[2] S. Teramoto, and T. Asano: “Fast Implementation of Laguerre Voronoi Diagram

with Hardware Assistance,” Proc. International Symposium on Voronoi Diagrams

in Science and Engineering, pp. 165–171 (Sep. 2004).

[3] S. Teramoto, T. Asano, B. Doerr, and N. Katoh, “Inserting Points Uniformly at

Every Instance,” Proc. 2005 Korea Japan Joint Workshop on Algorithms and Com-

putation (WAAC 2005), pp. 3–9, (Aug. 2005).

[4] S. Teramoto, and R. Uehara, “Voronoi game on graphs and its complexity,” IPSJ

SIG Technical Report, 2006-AL-104-2, pp. 9–16, (Jan 2006).

[5] S. Teramoto, M. Motoki, R. Uehara, and T. Asano, “Heuristics for Generating a

Simple Polygonalization,” IPSJ Technical Report, 2006-AL-106-6, pp. 41–48, (May

2006).

[6] S. Teramoto, E. D. Demaine, and R. Uehara, “Voronoi game on graphs and its

complexity,” 2nd IEEE Symposium on Computational Intelligence and Games (CIG

2006), pp. 265–271, (May 2006).

[7] R. Uehara, and S. Teramoto, “The complexity of a Pop-up book,” IPSJ SIG Tech-

nical Report, 2006-AL-107-10, pp. 59–64, (Jul. 2006).

[8] R. Uehara, and S. Teramoto, “The complexity of a Pop-up book,” 18th Canadian

Conference on Computational Geometry (CCCG 2006), pp. 3-6, (Aug. 2006).

[9] S. Teramoto, T. Asano, N. Katoh, and B. Doerr, “Inserting Points Uniformly at

Every Instance,” IEICE Trans. Inf. & Syst. VOL. E89-D, No. 8 AUGUST 2006,

2348–2356 (Aug. 2006).

77

[10] R. Uehara and S. Teramoto, “Computational Complexity of a Pop-up book,” 4th

International Conference on Origami in Science, Poster, (Sep. 2006).

[11] S. Teramoto, E. D. Demaine, and R. Uehara, “Voronoi Game on Graphs and its

Complexity,” submitted to Theoretical Computer Science.

78

