
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
プライバシーを保存するいくつかの計算問題への効率

的なソリューション

Author(s) 桑, 応朋

Citation

Issue Date 2007-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/3571

Rights

Description Supervisor:丹　康雄, 情報科学研究科, 博士

Efficient Solutions to Several Privacy Preserving

Computation Problems

by

Yingpeng SANG

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Associate Professor Yasuo Tan

School of Information Science

Japan Advanced Institute of Science and Technology

March, 2007

Abstract

In a distributed network, Secure Multiparty Computation (SMC) is always required by
the participants who want to compute some functions on their inputs, while ensuring
independence of the inputs, correctness of the computation, and that no more information
is revealed to a participant other than can be computed from that participant’s input and
output. In this thesis, we aim at several specific problems in applications of e-bidding,
database, and wireless sensor network, all of which belong to the general SMC problem.
For these problem, we propose solutions with lower complexities and stronger security
than previous results. Specifically, our work is composed of the following four parts:

• We address the problem of Secure Two-party Vector Dominance (STVD) which can
be encountered in applications such as multi-commodity private bidding. Alice has
a bidding vector (a1, ..., an) and Bob has a price vector (b1, ..., bn) for a series of
commodities. They would make a deal if there is the dominance relation {ai ≥
bi|i = 1, ..., n}, while protecting their privacy on the vectors. Though STVD is a
multi-dimensional extension of Yao’s millionaire problem which has been extensively
researched, it cannot be solved by trivially n rounds of a solution for the millionaire
problem, because leaking the ordering of each pair (ai, bi) to each other is considered
a breach of privacy, when there is no dominance relation. In this thesis we propose
an STVD protocol for the semi-honest model, based on an additive homomorphic
encryption, and then fix it to be a secure protocol in the malicious model by efficient
zero-knowledge proofs. Let K be the length of each element in the vector. By
parallel executions in which Alice has K platforms and Bob has one platforms, our
protocol for the semi-honest case need less modular exponentiations than a derived
solution from [84] and a solution from [4], and our protocol for the malicious case
has the same level of computation with the derived solution from [84]. Though our
protocols for the two cases need more communication bits, they can be completed
by no more than one second in practical applications, and will not decrease the
efficiency of our protocols.

• We address the Privacy Preserving Set Intersection (PPSI) problem, in which each
party learns no elements other than the intersection of the N private datasets. When
datasets are distributed on different sources, finding out their intersection while pre-
serving the privacy of the datasets is a widely required task. We propose an efficient
protocol based on a threshold cryptosystem which is additive homomorphic. The
protocol is firstly constructed assuming the adversary is semi-honest and controls
arbitrary number of parties, then it is extended to resist the malicious behaviors of
the adversary. In comparisons with previous results in [36], [62] and [63], our PPSI
protocols in the semi-honest and malicious models achieve lower computation and
communication costs.

• We address the problem of Privacy Preserving Tuple Matching (PPTM) in a sce-
nario of a horizontally partitioned database among N parties, where each party

i

holds a share of the database’s tuples and all tuples have the same set of attributes.
Each party wants to determine whether its tuples match those of other parties on
all attributes, under the condition that no party publishes its own tuples for pri-
vacy concern. We show that another related problem, Privacy Preserving Threshold
Attributes Matching (PPTAM), can also be solved by similar techniques. By ex-
periments in a moderate-scale application, our protocol for PPTM saves about 80%
computation time in comparison with previous results, with an increase of band-
width that can be transferred within a few seconds. Though a solution can be
derived from the techniques in [62], we are the first to address the PPTAM problem
to our knowledge. Our protocol for PPTAM saves about 71.3% computation time
and 75% bandwidth in comparison with the derived solution. Both of our protocols
are proved to be secure in the semi-honest model.

• We discuss two conflictive privacy issues in pervasive sensor networks, including the
originator privacy and sensing area privacy. More and more sensor networks will
be deployed in the place where people are living, studying, and working. These
sensor networks will bring us the convenience of accessing information anytime and
anywhere, whereas put our voice, motion, or even body temperature under surveil-
lance. Under the circumstances of pervasively deployed sensor networks, people will
have a dynamic concern about their privacy. At the same time, sensors will become
invisible or should be hidden due to the privacy of themselves. We propose a general
scheme for people in the environment of pervasive sensor networks, so that they can
be aware of whether they should be alert on their privacy activities. Our scheme
employs the STVD protocol we achieve in the first part of work as a building block,
and has the characteristics of generality and confidentiality.

In sum, we are the first to propose an efficient STVD protocol in the malicious model,
which can be robust against various malicious attacks of powerful adversaries. We propose
PPSI protocols in the semi-honest and malicious models which cost less computation
time and bandwidth in practical applications than previous results. We propose a PPTM
protocol which increase seconds of communication time, but reduce hours of computation
time, compared with previous results. We are the first to solve the PPTAM problem and
achieve a much more efficient protocol than a solution derived from previous techniques.
We are also the first to provide solutions to protect the conflictive privacy issues, originator
privacy and sensing area privacy, in pervasive sensor network.

Keywords : privacy preservation, secure computation, homomorphic encryption, zero
knowledge proof, distributed database.

ii

Acknowledgments

Firstly I’m deeply grateful to my advisors Professor Hong Shen and Associate Professor
Yasuo Tan for their continuous illuminations and invaluable instructions on my work.
Professor Hong Shen has provided enough space for me to expand my interest in this
work, leaded me to the intrinsic properties of every problem, and enlightened me with
systematic methods to do research. Associate Professor Yasuo Tan has given scrupulous
care on every difficulty in finalizing the work, and provided precious suggestions in the
publications. Without any of them it would probably not be possible to complete this
thesis.

My sincere thanks would also be given to Associate Professor Yasushi Inoguchi, the
advisor of my sub-theme, for his fruitful guidance in my sub-theme and strict construc-
tion on my research manner. I would like to thank Professor Yoichi Shinoda, Associate
Professor Atsuko Miyaji, Associate Professor Xavier Defago, and Dr. Akihiro Yamamura
for taking time from their busy schedules to serve on the thesis defense committee.

Thanks for my master advisor Professor Pingzhi Fan for leading me to the scientific
research and providing opportunities to broaden my eyesight on it.

Acknowledgement is also extended to all members of the Network Laboratory who have
once been, or are being my companions during my PhD research. I thank Dr. Haibin Kan
and Dr. Xiaohong Jiang for their kind help on both of my research and life in JAIST. It
was also a great pleasure to work with Dr. Gui Xie, Dr. Keqiu Li, Dr. Zonghua Zhang,
Dr. Hui Tian, Dr. Wenyu Qu, Dr. Chao Peng, Ms. Qing Gong, Mr. Haibo Zhang,
Ms. Yawen Chen, Mr. Shihong Xu, Mr. Junya Nakata, Mr. Yosiki Makino, Mr. Junson
Kim, Mr. Qinghui Song, Ms. Megumi Aikawa, Mr. Akinori Isogai, Mr. Takashi Okada,
Mr. Yingjin Chi, Mr. Yongguang Jin, Mr. Taichi Nakamura, Mr. Ryousuke Sakano, Mr.
Kouichirou Torii, and Mr. Takahiro Fukuda.

My special thanks to the Graduate Research Program of JAIST for supporting my
research and life for three years.

Finally I devote this thesis to all members of my family for their unconditional love
and support, even though they know little about my work.

iii

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Thesis Statement . 1
1.2 Our Results . 2
1.3 Preliminaries . 3

1.3.1 The Ideal/Real Model Paradigm . 3
1.3.2 Computational Indistinguishability 4
1.3.3 Security in the Semi-Honest Model 4
1.3.4 Security with respect to Malicious Behavior 5
1.3.5 Homomorphic Encryption . 7

1.4 Organization of the Dissertation . 7

2 Secure Two-Party Vector Dominance 9
2.1 Problem Background . 9
2.2 Related Work . 10

2.2.1 Related Work from General Solutions 10
2.2.2 Related Work from Millionaire Protocols 10
2.2.3 Related Work from other STVD Protocols 11

2.3 Problem Definition . 11
2.4 Basic Tools . 12

2.4.1 Homomorphic Encryption . 12
2.4.2 Zero-knowledge Proofs . 13
2.4.3 0-encoding . 14

2.5 Main Idea and Building Blocks . 15
2.5.1 Random-zero Transformation . 15
2.5.2 Privacy Preserving Product of Scalar Products 16

2.6 The Protocol for STVD in the Semi-honest Case 16
2.7 The Protocol for STVD in the Malicious Case 18

2.7.1 Security against Malicious Bidder 18
2.7.2 Security against Malicious Seller . 18
2.7.3 The Protocol for the malicious case 19

2.8 Comparisons with other solutions . 22
2.8.1 Complexities of Protocol 1 and Protocol 2 22
2.8.2 A Derived STVD Solution from [84] 23

iv

2.8.3 Comparisons . 24
2.9 Conclusions . 24
2.10 Appendix . 25

2.10.1 Major Notations . 25
2.10.2 Proofs of Lemmas for Building Blocks 25
2.10.3 Some calculations on complexities 27
2.10.4 Some Basic Zero-knowledge Proofs 28

3 Privacy Preserving Set Intersection among Multiple Parties 30
3.1 Introduction . 30
3.2 Related Work . 31
3.3 Problem Definition . 31
3.4 Basic Tools . 32

3.4.1 Homomorphic Encryption . 32
3.4.2 Calculations on encrypted polynomials 33
3.4.3 Notations . 34

3.5 Protocol for Privacy Preserving Set Intersection in the semi-honest model . 34
3.5.1 Main Idea . 34
3.5.2 The Protocol . 35

3.6 Protocol for Privacy Preserving Set Intersection in the malicious model . . 37
3.6.1 Zero-Knowledge Proofs . 37
3.6.2 Protocols for the Malicious Model 37

3.7 Security Analysis . 39
3.7.1 Security Analysis on Protocol 1 . 39
3.7.2 Security Analysis on Protocol 2 . 41

3.8 Comparisons with Related Work . 41
3.8.1 Comparisons for Protocol 1 . 41
3.8.2 Comparisons for Protocol 2 . 42

3.9 Concluding Remarks . 43
3.10 Appendix . 43

3.10.1 Proofs of Theorems . 43
3.10.2 Generation of Random and Nonsingular Matrix 46
3.10.3 Some Basic Zero-knowledge Proofs 47

4 Privacy Preserving Tuple Matching in Distributed Database 49
4.1 Problem Background . 49
4.2 Related Work . 51

4.2.1 Related Work for PPTM . 52
4.2.2 Related Work for PPTAM . 52

4.3 Preliminaries . 53
4.3.1 Adversary Model . 53
4.3.2 Homomorphic Encryption . 53
4.3.3 Calculations on encrypted polynomials 53
4.3.4 Notations . 54

4.4 Privacy Preserving Tuple Matching . 54
4.4.1 Main Idea . 54
4.4.2 The Protocol . 56

v

4.5 Privacy Preserving Threshold Attributes Matching 57
4.5.1 Main Idea . 57
4.5.2 The Protocol . 57

4.6 Security Analysis . 60
4.6.1 Security Analysis for Protocol 1 . 60
4.6.2 Security Analysis for Protocol 2 . 61

4.7 Comparisons with Related Work . 63
4.7.1 Comparisons for Protocol 1 . 64
4.7.2 Practical Considerations and Comparisons for Protocol 1 65
4.7.3 Comparison of Protocol 2 with Solution D2 66
4.7.4 Practical Considerations and Comparisons for Protocol 2 67

4.8 Concluding Remarks and Open Problems 67
4.9 Appendix . 68

5 Privacy State Test in Wireless Sensor Networks 70
5.1 Problem Background . 70
5.2 Privacy Issues in Pervasive Sensor Networks 71
5.3 Related Work . 73

5.3.1 Key Management Schemes in Wireless Sensor Networks 73
5.3.2 Related Work for Protecting Originator’s Location Privacy 75

5.4 Fundamental Problems of Protocols . 75
5.4.1 Two Fundamental Problems . 75
5.4.2 Secure Two-party Point-Inclusion Protocol 77

5.5 The Scheme to Test Privacy State . 78
5.5.1 Who’s Alice . 78
5.5.2 Who’s Bob . 78
5.5.3 The Architecture . 78
5.5.4 The Scheme . 78

5.6 Evaluation of Our Scheme . 79
5.7 Chapter Summary and Future Work . 79

6 Conclusions and Future Work 81
6.1 Contributions . 81
6.2 Future Research Directions . 83

References 85

Publications 92

vi

Chapter 1

Introduction

1.1 Thesis Statement

In distributed scenarios, parties usually need do computation tasks over their inputs. Due
to their privacy or secrecy, the parties may dislike to publish the inputs to each other.
If there exists a party which can be trusted by all involved parties, they can send their
inputs only to the trusted party, then the trusted party is in charge of the computation,
and things become much easy. However, in many cases the assumption of a trusted party
may be impractical. For example, an alliance of supermarkets need know the credit card
numbers of customers who have purchasing records in all of their databases, and provide
discounts to those customers. It is hard for the supermarkets to find a really “trustful”
party to which they would send their customers database, and even if they find such
service sanctioned by the government, they may think it uneconomical because they need
pay high for the service. What’s more, there may be some dishonest parties who will do
attacks in the computation, e.g., analyzing or arbitrarily substituting the intermediate
computation, or arbitrarily quitting the computation whenever it gets desired results.
Therefore, how to protect the privacy of the honest parties’s inputs against the attacks of
the dishonest parties, without the help of a trusted party, is a critical problem required
by many practical applications.

Thus, the terminology Secure Multi-party Computation (SMC) has been put forward
to deal with computing any probabilistic function on any input, in a distributed network
where each participant holds one of the inputs, ensuring independence of the inputs,
correctness of the computation, and that no more information is revealed to a participant
in the computation than can be computed from that participant’s input and output ([50]).

There have been general solutions for the SMC problem ([49], [92]). In general SMC,
the function to be computed is represented by a circuit, and every gate of the circuit is
privately evaluated. While this solution (circuit evaluation) is appealing in its generality
and simplicity, the complexity of the protocol it generates depends on the size of the
circuit. This size depends on the size of the input and on the complexity of expressing
the function as a circuit. As pointed out in [48], this general solution is impractical for
a specific problem, because the large size of the circuit will result in a much less efficient
protocol than the non-private protocol for this problem.

For some specific problems, their properties have been utilized to produce more efficient
private protocols without employing the general circuit evaluation solution. In this paper,
we will focus on a few specific SMC problems in e-bidding, database, and wireless sensor

1

networks, follow the idea of utilizing properties of the specific problems, and aim at more
efficient solutions than related work without employing the solution of circuit evaluation
in general SMC.

1.2 Our Results

Specifically, our problems and results include the following:

1) Secure Two − party Vector Dominance : In the multi-commodity private bid-
ding, a manufacturer may only want to deal with the supplier that can simultane-
ously satisfy the requirement for N items. This is a Secure Two-party Vector Dom-
inance (STVD) problem, in which Alice needs to learn whether each coordinate of
her private vector is larger than the corresponding coordinate of Bob’s private vec-
tor. We formally define the problem, prove the completeness and soundness of our
proposed protocols, and their security under the semi-honest and malicious mod-
els. By parallel executions, our protocol for the semi-honest case need less modular
exponentiations than previous results from [84] and [4], and our protocol for the
malicious case has the same level of computation with the derived solution from
[84].

2) Privacy Preserving Set Intersection : In a distributed scenario, N parties need
to learn the intersection of their private data sets, and each party cannot know more
elements on the other parties than the intersection. This is the Privacy Preserving
Set Intersection (PPSI) problem. In comparison with related work, our protocol for
PPSI is more efficient in computation and communication costs while keeping the
security both in the semi-honest and malicious model.

3) Privacy Preserving Tuple Matching and Privacy Preserving Threshold
Attributes Matching : In a scenario of horizontally distributed databases, each
party needs to learn the fact that whether a tuple inside its database can be matched
in any private database of the other parties. At the same time, the party should
not learn the number of the matched tuples and the identities of the matched par-
ties. This is the Privacy Preserving Tuple Matching (PPTM) problem. Compared
with related work, our protocol for PPTM is more efficient in computation, need an
increased communication cost which can be transferred within a few seconds, while
keeping the security in the semi-honest model. We also solve another relevant prob-
lem, Privacy Preserving Threshold Attributes Matching (PPTAM), in which each
party wants to learn that whether each attribute of its tuple appears at least 2 times
in the attribute union of the N parties. To our knowledge we are the first to tackle
the PPTAM problem. Though the techniques in [62] can provide a derived solution
for PPTAM, our protocol is more efficient in computation and communication costs
in comparisons.

4) Location Privacy Protection in Pervasive Sensor Networks : In the circum-
stances of pervasively deployed sensor networks, people will have a dynamic con-
cern about their location privacy. At the same time, sensors will become invisible
or should be hidden due to the privacy of themselves. To our knowledge we are
the first to discuss dynamic location privacy issues in pervasively deployed sensor

2

networks and propose a scheme for people in the environment of pervasive sensor
networks, so that they can be aware of whether they should be alert on their privacy
activities. Based on the protocol of secure two-party point inclusion in which our
STVD protocol is used as a building block, our scheme has the characteristics of
generality and confidentiality.

1.3 Preliminaries

1.3.1 The Ideal/Real Model Paradigm

The aim of an SMC task is for the participating parties to securely and correctly compute
some function of their distributed and private inputs. The security properties that should
be preserved are various in different applications. In some applications, each participant
should learn nothing about others’ inputs, but in some applications, the output of the
computation may reveal some information on others’ inputs. (e.g., in the problem of
privacy preserving set intersection, the inputs in the intersection set are revealed to all
participants.) Another important property is correctness, which means the parties’ output
is really that defined by the function, whether or not the parties are honest. Therefore,
a general definition covering the correctness property and all the application-dependent
security properties is a basic requirement in the study of SMC. Till now, the dominant
paradigm is the ideal/real model paradigm, a formal definition of which can be found in
[12].

Loosely speaking, this paradigm defines the security of a real protocol by comparing it
to an ideal computing scenario in which the parties interact with an external trusted and
incorruptible party. In this ideal execution, the parties all send their inputs to the trusted
party (via ideally secure communication lines). The trusted party then computes the
function on these inputs and sends each party its specified output. Such a computation
embodies the goal of secure computation. Specifically, it is clear that the privacy property
as defined above holds, because the only message that a party receives (even one who
behaves maliciously) is the output. Likewise, since the trusted party is incorruptible,
correctness is also guaranteed to hold. In addition to the fact that the above and other
properties are preserved in an ideal execution, the simplicity of the ideal model provides
an intuitively convincing security guarantee. For example, notice that the only message
that a party sends in an ideal execution is its input, and so the only power that a corrupted
party has is to choose its input (something which is typically legitimate anyway).

So far, we have defined an ideal execution in an ideal world. However, in the real
world, there is no external party that can be trusted by all parties. Rather, the parties
run some protocol amongst themselves without any outside help. Nevertheless, we would
like a real protocol to somehow “emulate” an ideal execution. That is, we say that a real
protocol that is run by the parties (in a world where no trusted party exists) is secure, if
no adversary can do more harm in a real execution than in an execution that takes place
in the ideal world. Stated differently, for any adversary carrying out a successful attack
on a real protocol, there exists an adversary that successfully carries out the same attack
in the ideal world. This suffices because, as we have seen, no successful attacks can be
carried out in an ideal execution. Thus, no successful attacks can be carried out on the
real protocol, implying that it is secure.

3

1.3.2 Computational Indistinguishability

Generally speaking there are two types of adversaries in SMC, depending on whether they
take active steps to disrupt the execution of the protocol, or merely gather information.
The latter adversary is referred to as semi-honest (or passive, honest-but-curious); the
former one is referred to as malicious (or active). In SMC, the adversaries are assumed to
be probabilistic polynomial-time (PPT) bounded. The security in both types are argued
by the computational indistinguishability of the views in the ideal model and real model
([48, 66]).

The concept of computational indistinguishability is a kind of equivalence between
distributions based on the concept of efficient computation: Distributions are considered
to be computationally equivalent if they cannot be differentiated by any efficient algo-
rithm. Computational indistinguishability is also called indistinguishability in polynomial
time ([47]). Suppose an ensemble X = {Xn}n∈N is a sequence of random variables Xn for
n ∈ N , which are ranging over strings of length poly(n). Two ensembles X = {Xn}n∈N

and Y = {Yn}n∈N are indistinguishable in polynomial time, denoted by “X ≡c Y ”, if
for every PPT algorithm A, and every c > 0, there exists an integer N such that for all
n ≥ N ,

|Pr[A(Xn) = 1] − Pr[A(Yn) = 1]| <
1

nc
,

where Pr[A(x) = 1] is the probability that A outputs 1 on input x.

1.3.3 Security in the Semi-Honest Model

A semi-honest party is one who follows the protocol properly, with the exception that
it keeps a record of all its intermediate computations. Semi-honest parties do constitute
a model of independent interest ([48]). Because deviation from the specified program
is difficult in many settings, general malicious behavior, e.g., aborting the protocol or
entering the protocol with an input other than the one provided, may be infeasible for
many users. However, it is easier to record the contents of some registers by the standard
activities of the operating system, so some semi-honest behaviors may be feasible for the
users: they may analyze their records of all intermediate computations so as to get any
information other than the output.

Security in this model means that no player or coalition of players gains information
which is not inherent in the output of the calculated function. In the following, we will
give the formal definitions on security in the semi-honest model respectively in the two-
party and multi-party cases. All the definitions are from [48], and will be employed to
formally prove the security of our protocols in the following chapters.

Two-Party Case

Definition 1 (Security in the semi-honest model, two-party case) Let f : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a functionality, that is, f(x, y) = (f1(x, y), f2(x, y)) where
f1(x, y) and f2(x, y) are desired outputs of two parties respectively. Let Π be a two-party
protocol for computing f , and Π1(x, y), Π2(x, y) are outputs of two parties respectively.

Let M = (M1,M2) be a pair of PPT algorithms representing the two parties’ strate-
gies respectively for computing f in the ideal model. M is said to be admissible
if at least one Mk (k ∈ {1, 2}) is honest, i.e., following the ideal execution. The

4

joint execution of f under M in the ideal model, denoted IDEALf,M(x, y), is de-
fined as the output pair of M1 and M2 in the ideal execution.

Let M = (M1, M2) be a pair of PPT algorithms representing the two parties’ strategies
respectively for executing Π in the real model. M is said to be admissible if at least one
Mk (k ∈ {1, 2}) is honest. The joint execution of Π under M in the real model,
denoted REALΠ,M(x, y), is defined as output pair of M1 and M2 resulting from the protocol
interaction.

In case M1 in the ideal model is semi-honest, IDEALf,M(x, y) = (M1(x, f1(x, y)), f2(x, y)).
In case M1 in the real model is semi-honest, REALf,M(x, y) = (M1(x, Π1(x, y)), Π2(x, y)).
M1(x, f1(x, y)) and M1(x, Π1(x, y)) are views of M1 and M1 on their input, output, ran-
domness and public transcript in the executions.

Protocol Π is said to securely compute f in the semi − honest model if

{IDEALf,M(x, y)}x,y,s.t.,|x|=|y| ≡
c {REALΠ,M(x, y)}x,y,s.t.,|x|=|y|.

In this definition, the views of semi-honest adversaries in the ideal and real models
are included in the joint executions of f and Π respectively. For example, if M1 in the
ideal model is semi-honest, , the part of M1(x, f1(x, y)) in IDEALf,M(x, y) denotes view
of M1 on its input, output, randomness and public transcript in the executions. If M1 in
the real model is semi-honest, the part of M1(x, Π1(x, y)) in REALf,M (x, y) denotes view
of M1 on its input, output, randomness and public transcript in the executions.

Multi-Party Case

Definition 2 (privacy with respect to semi-honest behavior, multi-party case) Let f :
({0, 1}∗)m → ({0, 1}∗)m be an m-ary functionality, where fi(x1, ..., xm) is the i-th element
of f(x1, ..., xm). For I = {i1, ..., ic} ⊆ {1, ..., m}, fI(x1, ..., xm) = {fi1(x1, ..., xm), ..., fic(x1, ..., xm)}.
Let Π be an m-party protocol for computing f . The view of the i-th party (Pi) after partic-
ipating in an execution of Π on x = (x1, ..., xm), denoted V IEWΠ

i (x), is (xi, r, m1, ..., mt),
where r are the random bits generated by Pi, m1, ..., mt is a sequence of message received
by Pi. For I = {i1, ..., ic}, we let V IEWΠ

I (x) = (I, V IEWΠ
i1

(x), ..., V IEWΠ
ic

(x)).
We say that Π Privately Computes f if there exists a probabilistic polynomial-time

(PPT) algorithm, denoted S, such that for every I ⊆ {1, ..., m}, it holds that

S(I, (xi1 , ..., xic), fI(x))x∈({0,1}∗)m ≡c V IEWΠ
I (x)x∈({0,1}∗)m

Suppose the index set of semi-honest parties is denoted by one I = {i1, ..., ic} ⊆
{1, ..., m}, then in Definition 2, S(I, (xi1 , ..., xic), fI(x)) denotes view of a semi-honest
adversary in the ideal model. V IEWΠ

I (x) denotes view of a semi-honest adversary in the
real model.

1.3.4 Security with respect to Malicious Behavior

A malicious party may arbitrarily deviate from the specified program of a protocol. Specif-
ically there are three things we cannot hope to avoid in any protocol:

1) Parties refusing to participate in the protocol when the protocol is first invoked.

2) Parties arbitrarily substituting its original local input and entering the protocol with
an input other than the one provided to them.

5

3) Parties aborting the protocol whenever obtaining the desired result.

In [48], it has been proved that any protocol for the semi-honest model can be compiled
into an “equivalent” protocol for the malicious model. In this thesis we will fix the
protocols for the semi-honest model to be secure in the malicious model, following the
ideas of the compiler in [48].

We will not consider perfect fairness in our protocols. As pointed out in [48], perfect
fairness - in the sense of both parties obtaining the outcome of the computation con-
currently - is not achievable in a two-party computation, because a malicious party may
abort the protocol permaturely before sending the last message. In the case of multi-party
computation, when the number of parties that deviate from the protocol is arbitrary, then
perfect fairness cannot also be achieved.

In the following we give the formal definitions of security in the malicious model for
the two-party computation and multi-party computation respectively. In the definition of
the security in the multi-party computation, we assume that the number of parties that
deviate from the protocol is arbitrary. The definitions will be used to define our problems
and prove the security of our protocols in the following chapters.

Two-Party Case

Definition 3 (Security in the malicious model, two-party case) Let f : {0, 1}∗×{0, 1}∗ →
{0, 1}∗×{0, 1}∗ be a functionality, that is, f(x, y) = (f1(x, y), f2(x, y)) where f1(x, y) and
f2(x, y) are desired outputs of two parties respectively. Let M = (M1,M2) be a pair of
PPT algorithms representing the two parties’ strategies respectively for computing f in the
ideal model. M is said to be admissible if at least one Mk (k ∈ {1, 2}) is honest, i.e., fol-
lowing the ideal execution. The joint execution of f under M in the ideal model,
denoted IDEALf,M(x, y), is defined as the output pair of M1 and M2 in the ideal exe-
cution.

Suppose in the ideal model the trusted party firstly sends f1(x, y) to M1, and then
sends f2(x, y) to M2. In case that M1 is malicious and always aborts, IDEALf,M(x, y) =
(M1(x,⊥),⊥). In case that M1 never aborts, IDEALf,M(x, y) = (M1(x, f1(x

′, y)), f2(x
′, y))

where x′ = M1(x) is the input M1 gives to the trusted party.
Let Π be a two-party protocol for computing f , and Π1(x, y), Π2(x, y) are outputs of

two parties respectively. Let M = (M1, M2) be a pair of PPT algorithms representing
the two parties’ strategies respectively for executing Π in the real model. M is said to be
admissible if at least one Mk (k ∈ {1, 2}) is honest. The joint execution of Π under M
in the real model, denoted REALΠ,M(x, y), is defined as output pair of M1 and M2 re-
sulting from the protocol interaction.

Protocol Π is said to securely compute f in the malicious model if

{IDEALf,M(x, y)}x,y,s.t.,|x|=|y| ≡
c {REALΠ,M(x, y)}x,y,s.t.,|x|=|y|.

In the above definition, the symbol “⊥” means aborting of a party.

Multi-Party Case

Definition 4 (Security in the malicious model, multi-party case) Let f : ({0, 1}∗)m →
({0, 1}∗)m be an m-ary functionality, where fi(x1, ..., xm) is the i-th element of f(x1, ..., xm).
Let I = {i1, ..., ic} ⊆ {1, ..., m}, and I = {1, ..., m}\I. fI(x1, ..., xm) = {fi1(x1, ..., xm), ...,

6

fic(x1, ..., xm)}. A pair (I,M), where M is a PPT algorithm, represents an adversary
in the ideal model. The joint execution of f under (I,M) in the ideal model is de-
noted by IDEALf,I,M(x).

Suppose in the ideal model the trusted party firstly sends f1(x
′) to Party 1. In case that

Party 1 is malicious and always aborts, IDEALf,I,M(x) = (M(xI , fI(x
′),⊥). In case that

Party 1 is malicious and never aborts, IDEALf,I,M(x) = (M(xI , fI(x
′)), fI(x

′)), where
x′ = (x′

1, ..., x
′
m) such that x′

i = M(xI) for i ∈ I and x′
i = xi otherwise.

Let Π be an m-party protocol for computing f . A pair (I, M), where M is a PPT algo-
rithm, represents an adversary in the real model. The joint execution of Π under (I,M)
in the real model is denoted by REALΠ,I,M(x), is defined as the output sequence re-

sulting from the interaction between the m parties, where the messages of parties in I are
computed according to M(xI) and the messages of parties in I are computed according to
Π.

Protocol Π is said to securely compute f in the malicious model if

{IDEALf,I,M(x)}x ≡c {REALΠ,I,M(x)}x.

1.3.5 Homomorphic Encryption

A few of our protocols are based on an additive Homomorphic Encryption (HE) scheme.
Let ε be a probabilistic encryption scheme. Let M be the message space and C the
ciphertext space such that M is a group under operation ⊞ and C is a group under
operation ⊡. ε is a (⊞, ⊡)-HE scheme if for any instance ER(·) of the encryption scheme,
given c1 = Er1(m1) and c2 = Er2(m2), there exists an r such that

c1 ⊡ c2 = Er1(m1) ⊡ Er2(m2) = Er(m1 ⊞ m2)

ε is additively homomorphic when it is a (+, ⊡) scheme, and multiplicatively homo-
morphic when it is a (∗, ⊡) scheme.

The HE scheme in our protocols is also required to support secure (N, N)-threshold
decryption. The corresponding secret key is shared by a group of N parties, and the
decryption cannot be performed by any single party, unless all parties act together.

Thus, the candidates of threshold HE schemes include ElGamal ([25]) and Paillier
cryptosystems ([75]). Both of them have the following properties:

1) they are additive homomorphic encryption schemes. Given two encryptions E(m1)
and E(m2), E(m1 + m2) = E(m1) · E(m2);

2) given an encryption E(m) and a scalar a, E(a · m) = E(m)a;

3) (N, N)-threshold decryption can be supported (by [44], [84], [33],[34]).

1.4 Organization of the Dissertation

In Chapter 2 we will discuss the problem of STVD. We will define the problem firstly.
Then we will discuss some related work, basic tools, the main idea and building blocks.
Our protocols for semi-honest case and malicious case will be described and analyzed
respectively. Finally we will compare our work with previous work.

7

In Chapter 3 we will define the problem of PPSI, and discuss some related work
on PPSI. The PPSI protocol for the semi-honest and malicious model will be proposed
respectively, and their security will be analyzed. Finally our protocols will be compared
with the related work considering the computation and communication costs.

In Chapter 4 we will address the PPTM and PPTAM problems. Some related work
and necessary preliminaries for our protocols will be listed. The PPTM and PPTAM
protocols will be proposed respectively. Their correctness will be proved and their security
will be analyzed. We will compare our protocols with the related work considering the
computation and communication costs, and get their response times by experiments in a
moderate-scale application.

In Chapter 5 we will address the issues on testing privacy state in pervasive sensor net-
works. Terminologies about sensing area privacy and originator privacy will be discussed.
Some related work will be outlined. The definition, building blocks, protocol about the
secure two-party point-inclusion problem will be described. Then the specific scheme to
test privacy state in pervasive sensor networks will be presented.

8

Chapter 2

Secure Two-Party Vector Dominance

2.1 Problem Background

Let A = (a1, a2, ..., an) and B = (b1, b2, ..., bn) be two vectors. ai and bi (i = 1, ..., n) are
K-bit integers. We say A dominates B (denoted by A � B), if ai ≥ bi for all i = 1, ..., n.
If there is at least one ordering aj < bj (1 ≤ j ≤ n), A does not dominate B (denoted
by A � B). In multi-commodity bidding, a seller may only want to deal with the bidder
who can simultaneously satisfy the requirements for n commodities because, e.g., they
have some coordinations in the production. This can be treated as a vector dominance
problem: the bidder has a bidding vector A, the seller has a sale price vector B, and they
will make a deal if A � B.

Privacy may be a great concern for both the seller and bidder. Due to commercial
secrecy, whether A � B or not, one party should not know any specific element in the
other party’s vector. If A � B, both of them know there is at least one pair (aj , bj) in
which aj < bj , but neither of them should know the specific number of these pairs, and
the ordering of any specific pair (ai, bi) (i.e., whether ai < bi or not). In this chapter,
we address the problem of secure two-party vector dominance (STVD), i.e., determining
whether A � B without disclosing any information other than the determination to the
two parties.

STVD is a multi-dimensional extension of Yao’s millionaire problem [92], in which two
parties respectively holding value a and b determine which one is greater without disclosing
a and b to each other. However, STVD can not be solved by n trivial executions of a
protocol for the millionaire problem, because the orderings of element pairs should be
kept private in the case of no dominance.

Our main contributions in this chapter include:

1) We define the problem of STVD in terms of completeness, soundness and security
in both semi-honest model and malicious model.

2) We propose an STVD protocol which is proved to be overwhelmingly complete
and sound, and be secure in the semi-honest model. Given K is the length of each
element in the vector, in K+1 parallel execution in which Alice has K platforms and
Bob has one platform, our protocol has higher efficiency compared with a derived
solution from [84] and another solution from [4].

3) We fix our protocol to be secure against malicious behaviors in multi-commodity

9

private bidding, and the fixed protocol is also proved to be overwhelmingly complete
and sound. In K +1 parallel execution, our protocol has the same level of efficiency
compared with the derived solution from [84].

The remaining part of this chapter is organized as follows. Some related work is
discussed in Section 2.2. The problem of STVD is defined in Section 2.3. Some basic
tools used in our protocols are given in Section 2.4. The main idea and building blocks
are described in Section 2.5. Our protocols for semi-honest case and malicious case are
described and analyzed respectively in Section 2.6 and 2.7. Section 2.8 compares our
work with previous work. The chapter is concluded in Section 2.9. In the appendix we
illustrate some major notations of this chapter and give detailed proofs on some lemmas.

2.2 Related Work

2.2.1 Related Work from General Solutions

STVD is a specific problem belonging to the general Secure Multiparty Computation
(SMC) problem. There have been general solutions for the SMC problem ([48, 92]).
In general SMC, the function to be computed is represented by a circuit, and every gate
of the circuit is privately evaluated. However, when this general solution is used for a
specific problem, the large size of the circuit and high cost of evaluating each gate will
result in a much less efficient protocol than the non-private protocol for this problem.
Therefore, many efficient private protocols for the specific problems have been proposed
without using too many complex circuits and evaluation gates.

2.2.2 Related Work from Millionaire Protocols

Millionaire problem has been extensively studied ([6, 10, 32, 57, 64, 65, 76, 84, 92]).
However, it’s unsuitable to trivially run these protocols on every pair (ai, bi) for i = 1, ..., n
to check whether A � B, otherwise the ordering of every pair will be leaked. A possible
solution is to use a homomorphic encryption scheme to joint the comparison result of
every pair from a millionaire protocol and determine the dominance by decrypting the
final joint result. However, to achieve this solution by millionaire protocols in [32, 65, 76],
an encryption scheme which supports both additive and multiplicative homomorphism,
or both AND and XOR homomorphism, should be required, which is an open difficulty
till now.

Both [64] and [84] have also provided circuits to privately compare two values a and
b. In the two circuits, the output t is 1 if a > b, and 0 otherwise. In [84] conditional
gate is also provided for AND operation on two encryptions, i.e., computing E(xy) given
E(x), E(y), x ∈ {−1, 1}, y ∈ Zq, and an additively homomorphic encryption scheme E(·).
Then a derived solution for STVD based on their work can be two steps: 1) compute the
output E(ti) by putting ai and bi into the Millionaire circuit for i = 1, ..., n, 2) compute
E(
∏n

i=1 ti) by n − 1 conditional gates. If
∏n

i=1 ti = 1, A ≻ B; if
∏n

i=1 ti = 0, A ⊁ B.
Notice that E(ti−1ti) can not be computed directly by conditional gate because ti−1 and
ti ∈ {0, 1}. So E(t′i) = E(2ti − 1) can be firstly computed in which t′i = 2ti − 1 ∈ {−1, 1},

then E(ti−1t
′
i) is computed by conditional gate, and E(ti−1ti) = E(

ti−1t′i+ti−1

2
). In Section

2.8 we will compare this derived solution with our STVD protocol.

10

2.2.3 Related Work from other STVD Protocols

There have been a few protocols for STVD which were all constructed on the semi-honest
model. The protocol proposed in [55] may leak some sensitive information. For example,
to compare two vectors (a1, a2) and (b1, b2), in [55] the two parties privately computed
S = (a1 − b1)(a2 − b2) − |(a1 − b1)(a2 − b2)|. When the two vectors have a dominance
relation, S = 0, but when they have no dominance relation, the value of S will help a semi-
honest party to guess the other’s vector. The protocol in [4] disguised the two vectors by
extending each n-dimension vector to be a 4n-dimension vector, then used three building
blocks: private permutation, millionaire protocol, and private equality-test, to determine
the dominance. Though each building block can be replaced by the most efficient protocol
proposed for the corresponding problem, they are always based on different encryption
schemes. At the end of each block, the intermediate computation need be decrypted, and
at the beginning of another block, the computation need be encrypted again. Therefore
it’s difficult to prevent a malicious party from arbitrarily substituting the intermediate
computation. We will also compare this solution from [4] with our STVD protocol in
Section 2.8.

In [81], based on the technique of 0-encoding in [65], we had employed a building
block to avoid disclosing the ordering of each pair (ai, bi), and STVD had been solved
by an encryption scheme which is only additively homomorphic. The major difference
of this chapter from [65] and [81] is that: 1) we change the size of the 0-encoding list
of each bi to the length of bi. In [65] and [81], this size is rightly the number of bit
“1” in bi. If a malicious party knows this number, he gleans sensitive information on bi.
Our change hides this number and also finds a new lemma (Lemma 3) to prevent the
malicious behaviors of the owner of bi; 2) we use random-zero transformation on ai and
bi, and transfer STVD to be a problem of sum on product of scalar products. After the
transfer, efficient zero-knowledge proofs based on statements about discrete logarithms
can be easily utilized to prevent malicious behaviors. Both solutions in [65] and [81] were
only for semi-honest model; 3) we give detailed proofs on the correctness and security of
the proposed protocols, while in [65] and [81] the correctness and security were argued
only in sketch.

2.3 Problem Definition

Let K be the security parameter, that is, the lengths of the two parties’ inputs, |ai| and
|bi|, are K for i = 1, ..., n. In multi-commodity bidding, 2K is the number of possible prices
on a commodity. The two parties can negotiate different scales on the commodities, e.g.,
a price of “11” for a commodity with scale “100$” means an actual price of “1100$”.
Practically the seller will not sell the commodity at a much lower price, and the bidder
will not bid it at a much higher price, so K can be set as 5 to 10.

Let λ be an error probability parameter, and negl(λ) is a negligible function such that
for all polynomials p(·) and all sufficiently large λ ∈ N, negl(λ) < 1/p(λ). In this chapter,
λ is the length of prime p in ElGamal encryption, and is sufficient to be set as 1024 in
practice.

Definition 5 (Secure Two − party Vector Dominance) Let Alice be the owner of
vector A = (a1, ..., an), and Bob be the owner of vector B = (b1, ..., bn). For i = 1, ..., n,

11

ai, bi ∈ {0, 1}K and ai 6= 0. Let f : {0, 1}nK ×{0, 1}nK → {0, 1}×{0, 1} be a functionality
for Alice and Bob, that is, f(A, B) = (f1(A, B), f2(A, B)) where f1(A, B) and f2(A, B)
are outputs of Alice and Bob respectively. f(A, B) = (1, 1) if A � B, and f(A, B) = (0, 0)
if A � B. The problem of Secure Two-party Vector Dominance (STVD) is to find out a
protocol Π to compute f , with M = (M1, M2) be a pair of PPT algorithms representing
Alice and Bob’s strategies respectively and satisfying the following conditions:

1) Admissible: At least one Mk (k ∈ {1, 2}) is honest, i.e., following the execution
prescribed by Π. At most one Mk is controlled by a PPT bounded adversary.

2) Completeness: For an honest strategy Mk (k ∈ {1, 2}), if A � B, the probability
of Mk outputting 0 is negligible, i.e., Pr[Mk = 0] ≤ negl(λ).

3) Soundness: For an honest strategy Mk, if A � B, the probability of Mk outputting
1 is negligible, i.e., Pr[Mk = 1] ≤ negl(λ).

4) Security: {IDEALf,M(A, B)}|A|=|B|=nK ≡c {REALΠ,M(A, B)}|A|=|B|=nK. M =
(M1,M2) is a pair of PPT strategies respectively for the two parties when computing
f in the ideal model.

Actually the security in the definition has implied the completeness and soundness,
i.e., the view of an honest Mk (k ∈ {1, 2}) in the real model should be computationally
indistinguishable with the view of an honest Mk in the ideal model. We specify the
completeness and soundness for clarity and simplifying the security analysis.

In the definition, we also require that ai 6= 0 for i = 1, ..., n , in accordance with the
multi-commodity private bidding, in which the seller may set some bj = 0 but would not
like the bidder to win that item free of charge, so all bids of the bidder are required to be
nonzero.

2.4 Basic Tools

2.4.1 Homomorphic Encryption

Our construction of STVD protocol is based on an additive Homomorphic Encryption
(HE) scheme. The HE scheme is also required to support secure (2, 2)-threshold decryp-
tion, in which the corresponding secret key is shared by two parties, and the decryption
can not be performed by any single party, but only by both parties acting together.

There are a few cryptosystems that satisfy our requirements, and for efficiency we em-
ploy ElGamal encryption, the security of which is based on the Decision Diffie-Hellman
(DDH) problem. The key of ElGamal encryption can be generated by the secure dis-
tributed key generation protocol in [44]. In this chapter we utilize a practical way from
[84] to generate the distributed key.

- Distributed Key Generation: Let p and q be large primes such that p = 2q + 1, and
the length of p be λ. Gq denotes Z∗

p’s unique multiplicative subgroup of order q,
and Gq has a generator of g. Alice’s share of secret key is a random s1 ∈ Zq and
Bob’s share of secret key is a random s2 ∈ Zq. Alice and Bob publish h1 = gs1 and
h2 = gs2, with a proof of knowledge on s1 and s2 respectively. The common public
key is (g, h) where h = h1h2 = gs1+s2.

12

- Encryption: given a message m ∈ Zq, E(m, α) = (x, y) = (gα mod p, hαgm mod p)
in which α ∈R Zq. In this chapter, by “α ∈R Zq” we mean α is uniformly chosen
from Zq. “E(m, α)” is also denoted as “E(m)” for simplification.

- Decryption: given a ciphertext c = (x, y), Alice and Bob publishes d1 = xs1 and
d2 = xs2, with a proof that logxd1 = loggh1 and logxd2 = loggh2 respectively.
Then D(c) = y/(d1d2)(mod p). It should be pointed out that D(c) can not get
the plaintext m directly, but only gm. However, in this chapter we only need know
whether m = 0, i.e., whether gm = 1.

The scheme has the following properties: 1) given two encryptions E(m1) = (x1, y1)
and E(m2) = (x2, y2), we use “E(m1) ⊙ E(m2)” to denote “(x1x2, y1y2)”, then E(m1) ⊙
E(m2) = E(m1 + m2); 2) given an encryption E(m) = (x, y) and a scalar a, we use
“E(m)a” to denote “(xa, ya)”, then E(m)a = E(am).

2.4.2 Zero-knowledge Proofs

In this chapter we use notations such as PK{a, b | y = gahb}, to denote various zero-
knowledge proofs such as “zero-knowledge proof of knowledge of integers a and b such
that y = gahb”. The convention is that the elements listed before the sign “|” denote
quantities the knowledge of which is being proved and are in general not known to the
verifier. By this notation, a proof-protocol can be described by just pointing out its aim
while hiding all details.

Efficiently we can construct the following proofs based on proofs of knowledge on
statements about discrete logarithms ([83, 37, 16, 58]). The correctness and security of
them have been argued respectively in the related work based on the DDH problem. We
also describe them in details in the appendix 2.10.4. Our constructions compose the basic
proofs using AND (∧) operations, the closure of which is also argued in [18]. These proofs
are used in our protocol for the malicious model.

1) Proving that the pair of plaintexts is a random-zero pair : PK{r0, r1|C0 = E(r0) ∧
C1 = E(r1)∧ (r0r1 = 0)∧ (r0 + r1 6= 0)}. This is to prove that the pair of (r0, r1) is
either (0, r1) with r1 ∈R Z∗

q , or (r0, 0) with r0 ∈R Z∗
q (Z∗

q = {1, ..., q−1}). The proof
can be based on the following basic proofs:

1.1) Proof of knowledge of ElGamal plaintext : given an ElGamal encryption E(m, α) =
(x, y) = (gα, hαgm), the prover P proves to V that he knows α and m such
that x = gα and y = hαgm. This proof is from Schnorr’s protocol ([83]) for
proving knowledge of a discrete log x such that x = gα, and Fujisaki-Okamoto’s
protocol ([37]) for proving knowledge (α, m) such that y = hαgm.

1.2) Proving correct multiplication and the multiplication is zero: This proof is from
[16]. In this proof, P sends C0 = E(r0, α0), C1 = E(r1, α1), C2 = Cr1

0 ⊙E(0, α2)
to the verifier. P proves that he knows r0, α0, r1, α1, α2 such that C2 is an
encryption of r0r1 in which r0 and r1 are plaintexts of C0 and C1 respectively.
Then V decrypts C2 in the cooperation of P to check whether r0r1 is 0.

1.3) Proving the sum is nonzero: This is used to check whether r0 + r1 6= 0, and is
based on the protocol for plaintext equality test in [58]. P sends C0 = E(r0, α0),
C1 = E(r1, α1), C3 = E(r3, α3) with r3 ∈R Z∗

q , and C4 = (C0⊙C1)
r3 ⊙E(0, α4)

13

to V . P proves he knows r0, α0, r1, α1, r3, α3 and α4 such that C4 is an
encryption of (r0 + r1)r3 in which (r0 + r1) and r3 are the plaintexts in C0 ⊙C1

and C3 respectively. Then V decrypts C4 in the cooperation of P to check
whether (r0 + r1)r3 6= 0. If (r0 + r1)r3 6= 0, he accepts that r0 + r1 6= 0 without
knowing the specific value of r0 + r1.

2) Proof of knowing the exponential : PK{r|c = E(x) ∧ C0 = cr ⊙ E(0) ∧ C1 = E(r)}.
c = E(x) in which x is unknown to the prover and verifier without decryption.
Actually this proof is an variation of proving correct multiplication in the proof
1.2). P should firstly send C0 = cr ⊙ E(0, β), C1 = E(r, γ) to V , then prove he
knows r, β and γ such that C0 is an encryption of xr in which r is the plaintext in
C1.

3) Proving that the prover computes correct exponentiations and multiplications, and
some of the pairs of exponentials are random-zero pairs: PK{r10, r11, ..., rK0, rK1|y =
cr10
10 ⊙ cr11

11 ⊙ · · · ⊙ crK0
K0 ⊙ crK1

K1

∧J

i=1(ri0ri1 = 0)
∧J

i=1(ri0 + ri1 6= 0)} (J ≤ K).
c10 = E(x10), c11 = E(x11), ..., cK0 = E(xK0), cK1 = E(xK1), in which x10,
x11, ..., xK0, xK1 are unknown to both the prover and verifier without decryp-
tions. For the proof, firstly P sends y, C10 = cr10

10 ⊙ E(0), C11 = cr11
11 ⊙ E(0), ...,

CK1 = crK1
K1 ⊙E(0) to V , and V checks whether y = C10 ⊙C11 ⊙ · · · ⊙CK1. Then P

proves PK{ri0, ri1|Ci0 = cri0
i0 ⊙E(0)∧Ci1 = cri1

i1 ⊙E(0)∧(ri0ri1 = 0)∧(ri0 +ri1 6= 0)}
for i = 1, ..., J . This proof can be made by firstly proving that P knows the expo-
nentials ri0 and ri1 by the proof 2), then proving that (ri0, ri1) is a random-zero pair
by the proof 1).

2.4.3 0-encoding

Suppose that aiK ...ai1 ∈ {0, 1}K is the binary representation for ai, biK ...bi1 ∈ {0, 1}K

is the binary representation for bi (i = 1, ..., n). If ai > bi, there must be an index
k (1 ≤ k ≤ K), which satisfies bik = 0, aik = 1, and aiK ...ai(k+1) = biK ...bi(k+1). If such
a bik is substituted by 1, then aiK ...ai(k+1)aik = biK ...bi(k+1)1. This is the main idea of
0-encoding on bi.

Suppose there are Ji zeros in biK ...bi1, the 0-encoding of bi is the list S0
bi

= {b[i, j]|j =
1, ..., K} in which

b[i, j] =

{

biK ...bi(k+1)1 if bik = 0 for K ≥ k ≥ 1;
biK ...bi1 for j = Ji + 1, ..., K.

S0
bi

maybe a multiset. For example, given bi = (0101)2, S0
bi

= {1, 011, 0101, 0101}. The
following lemmas describe the properties about S0

bi
.

Lemma 1 If ai = 0, for any K-bit bi ∈ {0, ..., 2K − 1}, S0
bi

has no prefix of ai.

Proof : If bi = 0, S0
bi

= {1, 01, 001, ...}, so S0
bi

has no prefix of {0}K. If bi > 0, it is easy to
see that S0

bi
can not also have a prefix of {0}K . �

Lemma 2 Given two K-bit numbers ai (ai 6= 0) and bi, ai ≥ bi if and only if S0
bi

has a
prefix of ai.

14

Proof : If ai = bi 6= 0, S0
bi

must have at least one element biK ...bi1 = aiK ...ai1. If ai > bi,
there must be a k for which aiK ...ai(k+1) = biK ...bi(k+1), aik = 1 and bik = 0, so biK ...bi(k+1)1
must be in S0

bi
and biK ...bi(k+1)1 = aiK ...ai(k+1)aik. On the contrary, if S0

bi
has one prefix

of ai, and if it is biK ...bi1, then bi = ai. If it is intercepted from a “0” bit in bi, e.g.,
biK ...bi(k+1)1 = aiK ...ai(k+1)aik, then biK ...bi(k+1) = aiK ...ai(k+1), bik = 0, and aik = 1. So
ai > bi. �

E.g., a = (0110)2, b = (0101)2, then a ≥ b.

Lemma 3 Suppose |b[i, j]| is the length of b[i, j] and |b[i, j]| = Lij for j = 1, ..., K, then
Lij ≥ j.

Proof : Let Ji be the number of zero bits in bi. For j = 1, ..., Ji, b[i, j] can be viewed as
intercepted from the left j-th zero bit in bi. This zero bit is the left Lij-th bit in bi, given
|b[i, j]| = Lij . Because the left j-th zero bit is not always the left j-th bit in bi, so it is
easy to see that j ≤ Lij . For j = Ji + 1, ..., K, Lij = K, so j ≤ Lij . �

E.g., if bi = (0101)2, |b[i, 1]| = |(1)2| ≥ 1, |b[i, 2]| = |(011)2| ≥ 2, |b[i, 3]| = |(0101)2| ≥
3, and |b[i, 4]| ≥ 4.

2.5 Main Idea and Building Blocks

2.5.1 Random-zero Transformation

By Lemma 2, we should privately test whether S0
bi

has a prefix of ai in order to privately
determine whether ai ≥ bi. The test result can be got by random-zero transformation on
ai and S0

bi
, and then a private scalar product:

1) For each bit ail (K ≥ l ≥ 1) in ai, Alice generates a random-zero pair (rl0, rl1):
If ail = 1, rl0 ∈R Z∗

q and rl1 = 0; if ail = 0, rl0 = 0 and rl1 ∈R Z∗
q . Then

Alice gets a vector Ri = (rK0, rK1, ..., r10, r11). For example, if ai = 0110, Ri =
(0, r41, r30, 0, r20, 0, 0, r11).

2) For each bit b[i, j, l] in b[i, j] (j = 1, ..., K), Bob generates a random-zero pair
(r′l0, r

′
l1): If b[i, j, l] = 1, r′l0 = 0, r′l1 ∈R Z∗

q ; if b[i, j, l] = 0, r′l0 ∈R Z∗
q, r′l1 = 0.

Let |b[i, j]| = Jij, then Bob pads K − Jij pairs of (0, 0) at the end of these random-
zero pairs, and gets a vector R′

ij = (r′K0, r
′
K1, ..., r

′
10, r

′
11). For example, if b[i, j] =

011, R′
ij = (r′40, 0, 0, r

′
31, 0, r

′
21, 0, 0).

3) Alice gives E(Ri) = (E(rK0), E(rK1), ..., E(r10), E(r11)) to Bob. Bob computes
E(Ri ·R

′
ij) = E(rK0)

r′
K0 ⊙E(rK1)

r′
K1 ⊙· · ·⊙E(r10)

r′10 ⊙E(r11)
r′11 = E(

∑K

l=1(rl0r
′
l0 +

rl1r
′
l1)).

It’s easy to see that if b[i, j] is a prefix of ai, Ri · R′
ij = 0, and if S0

bi
has a prefix of ai,

∏K
j=1 Ri ·R′

ij = 0. By Lemma 4 we also know that if S0
bi

has no prefix of ai,
∏K

j=1 Ri ·R′
ij

can be zero with only negligible probability.

Lemma 4 Let Ri = (rK0, rK1, ..., r10, r11) be the random-zero transformation (over Z∗
q)

on ai, and R′
ij = (r′K0, r

′
K1, ..., r

′
10, r

′
11) be the random-zero transformation (over Z∗

q) on

b[i, j] in S0
bi
. If for j = 1, ..., K, b[i, j] is not a prefix of ai, Pr[

∏K

j=1 Ri·R′
ij = 0] ≤ negl(λ).

15

The proof of Lemma 4 is postponed to Appendix 2.10.2. By Lemma 4, to determine
whether A � B, Alice and Bob should know whether

∏K
j=1 Ri · R′

ij = 0 for i = 1, ..., n.

We disclose only R =
∑n

i=1(
∏K

j=1(Ri · R′
ij)) to both of them. If ai ≥ bi for i = 1, ..., n,

all
∏K

j=1 Ri · R′
ij = 0 and R = 0. If there is any i′ ∈ {1, ..., n} such that ai′ < bi′ , by

Lemma 5, we know that R is zero with only negligible probability.

Lemma 5 For two vectors A = (a1, ..., an) and B = (b1, ..., bn), let Ri = (rK0, rK1, ..., r10, r11)
be the random-zero transformation (over Z∗

q) on ai, and R′
ij = (r′K0, r

′
K1, ..., r

′
10, r

′
11) be the

random-zero transformation (over Z∗
q) on b[i, j] in S0

bi
. Let R =

∑n

i=1(
∏K

j=1(Ri · R′
ij)).

If there exists an S0
bi′

such that it has no prefix of ai′, then: 1) Pr[R = 0] ≤ negl(λ); 2)
For m = 1, ..., q − 1, Pr[R = m] ≤ negl(λ).

The proof of Lemma 5 is postponed to Appendix 2.10.2. By checking whether R = 0,
overwhelmingly we can determine whether A � B, without disclosing the ordering of each
pair (ai, bi) in the case of no dominance.

2.5.2 Privacy Preserving Product of Scalar Products

Given E(
∏K

j=1(Ri · R′
ij)) for i = 1, ..., n, it’s easy to get the encrypted sum of them.

However given each E(Ri·R
′
ij) for j = 1, ..., K, it’s nontrivial to get the encrypted product

E(
∏K

j=1(Ri · R′
ij)), because the encryption scheme we use is only additive homomorphic.

We employ the block of Privacy Preserving Product of Scalar Products (PPPSP), to get
E(
∏K

j=1(Ri · R′
ij)):

1) Alice sends E(Ri) = (E(rK0), E(rK1), ..., E(r11)) to Bob. Bob computes E(P1) =
E(Ri · R

′
i1) = E(rK0)

r′
K0 ⊙E(rK1)

r′
K1 ⊙ · · · ⊙E(r11)

r′11 , in which P1 = Ri · R
′
i1, and

sends it to Alice.

2) For j = 2, ..., K,

2.1) Alice computes E(Pj−1Ri) = (E(Pj−1)
rK0⊙E(0), E(Pj−1)

rK1⊙E(0), ..., E(Pj−1)
r11⊙

E(0)), and sends it to Bob.

2.2) Bob computes E(Pj) = E((Pj−1Ri) ·R′
ij) = E(Pj−1rK0)

r′
K0 ⊙E(Pj−1rK1)

r′
K1 ⊙

· · · ⊙ E(Pj−1r11)
r′11 = E(Pj−1(Ri · R′

ij)), in which Pj = (Pj−1Ri) · R′
ij , and

sends it to Alice.

3) Finally, they get E((Ri · R′
i1) · · · (Ri · R′

iK)).

2.6 The Protocol for STVD in the Semi-honest Case

Our protocol for STVD in the semi-honest case is based on the ideas of random-zero
transformation and private product of scalar products in Section 2.5. The protocol is
applied in the multi-commodity private bidding:

Protocol 1 : STVD protocol for the semi-honest case
Input : Alice has a private bidding vector A = (a1, a2, ..., an) (ai 6= 0 for i = 1, ..., n)

and Bob has a private sale price vector B = (b1, b2, ..., bn) . Either Alice or Bob may be

16

semi-honest. Both of Alice and Bob hold the public key and their own shares of the secret
key of the (2, 2)-threshold ElGamal’s cryptosystem.

Output : Both players output 1 if A � B, and 0 otherwise, without gleaning any
other information than the output.

Step 1 For i = 1, ..., n, Alice and Bob repeat the following:
1.1) Random-zero transformation on ai and bi: as described in Section 2.5.1, Alice

gets a vector Ri = (rK0, rK1, ..., r10, r11), Bob gets K vectors R′
ij = (r′K0, r

′
K1, ..., r

′
10, r

′
11)

for j = 1, ..., K.
1.2) Privately Computing Product of Scalar Products: as described in Section 2.5.2,

Alice and Bob computes E(
∏K

j=1(Ri · R′
ij)).

Step 2 Alice and Bob compute E(R) = E(
∏K

j=1(R1 ·R′
1j))⊙···⊙E(

∏K
j=1(Rn ·R′

nj)) =

E(
∑n

i=1(
∏K

j=1(Ri · R′
ij))).

Step 3 Alice and Bob cooperatively decrypt E(R). If the decryption gR = 1, both of
them output 1, otherwise, both of them output 0.

Theorem 1 Protocol 1 achieves completeness and soundness for the problem of STVD
when either of Alice and Bob is semi-honest.

Proof: Let M = (M1, M2) be a pair of admissible strategies executed by Alice and
Bob respectively in Protocol 1. Both parties follow the steps in Protocol 1. If A � B,
because ai 6= 0 for i = 1, ..., n, by Lemma 2 S0

bi
has a prefix of ai for i = 1, ..., n. Then it’s

easy to see that E(R) = E(0) and in Step 3, gR = 1. So an honest party Mk (k ∈ {1, 2})
outputs 1 with probability 1 and completeness is achieved by Definition 5.

If A � B, by Lemma 2 there exists at least one i ∈ {1, ..., n} such that S0
bi

has no
prefix of ai. By Lemma 5, Pr(R = 0) ≤ negl(λ). Because g is the generator of Gq,
then with the same negligible probability gR = 1. An honest party Mk outputs 1 with
negligible probability and soundness is achieved by Definition 5. �

Theorem 2 Assuming the threshold ElGamal encryption is semantically secure, Protocol
1 is secure for the problem of STVD when either of Alice and Bob is semi-honest.

Proof: Let M = (M1, M2) be the admissible strategies executed by Alice and Bob re-
spectively in Protocol 1 denoted by Π, and M = (M1,M2) be the admissible strategies
executed by Alice and Bob in the ideal model.

If Alice is semi-honest, REALΠ,M(A, B) = (M1(A, Π1(A, B)), Π2(A, B)), and IDEALf,M(A, B) =

(M1(A, f1(A, B)), f2(A, B)). M1(A, Π1(A, B)) = V IEWM1(A, Π1(A, B), E , gR), i.e., Al-
ice’s view on (A, Π1(A, B), E , gR), in which E is the encryptions received by Alice. Due to
the semantic security of the threshold ElGamal encryption (which is based on the DDH
problem), V IEWM1(A, Π1(A, B), E , gR) ≡c V IEWM1(A, Π1(A, B),RE, gR) in which RE

is a random sequence uniformly distributed over Gq.
As for gR, if A � B, gR = 1. If A � B, by Lemma 5, for m = 0, 1, ..., q − 1, Pr[R =

m] ≤ negl(λ). Then for each m′ ∈ Gq, Pr[gR = m′] ≤ negl(λ). Suppose RR ∈R Gq, then
Pr[gR = m′] − Pr[RR = m′] ≤ negl(λ). Therefore V IEWM1(A, Π1(A, B),RE , gR) ≡c

V IEWM1(A, Π1(A, B),RE ,RR).
In the ideal model, M1(A, f1(A, B)) ≡c V IEWM1(A, f1(A, B),R′

E ,R′
R) in which

R′
E is a random sequence uniformly chosen over Gq, and R′

R ∈R Gq. By Theorem 1,
Pr[Π2(A, B) = f2(A, B)] ≥ 1 − negl(λ), Pr[Π1(A, B) = f1(A, B)] ≥ 1 − negl(λ). Then
M1(A, f1(A, B)) ≡c M1(A, Π1(A, B)), and IDEALf,M(A, B) ≡c REALΠ,M (A, B).

17

The case of a semi-honest Bob can be analyzed in the same way and the same result
can be got, so Protocol 1 is secure with respect to semi-honest behaviors. �

2.7 The Protocol for STVD in the Malicious Case

Protocol 1 may not be secure if one of the two parties is malicious, e.g., quit the protocol
at any step or substitute the input arbitrarily. Protocol 1 should be fixed so that either
each party is forced to behave in a semi-honest manner, or its malicious behaviors are
detected by the other party. We fix Protocol 1 according to the malicious behaviors
in multi-commodity private bidding where the bidder and seller act as Alice and Bob
respectively.

2.7.1 Security against Malicious Bidder

In Step 1.1) of Protocol 1, a malicious bidder (Alice) may generate each pair (rl0, rl1) to be
(0, 0). Then whatever B is, finally E(R) = E(0), and the honest seller will always output
Π2(A

′, B) = 1. The malicious bidder may also generate each pair (rl0, rl1) in which rl0 6= 0
and rl1 6= 0, then with an honest seller, Pr[R = 0] ≤ negl(λ), and Π2(A

′, B) is always 0. In
this way the completeness and soundness of Protocol 1 will be easily breached. To detect
these malicious behaviors, in Step 1.2), the bidder should send each pair (E(rl0), E(rl1))
to the seller and prove that (rl0, rl1) must be a random-zero pair with the proof 1) in
Section 2.4.2. If the seller is not convinced, he will abort the protocol.

Protocol 1 has assumed that the bidding prices ai for i = 1, ..., n are nonzero. It’s
unnecessary to worry about that a malicious bidder would set some ai = 0 in hope of
catching the chance of bi = 0 and winning the i-th commodity free of charge. In Protocol
1, if ai = 0, whatever bi is, by Lemma 1 S0

bi
can not have a prefix of ai and thus the deal

will not be made.
The malicious bidder may also arbitrarily replace her input A by A′ ∈ {1, ..., 2K − 1},

but in Theorem 3 we will show that, the possibility of gaining Π2(A
′, B) = 1 (or 0) under

the zero-knowledge proofs is the same with gaining f2(A
′, B) = 1 (or 0) without apriori

knowledge on B.

2.7.2 Security against Malicious Seller

In Step 1.1) of Protocol 1, a malicious seller (Bob) may also generate a vector R′
ij in

which each entry is 0, or generate each pair of (r′l0, r
′
l1) in which r′l0 6= 0 and r′l1 6= 0. Then

an honest seller will always output Π1(A, B′) = 1 or Π1(A, B′) = 0, and the completeness
and soundness will also be breached. To detect these malicious behaviors, we notice that
b[i, j], the j-th element in S0

bi
, must have a length Jij ≥ j by Lemma 3. Then in the j-th

iteration of Step 1.2), the seller should prove that the first j pairs (r′l0, r
′
l1) are random-zero

pairs with the proof 3) in Section 2.4.2. In this way, the length of b[i, j] is not leaked, and
the seller can not also arbitrarily confirm the bidder that Π1(A, B′) = 1 or Π1(A, B′) = 0.

The malicious seller may also arbitrarily replace his input B by B′ ∈ {0, ..., 2K − 1},
but the possibility of gaining Π1(A, B′) = 1 (or 0) under the zero-knowledge proofs is the
same with gaining f1(A, B′) = 1 (or 0) without apriori knowledge on A, which will be
shown in Theorem 3.

18

2.7.3 The Protocol for the malicious case

Protocol 2 : STVD protocol for the malicious case
Input : Alice has a private bidding vector A = (a1, a2, ..., an) and Bob has a private

sale price vector B = (b1, b2, ..., bn). Either Alice or Bob may be malicious. Both of Alice
and Bob hold the public key and their own shares of the secret key of the (2, 2)-threshold
ElGamal’s cryptosystem.

Output : Both players output 1 if A � B, and 0 otherwise, without gleaning any
other information than the output.

Step 1 For i = 1, ..., n, Alice and Bob repeat the following:
1.1) Random-zero transformation on ai and bi: as described in Section 2.5.1, Alice

gets a vector Ri = (rK0, rK1, ..., r10, r11), Bob gets K vectors R′
ij = (r′K0, r

′
K1, ..., r

′
10, r

′
11)

for j = 1, ..., K.
1.2) Privately Computing Product of Scalar Products

1.2.1) Alice sends E(Ri) = (CK0, CK1, ..., C11) = (E(rK0), E(rK1), ..., E(r11)) to Bob, with
the proof of PK{rl0, rl1|Cl0 = E(rl0) ∧ Cl1 = E(rl1) ∧ (rl0rl1 = 0) ∧ (rl0 + rl1 6= 0)}
for l = 1, ..., K, which is from the proof 1) in Section 2.4.2.

1.2.2) Bob computes E(P1) = E(Ri · R′
i1) = E(rK0)

r′K0 ⊙E(rK1)
r′K1 ⊙ · · · ⊙E(r11)

r′11 , and
sends it to Alice, with the proof:

PK

{

r′K0, r
′
K1, ..., r

′
11

∣

∣

∣

∣

E(P1)=E(rK0)r′
K0⊙E(rK1)r′

K1⊙···⊙E(r11)
r′11

∧(r′K0r′K1=0)∧(r′K0+r′K1 6=0)

}

,

which is from the proof 3) in Section 2.4.2.

1.2.3) For j = 2, ..., K, Alice and Bob repeat the following:

i) Alice computes E(Pj−1Ri) = (E(Pj−1)
rK0⊙E(0), E(Pj−1)

rK1⊙E(0), ..., E(Pj−1)
r11⊙

E(0)), and sends it to Bob, with the proof of knowing the exponentials:
PK{rl0, rl1|E(Pj−1)

rl0 ⊙E(0)∧Cl0 = E(rl0)∧E(Pj−1)
rl1 ⊙E(0)∧Cl1 = E(rl1)}

for l = 1, ..., K, which is from the proof 2) in Section 2.4.2.

ii) Bob computes E(Pj) = E(Pj−1Ri · R′
ij) = E(Pj−1rK0)

r′
K0 ⊙ E(Pj−1rK1)

r′
K1 ⊙

· · · ⊙ E(Pj−1r11)
r′11 = E(Pj−1(Ri · R′

ij)), and sends it to Alice, with the proof:

PK

{

r′K0, r
′
K1, ..., r

′
11

∣

∣

∣

∣

E(Pj)=E(Pj−1rK0)r′
K0⊙E(Pj−1rK1)r′

K1⊙···⊙E(Pj−1r11)r′11
∧K

l=K−j+1(r′
l0r′

l1=0)
∧K

l=K−j+1(r′
l0+r′

l1 6=0)

}

,

which is from the proof 3) in Section 2.4.2.

Finally, Alice and Bob get E(
∏K

j=1(Ri · R′
ij)).

Step 2 Alice and Bob compute E(R) = E(
∏K

j=1(R1 ·R′
1j))⊙···⊙E(

∏K

j=1(Rn ·R′
nj)) =

E(
∑n

i=1(
∏K

j=1(Ri · R′
ij))).

Step 3 Alice and Bob cooperatively decrypt E(R). If the decryption gR = 1, both of
them output 1, otherwise, both of them output 0.

19

Theorem 3 Assuming the threshold ElGamal encryption is semantically secure and the
zero-knowledge proofs in Protocol 2 are complete and sound, Protocol 2 achieves complete-
ness and soundness for the problem of STVD when either of Alice and Bob is malicious.

Proof : Let M = (M1, M2) be a pair of admissible strategies executed by Alice and
Bob respectively in Protocol 2. We analyze the malicious behaviors of Alice and Bob
respectively.

If M1 is malicious, M1 can generate a′
i = M1(ai, E) in which E is the encryption

sequence received before the i-th iteration of Step 1). Due to the semantic security of
ElGamal encryption (which is based on the DDH problem), a′

i = M1(ai), that is, M1

can only generate an arbitrary a′
i = a′

iK ...a′
i1 without apriori knowledge of M2’s input.

Because of the completeness and soundness of the zero-knowledge proofs, in Step 1.2), M1

must prove to M2 that in every pair of (rl0, rl1), either rl0 6= 0, rl1 = 0, or rl0 = 0, rl1 6= 0.
Though M1 can intentionally set the value of rl0 or rl1 regardless of its randomness,
Bob still generates a corresponding random-zero pair (r′l0, r

′
l1). Then from the analysis

of Lemma 5, Pr[R = 0] will not be changed. That is, for A′ = (a′
1, ..., a

′
n), if A′ � B,

Pr[M2 = 1] = Pr[R = 0] = 1; if A′ � B, Pr[M2 = 1] = Pr[R = 0] ≤ nelg(λ), so
completeness and soundness hold, if M1 is malicious.

Similar analysis can be done for the malicious M2. In the j-th iteration of Step
1.2), a malicious M2 can only: 1) arbitrarily generate b[i, j]′ from {0, 1}j without apriori
knowledge on A; 2) for j ≥ l ≥ 1, set r′l0 or r′l1 to some certain value, and the other one
to zero. By Lemma 5, Pr[R = 0] will not be changed, that is, whether R = 0 is still
overwhelmingly determined by whether M2 can generate a b[i, j]′ that is a prefix of ai in
each i-th iteration of Step 1). If for i = 1, .., n, there exists a b[i, j]′ that is a prefix of ai,
let b′i = b[i, j]′0...0 with a suffix of K − j zeros, then by Lemma 2 ai ≥ b′i, Pr[M1 = 1] =
Pr[R = 0] = 1, so completeness is achieved. If for some i, b[i, j]′ is not a prefix of ai for
j = 1, ..., K, M2 does not choose b′i such that ai ≥ b′i, then Pr[M1 = 1] ≤ negl(λ), and
soundness is achieved. �

Theorem 4 Assuming the threshold ElGamal encryption is semantically secure, the zero-
knowledge proofs in Protocol 2 are complete and sound, then Protocol 2 for the problem
of Secure Two-party Vector Dominance is secure for Alice and Bob when either of them
is a malicious party.

Proof: Let M = (M1, M2) be a pair of admissible strategies executed by Alice and
Bob respectively in Protocol 2, denoted by Π. Let M = (M1,M2) be the admissible
strategies executed by Alice and Bob in the ideal model. When either Alice or Bob is
malicious, we construct Mk (k ∈ {1, 2}) using Mk as a subroutine (following the idea
of proving security in the malicious model in [48]), then prove that the views of the two
strategies are computationally indistinguishable.

If Alice is malicious, the major executions of M2 and M1 with a subroutine of M1

are as follows:

1) For i = 1, ..., n, M1 and M2 repeat the following:

1.1) M1 intentionally generates a′
i and the corresponding Ri. M2 generates R′

ij for
j = 1, ..., K based on its S0

bi
.

20

1.2) M1 invokes M1. The output of M1 will be either aborting or E(Ri). When
M1 gets E(Ri), she checks whether each pair of plaintexts (rl0, rl1) in E(Ri)
is a random-zero pair. Specifically, M1 emulates the execution of the proof
1) in Section 2.4.2), checks whether an honest verifier would be convinced
that (E(rl0), E(rl1)) is an encrypted random-zero pair, and decides whether it
aborts.

1.3) If M1 has not aborted, she sends Ri to the trusted third party (TTP). The TTP
computes Ri ·R′

i1 in which R′
i1 is sent by M2, then sends E(P1) = E(Ri ·R′

i1)
to M1 and M2. M1 also sends E(P1) to M1.

1.4) For j = 2, ..., K, M1 and M2 repeat the following:

1.4.1) M1 invokes M1 to get E(Pj−1Ri) = (E(Pj−1)
rK0 ⊙ E(0), E(Pj−1)

rK1 ⊙
E(0), ..., E(Pj−1)

r11 ⊙E(0)). M1 checks whether an honest verifier would
be convinced that each pair of exponentials (rl0, rl1) is the same pair en-
crypted in E(Ri) by emulating the proof 2) in Section 2.4.2).

1.4.2) If M1 has not aborted, she sends Ri to the TTP. The TTP computes
Pj−1Ri · R′

ij , then sends E(Pj) = E(Pj−1Ri · R′
ij) to M1 and M2. M1

also sends E(Pj) to M1.

2) The TTP sends the final R to M1 and M2.

Then we need prove that the views of M1 and M1 are computationally indistinguish-
able. Let P be the probability that M1 convinces the honest M2 that the pair of plaintexts
(rl0, rl1) is a random-zero pair in the proof 1) of Section 2.4.2), then:

1) If P > negl(λ), by the soundness of the zero-knowledge proof, (rl0, rl1) must be a
random-zero pair. In both the real and ideal model, with probability P, the joint
execution view is non-aborting and has the same input and output. In both models,
with probability 1−P, the joint execution is aborting and includes the same input
and output.

2) If P ≤ negl(λ), by the completeness of the zero-knowledge proof, (E(rl0), E(rl1)) is
not an encrypted random-zero pair. In both models, with probability 1−P, the joint
execution is aborting and includes the same input and output. With probability P,
M1 can encrypt a pair of two zeros or two random numbers over Z∗

q without being
detected, then influence Pr[R = 0]. With probability P, M1 sends a random-
zero pair (rl0, rl1) to the TTP, and has no influence on Pr[R = 0]. However, this
inconsistency only negligibly occurs.

Similar analysis can be done when the proof 2) of Section 2.4.2) is used, and the
joint execution views of M and M are also computationally indistinguishable. Then
{IDEALf,M(A′, B)} ≡c {REALΠ,M(A′, B)}, when Alice is malicious.

If Bob is malicious, M2 can be constructed using M2 as a subroutine:

1) For i = 1, ..., n, M1 and M2 repeat the following:

1.1) M1 generates Ri based on its ai. M2 intentionally generates b[i, j]′ and the
corresponding R′

ij for j = 1, ..., K. M1 sends Ri to the TTP, where E(Ri) is
computed and sent to M2. M2 sends E(Ri) to M2.

21

1.2) M2 invokes M2 and gets E(P ′
1) = E(rK0)

r′
K0 ⊙E(rK1)

r′
K1 ⊙· · ·⊙E(r11)

r′11 . He
checks whether an honest verifier would be convinced that the scalar product
is correctly computed and the pair of exponentials (r′K0, r

′
K1) is a random-zero

pair, by emulating the proof 3) of Section 2.4.2).

1.3) If M2 has not aborted, it sends R′
i1 to the TTP. The TTP computes P1 =

Ri · R′
i1, then sends E(P1) to M1 and M2. M2 also sends E(P1) to M2.

1.4) For j = 2, ..., K, M1 and M2 repeat the following:

1.4.1) M2 invokes M2 to get E(P ′
j) = E(Pj−1rK0)

r′K0 ⊙ E(Pj−1rK1)
r′K1 ⊙ · · · ⊙

E(Pj−1r11)
r′11 . He checks whether an honest verifier would be convinced

that the scalar product is correctly computed and each pair of exponentials
(r′l0, r

′
l1) for K ≥ l ≥ K − j + 1 is a random-zero pair.

1.4.2) If M2 has not aborted, it sends R′
ij to the TTP. The TTP computes

Pj−1Ri · R′
ij , then sends E(Pj) = E(Pj−1Ri · R′

ij) to M1 and M2. M2

also sends E(Pj) to M2.

2) The TTP sends the final R to M1 and M2.

Similar analysis can be done by the completeness and soundness of the proof 3) in
Section 2.4.2), and we can get that the joint execution views of M and M are computa-
tionally indistinguishable, i.e., {IDEALf,M(A, B′)} ≡c {REALΠ,M(A, B′)}, when Bob is
malicious. The theorem holds. �

2.8 Comparisons with other solutions

2.8.1 Complexities of Protocol 1 and Protocol 2

Complexity of Protocol 1 : We estimate the computation cost of our protocols from
the number of mod-exps (modular exponentiations). Each ElGamal encryption has 2
values. The length of each value transferred between Alice and Bob is at most λ bits.
Because our protocols and previous solutions have the same key generation step, we will
not count the cost of key generation.

Firstly we calculate the mod-exps required in the block of PPPSP (in Section 2.5.2).
In Step 1) of the block, because half of Ri are zeros, Alice computes 5K mod-exps, and
sends 4K values to Bob. In the j-th round of Step 2.1), Alice computes 4K mod-exps (for
a pair (0, r) Alice can compute (gs, hs) and E(Pj−1)

r ⊙ (gs, hs)), and sends 4K values. In
the K rounds of the block, the maximum computation of Bob is K2 + 3K − 2 mod-exps
(the specific computation is shown in Appendix 2.10.3). Bob sends totally 2K values to
Alice. Thus in PPPSP Alice and Bob maximumly compute 5K2 +4K − 2 mod-exps, and
the communication cost is 4K2 + 2K values.

In Step 1 of Protocol 1 the block of PPPSP is repeated for n rounds. In Step 3 of
Protocol 1 Alice and Bob concurrently compute one mod-exp and respectively send one
value to decrypt E(R). Therefore, in Protocol 1 Alice and Bob maximumly compute
n(5K2 + 4K − 2) + 1 mod-exps, and the communication cost is n(4K2 + 2K) + 2 values.

K + 1 Parallel Execution of Protocol 1: Suppose Alice has K platforms for par-
allel execution and Bob has one platform, the total computation of Protocol 1 can be
optimized by such kind of K + 1 parallel executions. To achieve high speed, Alice and

22

Bob can generate (1, 0) or (0, 1), instead of (r, 0) or (0, r) in the block of random-zero
transformation. Then in Step 2 of Protocol 1, Alice and Bob should compute E(r1r2R)
in which r1 and r2 are randomly generated by Alice and Bob respectively. In Step 3 if
gr1r2R = 1, both of them output 1, otherwise output 0. Based on the correctness and
security of Protocol 1, it is easy to validate the correctness and security of this speeded-up
protocol. Then in a parallel execution of this protocol over K + 1 platforms (as shown in
Appendix 2.10.3), totally Alice and Bob need n(4K + 2) + 1 mod-exps .

In this parallel execution the communication cost is the same with the serial execution
since the platforms of Alice communicate with those of Bob by a single line.

Complexity of Protocol 2 : Every proof of 1), 2) and 3) in Section 2.4.2) need O(1)
mod-exps, and exchanges O(1) values (by [83, 37, 16, 58]). In the serial execution of Step
1.2) in Protocol 2, for each iteration of j = 1, ..., K, both Alice and Bob need O(K)
mod-exps. Thus, totally both Alice and Bob need O(nK2) mod-exps.

In K + 1 parallel execution, each platform can compute the mod-exps to prove the
corresponding (rl1, rl0) or (r′l1, r

′
l0) is a random-zero pair. Thus in parallel Alice and Bob

in Protocol 2 totally need O(nK) mod-exps.
In Step 1.2), for each iteration of j = 1, ..., K, Alice and Bob exchange O(K) values.

Therefore totally the communication cost between Alice and Bob is O(nK2λ) bits.

2.8.2 A Derived STVD Solution from [84]

Suppose each pair (ai, bi) has been put into a circuit for Yao’s millionaire problem for
i = 1, ..., n. The output of the circuit E(ti) = E(1) if ai > bi, and E(ti) = E(0) otherwise.
To our knowledge the most efficient circuit of this kind is provided by [84], which need
12K mod-exps for each pair (ai, bi). Based on the conditional gate in [84], another STVD
solution can be derived as following:

1) The two parties compute the output E(ti) by putting ai and bi into the circuit for
i = 1, ..., n,

2) The two parties compute E(
∏n

i=1 ti) by supposing T1 = t1 and repeating the follow-
ing for i = 2, ..., n:

2.1) compute E(t′i) = E(2ti − 1) in which t′i = 2ti − 1 ∈ {−1, 1},

2.2) compute E(Ti−1t
′
i) by conditional gate,

2.3) compute E(Ti) = E(Ti−1ti) = E(
Ti−1t′i+Ti−1

2
), in which Ti = Ti−1ti.

Step 1) need 12nK mod-exps. In step 2.2) one conditional gate need 23 mod-exps
(according to [84]). In step 2.3) the quadratic residues need 2 mod-exps on the ElGamal
encryption E(Ti−1t

′
i + Ti−1). Thus, in the serial execution, the derived STVD solution

totally need 12nK + 25(n − 1) mod-exps.
In K + 1 parallel execution, because Bob has only one platform, in step 1), the two

parties have to compute E(ti) for i = 1, ..., n one by one. In step 2), the two parties also
have to compute E(Ti) for i = 2, ..., n one by one. Therefore, K + 1 parallel execution
will not speed up the derived solution in the computation cost.

8K values need be transferred between Alice and Bob in the circuit of [84]. 12 values
need be transferred in their conditional gate. Therefore the total communication cost of
the derived solution is 8nK + 12(n − 1) values.

23

For the malicious case, some zero-knowledge proofs are added into the derived solution,
and each of them need O(1) mod-exps and transfer O(1) values. Thus the total costs of
the derived solution are O(nK) mod-exps, and O(nKλ) communication bits for the serial
and K + 1 executions.

2.8.3 Comparisons

We summarize the above complexities in Table 2.1. In the table we also compute the mod-
exps and communication bits of the STVD protocol in [4] which is based on semi-honest
model (The details of the computation can be found in the Appendix 2.10.3).

In multi-commodity bidding, practically K can be set as 5 to 10. As pointed out in
[71], for long-term security a 1024-bit modulus should be considered, so we set λ = 1024.
We have also tested the modular exponentiations on a computer with a CPU of 2.0GHz
(Pentium 4), and the running time of one 1024-bit mod-exp is about 5 milliseconds.

In serial executions Protocol 1 has no significant increase on the mod-exps compared
with the two previous solutions. For example, let K = 10, n = 10, then the mod-exps
costs of Protocol 1, the derived solution from [84] , and the solution from [4] are about
26, 7 and 26 seconds respectively.

In K + 1 parallel executions, Protocol 1 achieves superiority over the efficiency of the
solutions from [84] and [4]. For example, let K = 10, n = 20, then the mod-exps costs
of Protocol 1, the solution from [84], and the solution from [4] are about 4.2, 14.2 and
49.7 seconds respectively. In K + 1 parallel executions, Protocol 2 has the same level of
computation cost with the derived solution for the malicious case.

Suppose the networks of Alice and Bob are linked by a T3 line (32Mbps), the com-
munication costs of the 5 protocols will not be significant overloads. For example, let
K = 10, n = 20, the communication bits of Protocol 1, the solution from [84], and the
solution from [4] can be completed in 0.26, 0.06 and 0.21 seconds.

Table 2.1: Comparisons for STVD Solutions

Computation Cost (mod-exps) Communication bits
Serial K + 1 Parallel

Semi-honest Protocol 1 n(5K2 + 4K − 2) + 1 4nK + 2n + 1 [n(4K2 + 2K) + 2]λ
[84] 12nK + 25(n − 1) 12nK + 25(n − 1) [8nK + 12(n − 1)]λ
[4] 48nK + 40n 48nK + 16n + 8⌈ n

K
⌉ (32nK + 16n)λ

Malicious Protocol 2 O(nK2) O(nK) O(nK2λ)
[84] O(nK) O(nK) O(nKλ)

2.9 Conclusions

In this section we define the problem of secure two-party vector dominance, and provide
STVD protocols based on an additive homomorphic encryption. A protocol is firstly
constructed in the semi-honest model, and then extended for the malicious model. Cor-
rectness and security of the protocols are analyzed for both models. The protocols can
be used in applications such as multi-commodity private bidding to securely negotiate a
deal on a series of commodities.

24

We also provide two ways to execute our protocols: serial and K+1 parallel executions.
When there are enough moderately fast platforms, the parallel execution can be used to
achieve less costs than the serial execution. For the semi-honest case our protocol can
achieve superiority over the efficiency of the solutions from [84] and [4] by the parallel
execution. For the malicious case our protocol has the same level of computation cost
with the solution from [84]. Our protocols need more communication bits, but they can
be completed by no more than one second in practical applications, therefore the bits will
not decrease the superiority of our protocols.

2.10 Appendix

2.10.1 Major Notations

n the dimension of vector A and B, A = {ai|i = 1, ..., n}, B = {bi|i =
1, ..., n}

K the length of each ai and bi

λ the length of modulus p in ElGamal encryption
ail the l-th bit in ai from the right, K ≥ l ≥ 1
S0

bi
the 0-encoding list of bi

b[i, j] the j-th element in S0
bi

|b[i, j]| the length of b[i, j]
Lij the length of b[i, j]
Ji the number of “0” bits in bi

2.10.2 Proofs of Lemmas for Building Blocks

Lemma 4 Let Ri = (rK0, rK1, ..., r10, r11) be the random-zero transformation (over Z∗
q)

on ai, and R′
ij = (r′K0, r

′
K1, ..., r

′
10, r

′
11) be the random-zero transformation (over Z∗

q)

on b[i, j] in S0
bi
. If for j = 1, ..., K, b[i, j] is not a prefix of ai, Pr[

∏K
j=1 Ri · R′

ij =
0] ≤ negl(λ).

Proof : Ri · R′
ij =

∑K
l=K−Jij+1(rl0r

′
l0 + rl1r

′
l1). Let rl = rl0r

′
l0 + rl1r

′
l1. If b[i, j] is

not a prefix of ai, there exists b[i, j, l] 6= ail for some l ∈ {K − Jij + 1, ..., K}, and rl is
either rl0r

′
l0 or rl1r

′
l1 but nonzero. W.l.o.g. rl = rl0r

′
l0, because rl0, r′l0 ∈R Z∗

q and Z∗
q is a

multiplicative subgroup of Zq, rl is also uniformly distributed over Z∗
q (rl 6= 0). That is,

Pr[rl = m] = 1
q−1

for m ∈ {1, ..., q − 1}.

Suppose there are Sj (1 ≤ Sj ≤ Jij) bits in b[i, j] such that b[i, j, l] 6= ail for l ∈

{K − Jij + 1, ..., K}, then Ri · R′
ij =

∑Sj

l′=1 rl′. Let Pr[
∑Sj

l′=1 rl′ = 0] = PSj
, then

PSj
= Pr[

Sj−1
∑

l′=1

rl′ = 0]Pr[rSj
= 0] +

q−1
∑

m=1

Pr[

Sj−1
∑

l′=1

rl′ = m]Pr[rSj
= q − m]

= 0 + (q − 1) ·
1 − PSj−1

q − 1
·

1

q − 1

i.e,. 1
q
− PSj

= − 1
q−1

(1
q
− PSj−1). Given P1 = 0, PSj

= 1
q
(1 − 1

(1−q)Sj−1). It’s easy to see

25

that Max(PSj
) = P2 = 1

q−1
. Then

Pr[

K
∏

j=1

Ri · R
′
ij = 0] = Pr[Ri · R

′
i1 = 0] + Pr[Ri · R

′
i1 6= 0]Pr[Ri · R

′
i2 = 0] + ...

+ Pr[Ri · R
′
i1 6= 0] · · · Pr[Ri · R

′
i(K−1) 6= 0]Pr[Ri · R

′
iK = 0]

= PS1 + (1 − PS1)PS2 + ... +

K−1
∏

j=1

(1 − PSj
)PSK

Because (1 − PS1)PS2 < PS2, ...,
∏K−1

j=1 (1 − PSj
)PSK

< PSK
, PSj

≤ 1
q−1

for j = 1, ..., K,
then

Pr[

K
∏

j=1

Ri · R
′
ij = 0] < K ·

1

q − 1

=
K

2Ω(λ)

≤ negl(λ)

Then the lemma holds. �

Lemma 5 For two vectors A = (a1, ..., an) and B = (b1, ..., bn), let Ri = (rK0, rK1, ..., r10, r11)
be the random-zero transformation (over Z∗

q) on ai, and R′
ij = (r′K0, r

′
K1, ..., r

′
10, r

′
11)

be the random-zero transformation (over Z∗
q) on b[i, j] in S0

bi
. Let R =

∑n

i=1(
∏K

j=1(Ri·

R′
ij)). If there exists an S0

bi′
such that it has no prefix of ai′, then: 1) Pr[R = 0] ≤

negl(λ); 2) For m = 1, ..., q − 1, Pr[R = m] ≤ negl(λ).

Proof : Suppose there exists T (1 ≤ T ≤ n) bi′ such that S0
b′i

has no prefix of ai′ , let

R = RT =
∑T

i′=1(
∏K

j=1(Ri′ · R
′
i′j)), and Pr[R = 0] = Pr[RT = 0] = PT . Then

PT = Pr[RT−1 = 0]Pr[
K
∏

j=1

(Ri′ · R
′
i′j) = 0] +

q−1
∑

m=1

Pr[RT−1 = m]Pr[
K
∏

j=1

(Ri′ · R
′
i′j) = q − m]

= PT−1P1 + (q − 1) ·
(1 − PT−1)

q − 1
·
1 − P1

q − 1

=
qP1 − 1

q − 1
PT−1 +

1 − P1

q − 1

Then PT − 1
q

= qP1−1
q−1

(PT−1 −
1
q
), and PT = (P1 −

1
q
)(qP1−1

q−1
)T−1 + 1

q
.

By Lemma 4, P1 = Pr[R1 = 0] < K
q−1

. It’s easy to see that qP1−1
q−1

< 1, so for 1 ≤ T ≤ n,

PT ≤ (P1 −
1

q
) +

1

q
= P1 ≤ negl(λ)

For m = 1, ..., q − 1,

Pr[R = m] =
1 − Pr[R = 0]

q − 1
<

1

q − 1
= 2−Ω(λ) ≤ negl(λ)

The lemma holds. �

26

2.10.3 Some calculations on complexities

The maximum computation of Bob in the block of PPPSP: In the block of
PPPSP, the mod-exps that Bob need can be reduced by the lengths of all b[i, j] in S0

bi
,

which depend on the number of zero bits in bi. If the length |b[i, j]| < K, some (0, 0) pairs
are padded in R′

ij , then Bob need not compute mod-exps on these (0, 0) pairs. When
j = Ji + 1 (Ji is the number of zero bits in bi), b[i, j] = bi and |b[i, j]| = K, then Bob
computes 2K mod-exps to get E(PJi+1). For j = Ji + 2, ..., K, b[i, j] = bi, then Bob can
compute only E(PJi+1)⊙(gs, hs) and return it, without compromising the correctness and
security of Protocol 1.

Thus, it’s easy to validate that Bob has minimum mod-exps when there is no zero
bit in bi (bi = (1...1)2), and maximum mod-exps when only the first bit of bi is zero
(bi = (10...0)2). For the latter case, S0

bi
= {(11)2, (101)2, ..., (10...1)2, (10...0)2}. Then

for b[i, 1] = (11)2, Bob generates (0, r, 0, r) and computes 4 mod-exps to get E(P1). For
b[i, K−1] = (10...1)2, Bob computes 2K mod-exps to get E(PK−1). For b[i, K] = (10...0)2,
2K mod-exps are also computed to get E(PK). Then the total mod-exps of Bob are
4 + 6 + ... + 2K + 2K = K2 + 3K − 2.

K + 1 Parallel Execution of Protocol 1: In Step 1) of PPPSP, Alice computes
E(1), E(0) on the l-th platform for l = 1, ..., K, each of which need 4 mod-exps. Bob
computes E(P1) = E(Ri · R′

i1) ⊙ E(0) and need only 2 mod-exps. In the j-th round of
Step 2.1) of PPPSP, Alice computes 4 mod-exps on each platform to get E(0) = (gs1, hs1)
and E(Pj−1) ⊙ (gs2, hs2). (Actually in the (j − 1)-th round, when Bob is computing
E(Pj−1), on each platform Alice can compute the 2 mod-exps for E(0) which will be
used in the j-th round in advance. Then when the j-th round comes, on each platform
Alice need only compute the multiplication E(Pj−1) ⊙ (gs2, hs2)). In the j-th round Bob
computes E(Pj) = E((Pj−1Ri) · R′

ij)⊙E(0) and need only 2 mod-exps. Thus in parallel,
totally Alice and Bob in PPPSP need 4K + 2 mod-exps. Including the cost of Step 3 in
Protocol 1, totally Alice and Bob need n(4K + 2) + 1 mod-exps.

The cost of STVD Solution from [4] There are 4 blocks in this STVD solution: 1)
input disguise, 2) private permutation, 3) Yao’s millionaire computation, and 4) private
equality-testing. The first block need not mod-exps and communication bits. We suppose
the second block uses Paillier’s encryption scheme, the third block uses the efficient circuit
from Schoenmakers’s paper, and the fourth block uses Pohlig-Hellman encryption scheme.

1) Serial Execution: In the first block Alice and Bob extend their vectors to be 4n
elements respectively. It’s easy to compute that the cost of the second block is
24n mod-exps, and the communication cost is 8n values. The third block need 4n
circuits from [84], thus need 4n ∗ 12K = 48nK mod-exps and transfer 32nK values.
The fourth block need 16n mod-exps and transfer 8n values. Thus totally Alice and
Bob need 48nK + 40n mod-exps, and transfer 32nK + 16n mod-exps.

2) K + 1 Parallel Execution: In this kind of execution, Alice’s computation can be
executed in parallel, but Bob’s can not. In the second block the two sides need
8n +4⌈ n

K
⌉ mod-exps. In the third block the two sides need 48nK mod-exps. In the

fourth block the two sides need 8n + 8⌈ n
K
⌉ mod-exps. Thus totally the two sides

need 48nK + 16n + 8⌈ n
K
⌉ mod-exps.

The communication bits of the two parallel executions are the same with the serial
execution since we assume the networks of Alice and Bob are linked by a single line.

27

2.10.4 Some Basic Zero-knowledge Proofs

Proving Knowing the Discret Log : PK{α|C = gα mod p}. For the proof, the prover
and verifier run the following steps (from [83]):

1 The prover selects r ∈R {1, ..., p − 1}, computes x = gr mod p, and sends x to the
verifier.

2 The verifier selects a random number e ∈R {0, ..., 2t − 1}, and sends e to the prover.

3 The prover computes y = r + αe mod ϕ(p), and sends y to the verifier.

4 The verifier checks whether gy = xCe.

Proving Knowing Two Discret Logs : PK{x, r|C = bx
0b

r
1 mod p}. The prover

should prove that he knows (x, r) such that C = bx
0b

r
1 mod p. The proof is as follows

(from [37]) :

1 The prover chooses w0
1, w1

1 ∈R [0, 22mp) and sets w0
2, w1

2 by w0
2 = w0

1 − 22mp and
w1

2 = w1
1 − 22mp. The prover picks four elements, w2

i,j ∈R [0, 22mp), then computes

ti,j = b
w0

i

0 b
w1

j

1 b
w2

i,j

2 , where 1 ≤ i, j ≤ 2.

2 The prover sends to the verifier, four unordered commitments, ti,j’s.

3 The verifier picks a challenge c ∈R [0, 22m) and sends it to the prover.

4 The prover sets X = cx+w0
i and R = cr+w1

j such that X, R ∈ [0, 22mp), and sends
to the verifier, the pair, (X, R, w2

i,j).

5 The verifier checks there exists a ti,j such that bX
0 bR

1 b
w2

i,j

2 = ti,jC
c mod p.

Proving Correct Multiplication : PK{a, r, t, b, u|A = hagr, B = hbgu, C = Bagt}.
This proof is from [16]. The protocol proceeds by executing the following two 3-step
protocols in parallel, using the sam challenge e in both instances. The first is intended to
verify that A, C have the correct form, while the second verifies that the prover can open
B:

1. First protocol:

1.1) The prover chooses x, s1, s2 ∈R Zq and sends m1 = hxgs1, m2 = Bxgs2 to the
verifier.

1.2) The verifier chooses a random number e, so that 0 ≤ e < q and sends it to the
prover.

1.3) The prover sets z = x+ae mod q and w1 = s1+re mod q and w2 = s2+te mod q.
He sends z, w1, w2 to the verifier, who verifies that hzgw1 = m1A

e and Bzgw2 =
m2C

e.

2. Second protocol:

2.1) The prover chooses d, s ∈R Zq, and sends m = hdgs to the verifier.

28

2.2) The verifier chooses a random number e, so that 0 ≤ e < q and sends it to the
prover.

2.3) The prover sets z = d + eb mod q. He then computes w = s + ue, and sends
z, w to the verifier, who verifies that hzgw = mBe.

29

Chapter 3

Privacy Preserving Set Intersection
among Multiple Parties

3.1 Introduction

For datasets distributed on different sources, intersection among these sets is always re-
quired to gain useful information. For example, supermarkets need find out the same
card numbers which have consuming records in all of their databases, and then provide
better service for the card owners. For such kind of applications, privacy may be a crit-
ical concern of the data owners, so they are reluctant to directly publish their datasets.
Specifically, one supermarket doesn’t want other supermarkets to know the card numbers
in its database except those in the intersection. Therefore, there should be some privacy
preserving techniques for them to determine the results of set intersection, without the
datasets being directly published.

In this chapter, we address the problem of Privacy Preserving Set Intersection (PPSI),
in which there are N (N ≥ 2) parties, each party Pi (i = 1, ..., N) has a set (or multiset)
Ti and |Ti| = S, all parties want to learn the intersection TI = T1 ∩ ... ∩ TN , without
gleaning any information other than those computed from a coalition of parties inputs and
outputs. Basically, we solve PPSI by efficiently constructing and evaluating polynomials
whose roots are elements of the set intersection.

The contributions of this chapter include:

1) We give formal definitions of PPSI in both the semi-honest and malicious models.

2) We propose an efficient PPSI protocol for the semi-honest model, which has lower
computation and communication costs than the PPSI protocols in [62] and [36].

3) We improve the PPSI protocol in the semi-honest model to be secure in the malicious
model, and prove its security in the malicious model by the definition. A PPSI
protocol for the malicious model has also been proposed in [63], but our protocol
achieves lower computation and communication costs in comparisons.

The remainder of the chapter is organized as follows: Section 3.2 discusses some
related work. The problem of PPSI is defined in Section 3.3. Section 3.4 lists the basic
tools for our protocol. Section 3.5 and 3.6 propose the PPSI protocol for the semi-honest
and malicious model respectively. In Section 3.7 we analyze the security of our PPSI

30

protocol. In Section 3.8 we compare our protocols with the related work considering the
computation and communication costs. Section 3.9 concludes the whole chapter. In the
appendix of Section 3.10 we give the detailed proofs of two theorems of this chapter.

3.2 Related Work

PPSI can be traced back to the specific problem of private equality test (PET) in two-
party case, where each party has a single element and wants to test whether they are equal
without publishing the elements. The problem of PET was considered in [9], [29], [67] and
[74]. PET solutions can’t be simply used for the multi-party cases of PPSI, otherwise too
much sensitive information will be leaked, e.g., any two parties will know the intersection
of their private sets.

A solution for the multi-party case of PPSI was firstly proposed in [36]. The solution is
based on evaluating polynomials representing elements in the sets. In [62], another solu-
tion for PPSI was proposed, in which each polynomial representing each set is multiplied
by a random polynomial which has the same degree with the former polynomial. In this
chapter, to get a solution with lower cost than [36] and [62], we multiply each polynomial
representing each set by a random polynomial which has a low enough degree without
compromising the security of the solution. We also multiply the randomized polynomials
by a nonsingular matrix to improve the correctness of our solution. We will compare our
solution for PPSI with [36] and [62] in details in Section 3.8.

The PPSI protocol in the semi-honest model in [62] was fixed to be secure in the
malicious model in [63]. We will also extend our PPSI protocol in the semi-honest model
to the malicious model, and compare it with the work in [63].

3.3 Problem Definition

Our PPSI problem aims to securely compute the set intersection among N (N ≥ 2)
parties. Generally speaking there are two types of probabilistic polynomial-time (PPT)
bounded adversaries in SMC: semi-honest and malicious, as pointed out in Chapter 1.

Suppose all sets held by the parties are subsets of a common set T, firstly we should
prevent the dictionary attack, in which an adversary may defraud the honest party of
inputs using T. Therefore, we assume that each party holds a set (or multiset) of the
same size S and S ≪ |T|, such that given two arbitrarily selected subsets Ti and Ti′ , the
probability that an input a ∈ Ti equals any input a′ ∈ Ti′ is negligible (i.e., S

|T| → 0).

Let N (N ≥ 2) be the number of parties, each party Pi (i = 1, ..., N) has a set (or
multiset): Ti = {T (i, j)|j = 1, ..., S}. Let TI = T1 ∩ ...∩ TN . Let f be an N -ary function:

f(T1, ..., TN) = f(T) = {fij(T)|fij ∈ {0, 1}, i = 1, ..., N, j = 1, ..., S}, in which

fij(T) = 1 if T (i, j) ∈ TI,

fij(T) = 0 if T (i, j) /∈ TI.

Suppose I = {i1, ..., ic} ⊂ {1, ..., N} be the index set of c (1 ≤ c ≤ N − 1) col-
luded parties controlled by an adversary. Let fi(T) = {fij(T)|j = 1, ..., S} and fI(T) =
{fi1(T), ..., fic(T)}. Below we define the problem of privacy preserving set intersection in
the semi-honest model and malicious model respectively.

31

Definition 6 (PPSI in the semi − honest model) Let Π be an N-party protocol for
computing f. Let V IEWΠ

i (T) denote the view of the i-th party on its input, output, ran-
domness and public transcript during an execution of Π. Let V IEWΠ

I (x) = (I, V IEWΠ
i1

(T),

..., V IEWΠ
ic

(T)).
Π is said to privately solve the problem of Privacy Preserving Set Intersection with

respect to the semi-honest behavior, if there exists a PPT algorithm S, such that

{S(I, (Ti1, ..., Tic), fI(T))} ≡c {V IEWΠ
I (T)} (3.1)

Definition 7 (PPSI in the malicious model) Let Π be an N-party protocol for com-
puting f. Let a pair (I, A), where A is a PPT algorithm, represent an adversary in the real
model. The joint execution of Π under (I, A) in the real model, denoted REALΠ,I,A(T),
is defined as the output sequence resulting from the interaction among the N parties in
the execution of Π.

Let a pair (I, B), where B is a PPT algorithm, represent an adversary in the ideal
model, where there is an available trusted third party. The joint execution of f under
(I, B) in the ideal model, denoted IDEALf,I,B(T), is defined as the output pair of B and
the honest parties in the ideal execution.

Π is said to securely solve the problem of privacy preserving set intersection in the mali-
cious model, if for every PPT algorithm A (representing a real-model adversary strategy),
there exists a PPT algorithm B (representing an ideal-model adversary strategy), such
that

{IDEALf,I,B(T)} ≡c {REALΠ,I,A(T)}. (3.2)

It should be pointed out that both definitions of security have implied the correctness
of Π. The views of parties in the real execution of Π should be computationally indistin-
guishable from their views in the ideal model, so it is necessary that the output of Π on
T should also be computationally indistinguishable from the output of f on T .

3.4 Basic Tools

3.4.1 Homomorphic Encryption

Our protocol need a threshold and additive Homomorphic Encryption (HE) scheme. Thus,
we use Paillier’s cryptosystem ([75]) for its following properties:

1) it is an additive homomorphic encryption scheme. Given two encryptions E(m1)
and E(m2), E(m1 + m2) = E(m1) · E(m2);

2) given an encryption E(m) and a scalar a, E(a · m) = E(m)a;

3) (N, N)-threshold decryption can be supported (by [33],[34]).

In this chapter, N is the RSA-modulus which is the multiplication of two large prime
numbers, and ZN is the plaintext space of Paillier’s cryptosystem. A (l, t)-threshold
decryption scheme is a protocol that allows any subset of t+1 out of l entities, or servers,
to decrypt a ciphertext, but disallows the decryption if less than t servers participate in
the protocol. Let ∆ = l!, below we give a description of the (l, t)-threshold version of
Paillier cryptosystem.

32

- Key Generation : Choose an integer N , product of two safe primes p and q, such
that p = 2p′ + 1 and q = 2q′ + 1 and gcd(n, ϕ(n)) = 1. One can note that the safe
prime requirement can be avoided ([35]) using Shoup protocol ([86]) without using
safe primes. This allows to fully share Paillier cryptosystem from the key generation
protocol to the decryption process as it appears difficult to generate RSA moduli
with safe prime modulus using [8]. However, for the clarity of the description we
use RSA moduli with safe primes.

Set m = p′q′. Let β be an element randomly chosen in Z∗
N . The public key PK

consists of g, N and the value θ = L(gmβ) = αmβ mod N , where the L-function
takes in input elements from the set SN = {u < N 2|u = 1 mod N} and computes
L(u) = u−1

N .

The secret key sk = β × m is shared with the Shamir scheme ([85]) modulo
mN . Let v be a square that generates with overwhelming probability the cyclic
group of squares in Z∗

N 2 . The verification keys vki are obtained with the formula
v∆ski mod N 2.

- Encryption : To encrypt a message M , randomly pick x ∈R ZN and compute
c = gMxN mod N 2.

- Partial Decryption : The i-th player Pi computes the decryption share ci =
c2∆ski mod N 2 using his secret share ski. He makes a proof of correct decryp-
tion which assures that c4∆ mod N 2 and v∆ mod N 2 have been raised to the same
power ski in order to obtain c2

i and vki.

- Combining Decryption : If less than t decryption shares have valid proofs of
correctness the algorithm fails. Otherwise, let S be a set of t + 1 valid shares and
compute the plaintext

M = L
(

∏

j∈S

c
2µS

0,j

j mod N 2
)

×
1

4∆2θ
mod N

where µS
0,j = ∆ ×

∏

j′∈S\{j}
j′

j′−j
.

3.4.2 Calculations on encrypted polynomials

In our protocol, we need do some calculations on encrypted polynomials. For a polyno-
mial f(x) =

∑m

i=0 aix
i, we use E(f(x)) to denote the sequence of encrypted coefficients

{E(ai)|i = 0, ..., m}. Given E(f(x)), where E(·) is an additive HE scheme (e.g., Paillier),
some computations can be made as follows (which have also been used in [36] and [62]):

1) At a value v, we can evaluate E(f(x)):

E(f(v)) = E(amvm + am−1v
m−1 + ... + a0)

= E(am)vm

E(am−1)
vm−1

· · · E(a0).

2) Given E(f(x)), we can compute the product E(c · f(x)) = {E(am)c, ..., E(a0)
c}.

33

3) Given E(f(x)) and E(g(x)), g(x) =
∑m

j=0 bjx
j , we can compute the sum:

E(f(x) + g(x)) = {E(am)E(bm), ..., E(a0)E(b0)}.

4) Given f(x) and E(g(x)), we can compute E(f(x) ∗ g(x)). Suppose that g(x) =
∑n

j=0 bjx
j , f(x) ∗ g(x) =

∑m+n
k=0 ckx

k, then

E(ck) = E(a0bk + a1bk−1 + ... + akb0) = E(bk)
a0 · · · E(b0)

ak .

ai or bj are treated as zero if i > m or j > n.

3.4.3 Notations

The major notations in this chapter are listed in Table 3.1.

Table 3.1: Major Notations in This Chapter
Notation Definition

N Total number of parties
Pi The i-th party
Ti The set or multiset on Pi

S Total number of elements on each party
T (i, j) The j-th element on Pi, j = 1, ..., S

c Total number of colluded parties, 1 ≤ c ≤ N − 1
I The index set of c colluded parties, {i1, ..., ic}
I ′ The index set of honest parties, {1, ..., N} \ I

fi The polynomial whose roots are elements in Ti. fi =
∏S

j=1(x − T (i, j))

ZN The plaintext space of Paillier’s cryptosystem

3.5 Protocol for Privacy Preserving Set Intersection

in the semi-honest model

3.5.1 Main Idea

Constructing the Polynomial Vector F Our protocol for PPSI is based on evaluating
randomized polynomials representing the intersection, which is a similar way with [36]
and [62], but achieves lower cost.

Each Pi can compute a polynomial fi to represent its set Ti:

fi = (x − T (i, 1)) · · · (x − T (i, S)) mod N

Then it randomizes fi to be fi ∗
∑N

j=1 ri,j by the help of other parties, in which ri,j is
generated by Pj, ri,j = ai,jx + bi,j , ai,j and bi,j are uniformly selected from the plaintext
space of the threshold HE scheme (for Paillier’s scheme, it is ZN).

34

The N parties get a polynomial vector:

F = (f1 ∗
N
∑

j=1

r1,j , ..., fN ∗
N
∑

j=1

rN,j)

Multiplication with Nonsingular Matrices Then the N parties compute G = F ·
R, in which R is an N × N nonsingular matrix whose entries Ruv (1 ≤ u, v ≤ N) are
random numbers. The resulting G is another polynomial vector (g1, ..., gN) as following:

g1 = f1 ∗
N
∑

j=1

r1,jR11 + ... + fN ∗
N
∑

j=1

rN,jRN1

...

gN = f1 ∗
N
∑

j=1

r1,jR1N + ... + fN ∗
N
∑

j=1

rN,jRNN

(3.3)

Then, each Pi evaluates (g1, ..., gN) at the element T (i, j). If for k = 1, ..., N gk(T (i, j)) =
0, then Pi determines T (i, j) ∈ TI. The correctness of this determination will be proved
in Lemma 6.

In the computation of G, to protect the privacy of each fi, fi is encrypted by Pi, and
the encryption of fi∗

∑N
j=1 ri,j is computed. Then each party Pi generates a random matrix

Ri so that R =
∏N

i=1 Ri is nonsingular but no one knows what R is without publishing
all Ri. The encryptions of FR1, FR1R2, ..., FR1 · · ·RN are computed respectively on P1,
P2, ..., PN . Finally, the N parties get the encryption of G = FR. After decryption, each
Pi knows G, but not fi′ for i′ 6= i.

On each Pi, Ri should be generated as a nonsingular matrix with each entry is a
random number over ZN . In the appendix 3.10, we give the method to generate such an
Ri on each Pi, which is from [79].

3.5.2 The Protocol

Protocol 1: Protocol for Privacy Preserving Set Intersection in the semi-honest model

Inputs: There are N (N ≥ 2) parties, any of which may be semi-honest. Each party has
a private set of S elements, denoted Ti. Each party holds the public key and it is
own share of the secret key for the threshold Paillier’s cryptosystem.

Output: Each party Pi knows TI = T1 ∩ ... ∩ TN .

1) Computing E(F): For i = 1, ..., N ,

1.1) Pi computes fi = (x− T (i, 1)) · · · (x− T (i, S)), encrypts the coefficients to get
E(fi), and sends E(fi) to all the other N − 1 parties.

1.2) on each Pj (j 6= i), ri,j is generated as ai,jx + bi,j, in which ai,j and bi,j are
uniformly selected from ZN . Pj computes E(fi ∗ ri,j) by computation 4) in
Section 3.4.2, and sends it to Pi.

35

1.3) Pi also generates ri,i and computes E(fi ∗ ri,i). Then Pi computes E(fi ∗
∑N

j=1 ri,j) by computation 3) in Section 3.4.2, and sends it to P1.

In the end, P1 gets E(F) in which F = (f1 ∗
∑N

j=1 r1,j, ..., fN ∗
∑N

j=1 rN,j).

2) Computing E(G) : For i = 1, ..., N ,

2.1) Pi generates a nonsingular N × N matrix Ri which is uniformly distributed
over ZN (by the method in [79]).

2.2) Pi computes E(FR1 · · ·Ri) according to computation 2) and 3) in Section 3.4.2,
and sends it to Pi+1 if i + 1 ≤ N .

In the end, PN gets E(G) = E(F
∏N

i=1 Ri) and sends it to all the other parties.

3) Decryption and Evaluation :

3.1) The parties cooperatively decrypt E(G) and gets G = F (
∏N

i=1 Ri). Let R =
∏N

i=1 Ri, and Ru,v (1 ≤ u, v ≤ N) is the (u, v)-th entry of R, G is a polynomial
vector (g1, ..., gN) as described in equation 3.3) of Section 3.5.1.

3.2) Every Pi evaluates T (i, j) in G for j = 1, ..., S by computation 1) in Section
3.4.2. If G(T (i, j)) = (g1(T (i, j)), ..., gN(T (i, j))) = (0, ..., 0), the T (i, j) ∈ TI;
otherwise, T (i, j) /∈ TI.

We prove the correctness of Protocol 1 in the following lemma:

Lemma 6 Protocol 1 is a correct protocol for the PPSI problem.

Proof: Protocol 1 determines whether T (i, j) ∈ TI by G(T (i, j)). If T (i, j) ∈ TI,
T (i, j) is a root of all fi for i = 1, ..., N , then

F (T (i, j)) = (f1(T (i, j))

N
∑

j=1

r1,j, ..., fN(T (i, j))

N
∑

j=1

rN,j)

= (0, ..., 0),

G(T (i, j)) = F (T (i, j))R = (0, ..., 0).

That is, if the evaluation G(T (i, j)) 6= (0, ..., 0), T (i, j) /∈ TI.
Then we prove that if G(T (i, j)) = (0, ..., 0), overwhelmingly T (i, j) ∈ TI.
G = FR1 · · · RN = F (

∏N

i=1 Ri) = FR. Because Ri for i = 1, ..., N are generated to

be nonsingular, R =
∏N

i=1 Ri is also nonsingular. If G(T (i, j)) = (0, ..., 0), a linear system
F (T (i, j))R = (0, ..., 0) can be made, and it has only one solution: F (T (i, j)) = (0, ..., 0),
i.e.,

fl(T (i, j)) ∗
N
∑

j=1

rl,j(T (i, j)) = 0 for l = 1, ..., N.

The coefficients of rl,j are uniformly selected from ZN . Suppose
∑N

j=1 rl,j = alx + bl,
al and bl are also uniformly distributed over ZN . The probability that any T (i, j) ∈ ZN

36

is a root of alx+ bl is 1/N . If ∃T (i, j), ∀l ∈ {1, ..., N}, fl(T (i, j)) ∗
∑N

j=1 rl,j(T (i, j)) = 0 ,
because fl(T (i, j)) must be 0 when l = i, so the probability that ∀l (l 6= i) fl(T (i, j)) = 0
is p = (1 − 1/N)N−1. N is the number of parties and practically N ≪ N . When N is
large enough, p → 1, then overwhelmingly T (i, j) is a root of all fl and T (i, j) ∈ TI. �

3.6 Protocol for Privacy Preserving Set Intersection

in the malicious model

3.6.1 Zero-Knowledge Proofs

Efficiently we can construct the following proofs based on proofs of knowledge on state-
ments about discrete logarithms ([15]), the completeness and soundness of which have
been argued respectively in the related work. Our constructions compose the basic proofs
using AND (∧) operations, the closure of which is also argued in [18]. These proofs are
used in our protocol for the malicious model.

1) Proof of knowing the plaintexts of the encrypted coefficients, PK{f : E(f)}. E(f)
are encrypted coefficients of the polynomial f . This is from the proof of knowing a
plaintext in [15]. We give the basic proof in the Appendix 3.10.3.

2) Proof of correct polynomials multiplication, PK{r : M = E(f ∗ r)
∧

E(f)
∧

E(r)}.
f ∗ r is the multiplication of polynomials f and r. This is from the proof of correct
multiplications in [15]. We also give the basic proof in the Appendix 3.10.3.

3) Proof of the nonsingularity of an encrypted matrix, PK{R : D 6= E(0)
∧

D =
E(det(R))

∧

R = E(R)}. R is an N ×N matrix, E(R) are the encrypted entries of
R, det(R) is the determinant of R. This is from the proof of correct multiplications
in [15] and plaintext equality test in the Appendix 3.10.3.

4) Proof of correct matrix multiplication, PK{R : G = E(FR)
∧

F = E(F)
∧

R =
E(R)}. F = (f1, ..., fN) is a vector of polynomials in which the i-th entry is a
polynomial fi for i = 1, ..., N . R is an N × N matrix, and E(R) are the encrypted
entries of R. This is also from the proof of correct multiplications in [15].

3.6.2 Protocols for the Malicious Model

We assume the adversary controls arbitrary number of parties, i.e., suppose the number is
c, then 1 ≤ c ≤ N − 1. We improve Protocol 1 to be Protocol 2, preventing the following
malicious behaviors of the adversary by the zero-knowledge proofs in Section 3.6.1:

1) arbitrarily sending to others an encrypted polynomial without knowing its coeffi-
cients, e.g., just sending to others the encrypted polynomial received from other
parties. Therefore, each party Pi should prove that he knows the coefficients of the
polynomial he encrypts or multiplies, with the proof 1) and 2) of Section 3.6.1.

2) encrypting a polynomial whose coefficients are all zeros, then in equation 3.3) the
malicious adversary will know the intersection of all honest parties. In Protocol
2, the honest parties can reset the leading coefficient of polynomials received from

37

others to be E(1), and then gk for k = 1, ..., N can still hide the polynomials of the
honest parties.

3) generating a singular matrix Ri, then if G(T (i, j)) = (0, ..., 0), it is unnecessary that
all fl(T (i, j)) = 0 for l = 1, ..., N . Therefore, each party Pi should prove that Ri it
generates is nonsingular with the proof 3) of Section 3.6.1.

4) doing multiplication with a matrix R′
i other than the committed matrix Ri. Each

party should prove that he does correct matrix multiplication with the matrix Ri it
has committed, with the proof 4) of Section 3.6.1.

Under these zero-knowledge proofs, each party should either behave in a semi-honest
manner or being detected as cheating.

Protocol 2: Protocol for Privacy Preserving Set Intersection in the malicious model

Inputs: There are N (N ≥ 2) parties, any of which may be malicious. Each party has a
private set of S elements, denoted Ti. Each party holds the public key and its own
share of the secret key for the threshold HE cryptosystem.

Output: Each party Pi knows TI = T1 ∩ ... ∩ TN .

Steps:

1) Computing E(F): For i = 1, ..., N ,

1.1) Pi computes fi = (x− T (i, 1)) · · · (x− T (i, S)), encrypts the coefficients to get
E(fi), and sends E(fi) to all the other parties with the proof of knowing the
plaintexts of the encrypted coefficients, PK{fi : E(fi)}, excluding the leading
coefficient.

1.2) For j = 1, ..., N , each Pj sets the leading coefficient of E(fi) to be E(1), gener-
ates a random polynomial ri,j. Pj computes Mi,j = E(fi ∗ ri,j), Pi,j = E(ri,j),
and sends them to all the other partes, with the proof of correct polynomials
multiplication:

PK{ri,j : Mi,j = E(fi ∗ ri,j)
∧

E(fi)
∧

Pi,j = E(ri,j)}.

1.3) All Pj for j = 1, ..., N compute E(fi ∗
∑N

j=1 ri,j).

In the end, all Pi for i = 1, ..., N get E(F) in which F = (f1 ∗
∑N

j=1 r1,j, ..., fN ∗
∑N

j=1 rN,j).

2) Computing E(G) : For i = 1, ..., N ,

2.1) Pi generates a random nonsingular N×N matrix Ri, and sends Ri = E(Ri) and
Di = E(det(Ri)) to all the other parties, with the proof of the nonsingularity
of the encrypted matrix:

PK{Ri : Di 6= E(0)
∧

Di = E(det(Ri))
∧

Ri = E(Ri)}.

38

2.2) Pi computes Gi = E(FR1 · · ·Ri), and sends it to all the other parties, with the
proof of correct matrix multiplication:

PK{Ri : Gi = E(FR1 · · · Ri)
∧

Gi−1 = E(FR1 · · · Ri−1)
∧

Ri = E(Ri)}.

In the end, all Pi for i = 1, ..., N get E(G) = E(F
∏N

i=1 Ri).

3) Decryption and Evaluation :

3.1) All parties cooperatively decrypt E(G).

3.2) Every Pi evaluates T (i, j) in G for j = 1, ..., S. If G(T (i, j)) = (0, ..., 0), the
T (i, j) ∈ TI; otherwise, T (i, j) /∈ TI.

3.7 Security Analysis

3.7.1 Security Analysis on Protocol 1

The Inferred Information by the Definition of PPSI

Suppose there are c colluded parties PI , I = {i1, ..., ic}. It is unavoidable for PI to
combine their inputs and outputs to infer information. However, by the definition of
PPSI in Section 3.3, they should know no more information than TI in each Ti′, ∀i′ ∈ I ′,
I ′ = {1, ..., N} \ I. That is,

1) On Pi ∈ PI , if T (i, j) ∈ TI, they know each Ti′ has T (i, j).

2) On Pi ∈ PI , if T (i, j) /∈ TI, they don’t know whether T (i, j) ∈ Ti′ for ∀i′ ∈ I ′.

The Inferred Information after Participating in Protocol 1

In Protocol 1, each Pi gets G = (g1, ..., gN), so PI may infer the roots of fi′ for ∀i′ ∈ I ′

by analyzing the coefficients in G. By the following lemma, we prove that G resists such
kind of analysis.

Lemma 7 In Protocol 1, any Pi in the coalition of c (1 ≤ c ≤ N −1) semi-honest parties
(PI) can know no more elements than TI in any Ti′ for ∀i′ ∈ I ′.

Proof: Due to the security of the threshold HE cryptosystem, PI can’t know any
information on the plaintexts of the encryptions unless they are decrypted. We use Pi to
denote any party in PI . Pi gets only the decryption of E(G). If G(T (i, j)) = (0, ..., 0), by
Lemma 6, Pi knows T (i, j) is a root for all fl (l = 1, ..., N) and each Ti′ has T (i, j). This
accords with the case 1) in “The Inferred Information by the Definition of PPSI”.

1) We firstly prove that, if G(T (i, j)) 6= (0, ..., 0), Pi doesn’t know whether T (i, j) ∈ Ti′

for ∀i′ ∈ I ′, that is, whether T (i, j) is a root of any fi′ .

39

From the view of Pi,

G = F (
∏

i∈I

Ri ·
∏

i′∈I′

Ri′), in which

∏

i∈I

Ri is generated by PI ,

∏

i′∈I′

Ri′ is generated by PI′.

Pi doesn’t know
∏

i′∈I′ Ri′ , thus if G(T (i, j)) 6= (0, ..., 0), Pi can’t compute F (T (i, j)).
Then Pi can’t know any fi′(T (i, j)) and whether T (i, j) ∈ Ti′ for ∀i′ ∈ I ′. This ac-
cords with the case 2) in “The Inferred Information by the Definition of PPSI”.

2) Pi may also analyze the coefficients of a single gl (l = 1, ..., N). From Pi’s view,

gl = fTI(FI + FI′), in which

fTI is the polynomial whose roots are TI,

FI =
∑

i∈I

(fi/fTI ∗
N
∑

j=1

ri,jRil),

FI′ =
∑

i′∈I′

(fi′/fTI ∗
N
∑

j=1

ri′,jRi′l).

We should also prove that Pi can’t know FI′, otherwise he will know
⋂

i′∈I′ Ti′ by
factoring FI′.

From the view of Pi, in FI , ∀i ∈ I,
∑N

j=1 ri,jRil can be supposed as bi,1x + bi,0, in

which bi,1 and bi,0 are random numbers. Given fi/fTI =
∑S−|TI|

k=0 ai,kx
k, suppose

fi/fTI ∗
∑N

j=1 ri,jRil =
∑S−|TI|+1

k=0 ci,kx
k, then ci,k = ai,kbi,0 + ai,k−1bi,1.

Suppose FI =
∑S−|TI|+1

k=0 ekx
k, then ek =

∑

i∈I ci,k.

Suppose FI′ =
∑S−|TI|+1

k=0 e′kx
k, then the k-th coefficient of FI +FI′: e

′′

k = ek + e′k =
∑

i∈I(ai,kbi,0 + ai,k−1bi,1) + e′k.

Pi knows all e
′′

k from gl/fTI , and all ai,k from fi/fTI , but doesn’t know all bi,1, bi,0,
and e′k. Thus from e

′′

k =
∑

i∈I(ai,kbi,0+ai,k−1bi,1)+e′k, Pi gets a set of S−|TI|+2 linear
equations with 2c+S−|TI|+2 unknowns. For 1 ≤ c ≤ N −1, Pi can’t compute the
solutions for these unknowns. Therefore, Pi can’t know e′k for k = 0, ..., S−|TI|+1,
and can’t know any root of FI′.

In each gl (l = 1, ..., N), Pi can’t know FI′, which makes Pi fail to know any fi′/fTI

in FI′.

In sum, in Protocol 1, Pi ∈ PI can know no more roots than TI in any Ti′ for ∀i′ ∈ I ′. �

Theorem 5 Protocol 1 is a secure protocol Π in Definition 6, which privately solves the
PPSI problem with respect to the semi-honest behaviors of arbitrary number of parties.

The proof of this theorem is postponed in the Appendix 3.10.

40

3.7.2 Security Analysis on Protocol 2

Theorem 6 Assuming the threshold Paillier encryption is semantically secure and the
zero-knowledge proofs in Protocol 2 can’t be forged, Protocol 2 is a secure protocol Π in
Definition 7, which securely solves the problem of PPSI when the number of malicious
parties is arbitrary.

This theorem can be proved following the ideal-vs.-real emulation paradigm. The
detailed proof is postponed to the Appendix 3.10.

3.8 Comparisons with Related Work

3.8.1 Comparisons for Protocol 1

−Complexity of Protocol 1 :

1) Computation Cost : Each Paillier’s encryption and decryption requires a cost of 2lgN
modular multiplications (mod N 2). Each exponentiation has the same cost with
the encryption. We compare our protocol with other related work regarding their
computation cost on encryptions and multiplications of ciphertexts, and consider
modular multiplication (mod N 2) as a basic computation.

Thus, for each party in Protocol 1, the total encryptions are (S + 2)(N − 1)2 − 2,
and the total multiplications of ciphertexts are (S+2)(N2+2N−3). Then the total
computation cost for each party is 2((S +2)(N −1)2−2)lgN +(S +2)(N2 +2N −3)
modular multiplications.

2) Communication Cost : The length of each encryption is 2lgN . Then in Protocol 1,
the total communication cost among all parties is 2N(N − 1)(4S + 5)lgN bits.

Speeding up techniques can be employed in Protocol 1. If all parties ensure that there
is a coalition of c (1 ≤ c ≤ N −1) semi-honest parties, in Step 1) of Protocol 1 each E(fi)
can be randomized as E(fi ∗

∑c+1
j=1 ri,j) by sending E(fi) to any c parties, instead of all the

other N −1 parties. In Step 2) E(G) can be computed as E(F
∏c+1

i=1 Ri). What’s more, in
Step 1) the iterations i = 1, ..., N can be made in parallel. Then the computation cost is
2(c(S+2)(N−1)−2)lgN +c(S+2)(N +3) modular multiplications. The communication
cost is 2cN(4S + 5)lgN bits.

−Kissner′s Protocol : In Kissner’s protocol for PPSI ([62]), a single polynomial F
is constructed and evaluated on each T (i, j):

F =

N
∑

l=1

fl ∗
N
∑

k=1

rl,k.

fl is a polynomial representing elements on Pl, rl,k is a polynomial uniformly selected
by Pk and has the same degree with fl. In this protocol, it is easy to see that T (i, j) ∈ TI
is a sufficient condition for the evaluation F (T (i, j)) = 0, but F (T (i, j)) = 0 is not a
sufficient condition for ∀l ∈ {1, ..., N}, fl(T (i, j)) ∗

∑N
k=1 rl,k(T (i, j)) = 0.

In Lemma 6 we have proved that if ∀l ∈ {1, ..., N}, fl(T (i, j)) ∗
∑N

k=1 rl,k(T (i, j)) = 0,
the probability that T (i, j) ∈ TI is (1 − 1/N)N−1. Therefore, in Kissner’s protocol, if

41

F (T (i, j)) = 0, the probability that T (i, j) ∈ TI is less than the probability achieved by
our Protocol 1.

The major cost of this protocol is on computing the encrypted F . It is also based
on Paillier’s cryptosystem. The computation cost for each party and communication cost
among all parties are shown in Table 3.2.

−Freedman′s Protocol : In Freedman’s protocol for PPSI ([36]), each party Pi (i =
1, ..., N − 1) sends the encrypted polynomial fi representing its elements to PN . PN

evaluates its elements T (N, j) for j = 1, ..., S on all these polynomials, randomizes the
evaluations and sends them to all the other parties. These parties decrypt and combine the
evaluations to determine whether T (i, j) ∈ TI. In this protocol each party also generates
a random matrix, but the matrices are used in a different way from our Protocol 1 for
they aren’t full rank and not for multiplications. The XOR of each row of the matrices is
required to be zero, and they are used to randomize the decryptions on each party. The
major cost of this protocol is on the evaluations of encrypted polynomials at all elements
of PN . The protocol is also based on Paillier’s cryptosystem. The average computation
cost for each party and communication cost among all parties are shown in Table 3.2. In
[36] only the protocol for the semi-honest model is given.

−Comparisons of 3 protocols : From Table 3.2, the computation costs of Protocol
1, protocol in [62] and [36] are respectively O(cSNlgN), O(cS2lgN), O(S(S + N)lgN).
Practically the size of a set, S, may be much larger than the number of parties, N . Then
it is easy to see that Protocol 1 is more efficient in computation than [62] and [36], and
more efficient in communication than [62].

For a quantitative analysis, we conservatively set S = 20, N = 5, and set c = 3,
lgN = 1024, then Protocol 1 saves 81% and 63% computation costs, 17% and 20%
communication costs in comparison with [62] and [36]. We also notice that if c = 4,
i.e., all of the N parties are semi-honest, then the communication cost in Protocol 1 will
increase by 6% in comparison with [36]. Thus Protocol 1 can utilize the knowledge on
honest relationships among some of the N parties to reduce the communication cost.

Table 3.2: Comparisons of solutions for the PPSI problem in the semi-honest model

Computation Cost Communication Cost Security Model

Our Protocol 1 2(c(S + 2)(N − 1) − 2)lgN
+c(S + 2)(N + 3) 2cN(4S + 5)lgN Semi-honest

Protocol in [62] 2(c(S + 1)2 + 5S + 3)lgN
+c(S2 + 4S + 2) 2cN(5S + 2)lgN Semi-honest

Protocol in [36] ((S + 1)(S + 2) + 3S(N − 1) − 1)2lgN
+S(S + 1) 10S(N − 1)2lgN Semi-honest

3.8.2 Comparisons for Protocol 2

The complexity of Protocol 2 is determined by the complexity of Protocol 1, and a linear
combination of the complexity of the zero-knowledge proofs in Section 3.6.1. The proofs in
Section 3.6.1 are based on the basic blocks, such as proof of knowing the plaintext, proof
of correct multiplication, and private equality test, all of which have a computation cost
of O(lgN) modular multiplications, and a communication cost of O(lgN) bits, according

42

to [15] and [58]. Thus Protocol 2 keeps the same level of complexity as Protocol 1, that is,
it has a computation cost of O(cSNlgN) modular multiplications, and a communication
cost of O(cSNlgN) bits.

In [63] the PPSI protocol for the semi-honest model is also extended to the malicious
model. The computation cost of that protocol is O(cS2lgN) modular multiplications, and
the communication cost is O(cSNlgN) bits.

In the following Table 3.3, we list the costs of the two protocols. In practical applica-
tions, the size of a set S can be much larger than the number of parties N , so our Protocol
2 can be faster than the protocol in [63].

Table 3.3: Comparisons of solutions for the PPSI problem in the malicious model
Computation Cost Communication Cost Security Model

Our Protocol 2 O(cSNlgN) O(cSNlgN) Malicious

Protocol in [63] O(cS2lgN) O(cSNlgN) Malicious

3.9 Concluding Remarks

We address the problem of Privacy Preserving Set Intersection (PPSI) among N parties.
The problem is solved by constructing polynomials representing elements in the set inter-
section, and evaluating the polynomials to determine whether an element is in the set inter-
section, without publishing the datasets on each party. Our protocol is firstly constructed
and the security is analyzed assuming there is a coalition of arbitrary c (1 ≤ c ≤ N − 1)
semi-honest parties. Then the protocol is extended by some zero-knowledge proofs and
the security is also analyzed assuming there is a coalition of arbitrary number of mali-
cious parties. In comparison with related work in [62], [36] and [63], our protocol has less
computation and communication costs in both models.

3.10 Appendix

3.10.1 Proofs of Theorems

Theorem 1: Protocol 1 is a secure protocol Π in Definition 6, which privately solves
the PPSI problem with respect to the semi-honest behaviors of arbitrary number of
parties.

Proof: Protocol 1 provides a Π to compute f. Given any coalition of c (c ≤ N−1) semi-
honest parties indexed by I = {i1, ..., ic}, by Definition 6 in Section 3.3, we have to show
that there exists a PPT algorithm S such that S(I, (Ti1 , ..., Tic), fI(T)) and V IEWΠ

I (T)
are computationally indistinguishable.

V IEWΠ
I (T) = {V1, V2, V3, V4}:

- V1 is I = {i1, ..., ic}.

- V2 are Ti1 , ..., Tic .

- V3 are E(G) and the intermediate encryptions received by PI .

43

- V4 are G(T (it, j)) for any it ∈ I.

With these views, the coalition can do the following two types of analysis:

1) Cryptanalysis on (V1, V2, V3): Due to the semantic security of the threshold HE
cryptosystem, Pi can’t gain extra information from the encryptions in V3. That is,
supposing V3 has s encryptions, with only negligible probability, Pi can distinguish
V3 and ER1 = (E(r1), ..., E(rs)) by randomly choosing R1 = (r1, ..., rs) over the
plaintext space of the HE scheme. Thus, (V1, V2, V3) ≡c (V1, V2,R1, ER1).

2) Roots analysis on (V1, V2, V4): From Lemma 7, PI can’t know roots other than TI
in any fi′ for ∀i′ ∈ I ′. Thus, V4 = (A, T I). A = {ait,j|it ∈ {i1, ..., ic}, j = 1, ..., S}
in which ait,j = 1 if G(T (it, j)) = (0, ..., 0), and ait,j = 0 otherwise.

In sum, V IEWΠ
I (T) ≡c (V1, V2,R1, ER1,A, T I).

fI(T) = (A, T I) by the analysis in Section 3.7.1. Let R′
1 = {r′i|i = 1, ..., s} are

randomly chosen by PI , and ER′
1 are the encryptions of the sequence in R′

1, then

S(I, (Ti1 , ..., Tic), fI(T)) ≡c (I, (Ti1 , ..., Tic),A, T I,R′
1, ER

′
1)

≡c (V1, V2,A, T I,R1, ER1)

≡c V IEWΠ
I (T).

Then Protocol 1 privately computes PPSI against the coalition of any c (c ≤ N − 1)
semi-honest parties. �

Theorem 2: Assuming the threshold Paillier encryption is semantically secure and the
zero-knowledge proofs in Protocol 2 can’t be forged, Protocol 2 is a secure protocol
Π in Definition 7, which securely solves the problem of PPSI when the number of
malicious parties is arbitrary.

Proof: Suppose A and B are respectively adversarial strategies in the real and ideal
model, and they control the same set of parties PI (1 ≤ |I| ≤ N−1) during the executions.
Protocol 2 actually provides a Π to compute the function f as defined in Section 3.3. We
need to prove that the views of A and B are computationally indistinguishable, in order
to prove the the joint executions {IDEALf,I,B(T)} ≡c {REALΠ,I,A(T)}.

Firstly we analyze the view of A. In the real execution of Protocol 2, A can’t know the
plaintexts of encryptions received from the honest parties, can’t extract information other
than the statements in the zero-knowledge proofs in Step 1.1), 1.2), 2.1), 2.2), and can’t
convince the honest parties on any false statement. In Step 1.2), A can’t commit zero
polynomials so that in Step 3.1), ∀k ∈ {1, ..., N}, gk won’t become

∑

l∈I′ fl ∗
∑N

j=1 rl,jRl,k

(I ′ is the set of honest parties), otherwise A will know the intersection of
⋂

i∈I′ Pi. By
Lemma 7, A can’t know more elements than TI on Pi (i ∈ I ′).

Secondly we analyze the view of B. In the ideal model, the honest parties (denoted
by PI′) and malicious parties controlled by B compute f by the help of the trusted third
party (TTP). B can be constructed using A as a subroutine as following:

1) Computing F :

44

1.1) B invokes A. A intentionally generates fj for each party Pj in it, and sends
E(fj) to B. B sets the leading coefficient of E(fj) to be E(1), and emulates
the proof PK{fj : E(fj)} to check whether a verifier will be convinced that Pj

knows the plaintexts of each coefficient in E(fj) excluding the leading coeffi-
cient. If the verifier would be convinced, B sends fj to the TTP, otherwise he
aborts.

For the honest parties in PI′, they send their polynomials directly to the TTP.

1.2) The TTP encrypts all fi for i = 1, ..., N and sends them to the honest parties
and B. B invokes A again. B forwards all E(fi) to A. For i = 1, ..., N , A
generates a random polynomial ri,j for each party Pj in it, computes Mi,j =
E(fi ∗ ri,j), Pi,j = E(ri,j), and sends them to B. B checks whether a verifier
will be convinced that the polynomials multiplication is correct by emulating
the proof PK{ri,j : Mi,j = E(fi ∗ ri,j)

∧

E(fi)
∧

Pi,j = E(ri,j)}. If the verifier
would be convinced, B sends all fi ∗ ri,j to the TTP, otherwise he aborts.

For the honest parties Pj in PI′ , they generate a random polynomial ri,j for
i = 1, ..., N and send all fi ∗ ri,j directly to the TTP.

1.3) The TTP computes F = (f1 ∗
∑N

j=1 r1,j, ..., fN ∗
∑N

j=1 rN,j).

2) Computing G : The TTP sets R0 to be an N ×N identity matrix. For j = 1, ..., N ,
the TTP computes Gj = FR0 · · · Rj−1, and sends E(Gj) to Pj.

2.1) If Pj is in B, B invokes A. A generates a random nonsingular N × N matrix
Rj for each Pj , and sends Ri = E(Rj) and Dj = E(det(Rj)) to B. B checks
whether a verifier will be convinced that Rj is nonsingular by emulating the
proof of PK{Rj : Dj 6= E(0)

∧

Dj = E(det(Rj))
∧

Rj = E(Rj)}.

Then A computes Gj+1 = E(FR0 · · ·Rj), and sends it to B. B checks whether a
verifier will be convinced that the matrix multiplication is correct by emulating
the proof PK{Rj : Gj+1 = E(FR0 · · · Rj)

∧

Gj = E(FR0 · · · Rj−1)
∧

Rj =
E(Rj)}. If the verifier would be convinced by both proofs, B sends Rj to the
TTP, otherwise he aborts.

2.2) If Pj is an honest party, he generates a nonsingular matrix Rj and send it
directly to the TTP.

3) Evaluation :

3.1) The TTP gets G = FR0 · · · RN and sends it to all parties.

3.2) Every Pi evaluates T (i, j) in G for j = 1, ..., S. If G(T (i, j)) = (0, ..., 0), the
T (i, j) ∈ TI; otherwise, T (i, j) /∈ TI.

According to the above procedure, in assumption of the Paillier encryption is semanti-
cally secure and the zero knowledge proofs can’t be forged, the view of B is computation-
ally indistinguishable from the view of A, so the joint executions {IDEALf,I,B(T)} ≡c

{REALΠ,I,A(T)}. �

45

3.10.2 Generation of Random and Nonsingular Matrix

In Protocol 1 and 2 we need each party to generate a random and nonsingular matrix
over the plaintext space of Pailler’s encryption scheme, ZN . The generation algorithm is
from [79], and to generate an n × n nonsingular matrix, the computation complexity is
O(n2)+Mul(n), where Mul(n) is the time needed to multiply two n×n matrices. Below
we give the general ideas and some steps of the generation algorithm.

The algorithm simultaneously constructs two matrices whose product will be the non-
singular matrix we are looking for. It works recursively, fixing a row and column of each
matrix at every stage. It is proved in [79] that the product of the two matrices will be
nonsingular of full rank since the fixed row and column on the second matrix just acts as
a linear transformation of some standard basis and this nonsingular minor.

The main ideas behind the algorithm are as follows. To generate a nonsingular matrix
with first row e1 = (1, 0, 0, ..., 0) uniformly it suffices to choose the remaining elements
in the first column uniformly from the field and choose the (1, 1)th-minor uniformly from
the set of (n − 1) × (n − 1) nonsingular matrices. We can generalize this to matrices of
any fixed nonzero first row. Let er =< 0, 0, ..., 1, ..., 0 >, where the 1 is in the rth row.
Given a finite field F and a vector v in F n \{0n} with nonzero rth coordinate, we describe
a bijection between the set of nonsingular matrices with first row er and those with first
row v. This bijection is the linear transformation achieved by multiplying on the right by
a matrix T that is the identity matrix with the rth row replaced with v. This provides a
reduction from the problem of uniformly generating an n × n nonsingular matrix to that
of generating an (n−1)× (n−1) nonsingular matrix and takes one matrix multiplication.
The Algorithm is as follows:

Nonsing(n) :

begin

Gen(A,T,n);

return(A ∗ T).

end

Gen(A,T,n) :

begin

if n = 1 then

let A1,1 = 1;

choose T1,1 ∈ F \ {0};

else

choose v ∈ F n \ {0n} such that v 6= 0n;

let r be the first nonzero coordinate of v;

let the first row of A = er; /*Assign Values to A*/

let the rth row of T = v;

for all 1 ≤ i ≤ n, where i 6= r, Ti,r = 0; /*Assign Values to T*/

Gen(A[1, r],T[r, r],n− 1)

end

46

3.10.3 Some Basic Zero-knowledge Proofs

Proving Knowing a Plaintext In Paillier’s cryptosystem, a prover can prove to
the verifier that he knows a plaintext α in in the ciphertext Cα = gαsN mod N 2,
by the following steps (from [15]):

1. Pi chooses x ∈ ZN and u ∈ Z∗
N 2 at random, computes and sends

A = gxuN mod N 2

2. The verifier sends a random challenge e.

3. Pi computes and sends

w = x + eα mod N ,

z = usegt mod N 2,

where t is defined by x + eα = w + tN .

4. The verifier checks that

gwzN = ACe
α mod N 2

and accepts if and only if this is the case.

Proving Multiplications Correct We now describe a
∑

-protocol for securely
multiplying an encrypted value by a constant. So we have as input encryptions
Ca = garN mod N 2, Cα = gαsN mod N 2, D = Cα

a γN mod N 2 and a player Pi

knows in addition α, s, γ. What we need is a proof that D encrypts aα mod N .
We proceed as follows:

1. Pi chooses x ∈ ZN and v, u ∈ Z∗
N 2 at random, computes and sends

A = Cx
avN mod N 2,

B = gxuN mod N 2

2. The verifier sends a random challenge e.

3. Pi computes and sends

w = x + eα mod N ,

z = usegt mod N 2,

y = vCt
aγ

e mod N 2

where t is defined by x + eα = w + tN .

4. The verifier checks that

gwzN = BCe
α mod N 2,

Cw
a yN = ADe mod N 2

and accepts if and only if this is the case.

47

Proving the Plaintext is Nonzero Our protocol 2 also needs a proof of nonzero
plaintext, i.e., Pi needs to prove that it has encrypted a nonzero a in Ca = garN mod N 2.
This proof can be based on the proof of correct multiplications above and the thresh-
old cryptosystem. We proceed as follows:

1. Pi chooses a random α ∈ ZN (α 6= 0), computes

Cα = gαsN mod N 2,

D = Cα
a γN mod N 2.

2. Pi proves to the verifier that D encrypts aα mod N by the proof of correct
multiplication above.

3. Pi and the verifier cooperatively decrypt D using the threshold decryption keys.
The verifier checks whether the decryption aα mod N is zero. If it is nonzero,
the verifier accepts that a is nonzero without knowing what a is.

48

Chapter 4

Privacy Preserving Tuple Matching
in Distributed Database

4.1 Problem Background

Tuple matching is a basic problem that has been encountered in many applications
of databases ([19]), such as tuple merge/purge, tuple deduplication, etc. The tuple
merge/purge problem is the task of merging data from multiple sources in a manner
as efficient as possible ([53]). Deduplication is to detect and eliminate duplicate records
that refer to the same entity in spite of various data inconsistencies, when integrating
data from multiple databases ([82]).

In distributed settings, privacy concern is an important issue when performing tuple
matching, because data sources are reluctant to publish their tuples to others for their
individual privacy. We focus this chapter on some simple tuple matching problems and
address their privacy preservation issues. For example, supermarkets may ally to provide
discounts for the following kinds of customers: 1) the customers who have purchased the
same commodities in any two of the supermarkets, 2) the customers whose commodities
in one certain purchase are all sold well. In both cases, the supermarkets would not
like to publish their whole database to each other because of their own commercial se-
crecy. Therefore, there should be some privacy preserving techniques for a supermarket
to determine whether its customers have duplicate purchase records in other supermar-
kets, or whether they have purchased a group of commodities which are all sold well in
the alliance, without its database of customers published to other supermarkets. In this
chapter, we name the former problem privacy preserving tuple matching, and the latter
privacy preserving threshold attributes matching. We will show the two problems can be
solved by similar techniques.

Problem Formulation : We are given a distributed database whose relation (table)
is horizontally partitioned among different parties (physical locations), where each party
Pi(i = 1, ..., N, N ≥ 2) has a set of tuples (records) Ti = {T (i, j)|j = 1, ..., S} and
T (i, j) =

(

T (i, j)1, ..., T (i, j)M

)

. All tuples have the same M attributes (M ≥ 2).
We assume that each party has the same number of tuples. Practically if the numbers

of tuples on all parties are different, they can use the maximum number as S, and the other
parties can pad zero tuples in their databases to get S tuples. We also assume that the data
inconsistencies inside attributes have been cleaned, then an attribute value T (i, j)k has a
duplicate T (i′, j′)k, if and only if T (i, j)k = T (i′, j′)k. In this way we also say that T (i, j)k

49

Table 4.1: An example table
A1 A2 A3 A4

T1 a1 b1 c1 d1

T2 a2 b1 c2 d2

T3 a1 b1 c1 d1

T4 a2 b1 c2 d3

T5 a1 b1 c1 d1

T6 a1 b1 c2 d4

has an attribute match with T (i′, j′)k. T (i, j) has a tuple match with T (i′, j′), if and only
if T (i, j) has M attribute matches with T (i′, j′), i.e., ∀k ∈ {1, ..., M}, T (i, j)k = T (i′, j′)k.

1) Privacy Preserving Tuple Matching (PPTM): Each party Pi determines whether each
tuple T (i, j) has any duplicate with the other parties, i.e., whether T (i, j) ∈ Ti ∩
(
⋃

i′=1...N,i′ 6=i Ti′), without gaining any information other than those inferred from
the combination of its inputs and determination outcomes. PPTM can be used
when each party cares about only the fact whether there is any duplicate with the
other parties for each tuple of its own, but not the number of these duplicates.

2) Privacy Preserving Threshold Attributes Matching (PPTAM): Each party Pi deter-
mines whether all attributes of T (i, j), i.e., ∀k ∈ {1, ..., M}, T (i, j)k appear at least
2 times in the k-th attribute’s value union on the N parties, i.e., Ak = {T (i, j)k|i =
1, ..., N, j = 1, ..., S}, without gaining any information other than those inferred
from the combination of its inputs and determination outcomes.

Actually, in PPTAM, each party Pi determines whether T (i, j) is in T1i or T0i: T1i

is the set of tuples {T (i, j)|∀k ∈ {1, ..., M}, T (i, j)k appear at least 2 times in Ak}.
T0i is the tuple set {T (i, j)|∃M ′ ⊆ {1, ..., M}, ∀k ∈ M ′, T (i, j)k appear only one time in Ak}.
It is easy to see that T1i ∩ T0i = φ and T1i ∪ T0i = Ti.

As a simple example in Table 4.1, supermarket P1 has customers T1 and T2, su-
permarket P2 has T3 and T4, P3 has T5 and T6. Every customer buys one type of
each commodity Ai (i = 1, 2, 3, 4). When PPTAM is applied, P1 finds T1 ∈ T11 and
T2 ∈ T01; P2 finds T3 ∈ T12 and T4 ∈ T02; P3 finds T5 ∈ T13 and T6 ∈ T03. That
is, the customers T1, T3 and T5 have bought a group of types on (A1, A2, A3, A4), all
of which have been sold for at least 2 times, thus they can be given some discounts
by the supermarkets.

Privacy Requirements : We assume that there is only one adversary and he controls
c (c ≤ N − 1) parties, that is, there may be c colluded parties that combine their inputs
and outcomes together to gain more information. Analyses on the information gained by
this collusion are postponed to Section 4.6. If there is no collusion among the N parties,
the privacy requirements from the definitions of PPTM and PPTAM still deserve to be
pointed out as follows:

1) In both problems, each party does not publish any tuple of its own.

2) In both problems, whatever the determination on T (i, j) is, Pi does not know the
specific matching times and the matching originations, i.e., which party T (i, j) has
a match with.

50

3) In the PPTAM problem, if the determination on T (i, j) is T (i, j) ∈ T0i, Pi does not
know the attribute subset M ′, such that ∀k ∈ M ′, T (i, j)k appears only one time in
Ak.

Our Contributions : Our main contributions in this chapter include:

1) Our proposed protocol for the PPTM problem has a lower computation cost than
two related solutions in [62] and [63], and keeps the same security defined under
Secure Multi-party Computation (SMC), without increasing intolerable communi-
cation cost.

2) Our proposed protocol for the PPTAM problem has lower computation and com-
munication costs than the related solution derived by the techniques in [62], while
keeping the same level of SMC security.

The remainder of the chapter is organized as follows: Section 4.2 discusses some
related work. Section 4.3 lists the necessary preliminaries for our protocols. Section
4.4 and Section 4.5 propose the PPTM and PPTAM protocols respectively, and prove
their correctness. In Section 4.6 we analyze the security for both protocols. In Section
4.7 we compare our protocols with the related work considering the computation and
communication costs, and get their response times by experiments in a moderate-scale
application. Section 4.8 concludes the whole chapter and discuss some open problems.

4.2 Related Work

Both PPTM and PPTAM are specific problems belonging to the general Secure Multiparty
Computation (SMC) problem. There have been general solutions for the SMC problem
([49], [92]). In general SMC, the function to be computed is represented by a circuit, and
every gate of the circuit is privately evaluated. However, when this general solution is
used for a specific problem, the large size of the circuit and high cost of evaluating all
gates will result in a much less efficient protocol than the non-private protocol for this
problem. For specific problems, their properties can be utilized to produce more efficient
private protocols.

PPTM and PPTAM can be traced back to the specific problem of private equality test
(PET) in two-party case, where each party has a single element and wants to test whether
they are equal without publishing the elements. The problem of PET was considered in
[9], [29], [67] and [74]. Another related problem is for the situation where each party
holds a dataset, and privately computes the intersection (PI) of two datasets ([74] and
[36]). The elements other than those in the intersection should be kept private. By these
two-party case solutions, one party will know the specific matching times of its elements
on the other party, so they are unsuitable to be used for our N-party case PPTM and
PPTAM, otherwise too much sensitive information will be leaked, e.g., the second privacy
requirement in Section 4.1 will be breached.

Privacy preservation issues have also been considered for approximation of a function
f among tuples owned by multiple parties. The function f may be Euclidean distance
([21],[30],[56]), set difference ([36]), Hamming distance ([21],[56]) and scalar product (re-
viewed in [46]). All of these problems assume that for some integer U , Alice has q ∈ [U]d,

51

Bob has P = p1, ..., pn ∈ [U]d. Alice should learn those pi such that f(q, pi) ≤ m, where m
is a threshold on the distance. These problems have different privacy requirements from
ours. In these problems Alice will know how many pi on Bob satisfy f(q, pi) ≤ m, but
for our PPTM and PPTAM the specific number of pi should be kept private, and we only
care about the fact whether there are some pi. Therefore, the solutions for these problems
are not suitable for our PPTM and PPTAM, otherwise the specific matching times and
matching orignations will be leaked.

4.2.1 Related Work for PPTM

The PPTM problem can be considered as computing a function
⋃

i′=1,...,N,i6=i′(Ti ∩ Ti′) on
Pi for i = 1, ..., N . In [62] privacy preserving set intersection and set union on N (N ≥ 2)
parties are solved using the encrypted polynomial techniques. Thus we can derive a
solution from their work: on each Pi, 1) Ti ∩ Ti′ for i′ = 1, ..., N and i 6= i′ are computed
by their set intersection protocol. 2) without disclosing the results of these intersections,
⋃

i′=1,...,N,i6=i′(Ti ∩ Ti′) is computed by their set union protocol. We name this solution
Solution D1 in this chapter.

In [63] the problem of Threshold Contribution Threshold Set-union (TCTS) was solved,
where each party learns those elements which appear both in his private input and the
threshold set. The threshold set is composed by those elements which appear at least t
times in the union of all parties’ sets. If there are no duplicate tuples inside any party’s
own database, a protocol for TCTS can be used to solve the PPTM problem by setting
t = 2.

Both Solution D1 and TCTS protocol are correct with overwhelming probability when
determining whether an element T (i, j) ∈

⋃

i′=1,...,N,i6=i′(Ti ∩ Ti′). An overwhelming prob-

ability is near one, and typically it is a probability ≥ 1 − 2−80. In the two solutions
wrong determinations happen with negligible probability. A negligible probability is near
zero and typically ≤ 2−80. The reason for the wrong determinations is that a randomly
selected polynomial in these solutions may have a root which is rightly in the tuple set of
the parties. We will prove that our protocol for PPTM is also overwhelmingly correct (in
Lemma 8 and 9). We will compare our PPTM protocol with the two related solutions by
their computation and communication costs in Section 4.7.

4.2.2 Related Work for PPTAM

We use TN i
k for k = 1, ..., M to denote the tuple set {T (i, j)|T (i, j)k appears at least 2 times in Ak}

on Pi, then the PPTAM problem is for Pi to compute TN i
1 ∩ TN i

2 ∩ ... ∩ TN i
M (= T1i).

In [62] the threshold set-union protocol is to find out the elements which appear in the
union of the players’ private input multisets at least a threshold number t times. Thus,
a derived solution from the techniques in [62] can be: 1) on each Pi, TN i

k is computed
for the k-th attribute using their threshold set union protocol for k = 1, ..., M , by setting
t = 2; 2) without disclosing the results of the set unions, TN i

1 ∩ TN i
2 ∩ ... ∩ TN i

M is
computed by their set intersection protocol. We name this solution Solution D2 in this
chapter. Solution D2 is correct with overwhelming probability according to [62]. We will
prove our protocol for PPTAM is also overwhelmingly correct (in Lemma 10 and 11), and
compare the two solutions by their computation and communication costs in Section 4.7.

52

4.3 Preliminaries

4.3.1 Adversary Model

There are two types of adversaries in Secure Multi-party Computation, as described in
Chapter 1. In this chapter we assume the parties are semi-honest, and they may compose
any coalition of c (c ≤ N − 1) parties (Pi1, ..., Pic). In Definition 2 of Chapter 1, we
have set the standard for what it meand for a multi-party protocol to privately compute a
function f . We will prove the security of our protocols for PPTM and PPTAM according
to this definition.

4.3.2 Homomorphic Encryption

Our protocols are based on an additive Homomorphic Encryption (HE) scheme. Let ε be a
probabilistic encryption scheme. Let M be the message space and C the ciphertext space
such that M is a group under operation ⊕ and C is a group under operation ⊙. ε is a
(⊕,⊙)-HE scheme if for any instance ER(·) of the encryption scheme, given c1 = Er1(m1)
and c2 = Er2(m2), there exists an r such that c1⊙c2 = Er1(m1)⊙Er2(m2) = Er(m1⊕m2).
ε is additive when it is a (+,⊙) scheme, and multiplicative when it is a (∗,⊙) scheme.

The HE scheme in our protocols is also required to support secure (N, N)-threshold
decryption. The corresponding secret key is shared by a group of N parties, and the
decryption is unable to be performed by any single party, unless all parties act together.

Thus, we use Paillier’s cryptosystem ([75]) for its following properties: 1) it is an
additive homomorphic encryption scheme. Given two encryptions E(m1) and E(m2),
E(m1 + m2) = E(m1) · E(m2); 2) given an encryption E(m) and a scalar a, E(a · m) =
E(m)a; 3) (N, N)-threshold decryption can be supported (by [33],[34]). In this chapter,
N is the RSA-modulus which is the multiplication of two large prime numbers, and ZN

is the plaintext space of Paillier’s cryptosystem.

4.3.3 Calculations on encrypted polynomials

In some blocks of our protocols, we need do some calculations on encrypted polynomials.
For a polynomial f(x) =

∑m
i=0 aix

i, we use E(f(x)) to denote the list of encrypted
coefficients {E(ai)|i = 0, ..., m}. Given E(f(x)), where E(·) is an additive homomorphic
encryption scheme (e.g., Paillier’s cryptosystem), some computations can be made as
follows (some of them have also been used in [62]):

1) At a value v, we can evaluate E(f(x)): E(f(v)) = E(amvm +am−1v
m−1 + ...+a0) =

E(am)vm

E(am−1)
vm−1

· · · E(a0).

2) Given E(f(x)), we can compute E(c · f(x)) = {E(am)c, ..., E(a0)
c}.

3) Given E(f(x)) and E(g(x)), g(x) =
∑m

j=0 bjx
j , we can compute E(f(x) + g(x)) =

{E(am)E(bm), ..., E(a0)E(b0)}.

4) Given f(x) and E(g(x)), we can compute E(f(x) ∗ g(x)). Suppose that g(x) =
∑n

j=0 bjx
j , f(x) ∗ g(x) =

∑m+n
k=0 ckx

k, then E(ck) = E(a0bk + a1bk−1 + ... + akb0) =
E(bk)

a0 · · · E(b0)
ak . ai or bj are treated as zero if i > m or j > n.

53

Table 4.2: Major Notations in This chapter
Notation Definition

N Total number of parties
S Total number of tuples on each party
M Total number of attributes of each tuple
Pi The i-th party
c Total number of colluded parties
I The index set of colluded parties,{i1, ..., ic}
I′ The index set of honest parties, {1, ...,N} \ I

T (i, j) The j-th tuple on Pi

T (i, j)k The k-th attribute value of T (i, j)
Ti The tuple set on Pi, {T (i, j)|j = 1, ..., S}
Ai

k
The value set of the k-th attribute on Pi, i.e., {T (i, j)k|j = 1, ..., S}

Ak The value set of the k-th attribute on the N parties, i.e.,
⋃N

i=1 Ai
k

= {T (i, j)k|i = 1, ...,N, j = 1, ..., S}
AI

k
The value set of the k-th attribute on the colluded parties, i.e.,

⋃

i∈I Ai
k

= {T (i, j)k|i ∈ I, j = 1, ..., S}

AI′

k
The value set of the k-th attribute on the honest parties, i.e.,

⋃

i∈I′ Ai
k

= {T (i, j)k|i ∈ I′, j = 1, ..., S}
T1i The tuple set {T (i, j)} in which ∀k ∈ {1, ..., M}, T (i, j)k of T (i, j) appear at least 2 times in Ak

T0i The tuple set {T (i, j)} in which ∃M ′ ⊆ {1, ...,M}, ∀k ∈ M ′, T (i, j)k appear only one time in Ak

fi The polynomial constructed on Ti, used in Section 4.4. fi = (x − T (i, 1)) · · · (x − T (i, S)), i ∈ {1, ...,N}.

fk The polynomial constructed on Ak, used in Section 4.5. fk =
∏N

i=1

∏S
j=1(xk − T (i, j)k), k ∈ {1, ...,M}.

f i
k

The polynomial constructed on Ai
k
. f i

k
=
∏S

j=1(xk − T (i, j)k)

f
(1)
k

The first derivative of fk

Fk The polynomial constructed on AI
k
, used in Section 4.5. Fk =

∏

i∈I f i
k

Gk The polynomial constructed on AI′

k
, used in Section 4.5. Gk =

∏

i∈I′ f i
k

ZN The plaintext space of Paillier’s cryptosystem

5) The first derivative of f(x) is f (1)(x) =
∑m−1

i=0 (i + 1)ai+1x
i. Given E(f(x)), we can

get E(f (1)(x)) = {E(ci)|i = 0, ..., m − 1}: E(ci) = E((i + 1)ai+1) = E(ai+1)
(i+1).

6) Suppose that fk(xk) =
∑m

i=0 ak,ix
i
k for k = 1, ..., n, and G(x1, x2, ..., xn) = f1(x1) +

f2(x2)+...+fn(xn) =
∑n

k=1

∑m
i=0 ak,ix

i
k. Given E(fk(xk)) for k = 1, ..., n, we can get

E(G(x1, x2, ..., xn)) = {E(ak,i)|k = 1, ..., n, i = 0, ..., m} = {E(f1(x1)), E(f2(x2)), ..., E(fn(xn))}.

7) At a point (v1, v2, ..., vn), we can evaluate E(G(x1, x2, ..., xn)) which is computed in
6): E(G(v1, v2, ..., vn)) =

∏n
k=1 E(fk(vk)).

4.3.4 Notations

If not explained otherwise, the major notations in this chapter have the definitions in
Table 4.2.

4.4 Privacy Preserving Tuple Matching

4.4.1 Main Idea

Denoting T (i, j) as T (i, j)1||...||T (i, j)M (“||” is concatenation of bitstrings), Pi can com-
pute a polynomial fi to represent its inputs (tuple set Ti): fi = (x − T (i, 1)) · · · (x −
T (i, S)) mod N . Then each coefficient of fi is in the Paillier plaintext ring ZN , and is
encrypted to get E(fi). If T (i, j) has a duplicate on some Pi′ (i′ 6= i), its evaluation on
the polynomial fi ∗ r + fi′ ∗ r′ is 0, otherwise the evaluation is a random number, given r
and r′ are polynomials with random coefficients. Then the N parties can collaboratively

54

compute the following polynomial for each Pi:

Fi =
∏

i′=1...N,i′ 6=i

(fi ∗
N
∑

k=1

ri′k + fi′ ∗
N
∑

k=1

r′i′k) (4.1)

ri′k and r′i′k are generated by Pk: ri′k =
∑α

j=0 ajx
j , r′i′k =

∑α

j=0 a′
jx

j . aj and a′
j for

j = 0, ..., α are uniformly selected from ZN . The coefficients of Fi are encrypted in the
computation for security, and only its evaluations on T (i, j) are decrypted. By Lemma 8
and 9, we can use the evaluation Fi(T (i, j)) to determine whether T (i, j) has any duplicate
with the other parties.

The degrees of ri′k and r′i′k should be high enough to resist coefficient analysis, but low
enough to reduce computation time. We give a simple discussion below that the minimum
and secure value of α is ⌈ S

N−1
⌉, and its suitability will be shown in Lemma 12 in detail.

Suppose there are c (c ≤ N − 1) colluded parties including Pi, whose index set is
denoted by I. Pi gets S evaluations Fi(T (i, j)) and may analysis the coefficients of Fi

by interpolation. From Pi’s view, fi(T (i, j)) = 0, then the evaluations Fi(T (i, j)) =
fIfI′

∏

i′=1...N,i′ 6=i

∑N

k=1 r′i′k, in which fI and fI′ represent the inputs of the c − 1 parties
colluded with Pi, and inputs of the honest parties for I ′ = {1, ..., M}\I, respectively. The
degrees of fI′ and

∏

i′

∑N

k=1 r′i′k are (N − c)S and (N − 1)α, and the leading coefficient of
fI′ is 1, so Pi has (N−c)S+(N −1)α+1 unknown coefficients in each Fi(T (i, j)). Besides
the S evaluations, Pi may possibly get evaluations from its coalition: for any i

′′

∈ I, if
Fi

′′ (T (i
′′

, j)) = 0 and the colluded parties except Pi
′′ have no duplicate of T (i

′′

, j), then
it is must be PI′ that have a duplicate, and thus fI′(T (i

′′

, j)) = 0. The worst case is that
the coalition knows (N − c)S numbers of T (i

′′

, j) of such kind, i.e., knows all inputs of
PI′. In this case, Pi knows S + (N − c)S evaluations of Fi. To resist coefficient analysis
on Fi, there should be S + (N − c)S < (N − c)S + (N − 1)α + 1, thus α ≥ ⌈ S

N−1
⌉.

Lemma 8 If T (i, j) has a duplicate with any Pi′ (i′ ∈ {1, ..., N}\{i}), then the evaluation
Fi(T (i, j)) = 0.

Proof: If some Pi′ has a duplicate of T (i, j), then both fi′(T (i, j)) and fi(T (i, j)) are
0, and Fi(T (i, j)) = 0. �

Lemma 9 If the evaluation Fi(T (i, j)) = 0, overwhelmingly T (i, j) has a duplicate with
some Pi′(i

′ ∈ {1, ..., N} \ {i}).

Proof: If Fi(T (i, j)) = 0, there must be at least one factor fi(T (i, j)) ∗
∑N

k=1 ri′k +

fi′(T (i, j)) ∗
∑N

k=1 r′i′k = 0. In this factor, fi(T (i, j)) must be 0. To prove fi′(T (i, j)) = 0

we need prove that overwhelmingly
∑N

k=1 r′i′k 6= 0. Suppose
∑N

k=1 r′i′k =
∑α

j=0 bjx
j , then

bj for j = 0, ..., α are uniformly distributed over ZN ,
∑N

k=1 r′i′k(T (i, j)) is also uniformly

distributed over ZN . That is,
∑N

k=1 r′i′k(T (i, j)) = 0 with probability 1/N . When N
is large enough (e.g., 1024 bits), overwhelmingly (e.g., with a probability of 1 − 2−1024)
T (i, j) is not a root of

∑N
k=1 r′i′k, and then is a root of fi′ , and the corresponding Pi′ has

a duplicate of T (i, j). �

55

4.4.2 The Protocol

Protocol 1: Protocol for Privacy Preserving Tuple Matching

Inputs: A database with M (M ≥ 2) attributes is horizontally partitioned among
N (N ≥ 2) parties. Every party has S private tuples. Every party holds the public
key and it is own share of the secret key for the threshold Paillier’s cryptosystem.

Output: Each party Pi knows whether its tuples belong to Ti ∩ (
⋃

i′=1...N,i′ 6=i Ti′).

Steps :

1) Each party Pi computes its fi = (x − T (i, 1)) · · · (x − T (i, S)) mod N .

2) P1 initializes E(F1,1) = E(1), and repeats the following for j = 2, ..., N .

2.1) P1 computes E(F1,(j−1)∗f1) and sends it to all the other parties. Each party
Pk (k 6= 1) randomly chooses rjk as described in Section 4.4.1, computes
E(F1,(j−1)∗f1∗rjk) by computation 4) in Section 4.3.3, and sends it back to

P1. P1 also randomly chooses rj1 and computes E(F1,(j−1) ∗ f1 ∗
∑N

k=1 rjk)
by computation 3) in Section 4.3.3.

2.2) P1 sends E(F1,(j−1)) to Pj, Pj computes E(F1,(j−1) ∗ fj), sends it to all the
other parties. Each of these parties Pk, including Pj , randomly chooses r′jk,
computes E(F1,(j−1) ∗fj ∗ r′jk) and sends it to P1. P1 computes E(F1,(j−1) ∗

fj ∗
∑N

k=1 r′jk).

2.3) P1 computes E(F1,j) = E(F1,(j−1)(f1 ∗
∑N

k=1 rjk + fj ∗
∑N

k=1 r′jk)) by sum-

ming E(F1,(j−1) ∗ f1 ∗
∑N

k=1 rjk) and E(F1,(j−1) ∗ fj ∗
∑N

k=1 r′jk).

At the end of j = N , P1 gets E(F1) = E(F1,N) = E(
∏N

j=2(f1 ∗
∑N

k=1 rjk + fj ∗
∑N

k=1 r′jk)).

3) Each Pi other than P1 repeats Step 2) and gets E(Fi) = E(
∏

i′=1...N,i′ 6=i(fi ∗
∑N

k=1 ri′k + fi′ ∗
∑N

k=1 r′i′k)).

4) Each Pi evaluates E(Fi) at T (i, j) for j = 1, ..., S, using computation 1) in
Section 4.3.3.

5) Each party decrypts E(Fi(T (i, j))) in the collaboration of the other N − 1
parties for j = 1, ..., S. If Fi(T (i, j)) = 0, T (i, j) has a duplicate with the other
parties; otherwise, T (i, j) has no duplicate with the other parties.

In the above protocol, each party Pi computes its E(Fi) in N−1 rounds. For example,
P1 firstly computes E(F1,2) = E(f1 ∗

∑N
k=1 r2k + f2 ∗

∑N
k=1 r′2k) in Step 2) with j = 2,

by summing E(f1 ∗
∑N

k=1 r2k) and (f2 ∗
∑N

k=1 r′2k). Then P1 repeats Step 2) with j = 3,

computes E(F1,3) = E(F1,2(f1∗
∑N

k=1 r3k+f3∗
∑N

k=1 r′3k)), by summing E(F1,2f1∗
∑N

k=1 r3k)

and E(F1,2f3∗
∑N

k=1 r′3k). When j = N , P1 gets E(F1) = E((f1∗
∑N

k=1 r2k +f2∗
∑N

k=1 r′2k)·

· · (f1 ∗
∑N

k=1 rNk + fN ∗
∑N

k=1 r′Nk)). P1 evaluates each E(F1(T (1, j))), and decrypts it to
see whether it is 0.

The correctness of Protocol 1 is obvious by Lemma 8 and Lemma 9. From Lemma 9,
Protocol 1 may have wrong determinations if T (i, j) is a root of the random polynomial
∑N

k=1 r′i′k, but this happens with negligible probability (e.g., 2−1024, if |N | = 1024).

56

4.5 Privacy Preserving Threshold Attributes Match-

ing

4.5.1 Main Idea

As defined in Section 4.1, for the PPTAM problem, each Pi needs to privately determine
whether T (i, j) ∈ T1i. We will treat each attribute of a tuple as an individual input.
The value set of the k-th attribute on Pi is Ai

k = {T (i, j)k|j = 1, ..., S}, and the value
set of the k-th attribute on N parties is Ak =

⋃N
i=1 Ai

k. We can construct the polynomial

f i
k(xk) =

∏S
j=1(xk − T (i, j)k) mod N for Ai

k, and fk(xk) =
∏N

i=1 f i
k(xk) mod N for Ak.

f
(1)
k (xk) is the first derivative of fk(xk).

Our PPTAM protocol is based on the following “iff” relation: an element a appears
in the multiset {a1, ..., an} at least 2 times ⇐⇒ a is a root of polynomial gn and g

(1)
n ,

in which gn = (x − a1) · · · (x − an), g
(1)
n is the first derivative of gn. “=⇒” is easy to

verify. “⇐=” can be verified by mathematical induction: 1) when n = 2, if g
(1)
2 (a1) = 0,

then a1 = a2; 2) when n > 2, g
(1)
n = g

(1)
n−1 · (x − an) + gn−1. If an is a root of g

(1)
n , then

gn−1(an) = 0, i.e., some ai (1 ≤ i ≤ n − 1) = an. If some ai (1 ≤ i ≤ n − 1) is a root of

g
(1)
n , then ai is a root of g

(1)
n−1 or ai = an. In both cases, ai appears at least 2 times in the

multiset.
However, it is unsuitable to simply determine whether T (i, j)k appears at least 2

times in each attribute Ak, and combine the M results to know whether T (i, j) ∈ T1i,
otherwise Pi will know the matching states on each attribute of T (i, j) if T (i, j) is not in
T1i (breaching the third privacy requirement in Section 4.1).

In protocol 2 of Section 4.5.2, to determine whether T (i, j) ∈ T1i, we firstly compute

f
(1)
k for k = 1, ..., M , and randomize them as f

(1)
k ∗

∑N

i=1 sik for k = 1, ..., M , in which
sik =

∑α

j=0 ajx
j
k, aj for j = 0, ..., α are randomly chosen from ZN by Pi. Degree(sik)

should be high enough so that f
(1)
k ∗

∑N

i=1 sik resists root analysis, but low enough to
reduce the computation time. we make α = (N − 1)S and will show its suitability in
Lemma 13.

Secondly we construct a vector of multivariate polynomials G(x1, ..., xM) = (g1(x1, ..., xM),

..., gM(x1, ..., xM)) = F ·M, in which F = (f
(1)
1 ∗

∑N
i=1 si1, ..., f

(1)
M ∗

∑N
i=1 siM), M is an

M ×M nonsingular matrix. By Lemma 10 and 11 we can use the evaluation of T (i, j) at
G(x1, ..., xM) to determine whether T (i, j) ∈ T1i.

How to ensure the nonsingularity of M in the computation is a critical problem. In
our Protocol 2 we make each party Pi compute the product RiU , where Ri is an upper
triangular matrix which is nonsingular and generated by Pi, U is a common nonsingular
matrix. Then they compute E(F · RiU), add them, and get E(F · (

∑N
i=1 Ri)U). Let

M = (
∑N

i=1 Ri)U , because
∑N

i=1 Ri is nonsingular, M is also nonsingular.

4.5.2 The Protocol

Protocol 2: Protocol for Privacy Preserving Threshold Attributes Matching

Inputs: A database with M (M ≥ 2) attributes is horizontally partitioned among
N (N ≥ 2) parties. Every party has S private tuples. Every party holds the public
key and its own share of the secret key for the threshold Paillier’s cryptosystem.

57

Output: Each party Pi knows which each tuple of its own belongs to T1i or T0i.

1) Computing E(F) :

1.1) For every attribute k = {1, ..., M}, P1 computes F 1
k (xk) = f 1

k (xk) =
∏S

j=1(xk −

T (1, j)k) mod N and E(F 1
k (xk)). P1 sends E(F 1

k (xk)) to P2.

1.2) For i = 2, ..., N ,

1.2.1) For k = {1, ..., M}, Pi computes f i
k(xk) =

∏S

j=1(xk − T (i, j)k) mod N and

then, with E(F i−1
k (xk)) from Pi−1, computes E(F i

k(xk)) = E(F i−1
k (xk) ∗

f i
k(xk)), following computation 4) of Section 4.3.3.

1.2.2) For k = {1, ..., M}, Pi sends E(F i
k(xk)) to P(i+1 mod N).

1.3) P1 gets E(fk(xk)) = E(
∏N

i=1

∏S

j=1(xk − T (i, j)k)) from PN for k = {1, ..., M}.

P1 computes the first derivative of E(fk), i.e., E(f
(1)
k), following computation

5) of Section 4.3.3.

1.4) P1 sends all E(f
(1)
k) to P2, P3, ..., PN , for k = {1, ..., M}.

1.5) Every Pi generates sik =
∑α

j=0 ajx
j
k by the method in Section 4.5.1, and com-

putes E(f
(1)
k ∗ sik) for k = 1, ..., M by computation 4) of Section 4.3.3, and

sends them to the other parties.

1.6) Every Pi computes E(f
(1)
k ∗

∑N

i=1 sik) for k = 1, ..., M , by computation 3) of
Section 4.3.

2) Computing E(G) :

2.1) Party P1 generates a nonsingular M ×M matrix U over ZN as follows (by the
method in [79]), and sends it to the other parties.









u11 u12 ... u1M

u21 u22 ... u2M

. . .
uM1 uM2 ... uMM









(4.2)

2.2) Every party Pi generates an upper triangular matrix Ri as follows:









ri
11 ri

12 ... ri
1M

0 ri
22 ... ri

2M

. . .
0 0 ... ri

MM









(4.3)

in which every entry in the upper triangularity ri
kl(k ≤ l) is uniformly selected

from ZN , and the diagonal entries ri
kl(k = l) are nonzero.

2.3) With E(F) = (E(f
(1)
1 ∗

∑N

i=1 si1), ..., E(f
(1)
M ∗

∑N

i=1 siM)), every party Pi

computes E(FRiU) according to computation 2) and 6) in Section 4.3.

58

2.4) Every party Pi exchanges their E(FRiU) with the other parties, then computes
E(G) = E(

∑N
i=1 FRiU) = E(F(

∑N
i=1 Ri)U) according to computation 3) in

Section 4.3.

E(G) is a vector of encrypted multivariate polynomials (E(g1), ..., E(gM)). In
the following equation, Rv,w (v = 1, ..., M, w = 1, ..., M) is the (v, w)-th entry

of (
∑N

i=1 Ri)U .

E(G) = (E(g1), ..., E(gM))

=

(

E
(

R11f
(1)
1

N
∑

i=1

si1 + R12f
(1)
2

N
∑

i=1

si2 + ... + R1Mf
(1)
M

N
∑

i=1

siM

)

,

...,

E
(

RM1f
(1)
1

N
∑

i=1

si1 + RM2f
(1)
2

N
∑

i=1

si2 + ... + RMMf
(1)
M

N
∑

i=1

siM

)

)

(4.4)

3) Evaluation and Decryption :

3.1) On every Pi, for j = {1, ..., S}, E(G) is evaluated at the tuple T (i, j) =
(T (i, j)1, ..., T (i, j)M) to get Y (i, j) = E(g1(T (i, j)1, ..., T (i, j)M), ..., gM(T (i, j)1,
..., T (i, j)M)), following computation 7) of Section 4.3.3.

3.2) Every Pi decrypts Y (i, j) for j = {1, ..., S} with the help of the other par-
ties. If D(Y (i, j)) = (0, ..., 0), the corresponding T (i, j) ∈ T1i; otherwise,
T (i, j) ∈ T0i.

We prove the correctness of Protocol 2 in the following two lemmas:

Lemma 10 Given a tuple T (i, j), if T (i, j)k appears at least 2 times in Ak for k =
1, ..., M , then the evaluation of gl(T (i, j)1, ..., T (i, j)M) equals 0 for l = 1, ..., M .

Proof: If T (i, j)k appears at least 2 times in Ak for k = 1, ..., M , T (i, j)k is a root of f
(1)
k (xk)

for k = 1, ..., M . Then F(T (i, j)) = (f
(1)
1 (T (i, j)1)

∑N
i=1 si1, ..., f

(1)
M (T (i, j)M)

∑N
i=1 siM) =

(0, ..., 0), G = F(
∑N

i=1 Ri)U = (0, ..., 0). �

Lemma 11 Given a tuple T (i, j), if the evaluation of gl(T (i, j)1, ..., T (i, j)M) equals 0 for
l = 1, ..., M , overwhelmingly T (i, j)k appears at least 2 times in Ak for k = 1, ..., M .

Proof: If G(T (i, j)) = (0, ..., 0), to prove F(T (i, j)) = (0, ..., 0) we need firstly prove
(
∑N

i=1 Ri)U is nonsingular. In matrix Ri (i = 1, ..., N), ri
kl(k = l) > 0 , so rank(

∑N

i=1 Ri) =

rank(Ri) = M . U is also generated to be full rank. Therefore rank
(

(
∑N

i=1 Ri)U
)

= M .

If G(T (i, j)) = (0, ..., 0), a linear system F(
∑N

i=1 Ri)U = (0, ..., 0) can be made, and it

has only one solution: F(T (i, j)) = (0, ..., 0), i.e.,f
(1)
i (T (i, j)k) ∗

∑N
i=1 sik(T (i, j)k) = 0

for k = 1, ..., M . Similarly with the proof of Lemma 9,
∑N

i=1 sik is a polynomial uni-
formly distributed over the polynomial ring ZN [x], and with probability 1

N , T (i, j)k is
a root of it. When N is large enough (e.g., 1024 bits), overwhelmingly (e.g., with a

probability of 1 − 2−1024) it is not
∑N

i=1 sik(T (i, j)k) = 0, but f
(1)
i (T (i, j)k) = 0. Thus

59

if G(T (i, j)) = (0, ..., 0), overwhelmingly T (i, j)k is a root of f
(1)
k for k = 1, ..., M , and

T (i, j)k appears at least 2 times in Ak for k = 1, ..., M . �

From Lemma 11, Protocol 2 may have wrong determinations if T (i, j)k is a root of the
random polynomial

∑N

i=1 sik, but this happens with negligible probability (e.g., 2−1024, if
|N | = 1024).

4.6 Security Analysis

4.6.1 Security Analysis for Protocol 1

The Inferred Information by the Definition of PPTM

If there is any coalition of c (c ≤ N−1) semi-honest parties PI ({Pi|i ∈ I = {i1, ..., ic}}), by
the definition of PPTM, it is unavoidable for Pi (i ∈ I) to infer the following information
by combining inputs and outputs of its coalition parties:

1) if the determination is T (i, j) has a duplicate with the other parties, and Pi knows
T (i, j) also has a duplicate with PI , then Pi is incapable of knowing whether there
is any duplicate of T (i, j) with the remaining parties PI′ (I ′ = {1, ..., N} \ I).

2) if the determination is T (i, j) has a duplicate with the other parties, and Pi knows
T (i, j) has no duplicate with PI , then it knows that T (i, j) must have a duplicate
with PI′ ; We denote these T (i, j) on PI′ as T . The worst situation is Pi knows all
tuples on PI′, but this requires c ≥ N/2 and |T | is rightly (N − c)S, so it seldom
happens.

3) if the determination is T (i, j) has no duplicate with the other parties, then Pi knows
that T (i, j) has no duplicate with PI′, that is, PI′ can not have T (i, j). We denote
these T (i, j) as T ′.

Therefore, by the definition Pi knows T and T ′ as illustrated above.

The Inferred Information After Participating in Protocol 1

In Lemma 12, we prove that Protocol 1 is robust against the coefficient analysis of Pi on
Fi by interpolation.

Lemma 12 In Protocol 1, any Pi in the coalition of c (c ≤ N − 1) parties (Pi1 , ..., Pic)
can get only the following information:

1) T and T ′ which are the same tuple sets denoted in Section 4.6.1.1.

2) guessing tuples on PI′ other than T and T ′, after randomly choosing at least 1
number.

Proof: Pi gets S pairs (T (i, j), Fi(T (i, j))) by evaluating Fi at T (i, j). Because fi(T (i, j)) =
0, then Fi(T (i, j)) becomes F ′

i (T (i, j)), and F ′
i =

∏

i′=1...N,i′ 6=i(fi′ ∗
∑N

k=1 r′i′k). If Pi can
know all coefficients of F ′

i , it can know all roots of F ′
i by polynomial factoring. Without col-

luding with other parties, for Pi, there are (N−1)S unknown coefficients in
∏

i′=1...N,i′ 6=i fi′

excluding the highest order coefficient (= 1). Because
∏

i′=1...N,i′ 6=i(
∑N

k=1 r′i′k) =
∑β

j=0 Rjx
j,

60

β = (N − 1)⌈ S
N−1

⌉, in this part there are at least S + 1 unknown coefficients. To-
tally there are at least (N − 1)S + S + 1 unknown coefficients in F ′

i . It is easy to
see that (N − 1)S + S + 1 > S, so Pi is unable to find a unique F ′

i that fits S pairs
(T (i, j), F ′

i (T (i, j))).
However, Pi knows fit for it ∈ I, and r′i′k generated by PI . Then F ′

i = fIfI′

∏

i′=1...N,i′ 6=i(
∑

k∈I r′i′k+
∑

k∈I′ r
′
i′k), in which fI =

∏

it∈I,it 6=i fit , fI′ =
∏

i′t∈I′ fi′t
,
∑

k∈I r′i′k is generated by PI ,
∑

k∈I′ r
′
i′k is generated by PI′.

1) if F ′
i (T (i, j)) = 0, and fI(T (i, j)) = 0, then Pi is unable to know any root of fI′.

This accords with the case 1) in Section 4.6.1.1.

2) if F ′
i (T (i, j)) = 0, and fI(T (i, j)) 6= 0, then Pi knows fI′(T (i, j)) = 0. All these

T (i, j) are the same with T in Section 4.6.1.1.

3) if F ′
i (T (i, j)) 6= 0, Pi knows fI′(T (i, j)) 6= 0, i.e., T (i, j) is not one root of fI′. All

these T (i, j) are the same with T ′ in Section 4.6.1.1.

Suppose in the case 2), all PI know C1 roots of fI′. C1 ≤ (N−c)S. The worst situation
is PI know all roots of fI′, but this needs C1 is rightly (N − c)S and seldom happens.
Suppose in the case 3), Pi knows C2 pairs (T (i, j), F ′

i (T (i, j))) for F ′
i , then C2 ≤ S.

Because Pi knows fI(T (i, j)), Pi can know C1 + C2 evaluations of F ′′
i : F ′′

i = F ′
i/fI =

fI′

∏

i′=1...N,i′ 6=i(
∑

k∈I r′i′k +
∑

k∈I′ r
′
i′k). For Pi, there are (N − c)S unknown coefficients

in fI′ excluding the highest order coefficient. In
∏

i′=1...N,i′ 6=i(
∑

k∈I r′i′k +
∑

k∈I′ r
′
i′k) =

∑β

j=0 Rjx
j , β = (N − 1)⌈ S

N−1
⌉, there are at least S + 1 unknown coefficients. Therefore

Pi still needs to arbitrarily guess t = (N − c)S + S + 1 − (C1 + C2) coefficients in F ′′
i .

It is easy to see that t ≥ 1. That is, Pi should guess at least one random number before
inferring other roots in fI′ than T and T ′. �

Theorem 7 Protocol 1 is a privacy preserving protocol for the PPTM problem.

This theorem is postponed to the appendix.

4.6.2 Security Analysis for Protocol 2

The Inferred Information by the Definition of PPTAM

By the definition of PPTAM in Section 4.1, it is unavoidable for Pi (i ∈ I) to infer the
following, if the colluded parties combine their inputs and outputs:

1) if T (i, j) ∈ T1i,

1.1) if ∃M ′ ⊆ {1, ..., M}, ∀k ∈ M ′, T (i, j)k appears at least 2 times in AI
k =

{T (i, j)k|i ∈ I, j = 1, ..., S}, then Pi does not know whether T (i, j)k is in
AI′

k = {T (i, j)k|i ∈ I ′, j = 1, ..., S}.

1.2) if ∃M ′ ⊆ {1, ..., M}, ∀k ∈ M ′, T (i, j)k appears only one time in AI
k, then Pi

knows T (i, j)k appears at least one time in AI′

k . We denote these T (i, j)k in
AI′

k as T A (the cardinality of T A, |T A| ≤ (N − c)S).

2) if T (i, j) ∈ T0i,

61

2.1) if ∃M ′ ⊂ {1, ..., M}, ∀k ∈ M ′, T (i, j)k appears at least 2 times in AI
k, Pi does

not know whether T (i, j)k is in AI′

k .

2.2) if on M ′ ⊆ {1, ..., M}, ∀k ∈ M ′, T (i, j)k appears only one time in AI
k, then Pi

knows ∃k′ ∈ M ′, T (i, j)k′ is not in AI′

k′, but does not know the specific k′. We
denote these T (i, j)k′ as T A′.

The Inferred Information After Participating in Protocol 2

Let Fk =
∏

i∈I f i
k, and Gk =

∏

i∈I′ f
i
k. From the view of Pi (i ∈ I), inside each gl (l =

1, ..., M), f
(1)
k = [Gk ∗ Fk]

(1). Pi can do an attack to analyze the coefficients of Gk by
combining the inputs and outputs of its colluded parties after participating in Protocol 2.
However, in the following lemma, we prove that Protocol 2 is robust against this attack.

Lemma 13 In Protocol 2, any Pi in the coalition of c (c ≤ N − 1) parties (Pi1 , ..., Pic)
can get only the following information:

1) T A and T A′ which are the same with those described in Section 4.6.2.1.

2) guessing other roots of Gk (k = 1, ..., M) than T A and T A′, after randomly choosing
at least 2 numbers.

Proof: We use gl(T (i, j)) to denote the evaluation of gl(x1, ..., xM) at (T (i, j)1, ..., T (i, j)M)
for simplification. Firstly, we prove that the c colluded parties are unable to find a unique
gl (l = 1, ..., M) that fits cS pairs (T (i, j), gl(T (i, j))) (i ∈ I, j = 1, ..., S). For Pi,

gl =
∑

k∈{1...M}(Rlkf
(1)
k ∗

∑N
i=1 sik). Degree(f

(1)
k) = NS − 1, Degree(sik) = (N − 1)S. If

Pi knows all coefficients of gl, it can factor each Rlkf
(1)
k ∗

∑N

i=1 sik and know all attribute

values that appear at least 2 times on all parties. Actually Pi does not know Rlk. f
(1)
k

has NS − 1 unknown coefficients for Pi, excluding the highest order coefficient (= 1).
∑N

i=1 sik can be considered as a polynomial
∑(N−1)S

j=0 R′
jx

j
k, and has (N −1)S +1 unknown

coefficients. Then Pi has totally (1 + NS − 1 + (N − 1)S + 1)M = (2NS − S + 1)M
unknown coefficients in gl. Pi must randomly guess t = (2NS−S +1)M − cS coefficients
to find all coefficients of gl, and it is easy to see that t > NS +1 for c ≤ N −1 and M ≥ 1.

Let fk = Gk ∗ Fk in which Gk and Fk are polynomials representing inputs of PI′

and PI respectively. Degree(Gk) = (N − c)S, Degree(Fk) = cS. Pi can notice that
gl =

∑

k∈{1...M}(Rlkhk) in which hk = [Gk ∗ Fk]
(1) ∗ (

∑

i∈I sik +
∑

i′∈I′ si′k), [Gk ∗ Fk]
(1) =

G
(1)
k Fk + GkF

(1)
k ,

∑

i∈I sik is generated by PI , and
∑

i′∈I′ si′k is generated by PI′. Then
from Pi’s view, the undetermined parts of gl are Rlk, Gk and

∑

i′∈I′ si′k for k ∈ {1, ..., M}.
Supposing T (i, j)k appears mk times in AI

k, then Pi knows Fk has a factor of (x −
T (i, j)k)

mk . From the values of (g1(T (i, j)), ..., gM(T (i, j))), Pi can analyze the roots of
Gk as follows:

1) If (g1(T (i, j)), ..., gM(T (i, j))) = (0, ..., 0), by Lemma 4, Pi knows hk(T (i, j)k) = 0
for all k ∈ {1, ..., M}, and Gk ∗ Fk has a factor (x − T (i, j)k)

n′

(n′ ≥ 2), but does
not know what n′ is.

1.1) if ∃M ′ ⊆ {1, ..., M}, ∀k ∈ M ′, mk ≥ 2, then Pi does not know whether Gk has
a factor (x − T (i, j)k). This accords with the case 1.1) in Section 4.6.2.1.

62

1.2) If ∃M ′ ⊆ {1, ..., M}, ∀k ∈ M ′, mk = 1, then Pi knows there is a factor
(x − T (i, j)k)

n′−1 in Gk. These T (i, j)k are the same with T A.

2) If (g1(T (i, j)), ..., gM(T (i, j))) 6= (0, ..., 0),

2.1) if ∃M ′ ⊂ {1, ..., M}, ∀k ∈ M ′, mk ≥ 2, then Pi knows hk(T (i, j)k) = 0, but
does not know whether Gk has a factor (x − T (i, j)k). This accords with the
case 2.1) in Section 4.6.2.1.

2.2) Pi can find out that ∃M ′ ⊆ {1, ..., M}, ∀k ∈ M ′, mk = 1, then Pi knows
there must be some k′ ∈ M ′, such that hk′(T (i, j)k′) 6= 0, but does not know
the specific k′. Pi also knows that Gk′ can not have a factor (x − T (i, j)k′)d

(d ≥ 1). These T (i, j)k′ compose T A′.

From the above analysis, only in the case of 1.2), Pi can know some roots of Gk

for k ∈ M ′, M ′ ⊆ {1, ..., M}. Suppose the number of these roots is C1k. If C1k is
rightly (N − c)S, Pi knows all roots of Gk, but this seldom happens. Pi may use
the roots found in 1.2) to compute the unknown coefficients of Gk in gl.

In the worst situation, |M ′| = 1. That is, for k ∈ M ′, gl = Rlkhk = Rlk(Gk ∗
Fk)

(1) ∗ (
∑

i∈I sik +
∑

i′∈I′ si′k). Pi does not know Rlk. Gk has (N − c)S unknown
coefficients excluding the highest order coefficient (=1).

∑

i′∈I′ si′k can be considered

as a polynomial
∑(N−1)S

j=0 R
′′

j x
j
k, and has (N − 1)S + 1 unknown coefficients. Then

Pi has totally 1 + (N − c)S +(N − 1)S + 1 unknown coefficients in gl. It knows C1k

solutions to this gl. Pi still needs to guess t = 1 + (N − c)S + (N − 1)S + 1 − C1k

coefficients to know all coefficients of gl. C1k ≤ (N − c)S, c ≤ N − 1, then t ≥ 2.

In a better situation than above, Pi should guess t > 2 coefficients to know all
coefficients of gl.

Therefore Pi should randomly select at least two numbers to guess any root of Gk

other than T A and T A′. �

Theorem 8 Protocol 2 is a privacy preserving protocol for the PPTAM problem.

The proof of this theorem is postponed to the appendix.

4.7 Comparisons with Related Work

Many ways have been proposed to improve the efficiency of modular exponentiation (e.g.,
[3], [90]), and by these results a modular exponentiation generally requires O(lgN) mod-
ular multiplications (N is the modulus). Therefore, modular exponentiation is the major
cause of computation cost for Paillier’s cryptosystem and our protocols. We compute the
total mod-exps (modular exponentiations with modulus N 2) to compare our protocols
with others. We will not consider their costs on key generation because they are the
same.

63

4.7.1 Comparisons for Protocol 1

Computation Cost of Protocol 1: According to [33], in the threshold version of Pail-
lier’s cryptosystem, each encryption requires 2 mod-exps, the decryption is performed by
the combination of all parties, and each party computes 2 mod-exps for the decryption.

Computation 4) of Section 4.3.3 is a basic computation for Protocol 1. Given degree(f) =
m and degree(g) = n, the cost for E(f(x) ∗ g(x)) is O(mn) mod-exps. The j-th (j ≥ 2)
iteration of Step 2 is paralleled on the N parties, but P1 is responsible for the major
cost. Give degree(F1,(j−1)) = (j − 2)S + (j − 2)⌈ S

N−1
⌉, degree(f1) = S, degree(rj1) =

degree(r′j1) = ⌈ S
N−1

⌉, the computation cost of P1 is O(((j−1)S +(j−2) S
N−1

) S
N−1

) mod-
exps. Thus from j = 2, ..., N , the total cost of P1 in Step 2) is O(NS2) mod-exps. Further-
more, the cost can be optimized if all parties ensure that the number of semi-honest parties
is at most c (1 ≤ c ≤ N −1). For this case, in Step 2.1), P1 only need send E(F1,(j−1) ∗f1)
to c arbitrary parties; in Step 2.2), Pj also only need send E(F1,(j−1) ∗ fj) to c arbitrary

parties; At the end of Step 2), P1 gets E(F1) = E(
∏N

j=2(f1 ∗
∑c+1

k=1 rjk + fj ∗
∑c+1

k=1 r′jk)).
In this polynomial, P1 has at least one unknown rjk and one unknown r′jk, which still
ensures the security of F1 against the analysis of P1’s coalition.

Step 3) can be made paralleled with Step 2). Each Pi can compute its E(Fi) without
delaying the computation of the others’ E(Fi′) (i′ 6= i), in the assumption that each party
holds N computation platforms. In Step 4) degree(Fi) = NS, the cost for the evaluations
of S tuples on each party is O(NS2) mod-exps. In Step 5) the cost for the decryptions of
S evaluations is O(S) mod-exps.

In sum the total cost of Protocol 1 for each party is O(NS2) mod-exps.
Communication Cost of Protocol 1: The length of each encryption is O(lgN)

bits. The major communication cost of Protocol 1 is on Step 2) and 3). In the j-th (j ≥ 2)
iteration of Step 2.1), P1 sends an encrypted polynomial with degree (j−1)S+(j−2)⌈ S

N−1
⌉

to the other N − 1 parties, and all the other parties send back encrypted polynomials
with degree (j−1)S +(j−1)⌈ S

N−1
⌉. In Step 2.2) a similar round happens. Thus the total

bandwidth of Step 2) is O((N3S)) encryptions. Assuming the number of semi-honest
parties is at most c (1 ≤ c ≤ N − 1), the total bandwidth of Step 2) can be optimized as
O(cN2S) encryptions.

Step 3) iterates Step 2) for N − 1 rounds, so the total bandwidth of Protocol 1 is
O(cN3S) encryptions, i.e., O(cN3SlgN) bits.

Costs of Solution D1: The main idea of the private set intersection protocol in [62]
is to plus the randomized polynomials representing the data sets and evaluate the result-
ing polynomial. Their private set union protocol is mainly to multiply the polynomials
representing the data sets and evaluate the resulting polynomial. Therefore, Solution D1
(as described in Section 4.2) should firstly know (fi ∗

∑N
k=1 ri′k +fi′ ∗

∑N
k=1 r′i′k) for Ti∩Ti′

for i′ = 1, ..., N, i′ 6= i, then know Fi =
∏

i′=1...N,i′ 6=i(fi ∗
∑N

k=1 ri′k + fi′ ∗
∑N

k=1 r′i′k) for
⋃

i′=1...N,i′ 6=i(Ti ∩ Ti′), and evaluate it. However, the way to privately compute the en-
crypted Fi was not provided in [62], and all ri′k and r′i′k are randomly chosen polynomials
with degree S.

In this solution, if Fi(T (i, j)) = 0, overwhelmingly T (i, j) has a duplicate with some
Pi′(i

′ ∈ {1, ..., N} \ {i}). Fi must not be decrypted before evaluations, otherwise by
factoring the decrypted Fi, Pi will know how many duplicates of T (i, j) there are on the
other parties, thus breach the second privacy requirement in Section 4.1. Because ri′k

and r′i′k have the same degree with fi and f ′
i , the major cost of Solution D1 is on the

64

computation and evaluations of E(Fi).
Fi can be computed following the same way in Protocol 1. Assuming the number

of semi-honest parties is c, in the j-th iteration of Step 2), the computation cost of P1

and bandwidth are O(jS2) mod-exps and O(jcSlgN) bits. From j = 2, ..., N the total
computation cost of P1 and bandwidth are O(N2S2) mod-exps and O(cN2SlgN) bits.
Thus, the total computation cost and bandwidth of Solution D1 can be got in a similar
way with Protocol 1 and given in Table 4.3.

Costs of TCTS Protocol in [63]: Before the TCTS protocol in [63] can be em-
ployed for the PPTM problem, a process of tuple deduplication should be performed
inside each party’s database. The TCTS protocol computes the encryption of the poly-
nomial p =

∏N
i=1 fi, then Φ = p ∗ (

∑N
i=1 ri) + F ∗ p(1) ∗ (

∑N
i=1 si), where each ri and si are

polynomials of degree NS which are randomly selected, F is a fixed polynomial of degree
1 which has no common roots with p. The major cost of the TCTS protocol is on the
computation of E(Φ). Given E(p) and any ri, degree(p) = NS, so the cost for computing
E(p ∗ ri) is O(N2S2) mod-exps. The communication cost of TCTS can be obtained by
the similar way used for Solution D1. The total costs are given in Table 4.3.

Table 4.3: Comparison of solutions for the PPTM problem

PPTM Protocol of Ours Solution D1 TCTS Protocol in [63]
Computation Cost (mod-exps) O(NS2) O(N2S2) O(N2S2)
Communication Cost (bits) O(cN3SlgN) O(cN3SlgN) O(N3SlgN)

4.7.2 Practical Considerations and Comparisons for Protocol 1

Suppose there is a moderate-scale application with 5 parties. 4 parties of them may
collude, each party has 500 tuples in its database, and each tuple has 5 integer fields, i.e.,
N = 5, c = 4, S = 500. Each tuple will be at most 160 bits. Suppose N be 1024 bits.
The polynomial fi has 501 (= S +1) coefficients and each coefficient is at most 1024 bits,
so the storage for fi is about 62K bytes. The largest storage is spent on E(Fi), which has
2501 (= NS + 1) encrypted coefficients and need a storage of about 621K bytes when
|N 2| = 2048.

Mod-exp is a basic computation for the 3 protocols, so we test its running time on a
computer with a CPU of 2.8GHz (Pentium 4), and get the following table:

Table 4.4: Running Time of Modular Exponentiation
the length of modulus 512-bit 1024-bit 2048-bit
running time (ms) 0.63 1.22 4.07

If lgN = 512 ∼ 1024, i.e., |N 2| = 1024 ∼ 2048, in the supposed application, our
Protocol 1 can be completed in tens of minutes, but Solution D1 and TCTC protocol need
a few hours. The computation time of Protocol 1 has a reduction of 80% in comparison
with Solution D1 and TCTS protocol. Given a communication network with a T1 line of
1.5Mbps or a T3 line of 32Mbps, the communication bits of Protocol 1 can be transferred
within a few minutes or seconds. Therefore, in comparisons, our Protocol 1 has lower
computation time without increasing intolerable bandwidth.

65

4.7.3 Comparison of Protocol 2 with Solution D2

Computation Cost of Protocol 2 Similarly with Protocol 1, we compare Protocol 2
with Solution D2 in terms of their mod-exps. Protocol 2 can be executed in parallel
supposing each party has M computation platforms. In Step 1) Pi computes its E(f

(1)
k ∗

∑N
i=1 sik) on its k-th platform (k ∈ {1, ..., M}). The major time cost of Step 1) is on

Step 1.5): given degree(f
(1)
k) = NS − 1, degree(sik) = (N − 1)S, the time cost of

computing E(f
(1)
k ∗ sik) is O(N(N − 1)S2) mod-exps. In Step 2) the l-th (l ∈ {1, ..., M})

platform of Pi holds the l-th column of the matrix RiU , computes the l-th element of
E(FRiU), exchanges it with other parties, and computes E(gl) by summing the l-th
element of E(FRiU) for i = 1, ..., N . The major cost of Step 2) is on the Step 2.3):
given E(F) and the l-th column of RiU , the time cost of computing the l-th element
of E(FRiU) is O(2NSM) mod-exps. In Step 3) the l-th platform evaluates T (i, j) at
E(gl) for j = 1, ..., S, so the time cost is O(2NS2M) mod-exps. Therefore, the total
time cost of Protocol 2 can be got by summing the major costs on the 3 steps, i.e.,
O((2M + N − 1)NS2 + 2NMS) mod-exps.

Communication Cost of Protocol 2 The major bandwidth of Step 1) is spent on

Step 1.5): degree(f
(1)
k ∗ sik) = (2N − 1)S − 1, so the total transferred encryptions is

O(2(N − 1)N2MS). The bandwidth can be optimized if the number of semi-honest

parties is c. Then only c + 1 parties need compute E(f
(1)
k ∗ sik) and send it to all other

parties, and in the end of 1.6) each Pi gets E(f
(1)
k ∗

∑c+1
i=1 sik). The bandwidth of Step 1)

becomes O(2(c+1)N(N −1)MS) encryptions. The bandwidth of Step 2) is on Step 2.4),
each element of E(FRiU) is composed of M polynomials with degrees of (2N − 1)S − 1,
then each Pi need transfer O(2N(N − 1)MS) encryptions to the others, and the total
bandwidth is O(2(N−1)N2MS) encryptions. In Step 3) the bandwidth of each decryption
is O(N), so the total bandwidth of Step 3) is O(N2MS). In sum, the total bandwidth of
Protocol 2 is O((N − 1)N2MS) encryptions, i.e., O((N − 1)N2MSlgN) bits.

Costs of Solution D2 The main idea of Solution D2 (as described in Section 4.2)
is to: 1) set t = 2 in the threshold set union protocol of [62], compute the encrypted

forms of f
(1)
k (k ∈ {1, ..., M}), and randomize them to be f

(1)
k Fk

∑N
i=1 si

k + fk

∑N
i=1 ri

k,
in which Fk is a fixed polynomial of degree 1 which has no same roots with fk. si

k and
ri
k are randomly selected polynomials of degree NS over polynomial ring R[xk]. 2) fol-

lowing the idea of the private set intersection protocol in [62], an encrypted multivariate
polynomial is constructed to compute TN i

1 ∩ TN i
2 ∩ ... ∩ TN i

M(= T1i): G(x1, ..., xM) =
∑M

k=1

(

f
(1)
k Fk

∑N
i=1 si

k + fk

∑N
i=1 ri

k

)

∗ (
∑N

i=1 r′ik). r′ik is a polynomial of degree 2NS ran-
domly selected by Pi over the polynomial ring R[xk]. If T (i, j) ∈ T1i, the evaluation of

G(x1, ..., xM) at T (i, j) is 0. If the evaluation is 0, overwhelmingly f
(1)
k (T (i, j)k) = 0 for

k = 1, ..., M , then T (i, j) ∈ T1i.
What’s more, G(x1, ..., xM) must not be decrypted before it is evaluated, otherwise a

semi-honest party will know all roots of f
(1)
k by factoring (f

(1)
k Fk

∑N
i=1 si

k + fk

∑N
i=1 ri

k) ∗

(
∑N

i=1 r′ik), then it will know the specific appearance times of the attribute values on all
parties if these values appear at least n times, thus breach the second privacy requirement
in Section 4.1.

Solution D2 has a same step with Step 1) of Protocol 2. Then Pi need O(N2S2)

mod-exps to compute fk

∑N
i=1 ri

k, O(4N2S2) mod-exps to compute (f
(1)
k Fk

∑N
i=1 si

k +

fk

∑N

i=1 ri
k)∗(

∑N

i=1 r′ik), on its k-th platform (k ∈ {1, ..., M}). Finally Pi need O(4NMS2)

66

mod-exps to evaluate G(x1, ..., xM) at T (i, j) for j = 1, ..., S. Totally the time cost of Pi

is O(N(N −1)S2 +5N2S2 +4NMS2) = O((6N +4M−1)NS2). The major bandwidth of

Solution D2 is on the following step: each Pi transfers (f
(1)
k Fk

∑N

i=1 si
k + fk

∑N

i=1 ri
k) ∗ r′ik

to all the other parties. So the total bandwidth is O(4(N − 1)N2MS) encryptions, i.e.,
O(4(N − 1)N2MSlgN) bits.

We compare Protocol 2 with Solution D2 in Table 4.5.

Table 4.5: Comparison of solutions for the PPTAM problem

PPTAM Protocol of Ours Solution D2
Computation Cost (mod-exps) O((2M + N − 1)NS2 + 2NMS) O((6N + 4M − 1)NS2)
Communication Cost (bits) O((N − 1)N2MSlgN) O(4(N − 1)N2MSlgN)

4.7.4 Practical Considerations and Comparisons for Protocol 2

We assume there is a same moderate-scale application with Section 4.7.2, i.e., N = 5,
M = 5, S = 500. Given the running times of mod-exps in Table 4.5, when lgN = 512 ∼
1024, i.e., |N 2| = 1024 ∼ 2048, the computation cost of Protocol 2 is about 5 hours, and
has a reduction of about 71.3% in comparison with Solution D2. The communication
cost of Protocol 2 is about 2.56 × 108 bits, which will be transferred in a few minutes or
seconds within a network linked by a T1 or T3 line. The communication cost of Protocol
2 has a reduction of about 75% in comparison with Solution D2.

The largest storage is spent on the polynomial E(gl) on the l-th platform of Pi. E(gl)
has (2N − 1)SM encrypted coefficients. When |N 2| = 1024 ∼ 2048, the storage is about
2.6 ∼ 5.2M bytes.

4.8 Concluding Remarks and Open Problems

We present protocols respectively for the problem of privacy preserving tuple matching
(PPTM) among N parties, and the problem of privacy preserving threshold attributes
matching (PPTAM) among N parties. Solutions can also be derived directly from the
techniques in [62] and [63]. In comparisons, our protocol for PPTM has a lower computa-
tion cost without increasing intolerable communication cost, and our protocol for PPTAM
achieves lower computation and communication costs. Both of our protocols are proved
to be secure in the semi-honest model, which is the same level of security with the derived
solutions from [62] and [63].

Experiments in a moderate-scale application with Pentium 4 platforms also show that
the response time of Protocol 1 is tens of minutes, and the time of Protocol 2 is a few hours.
As pointed out in [71], for long-term security a 1024-bit modulus should be considered.
There are also applications which are large-scale, e.g., with thousands of tuples in each
party’s database, or need larger key size to ensure stronger security. For these applications,
platforms with higher computation capability will be required to get reasonable response
time.

Our two proposed protocols can be extended to be secure in the malicious model where
a malicious party may arbitrarily substitute its inputs or intermediate computation, and

67

may quit the protocol at any time it gets desired results. By [48], assuming there is
a malicious and PPT bounded adversary who controls arbitrary number of parties, the
main idea about the extensions is to add zero-knowledge proofs on each step, then a
prover in the zero-knowledge proof must behave at most like a semi-honest one, otherwise
its cheating will be detected by the verifier. However, zero-knowledge proofs may cause
too much overhead. For example, in computation 4) of Section 4.3.3, to prove E(g(x))
is correctly multiplied by a polynomial f(x), the prover should prove that the coefficient
E(ck) is correctly computed as E(a0bk + ... + akb0) where he knows a0, ..., ak. The proof
can be based on the proof of correct multiplication in [15], which need O(1) mod-exps.
Then each proof for correct E(ck) is O(k) mod-exps, and the total cost for proof of correct
E(g(x)f(x)) is O(mn) mod-exps. By this proof, in Step 1.5) of Protocol 2, the proof of

correct E(f
(1)
k ∗ sik) has a cost of O(N(N − 1)S2) mod-exps, which need a few hours

to be completed in a moderate-scale application. Therefore, how to make the extended
protocols efficient in the malicious model is a challenging work for the future.

4.9 Appendix

Theorem 7: Protocol 1 is a privacy preserving protocol for the PPTM problem.

Proof By the definition of PPTM, we actually should compute a multi-party function
f : f(T1, ..., TN) = f(T) = {PPTM(T (i, j))|T (i, j) ∈ Ti, i = 1, ..., N, j = 1, ..., S}, with
the i-th element fi(T) = {PPTM(T (i, j))|T (i, j) ∈ Ti, j = 1, ..., S} for the party Pi,
where PPTM(T (i, j)) = 1 if T (i, j) ∈ Ti ∩ (

⋃

i′=1...N,i′ 6=i Ti′), and PPTM(T (i, j)) = 0 if
T (i, j)∈Ti ∩ (

⋃

i′=1...N,i′ 6=i Ti′).
Given any coalition of c (c ≤ N−1) semi-honest parties indexed by I = {i1, ..., ic}, their

views after participating in Protocol 1 are denoted by V IEWΠ
I (T) = (I, V IEWΠ

i1
(T), ..., V IEWΠ

ic
(T)).

We also let fI(T) = (fi1(T), ..., fic(T)). From the definition in Section 4.3.1, we have
to show that there exists a PPT algorithm S such that S(I, (Ti1 , ..., Tic), fI(T)) and
V IEWΠ

I (T) are computationally indistinguishable.
V IEWΠ

I (T) = {V1, V2, V3, V4}: 1) V1 is I = {i1, ..., ic}. 2)V2 are Ti1 , ..., Tic . 3)V3 are
E(Fi) and the intermediate encryptions received by PI . 4)V4 are Fit(T (it, j)) for any
it ∈ I.

With the above views, the coalition can do the following two types of analysis:

1) Cryptanalysis on (V1, V2, V3): Due to the semantic security of the threshold Paillier’s
cryptosystem, Pi can not gain extra information from the encryptions in V3. That is,
supposing V3 has s encryptions, with only negligible probability, Pi can distinguish
V3 and ER1 = (E(r1), ..., E(rs)) by randomly choosing R1 = (r1, ..., rs) over the
plaintext space of Paillier’s cryptosystem. Thus, (V1, V2, V3) ≡c (V1, V2,R1, ER1).

2) Roots analysis on (V1, V2, V4): From Lemma 9, V4 = (A, T , T ′,R2). A = {aj
it
|it ∈

{i1, ..., ic}, j = 1, ..., S} in which aj
it

= 1 if Fit(T (it, j)) = 0, and aj
it

= 0 otherwise.
R2 = {Ri|i = 1, ..., t}, in which Ri is a random number guessed by Pi, t ≥ 1.

In sum, V IEWΠ
I (T) ≡c (V1, V2,R1, ER1,A, T , T ′,R2).

Let R′
1 = {r′i|i = 1, ..., s}, R′

2 = {R′
i|i = 1, ..., t} are randomly chosen by PI , and ER′

1

are the encryptions of the sequence in R′
1, then we can define S(I, (Ti1 , ..., Tic), fI(T)) =

68

(I, (Ti1, ..., Tic), fI(T),R′
1, ER

′
1,R

′
2). fI(T) = (A, T , T ′) by the analysis in Section 4.4.3.1.

Then S(I, (Ti1 , ..., Tic), fI(T)) = (I, (Ti1, ..., Tic),A, T , T ′,R′
1, ER

′
1,R

′
2) ≡

c (V1, V2,A, T , T ′,
R1, ER1,R2) ≡c V IEWΠ

I (T). Then Protocol 1 privately computes PPTM against the
coalition of any c (c ≤ N − 1) semi-honest parties. �

Theorem 8: Protocol 2 is a privacy preserving protocol for the PPTAM problem.

Proof: By the definition of PPTAM, we should compute a multi-party function f : f(T1, ..., TN) =
f(T) = {PPTAM(T (i, j))|i = 1, ..., N, j = 1, ..., S}, with the i-th element fi(T) =
{PPTAM(T (i, j))|j = 1, ..., S}, where PPTAM(T (i, j)) = 1 if T (i, j) ∈ T1i, and
PPTAM(T (i, j)) = 0 if T (i, j) ∈ T0i.

Given any coalition of c (c ≤ N−1) semi-honest parties indexed by I = {i1, ..., ic}, their
views after participating in Protocol 2 are denoted by V IEWΠ

I (T) = (I, V IEWΠ
i1

(T), ..., V IEWΠ
ic

(T)).

We also let fI(T) = (fi1(T), ..., fic(T)). We have to show that there exists a PPT algorithm
S such that S(I, (Ti1 , ..., Tic), fI(T)) and V IEWΠ

I (T) are computationally indistinguish-
able.

V IEWΠ
I (T) includes the following: 1) V1: I = {i1, ..., ic}, 2) V2: Ti1 , ..., Tic , 3) V3:

E(G) and intermediate encryptions received by PI , 4) V4: U , Rit for any it ∈ I, 5)
V5:Y (it, 1), ..., Y (it, S) for any it ∈ I.

With the above views, the coalition can do the following two types of analysis:

1) Cryptanalysis on the encryptions: Due to the semantic security of the threshold
Paillier’s cryptosystem, Pi can not gain extra information from the encryptions in
V3 combined with V1, V2, and V4. Supposing V3 has s encryptions, with only negli-
gible probability, Pi can distinguish V3 and ERS1 = (E(r1), ..., E(rs)) by randomly
choosing RS1 = (r1, ..., rs) over ZN . Thus (V1, V2, V3, V4) ≡

c (V1, V2,RS1, ERS1).

2) Roots analysis on the multivariate polynomials : By Lemma 11, with (V1, V2, V5),
Pi can get nothing more than (A, T A, T A′,RS2). A = {aj

it
|it ∈ {i1, ..., ic}, j =

1, ..., S} in which aj
it

= 1 if Y (i, j) = (0, 0, ..., 0), and aj
it

= 0 if Y (i, j) 6= (0, 0, ..., 0).
RS2 = {Ri|i = 1, ..., t}, in which Ri is a random number guessed by Pi, t ≥ 2.

In sum, V IEWΠ
I (T) ≡c (V1, V2,A, T A, T A′,RS1, ERS1,RS2).

From the analysis in Section 4.5.3.1, S can also find (A, T A, T A′). S can randomly
choose RS ′

1 = {r′i|i = 1, ..., s}, RS ′
2 = {R′

i|i = 1, ..., t} over ZN , and compute ERS ′
1

which are the encryptions of the sequence in RS ′
1. Then S(I, (Ti1 , ..., Tic), fI(T)) =

(I, (Ti1, ..., Tic),A, T A, T A′,RS ′
1, ERS ′

1,RS ′
2) ≡c V IEWΠ

I (T). Therefore, Protocol 2
privately computes PPTAM against the coalition of any c (c ≤ N − 1) semi-honest
parties. �

69

Chapter 5

Privacy State Test in Wireless
Sensor Networks

5.1 Problem Background

The term of “ubiquitous computing” was coined by Mark Weiser ([91]) in which com-
puters will vanish into the background and people can access information anytime and
anywhere. Sensor networks can be one of the most critical technologies to realize such
ubiquitous tasks because large scales of small sensor nodes can be deployed in many
physical phenomena and transmit time series of the sensed phenomena to central nodes
where computations are performed and data are fused ([89]). A case in point is the petrel
habitat monitoring ([88]) in which 32 nodes were deployed on a small island of Maine
State of USA and useful live data travels thousands of miles to the orbiting satellite, and
then down to the service provider in Washington and Berkeley. Besides, sensor networks
may consist of many different types of sensors such as seismic, magnetic, thermal, visual,
infrared, acoustic and radar which can monitor a wide variety of ambient conditions ([2]).

It can be envisioned that in the near future, we would live in a world of pervasive
sensor networks, where one certain area may be pervasively deployed with various types of
sensor networks. As a result, many security issues must be brought to the forefront of the
deployment of pervasive sensor networks. [77] has listed the security challenges including
key establishment, secrecy, authentication, privacy, robustness to denial-of-service attacks,
secure routing, and node capture.

Privacy is the major concern of this chapter. Under the circumstances of pervasive
sensor networks, different types of sensor networks may be deployed for different purposes,
so a person’s privacy claims are dynamic. He may want to publish his information to the
location-aware sensors to get his own position, but when he steps into a voice sensing
network, he may think it intrusive for others to know what he is talking about. Conse-
quently, it is better to provide a general scheme to address all of these privacy concerns
and make the person aware of whether he has been under some observations. We name
the person “originator”, and his privacy “originator privacy” in this chapter. However,
it is another currency that sensor nodes are becoming physically invisible (Smart dust in
[59], for example) or should be hidden for military or commercial reasons. We name this
kind of privacy “sensing area privacy” in this chapter. How, then, could an originator
know the state of his privacy when the sensing area is invisible?

Our Contributions : In this chapter, our major contributions include the following:

70

1) We explore the issues of sensing area privacy and originator privacy. The two issues
conflict with each other, but are all critical concerns in practical applications. To
our knowledge, we are the first to address them simultaneously.

2) We provide a solution for the originator to test his privacy state in the case of sensing
area privacy, and then judge whether he is infringed by his own initiatives. Our
solution is based on the secure two-party point-inclusion problem. To our knowledge,
our solution is the first to guarantee the two contradictive privacy concerns without
tampering with any of them.

The chapter is organized as following: Section 5.2 introduces the issues and termi-
nologies about sensing area privacy and originator privacy; Section 5.3 outlines the re-
lated works; Section 5.4 describes the definition and protocol about the secure two-party
point-inclusion problem; Section 5.5 presents the specific scheme to test privacy state in
pervasive sensor networks; Section 5.6 gives an evaluation on the scheme; Section 5.7
concludes the chapter with some directions of future work.

5.2 Privacy Issues in Pervasive Sensor Networks

Many definitions on privacy in social science have been reviewed in [72] and an information
and communication-based concept was also illustrated. Specifically, privacy is the claim
of the manner and extent to which persons can control how information about them is:
(1)collected; (2) retained and/or maintained; (3) used; and (4) communicated, disclosed
or shared. In pervasive sensor networks, privacy has dual issues in that both sensors and
people sensed have concerns of their own privacy.

Originator Privacy : In this chapter we refer to the people who are to be sensed or
have been sensed by sensors as originators. we give a general term, originator privacy,
on all of their privacy concerns including individual location, voice, motion, etc.

Generally, the originator privacy has two states: alert and leisure. When the originator
knows that his privacy is on the alert state, he can decide whether his privacy has been
infringed, and then whether to protect his privacy. The decision is a subjective thing
of the originator. The state of privacy can also fall into other two phases: infringed
and not-infringed. Logically, the alert state contains the whole infringed state and some
not-infringed state, whereas the leisure state is contained in the not-infringed state. The
relationship of the four states is shown in Fig 5.1. In this chapter we will use the alert
and leisure states to test the originator privacy.

Sensing Area Privacy : The physical area where one type of sensor networks is
deployed to perform one kind of certain functionality is named sensing area. Sensing area
may also have privacy. Its lines and vertices shouldn’t be guessed by an adversary in order
to prevent the sensors from being destroyed. It may also be a secrecy of one company
which does not want its competitors to learn the details of the deployment area.

In this chapter, we assume that a sensor network is deployed on a 2-dimensional
reference frame, and the coordinates of its vertices for the sensing area have been known
after the deployment. The follows are the notations we will use for the sensing area:

- SA: sensing area;

- {Vi|i = 1, ..., n}: n vertices of SA;

71

Figure 5.1: Relationship of four privacy states

- (xi, yi): the coordinate position of the vertex Vi on the 2-dimensional reference
frame;

- ViVi+1: the line from the vertex Vi to Vi+1;

- fi(x, y): the linear equation for the line ViVi+1 on the 2-dimensional reference frame.

It is easy to get fi(x, y) from the coordinates (xi, yi) and (xi+1, yi+1) as follows:

fi(x, y) =
y − yi

yi+1 − yi

−
x − xi

xi+1 − xi

= 0

In Fig 5.2, we give an example of sensing area with 5 vertices deployed in one 2-
dimensional reference frame.

Figure 5.2: An example of sensing area.

Two originators and sensing areas of three sensor networks are shown in Fig 5.3. It may
be an illustration about the pervasive sensor networks in, say, a park, and the three sensor
networks are respectively for surveillance of image, voice, and electromagnetic wave. P1’s
privacy is on the alert state, whereas P2 is on the leisure state.

72

Figure 5.3: An example of pervasive sensor networks. The deep color parts are sensing
areas (SA) of the three sensor networks. P1 and P2 are two originators.

5.3 Related Work

5.3.1 Key Management Schemes in Wireless Sensor Networks

Many key management schemes have been proposed for wireless sensor networks (WSN)
to protect data confidentiality, which protects the sensitive transmitted data from passive
attacks, such as eavesdropping ([69]). Data confidentiality is a vital security issue in a
hostile environment, where the wireless channel is vulnerable to eavesdropping. However,
in the case that the originators’ privacy should also be respected, only key management
schemes won’t meet the two contradictive privacy requirements from originators and WSN.
We give a brief summary on the related work of key management schemes for a clear
illustration of their functionalities.

Network−wise Key Distribution : A network-wise key provides end-to-end pri-
vacy between the sink and all the sensor nodes. Network-wise key distribution schemes
include the master key based and public key based solution:

1) Master key based solution: In [13] and [45], it is assumed that the sensor nodes share
a common secret key K with the sink, but the aggregator nodes haven’t this key.
Modular addition and Domingo-Ferrer’s scheme ([20]) are used respectively by them
to encrypt data, and both of them are additive homomorphic. The limitation is that
the whole network will be compromised if K on one sensor node is compromised.

2) Public key based solution: In [73], each sensor node uses the public key of the base
station to encrypt its reading employing some homomorphic public key encryption
schemes. The base station is assumed to have strong reliability so that it is not easy
to be compromised. The public key encryption schemes are constructed on elliptic
curves in [73], but computation requirement in encryption is still high for the sensor
nodes.

Group − wise Key Distribution Schemes Group-wise Key Distribution Schemes
are mainly used for hierarchical WSN, where the whole network is hierarchically composed
of base stations, cluster heads and sensor nodes. There are two types of distributions:

73

1) Symmetric group-wise key distribution: In [7], a symmetric key can be generated
among t nodes by evaluating a symmetric multivariate polynomial P (x1, ..., xt) at
each node.

2) Asymmetric group-wise key distribution: In [70], the memory of each sensor node is
pre-loaded with the ECC (elliptic curve cryptography) domain parameters. After
deployment, each sensor will compute its EC-public/private key pair and broadcast
its public key to all nodes within the cluster. According to their comparisons, the
computation complexity of ECC is lower than DSA/RSA cryptosystem, but higher
than the symmetric cryptosystem.

Pair − wise Key Distribution Schemes The common way for pair-wise key distri-
bution is key pre-distribution, i.e., keys are stored in sensors before sensors are deployed.
After the deployment, each sensor establishes a secret link with its neighbor using a com-
mon pair-wise key which has been stored in it. Key connectivity, the probability of one
sensor node finds a common key with its neighbor, is an important factor to be considered
in the pair-wise key distribution schemes.

1) Master key based solution: A simple solution is to store a master key in all the
sensor nodes ([39]). After they are deployed, each pair of sensor nodes uses this
master key to achieve a new pair-wise key. This scheme has low resilience because
the compromising of one node will lead to the compromising of the whole network.

2) Pair-wise key pre-distribution solution: There is another straightforward solution
in which each sensor node stores N −1 secret pair-wise keys, each of them is known
only to this sensor node and one of the other N − 1 sensor nodes. This solution
has good resilience but is impractical because a sensor node has limited storage
and the size of the network (N) could be very large. What’s more, this solution
isn’t scalable to accept new nodes after the deployment of the network because the
deployed nodes may haven’t the keys of the new node.

3) Random key pre-distribution solutions: A basic random key pre-distribution scheme
is proposed in [26]: in the key-predistribution phase, each sensor node receives a
random subset of k keys from a large key pool of K keys. In the shared-key discovery
phase, to agree on a key for communication, two nodes find one common key within
their subsets and use this key as their shared secret key. The probability of key

share among two sensor nodes is ((K−k)!)2

(K−2k)!K!
. In the path-key establishment phase,

any pair of nodes (i, j) can securely establish a pair-wise key Ki,j through a path
i, v1, ..., vn, j, ordinally by sending EKi,v1

(Ki,j), EKv1,v2
(Ki,j)..., EKvn,j

(Ki,j). This
scheme is improved in [14]: a random set of (N − 1)p (0 < p < 1) pair-wise
keys is stored in each sensor node. The key connectivity becomes p because with
probability p two nodes can be connected. The memory required for storing keys is
decreased and good resilience is kept.

4) Key pre-distribution schemes with deployment knowledge: A location-based scheme
is proposed in [68] to improve the work in [26]: it assumes that each sensor node
has an expected location that can be predicted. Then each sensor is preloaded with
the pair-wise keys of its c closest neighbors. This solution has low memory usage
but good connectivity. Another work in [23] divides sensor nodes into t× n groups,

74

and deploys sensors in each group by Gaussian distribution. Compared with [26],
key connectivity is improved while keeping good resilience.

5) Other solutions: There are also a few key pre-distribution schemes based on other
techniques. The scheme in [11] is based on block design in combinatorial design
theory. In [22], each pair of nodes can calculate corresponding field of the key
matrix and use it as the pair-wise key. The scheme in [42] uses the evaluation of
symmetric polynomial P (x, y) (P (x, y) = P (y, x)) at the ID of each nodes pair (i, j)
to get a pair-wise key Ki,j = P (i, j).

5.3.2 Related Work for Protecting Originator’s Location Pri-

vacy

Originators’ location privacy has also been addressed in some work. [51] analyzed the fea-
sibility of anonymizing location information for location-based services in an automotive
telematics environment. [5] independently evaluated anonymity techniques for an indoor
location system based on the Active Bat. The Cricket Location-Support System [78] in-
corporates location privacy concern by a design in which device location information is
initially only known to the devices themselves. The owner can then conceivably decide to
whom this data should be released.

To our knowledge, little work has been done to address the originator privacy when
its concern is dynamic under the circumstances of pervasive sensor networks, especially
when the sensing area privacy should also been considered. Our scheme is based on the
protocol of secure two-party point-inclusion problem [4]. [24] has discussed one military
scenario in which such a point-inclusion problem could be used. We apply the point-
inclusion protocol to test the originator privacy state in pervasive sensor networks. The
point-inclusion protocol will use the protocol for secure two-party vector dominance as a
building block, which can be substituted by our STVD protocol in Chapter 2.

5.4 Fundamental Problems of Protocols

The general secure two-party computation problem is to compute one function f(a, b) on
multiple parties who are the private owners of a and b respectively, without disclosing
anything unintended to each other. The general secure two-party computation problem is
solvable using circuit evaluation protocols, but Goldreich has pointed out that solutions
derived from these general results can be impractical to solve specific problems[47].

The secure two-party point-inclusion problem can be stated as follows: Alice is the
owner of a point p, and Bob is the owner of a polygon P . They merely want to determine
whether p is inside P , without revealing to each other any information about the relative
position of p and P , such as whether p is approximately at the northeast part of P , or
whether p is close to one of the vertices of P , etc.

5.4.1 Two Fundamental Problems

An efficient protocol to solve the secure two-party point-inclusion problem can be based
on the secure two-party scalar product protocol and vector dominance protocol.

75

The secure two-party scalar product problem: Alice has a vector X = (x1, ..., xn) and
Bob has a vector Y = (y1, ..., yn). Alice (not Bob) is to get the result of u = X · Y + v
where v is a random scalar known to Bob only. One solution of this problem is from [4]
and the main idea is as follows:

1) On Alice, vector X is divided into m random vectors V1, ..., Vm of which it is the
sum (X =

∑m

i=1 Vi).

2) For each Vi, Alice sends p vectors {H1, ..., Hp} to Bob, only one of which equals Vi.

3) Without knowing which one is Vi, Bob then computes the scalar products between
Y and each of these p vectors, i.e., Zj,i for j = 1, ..., p as follows:

Zj,i = Hj · Y + ri.

in which rj is a random number generated by Bob and
∑m

i=1 ri = v.

4) Alice uses the 1-out-of-p oblivious transfer protocol ([47]) to get Vi · Y + ri back
from Bob.

5) After Alice gets Vi · Y + ri for i = 1, ..., n, she can compute
m
∑

i=1

(Vi · Y + ri) = X · Y + v.

The secure two-party vector dominance (STVD) problem: Let A = (a1, ..., an) and
B = (b1, ..., bn). If for all i = 1, ..., n we have ai ≥ bi, we say that A dominates B.
Suppose Alice has A and Bob has B. Alice wants to know whether A dominates B. Note
in the case where A does not dominate B, neither Alice nor Bob should learn the relative
ordering of any individual ai, bi pair, for example, whether ai < bi or not.

In Chapter 2 we have proposed an STVD protocol which is more efficient than the
related work for the same problem in [4] and [55]. We give the main idea of our STVD
protocol to show it can be embedded into a solution for the secure two-party point-
inclusion problem as a building block, without any revisions. The detailed executions of
the protocol can be found in Chapter 2.

1) For i = 1, ..., n, Alice and Bob do random-zero transformations on ai and bi re-
spectively. Alice gets a vector Ri = (rK0, rK1, ..., r10, r11), Bob gets K vectors
R′

ij = (r′K0, r
′
K1, ..., r

′
10, r

′
11) for j = 1, ..., K.

2) For i = 1, ..., n, Alice and Bob privately compute the product of scalar products,
i.e.,

E(

K
∏

j=1

(Ri · R
′
ij))

3) Alice and Bob compute

E(R) = E(
K
∏

j=1

(R1 · R
′
1j)) ⊙ · · · ⊙ E(

K
∏

j=1

(Rn · R′
nj))

= E(

n
∑

i=1

(

K
∏

j=1

(Ri · R
′
ij)))

76

4) Alice and Bob cooperatively decrypt E(R). If the decryption gR = 1, they de-
termine that A dominates B, otherwise, they determine that A doesn’t dominate
B.

5.4.2 Secure Two-party Point-Inclusion Protocol

One O(n) solution on secure two-party point-inclusion problem is firstly to divide edges
of the polygon into two boundaries by a diagonal between the leftmost and rightmost
vertex. If the point is below all the edges of the upper boundary and above all the edges
of the lower boundary, then the point is inside the polygon, otherwise it is outside.

Protocol 1 : The Protocol for the secure two-party point-inclusion problem:
Input : Alice has a point p : (α, β) and Bob has a polygon with n vertices: {Vi|Vi =

(xi, yi), i = 1, ..., n}.
Output : Both of them know whether p is inside the polygon, but Alice doesn’t know

any geometric information about the polygon, and Bob doesn’t know the position of p.
Steps :

1) Bob computes linear equations of each edge of his polygon, by the methods in
Section 5.2, and gets fi(x, y) = 0 for the edge ViVi+1 (i = 1, ..., n).

2) By comparing the coordinates of the vertices, Bob finds the leftmost and the right-
most vertex. Suppose L is the diagonal between the leftmost and rightmost vertex.
All vertices are divided into two sets:

{

the upper set V U = {i|Vi is above L}
the lower set V L = {i|Vi is below L}

3) Alice and Bob use the secure two-party scalar product protocol to compute ui for
ViVi+1 and i ∈ V U as follows:

ui = −fi(α, β) + vi,

and compute ui for ViVi+1 and i ∈ V L as follows:

ui = fi(α, β) + vi.

According to the scalar product protocol, Alice will get (u1, ..., un) and Bob will
get (v1, ..., vn). Bob will learn nothing about ui and (α, β); Alice will learn nothing
about vi and the function fi(x, y).

4) Alice and Bob use the secure two-party vector dominance protocol to find out
whether vector A = (u1, ..., un) dominates B = (v1, ..., vn). According to the vector
dominance protocol, if A does not dominate B, no other information is disclosed.

5) If A = (u1, ..., un) dominates B = (v1, ..., vn), then the point p = (α, β) is inside the
polygon; otherwise, the point is outside (or on the edge) of the polygon.

77

5.5 The Scheme to Test Privacy State

Section 4 has given a solution to address the relationship between a point and a poly-
gon. The solution can also be suitable for describing the geographic relationship between
originators and sensor networks.

5.5.1 Who’s Alice

Every originator who is to be sensed or has been sensed can act as Alice in secure two-
party point-inclusion problem. He has a point p which donates his current position, and
he wants to judge whether he has stayed in the sensing area of some certain type of sensor
network, so that he can be alert to his privacy. However, he doesn’t want a disclosure of
his position as a pay of the judgement.

5.5.2 Who’s Bob

The sensor network may have commercial or military privacy, so its specific sensing area
can’t be inferred by the originator. To give the originator a choice to test privacy state,
the sensor network should have a central server to act as Bob in secure two-party point-
inclusion problem. Besides, a trustful third party can also act as Bob simultaneously
for multiple sensor networks. No matter which server is chosen, there should be a jural
regulation that the sensor network must have a server when it is deployed.

Though Alice is safe because Bob can’t learn her input information in the protocol, Bob
may still have privacy concern for himself. During one single execution of the protocol,
Alice can learn nothing about the specific area of Bob. However, if Alice continuously
initiates the protocol and tests whether she is in the area, she may outline some parts
of the area. As a result, the server, which is acting as Bob, should restrict the initiation
times Alice can have.

5.5.3 The Architecture

Our architecture starts from the notion of providing a general scheme to test originator’s
privacy state in pervasive sensor networks. Fig 5.4 is a sketch map of the architecture.
When one originator passes through the pervasively deployed sensor networks, he will
need one single device (Personal Digital Assistant, for example) which can communicate
with the servers. The servers may be a trustful third party for the sensor networks, or a
central server of the network itself.

5.5.4 The Scheme

When one originator wants to test his privacy state, the following steps will be taken:
1) The PDA computes the current position of the originator by assistance of some

location service and keeps it as its own privacy.
2) The PDA searches the central servers or the third party servers of the sensor

networks. If it finds any, it initiates the protocol of the secure two-party point-inclusion
problem.

3) The server checks whether the PDA has overused its initiation times. If not, the
server agrees to continue the protocol.

78

Figure 5.4: The Architecture. Both originators, p1 and p2, have their own PDAs. PDA
can communicate with the server.

4) At the end of the protocol, the PDA concludes whether the originator is inside the
sensing areas of some types of sensor networks. If he is inside, the PDA shows he is on
the alert state of his privacy, otherwise, the PDA shows he is on the leisure state.

5) If the originator is on the alert state, the PDA also tells him a message about what
type of his private information (voice, motion, body temperature, etc) is being observed.
The PDA acquires this message from the server.

6) The originator decides whether to protect his privacy.

5.6 Evaluation of Our Scheme

Our Scheme assumes that the two parties, PDA and server, are semi-honest. Being semi-
honest means the party follows the protocol properly with the exception that it keeps a
record of all its intermediate computations and might try to derive other parties’s private
inputs from the record. At the end of the protocol, nothing more than the included-or-not
information can be learned by the two parties. Initiation times of PDA are also checked
by server, so sensing area privacy is further preserved. Thus, our scheme can ensure the
confidentiality of the private inputs of PDA and server.

The company can choose whether to trust a third party server before the sensing area
information is given to that server. If the company can’t, it must have a central server
for itself.

5.7 Chapter Summary and Future Work

In the near future sensor networks will be pervasively deployed to provide people the
convenience of accessing information anytime and anywhere. People will have a dynamic
concern about their own privacy, whereas it is another currency that sensors will become
invisible or should be hidden due to the privacy of themselves. A general scheme is
required to let people be aware of whether they should be alert on their private activities.

79

In this chapter, we discussed the privacy issues in pervasive sensor networks and intro-
duced some terminologies such as originator privacy and sensing area privacy. Then we
proposed a scheme to test the state of originator privacy in the case of sensing area pri-
vacy. Our scheme is general in that it is applicable for any types of sensor networks. In the
assumption of two semi-honest parties, our scheme is also characteristic of confidentiality.

A large number of security-related problems are still open. Denial-of-service attack on
the server may be employed by an adversary. The adversary may also trick the originator
by fabricating a server, so authentication of the server should also be considered. The
protocol solves only a point-inclusion problem on the planar surface. Some cubic solutions
should also be studied.

80

Chapter 6

Conclusions and Future Work

In this chapter, we give a summary on our contributions in this thesis, and put forward
some future directions on our work.

6.1 Contributions

This thesis contributes to formal definitions, new methods, efficient solutions, strength-
ened security for some specific privacy preserving computation problems in applications of
e-bidding and databases. Related work lacks rigorous argument on the security, especially
security under the malicious attacks. So for these problems we define their security under
two models (semi-honest and malicious), employ cryptographic tools to construct more
efficient solutions, and use cryptographic ways to formally prove the security. We are the
first to achieve an efficient secure two-party vector dominance protocol in the malicious
model, without employing the circuit evaluation techniques and causing unreasonable
computation and communication costs. Our protocols for privacy preserving set intersec-
tion in the semi-honest and malicious model are more efficient than the related work. We
propose an efficient solution for the problem of privacy preserving tuple matching, and are
the first to address the problem of privacy preserving threshold attributes matching, and
compared with solutions derived from related work, our proposed protocols for the two
problems have less complexities and achieve reasonable responding time in the practical
applications. We also employ our protocol for secure two-party vector dominance as a
building block to guarantee the two contradictive privacy concerns (sensing area privacy
and originator privacy) in wireless sensor network.

Specifically, our contributions can be listed in details as follows:

1) In the first part of work, we define the problem of secure two-party vector domi-
nance (STVD) in terms of completeness, soundness and security in both semi-honest
model and malicious model. we propose an STVD protocol which is proved to be
overwhelmingly complete and sound, and be secure in the semi-honest model. We
propose an STVD protocol which is proved to be overwhelmingly complete and
sound, and be secure in the semi-honest model. Given K is the length of each el-
ement in the vector, in K + 1 parallel execution, our protocol has higher efficiency
compared with a derived solution from [84] and another solution from [4]. We also
fix our protocol to be secure against malicious behaviors in multi-commodity private
bidding, and the fixed protocol is also proved to be overwhelmingly complete and

81

sound. In K + 1 parallel execution, our protocol has the same level of efficiency
compared with the derived solution from [84].

2) In the second part of work, we give formal definitions of privacy preserving set
intersection (PPSI) in both the semi-honest and malicious models. We propose
efficient PPSI protocols for the two models respectively, and formally prove their
security according to their definitions. In a quantitatively analyzing experiment, our
PPSI protocol for the semi-honest model saves 81% and 63% computation costs, 17%
and 20% communication costs in comparison with [62] and [36]. Our PPSI protocol
for the malicious model keeps the same level of complexity as our PPSI protocol for
the semi-honest model, that is, it has a computation cost of O(cSNlgN) modular
multiplications, and a communication cost of O(cSNlgN) bits. c is the number of
malicious parties, S is the size of dataset on each party, N is the total number of
parties, and lgN is the length of modulus in the cryptosystem. In [63] the PPSI
protocol for the malicious model has a computation cost of O(cS2lgN) modular
multiplications, and also a communication cost of O(cSNlgN) bits.

3) In the third part of work, our proposed protocol for the privacy preserving tuple
matching (PPTM) problem has a lower computation cost than two related solutions
in [62] and [63], and keeps the same security defined under Secure Multi-party
Computation (SMC), without increasing intolerable communication cost. According
to our experiments on a moderate-scale database, the dominant time cost is on the
computation, rather than on the communication of our protocol. The computation
of our PPTM protocol need O(NS2) modular exponentiations, but in [62] and [63]
both of them need O(N2S2) modular exponentiations. N is the total number of
parties, and S is the number of tuples on each party. Our PPTM protocol has some
increased communication bits, but they can be transferred within a few seconds.

To our knowledge, we are the first to talk about the privacy preserving threshold
attribute matching (PPTAM) problem, though a solution can be derived from the
related techniques in [62]. Our proposed protocol for the PPTAM problem has
lower computation and communication costs than the derived solution, while keep-
ing the same level of SMC security. By our experiments, our PPTAM protocol
has a reduction of about 71.3% in computation, and a reduction of about 75% in
communication, in comparisons with the derived solution.

4) In the final part of work, we explore the issues of sensing area privacy and originator
privacy in wireless sensor networks. The two issues conflict with each other, but
are all critical concerns in practical applications. To our knowledge, we are the first
to address them simultaneously. We provide a solution for the originator to test
his privacy state in the case of sensing area privacy, and then judge whether he
is infringed by his own initiatives. Our solution is based on the secure two-party
point-inclusion problem, which employs our STVD protocol in the first part of work
as a building block. To our knowledge, our solution is the first to guarantee the two
contradictive privacy concerns without tampering with any of them.

82

6.2 Future Research Directions

In this thesis, we have proposed solutions to protect the participants’ privacy in some
basic computation problems. The common characteristics of these problems are that
the inputs are distributed on different participants, the participants will claim privacy
on their own inputs, but they are also in need of sharing some kind of information on
these inputs. In practical applications, the information need to be shared may be as
simple as the set intersection, or as complex as a mathematical model that can provide
predictive decisions. Therefore, we will make for a more general research named as Privacy
Preserving Distributed Information Sharing (PPDIS), and address the abundant sub-
problems inside it.

From the research of this thesis, we notice that security and efficiency are two in-
dispensable requirements for a solution to the privacy preserving computation problems.
Any participant wants to complete the computation without worrying about the leaking
of his privacy, and within a sustainable response time even when the inputs are large-scale
databases. We also notice that both the security and efficiency are technique-related. The
threshold homomorphic encryption schemes we used are robust against various powerful
attacks, but they have limitations in that:

1) they can’t be additive homomorphic and multiplicative homomorphic simultane-
ously, thus they have restricted utilities in computations composed of basic arith-
metics.

2) they may need excessive modular exponentiations in large-scale inputs, and make
the response time of the solution to be intolerable for the participants.

In some related work, data perturbation techniques (e.g., data swapping in [17, 31],
additive and multiplicative distortion in [1, 38, 61, 43], probability transition matrix
in [27, 28, 80], and k-Anonymity in [87], etc) are employed instead of cryptographic
primitives, but they may be not secure against some powerful adversaries. Therefore, in
our research of PPDIS, an important direction is to improve the protection techniques
for the original inputs, without compromising the security and efficiency of the holistic
solutions.

Specifically, we will expand our research on PPDIS as follows:

1) Doing comparisons between data perturbation techniques and cryptographic tech-
niques. The inputs of each party may be composed of hundreds or thousands of
records. When used for protecting these inputs, cryptographic primitives will have
unreasonable response times, but data perturbation techniques may make an ad-
versary’s attacks easier. We will compare the cryptography and data perturbation
techniques considering their execution times and security levels, then improve the se-
curity of data perturbation techniques utilizing the anti-attack techniques achieved
in the study of cryptography.

2) Proposing secure and efficient solutions for some basic PPDIS problems. One ex-
ample of such problems is privacy preserving tuple matching, for which we have
proposed a solution for the semi-honest model. We will define some more rigorous
security requirements for these problems than the related work, and use crypto-
graphic tools to get solutions which are secure against the malicious attacks of some
dishonest parties.

83

3) Proposing secure solutions for some large-scale data mining tasks. We will employ
the protocols we have achieved in the basic problems such as PPSI, PPTM, PPTAM,
to solve complex data mining tasks (e.g., privacy preserving classification, clustering,
association rule mining), and improve the efficiency and security of the related work
in these research fields.

84

Bibliography

[1] R. Agrawal, R. Srikant,“Privacy-preserving data mining,” Proceedings of the ACM
SIGMOD Conference on Management of Data, pages 439–450, 2000.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubrarnanian, and E. Cayirci, Wireless sensor net-
works: A survey, Computer Networks, Elsevier Science, 38(4), 2002, 393-422.

[3] G. Alia and E. Martinelli, “Fast modular exponentiation of large numbers with large
exponents”, in Journal of Systems Architecture: the EUROMICRO Journal, 47(14-
15), pp. 1079 - 1088, 2002.

[4] M. J. Atallah and W. Du. “Secure Multi-party Computational Geometry”. in Proc.
of the 7th International Workshop on Algorithms and Data Structures, vol. 2125, pp.
165-179, LNCS, Springer-Verlag, 2001.

[5] A. R. Beresford and F. Stajano, “Location Privacy in Pervasive Computing”, in IEEE
Pervasive Computing, 2(1): 46-55, 2003.

[6] I. F. Blake and V. Kolesnikov. “Strong Conditional Oblivious Transfer and Com-
puting on Intervals”. in Advances in Cryptology - ASIACRYPT ’04, vol. 3329, pp.
515-529, LNCS, Springer-Verlag, 2004.

[7] C. Blundo, A. Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung, “Perfectly-
secure key distribution for dynamic conferences”, in Crypto 92, 1992.

[8] D. Boneh and M. Franklin, “Efficient Generation of Shared RSA Keys”. in Crypto97,
LNCS 1294, pages 425C439. Springer-Verlag, Berlin, 1997.

[9] F. Boudot, B. Schoenmakers and J. Traor’e, “A Fair and Efficient Solution to the
Socialist Millionaires’ Problem”, in Discrete Applied Mathematics, 111(1-2), pp. 23-
36, 2001.

[10] C. Cachin. “Efficient Private Bidding and Auctions with an Oblivious Third Party”.
in Proc. of the 6th ACM Conference on Computer and Communications Security, pp.
120-127, ACM Press, 1999.

[11] S. A. Camtepe and B. Yener, “Combinatorial design of key distribution mechanisms
for wireless sensor networks”, in 9th European Symposium on Research Computer
Security, 2004.

[12] R. Canetti. “Security and Composition of Multi-party Cryptographic Protocols”. in
Journal of Cryptology, 13(1): pp. 9-30, 2000.

85

[13] C. Castelluccia, E. Mykletun and G. Tsudik, “Efficient Aggregation of Encrypted
Data in Wireless Sensor Networks”, ACM/IEEE Mobiquitous Conference, July 2005,
San Diego, USA.

[14] H. Chan, A. Perrig, D. Song, Random Key Predistribution Schemes for Sensor Net-
works, Proceedings of the 2003 IEEE Symposium on Security and Privacy, 2003,
197.

[15] R. Cramer, I. Damgard, and J. Nielsen, “Multiparty Computation from Threshold
Homomorphic Encryption”, in Advances in Cryptology - EUROCRYPT 2001, LNCS,
Springer, vol. 2045, pp. 280-300, 2001.

[16] R. Cramer and I. Damgard. “Zero-knowledge Proofs for Finite Field Arithmetic, or:
can Zero-knowledge be for Free”. in Advances in Cryptology - CRYPTO ’98, vol.
1462, pp. 424-441, LNCS, Springer-Verlag, 1998.

[17] T. Dalenius and SP. Reiss, “Data-swapping: A Technique for Disclosure Control,”
Journal of. Statistical Planning and Inference, 6, pp. 73-85, 1982.

[18] A. D. Santis, G. D. Crescenzo, G. Persiano, M. Yung. “On Monotone Formula Clo-
sure of SZK”. in Proc. of the 35th Annual Symposium on Foundations of Computer
Science, pp. 454-465, IEEE Computer Society, 1994.

[19] A. Doan and A. Halevy, “Semantic Integration Research in the Database Community:
A Brief Survey”, in AI Magazine, Special Issue on Semantic Integration, 26(1), pp.
83-94, 2005.

[20] J. Domingo-Ferrer, “A provably secure additive and multiplicative privacy homomor-
phism”, in Information Security Conference, LNCS 2433, pp.471-483, 2002.

[21] W. Du and M. Attalah, “Protocols for Secure Remote Database Access with Ap-
proximate Matching”, in Proc. of the 7th ACM CCS, the 1st Workshop on Security
and Privacy in E-commerce, 2000.

[22] W. Du, J. Deng, Y. S. Han, and P. K. Varshney, A pairwise key pre-distribution
scheme for wireless sensor networks. Proceedings of the 10th ACM conference on
Computer and communication security, Washington D.C., USA, 2003, 42-51.

[23] W. Du, J. Deng, Y. S. Han, S. Chen, and P. K. Varshney, A Key Management Scheme
for Wireless Sensor Networks Using Deployment Knowledge, IEEE INFOCOM’04,
Mar. 2004, Hongkong, China.

[24] W. Du, M. J. Atallah, Secure Multi-party Computation Problems and Their Appli-
cations: A Review and Open Problems. Proceedings of the 2001 workshop on New
security paradigms, Cloudcroft, New Mexico, USA, 2001, 13-22.

[25] T. ElGamal, “A Public-Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms”, in IEEE Transactions on Information Theory, vol. IT-31, n. 4, pp.
469C472, 1985.

86

[26] L. Eschenauer, V. D. Gligor, A key-management scheme for distributed sensor net-
works, Proceedings of the 9th ACM conference on Computer and communications
security, Washington, DC, USA, 2002, 41-47.

[27] A. Evfimievski, R. Srikant, R. Agrawal, J. Gehrke, “Privacy-Preserving Mining of
Association Rules”, in 8th ACM SIGKDD Int’l Conf. on Knowledge Discovery in
Databases and Data Mining, Edmonton, Canada, July 2002.

[28] A. Evfimievski, J. Gehrke, and R. Srikant, “Limiting privacy breaches in privacy
preserving data mining”, in Proc. 22nd ACM Symposium on Principles of Database
Systems (PODS 2003), pages 211–222.

[29] R. Fagin, M. Naor, and P. Winkler, “Comparing Information without Leaking It”,
in Communications of the ACM, 39(5): 77-85, 1996.

[30] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss, and R. Wright, “Se-
cure Multiparty Computation of Approximations”, in Proc. of the 28th International
Colloquium on Automata, Languages and Programming (ICALP 2001), pp. 927-938,
2001.

[31] S. E. Fienberg, J. McIntyre: “Data Swapping: Variations on a Theme by Dalenius
and Reiss”, Privacy in Statistical Databases 2004: 14-29.

[32] M. Fischlin. “A Cost-effective Pay-per-multiplication Comparison Method for Mil-
lionaires”. in Proceedings of the 2001 Conference on Topics in Cryptology: The Cryp-
tographers Track at RSA, vol. 2020, pp. 457-472, LNCS, Springer-Verlag, 2001.

[33] P. Fouque, G. Poupard and J. Stern, “Sharing Decryption in the Context of Voting or
Lotteries”, in Proc. of the 4th International Conference on Financial Cryptography,
pp. 90 - 104, 2000.

[34] P. Fouque and D. Pointcheval, “Threshold Cryptosystems Secure against Chosen-
ciphertext Attacks”, in Proc. of Asiacrypt 2001, pp. 351 - 368, 2001.

[35] P. Fouque and J. Stern, “Fully Distributed Threshold RSA under Standard Assump-
tions”, in Asiacrypt2001, LNCS, Springer-Verlag, Berlin, 2001.

[36] M. Freedman, K. Nissim and B. Pinkas, “Efficient Private Matching and Set Inter-
section”, in Proc. of Eurocrypt ’04, LNCS, Springer, vol. 3027, pp. 1 - 19, 2004.

[37] E. Fujisaki and T. Okamoto. “Statistical Zero Knowledge Protocols to Prove Modular
Polynomial Relations”. in Advances in Cryptology - CRYPTO ’97, vol. 1294, pp. 16-
30, LNCS, Springer-Verlag, 1997.

[38] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the privacy preserving
properties of random data perturbation techniques. in The Third IEEE International
Conference on Data Mining, 2003.

[39] B. Lai, S. Kim, and I. Verbauwhede, “Scalable session key construction protocol for
wireless sensor networks”, In IEEE Workshop on Large Scale RealTime and Embedded
Systems (LARTES), Austin, Texas, December 2002.

87

[40] Y. Lindell. “Parallel Coin-Tossing and Constant-Round Secure Two-Party Compu-
tation”. in Journal of Cryptology, 16(3): pp. 143-184, 2003.

[41] D. Liu, and P. Ning, “Location-based pairwise key establishment for static sensor
networks”, in 1st ACM Workshop on Security of Ad Hoc and Sensor Networks, 2003.

[42] D. Liu, and P. Ning, “Establishing pairwise keys in distributed sensor networks”, in
10th ACM conference on Computer and communications security CCS03, 2003.

[43] K. Liu, H. Kargupta, J. Ryan, Random projection-based multiplicative data pertur-
bation for privacy preserving distributed data mining, IEEE Transactions on Knowl-
edge and Data Engineering, 18(1):92C106, 2006.

[44] R. Gennaro, S. Jarecki, H. Krawczyk H and T. Rabin. “Secure Distributed Key
Generation for Discrete-log Based Cryptosystems”. in Advances in Cryptology - EU-
ROCRYPT’99, vol. 1592, LNCS, pp. 295-310, 1999.

[45] J. Girao, D. Westhoff, and M. Schneider, “CDA: Concealed Data Aggregation for Re-
verse Multicast Traffic in Wireless Sensor Networks”, 40th International Conference
on Communications, IEEE ICC 2005, May 2005, Korea.

[46] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen, “On Secure Scalar Product
Computation for Privacy-Preserving Data Mining”, in Proc. of ICISC, 2004.

[47] O. Goldreich, “Foundations of Cryptography: Volume 1, Basic Tools”, Cambridge
University Press, 2001.

[48] O. Goldreich. “Foundations of Cryptography: Volume 2”. Cambridge University
Press, 2001.

[49] O. Goldreich, S. Micali, and A. Wigderson, “How to Play Any Mental Game”, in
Proc. of 19th STOC, pp. 218-229, 1987.

[50] S. Goldwasser, “Multi-party Computations: Past and Present”, in Proc. of 16th
annual ACM symposium on Principles of distributed computing, pp. 1-6, 1997.

[51] M. Gruteser and D. Grunwald, Anonymous Usage of Location-based Services
Through Spatial and Temporal Cloaking. Proceedings of the First International Con-
ference on Mobile Systems, Applications, and Services, San Francisco, CA, USA, May
2003.

[52] T. Hartman and R. Raz, “On the Distribution of the Number of Roots of Polynomials
and Explicit Weak Designs”, in Random Structures and Algorithms, Vol. 23 (3), pp.
235 - 263, 2003.

[53] M. Hernandez and S. Stolfo, “The Merge/purge Problem for Large Databases”, in
Proc. of the ACM SIGMOD International Conference on Management of Data, pp.
127-138, 1995.

[54] S. Hohenberger and S. A. Weis, “Honest-Verifier Private Disjointness Testing without
Random Oracles”, in Workshop on Privacy Enhancing Technologies (PET), 2006.

88

[55] M. H. Ibrahim. “Two-Party Private Vector Dominance: The All-Or-Nothing Deal”,
in Proc. of the 3rd International Conference on Information Technology: New Gen-
erations, pp. 166-171, IEEE Computer Society, Apr. 2006.

[56] P. Indyk and D. Woodruff, “Polylogarithmic Private Approximations and Efficient
Matching”, in Proc. of the Third Theory of Cryptography Conference (TCC 2006),
LNCS, Springer, vol. 3876, pp. 245-264, 2006.

[57] I. Ioannidis and A. Grama. “An Efficient Protocol for Yao’s Millionaires Problem”.
in Proc. of the 36th Hawaii Internatinal Conference on System Sciences, vol. 07, no.
7, pp. 205a, 2003.

[58] M. Jakobsson, A. Juels, “Mix and Match: Secure Function Evaluation via Cipher-
texts”, in Advances in Cryptology - ASIACRYPT 2000, vol. 1976, pp. 162-177, LNCS,
Springer-Verlag, 2000.

[59] J. M. Kahn, R. H. Katz, and K. S. J. Pister, Next century challenges: Mobile Net-
working for ”Smart Dust”, Proceedings of the 5th annual ACM/IEEE international
conference on Mobile computing and networking(MobiCom), Seattle, United States,
1999, 271-278.

[60] A. Kiayias and A. Mitrofanova, “Testing disjointness of private datasets”, in Proc. of
Financial Cryptography (FC 2005), LNCS, Springer, vol. 3570, pp. 109C124, 2005.

[61] J. J. Kim and W. E. Winkler, “Multiplicative Noise for Masking Continuous Data”,
in Statistical Research Division, US Bureau of the Census, Washington DC 20233.

[62] L. Kissner and D. Song, “Privacy-Preserving Set Operations”, in Advances in Cryp-
tology - CRYPTO 2005, LNCS, Springer, vol.3621, pp. 241-257, 2005.

[63] L. Kissner and D. Song, “Privacy-Preserving Set Operations”, in Technical Report
CMU-CS-05-113, Carnegie Mellon University, June 2005.

[64] K. Kurosawa, W. Ogata, “Bit-Slice Auction Circuit”, in Proc. of European Sym-
posium on Research in Computer Security (ESORICS 2002), vol. 2502, pp. 24-38,
LNCS, Springer-Verlag, 2002.

[65] H. Y. Lin and W. G. Tzeng. “An Efficient Solution to The Millionaires’ Problem
Based on Homomorphic Encryption”. in Proc. of Applied Cryptography and Network
Security 2005, vol. 3531, pp. 456-466, LNCS, Springer-Verlag, 2005.

[66] Y. Lindell. “Parallel Coin-Tossing and Constant-Round Secure Two-Party Compu-
tation”. in Journal of Cryptology, 16(3): pp. 143-184, 2003.

[67] H. Lipmaa, “Verifiable Homomorphic Oblivious Transfer and private Equality Test”,
in Advances in Cryptography ASIACRYPT 2003, pp. 416-433, 2003.

[68] D. Liu and P. Ning, ”Establishing pairwise keys in distributed sensor networks”,
Proceedings of the 10th ACM conference on Computer and communication security,
Washington D.C., USA, Oct. 2003, 52-61.

89

[69] W. Lou, W. Liu, Y. Fang, “SPREAD: Enhancing Data Confidentiality in Mobile Ad
Hoc Networks”, IEEE INFOCOM 2004, 2004.

[70] A. Mahimkar, T. S. Rappaport, “SecureDAV: A Secure Data Aggregation and Veri-
fication Protocol for Sensor Networks”, Proceedings of IEEE Global Telecommunica-
tions Conference (Globecom) 2004, Nov, 2004, Dallas, TX, USA.

[71] A. Menezes, P. van Oorschot, and S. Vanstone, “Handbook of Applied Cryptogra-
phy”, CRC Press, 1996.

[72] R. P. Minch, Privacy Issues in Location-Aware Mobile Devices, Proceedings of the
Proceedings of the 37th Annual Hawaii International Conference on System Sci-
ences(HICSS’04),Track 5, Volume 5, Jan. 2004.

[73] E. Mykletun, J. Girao, and D. Westhoff, “Public key based cryptoschemes for data
concealment in wireless sensor networks”, in IEEE International Conference on Com-
munications (ICC2006), June 2006, Turkey.

[74] M. Naor and B. Pinkas, “Oblivious Transfer and Polynomial Evaluation”, in Proc.
of the 31st Annual ACM Symposium on Theory of Computing, pp. 245-254, 1999.

[75] P. Paillier, “Public-key Cryptosystems based on Composite Degree Residuosity
Classes”, in Proc. of Asiacrypt 2000, pp. 573-584, 2000.

[76] K. Peng, C. Boyd, E. Dawson and B. Lee. “An Efficient and Verifiable Solution to the
Millionaire Problem”. in Proc. of the 7th International Conference on Information
Security and Cryptology, vol. 3506, pp. 51-66, LNCS, Springer-Verlag, 2004.

[77] A. Perrig, J. Stankovic, and D. Wagner, Security in wireless sensor networks, Com-
munications of the ACM, 47(6), Jun. 2004, 53-57.

[78] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, The Cricket location-support
system, Proceedings of the 6th annual international conference on Mobile computing
and networking, Boston, Massachusetts, USA, 2000, 32-43.

[79] D. Randall, “Efficient Generation of Random Nonsingular Matrices”, in Random
Structures and Algorithms, vol. 4(1), pp. 111-118, 1993.

[80] S. Rizvi and J. Haritsa,“Maintaining Data Privacy in Association Rule Mining”, in
Proc. of 28th Intl. Conf. on Very Large Databases (VLDB), August 2002.

[81] Y. Sang, H. Shen, Z. Zhang. “An Efficient Protocol for the Problem of Secure Two-
party Vector Dominance”. in Proc. of 6th International Conference on Parallel and
Distributed Computing Applications and Technologies, pp. 488-492, IEEE Computer
Society, Dec. 2005.

[82] S. Sarawagi and A. Bhamidipaty, “Interactive deduplication using active learning”, in
Proc. of the Eighth ACM SIGKDD international conference on Knowledge Discovery
and Data Mining, pp. 269-278, 2002.

[83] C. P. Schnorr. “Efficient Signature Generation by Smart Cards”. in Journal of Cryp-
tology, 4(3): pp. 161-174, 1997.

90

[84] B. Schoenmakers and P. Tuyls. “Practical Two-Party Computation based on the
Conditional Gate”. in Advances in Cryptology - ASIACRYPT 2004, vol. 3329, pp.
119-136, LNCS, Springer-Verlag, 2004.

[85] A. Shamir, “How to Share a Secret”, in Communications of the ACM, 22:612C613,
November 1979.

[86] V. Shoup, “Practical Threshold Signatures”, in Eurocrypt2000, LNCS 1807, pages
207C220. Springer-Verlag, Berlin, 2000.

[87] L. Sweeney. “k-anonymity: a model for protecting privacy”, in International Journal
on Uncertainty, Fuzziness and Knowledge-based Systems, 10 (5), pp. 557-570, 2002.

[88] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, Lessons from a Sensor
Network Expedition, Proceedings of the First European Workshop on Sensor Net-
works(EWSN ’04), Berlin, Germany, Jan. 2004.

[89] S. Tilak, N. Abu-Ghazaleh, and W. Heinzelman, A Taxonomy of Wireless Microsen-
sor Network Models, ACM Mobile Computing and Communications Review (MC2R
2002), 6(2), Apr. 2002, 28-36.

[90] C. D. Walter, “Exponentiation Using Division Chains”, in IEEE Transactions on
Computers, 47(7), pp. 757-765, 1998.

[91] M. Weiser, The Computer for the 21st Century, Scientific American, Sept.1991,
265(3), 94-104.

[92] A.C. Yao, “Protocols for Secure Computations”, in Proc. of the 23rd Annual IEEE
Symposium on Foundations of Computer Science, pp. 160 - 164, 1982.

91

Publications

[1] Yingpeng Sang, Hong Shen, Laurence T. Yang, Yasuo Tan, Naixue Xiong: An
Efficient and Secure Protocol for Privacy Preserving Set Intersection, accepted by
Journal of Autonomic and Trusted Computing, American Scientific Publishers.

[2] Yingpeng Sang, Hong Shen, Yasuo Tan, Zonghua Zhang: A Secure and Efficient
Two-party Vector Dominance Protocol for Multi-commodity Private Bidding, sub-
mitted to Computer Communications.

[3] Yingpeng Sang, Hong Shen, Yasuo Tan: Privacy Preserving Tuple Matching in Dis-
tributed Database, submitted to IEICE Transactions on Information and Systems.

[4] Yingpeng Sang, Hong Shen, Yasuo Tan, Naixue Xiong: Efficient Protocols for Pri-
vacy Preserving Matching against Distributed Datasets, Proc. of the Eighth Interna-
tional Conference on Information and Communications Security (ICICS’06), LNCS
4307, pp. 210-227, Raleigh, NC, USA, December 2006.

[5] Yingpeng Sang, Hong Shen, Yasushi Inoguchi, Yasuo Tan, Naixue Xiong, Secure
Data Aggregation in Wireless Sensor Networks: A Survey. Proc. of the 7th In-
ternational Conference on Parallel and Distributed Computing, Applications and
Technologies (PDCAT 2006), IEEE CS, Taipei, Taiwan, December 2006.

[6] Yingpeng Sang, Hong Shen, Zonghua Zhang, An Efficient Protocol for the Problem
of Secure Two-party Vector Dominance, Proc. of the 6th International Conference
on Parallel and Distributed Computing, Applications and Technologies (PDCAT
2005), IEEE CS, pp. 488-492, Dalian, China, December 2005.

[7] Yingpeng Sang, Hong Shen, A Scheme for Testing Privacy State in Pervasive Sensor
Networks, Proc. of the 19th International Conference on Advanced Information
Networking and Applications (AINA 2005), IEEE CS, pp. 644-648, Taipei, Taiwan,
March 2005.

[8] Yingpeng Sang, Hong Shen, Pingzhi Fan, Novel Impostors Detection in Keystroke
Dynamics by Support Vector Machine, Proc. of the 5th International Conference
on Parallel and Distributed Computing: Applications and Technologies (PDCAT
2004), LNCS 3320, pp. 666-669, Singapore, December 2004.

92

